WO2018151163A1 - Polymer composition, crosslinked product using same, and molded body using same - Google Patents

Polymer composition, crosslinked product using same, and molded body using same Download PDF

Info

Publication number
WO2018151163A1
WO2018151163A1 PCT/JP2018/005112 JP2018005112W WO2018151163A1 WO 2018151163 A1 WO2018151163 A1 WO 2018151163A1 JP 2018005112 W JP2018005112 W JP 2018005112W WO 2018151163 A1 WO2018151163 A1 WO 2018151163A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cationic group
polyether compound
polymer composition
weight
Prior art date
Application number
PCT/JP2018/005112
Other languages
French (fr)
Japanese (ja)
Inventor
弘康 永森
篤史 高柳
重孝 早野
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2018568574A priority Critical patent/JP7103236B2/en
Publication of WO2018151163A1 publication Critical patent/WO2018151163A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/011Crosslinking or vulcanising agents, e.g. accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics

Definitions

  • the present invention provides a polymer composition capable of providing a crosslinked product and a molded article having excellent mechanical properties and excellent barrier properties against gases and liquids, and such a polymer composition.
  • the present invention relates to a crosslinked product and a molded product.
  • polymer materials are used in a wide range of products, they are required to have high barrier properties (specifically, gas barrier properties and fuel permeation resistance) depending on the intended use.
  • barrier properties specifically, gas barrier properties and fuel permeation resistance
  • Patent Document 1 discloses a molded rubber composition used as a component of pneumatic equipment, which includes a nitrile rubber having a combined acrylonitrile amount of 30 to 60% by mass and a layered clay mineral. A rubber molded product obtained in this manner is disclosed.
  • the present invention has been made in view of such a situation, and is a polymer composition capable of providing a cross-linked product and a molded product having excellent mechanical properties and excellent barrier properties against gases and liquids.
  • the purpose is to provide.
  • Another object of the present invention is to provide a crosslinkable composition, a cross-linked product and a molded article obtained using such a polymer composition, and a hose containing such a cross-linked product.
  • the present inventors have found that the above object can be achieved according to a polymer composition comprising a polymer material, a polyether compound having a cationic group, and a clay mineral.
  • the headline and the present invention have been completed.
  • a polymer composition comprising a polymer material, a polyether compound having a cationic group, and a clay mineral.
  • the polyether compound having a cationic group is preferably composed of a monomer unit represented by the following general formula (1).
  • a + represents a cationic group or a cationic group-containing group
  • X ⁇ represents an arbitrary counter anion
  • R represents a nonionic group
  • n represents 2 or more.
  • the content of the polyether compound having a cationic group is preferably 0.01 to 40 parts by weight with respect to 100 parts by weight of the polymer material.
  • the clay mineral content is preferably 1 to 200 parts by weight with respect to 100 parts by weight of the polymer material.
  • blending a crosslinking agent with said polymer composition is provided.
  • crosslinked composition is provided.
  • molding said polymer composition is provided.
  • the hose containing said crosslinked material is provided.
  • the crosslinked material and molded object which are excellent in a mechanical characteristic and are equipped with the barrier property (specifically gas barrier property and fuel-permeation resistance) with respect to gas and a liquid can be given. It is possible to provide a polymer composition, and further, a crosslinkable composition, a cross-linked product and a molded article obtained by using such a polymer composition, and a hose containing such a cross-linked product.
  • the polymer composition of the present invention is a composition comprising a polymer material, a polyether compound having a cationic group, and a clay mineral. First, each component contained in the polymer composition of the present invention will be described.
  • the polymer material used in the present invention is not particularly limited as long as it is a general polymer material, and any of resin and rubber can be used without limitation.
  • the resin may be either a thermosetting resin or a thermoplastic resin and is not particularly limited.
  • the thermosetting resin include an epoxy resin, a melamine resin, a bakelite, a urea resin, a polyurethane, and a silicone resin. .
  • thermoplastic resin examples include polyolefin resins such as polyethylene, polypropylene, polycycloolefin, and 1,2-polybutadiene; vinyl resins such as polystyrene, acrylic resin, PAN, ABS resin, AS resin, vinyl chloride, and PVA; Fluorine resin such as Teflon (registered trademark); Polyester resin such as PET and PBT; Polyamide such as nylon 66 and nylon 6, polyether (polyether compound having a cationic group represented by the general formula (1)) And other resins such as polyacetal, polycarbonate, polyimide, PEEK, polysulfone, polyethersulfone, and liquid crystal polymer. These may be used alone or in combination of two or more. Moreover, these can also be used in combination with the rubber
  • polyolefin resins such as polyethylene, polypropylene, polycycloolefin, and 1,2-polybutadiene
  • vinyl resins such as polystyrene, acrylic resin, P
  • the weight average molecular weight (Mw) of the thermoplastic resin is not particularly limited, but is preferably 20,000 to 1,000,000, more preferably 25,000 to 700,000, particularly preferably 30,000 to 500. , 000.
  • Mw weight average molecular weight
  • the weight average molecular weight of the thermoplastic resin is not particularly limited, but is preferably 20,000 to 1,000,000, more preferably 25,000 to 700,000, particularly preferably 30,000 to 500. , 000.
  • the weight average molecular weight (Mw) of the thermosetting resin is not particularly limited as long as it is cured by three-dimensional crosslinking.
  • the rubber is not particularly limited.
  • butadiene rubber styrene butadiene rubber, chloroprene rubber, isoprene rubber, natural rubber, acrylonitrile butadiene rubber (nitrile rubber), butyl rubber, and partially hydrogenated products of these rubbers (for example, hydrogenated)
  • Various rubbers such as diene rubbers such as nitrile rubber; rubbers other than diene rubbers such as ethylene propylene rubber, acrylic rubber, polyether rubber, polyurethane rubber, fluorine rubber, and silicone rubber; can be used without limitation. These can be used alone or in combination of two or more, and further, such rubbers and the above-described resins may be used in combination.
  • the weight average molecular weight (Mw) of the rubber is not particularly limited, but is preferably 200,000 to 2,000,000, more preferably 300,000 to 2,000,000, from the viewpoint of further improving mechanical properties. 000, particularly preferably 400,000 to 1,500,000.
  • the measurement of the weight average molecular weight (Mw) of the resin and rubber used in the present invention is obtained as a polystyrene-equivalent molecular weight by gel permeation chromatography.
  • the Mooney viscosity (ML1 + 4, 100 ° C.) of the rubber is preferably 5 to 250, more preferably 10 to 200, and particularly preferably 20 to 160.
  • polycycloolefin from the viewpoint that the effect of blending the polyether compound having the cationic group represented by the general formula (1) and the clay mineral is higher, Nitrile rubber and hydrogenated nitrile rubber are preferable, and nitrile rubber and hydrogenated nitrile rubber are particularly preferable.
  • the polymer composition of the present invention is usually made into a crosslinkable composition by adding a crosslinking agent, and is crosslinked by crosslinking. It will be used as a thing.
  • nitrile rubber for example, a rubber containing an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and a conjugated diene monomer unit can be used.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer forming the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is not particularly limited as long as it is an ⁇ , ⁇ -ethylenically unsaturated compound having a nitrile group.
  • the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is preferably 15 to 80% by weight, more preferably 30 to 70% by weight, still more preferably 40%, based on the total monomer units. ⁇ 65% by weight.
  • the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is in the above range, the oil resistance, fuel permeation resistance and cold resistance of the resulting crosslinked product can be further improved.
  • the conjugated diene monomer forming the conjugated diene monomer unit is preferably a conjugated diene monomer having 4 to 6 carbon atoms, such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3. -Butadiene, 1,3-pentadiene and the like. Of these, 1,3-butadiene is preferred. These can be used individually by 1 type or in combination of multiple types.
  • the content ratio of the conjugated diene monomer unit is preferably 20 to 85% by weight, more preferably 30 to 70% by weight, still more preferably 34.9 to 59.9% by weight based on the total monomer units. %.
  • the content ratio of the conjugated diene monomer unit is in the above range, the obtained cross-linked product can be made excellent in heat aging resistance and chemical resistance while making rubber elasticity good.
  • the nitrile rubber includes a cationic monomer unit and / or a monomer unit capable of forming a cation. May also be included.
  • a cationic monomer unit and / or a monomer unit capable of forming a cation By further containing a cationic monomer unit and / or a monomer unit capable of forming a cation, the barrier property of the resulting crosslinked product against gas or liquid can be further enhanced.
  • the monomer that forms the cationic monomer unit and / or the monomer unit capable of forming a cation is a monomer that forms a positively charged monomer unit when in contact with water or an aqueous acid solution.
