WO2018151204A1 - Medical long body - Google Patents

Medical long body Download PDF

Info

Publication number
WO2018151204A1
WO2018151204A1 PCT/JP2018/005228 JP2018005228W WO2018151204A1 WO 2018151204 A1 WO2018151204 A1 WO 2018151204A1 JP 2018005228 W JP2018005228 W JP 2018005228W WO 2018151204 A1 WO2018151204 A1 WO 2018151204A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
groove
intermediate region
layer
groove portion
Prior art date
Application number
PCT/JP2018/005228
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 健太
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2018151204A1 publication Critical patent/WO2018151204A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters

Definitions

  • the present invention relates to a medical long body.
  • a balloon catheter (medical long body) is known as a medical instrument used to expand a lesion (stenosis, etc.) formed in a body lumen such as a blood vessel or to place a stent or the like in a lesion.
  • the balloon catheter has a shaft (catheter body) and a balloon that is provided on the distal end side of the shaft and expands in the radial direction of the shaft when fluid is injected through the lumen of the shaft.
  • the balloon in an expanded state, has an intermediate region that contacts the living body lumen wall, a distal-side inclined region that extends from the distal end of the intermediate region to the distal side, and a proximal-side inclined region that extends from the proximal end to the proximal side of the intermediate region And having.
  • the balloon catheter is introduced from the puncture site into the living body lumen via the introducer sheath, guiding catheter, etc., and delivered to the lesioned part.
  • the balloon catheter preferably has a smaller frictional resistance between the outer surface of the balloon and the living body lumen wall.
  • the frictional resistance between the outer surface of the balloon and the living body lumen wall is large in order to suppress displacement in the axial direction of the balloon. .
  • the surface of the tip side inclined region and the base end side inclined region of the balloon is given lubricity
  • a balloon catheter that is not lubricated on the surface of the intermediate region of the balloon that contacts the lumen wall is known (see, for example, Patent Document 1).
  • the present invention has been made in view of the above-described problems, and when the balloon is expanded at the lesion, the occurrence of slippage between the outer surface of the balloon and the body lumen wall is suppressed, and the axial direction of the balloon
  • An object of the present invention is to provide a medical elongate body that can prevent a positional shift to the position.
  • a medical elongated body of the present invention is provided on the distal end side of a catheter body and the catheter body, and fluid is injected through the lumen of the catheter body, A balloon that expands radially.
  • the balloon has an outer surface formed of a hydrophobic resin and an intermediate region in contact with a living body lumen wall in a state where the balloon is expanded, and a distal end side extending from the distal end of the intermediate region to the distal end side An inclined region, and a proximal-side inclined region extending from the proximal end of the intermediate region to the proximal end side.
  • the intermediate region includes a groove portion in which the outer surface of the balloon is recessed.
  • the groove portion has a hydrophilic coating formed on the surface forming the groove portion.
  • the medical elongated body according to the present invention when the balloon is expanded and the middle region of the balloon comes into contact with the living body lumen wall, the water present between the outer surface of the balloon and the living body lumen wall is It is guided from the outer surface of the balloon formed of a hydrophobic resin having a low affinity for moisture toward the groove where the hydrophilic coating having a high affinity for moisture is formed. Therefore, the medical elongate body according to the present invention can reduce the amount of moisture existing between the outer surface of the balloon and the living body lumen wall when the balloon is expanded. Therefore, the medical elongated body according to the present invention suppresses the occurrence of slipping between the outer surface of the balloon and the living body lumen wall when the balloon is expanded at the lesion, Misalignment can be prevented.
  • FIG. 1A is a view showing a balloon catheter according to an embodiment of the present invention
  • FIG. 1B is an enlarged cross-sectional view of a portion indicated by a broken line portion 1B in FIG. 1A
  • 2A is a plan view of the balloon of the balloon catheter according to the embodiment
  • FIG. 2B is an enlarged cross-sectional view of a portion indicated by a broken line portion 2B in FIG. 1A
  • FIG. 3A is a cross-sectional view of a balloon of the balloon catheter according to the embodiment
  • FIG. 3A is a cross-sectional view of the balloon in a deflated state
  • FIG. 3B is a cross-sectional view of the balloon in an expanded state. .
  • FIG. 4A is an enlarged cross-sectional view of a portion indicated by a broken line portion 4A in FIG. 3B
  • FIG. 4B is an enlarged view of a portion indicated by a broken line portion 4B in FIG. 2A.
  • FIG. 5 (A) is a view for explaining the action of the balloon catheter according to the embodiment
  • FIG. 5 (B) is an enlarged view of a portion indicated by a broken line portion 5B in FIG. 5 (A).
  • It is an expanded sectional view corresponding to Drawing 4 (A) of a balloon catheter concerning a modification.
  • It is an expanded sectional view of the balloon along the direction perpendicular to the axial direction of the balloon catheter concerning another modification, and is an expanded sectional view showing a part of the balloon in the contracted state.
  • FIGS. 8A and 8B are enlarged cross-sectional views corresponding to FIG. 4A of a balloon catheter according to still another modified example.
  • FIG 1 to 4 are diagrams showing the configuration of each part of the balloon catheter 10 according to the embodiment.
  • the balloon catheter 10 allows the shaft 20 to be inserted into the living body lumen V and narrows the balloon 30 disposed on the distal end side of the shaft 20.
  • the part N (lesioned part)
  • it is configured as a medical instrument for expanding and treating the stenotic part N.
  • the stenosis N is a place where the living body lumen V surrounded by the living body lumen wall Vw is narrow.
  • the balloon catheter 10 can be configured, for example, as a PTCA dilatation balloon catheter used to widen the stenosis N of the coronary artery.
  • the balloon catheter 10 is intended for the treatment and improvement of stenosis N formed in living organs such as other blood vessels, bile ducts, trachea, esophagus, other digestive tract, urethra, ear nasal lumen, and other organs. It can also be configured as used.
  • the balloon catheter 10 (corresponding to a medical long body) according to this embodiment is The shaft 20 (corresponding to the catheter body), a balloon 30 provided on the distal end side of the shaft 20, and a hub 40 disposed on the proximal end side of the shaft 20.
  • the balloon 30 expands in the radial direction of the shaft 20 by injecting fluid through the lumen 21 u of the shaft 20.
  • the outer surface 30S1 of the balloon 30 is formed of a hydrophobic resin.
  • the balloon 30 In the expanded state, the balloon 30 includes an intermediate region 31 that contacts the living body lumen wall Vw, a distal-side inclined region 32 that extends from the distal end 31a of the intermediate region 31 to the distal side, and a proximal end from the proximal end 31b of the intermediate region 31. And a proximal-side inclined region 33 extending to the side.
  • the intermediate region 31 includes a groove 100 in which the outer surface 30S1 of the balloon 30 is recessed. In the groove portion 100, a hydrophilic coating 110 is formed on the surface 101 that forms the groove portion 100.
  • the side of the balloon catheter 10 that is inserted into the living body lumen V (the side on which the balloon 30 is disposed) is referred to as the distal end side, and the side that is operated on the side opposite to the distal end side (hub)
  • the side on which 40 is disposed) is referred to as the proximal side
  • the direction in which the balloon extends is referred to as the axial direction of the balloon.
  • the distal end portion means a certain range including the distal end (the most distal end) and the periphery thereof
  • the proximal end portion means a certain range including the proximal end (the most proximal end) and the periphery thereof. Means range.
  • the shaft 20 is disposed in the outer shaft 21 having a lumen 21u (corresponding to the lumen of the catheter body) and the lumen 21u of the outer shaft 21, And an inner shaft 25 that forms a guide wire lumen 25u through which the guide wire can be inserted.
  • the shaft 20 has a guide wire port P communicating with the guide wire lumen 25u of the inner shaft 25.
  • the guide wire port P is formed at the proximal end portion of the inner shaft 25.
  • the balloon catheter 10 is configured as a so-called rapid exchange type catheter in which a guide wire port P through which a guide wire can enter and exit is formed near the tip of the shaft 20.
  • the proximal end side of the guide wire lumen 25u communicates with the guide wire port P.
  • the outer shaft 21 has a distal end side shaft 22 and a proximal end side shaft 23 connected to the proximal end side of the distal end side shaft 22.
  • the distal end side shaft 22 and the proximal end side shaft 23 are integrally connected (fused) with the inner shaft 25 in the vicinity of the guide wire port P of the shaft 20.
  • the lumen (not shown) of the distal shaft 22 and the lumen (not shown) of the proximal shaft 23 are expanded in the expansion space 34 of the balloon 30 when the distal shaft 22 and the proximal shaft 23 are connected.
  • a lumen 21u of the outer shaft 21 communicating with is formed.
  • the balloon 30 is provided on the distal end side of the shaft 20.
  • the distal end portion 30 a of the balloon 30 is connected to the distal end portion of the inner shaft 25.
  • the proximal end portion 30 b of the balloon 30 is connected to the distal end portion of the outer shaft 21.
  • the inner shaft 25 is provided with an X-ray contrast marker 26 indicating a substantially center position in the axial direction of an intermediate region 31 to be described later of the balloon 30.
  • the X-ray contrast marker 26 can be made of, for example, a metal such as platinum, gold, silver, iridium, titanium, tungsten, or an alloy thereof.
  • the balloon 30 is expanded in the radial direction of the shaft 20 by injecting a fluid through the inner lumen 21u (expansion lumen) of the outer shaft 21.
  • the hub 40 has a port 41 that can be connected in a liquid-tight and air-tight manner with a supply device (not shown) such as an indeflator for supplying a fluid (pressurized medium).
  • a supply device such as an indeflator for supplying a fluid (pressurized medium).
  • the port 41 of the hub 40 can be configured by, for example, a well-known luer taper configured such that a fluid tube or the like can be connected / separated.
  • the shaft 20 is connected to the hub 40 with the lumen 21u of the outer shaft 21 communicating with the flow path in the hub 40.
  • a fluid for example, contrast medium or physiological saline
  • used to expand the balloon 30 is supplied to the lumen 21 u of the outer shaft 21 through the port 41 of the hub 40.
  • the balloon 30 will be described in detail with reference to FIGS.
  • the outer surface 30S1 of the balloon 30 is formed of a hydrophobic resin.
  • the balloon 30 includes a middle region 31 that is in contact with the living body lumen wall Vw in a state in which the balloon 30 is expanded, and a distal side from the distal end 31 a of the middle region 31. And a proximal-side inclined region 33 extending from the proximal end 31b of the intermediate region 31 toward the proximal end side.
  • the middle region 31 of the balloon 30 includes a groove 100 in which the outer surface 30S1 of the balloon 30 is recessed.
  • the groove portion 100 has a hydrophilic coating 110 formed on the surface 101 forming the groove portion 100. More specifically, in the intermediate region 31, the hydrophilic coating 110 is formed only on the surface 101 that forms the groove 100. In the groove part 100, at least a hydrophilic coating 110 is formed on the side surface 102 that forms the groove part 100.
  • the side surface 102 that forms the groove 100 is a portion of the surface 101 that forms the groove 100 that faces each other across the groove 100 in a cross section perpendicular to the axial direction of the balloon 30.
  • the surface 101 which forms the groove part 100 is formed by a curved surface. More specifically, the surface 101 that forms the groove 100 is a curved surface in a cross section perpendicular to the axial direction of the balloon 30.
  • the hydrophilic coating 110 is disposed along the shape of the surface 101 that forms the groove 100. Specifically, the hydrophilic coating 110 has a shape that is recessed from the outer surface 30S1 side of the balloon 30 toward the expansion space 34 side along the surface 101 that forms the groove 100 in a state where the balloon 30 is expanded. .
  • the material constituting the hydrophilic coating 110 is not particularly limited as long as it has hydrophilicity, and a known material can be used.
  • an epoxy group-containing monomer such as glycidyl acrylate, glycidyl methacrylate, 3,4-epoxycyclohexylmethyl acrylate, 3,4-epoxycyclohexylmethyl methacrylate, ⁇ -methylglycidyl methacrylate, allyl glycidyl ether, N- Copolymers with hydrophilic monomers such as methylacrylamide, N, N-dimethylacrylamide and acrylamide; (Co) polymers composed of the above hydrophilic monomers; Cellulose systems such as hydroxypropylcellulose and carboxymethylcellulose High molecular substances: polysaccharides, polyvinyl alcohol, methyl vinyl ether-maleic anhydride copolymer, water-soluble polyamide, poly (2-hydroxyethyl (meth) acrylate), polyethylene glycol, polyacryl
  • the width B of the groove portion 100 is not particularly limited, but may be, for example, 0.001 mm to 0.2 mm.
  • the width B of the groove part 100 is the length of the opening part 105 of the groove part 100 in a state where the balloon 30 is expanded by the nominal pressure.
  • the height H of the groove 100 is not particularly limited, but may be, for example, 0.001 mm to 0.2 mm.
  • the height H of the groove 100 is a distance from the bottom 103 of the groove 100 to the outer surface 30S1 of the balloon 30 where the groove 100 is not formed.
  • the balloon 30 has a first layer 30L1 and a second layer 30L2 disposed on the surface of the first layer 30L1. And the groove part 100 is formed in the second layer 30L2.
  • the constituent material of the first layer 30L1 is preferably harder than the constituent material of the second layer 30L2.
  • the magnitude relationship between the hardness (flexibility) of the constituent material of the first layer 30L1 and the constituent material of the second layer 30L2 can be defined based on the Shore hardness D (conforming to JIS 6253).
  • the constituent material of the first layer L1 and the second layer 30L2 is such that the constituent material of the first layer 30L1 is harder than the constituent material of the second layer 30L2, and the material constituting the second layer 30L2 is hydrophobic.
  • the constituent material of the first layer 30L1 may be formed of a material different from the constituent material of the second layer 30L2, or may be formed of the same material as the constituent material of the second layer 30L2.
  • the first layer 30L1 or the second layer 30L2 is such that the constituent material of the first layer 30L1 is harder than the constituent material of the second layer 30L2. Adjust the hardness with additives.
  • polyolefin for example, polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or two or more kinds thereof
  • a polymer material such as polyvinyl chloride, polyamide, polyamide elastomer, polyurethane, polyurethane elastomer, polyimide, fluororesin, or a mixture thereof, or the above-described two or more polymer materials can be used.
  • the groove 100 extends between the distal end 31a and the proximal end 31b of the intermediate region 31.
  • the groove portion 100 has a distal end 31a of the intermediate region 31 so as to form a discharge port 106, which will be described later, in order to efficiently reduce the amount of moisture existing between the outer surface 30S1 of the balloon 30 and the living body lumen wall Vw. It is preferably formed continuously with the base end 31b.
  • the groove part 100 may be formed over the whole region between the front-end
  • the groove portion 100 includes a plurality of first inclined groove portions 121 inclined with respect to the axial direction of the balloon 30, a plurality of second inclined groove portions 122 intersecting with the first inclined groove portion 121, and Have