  • a monomer there is no particular limitation as long as it is a monomer.
  • examples of such a monomer include a monomer containing a quaternary ammonium base as a cationic monomer.
  • a monomer capable of forming a cation it is cationized to an ammonium salt (for example, amine hydrochloride or amine sulfate) when coming into contact with an aqueous acid solution such as hydrochloric acid and sulfuric acid such as a tertiary amino group.
  • an ammonium salt for example, amine hydrochloride or amine sulfate
  • an aqueous acid solution such as hydrochloric acid and sulfuric acid such as a tertiary amino group.
  • cationic monomer examples include (meth) acryloyloxytrimethylammonium chloride [acryloyloxytrimethylammonium chloride and / or methacryloyloxytrimethylammonium chloride. The same applies hereinafter.
  • Quaternary ammonium bases such as (meth) acryloyloxyhydroxypropyltrimethylammonium chloride, (meth) acryloyloxytriethylammonium chloride, (meth) acryloyloxydimethylbenzylammonium chloride, (meth) acryloyloxytrimethylammonium methyl sulfate (Meth) acrylic acid ester monomers; (meth) acrylamidopropyltrimethylammonium chloride, (meth) acrylamidepropyldimethylbenzylammonium chloride and other (meth) acrylamide monomers containing quaternary ammonium bases; It is done.
  • the monomer capable of forming a cation include vinyl group-containing cyclic amine monomers such as 2-vinylpyridine and 4-vinylpyridine; tertiary amino groups such as dimethylaminoethyl (meth) acrylate.
  • (Meth) acrylic acid ester monomer (meth) acrylamide-containing (meth) acrylamide monomer such as (meth) acrylamide dimethylaminoethyl and N, N-dimethylaminopropylacrylamide; N- (4-anilinophenyl) ) Acrylamide, N- (4-anilinophenyl) methacrylamide, N- (4-anilinophenyl) cinnamamide, N- (4-anilinophenyl) crotonamide, N-phenyl-4- (3-vinylbenzyloxy) ) Aniline, N-phenyl-4- (4-vinylbenzyloxy) aniline and the like. Of these, 2-vinylpyridine is preferred.
  • cationic monomers and monomers capable of forming cations can be used singly or in combination.
  • the content ratio of the cationic monomer unit and / or the monomer unit capable of forming a cation is preferably 30% by weight or less, more preferably 20% by weight or less, still more preferably, based on the total monomer units. 10% by weight or less.
  • it does not specifically limit about a minimum, In order to improve the barrier property with respect to the gas and liquid of the crosslinked material obtained more appropriately, Preferably it is 0.1 weight% or more.
  • the nitrile rubber can form an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit, a conjugated diene monomer unit, and a cationic monomer unit and / or cation contained as necessary.
  • other monomer units copolymerizable with the monomers forming these monomer units may be contained.
  • the content ratio of such other monomer units is preferably 30% by weight or less, more preferably 20% by weight or less, and still more preferably 10% by weight or less based on the total monomer units.
  • Examples of such other copolymerizable monomers include fluorine containing fluoroethyl vinyl ether, fluoropropyl vinyl ether, o- (trifluoro) methylstyrene, vinyl pentafluorobenzoate, difluoroethylene, tetrafluoroethylene and the like.
  • Vinyl compounds such as 1,4-pentadiene, 1,4-hexadiene, vinylnorbornene, dicyclopentadiene; ethylene; propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-hexene ⁇ -olefin compounds such as octene; ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, maleic anhydride, etc.
  • ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic Acids and anhydrides thereof ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic Acids and anhydrides thereof; ⁇ , ⁇ -ethylenically unsaturated carboxylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; Monoethyl maleate, diethyl maleate, monobutyl maleate, dibutyl maleate, monoethyl fumarate, diethyl fumarate, monobutyl fumarate, dibutyl fumarate, monocyclohexyl fumarate, dicyclohexyl fumarate, monoethyl itaconate, diethyl itaconate, itacone Monoesters and diesters of ⁇ , ⁇ -e
  • polyfunctional ethylenically unsaturated monomers such as tri (meth) acrylic acid esters; self-crosslinking compounds such as N-methylol (meth) acrylamide and N, N′-dimethylol (meth) acrylamide; Can be mentioned.
  • Nitrile rubber can be produced by copolymerizing the above monomers.
  • a method for copolymerizing each monomer an emulsion polymerization method, a suspension polymerization method, or the like can be used, and among these, the emulsion polymerization method is more preferable because the polymerization reaction can be easily controlled.
  • hydrogenated nitrile rubber is obtained by hydrogenating (hydrogenating reaction) at least a part of the carbon-carbon unsaturated bond portion in the conjugated diene monomer unit portion of the obtained nitrile rubber copolymer. You can also.
  • the method for hydrogenation is not particularly limited, and a known method may be employed.
  • the iodine value is preferably 120 or less, more preferably 80 or less, and still more preferably 60 or less.
  • the polyether compound having a cationic group used in the present invention is a polymer comprising an oxirane monomer unit as a main chain, which is a unit obtained by ring-opening polymerization of an oxirane structure portion of a compound containing an oxirane structure.
  • An ether compound having a cationic group in its molecule is a polymer comprising an oxirane monomer unit as a main chain, which is a unit obtained by ring-opening polymerization of an oxirane structure portion of a compound containing an oxirane structure.
  • the polyether compound having a cationic group used in the present invention is a polymer having a main chain structure composed of oxirane monomer units and 5 to 500 oxirane monomer units, It is preferable to contain an oxirane monomer unit having a cationic group as at least a part of the monomer unit.
  • the number of oxirane monomer units is more preferably 5 to 400, and still more preferably 5 to 300.
  • oxirane monomer unit for forming the polyether compound having a cationic group used in the present invention examples include alkylene oxide monomer units such as ethylene oxide units, propylene oxide units, and 1,2-butylene oxide units; Epihalohydrin monomer units such as epichlorohydrin units, epibromohydrin units, epiiodohydrin units; alkenyl group-containing oxirane monomer units such as allyl glycidyl ether units; aromatic ether groups such as phenyl glycidyl ether units Examples thereof include, but are not limited to, containing oxirane monomer units; (meth) acryloyl group-containing oxirane monomer units such as glycidyl acrylate units and glycidyl methacrylate units.
  • the polyether compound having a cationic group used in the present invention may contain two or more oxirane monomer units.
  • the distribution pattern of the plurality of repeating units is not particularly limited. However, it is preferable to have a random distribution.
  • the epihalohydrin monomer unit, the alkenyl group-containing oxirane monomer unit, and the (meth) acryloyl group-containing oxirane monomer unit are oxirane monomer units having a crosslinkable group.
  • a crosslinkable group can be introduced in addition to the cationic group,
  • a polyether compound having a cationic group can be crosslinked by using a combination of crosslinking agents.
  • the ratio of the oxirane monomer unit having a crosslinkable group can be any ratio.
  • the oxirane monomer unit having a crosslinkable group may be a monomer unit having a crosslinkable group, and is not particularly limited to those described above. Further, in the oxirane monomer unit constituting the polyether compound having a cationic group, the cationic group and the crosslinkable group may be contained as the same repeating unit or as separate repeating units. However, it is preferably contained as a separate repeating unit.
  • the polyether compound having a cationic group used in the present invention contains an oxirane monomer unit having a cationic group as at least a part of the oxirane monomer unit.
  • the cationic group that can be contained in the polyether compound having a cationic group used in the present invention is not particularly limited, but from the viewpoint of further improving the barrier property against the gas and liquid of the resulting crosslinked product and molded product,
  • the group 15 or group 16 atom of the periodic table is preferably a cationic group having an onium cation structure, and the nitrogen atom is more preferably a cationic group having an onium cation structure.
  • cationic group examples include ammonium group, methylammonium group, butylammonium group, cyclohexylammonium group, anilinium group, benzylammonium group, ethanolammonium group, dimethylammonium group, diethylammonium group, dibutylammonium group, and nonylphenylammonium.
  • 1-methylpyrrolidinium group trimethylammonium group, n-butyldimethylammonium group, imidazolium group, 1-methylimidazolium group, 1-ethylimidazolium group, benzimidazolium group, pyridinium group, 2 1,6-dimethylpyridinium group and the like are preferable.
  • the polyether compound having a cationic group used in the present invention all the cationic groups contained may be the same, or an embodiment containing two or more different groups may be used. .
  • the cationic group usually has a counter anion, but the counter anion is not particularly limited.
  • halide ions such as fluoride ion, chloride ion, bromide ion, iodide ion; Sulfate ion; Sulphite ion; Hydroxide ion; Carbonate ion; Hydrogen carbonate ion; Nitrate ion; Acetic acid ion; Perchlorate ion; Phosphate ion; Alkyloxy ion; Trifluoromethanesulfonate ion; Hexafluorophosphate ion; tetrafluoroborate ion; and the like.
  • counter anions may be appropriately selected according to the properties of the polymer composition to be obtained.
  • the counter anions may all be the same, or may be an embodiment containing two or more different types of anions.
  • the oxirane monomer units constituting the polyether compound may be an oxirane monomer unit having a cationic group. All of the oxirane monomer units constituting the polyether compound may have a cationic group, or an oxirane monomer unit having a cationic group and an oxirane monomer having no cationic group Units may be mixed.
  • the proportion of the oxirane monomer unit having a cationic group is not particularly limited, and the oxirane monomer unit constituting the polyether compound having a cationic group 1 mol% or more is preferable with respect to the whole, 10 mol% or more is more preferable, and 30 mol% or more is especially preferable.
  • the upper limit of the ratio for which the oxirane monomer unit which has a cationic group accounts is not specifically limited. By making the ratio which the oxirane monomer unit which has a cationic group accounts to the said range, the barrier property with respect to the gas and liquid of the crosslinked material and molded object which are obtained can be improved more.
  • a + represents a cationic group or a cationic group-containing group
  • X ⁇ represents an arbitrary counter anion
  • R represents a nonionic group
  • n represents 2 or more.
  • It is an integer
  • m is an integer of 0 or more
  • n + m is an integer of 5 to 500.
  • a + represents a cationic group or a cationic group-containing group, and specific examples of the cationic group include those described above.
  • the group containing the cationic group mentioned above is mentioned.
  • the cationic groups or the cationic group-containing groups represented by A + may all be the same, or may contain two or more different groups. There may be.
  • X ⁇ represents an arbitrary counter anion.
  • specific examples of the counter anion include those described above.
  • the counter anions represented by X ⁇ may all be the same or may contain two or more different types of anions.
  • R is a nonionic group and is not particularly limited as long as it is a nonionic group.
  • R is, for example, a hydrogen atom; an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group; a vinyl group, an allyl group Groups, alkenyl groups having 2 to 10 carbon atoms such as propenyl groups; alkynyl groups having 2 to 10 carbon atoms such as ethynyl groups and propynyl groups; and 3 to 20 carbon atoms such as cyclopropyl groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, etc.
  • Cycloalkyl groups aryl groups having 6 to 20 carbon atoms such as phenyl, 1-naphthyl and 2-naphthyl groups; and the like.
  • an alkyl group having 1 to 10 carbon atoms an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms May have a substituent at any position.
  • substituents examples include an alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group and an isopropoxy group; and a carbon number such as a vinyloxy group and an allyloxy group 2-6 alkenyloxy groups; aryl groups optionally having substituents such as phenyl group, 4-methylphenyl group, 2-chlorophenyl group, 3-methoxyphenyl group; fluorine atom, chlorine atom, bromine atom, etc.
  • a C 1-6 alkylcarbonyl group such as a methylcarbonyl group or an ethylcarbonyl group; a (meth) acryloyloxy group such as an acryloyloxy group or a methacryloyloxy group;
  • R when there are a plurality of nonionic groups represented by R, they may all be the same, or may contain two or more different groups. It may be.
  • n is an integer of 2 or more
  • m may be an integer of 0 or more, but n is preferably an integer of 2 to 500, and an integer of 2 to 400 Is more preferable, an integer of 3 to 300 is more preferable, and an integer of 50 to 300 is particularly preferable.
  • M is preferably an integer of 0 to 498, more preferably an integer of 0 to 398, still more preferably an integer of 0 to 297, and particularly preferably an integer of 0 to 250.
  • N + m is an integer of 5 to 500, more preferably an integer of 5 to 400, still more preferably an integer of 5 to 300, and particularly preferably an integer of 50 to 300.
  • compatibility with the polymer material and affinity with the clay mineral can be adjusted, and in particular, n, m and n + m are By setting the range, the compatibility with the polymer material and the affinity with the clay mineral can be improved satisfactorily, thereby further improving the mechanical properties and the barrier property against gas and liquid of the resulting crosslinked product and molded product. Can be raised appropriately.
  • the polymer chain end is not particularly limited, It can be any group.
  • the polymer chain end group include the above-described cationic group, hydroxyl group, or hydrogen atom.
  • the synthesis method of the polyether compound having a cationic group used in the present invention is not particularly limited, and any synthesis method can be adopted as long as the target compound can be obtained.
  • a base polymer polyether compound having no cationic group
  • JP-A 2010-53217 discloses a monomer containing an oxirane monomer including at least an epihalohydrin such as epichlorohydrin, epibromohydrin, epiiohydrin, etc. as a catalyst.
  • a catalyst comprising an onium salt of a compound containing a group 15 or 16 atom of the periodic table and a trialkylaluminum in which all of the alkyl groups contained are linear alkyl groups.
  • a method of obtaining a base polymer by ring-opening polymerization (B) A monomer containing an oxirane monomer including at least an epihalohydrin such as epichlorohydrin, epibromohydrin, epiiodohydrin, etc. is disclosed in JP-B-46-27534.
  • a method for obtaining a base polymer by ring-opening polymerization in the presence of a catalyst obtained by reacting phosphoric acid and triethylamine with isobutylaluminum.
  • a polyether compound having a cationic group can be obtained by performing an anion exchange reaction on the halide ions constituting the onium halide group, if necessary.
  • the content of the polyether compound having a cationic group in the polymer composition of the present invention is preferably 0.01 to 40 parts by weight, more preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the polymer material. Parts, more preferably 0.2 to 10 parts by weight.
  • the clay mineral used in the present invention is not particularly limited, and may be derived from a natural product, a product obtained by subjecting a natural product to a treatment such as purification, or a synthetic product.
  • the clay mineral used in the present invention usually has a layered or plate-like shape.
  • the clay mineral used in the present invention include kaolinites such as kaolinite and halosite; smectites such as montmorillonite, beidellite, nontronite, saponite, hectorite, stevensite, mica; and vermiculites; Among them, smectites are preferable, and montmorillonite, mica, and saponite are particularly preferable. These can be used individually by 1 type or in combination of multiple types.
  • montmorillonite is contained as a main component in bentonite. Therefore, as montmorillonite, those obtained by purifying bentonite can be used.
  • the content of the clay mineral in the polymer composition of the present invention is preferably 1 to 200 parts by weight, more preferably 2 to 120 parts by weight, and still more preferably 5 to 60 parts by weight with respect to 100 parts by weight of the polymer material. It is. By making content of a clay mineral into the said range, the barrier property with respect to the mechanical characteristic of the obtained crosslinked material and a molded object and gas and a liquid can be improved more.
  • the polymer composition of the present invention contains the above-described polymer material, a polyether compound having a cationic group, and a clay mineral.
  • the polymer composition of the present invention is prepared by mixing a polymer material, a polyether compound having a cationic group, and a clay mineral.
  • the clay mineral used in the present invention usually has a multilayer structure having exchangeable cations between layers.
  • the cationic property contained in the polyether compound having the cationic group is included.
  • the group acts on the multilayer structure through the exchangeable cation of the clay mineral to separate such multilayer structure and to interact with the separated multilayer structure, so that the clay mineral becomes organic. Become.
  • the clay mineral thus organized interacts with a polyether compound having a cationic group, it becomes lipophilic by the action of the main chain of the polyether compound having a cationic group. It will also have.
  • the clay mineral is made organic by the action of the polyether compound having such a cationic group, and further made oleophilic so that the multilayer structure is separated. Can be dispersed well in the polymer material, and the resulting cross-linked product and molded product have excellent mechanical properties, while being separated into a gas or liquid by the separated multilayer structure. On the other hand, it can also have excellent barrier properties.
  • the polyether compound having a cationic group used in the present invention is to make the clay mineral organic by interacting with the clay mineral by a positive charge contained in the cationic group.
  • the site interacting with the clay mineral by the electric charge of the structure becomes a structure covered with the main chain structure of the polyether compound.
  • the part that interacted with the clay mineral by the positive charge is covered with the main chain structure of the polyether compound, so that the clay mineral can be oleophilic, and as a result, the clay mineral is polymerized. It can be dispersed well in the material.
  • the organized clay mineral cannot be dispersed well in the polymer material, so the effect of blending the clay mineral is not effective. It cannot be obtained sufficiently.
  • the occurrence of such defects can be effectively suppressed, and the clay mineral is excellent in the polymer material in a mode in which the multilayer structure is separated. In this way, the resulting cross-linked product and molded product have excellent mechanical properties, and an excellent barrier against gas and liquid due to the separated multilayer structure. It can also have property.