  • the groove part 100 has a discharge port 106 for discharging the moisture induced in the groove part 100.
  • the discharge port 106 discharges the moisture guided to the groove part 100 from the groove part 100 in the axial direction of the balloon 30.
  • the discharge port 106 is disposed at the distal end 31a and the proximal end 31b of the intermediate region 31.
  • the discharge port 106 disposed at the tip 31a of the intermediate region 31 is open on the tip side inclined region side. Further, the discharge port 106 arranged at the base end 31b is opened on the base end side inclined region side. Thereby, when the balloon 30 is expanded, the moisture guided to the groove part 100 is discharged to the outside of the intermediate region 31 (the tip inclined region side and the base end inclined region side).
  • the balloon 30 is folded so that the groove portion 100 is not exposed to the outer surface 30S1 of the balloon 30 in the contracted state.
  • the “shrinked state” means a state in which the balloon 30 is wound around the inner shaft 25, more specifically, a state in which the balloon 30 is directly wound around the inner shaft 25. Note that “directly” means that no other member is interposed between the balloon 30 and the inner shaft 25 in a state where the balloon 30 is wound around the inner shaft 25.
  • the balloon 30 has a blade portion 35 in a contracted state.
  • the blade portion 35 is wound around the inner shaft 25 in a state where the balloon 30 is folded. Therefore, in a state where the balloon 30 is folded, the blade portion 35 forms a non-exposed surface 35S1 that is not exposed to the outside and an exposed surface 35S2 that is exposed to the outside on the outer surface 30S1 of the balloon 30.
  • the non-exposed surface 35S1 is a portion where the outer surfaces 30S1 of the balloon 30 are in contact with each other in FIG.
  • the groove part 100 is formed in the non-exposed surface 35S1.
  • the blade portion 35 has a first blade portion 36, a second blade portion 37, and a third blade portion 38 that are spaced apart in the circumferential direction of the balloon 30.
  • the groove portion 100 includes a first groove portion 100a formed on the non-exposed surface 35S1 of the first blade portion 36, a second groove portion 100b formed on the non-exposed surface 35S1 of the second blade portion 37, and the third blade portion 38. And a third groove portion 100c formed in the non-exposed surface 35S1.
  • the first groove portion 100a, the second groove portion 100b, and the third groove portion 100c are separated from each other in the circumferential direction of the balloon 30 when the balloon 30 is expanded.
  • the first groove portion 100a, the second groove portion 100b, and the third groove portion 100c have substantially the same length in the circumferential direction of the balloon 30, and are separated by a substantially equal distance in the circumferential direction of the balloon 30. Yes.
  • the balloon 30 can be formed, for example, by processing a parison into a predetermined balloon shape using biaxial stretch blow molding.
  • the first layer It is possible to form a balloon 30 having 30L1 and a second layer 30L2.
  • the groove portion 100 can be formed simultaneously with the processing into a balloon shape by using a mold having a shape obtained by transferring the shape of the groove portion 100 when biaxial stretch blow molding is performed on a parison.
  • a mold having a shape obtained by transferring the shape of the groove 100 the groove 100 is formed by denting the outer surface 30S1 of the balloon 30 in the direction of the expansion space 34 of the balloon 30. It is formed.
  • the groove portion 100 may be formed by pressing a mold having a shape obtained by transferring the shape of the groove portion 100 against the balloon 30 after processing the parison into a predetermined balloon shape.
  • the groove 100 may be formed by laser processing after processing the parison into a predetermined balloon shape.
  • the hydrophilic coating 110 is formed by applying a hydrophilic material constituting the hydrophilic coating 110 to the outer surface 30S1 of the balloon 30 in which the groove portion 100 is formed, and removing the hydrophilic material that has not flowed into the groove portion 100.
  • the outer surface 30S1 can be formed on the surface on which the groove portion 100 is formed.
  • the hydrophilic coating 110 causes the hydrophilic material to flow into the groove portion 100 by applying the hydrophilic material to the outer surface 30S1 of the balloon 30 in which the groove portion 100 is formed.
  • the hydrophilic material that has not flowed into the groove portion 100 is removed, and the hydrophilic material that has flowed into the groove portion 100 is dried and self-crosslinked, whereby the surface of the outer surface 30S1 of the balloon 30 that forms the groove portion 100 can be formed.
  • the hydrophilic material remaining on the outer surface 30S1 of the balloon 30 can be removed by various methods such as wiping with a cloth.
  • the balloon 30 is expanded in a state where the balloon 30 is positioned at the narrowed portion N.
  • the outer surface 30S1 of the balloon 30 and the living body lumen wall Vw forming the narrowed portion N come into contact with each other.
  • the hydrophilic coating 110 is formed by moisture such as blood existing between the outer surface 30S1 of the balloon 30 and the living body lumen wall Vw forming the constriction N.
  • the groove 100 is guided. Thereby, it can suppress that a slip arises between the outer surface 30S1 of the balloon 30, and the biological lumen wall Vw. Therefore, when the balloon catheter 10 expands the stenosis N with the balloon 30, it is possible to prevent the positional displacement of the balloon 30 in the axial direction.
  • the balloon catheter 10 moves the living body lumen V with the balloon 30 deflated. For this reason, when the balloon catheter 10 moves the balloon 30 in the living body lumen V, the balloon 30 has a smaller outer diameter than the expanded state of the balloon 30, and the outer surface 30S1 of the balloon 30 is disposed on the living body tube. A force to press against the cavity wall Vw is not generated. Therefore, when the balloon catheter 10 moves the balloon 30 in the living body lumen V, moisture continues to exist between the outer surface 30S1 of the balloon 30 and the living body lumen wall Vw. Therefore, the balloon catheter 10 does not deteriorate the slip between the outer surface 30S1 of the balloon 30 and the living body lumen wall Vw, and the operability when the balloon 30 is moved in the living body lumen V is not lowered.
  • the balloon catheter 10 when the balloon 30 is expanded and the intermediate region 31 contacts the living body lumen wall Vw, it exists between the outer surface 30S1 of the balloon 30 and the living body lumen wall Vw. Moisture is induced from the outer surface 30S1 formed of a hydrophobic resin having a low affinity for moisture to the groove 100 where the hydrophilic coating 110 having a high affinity for moisture is formed. Therefore, when the balloon 30 is expanded, the groove portion 100 can reduce the amount of moisture existing between the outer surface 30S1 of the balloon 30 and the living body lumen wall Vw. Therefore, when the balloon is expanded, the balloon catheter 10 can suppress slippage between the outer surface of the balloon and the living body lumen wall, and can suppress displacement of the balloon in the axial direction.
  • the balloon 30 includes the first layer 30L1 and the second layer 30L2 in which the groove portion 100 is formed.
  • the balloon 30 can comprise the 1st layer 30L1 in which the groove part 100 is not formed, and the 2nd layer 30L2 in which the groove part 100 is formed with a different material. Therefore, when imparting optimal characteristics to the balloon 30, the physical properties of the first layer 30L1 and the second layer 30L2 can be adjusted independently.
  • the constituent material of the first layer 30L1 is preferably made of a material harder than the constituent material of the second layer 30L2.
  • the first layer 30L1 can suppress the deformation of the groove portion 100 due to the pressure transmitted from the expansion space 34 of the balloon 30. Further, since the first layer 30L1 is made of a material harder than the second layer 30L2, it is possible to prevent the shape of the balloon 30 from being deformed when the balloon is expanded. As described above, the balloon 30 can easily manufacture the balloon 30 having an optimal structure in accordance with various requirements such as the expansion performance of the balloon 30 and the processing performance of the groove portion 100.
  • the groove portion 100 extends between the distal end 31a and the proximal end 31b of the intermediate region 31 in contact with the living body lumen wall Vw.
  • the groove portion 100 includes the plurality of first inclined groove portions 121 inclined with respect to the axial direction of the balloon 30 and the plurality of second inclined portions intersecting the first inclined groove portion 121. Groove portion 122.
  • the groove part 100 inclines with respect to the axial direction of the balloon 30, the 1st inclined groove part 121 and the 2nd inclined groove part 122 form the groove part 100 linearly along the axial direction of the balloon 30.
  • the range of the groove portion 100 in the predetermined range of the outer surface 30S1 of the balloon 30 can be increased.
  • the first inclined groove portion 121 and the second inclined groove portion 122 can disperse the force that expands the groove portion 100 acting on the groove portion 100 in the circumferential direction. Therefore, the balloon catheter 10 can suppress deformation of the groove 100 when the balloon 30 is expanded by applying a large expansion pressure. Therefore, the balloon catheter can prevent the displacement of the balloon even when the balloon is expanded by applying a large expansion pressure.
  • the surface 101 forming the groove 100 is formed by a curved surface.
  • the groove part 100 can guide
  • the surface 101 forming the groove 100 is formed by a curved surface, the groove 100 can be formed more easily.
  • the balloon 30 is folded so that the groove portion 100 is not exposed to the outer surface 30S1 of the balloon 30 in the contracted state.
  • the balloon catheter 10 can prevent the groove part 100 from contacting the living body lumen wall Vw when moving the balloon 30 in the living body lumen V. Therefore, peeling of the hydrophilic coating 110 can be prevented, and the operability of the balloon catheter 10 can be improved.
  • the balloon 30 has the first layer 30L1 and the second layer 30L2.
  • the balloon 30 may be constituted by a single layer 30L. Also according to this modification, the same operation and effect as the above-described embodiment can be obtained.
  • an expansion pressure that can be applied to the balloon 30 by adjusting the distance R1 (thickness) between the inner surface 30S2 of the single layer 30L and the bottom 103 of the groove 100.
  • the size of can be adjusted. That is, when it is desired to apply a large expansion pressure to the balloon 30, the distance R1 (thickness) between the inner surface 30S2 of the single layer 30L and the bottom 103 of the groove may be increased.
  • the groove portion 100 includes a hydrophilic coating 110a formed on one side surface 102a of the side surfaces 102 constituting the groove portion 100 and a hydrophilic surface formed on the other side surface 102b facing the one side surface 102a.
  • the protective coatings 110b may be configured to contact each other when the balloon 30 is deflated.
  • the groove portion 100 includes a hydrophilic coating 110a formed on one side surface 102a of the side surfaces 102 constituting the groove portion 100 and a hydrophilic coating 110b formed on the other side surface 102b opposite to the one side surface 102a.
  • the balloons 30 are configured to be separated from each other (see FIG. 4A).
  • the configuration in which the hydrophilic coating 110a and the hydrophilic coating 110b contact and separate from each other according to the contraction / expansion of the balloon 30 is, for example, in consideration of the deformation amount in the circumferential direction of the balloon 30 when the balloon 30 is expanded and contracted. This can be realized by selecting a constituent material.
  • the groove portion 100 and the hydrophilic coating 110 are not exposed to the outer surface 30S1 of the balloon 30 in the contracted state of the balloon 30. Therefore, when moving the balloon 30 in the biological lumen V, the balloon catheter 10 can prevent the groove portion 100 and the hydrophilic coating 110 from coming into contact with the biological lumen wall Vw. Therefore, peeling of the hydrophilic coating 110 can be prevented, and the operability of the balloon catheter 10 can be improved.
  • FIG. 7 illustrates the form in which the hydrophilic coating 110a and the hydrophilic coating 110b contact each other in a state in which the balloon 30 is contracted for all the groove parts 100.
  • the shape of the groove part according to the above-described embodiment The form of the groove part according to this modification may coexist. That is, for some of the plurality of grooves 100, as in the present modification, the hydrophilic coating 110 a and the hydrophilic coating 110 b are in contact with each other when the balloon 30 is deflated, and the other grooves 100. As in the above-described embodiment, the hydrophilic coating 110a and the hydrophilic coating 110b may not be in contact with each other in either the expanded state or the contracted state of the balloon 30.
  • the surface 101 forming the groove 100 is formed by a curved surface.
  • the shape of the surface 101 that forms the groove 100 is not limited to a curved surface, and a portion T1 that is angular on the surface 101 that forms the groove 100 may exist.
  • the groove 100 may have a trapezoidal shape in its cross section, or may have a rectangular shape as shown in FIG. 8 (B).
  • the outer surface 30S1 of the balloon 30 and the side surface 102 of the groove portion 100 are smoothly connected.
  • the outer surface 30S1 of the balloon 30 and the side surface 102 of the groove portion 100 are angular.
  • Site T2 may be present.
  • the hydrophilic coating 110 is formed on the entire surface 101 forming the groove 100, but is formed only on the side surface 102 forming the groove 100 as shown in FIG. 8B. May be. That is, the hydrophilic coating 110 may not be formed on the bottom 103 of the groove 100.
  • the hydrophilic coating 110 When the moisture existing between the intermediate region 31 and the living body lumen wall Vw is guided to the groove portion 100, the hydrophilic coating 110 has a side surface of the groove portion 100 that is more than the hydrophilic coating 110 formed on the bottom portion 103 of the groove portion 100.
  • the hydrophilic coating 110 formed on 102 has a larger contribution. Therefore, when expanding the balloon 30, the balloon catheter 10 applies the hydrophilic coating 110 only to the side surface 102 that forms the groove portion 100, thereby removing moisture existing between the intermediate region 31 and the living body lumen wall Vw. 100 can be guided.
  • the balloon catheter 10 has been described through the embodiment and its modifications.
  • the present invention is not limited only to the configuration described in the embodiment and its modifications, and may be changed as appropriate based on the description of the scope of claims. Is possible.
  • the groove 100 is formed in a part of the outer surface 30S1 of the balloon 30 in the circumferential direction.
  • the groove may be formed in the entire circumferential direction on the outer surface of the balloon.
  • the groove part 100 was formed over the full length between the front-end
  • the groove part 100 may be formed only in a part between the front end 31a and the base end 31b of the intermediate region 31.
  • the groove portion is formed over the entire length between the distal end 31a and the proximal end 31b of the intermediate region 31 in order to efficiently discharge the moisture guided to the groove portion to the outside of the intermediate region 31 when the balloon 30 is expanded. It is preferable.
  • the balloon 30 is folded so that the entire groove portion 100 is not exposed to the outer surface 30S1 of the balloon 30 in the contracted state.
  • the balloon 30 may be folded so that a part of the groove 100 is not exposed to the outer surface 30S1 of the balloon 30 in the contracted state.
  • 10 balloon catheter medical long body
  • 20 shaft catheter body
  • 21u lumen the lumen of the catheter body
  • 30 balloon 30L1 first layer
  • 30L2 second layer The outer surface of the 30S1 balloon, 31 middle region, 31a tip of the middle region, 31b proximal end of the intermediate region, 32 tip side inclined region, 33 proximal slope region, 35 feathers, 40 hubs, 100 groove, 101 surface forming a groove, 110 hydrophilic coating, 121 a first inclined groove, 122 second inclined groove, V biological lumen, Vw Living body lumen wall.