  • the technical scope of the present invention is not limited to the above consideration.
  • the polymer composition of the present invention may be prepared by mixing a polymer material, a polyether compound having a cationic group, and a clay mineral, and the mixing order thereof is not particularly limited.
  • the polymer material, the polyether compound having a cationic group, and a clay mineral may be mixed at the same time, or the polymer material and the polyether compound having a cationic group may be mixed in advance.
  • a method may be used in which a clay mineral is mixed and further mixed.
  • a polyether compound having a cationic group and a clay mineral may be mixed in advance, and a polymer material may be blended therein and further mixed, or the polymer material and the clay mineral may be mixed in advance.
  • the method of mixing the polymer material, the polyether compound having a cationic group, and the clay mineral is not particularly limited, but any mixer such as a kneader, a banbury, a brabender, an open roll, a calender roll, a twin screw extruder, or the like. And a method of mixing by using one or a plurality of them in combination.
  • a shear force is applied and shear mixing is performed to obtain a polymer composition. It is preferable to obtain a product, whereby the clay mineral can be dispersed in a state where the multilayer structure is further separated, and the barrier property against gas and liquid of the resulting crosslinked product and molded product can be further increased. it can.
  • the polymer composition of the present invention may contain other additives usually blended in the polymer material.
  • additives include, but are not limited to, fillers; acid acceptors; reinforcing agents; anti-aging agents; plasticizers; ultraviolet absorbers; light stabilizers; tackifiers; Examples include an imparting agent, an electrolyte substance, a colorant (dye / pigment), a flame retardant, and the like.
  • the crosslinkable composition of the present invention is a crosslinkable composition obtained by blending the above-described polymer composition of the present invention with a crosslinking agent.
  • the crosslinking agent may be any compound that can crosslink the polymer material, and may be appropriately selected according to the type of the crosslinkable group possessed by the polymer material to be used.
  • a sulfur-based crosslinking agent or an organic peroxide crosslinking agent can be used.
  • Sulfur-based crosslinking agents include powdered sulfur, sulfur white, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur, and other sulfur; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothiazyl disulfide, N, Sulfur-containing compounds such as N′-dithio-bis (hexahydro-2H-azepinone-2), phosphorus-containing polysulfides, polymer polysulfides; tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, 2- (4′-morpholinodithio) And sulfur donating compounds such as benzothiazole; These can be used individually by 1 type or in combination of multiple types.
  • organic peroxide crosslinking agents include dicumyl peroxide, cumene hydroperoxide, t-butylcumyl peroxide, paramentane hydroperoxide, di-t-butyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, 1,4-bis (t-butylperoxyisopropyl) benzene, 1,1-di-t-butylperoxy-3,3-trimethylcyclohexane, 4,4-bis- (t-butyl-peroxy) -n-butylvale 2,5-dimethyl-2,5-di-t-butylperoxyhexane, 2,5-dimethyl-2,5-di-t-butylperoxyhexyne-3, 1,1-di-t-butyl Peroxy-3,5,5-trimethylcyclohexane, p-chlorobenzoyl peroxide, t-butyl
  • the content of the crosslinking agent in the crosslinkable composition of the present invention is not particularly limited, but is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight with respect to 100 parts by weight of the polymer material. It is.
  • crosslinking accelerator when sulfur or a sulfur-containing compound is used as the crosslinking agent, it is preferable to use a crosslinking accelerator and a crosslinking accelerator in combination.
  • the crosslinking acceleration aid is not particularly limited, and examples thereof include zinc oxide and stearic acid.
  • a crosslinking accelerator For example, a guanidine type compound; an aldehyde-amine type compound; an aldehyde-ammonia type compound; a thiazole type compound; a sulfenamide type compound; a thiourea type compound; a thiuram type compound; Salt-based compounds; and the like can be used.
  • crosslinking assistant and the crosslinking accelerator one kind may be used alone, or two or more kinds may be used in combination.
  • the amount of each of the crosslinking accelerator and the crosslinking accelerator is not particularly limited, but is preferably 0.01 to 15 parts by weight and more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the polymer material.
  • the crosslinked product of the present invention is obtained by crosslinking the above-described crosslinkable composition of the present invention.
  • the cross-linking method is not particularly limited, and may be selected according to the shape and size of the cross-linked product to be obtained.
  • a cross-linkable composition is formed using a uniaxial or multi-axial extruder. A method of extruding to form a molded body, followed by heating and crosslinking; injection molding machine, extrusion blow molding machine, transfer molding machine, press molding machine, etc. A method of crosslinking; and the like.
  • the molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C.
  • the crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C.
  • the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 2 hours.
  • the cross-linked product even if the surface is cross-linked, it may not be sufficiently cross-linked to the inside, so it may be further heated to carry out secondary cross-linking.
  • the molded article of the present invention is obtained by molding the above-described polymer composition of the present invention.
  • the molding method is not particularly limited, and may be selected according to the shape, size, etc. of the molded body to be obtained.
  • a composition for a molded body using a uniaxial or multiaxial extruder is used.
  • the molding temperature is usually 50 to 400 ° C, preferably 100 to 350 ° C.
  • the crosslinked product and molded product of the present invention are obtained using the above-described polymer composition of the present invention, they have excellent mechanical properties and have excellent barrier properties against gases and liquids. It is. Therefore, the cross-linked product and molded product of the present invention make use of such properties, and when the polymer material is a resin, various uses such as a case / panel, packaging film, optical lens, etc. for automobiles and electrical devices. Can be suitably used. Further, when the polymer material is rubber, it can be suitably used for various applications such as a sealing material, a gasket, a belt, or a hose, and can be particularly suitably used for a hose. For example, when the crosslinked product of the present invention is used for a hose having a multilayer structure, at least one layer of the multilayer structure constituting the hose may be formed of the crosslinked product of the present invention.
  • the structure of the polyether compound having a cationic group and the content of the oxirane monomer unit having the cationic group are determined using a nuclear magnetic resonance apparatus (NMR). The measurement was performed as follows. That is, first, 30 mg of a polyether compound having a cationic group as a sample was added to 1.0 mL of heavy dimethyl sulfoxide and shaken for 1 hour to be uniformly dissolved. Then, NMR measurement was performed on the obtained solution to obtain a 1 H-NMR spectrum, and the structure of the polyether compound having a cationic group was assigned according to a conventional method.
  • NMR nuclear magnetic resonance apparatus
  • Mooney viscosity The Mooney viscosity (ML1 + 4, 100 ° C) of the rubber was measured at 100 ° C according to JIS K6300.
  • the permeation amount of the solution every 24 hours was measured, and the maximum amount was defined as a fuel permeation coefficient (unit: g ⁇ mm / m 2 ⁇ day).
  • the measurement was performed for 14 days.
  • the fuel permeation coefficient was determined by an index with the result of Comparative Example 1 as 100. The smaller this value, the lower the fuel permeation coefficient and the better the fuel permeation resistance.
  • Oxygen permeability A test piece having a thickness of 100 ⁇ m was obtained by hot pressing the sheet-like resin-like molded body. The obtained test piece was subjected to oxygen permeation measuring device (product name “OX-TRAN 2 / 21MH”, manufactured by MOCON Co., Ltd.) under the conditions of 23 ° C. and 0% relative humidity in accordance with JIS K7126-2. ) was used to measure the oxygen transmission rate per 1 m 2 of the test piece (cc / m 2 ⁇ day ⁇ atm). The oxygen transmission rate was determined by an index with the result of Comparative Example 2 as 100. The smaller this value, the lower the oxygen transmission rate and the better the gas barrier property.
  • the obtained polymerization reaction liquid was diluted with toluene and then poured into 2-propanol to obtain a white rubbery substance with a yield of 11.9 g.
  • Mn number average molecular weight
  • Mw / Mn molecular weight distribution
  • the composition ratio of each element was in good agreement with the composition ratio predicted from the structure. From the above, it was identified as a cationic group-containing polyether compound A having a 1-methylimidazolium chloride group and a polymerization degree of 110.
  • Reaction was performed. Thereafter, when the polymerization conversion rate with respect to all charged monomers reached 75% by weight, 0.3 part of hydroxylamine sulfate and 0.2 part of potassium hydroxide were added to stop the polymerization reaction. After stopping the reaction, the contents in the reaction vessel were heated to 70 ° C., and unreacted monomers were recovered by steam distillation under reduced pressure to obtain a latex of nitrile rubber B (solid content: 24% by weight). And about the obtained latex of the nitrile rubber B, solid nitrile rubber B was obtained by performing coagulation
  • the content ratio of each monomer constituting the monomer of the obtained nitrile rubber B was measured by H 1 -NMR using an FT-NMR apparatus (trade name: JNM-EX400WB, manufactured by JEOL Ltd.). However, it was 50% by weight of acrylonitrile monomer unit, 48% by weight of 1,3-butadiene monomer unit, and 2% by weight of 2-vinylpyridine monomer unit.
  • the Mooney viscosity [ML1 + 4 (100 ° C.)] of the obtained nitrile rubber B was 85.
  • the Mooney viscosity [ML1 + 4 (100 ° C.)] of the obtained nitrile rubber C was 78.
  • Example 1 100 parts of nitrile rubber B obtained in Production Example 3, 15 parts of purified bentonite (trade name “Bengel HVP”, manufactured by Hojun Co., clay mineral), and cationic group-containing polyether compound A 1 obtained in Production Example 2 .5 parts was charged into a plastic coder lab station (W50EHT) manufactured by Brabender, which was heated to 110 ° C., and shear mixing was performed at a rotation speed of 50 rpm for 5 minutes to obtain a rubber-like polymer composition.
  • W50EHT plastic coder lab station
  • the resulting crosslinkable composition was hot pressed at 160 ° C. for 20 minutes to form and crosslink, thereby obtaining a sheet-like rubber cross-linked product having a thickness of 2 mm.
  • measurement of 100% tensile stress and evaluation of fuel permeability were performed. The results are shown in Table 1.
  • Example 2 A polymer composition, a crosslinkable composition, and a sheet-like rubber cross-linked product are obtained in the same manner as in Example 1 except that the amount of the cationic group-containing polyether compound A is changed from 1.5 parts to 5 parts. The same evaluation was performed. The results are shown in Table 1.
  • Example 3 The polymer was changed in the same manner as in Example 1 except that the amount of the cationic group-containing polyether compound A was changed from 1.5 parts to 5 parts and the amount of purified bentonite was changed from 15 parts to 30 parts. A composition, a crosslinkable composition, and a sheet-like rubber cross-linked product were obtained and evaluated in the same manner. The results are shown in Table 1.
  • Example 4 Instead of 100 parts of the nitrile rubber B obtained in Production Example 3, 100 parts of the nitrile rubber C obtained in Production Example 4 was used, and the amount of the cationic group-containing polyether compound A was used from 1.5 parts. Except having changed to 5 parts, it carried out similarly to Example 1, and obtained the polymer composition, the crosslinkable composition, and the sheet-like rubber crosslinked material, and evaluated similarly. The results are shown in Table 1.
  • Example 1 A polymer composition, a crosslinkable composition, and a sheet-like rubber cross-linked product were obtained in the same manner as in Example 1 except that the cationic group-containing polyether compound A was not blended, and evaluation was performed in the same manner. The results are shown in Table 1.
  • TEM-35B product name “TEM-35B”
  • Example 2 A polymer composition and a sheet-like resin-like molded product were obtained in the same manner as in Example 5 except that the cationic group-containing polyether compound A was not blended, and evaluation was performed in the same manner. The results are shown in Table 2.
  • Example 5 As shown in Table 2, a resin-like molded product (Example 5) obtained by using a polymer composition containing a cycloolefin polymer as a polymer material, a polyether compound having a cationic group, and a clay mineral was a cation. Compared with the case where the polyether compound having a functional group is not contained (Comparative Example 2), the flexural modulus is high, the mechanical properties are excellent, the oxygen permeability is low, and the gas barrier properties are excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

Provided are: a polymer composition which contains a polymer material, a polyether compound having a cationic group, and a clay mineral; and a crosslinked product and a molded body, each of which is obtained using this polymer composition.

Description

ポリマー組成物、ならびにそれを用いた架橋物および成形体POLYMER COMPOSITION, AND CROSSLINKED PRODUCT AND MOLDED BODY USING THE SAME
 本発明は、機械的特性に優れ、かつ、気体や液体に対して優れたバリア性を備える架橋物および成形体を与えることのできるポリマー組成物、ならびに、このようなポリマー組成物を用いて得られる架橋物および成形体に関する。 The present invention provides a polymer composition capable of providing a crosslinked product and a molded article having excellent mechanical properties and excellent barrier properties against gases and liquids, and such a polymer composition. The present invention relates to a crosslinked product and a molded product.
 ポリマー材料は、幅広い製品に用いられている一方で、使用用途によっては高いバリア性(具体的には、ガスバリア性および耐燃料透過性)を備えることが求められている。従来より、このようなポリマー材料にバリア性を付与する手法としては、ポリマー材料に、粘土鉱物を配合する技術が検討されている。 While polymer materials are used in a wide range of products, they are required to have high barrier properties (specifically, gas barrier properties and fuel permeation resistance) depending on the intended use. Conventionally, as a technique for imparting barrier properties to such a polymer material, a technique of blending a clay mineral with the polymer material has been studied.
 たとえば、特許文献1には、空気圧機器の構成部品として使用されるゴム成形品であって、結合アクリロニトリル量が30~60質量%であるニトリルゴムと、層状粘土鉱物とを含有する組成物を成形して得られるゴム成形品が開示されている。 For example, Patent Document 1 discloses a molded rubber composition used as a component of pneumatic equipment, which includes a nitrile rubber having a combined acrylonitrile amount of 30 to 60% by mass and a layered clay mineral. A rubber molded product obtained in this manner is disclosed.
特開2005-337292号公報JP 2005-337292 A
 しかしながら、この特許文献1の技術のように、ニトリルゴムなどのポリマー材料と、層状粘土鉱物とを単に混合しただけでは、ポリマー材料中に、層状粘土鉱物を良好に分散させることができず、そのため、層状粘土鉱物を添加することによる効果、すなわち、バリア性および機械的特性の改善効果を充分に得ることができない場合があった。 However, as in the technique of Patent Document 1, by simply mixing a polymer material such as nitrile rubber and a layered clay mineral, the layered clay mineral cannot be well dispersed in the polymer material. In some cases, the effect of adding the layered clay mineral, that is, the effect of improving the barrier properties and mechanical properties cannot be sufficiently obtained.
 本発明は、このような実状に鑑みてなされたものであり、機械的特性に優れ、かつ、気体や液体に対して優れたバリア性を備える架橋物および成形体を与えることのできるポリマー組成物を提供することを目的とする。また、本発明は、このようなポリマー組成物を用いて得られる、架橋性組成物、架橋物および成形体、ならびに、このような架橋物を含むホースを提供することも目的とする。 The present invention has been made in view of such a situation, and is a polymer composition capable of providing a cross-linked product and a molded product having excellent mechanical properties and excellent barrier properties against gases and liquids. The purpose is to provide. Another object of the present invention is to provide a crosslinkable composition, a cross-linked product and a molded article obtained using such a polymer composition, and a hose containing such a cross-linked product.
 本発明者等は、上記目的を達成するために鋭意研究した結果、ポリマー材料と、カチオン性基を有するポリエーテル化合物と、粘土鉱物とを含むポリマー組成物によれば、上記目的を達成できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved according to a polymer composition comprising a polymer material, a polyether compound having a cationic group, and a clay mineral. The headline and the present invention have been completed.
 すなわち、本発明によれば、ポリマー材料、カチオン性基を有するポリエーテル化合物、および粘土鉱物を含むポリマー組成物が提供される。
 本発明のポリマー組成物において、前記カチオン性基を有するポリエーテル化合物が、下記一般式(1)で表される単量体単位からなるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 (上記一般式(1)中、Aは、カチオン性基またはカチオン性基含有基を表し、Xは、任意の対アニオンを表し、Rは非イオン性基を表し、nは2以上の整数であり、mは0以上の整数であり、n+mが5~500の整数である。)
 本発明のポリマー組成物において、前記カチオン性基を有するポリエーテル化合物の含有量が、前記ポリマー材料100重量部に対して、0.01~40重量部であることが好ましい。
 本発明のポリマー組成物において、前記粘土鉱物の含有量が、前記ポリマー材料100重量部に対して、1~200重量部であることが好ましい。
That is, according to the present invention, there is provided a polymer composition comprising a polymer material, a polyether compound having a cationic group, and a clay mineral.
In the polymer composition of the present invention, the polyether compound having a cationic group is preferably composed of a monomer unit represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
(In the general formula (1), A + represents a cationic group or a cationic group-containing group, X represents an arbitrary counter anion, R represents a nonionic group, and n represents 2 or more. (It is an integer, m is an integer of 0 or more, and n + m is an integer of 5 to 500.)
In the polymer composition of the present invention, the content of the polyether compound having a cationic group is preferably 0.01 to 40 parts by weight with respect to 100 parts by weight of the polymer material.