Abstract

[Problem] To provide a medical long body that, when a balloon is expanded at a lesion, prevents slippage between the outer surface of the balloon and a biological lumen wall, thereby preventing displacement of the balloon in the axial direction. [Solution] This medical long body comprises a catheter body and a balloon 30 that is provided on the distal side of the catheter body and expands in the radial direction of the catheter body when a fluid is introduced thereinto through a lumen of the catheter body. The outer surface 30S1 of the balloon is made of a hydrophobic resin. The balloon in an expanded state has an intermediate region 31 that is in contact with the biological lumen wall, a distal side inclined region extending from the distal end of the intermediate region to the distal side, and a proximal side inclined region extending from the proximal end of the intermediate region to the proximal side. The intermediate region is provided with a groove 100 that is a recess on the outer surface of the balloon. The groove has a hydrophilic coating 110 on the surface 101 that forms the groove.

Description

医療用長尺体Medical long body
 本発明は、医療用長尺体に関する。 The present invention relates to a medical long body.
 血管等の生体管腔に形成された病変部(狭窄部等)を拡張させる手技や病変部へのステント等の留置に用いられる医療器具としてバルーンカテーテル(医療用長尺体)が知られている。バルーンカテーテルは、シャフト(カテーテル本体)と、シャフトの先端側に設けられ、シャフトの内腔を通じて流体が注入されることにより、シャフトの放射方向に拡張するバルーンと、を有する。バルーンは、拡張した状態において、生体管腔壁と接触する中間領域と、中間領域の先端から先端側に延びる先端側傾斜領域と、中間領域の基端から基端側に延びる基端側傾斜領域と、を有する。 A balloon catheter (medical long body) is known as a medical instrument used to expand a lesion (stenosis, etc.) formed in a body lumen such as a blood vessel or to place a stent or the like in a lesion. . The balloon catheter has a shaft (catheter body) and a balloon that is provided on the distal end side of the shaft and expands in the radial direction of the shaft when fluid is injected through the lumen of the shaft. The balloon, in an expanded state, has an intermediate region that contacts the living body lumen wall, a distal-side inclined region that extends from the distal end of the intermediate region to the distal side, and a proximal-side inclined region that extends from the proximal end to the proximal side of the intermediate region And having.
 バルーンカテーテルは、イントロデューサー用シース、ガイディングカテーテル等を介して穿刺部位から生体管腔に導入され、病変部に送達される。バルーンカテーテルは、生体管腔を移動させる際、生体管腔における操作性を向上させるため、バルーンの外表面と生体管腔壁との間の摩擦抵抗が小さい方が好ましい。一方、バルーンカテーテルは、生体管腔の病変部で拡張する際、バルーンの軸方向への位置ずれを抑制するため、バルーンの外表面と生体管腔壁との間の摩擦抵抗が大きい方が好ましい。 The balloon catheter is introduced from the puncture site into the living body lumen via the introducer sheath, guiding catheter, etc., and delivered to the lesioned part. In order to improve the operability in the living body lumen when moving the living body lumen, the balloon catheter preferably has a smaller frictional resistance between the outer surface of the balloon and the living body lumen wall. On the other hand, when the balloon catheter is expanded at a lesion part of the living body lumen, it is preferable that the frictional resistance between the outer surface of the balloon and the living body lumen wall is large in order to suppress displacement in the axial direction of the balloon. .
 例えば、生体管腔における操作性を向上させつつ、病変部に対するバルーンの位置ずれを抑制するため、バルーンの先端側傾斜領域および基端側傾斜領域の表面には潤滑性を付与する一方で、生体管腔壁と接触するバルーンの中間領域の表面には潤滑性を付与していないバルーンカテーテルが知られている(例えば、特許文献1参照)。 For example, in order to improve the operability in the living body lumen and suppress the positional deviation of the balloon with respect to the lesioned part, the surface of the tip side inclined region and the base end side inclined region of the balloon is given lubricity, A balloon catheter that is not lubricated on the surface of the intermediate region of the balloon that contacts the lumen wall is known (see, for example, Patent Document 1).
特開平6-169995号公報Japanese Patent Laid-Open No. 6-169995
 しかしながら、バルーンを拡張する際、生体管腔壁と、バルーンの中間領域の外表面との間には、血液等の水分が存在する。そのため、上記バルーンカテーテルを使用した場合であっても、病変部においてバルーンを拡張する際、バルーンの中間領域の外表面と生体管腔壁の間に存在する血液により、バルーンの中間領域の外表面と生体管腔壁との間に滑りが生じ、バルーンの軸方向への位置ずれを効果的に防止できない可能性がある。 However, when the balloon is expanded, moisture such as blood exists between the living body lumen wall and the outer surface of the intermediate region of the balloon. Therefore, even when the above balloon catheter is used, when the balloon is expanded at the lesion, the outer surface of the intermediate region of the balloon is caused by blood existing between the outer surface of the intermediate region of the balloon and the wall of the living body lumen. There is a possibility that slippage occurs between the body and the wall of the living body lumen, and the positional displacement of the balloon in the axial direction cannot be effectively prevented.
 本発明は上述した課題に鑑みてなされたものであり、病変部においてバルーンを拡張した際、バルーンの外表面と生体管腔壁との間に滑りが生じることを抑制して、バルーンの軸方向への位置ずれを防止できる医療用長尺体を提供することを目的とする。 The present invention has been made in view of the above-described problems, and when the balloon is expanded at the lesion, the occurrence of slippage between the outer surface of the balloon and the body lumen wall is suppressed, and the axial direction of the balloon An object of the present invention is to provide a medical elongate body that can prevent a positional shift to the position.
 上記目的を達成するための本発明の医療用長尺体は、カテーテル本体と、前記カテーテル本体の先端側に設けられ、前記カテーテル本体の内腔を通じて流体が注入されることにより、前記カテーテル本体の放射方向に拡張するバルーンと、を有する。前記バルーンは、前記バルーンの外表面が疎水性樹脂により形成され、かつ、前記バルーンが拡張した状態において、生体管腔壁と接触する中間領域と、前記中間領域の先端から先端側に延びる先端側傾斜領域と、前記中間領域の基端から基端側に延びる基端側傾斜領域と、を有する。前記中間領域は、前記バルーンの外表面が凹んだ溝部を備える。前記溝部は、前記溝部を形成する表面に親水性被覆が形成されている。 In order to achieve the above object, a medical elongated body of the present invention is provided on the distal end side of a catheter body and the catheter body, and fluid is injected through the lumen of the catheter body, A balloon that expands radially. The balloon has an outer surface formed of a hydrophobic resin and an intermediate region in contact with a living body lumen wall in a state where the balloon is expanded, and a distal end side extending from the distal end of the intermediate region to the distal end side An inclined region, and a proximal-side inclined region extending from the proximal end of the intermediate region to the proximal end side. The intermediate region includes a groove portion in which the outer surface of the balloon is recessed. The groove portion has a hydrophilic coating formed on the surface forming the groove portion.
 本発明に係る医療用長尺体によれば、バルーンが拡張してバルーンの中間領域が生体管腔壁に接触した際に、バルーンの外表面と生体管腔壁との間に存在する水分は、水分と親和性の低い疎水性樹脂により形成されたバルーンの外表面から、水分と親和性が高い親水性被覆が形成されている溝部に向かって誘導される。そのため、本発明に関わる医療用長尺体は、バルーンを拡張する際、バルーンの外表面と生体管腔壁との間に存在する水分の量を減少させることができる。従って、本発明に関わる医療用長尺体は、病変部においてバルーンを拡張した際、バルーンの外表面と生体管腔壁との間に滑りが生じることを抑制して、バルーンの軸方向への位置ずれを防止できる。 According to the medical elongated body according to the present invention, when the balloon is expanded and the middle region of the balloon comes into contact with the living body lumen wall, the water present between the outer surface of the balloon and the living body lumen wall is It is guided from the outer surface of the balloon formed of a hydrophobic resin having a low affinity for moisture toward the groove where the hydrophilic coating having a high affinity for moisture is formed. Therefore, the medical elongate body according to the present invention can reduce the amount of moisture existing between the outer surface of the balloon and the living body lumen wall when the balloon is expanded. Therefore, the medical elongated body according to the present invention suppresses the occurrence of slipping between the outer surface of the balloon and the living body lumen wall when the balloon is expanded at the lesion, Misalignment can be prevented.
図1(A)は、本発明の実施形態に係るバルーンカテーテルを示す図であり、図1(B)は、図1(A)において破線部1Bで示す部分の拡大断面図である。1A is a view showing a balloon catheter according to an embodiment of the present invention, and FIG. 1B is an enlarged cross-sectional view of a portion indicated by a broken line portion 1B in FIG. 1A. 図2(A)は、実施形態に係るバルーンカテーテルのバルーンの平面図であり、図2(B)は、図1(A)において破線部2Bで示す部分の拡大断面図である。2A is a plan view of the balloon of the balloon catheter according to the embodiment, and FIG. 2B is an enlarged cross-sectional view of a portion indicated by a broken line portion 2B in FIG. 1A. 実施形態に係るバルーンカテーテルのバルーンの断面図であって、図3(A)は、バルーンが収縮した状態の断面図であり、図3(B)は、バルーンが拡張した状態の断面図である。FIG. 3A is a cross-sectional view of a balloon of the balloon catheter according to the embodiment, FIG. 3A is a cross-sectional view of the balloon in a deflated state, and FIG. 3B is a cross-sectional view of the balloon in an expanded state. . 図4(A)は、図3(B)において破線部4Aで示す部分の拡大断面図であり、図4(B)は、図2(A)において破線部4Bで示す部分の拡大図である。4A is an enlarged cross-sectional view of a portion indicated by a broken line portion 4A in FIG. 3B, and FIG. 4B is an enlarged view of a portion indicated by a broken line portion 4B in FIG. 2A. . 図5(A)は、実施形態に係るバルーンカテーテルの作用を説明するための図であり、図5(B)は、図5(A)において破線部5Bで示す部分の拡大図である。FIG. 5 (A) is a view for explaining the action of the balloon catheter according to the embodiment, and FIG. 5 (B) is an enlarged view of a portion indicated by a broken line portion 5B in FIG. 5 (A). 変形例に係るバルーンカテーテルの図4(A)に対応する拡大断面図である。It is an expanded sectional view corresponding to Drawing 4 (A) of a balloon catheter concerning a modification. 別の変形例に係るバルーンカテーテルの軸方向に垂直な方向に沿うバルーンの拡大断面図であって、収縮した状態におけるバルーンの一部を示す拡大断面図である。It is an expanded sectional view of the balloon along the direction perpendicular to the axial direction of the balloon catheter concerning another modification, and is an expanded sectional view showing a part of the balloon in the contracted state. 図8(A)および図8(B)は、さらに別の変形例に係るバルーンカテーテルの図4(A)に対応する拡大断面図である。FIGS. 8A and 8B are enlarged cross-sectional views corresponding to FIG. 4A of a balloon catheter according to still another modified example.
 以下、各図面を参照して、本発明の実施形態を説明する。なお、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 図1~図4は、実施形態に係るバルーンカテーテル10の各部の構成を示す図である。 1 to 4 are diagrams showing the configuration of each part of the balloon catheter 10 according to the embodiment.
 図1(A)および図5(A)に示すように、本実施形態に係るバルーンカテーテル10は、シャフト20を生体管腔Vに挿通させ、シャフト20の先端側に配置されたバルーン30を狭窄部N(病変部)において拡張させることにより、狭窄部Nを押し広げて治療する医療器具として構成している。なお、狭窄部Nは、生体管腔壁Vwに囲まれた生体管腔Vが狭い箇所である。 As shown in FIG. 1 (A) and FIG. 5 (A), the balloon catheter 10 according to the present embodiment allows the shaft 20 to be inserted into the living body lumen V and narrows the balloon 30 disposed on the distal end side of the shaft 20. By expanding in the part N (lesioned part), it is configured as a medical instrument for expanding and treating the stenotic part N. The stenosis N is a place where the living body lumen V surrounded by the living body lumen wall Vw is narrow.
 バルーンカテーテル10は、例えば、冠動脈の狭窄部Nを広げるために使用されるPTCA拡張用バルーンカテーテルとして構成することができる。ただし、バルーンカテーテル10は、例えば、他の血管、胆管、気管、食道、その他消化管、尿道、耳鼻内腔、その他の臓器等の生体器官内に形成された狭窄部Nの治療および改善を目的として使用されるものとして構成することもできる。 The balloon catheter 10 can be configured, for example, as a PTCA dilatation balloon catheter used to widen the stenosis N of the coronary artery. However, the balloon catheter 10 is intended for the treatment and improvement of stenosis N formed in living organs such as other blood vessels, bile ducts, trachea, esophagus, other digestive tract, urethra, ear nasal lumen, and other organs. It can also be configured as used.
 バルーンカテーテル10の各部の構成について説明する。 The configuration of each part of the balloon catheter 10 will be described.
 図1(A)、図2(A)、図2(B)および図4(A)を参照して概説すれば、本実施形態に係るバルーンカテーテル10(医療用長尺体に相当)は、シャフト20(カテーテル本体に相当)と、シャフト20の先端側に設けられたバルーン30と、シャフト20の基端側に配置されたハブ40と、を有する。バルーン30は、シャフト20の内腔21uを通じて流体が注入されることにより、シャフト20の放射方向に拡張する。バルーン30は、バルーン30の外表面30S1が疎水性樹脂により形成されている。バルーン30は、拡張した状態において、生体管腔壁Vwと接触する中間領域31と、中間領域31の先端31aから先端側に延びる先端側傾斜領域32と、中間領域31の基端31bから基端側に延びる基端側傾斜領域33と、を有する。中間領域31は、バルーン30の外表面30S1が凹んだ溝部100を備える。溝部100は、溝部100を形成する表面101に親水性被覆110が形成されている。 Briefly referring to FIG. 1 (A), FIG. 2 (A), FIG. 2 (B) and FIG. 4 (A), the balloon catheter 10 (corresponding to a medical long body) according to this embodiment is The shaft 20 (corresponding to the catheter body), a balloon 30 provided on the distal end side of the shaft 20, and a hub 40 disposed on the proximal end side of the shaft 20. The balloon 30 expands in the radial direction of the shaft 20 by injecting fluid through the lumen 21 u of the shaft 20. In the balloon 30, the outer surface 30S1 of the balloon 30 is formed of a hydrophobic resin. In the expanded state, the balloon 30 includes an intermediate region 31 that contacts the living body lumen wall Vw, a distal-side inclined region 32 that extends from the distal end 31a of the intermediate region 31 to the distal side, and a proximal end from the proximal end 31b of the intermediate region 31. And a proximal-side inclined region 33 extending to the side. The intermediate region 31 includes a groove 100 in which the outer surface 30S1 of the balloon 30 is recessed. In the groove portion 100, a hydrophilic coating 110 is formed on the surface 101 that forms the groove portion 100.
 本明細書では、バルーンカテーテル10において生体管腔Vに挿入する側(バルーン30が配置された側)を先端側と称し、先端側と反対側に位置する手元での操作がなされる側(ハブ40が配置された側)を基端側と称し、バルーンが延伸する方向をバルーンの軸方向と称する。また、実施形態の説明において、先端部とは、先端(最先端)およびその周辺を含む一定の範囲を意味し、基端部とは、基端(最基端)およびその周辺を含む一定の範囲を意味する。 In this specification, the side of the balloon catheter 10 that is inserted into the living body lumen V (the side on which the balloon 30 is disposed) is referred to as the distal end side, and the side that is operated on the side opposite to the distal end side (hub) The side on which 40 is disposed) is referred to as the proximal side, and the direction in which the balloon extends is referred to as the axial direction of the balloon. Further, in the description of the embodiments, the distal end portion means a certain range including the distal end (the most distal end) and the periphery thereof, and the proximal end portion means a certain range including the proximal end (the most proximal end) and the periphery thereof. Means range.
 図1(B)および図2(B)を参照して、シャフト20は、内腔21u(カテーテル本体の内腔に相当)を備える外側シャフト21と、外側シャフト21の内腔21uに配置され、かつ、ガイドワイヤが挿通可能なガイドワイヤルーメン25uを形成する内側シャフト25と、を有している。 1B and 2B, the shaft 20 is disposed in the outer shaft 21 having a lumen 21u (corresponding to the lumen of the catheter body) and the lumen 21u of the outer shaft 21, And an inner shaft 25 that forms a guide wire lumen 25u through which the guide wire can be inserted.
 シャフト20は、内側シャフト25のガイドワイヤルーメン25uに連通するガイドワイヤポートPを有している。ガイドワイヤポートPは、内側シャフト25の基端部に形成されている。 The shaft 20 has a guide wire port P communicating with the guide wire lumen 25u of the inner shaft 25. The guide wire port P is formed at the proximal end portion of the inner shaft 25.
 バルーンカテーテル10は、シャフト20の先端部側寄りにガイドワイヤが出入り可能なガイドワイヤポートPが形成された、いわゆるラピッドエクスチェンジ型のカテーテルとして構成している。 The balloon catheter 10 is configured as a so-called rapid exchange type catheter in which a guide wire port P through which a guide wire can enter and exit is formed near the tip of the shaft 20.
 ガイドワイヤルーメン25uの基端部側は、ガイドワイヤポートPと連通している。 The proximal end side of the guide wire lumen 25u communicates with the guide wire port P.
 外側シャフト21は、先端側シャフト22と、先端側シャフト22の基端側に接続された基端側シャフト23と、を有している。 The outer shaft 21 has a distal end side shaft 22 and a proximal end side shaft 23 connected to the proximal end side of the distal end side shaft 22.
 先端側シャフト22および基端側シャフト23は、シャフト20のガイドワイヤポートP付近において内側シャフト25と一体的に接続(融着)している。 The distal end side shaft 22 and the proximal end side shaft 23 are integrally connected (fused) with the inner shaft 25 in the vicinity of the guide wire port P of the shaft 20.
 先端側シャフト22の内腔(図示省略)および基端側シャフト23の内腔(図示省略)は、先端側シャフト22と基端側シャフト23とが接続された状態において、バルーン30の拡張空間34に連通する外側シャフト21の内腔21uを形成する。 The lumen (not shown) of the distal shaft 22 and the lumen (not shown) of the proximal shaft 23 are expanded in the expansion space 34 of the balloon 30 when the distal shaft 22 and the proximal shaft 23 are connected. A lumen 21u of the outer shaft 21 communicating with is formed.
 図2(A)および図2(B)を参照して、バルーン30は、シャフト20の先端側に設けられている。バルーン30の先端部30aは、内側シャフト25の先端部に接続されている。バルーン30の基端部30bは、外側シャフト21の先端部に接続されている。 2A and 2B, the balloon 30 is provided on the distal end side of the shaft 20. The distal end portion 30 a of the balloon 30 is connected to the distal end portion of the inner shaft 25. The proximal end portion 30 b of the balloon 30 is connected to the distal end portion of the outer shaft 21.
 内側シャフト25には、バルーン30の後述する中間領域31の軸方向の略中心位置を示すX線造影マーカー26を設けている。X線造影マーカー26は、例えば、白金、金、銀、イリジウム、チタン、タングステン等の金属、またはこれらの合金等により構成することができる。 The inner shaft 25 is provided with an X-ray contrast marker 26 indicating a substantially center position in the axial direction of an intermediate region 31 to be described later of the balloon 30. The X-ray contrast marker 26 can be made of, for example, a metal such as platinum, gold, silver, iridium, titanium, tungsten, or an alloy thereof.
 図3(A)および図3(B)を参照して、バルーン30は、外側シャフト21の内腔21u(拡張ルーメン)を通じて流体が注入されることにより、シャフト20の放射方向に拡張する。 3 (A) and 3 (B), the balloon 30 is expanded in the radial direction of the shaft 20 by injecting a fluid through the inner lumen 21u (expansion lumen) of the outer shaft 21.
 図1(A)に示すように、ハブ40は、流体(加圧媒体)を供給するためのインデフレーター等の供給装置(図示省略)と液密・気密に接続可能なポート41を有している。ハブ40のポート41は、例えば、流体チューブ等が接続・分離可能に構成された公知のルアーテーパー等によって構成することができる。 As shown in FIG. 1A, the hub 40 has a port 41 that can be connected in a liquid-tight and air-tight manner with a supply device (not shown) such as an indeflator for supplying a fluid (pressurized medium). Yes. The port 41 of the hub 40 can be configured by, for example, a well-known luer taper configured such that a fluid tube or the like can be connected / separated.
 シャフト20は、外側シャフト21の内腔21uがハブ40内の流路と連通した状態で、ハブ40と接続されている。バルーン30の拡張に使用される流体(例えば、造影剤や生理食塩水)は、ハブ40のポート41を介して外側シャフト21の内腔21uへ供給される。 The shaft 20 is connected to the hub 40 with the lumen 21u of the outer shaft 21 communicating with the flow path in the hub 40. A fluid (for example, contrast medium or physiological saline) used to expand the balloon 30 is supplied to the lumen 21 u of the outer shaft 21 through the port 41 of the hub 40.
 図2~4を参照して、バルーン30について詳説する。 The balloon 30 will be described in detail with reference to FIGS.
 バルーン30の外表面30S1は、疎水性樹脂により形成されている。 The outer surface 30S1 of the balloon 30 is formed of a hydrophobic resin.
 図2(A)および図2(B)を参照して、バルーン30は、バルーン30が拡張した状態において、生体管腔壁Vwと接触する中間領域31と、中間領域31の先端31aから先端側に延びる先端側傾斜領域32と、中間領域31の基端31bから基端側に延びる基端側傾斜領域33と、を有する。 Referring to FIGS. 2A and 2B, the balloon 30 includes a middle region 31 that is in contact with the living body lumen wall Vw in a state in which the balloon 30 is expanded, and a distal side from the distal end 31 a of the middle region 31. And a proximal-side inclined region 33 extending from the proximal end 31b of the intermediate region 31 toward the proximal end side.
 図2(A)および図4(A)を参照して、バルーン30の中間領域31は、バルーン30の外表面30S1が凹んだ溝部100を備える。 2A and 4A, the middle region 31 of the balloon 30 includes a groove 100 in which the outer surface 30S1 of the balloon 30 is recessed.
 溝部100は、溝部100を形成する表面101に親水性被覆110が形成されている。より具体的には、中間領域31は、溝部100を形成する表面101のみに親水性被覆110が形成されている。なお、溝部100は、溝部100を形成する側面102に少なくとも親水性被覆110が形成されている。溝部100を形成する側面102とは、バルーン30の軸方向に垂直な断面において、溝部100を形成する表面101のうち、溝部100を挟んで対向する部分である。 The groove portion 100 has a hydrophilic coating 110 formed on the surface 101 forming the groove portion 100. More specifically, in the intermediate region 31, the hydrophilic coating 110 is formed only on the surface 101 that forms the groove 100. In the groove part 100, at least a hydrophilic coating 110 is formed on the side surface 102 that forms the groove part 100. The side surface 102 that forms the groove 100 is a portion of the surface 101 that forms the groove 100 that faces each other across the groove 100 in a cross section perpendicular to the axial direction of the balloon 30.
 溝部100を形成する表面101は、曲面によって形成されている。より具体的には、溝部100を形成する表面101は、バルーン30の軸方向に垂直な断面において、曲面で形成されている。 The surface 101 which forms the groove part 100 is formed by a curved surface. More specifically, the surface 101 that forms the groove 100 is a curved surface in a cross section perpendicular to the axial direction of the balloon 30.
 親水性被覆110は、溝部100を形成する表面101の形状に沿って配置される。具体的には、親水性被覆110は、バルーン30が拡張した状態において、溝部100を形成する表面101に沿って、バルーン30の外表面30S1側から拡張空間34側に向かって凹んだ形状を備える。 The hydrophilic coating 110 is disposed along the shape of the surface 101 that forms the groove 100. Specifically, the hydrophilic coating 110 has a shape that is recessed from the outer surface 30S1 side of the balloon 30 toward the expansion space 34 side along the surface 101 that forms the groove 100 in a state where the balloon 30 is expanded. .
 親水性被覆110を構成する材料は、親水性を有している限りにおいて特に限定されず、公知の材料が使用できる。具体的には、グリシジルアクリレート、グリシジルメタクリレート、3,4-エポキシシクロヘキシルメチルアクリレート、3,4-エポキシシクロヘキシルメチルメタクリレート、β-メチルグリシジルメタクリレート、アリルグリシジルエーテル等のエポキシ基含有単量体と、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、アクリルアミド等の親水性単量体との共重合体;上記親水性単量体から構成される(共)重合体;ヒドロキシプロピルセルロース、カルボキシメチルセルロース等のセルロース系高分子物質;多糖類、ポリビニルアルコール、メチルビニルエーテル-無水マレイン酸共重合体、水溶性ポリアミド、ポリ(2-ヒドロキシエチル(メタ)クリレート)、ポリエチレングリコール、ポリアクリルアミド、ポリビニルピロリドン、ならびに米国特許第4100309号および特開昭59-19582号公報に記載されるポリビニルピロリドンとポリウレタンとの共重合体などが挙げられる。これらの親水性被覆110を構成する材料は、1種を単独で使用されてもあるいは2種以上を混合物の形態で使用してもよい。 The material constituting the hydrophilic coating 110 is not particularly limited as long as it has hydrophilicity, and a known material can be used. Specifically, an epoxy group-containing monomer such as glycidyl acrylate, glycidyl methacrylate, 3,4-epoxycyclohexylmethyl acrylate, 3,4-epoxycyclohexylmethyl methacrylate, β-methylglycidyl methacrylate, allyl glycidyl ether, N- Copolymers with hydrophilic monomers such as methylacrylamide, N, N-dimethylacrylamide and acrylamide; (Co) polymers composed of the above hydrophilic monomers; Cellulose systems such as hydroxypropylcellulose and carboxymethylcellulose High molecular substances: polysaccharides, polyvinyl alcohol, methyl vinyl ether-maleic anhydride copolymer, water-soluble polyamide, poly (2-hydroxyethyl (meth) acrylate), polyethylene glycol, polyacrylamide Polyvinylpyrrolidone, and polyvinyl pyrrolidone and copolymers of polyurethane and the like as described in U.S. Pat. No. 4,100,309 and No. Sho 59-19582. These materials constituting the hydrophilic coating 110 may be used alone or in the form of a mixture of two or more.
 溝部100の幅Bは、特に限定されないが、例えば、0.001mm~0.2mmとし得る。溝部100の幅Bは、バルーン30がノミナル圧で拡張した状態における溝部100の開口部105の長さである。また、溝部100の高さHは、特に限定されないが、例えば、0.001mm~0.2mmとし得る。溝部100の高さHは、溝部100の底部103から、溝部100を形成していない部分のバルーン30の外表面30S1までの距離である。 The width B of the groove portion 100 is not particularly limited, but may be, for example, 0.001 mm to 0.2 mm. The width B of the groove part 100 is the length of the opening part 105 of the groove part 100 in a state where the balloon 30 is expanded by the nominal pressure. Further, the height H of the groove 100 is not particularly limited, but may be, for example, 0.001 mm to 0.2 mm. The height H of the groove 100 is a distance from the bottom 103 of the groove 100 to the outer surface 30S1 of the balloon 30 where the groove 100 is not formed.
 バルーン30は、第1層30L1と、第1層30L1の表面に配置された第2層30L2と、を有する。そして、溝部100は、第2層30L2に形成される
 第1層30L1の構成材料は、第2層30L2の構成材料よりも硬い方が好ましい。これにより、バルーンカテーテル10は、バルーン30を拡張する際、第1層30L1により第2層30L2の変形を抑制するため、溝部100の形状を維持しつつ、バルーン30を適切な形状に拡張できる。第1層30L1の構成材料と第2層30L2の構成材料の硬さ(柔軟性)の大小関係は、ショア硬度D(JIS 6253に準拠)を基準にして規定することができる。
The balloon 30 has a first layer 30L1 and a second layer 30L2 disposed on the surface of the first layer 30L1. And the groove part 100 is formed in the second layer 30L2. The constituent material of the first layer 30L1 is preferably harder than the constituent material of the second layer 30L2. As a result, when the balloon catheter 10 is expanded, the balloon 30 can be expanded to an appropriate shape while maintaining the shape of the groove 100 because the deformation of the second layer 30L2 is suppressed by the first layer 30L1. The magnitude relationship between the hardness (flexibility) of the constituent material of the first layer 30L1 and the constituent material of the second layer 30L2 can be defined based on the Shore hardness D (conforming to JIS 6253).
 第1層L1及び第2層30L2の構成材料は、第1層30L1の構成材料が第2層30L2の構成材料よりも硬く、かつ、第2層30L2を構成する材料が疎水性を有している限り、特に限定されない。例えば、第1層30L1の構成材料は、第2層30L2の構成材料と異なる材料で形成されてもよいし、第2層30L2の構成材料と同じ材料で形成されていてもよい。なお、第1層30L1と第2層30L2を同じ材料で形成する場合、第1層30L1又は第2層30L2は、第1層30L1の構成材料が第2層30L2の構成材料よりも硬くなるように添加剤等で硬度を調整する。 The constituent material of the first layer L1 and the second layer 30L2 is such that the constituent material of the first layer 30L1 is harder than the constituent material of the second layer 30L2, and the material constituting the second layer 30L2 is hydrophobic. As long as it is, there is no particular limitation. For example, the constituent material of the first layer 30L1 may be formed of a material different from the constituent material of the second layer 30L2, or may be formed of the same material as the constituent material of the second layer 30L2. When the first layer 30L1 and the second layer 30L2 are formed of the same material, the first layer 30L1 or the second layer 30L2 is such that the constituent material of the first layer 30L1 is harder than the constituent material of the second layer 30L2. Adjust the hardness with additives.
 第1層30L及び第2層30L2を構成する材料として、例えば、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、或いはこれら二種以上の混合物等)、ポリ塩化ビニル、ポリアミド、ポリアミドエラストマー、ポリウレタン、ポリウレタンエラストマー、ポリイミド、フッ素樹脂等の高分子材料或いはこれらの混合物、或いは上記2種以上の高分子材料を用いることができる。 As a material constituting the first layer 30L and the second layer 30L2, for example, polyolefin (for example, polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or two or more kinds thereof) And the like, or a polymer material such as polyvinyl chloride, polyamide, polyamide elastomer, polyurethane, polyurethane elastomer, polyimide, fluororesin, or a mixture thereof, or the above-described two or more polymer materials can be used.
 図2(A)を参照して、溝部100は、中間領域31の先端31aと基端31bとの間で延在している。溝部100は、バルーン30の外表面30S1と生体管腔壁Vwとの間に存在する水分の量を効率的に減少させるため、後述する排出口106を形成するように中間領域31の先端31aと基端31bとの間で連続的に形成されていることが好ましい。また、溝部100は、中間領域31の先端31aと基端31bとの間の全域にわたって形成されていてもよい。 Referring to FIG. 2A, the groove 100 extends between the distal end 31a and the proximal end 31b of the intermediate region 31. The groove portion 100 has a distal end 31a of the intermediate region 31 so as to form a discharge port 106, which will be described later, in order to efficiently reduce the amount of moisture existing between the outer surface 30S1 of the balloon 30 and the living body lumen wall Vw. It is preferably formed continuously with the base end 31b. Moreover, the groove part 100 may be formed over the whole region between the front-end | tip 31a and the base end 31b of the intermediate | middle area | region 31. FIG.
 図4(B)を参照して、溝部100は、バルーン30の軸方向に対して傾斜した複数の第1傾斜溝部121と、第1傾斜溝部121と交差する複数の第2傾斜溝部122と、を有する。第1傾斜溝部121と第2傾斜溝部122とがなす角度θは特に限定されず、例えば、θ=30~120°とし得る。 Referring to FIG. 4B, the groove portion 100 includes a plurality of first inclined groove portions 121 inclined with respect to the axial direction of the balloon 30, a plurality of second inclined groove portions 122 intersecting with the first inclined groove portion 121, and Have The angle θ formed by the first inclined groove 121 and the second inclined groove 122 is not particularly limited, and may be, for example, θ = 30 to 120 °.
 溝部100は、溝部100に誘導された水分を排出する排出口106を有する。排出口106は、溝部100に誘導された水分を、溝部100から、バルーン30の軸方向に排出する。 The groove part 100 has a discharge port 106 for discharging the moisture induced in the groove part 100. The discharge port 106 discharges the moisture guided to the groove part 100 from the groove part 100 in the axial direction of the balloon 30.