In the polymer composition of the present invention, the clay mineral content is preferably 1 to 200 parts by weight with respect to 100 parts by weight of the polymer material.
 本発明によれば、上記のポリマー組成物に、架橋剤を配合してなる架橋性組成物が提供される。
 本発明によれば、上記の架橋性組成物を架橋してなる架橋物が提供される。
 また、本発明によれば、上記のポリマー組成物を成形してなる成形体が提供される。
 さらに、本発明によれば、上記の架橋物を含むホースが提供される。
According to this invention, the crosslinkable composition formed by mix | blending a crosslinking agent with said polymer composition is provided.
According to this invention, the crosslinked material formed by bridge | crosslinking said crosslinking | crosslinked composition is provided.
Moreover, according to this invention, the molded object formed by shape | molding said polymer composition is provided.
Furthermore, according to this invention, the hose containing said crosslinked material is provided.
 本発明によれば、機械的特性に優れ、かつ、気体や液体に対して優れたバリア性(具体的には、ガスバリア性および耐燃料透過性)を備える架橋物および成形体を与えることのできるポリマー組成物、さらには、このようなポリマー組成物を用いて得られる、架橋性組成物、架橋物および成形体、ならびに、このような架橋物を含むホースを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the crosslinked material and molded object which are excellent in a mechanical characteristic and are equipped with the barrier property (specifically gas barrier property and fuel-permeation resistance) with respect to gas and a liquid can be given. It is possible to provide a polymer composition, and further, a crosslinkable composition, a cross-linked product and a molded article obtained by using such a polymer composition, and a hose containing such a cross-linked product.
 本発明のポリマー組成物は、ポリマー材料、カチオン性基を有するポリエーテル化合物、および粘土鉱物を含む組成物である。
 まず、本発明のポリマー組成物に含まれる各成分について説明する。
The polymer composition of the present invention is a composition comprising a polymer material, a polyether compound having a cationic group, and a clay mineral.
First, each component contained in the polymer composition of the present invention will be described.
<ポリマー材料>
 本発明で用いる、ポリマー材料としては、一般的なポリマー材料であればよく、特に限定されず、樹脂およびゴムのいずれも制限なく用いることができる。
<Polymer material>
The polymer material used in the present invention is not particularly limited as long as it is a general polymer material, and any of resin and rubber can be used without limitation.
 樹脂としては、熱硬化性樹脂または熱可塑性樹脂のいずれでもよく、特に限定されず、たとえば、熱硬化性樹脂としては、エポキシ樹脂、メラミン樹脂、ベークライト、尿素樹脂、ポリウレタン、シリコーン樹脂などが挙げられる。また、熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリシクロオレフィン、1,2-ポリブタジエンなどのポリオレフィン系樹脂;ポリスチレン、アクリル樹脂、PAN、ABS樹脂、AS樹脂、塩化ビニル、PVAなどのビニル系樹脂;テフロン(登録商標)などのフッ素系樹脂;PET、PBTなどのポリエステル系樹脂;ナイロン66、ナイロン6などのポリアミド、ポリエーテル(上記一般式(1)で表されるカチオン性基を有するポリエーテル化合物を除く。)、ポリアセタール、ポリカーボネート、ポリイミド、PEEK、ポリスルホン、ポリエーテルスルホン、液晶ポリマーなどの各種樹脂;などが挙げられる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。また、これらは、後述するゴムと組み合わせて用いることもできる。 The resin may be either a thermosetting resin or a thermoplastic resin and is not particularly limited. Examples of the thermosetting resin include an epoxy resin, a melamine resin, a bakelite, a urea resin, a polyurethane, and a silicone resin. . Examples of the thermoplastic resin include polyolefin resins such as polyethylene, polypropylene, polycycloolefin, and 1,2-polybutadiene; vinyl resins such as polystyrene, acrylic resin, PAN, ABS resin, AS resin, vinyl chloride, and PVA; Fluorine resin such as Teflon (registered trademark); Polyester resin such as PET and PBT; Polyamide such as nylon 66 and nylon 6, polyether (polyether compound having a cationic group represented by the general formula (1)) And other resins such as polyacetal, polycarbonate, polyimide, PEEK, polysulfone, polyethersulfone, and liquid crystal polymer. These may be used alone or in combination of two or more. Moreover, these can also be used in combination with the rubber | gum mentioned later.
 熱可塑性樹脂の重量平均分子量(Mw)は、特に限定されないが、好ましくは20,000~1,000,000であり、より好ましくは25,000~700,000、特に好ましくは30,000~500,000である。熱可塑性樹脂の重量平均分子量を上記範囲とすることにより、成形加工性を良好なものとしながら、成形体とした場合に、得られる成形体の強度を充分なものとすることができる。 The weight average molecular weight (Mw) of the thermoplastic resin is not particularly limited, but is preferably 20,000 to 1,000,000, more preferably 25,000 to 700,000, particularly preferably 30,000 to 500. , 000. By setting the weight average molecular weight of the thermoplastic resin within the above range, the strength of the resulting molded body can be made sufficient when the molded body is formed while the moldability is good.
 また、熱硬化性樹脂の重量平均分子量(Mw)は、特に限定されず、三次元架橋などにより硬化するものであればよい。 The weight average molecular weight (Mw) of the thermosetting resin is not particularly limited as long as it is cured by three-dimensional crosslinking.
 ゴムとしては、特に限定されず、たとえば、ブタジエンゴム、スチレンブタジエンゴム、クロロプレンゴム、イソプレンゴム、天然ゴム、アクリロニトリルブタジエンゴム(ニトリルゴム)、ブチルゴム、およびこれらゴムの部分水素添加物(たとえば、水素化ニトリルゴム)などのジエン系ゴム;エチレンプロピレンゴム、アクリルゴム、ポリエーテルゴム、ポリウレタンゴム、フッ素ゴム、シリコーンゴムなどのジエン系ゴム以外のゴム;などの種々のゴムを制限なく用いることができる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、さらには、このようなゴムと、上述した樹脂とを組み合わせて用いてもよい。 The rubber is not particularly limited. For example, butadiene rubber, styrene butadiene rubber, chloroprene rubber, isoprene rubber, natural rubber, acrylonitrile butadiene rubber (nitrile rubber), butyl rubber, and partially hydrogenated products of these rubbers (for example, hydrogenated) Various rubbers such as diene rubbers such as nitrile rubber; rubbers other than diene rubbers such as ethylene propylene rubber, acrylic rubber, polyether rubber, polyurethane rubber, fluorine rubber, and silicone rubber; can be used without limitation. These can be used alone or in combination of two or more, and further, such rubbers and the above-described resins may be used in combination.
 ゴムの重量平均分子量(Mw)は、特に限定されないが、機械的特性をより高めるという観点より、好ましくは200,000~2,000,000であり、より好ましくは300,000~2,000,000であり、特に好ましくは400,000~1,500,000である。 The weight average molecular weight (Mw) of the rubber is not particularly limited, but is preferably 200,000 to 2,000,000, more preferably 300,000 to 2,000,000, from the viewpoint of further improving mechanical properties. 000, particularly preferably 400,000 to 1,500,000.
 なお、本発明で用いる樹脂およびゴムの重量平均分子量(Mw)の測定は、ゲルパーミエーションクロマトグラフィーにより、ポリスチレン換算分子量として求めるものとする。 In addition, the measurement of the weight average molecular weight (Mw) of the resin and rubber used in the present invention is obtained as a polystyrene-equivalent molecular weight by gel permeation chromatography.
 また、ゴムのムーニー粘度(ML1+4,100℃)は、好ましくは5~250、より好ましくは10~200、特に好ましくは20~160である。 The Mooney viscosity (ML1 + 4, 100 ° C.) of the rubber is preferably 5 to 250, more preferably 10 to 200, and particularly preferably 20 to 160.
 本発明においては、上記ポリマー材料の中でも、上記一般式(1)で表されるカチオン性基を有するポリエーテル化合物、および粘土鉱物を配合することによる効果がより高いという観点より、ポリシクロオレフィン、ならびに、ニトリルゴムおよび水素化ニトリルゴムが好ましく、ニトリルゴムおよび水素化ニトリルゴムが特に好ましい。なお、ポリマー材料として、ニトリルゴムおよび水素化ニトリルゴムを使用する場合には、本発明のポリマー組成物は、通常、架橋剤を添加することで架橋性組成物とし、これを架橋することで架橋物として用いられることとなる。 In the present invention, among the above polymer materials, polycycloolefin, from the viewpoint that the effect of blending the polyether compound having the cationic group represented by the general formula (1) and the clay mineral is higher, Nitrile rubber and hydrogenated nitrile rubber are preferable, and nitrile rubber and hydrogenated nitrile rubber are particularly preferable. When nitrile rubber and hydrogenated nitrile rubber are used as the polymer material, the polymer composition of the present invention is usually made into a crosslinkable composition by adding a crosslinking agent, and is crosslinked by crosslinking. It will be used as a thing.