 排出口106は、中間領域31の先端31aおよび基端31bに配置されている。中間領域31の先端31aに配置された排出口106は、先端側傾斜領域側で開口している。また、基端31bに配置された排出口106は、基端側傾斜領域側で開口している。これにより、溝部100に誘導された水分は、バルーン30を拡張した際、中間領域31の外側(先端傾斜領域側及び基端側傾斜領域側)に排出される。 The discharge port 106 is disposed at the distal end 31a and the proximal end 31b of the intermediate region 31. The discharge port 106 disposed at the tip 31a of the intermediate region 31 is open on the tip side inclined region side. Further, the discharge port 106 arranged at the base end 31b is opened on the base end side inclined region side. Thereby, when the balloon 30 is expanded, the moisture guided to the groove part 100 is discharged to the outside of the intermediate region 31 (the tip inclined region side and the base end inclined region side).
 図3(A)を参照して、バルーン30は、収縮した状態において、溝部100がバルーン30の外表面30S1に露出しないように折り畳まれている。なお、「収縮した状態」とは、バルーン30が内側シャフト25に巻き付けられた状態、より具体的には、バルーン30が内側シャフト25に直接的に巻き付けられた状態をいう。なお、「直接的に」とは、バルーン30が内側シャフト25に巻き付けられた状態において、バルーン30と内側シャフト25との間に、他の部材が介在していないことをいう。 Referring to FIG. 3A, the balloon 30 is folded so that the groove portion 100 is not exposed to the outer surface 30S1 of the balloon 30 in the contracted state. The “shrinked state” means a state in which the balloon 30 is wound around the inner shaft 25, more specifically, a state in which the balloon 30 is directly wound around the inner shaft 25. Note that “directly” means that no other member is interposed between the balloon 30 and the inner shaft 25 in a state where the balloon 30 is wound around the inner shaft 25.
 バルーン30は、収縮した状態において、羽根部35を有する。羽根部35は、バルーン30が折り畳まれた状態で、内側シャフト25に巻きつけられる。そのため、羽根部35は、バルーン30が折り畳まれた状態において、バルーン30の外表面30S1に、外部に露出しない非露出面35S1と、外部に露出する露出面35S2と、を形成する。なお、非露出面35S1は、図3(A)において、バルーン30の外表面30S1同士が接触する部分である。溝部100は、非露出面35S1に形成されている。 The balloon 30 has a blade portion 35 in a contracted state. The blade portion 35 is wound around the inner shaft 25 in a state where the balloon 30 is folded. Therefore, in a state where the balloon 30 is folded, the blade portion 35 forms a non-exposed surface 35S1 that is not exposed to the outside and an exposed surface 35S2 that is exposed to the outside on the outer surface 30S1 of the balloon 30. The non-exposed surface 35S1 is a portion where the outer surfaces 30S1 of the balloon 30 are in contact with each other in FIG. The groove part 100 is formed in the non-exposed surface 35S1.
 羽根部35は、バルーン30の周方向において離間した第1羽根部36、第2羽根部37および第3羽根部38を有する。溝部100は、第1羽根部36の非露出面35S1に形成された第1溝部100aと、第2羽根部37の非露出面35S1に形成された第2溝部100bと、第3羽根部38の非露出面35S1に形成された第3溝部100cと、を有する。 The blade portion 35 has a first blade portion 36, a second blade portion 37, and a third blade portion 38 that are spaced apart in the circumferential direction of the balloon 30. The groove portion 100 includes a first groove portion 100a formed on the non-exposed surface 35S1 of the first blade portion 36, a second groove portion 100b formed on the non-exposed surface 35S1 of the second blade portion 37, and the third blade portion 38. And a third groove portion 100c formed in the non-exposed surface 35S1.
 図3(B)を参照して、第1溝部100aと、第2溝部100bと、第3溝部100cとは、バルーン30が拡張した状態において、バルーン30の周方向において離間している。例えば、第1溝部100aと、第2溝部100bと、第3溝部100cとは、バルーン30の周方向において略同一の長さを有し、バルーン30の周方向において略均等な距離だけ離間している。 Referring to FIG. 3B, the first groove portion 100a, the second groove portion 100b, and the third groove portion 100c are separated from each other in the circumferential direction of the balloon 30 when the balloon 30 is expanded. For example, the first groove portion 100a, the second groove portion 100b, and the third groove portion 100c have substantially the same length in the circumferential direction of the balloon 30, and are separated by a substantially equal distance in the circumferential direction of the balloon 30. Yes.
 次に、バルーン30の製造方法について説明する。 Next, a method for manufacturing the balloon 30 will be described.
 バルーン30は、例えば、パリソンを、二軸延伸ブロー成形を使用して所定のバルーン形状へと加工することによって形成できる。 The balloon 30 can be formed, for example, by processing a parison into a predetermined balloon shape using biaxial stretch blow molding.
 このとき、第1層30L1を構成する材料からなる内層と、内層の外表面30S1に配置され、第2層30L2を構成する材料からなる外層と、を有するパリソンを使用することにより、第1層30L1と、第2層30L2と、を有するバルーン30を形成することが可能である。 At this time, by using a parison having an inner layer made of the material constituting the first layer 30L1 and an outer layer made of the material constituting the second layer 30L2 disposed on the outer surface 30S1 of the inner layer, the first layer It is possible to form a balloon 30 having 30L1 and a second layer 30L2.
 溝部100は、パリソンに二軸延伸ブロー成形を行う際、溝部100の形状を転写した形状を備えた金型を使用することによって、バルーン形状への加工と同時に形成できる。例えば、溝部100の形状を転写した形状を備えた金型を使用して溝部100を形成する場合、溝部100は、バルーン30の外表面30S1をバルーン30の拡張空間34の方向に凹ませることによって形成される。 The groove portion 100 can be formed simultaneously with the processing into a balloon shape by using a mold having a shape obtained by transferring the shape of the groove portion 100 when biaxial stretch blow molding is performed on a parison. For example, when forming the groove 100 using a mold having a shape obtained by transferring the shape of the groove 100, the groove 100 is formed by denting the outer surface 30S1 of the balloon 30 in the direction of the expansion space 34 of the balloon 30. It is formed.
 なお、溝部100は、パリソンを所定のバルーン形状に加工した後、溝部100の形状を転写した形状を備えた金型をバルーン30に押し当てることによって形成してもよい。また、溝部100は、パリソンを所定のバルーン形状に加工した後、レーザー加工により形成してもよい。 The groove portion 100 may be formed by pressing a mold having a shape obtained by transferring the shape of the groove portion 100 against the balloon 30 after processing the parison into a predetermined balloon shape. The groove 100 may be formed by laser processing after processing the parison into a predetermined balloon shape.
 親水性被覆110は、溝部100が形成されたバルーン30の外表面30S1に親水性被覆110を構成する親水性材料を塗布し、溝部100に流入していない親水性材料を取り除くことで、バルーン30の外表面30S1の溝部100を形成する表面に形成できる。例えば、自己架橋型の親水性材料の場合、親水性被覆110は、溝部100が形成されたバルーン30の外表面30S1に親水性材料を塗布することにより、溝部100に親水性材料を流入させた後、溝部100に流入していない親水性材料を取り除き、溝部100に流入した親水性材料を乾燥し、自己架橋させることで、バルーン30の外表面30S1の溝部100を形成する表面に形成できる。なお、バルーン30の外表面30S1に残存する親水性材料は、布で拭き取るなどの種々の方法によって取り除くことができる。 The hydrophilic coating 110 is formed by applying a hydrophilic material constituting the hydrophilic coating 110 to the outer surface 30S1 of the balloon 30 in which the groove portion 100 is formed, and removing the hydrophilic material that has not flowed into the groove portion 100. The outer surface 30S1 can be formed on the surface on which the groove portion 100 is formed. For example, in the case of a self-crosslinking type hydrophilic material, the hydrophilic coating 110 causes the hydrophilic material to flow into the groove portion 100 by applying the hydrophilic material to the outer surface 30S1 of the balloon 30 in which the groove portion 100 is formed. Thereafter, the hydrophilic material that has not flowed into the groove portion 100 is removed, and the hydrophilic material that has flowed into the groove portion 100 is dried and self-crosslinked, whereby the surface of the outer surface 30S1 of the balloon 30 that forms the groove portion 100 can be formed. The hydrophilic material remaining on the outer surface 30S1 of the balloon 30 can be removed by various methods such as wiping with a cloth.
 図5(A)および図5(B)を参照して、バルーンカテーテル10の作用について説明する。 The action of the balloon catheter 10 will be described with reference to FIGS. 5 (A) and 5 (B).
 図5(A)に示すように、バルーン30は、狭窄部Nに位置決めされた状態において拡張される。バルーン30が拡張することによって、バルーン30の外表面30S1と狭窄部Nを形成する生体管腔壁Vwとが接触する。このとき、図5(B)に示すように、バルーン30の外表面30S1と狭窄部Nを形成する生体管腔壁Vwとの間に存在する血液などの水分が、親水性被覆110が形成された溝部100に誘導させる。これにより、バルーン30の外表面30S1と生体管腔壁Vwとの間に滑りが生じることを抑制できる。そのため、バルーンカテーテル10は、バルーン30で狭窄部Nを拡張する際、バルーン30の軸方向への位置ずれを防止できる。 As shown in FIG. 5A, the balloon 30 is expanded in a state where the balloon 30 is positioned at the narrowed portion N. When the balloon 30 is expanded, the outer surface 30S1 of the balloon 30 and the living body lumen wall Vw forming the narrowed portion N come into contact with each other. At this time, as shown in FIG. 5B, the hydrophilic coating 110 is formed by moisture such as blood existing between the outer surface 30S1 of the balloon 30 and the living body lumen wall Vw forming the constriction N. The groove 100 is guided. Thereby, it can suppress that a slip arises between the outer surface 30S1 of the balloon 30, and the biological lumen wall Vw. Therefore, when the balloon catheter 10 expands the stenosis N with the balloon 30, it is possible to prevent the positional displacement of the balloon 30 in the axial direction.
 なお、バルーンカテーテル10は、バルーン30を収縮させた状態で、生体管腔Vを移動させる。そのため、バルーンカテーテル10は、生体管腔Vにおいてバルーン30を移動させる際、バルーン30を拡張させた状態と比較して、バルーン30の外径が小さく、かつ、バルーン30の外表面30S1を生体管腔壁Vwに押し付ける力を発生させない。そのため、バルーンカテーテル10は、生体管腔Vにおいてバルーン30を移動させる際、バルーン30の外表面30S1と生体管腔壁Vwとの間には水分が存在し続ける。そのため、バルーンカテーテル10は、バルーン30の外表面30S1と生体管腔壁Vwとの間の滑りが悪くならず、生体管腔Vにおいてバルーン30を移動させる際の操作性が下がるということはない。 The balloon catheter 10 moves the living body lumen V with the balloon 30 deflated. For this reason, when the balloon catheter 10 moves the balloon 30 in the living body lumen V, the balloon 30 has a smaller outer diameter than the expanded state of the balloon 30, and the outer surface 30S1 of the balloon 30 is disposed on the living body tube. A force to press against the cavity wall Vw is not generated. Therefore, when the balloon catheter 10 moves the balloon 30 in the living body lumen V, moisture continues to exist between the outer surface 30S1 of the balloon 30 and the living body lumen wall Vw. Therefore, the balloon catheter 10 does not deteriorate the slip between the outer surface 30S1 of the balloon 30 and the living body lumen wall Vw, and the operability when the balloon 30 is moved in the living body lumen V is not lowered.
 本実施形態に係るバルーンカテーテル10によれば、バルーン30が拡張して中間領域31が生体管腔壁Vwに接触した際、バルーン30の外表面30S1と生体管腔壁Vwとの間に存在する水分は、水分との親和性が低い疎水性樹脂により形成された外表面30S1から、水分との親和性が高い親水性被覆110が形成されている溝部100に誘導される。そのため、バルーン30は、拡張した際、溝部100により、バルーン30の外表面30S1と生体管腔壁Vwとの間に存在する水分の量を減らせる。従って、バルーンカテーテル10は、バルーンを拡張する際、バルーンの外表面と生体管腔壁との間に滑りが生じることを抑制し、バルーンの軸方向の位置ずれを抑制することができる。 According to the balloon catheter 10 according to the present embodiment, when the balloon 30 is expanded and the intermediate region 31 contacts the living body lumen wall Vw, it exists between the outer surface 30S1 of the balloon 30 and the living body lumen wall Vw. Moisture is induced from the outer surface 30S1 formed of a hydrophobic resin having a low affinity for moisture to the groove 100 where the hydrophilic coating 110 having a high affinity for moisture is formed. Therefore, when the balloon 30 is expanded, the groove portion 100 can reduce the amount of moisture existing between the outer surface 30S1 of the balloon 30 and the living body lumen wall Vw. Therefore, when the balloon is expanded, the balloon catheter 10 can suppress slippage between the outer surface of the balloon and the living body lumen wall, and can suppress displacement of the balloon in the axial direction.
 また、本実施形態に係るバルーンカテーテル10によれば、バルーン30は、第1層30L1と、溝部100が形成される第2層30L2と、を有する。これにより、バルーン30は、溝部100が形成されない第1層30L1と溝部100が形成される第2層30L2を異なる材料で構成できる。そのため、バルーン30に最適な特性を付与する際、第1層30L1と第2層30L2の物性を独立して調整できる。具体的には、第1層30L1の構成材料は、第2層30L2の構成材料よりも硬い材料で構成されることが好ましい。これにより、第1層30L1は、バルーン30を拡張する際、バルーン30の拡張空間34から伝達される圧力により、溝部100が変形することを抑制できる。また、第1層30L1は、第2層30L2よりも硬い材料で構成されているため、バルーン拡張時にバルーン30の形状が変形することも防止できる。このように、バルーン30は、バルーン30の拡張性能や溝部100の加工性能などの種々の要求に応じて、最適な構造のバルーン30を簡便に製造することが容易になる。 Moreover, according to the balloon catheter 10 according to the present embodiment, the balloon 30 includes the first layer 30L1 and the second layer 30L2 in which the groove portion 100 is formed. Thereby, the balloon 30 can comprise the 1st layer 30L1 in which the groove part 100 is not formed, and the 2nd layer 30L2 in which the groove part 100 is formed with a different material. Therefore, when imparting optimal characteristics to the balloon 30, the physical properties of the first layer 30L1 and the second layer 30L2 can be adjusted independently. Specifically, the constituent material of the first layer 30L1 is preferably made of a material harder than the constituent material of the second layer 30L2. Thereby, when expanding the balloon 30, the first layer 30L1 can suppress the deformation of the groove portion 100 due to the pressure transmitted from the expansion space 34 of the balloon 30. Further, since the first layer 30L1 is made of a material harder than the second layer 30L2, it is possible to prevent the shape of the balloon 30 from being deformed when the balloon is expanded. As described above, the balloon 30 can easily manufacture the balloon 30 having an optimal structure in accordance with various requirements such as the expansion performance of the balloon 30 and the processing performance of the groove portion 100.
 また、本実施形態に係るバルーンカテーテル10によれば、溝部100は、生体管腔壁Vwに接触する中間領域31の先端31aと基端31bとの間で延在している。これにより、溝部100は、バルーン30の外表面30S1と生体管腔壁Vwが接触する広い範囲に形成されるため、バルーン30を拡張する際、バルーン30の外表面30S1と生体管腔壁Vwとの間に存在する水分をより短時間で減少させることができる。従って、バルーンカテーテルは、バルーンを拡張する際、バルーンの軸方向への位置ずれをより確実に防止できる。 Further, according to the balloon catheter 10 according to the present embodiment, the groove portion 100 extends between the distal end 31a and the proximal end 31b of the intermediate region 31 in contact with the living body lumen wall Vw. Thereby, since the groove part 100 is formed in the wide range which the outer surface 30S1 of the balloon 30 and the biological lumen wall Vw contact, when expanding the balloon 30, outer surface 30S1 of the balloon 30 and the biological lumen wall Vw It is possible to reduce the moisture present during the period in a shorter time. Therefore, the balloon catheter can more reliably prevent displacement of the balloon in the axial direction when the balloon is expanded.