 ニトリルゴムとしては、たとえば、α,β-エチレン性不飽和ニトリル単量体単位、および共役ジエン単量体単位を含有するゴムを用いることができる。 As the nitrile rubber, for example, a rubber containing an α, β-ethylenically unsaturated nitrile monomer unit and a conjugated diene monomer unit can be used.
 α,β-エチレン性不飽和ニトリル単量体単位を形成するα,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば、特に限定されないが、たとえば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリルなどのα-アルキルアクリロニトリル;などが挙げられる。これらのなかでも、アクリロニトリルおよびメタクリロニトリルが好ましい。これらは一種単独でまたは複数種併せて用いることができる。 The α, β-ethylenically unsaturated nitrile monomer forming the α, β-ethylenically unsaturated nitrile monomer unit is not particularly limited as long as it is an α, β-ethylenically unsaturated compound having a nitrile group. For example, acrylonitrile; α-halogenoacrylonitrile such as α-chloroacrylonitrile and α-bromoacrylonitrile; α-alkylacrylonitrile such as methacrylonitrile; Among these, acrylonitrile and methacrylonitrile are preferable. These can be used individually by 1 type or in combination of multiple types.
 α,β-エチレン性不飽和ニトリル単量体単位の含有割合は、全単量体単位に対して、好ましくは15~80重量%であり、より好ましくは30~70重量%、さらに好ましくは40~65重量%である。α,β-エチレン性不飽和ニトリル単量体単位の含有割合が上記範囲であると、得られる架橋物の耐油性、耐燃料透過性および耐寒性をより高めることができる。 The content ratio of the α, β-ethylenically unsaturated nitrile monomer unit is preferably 15 to 80% by weight, more preferably 30 to 70% by weight, still more preferably 40%, based on the total monomer units. ~ 65% by weight. When the content ratio of the α, β-ethylenically unsaturated nitrile monomer unit is in the above range, the oil resistance, fuel permeation resistance and cold resistance of the resulting crosslinked product can be further improved.
 共役ジエン単量体単位を形成する共役ジエン単量体としては、炭素数4~6の共役ジエン単量体が好ましく、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどが挙げられる。これらのなかでも、1,3-ブタジエンが好ましい。これらは一種単独でまたは複数種併せて用いることができる。 The conjugated diene monomer forming the conjugated diene monomer unit is preferably a conjugated diene monomer having 4 to 6 carbon atoms, such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3. -Butadiene, 1,3-pentadiene and the like. Of these, 1,3-butadiene is preferred. These can be used individually by 1 type or in combination of multiple types.
 共役ジエン単量体単位の含有割合は、全単量体単位に対して、好ましくは20~85重量%であり、より好ましくは30~70重量%、さらに好ましくは34.9~59.9重量%である。共役ジエン単量体単位の含有割合が上記範囲であると、得られる架橋物を、ゴム弾性を良好なものとしながら、耐熱老化性や耐化学的安定性に優れたものとすることができる。 The content ratio of the conjugated diene monomer unit is preferably 20 to 85% by weight, more preferably 30 to 70% by weight, still more preferably 34.9 to 59.9% by weight based on the total monomer units. %. When the content ratio of the conjugated diene monomer unit is in the above range, the obtained cross-linked product can be made excellent in heat aging resistance and chemical resistance while making rubber elasticity good.
 また、ニトリルゴムとしては、α,β-エチレン性不飽和ニトリル単量体単位、および共役ジエン単量体単位に加えて、カチオン性単量体単位および/またはカチオンを形成可能な単量体単位をも含有するものであってもよい。カチオン性単量体単位および/またはカチオンを形成可能な単量体単位をさらに含有することにより、得られる架橋物の気体や液体に対するバリア性をより高めることができる。 In addition to the α, β-ethylenically unsaturated nitrile monomer unit and the conjugated diene monomer unit, the nitrile rubber includes a cationic monomer unit and / or a monomer unit capable of forming a cation. May also be included. By further containing a cationic monomer unit and / or a monomer unit capable of forming a cation, the barrier property of the resulting crosslinked product against gas or liquid can be further enhanced.
 カチオン性単量体単位および/またはカチオンを形成可能な単量体単位を形成する単量体としては、水または酸水溶液に接した際にプラスに帯電するような単量体単位を形成する単量体であれば、特に限定されない。このような単量体としては、たとえば、カチオン性単量体として、第四級アンモニウム塩基を含有する単量体が挙げられる。また、カチオンを形成可能な単量体として、第三級アミノ基のように塩酸および硫酸等の酸水溶液と接触した際にアンモニウム塩(たとえば、アミン塩酸塩やアミン硫酸塩)などにカチオン化される前駆体部(置換基)を有する単量体が挙げられる。 The monomer that forms the cationic monomer unit and / or the monomer unit capable of forming a cation is a monomer that forms a positively charged monomer unit when in contact with water or an aqueous acid solution. There is no particular limitation as long as it is a monomer. Examples of such a monomer include a monomer containing a quaternary ammonium base as a cationic monomer. Moreover, as a monomer capable of forming a cation, it is cationized to an ammonium salt (for example, amine hydrochloride or amine sulfate) when coming into contact with an aqueous acid solution such as hydrochloric acid and sulfuric acid such as a tertiary amino group. And a monomer having a precursor portion (substituent).
 カチオン性単量体の具体例としては、(メタ)アクリロイルオキシトリメチルアンモニウムクロライド〔アクリロイルオキシトリメチルアンモニウムクロライドおよび/またはメタクリロイルオキシトリメチルアンモニウムクロライドを意味する。以下、同様。〕、(メタ)アクリロイルオキシヒドロキシプロピルトリメチルアンモニウムクロライド、(メタ)アクリロイルオキシトリエチルアンモニウムクロライド、(メタ)アクリロイルオキシジメチルベンジルアンモニウムクロライド、(メタ)アクリロイルオキシトリメチルアンモニウムメチルサルフェート等の第四級アンモニウム塩基を含有する(メタ)アクリル酸エステル単量体;(メタ)アクリルアミドプロピルトリメチルアンモニウムクロライド、(メタ)アクリルアミドプロピルジメチルベンジルアンモニウムクロライド等の第四級アンモニウム塩基を含有する(メタ)アクリルアミド単量体;などが挙げられる。 Specific examples of the cationic monomer include (meth) acryloyloxytrimethylammonium chloride [acryloyloxytrimethylammonium chloride and / or methacryloyloxytrimethylammonium chloride. The same applies hereinafter. Quaternary ammonium bases such as (meth) acryloyloxyhydroxypropyltrimethylammonium chloride, (meth) acryloyloxytriethylammonium chloride, (meth) acryloyloxydimethylbenzylammonium chloride, (meth) acryloyloxytrimethylammonium methyl sulfate (Meth) acrylic acid ester monomers; (meth) acrylamidopropyltrimethylammonium chloride, (meth) acrylamidepropyldimethylbenzylammonium chloride and other (meth) acrylamide monomers containing quaternary ammonium bases; It is done.
 カチオンを形成可能な単量体の具体例としては、2-ビニルピリジン、4-ビニルピリジン等のビニル基含有環状アミン単量体;(メタ)アクリル酸ジメチルアミノエチル等の第三級アミノ基含有(メタ)アクリル酸エステル単量体;(メタ)アクリルアミドジメチルアミノエチル、N,N-ジメチルアミノプロピルアクリルアミド等の第三級アミノ基含有(メタ)アクリルアミド単量体;N-(4-アニリノフェニル)アクリルアミド、N-(4-アニリノフェニル)メタクリルアミド、N-(4-アニリノフェニル)シンナムアミド、N-(4-アニリノフェニル)クロトンアミド、N-フェニル-4-(3-ビニルベンジルオキシ)アニリン、N-フェニル-4-(4-ビニルベンジルオキシ)アニリン等が挙げられる。これらのなかでも、2-ビニルピリジンが好ましい。 Specific examples of the monomer capable of forming a cation include vinyl group-containing cyclic amine monomers such as 2-vinylpyridine and 4-vinylpyridine; tertiary amino groups such as dimethylaminoethyl (meth) acrylate. (Meth) acrylic acid ester monomer; (meth) acrylamide-containing (meth) acrylamide monomer such as (meth) acrylamide dimethylaminoethyl and N, N-dimethylaminopropylacrylamide; N- (4-anilinophenyl) ) Acrylamide, N- (4-anilinophenyl) methacrylamide, N- (4-anilinophenyl) cinnamamide, N- (4-anilinophenyl) crotonamide, N-phenyl-4- (3-vinylbenzyloxy) ) Aniline, N-phenyl-4- (4-vinylbenzyloxy) aniline and the like. Of these, 2-vinylpyridine is preferred.