 また、本実施形態に係るバルーンカテーテル10によれば、溝部100は、バルーン30の軸方向に対して傾斜した複数の第1傾斜溝部121と、第1傾斜溝部121と交差する複数の第2傾斜溝部122と、を有する。これにより、第1傾斜溝部121及び第2傾斜溝部122は、溝部100がバルーン30の軸方向に対して傾斜しているため、バルーン30の軸方向に沿って直線状に溝部100を形成する場合と比較して、バルーン30の外表面30S1の所定の範囲における溝部100の範囲を大きくすることができる。このため、第1傾斜溝部121及び第2傾斜溝部122は、バルーン30が放射方向に拡張する際、溝部100に作用する溝部100を周方向に広げる力を分散することができる。そのため、バルーンカテーテル10は、大きな拡張圧を付与してバルーン30を拡張する際、溝部100の変形を抑制できる。従って、バルーンカテーテルは、大きな拡張圧を付与してバルーンを拡張した場合であっても、バルーンの位置ずれを防止することができる。 Further, according to the balloon catheter 10 according to the present embodiment, the groove portion 100 includes the plurality of first inclined groove portions 121 inclined with respect to the axial direction of the balloon 30 and the plurality of second inclined portions intersecting the first inclined groove portion 121. Groove portion 122. Thereby, since the groove part 100 inclines with respect to the axial direction of the balloon 30, the 1st inclined groove part 121 and the 2nd inclined groove part 122 form the groove part 100 linearly along the axial direction of the balloon 30. As compared with the above, the range of the groove portion 100 in the predetermined range of the outer surface 30S1 of the balloon 30 can be increased. For this reason, when the balloon 30 expands in the radial direction, the first inclined groove portion 121 and the second inclined groove portion 122 can disperse the force that expands the groove portion 100 acting on the groove portion 100 in the circumferential direction. Therefore, the balloon catheter 10 can suppress deformation of the groove 100 when the balloon 30 is expanded by applying a large expansion pressure. Therefore, the balloon catheter can prevent the displacement of the balloon even when the balloon is expanded by applying a large expansion pressure.
 また、本実施形態に係るバルーンカテーテル10によれば、溝部100を形成する表面101は、曲面によって形成される。これにより、溝部100は、バルーン30の外表面30S1と生体管腔壁Vwとの間に存在する水分をより円滑に溝部100に誘導できる。そのため、バルーンカテーテル10は、バルーン30を拡張した際、バルーン30の外表面30S1と生体管腔壁Vwとの間の水分の量をさらに短時間に減らせる。従って、バルーンカテーテルは、バルーンを拡張する際、バルーンの軸方向への位置ずれをさらに確実に防止できる。 Further, according to the balloon catheter 10 according to the present embodiment, the surface 101 forming the groove 100 is formed by a curved surface. Thereby, the groove part 100 can guide | invade the water | moisture content which exists between the outer surface 30S1 of the balloon 30 and the biological lumen wall Vw to the groove part 100 more smoothly. Therefore, when the balloon 30 is expanded, the balloon catheter 10 can reduce the amount of water between the outer surface 30S1 of the balloon 30 and the living body lumen wall Vw in a shorter time. Therefore, the balloon catheter can more reliably prevent displacement of the balloon in the axial direction when the balloon is expanded.
 また、溝部100を形成する表面101が曲面によって形成されることによって、溝部100の形成がより容易になる。 In addition, since the surface 101 forming the groove 100 is formed by a curved surface, the groove 100 can be formed more easily.
 また、本実施形態に係るバルーンカテーテル10によれば、バルーン30は、収縮した状態において、溝部100がバルーン30の外表面30S1に露出しないように折り畳まれている。これにより、バルーンカテーテル10は、生体管腔Vにおいてバルーン30を移動させる際、生体管腔壁Vwに溝部100が接触することを防止できる。そのため、親水性被覆110の剥離等を防止し、バルーンカテーテル10の操作性を向上することができる。 Further, according to the balloon catheter 10 according to the present embodiment, the balloon 30 is folded so that the groove portion 100 is not exposed to the outer surface 30S1 of the balloon 30 in the contracted state. Thereby, the balloon catheter 10 can prevent the groove part 100 from contacting the living body lumen wall Vw when moving the balloon 30 in the living body lumen V. Therefore, peeling of the hydrophilic coating 110 can be prevented, and the operability of the balloon catheter 10 can be improved.
 (変形例1)
 上述した実施形態では、バルーン30は、第1層30L1と第2層30L2とを有した。しかしながら、図6に示すように、バルーン30は、単一の層30Lによって構成されてもよい。本変形例によっても、上述した実施形態と同様の作用・効果を奏する。
(Modification 1)
In the embodiment described above, the balloon 30 has the first layer 30L1 and the second layer 30L2. However, as shown in FIG. 6, the balloon 30 may be constituted by a single layer 30L. Also according to this modification, the same operation and effect as the above-described embodiment can be obtained.
 なお、単一の層30Lによって構成する場合、単一の層30Lの内表面30S2と溝部100の底部103との間の距離R1(厚さ)を調節することによって、バルーン30に付与できる拡張圧の大きさを調節できる。すなわち、バルーン30により大きな拡張圧を付与したい場合には、単一の層30Lの内表面30S2と溝の底部103との間の距離R1(厚さ)を大きくすればよい。 In the case of a single layer 30L, an expansion pressure that can be applied to the balloon 30 by adjusting the distance R1 (thickness) between the inner surface 30S2 of the single layer 30L and the bottom 103 of the groove 100. The size of can be adjusted. That is, when it is desired to apply a large expansion pressure to the balloon 30, the distance R1 (thickness) between the inner surface 30S2 of the single layer 30L and the bottom 103 of the groove may be increased.
 (変形例2)
 図7に示すように、溝部100は、溝部100を構成する側面102のうち一の側面102aに形成された親水性被覆110aと当該一の側面102aに対向する他の側面102bに形成された親水性被覆110bが、バルーン30が収縮した状態において、互いに接触するように構成してもよい。この際、溝部100は、溝部100を構成する側面102のうち一の側面102aに形成された親水性被覆110aと当該一の側面102aに対向する他の側面102bに形成された親水性被覆110bが、バルーン30が拡張した状態において、互いに離間するように構成される(図4(A)参照)。
(Modification 2)
As shown in FIG. 7, the groove portion 100 includes a hydrophilic coating 110a formed on one side surface 102a of the side surfaces 102 constituting the groove portion 100 and a hydrophilic surface formed on the other side surface 102b facing the one side surface 102a. The protective coatings 110b may be configured to contact each other when the balloon 30 is deflated. At this time, the groove portion 100 includes a hydrophilic coating 110a formed on one side surface 102a of the side surfaces 102 constituting the groove portion 100 and a hydrophilic coating 110b formed on the other side surface 102b opposite to the one side surface 102a. In the expanded state, the balloons 30 are configured to be separated from each other (see FIG. 4A).
 親水性被覆110aと親水性被覆110bが、バルーン30の収縮・拡張にしたがって互いに接触・離間する構成は、例えば、拡張および収縮する際のバルーン30の周方向における変形量を考慮してバルーン30の構成材料を選定することにより実現できる。 The configuration in which the hydrophilic coating 110a and the hydrophilic coating 110b contact and separate from each other according to the contraction / expansion of the balloon 30 is, for example, in consideration of the deformation amount in the circumferential direction of the balloon 30 when the balloon 30 is expanded and contracted. This can be realized by selecting a constituent material.
 本変形例に係るバルーンカテーテル10によれば、溝部100及び親水性被覆110は、バルーン30の収縮状態において、バルーン30の外表面30S1に露出しない。これにより、バルーンカテーテル10は、生体管腔Vにおいてバルーン30を移動させる際、生体管腔壁Vwに溝部100及び親水性被覆110が接触することを防止できる。そのため、親水性被覆110の剥離等を防止し、バルーンカテーテル10の操作性を向上することができる。 According to the balloon catheter 10 according to this modification, the groove portion 100 and the hydrophilic coating 110 are not exposed to the outer surface 30S1 of the balloon 30 in the contracted state of the balloon 30. Thereby, when moving the balloon 30 in the biological lumen V, the balloon catheter 10 can prevent the groove portion 100 and the hydrophilic coating 110 from coming into contact with the biological lumen wall Vw. Therefore, peeling of the hydrophilic coating 110 can be prevented, and the operability of the balloon catheter 10 can be improved.
 なお、図7では、全ての溝部100について、親水性被覆110aと親水性被覆110bが、バルーン30が収縮した状態において、互いに接触する形態を例示したが、上述した実施形態に係る溝部の形態と本変形例に係る溝部の形態は併存してもよい。すなわち、複数の溝部100のうち、一部の溝部100については、本変形例のように、親水性被覆110aと親水性被覆110bが、バルーン30が収縮した状態において互いに接触し、その他の溝部100については、上述した実施形態のように、親水性被覆110aと親水性被覆110bが、バルーン30が拡張した状態および収縮した状態のいずれの状態においても互いに接触しない構成となっていてもよい。 FIG. 7 illustrates the form in which the hydrophilic coating 110a and the hydrophilic coating 110b contact each other in a state in which the balloon 30 is contracted for all the groove parts 100. However, the shape of the groove part according to the above-described embodiment The form of the groove part according to this modification may coexist. That is, for some of the plurality of grooves 100, as in the present modification, the hydrophilic coating 110 a and the hydrophilic coating 110 b are in contact with each other when the balloon 30 is deflated, and the other grooves 100. As in the above-described embodiment, the hydrophilic coating 110a and the hydrophilic coating 110b may not be in contact with each other in either the expanded state or the contracted state of the balloon 30.
 (変形例3)
 上述した実施形態では、溝部100を形成する表面101は、曲面によって形成された。しかしながら、溝部100を形成する表面101の形状は曲面に限定されず、溝部100を形成する表面101に角張させた部位T1が存在していてもよい。
(Modification 3)
In the embodiment described above, the surface 101 forming the groove 100 is formed by a curved surface. However, the shape of the surface 101 that forms the groove 100 is not limited to a curved surface, and a portion T1 that is angular on the surface 101 that forms the groove 100 may exist.
 例えば、図8(A)に示すように、溝部100は、その断面において、台形形状を有していてもよく、図8(B)に示すように、矩形形状を有していてもよい。 For example, as shown in FIG. 8 (A), the groove 100 may have a trapezoidal shape in its cross section, or may have a rectangular shape as shown in FIG. 8 (B).
 また、上述した実施形態では、バルーン30の外表面30S1と溝部100の側面102とは滑らかに接続していたが、バルーン30の外表面30S1と溝部100の側面102との間に角張ばらせた部位T2が存在していてもよい。 In the above-described embodiment, the outer surface 30S1 of the balloon 30 and the side surface 102 of the groove portion 100 are smoothly connected. However, the outer surface 30S1 of the balloon 30 and the side surface 102 of the groove portion 100 are angular. Site T2 may be present.
 また、上述した実施形態では、親水性被覆110は、溝部100を形成する表面101全体に形成されたが、図8(B)に示すように、溝部100を形成する側面102のみに形成されていてもよい。すなわち、溝部100の底部103には親水性被覆110が形成されていなくもよい。 Further, in the above-described embodiment, the hydrophilic coating 110 is formed on the entire surface 101 forming the groove 100, but is formed only on the side surface 102 forming the groove 100 as shown in FIG. 8B. May be. That is, the hydrophilic coating 110 may not be formed on the bottom 103 of the groove 100.
 中間領域31と生体管腔壁Vwとの間に存在する水分を溝部100に誘導する際、親水性被覆110は、溝部100の底部103に形成された親水性被覆110よりも、溝部100の側面102に形成された親水性被覆110の方が、寄与が大きい。そのため、バルーンカテーテル10は、バルーン30を拡張する際、溝部100を形成する側面102のみに親水性被覆110を施すことによって、中間領域31と生体管腔壁Vwとの間に存在する水分を溝部100に誘導できる。 When the moisture existing between the intermediate region 31 and the living body lumen wall Vw is guided to the groove portion 100, the hydrophilic coating 110 has a side surface of the groove portion 100 that is more than the hydrophilic coating 110 formed on the bottom portion 103 of the groove portion 100. The hydrophilic coating 110 formed on 102 has a larger contribution. Therefore, when expanding the balloon 30, the balloon catheter 10 applies the hydrophilic coating 110 only to the side surface 102 that forms the groove portion 100, thereby removing moisture existing between the intermediate region 31 and the living body lumen wall Vw. 100 can be guided.
 以上、実施形態およびその変形例を通じてバルーンカテーテル10を説明したが、本発明は実施形態およびその変形例において説明した構成のみに限定されることはなく、特許請求の範囲の記載に基づいて適宜変更することが可能である。 As described above, the balloon catheter 10 has been described through the embodiment and its modifications. However, the present invention is not limited only to the configuration described in the embodiment and its modifications, and may be changed as appropriate based on the description of the scope of claims. Is possible.
 例えば、上述した実施形態およびその変形例では、溝部100は、バルーン30の外表面30S1において周方向の一部に形成されていた。しかしながら、溝部は、バルーンの外表面において周方向全体に形成されていてもよい。 For example, in the above-described embodiment and its modifications, the groove 100 is formed in a part of the outer surface 30S1 of the balloon 30 in the circumferential direction. However, the groove may be formed in the entire circumferential direction on the outer surface of the balloon.
 また、溝部100は、中間領域31の先端31aと基端31bとの間の全長にわたって形成されていた。しかしながら、溝部100は、中間領域31の先端31aと基端31bとの間の一部のみに形成されていてもよい。なお、溝部は、バルーン30を拡張した際、溝部に誘導された水分を中間領域31の外側に効率的に排出するため、中間領域31の先端31aと基端31bとの間の全長にわたって形成されていることが好ましい。 Moreover, the groove part 100 was formed over the full length between the front-end | tip 31a of the intermediate | middle area | region 31, and the base end 31b. However, the groove part 100 may be formed only in a part between the front end 31a and the base end 31b of the intermediate region 31. The groove portion is formed over the entire length between the distal end 31a and the proximal end 31b of the intermediate region 31 in order to efficiently discharge the moisture guided to the groove portion to the outside of the intermediate region 31 when the balloon 30 is expanded. It is preferable.
 また、上述した実施形態およびその変形例では、バルーン30は、収縮した状態において、溝部100の全てがバルーン30の外表面30S1に露出しないように折り畳まれていた。しかしながら、バルーン30は、収縮した状態において、溝部100の一部がバルーン30の外表面30S1に露出しないように折り畳まれていてもよい。 In the above-described embodiment and its modifications, the balloon 30 is folded so that the entire groove portion 100 is not exposed to the outer surface 30S1 of the balloon 30 in the contracted state. However, the balloon 30 may be folded so that a part of the groove 100 is not exposed to the outer surface 30S1 of the balloon 30 in the contracted state.
 本出願は、2017年2月17日に出願された日本国特許出願第2017-028036号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2017-028036 filed on February 17, 2017, the disclosure content of which is incorporated by reference in its entirety.
10    バルーンカテーテル(医療用長尺体)、
20    シャフト(カテーテル本体)、
21u   内腔(カテーテル本体の内腔)、
30    バルーン、
30L1  第1層、
30L2  第2層、
30S1  バルーンの外表面、
31    中間領域、
31a   中間領域の先端、
31b   中間領域の基端、
32    先端側傾斜領域、
33    基端側傾斜領域、
35    羽根部、
40    ハブ、
100   溝部、
101   溝部を形成する表面、
110   親水性被覆、
121   第1傾斜溝部、
122   第2傾斜溝部、
V     生体管腔、
Vw    生体管腔壁。
10 balloon catheter (medical long body),
20 shaft (catheter body),
21u lumen (the lumen of the catheter body),
30 balloon,
30L1 first layer,
30L2 second layer,
The outer surface of the 30S1 balloon,
31 middle region,
31a tip of the middle region,
31b proximal end of the intermediate region,
32 tip side inclined region,
33 proximal slope region,
35 feathers,
40 hubs,
100 groove,
101 surface forming a groove,
110 hydrophilic coating,
121 a first inclined groove,
122 second inclined groove,
V biological lumen,
Vw Living body lumen wall.