 これらカチオン性単量体、カチオンを形成可能な単量体は一種単独でまたは複数種併せて用いることができる。 These cationic monomers and monomers capable of forming cations can be used singly or in combination.
 カチオン性単量体単位および/またはカチオンを形成可能な単量体単位の含有割合は、全単量体単位に対して、好ましくは30重量%以下、より好ましくは20重量%以下、さらに好ましくは10重量%以下である。なお、下限については、特に限定されないが、得られる架橋物の気体や液体に対するバリア性をより適切に高めるためには、好ましくは0.1重量%以上である。 The content ratio of the cationic monomer unit and / or the monomer unit capable of forming a cation is preferably 30% by weight or less, more preferably 20% by weight or less, still more preferably, based on the total monomer units. 10% by weight or less. In addition, although it does not specifically limit about a minimum, In order to improve the barrier property with respect to the gas and liquid of the crosslinked material obtained more appropriately, Preferably it is 0.1 weight% or more.
 また、ニトリルゴムとしては、α,β-エチレン性不飽和ニトリル単量体単位、共役ジエン単量体単位、および必要に応じて含有されるカチオン性単量体単位および/またはカチオンを形成可能な単量体単位以外に、これらの単量体単位を形成する単量体と共重合可能な他の単量体の単位を含有していてもよい。このような他の単量体単位の含有割合は、全単量体単位に対して、好ましくは30重量%以下、より好ましくは20重量%以下、さらに好ましくは10重量%以下である。 The nitrile rubber can form an α, β-ethylenically unsaturated nitrile monomer unit, a conjugated diene monomer unit, and a cationic monomer unit and / or cation contained as necessary. In addition to the monomer units, other monomer units copolymerizable with the monomers forming these monomer units may be contained. The content ratio of such other monomer units is preferably 30% by weight or less, more preferably 20% by weight or less, and still more preferably 10% by weight or less based on the total monomer units.
 このような共重合可能な他の単量体としては、たとえば、フルオロエチルビニルエーテル、フルオロプロピルビニルエーテル、o-(トリフルオロ)メチルスチレン、ペンタフルオロ安息香酸ビニル、ジフルオロエチレン、テトラフルオロエチレンなどのフッ素含有ビニル化合物;1,4-ペンタジエン、1,4-ヘキサジエン、ビニルノルボルネン、ジシクロペンタジエンなどの非共役ジエン化合物;エチレン;プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどのα-オレフィン化合物;アクリル酸、メタクリル酸などのα,β-エチレン性不飽和一価カルボン酸;マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、無水マレイン酸などのα,β-エチレン性不飽和多価カルボン酸およびその無水物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシルなどのα,β-エチレン性不飽和カルボン酸アルキルエステル;マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノブチル、イタコン酸ジブチルなどのα,β-エチレン性不飽和多価カルボン酸のモノエステルおよびジエステル;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシプロピル、(メタ)アクリル酸ブトキシエチルなどのα,β-エチレン性不飽和カルボン酸のアルコキシアルキルエステル;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピルなどのα,β-エチレン性不飽和カルボン酸のヒドロキシアルキルエステル;ジビニルベンゼンなどのジビニル化合物;エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレートなどのジ(メタ)アクリル酸エステル類;トリメチロールプロパントリ(メタ)アクリレートなどのトリ(メタ)アクリル酸エステル類;などの多官能エチレン性不飽和単量体のほか、N-メチロール(メタ)アクリルアミド、N,N’-ジメチロール(メタ)アクリルアミドなどの自己架橋性化合物;などが挙げられる。 Examples of such other copolymerizable monomers include fluorine containing fluoroethyl vinyl ether, fluoropropyl vinyl ether, o- (trifluoro) methylstyrene, vinyl pentafluorobenzoate, difluoroethylene, tetrafluoroethylene and the like. Vinyl compounds; non-conjugated diene compounds such as 1,4-pentadiene, 1,4-hexadiene, vinylnorbornene, dicyclopentadiene; ethylene; propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-hexene Α-olefin compounds such as octene; α, β-ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, maleic anhydride, etc. α, β-ethylenically unsaturated polyvalent carboxylic Acids and anhydrides thereof; α, β-ethylenically unsaturated carboxylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; Monoethyl maleate, diethyl maleate, monobutyl maleate, dibutyl maleate, monoethyl fumarate, diethyl fumarate, monobutyl fumarate, dibutyl fumarate, monocyclohexyl fumarate, dicyclohexyl fumarate, monoethyl itaconate, diethyl itaconate, itacone Monoesters and diesters of α, β-ethylenically unsaturated polyvalent carboxylic acids such as monobutyl acid, dibutyl itaconate; methoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, butoxyethyl (meth) acrylate Alkoxyalkyl esters of α, β-ethylenically unsaturated carboxylic acids; hydroxyalkyl of α, β-ethylenically unsaturated carboxylic acids such as 2-hydroxyethyl (meth) acrylate and 3-hydroxypropyl (meth) acrylate Esters; Divinyl compounds such as divinylbenzene; Di (meth) acrylates such as ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, and ethylene glycol di (meth) acrylate; Trimethylolpropane tri (meth) acrylate, etc. In addition to polyfunctional ethylenically unsaturated monomers such as tri (meth) acrylic acid esters; self-crosslinking compounds such as N-methylol (meth) acrylamide and N, N′-dimethylol (meth) acrylamide; Can be mentioned.
 ニトリルゴムは、上記した各単量体を、共重合することにより製造することができる。各単量体を共重合する方法としては、乳化重合法や、懸濁重合法などを用いることができ、これらのなかでも、重合反応制御が容易なことから乳化重合法がより好ましい。また、得られたニトリルゴムの共重合体の共役ジエン単量体単位部分における炭素-炭素不飽和結合部分のうち少なくとも一部を水素化(水素添加反応)することで、水素化ニトリルゴムとすることもできる。水素化の方法は特に限定されず、公知の方法を採用すればよい。水素化ニトリルゴムとする場合における、そのヨウ素価は、好ましくは120以下であり、より好ましくは80以下、さらに好ましくは60以下である。 Nitrile rubber can be produced by copolymerizing the above monomers. As a method for copolymerizing each monomer, an emulsion polymerization method, a suspension polymerization method, or the like can be used, and among these, the emulsion polymerization method is more preferable because the polymerization reaction can be easily controlled. Further, hydrogenated nitrile rubber is obtained by hydrogenating (hydrogenating reaction) at least a part of the carbon-carbon unsaturated bond portion in the conjugated diene monomer unit portion of the obtained nitrile rubber copolymer. You can also. The method for hydrogenation is not particularly limited, and a known method may be employed. When the hydrogenated nitrile rubber is used, the iodine value is preferably 120 or less, more preferably 80 or less, and still more preferably 60 or less.
<カチオン性基を有するポリエーテル化合物>
 本発明で用いるカチオン性基を有するポリエーテル化合物は、オキシラン構造を含有する化合物のオキシラン構造部分が開環重合することにより得られる単位である、オキシラン単量体単位を主鎖として含んでなるポリエーテル化合物であって、その分子中にカチオン性基を有するものである。
<Polyether compound having a cationic group>
The polyether compound having a cationic group used in the present invention is a polymer comprising an oxirane monomer unit as a main chain, which is a unit obtained by ring-opening polymerization of an oxirane structure portion of a compound containing an oxirane structure. An ether compound having a cationic group in its molecule.
 本発明で用いるカチオン性基を有するポリエーテル化合物としては、主鎖構造がオキシラン単量体単位からなり、かつ、オキシラン単量体単位数が5~500個である重合体であって、オキシラン単量体単位の少なくとも一部としてカチオン性基を有するオキシラン単量体単位を含有するものであることが好ましい。オキシラン単量体単位数は、より好ましくは5~400個であり、さらに好ましくは5~300個である。 The polyether compound having a cationic group used in the present invention is a polymer having a main chain structure composed of oxirane monomer units and 5 to 500 oxirane monomer units, It is preferable to contain an oxirane monomer unit having a cationic group as at least a part of the monomer unit. The number of oxirane monomer units is more preferably 5 to 400, and still more preferably 5 to 300.
 本発明で用いるカチオン性基を有するポリエーテル化合物を形成する、オキシラン単量体