Claims (7)

  1.  カテーテル本体と、
     前記カテーテル本体の先端側に設けられ、前記カテーテル本体の内腔を通じて流体が注入されることにより、前記カテーテル本体の放射方向に拡張するバルーンと、を有し、
     前記バルーンは、当該バルーンの外表面が疎水性樹脂により形成され、かつ、前記バルーンが拡張した状態において、生体管腔壁と接触する中間領域と、前記中間領域の先端から先端側に延びる先端側傾斜領域と、前記中間領域の基端から基端側に延びる基端側傾斜領域と、を有し、
     前記中間領域は、前記バルーンの外表面が凹んだ溝部を備え、
     前記溝部は、前記溝部を形成する表面に親水性被覆が形成されている、医療用長尺体。
    A catheter body;
    A balloon that is provided on the distal end side of the catheter body and expands in the radial direction of the catheter body by injecting fluid through the lumen of the catheter body;
    The balloon has an outer surface formed of a hydrophobic resin and an intermediate region in contact with a living body lumen wall in a state where the balloon is expanded, and a distal end side extending from the distal end of the intermediate region to the distal end side An inclined region, and a proximal-side inclined region extending from the proximal end of the intermediate region to the proximal side,
    The intermediate region includes a groove portion in which the outer surface of the balloon is recessed,
    The said groove part is a medical elongate body by which the hydrophilic coating | cover is formed in the surface which forms the said groove part.
  2.  前記バルーンは、第1層と、前記第1層の表面に配置された第2層と、を有し、
     前記溝部は、前記第2層に形成される、請求項1に記載の医療用長尺体。
    The balloon has a first layer and a second layer disposed on a surface of the first layer,
    The medical elongated body according to claim 1, wherein the groove is formed in the second layer.
  3.  前記溝部は、前記中間領域の先端と基端との間で延在している、請求項1または請求項2に記載の医療用長尺体。 The medical elongated body according to claim 1 or 2, wherein the groove extends between a distal end and a proximal end of the intermediate region.
  4.  前記溝部は、前記バルーンの軸方向に対して傾斜した複数の第1傾斜溝部と、前記第1傾斜溝部と交差する複数の第2傾斜溝部と、を有する、請求項1~3のいずれか1項に記載の医療用長尺体。 The groove portion includes a plurality of first inclined groove portions that are inclined with respect to the axial direction of the balloon, and a plurality of second inclined groove portions that intersect the first inclined groove portion. The medical long body as described in the item.
  5.  前記溝部を形成する表面は、曲面によって形成される、請求項1~4のいずれか1項に記載の医療用長尺体。 The medical elongated body according to any one of claims 1 to 4, wherein a surface forming the groove is formed by a curved surface.
  6.  前記バルーンは、収縮した状態において、前記溝部が前記バルーンの前記外表面に露出しないように折り畳まれている、請求項1~5のいずれか1項に記載の医療用長尺体。 The medical elongated body according to any one of claims 1 to 5, wherein the balloon is folded so that the groove portion is not exposed to the outer surface of the balloon in a contracted state.
  7.  前記溝部を構成する側面のうち一の側面に形成された親水性被覆と当該一の側面に対向する他の側面に形成された親水性被覆とは、前記バルーンが収縮した状態において接触するとともに、前記バルーンが拡張した状態において離間する、請求項1~6のいずれか1項に記載の医療用長尺体。 The hydrophilic coating formed on one side of the side surfaces constituting the groove and the hydrophilic coating formed on the other side facing the one side are in contact with the balloon in a contracted state, The medical long body according to any one of claims 1 to 6, wherein the balloon is separated in an expanded state.
PCT/JP2018/005228 2017-02-17 2018-02-15 Medical long body WO2018151204A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017028036A JP2020062062A (en) 2017-02-17 2017-02-17 Medical long body
JP2017-028036 2017-02-17

Publications (1)

Publication Number Publication Date
WO2018151204A1 true WO2018151204A1 (en) 2018-08-23

Family

ID=63169412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005228 WO2018151204A1 (en) 2017-02-17 2018-02-15 Medical long body

Country Status (2)

Country Link
JP (1) JP2020062062A (en)
WO (1) WO2018151204A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112353519A (en) * 2020-11-09 2021-02-12 深圳素士科技股份有限公司 Electric toothbrush with waterproof button
CN112370638A (en) * 2020-12-04 2021-02-19 上海康德莱医疗器械股份有限公司 Medicine balloon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085112A1 (en) * 2021-11-09 2023-05-19 株式会社カネカ Balloon catheter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278684A (en) * 2004-03-26 2005-10-13 Terumo Corp Catheter with dilation tool
JP2008529733A (en) * 2005-02-17 2008-08-07 ボストン サイエンティフィック リミテッド Medical instruments

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278684A (en) * 2004-03-26 2005-10-13 Terumo Corp Catheter with dilation tool
JP2008529733A (en) * 2005-02-17 2008-08-07 ボストン サイエンティフィック リミテッド Medical instruments

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112353519A (en) * 2020-11-09 2021-02-12 深圳素士科技股份有限公司 Electric toothbrush with waterproof button
CN112353519B (en) * 2020-11-09 2022-04-12 深圳素士科技股份有限公司 Electric toothbrush with waterproof button
CN112370638A (en) * 2020-12-04 2021-02-19 上海康德莱医疗器械股份有限公司 Medicine balloon

Also Published As

Publication number Publication date
JP2020062062A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
US8043279B2 (en) Catheter and medical tube
JP5061614B2 (en) catheter
JP2018171318A (en) Medical long body
WO2018151204A1 (en) Medical long body
JPH0356068B2 (en)
US9364645B2 (en) Balloon catheter
US8404165B2 (en) Catheter distal tip design and method of making
JP4833039B2 (en) catheter
US7163524B2 (en) Catheter
JP2011200589A (en) Balloon catheter
JP2018153452A (en) Balloon catheter and method of treating lesion of living body lumen using balloon catheter
JP4914282B2 (en) Catheter with pushability
JP6332922B2 (en) Balloon catheter and balloon manufacturing method used for balloon catheter
WO2021186664A1 (en) Catheter
WO2017033826A1 (en) Catheter
WO2023079906A1 (en) Balloon for balloon catheter
WO2023080063A1 (en) Balloon for balloon catheter
JP6872969B2 (en) Medical long body
JP2024040729A (en) balloon catheter
WO2023085112A1 (en) Balloon catheter
JP2022148511A (en) catheter
WO2024042978A1 (en) Balloon for balloon catheter and balloon catheter provided therewith
JP2018149082A (en) Medical long body
JP2021137128A (en) Balloon catheter
JP2019176978A (en) Medical long body, medical device, and medical method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP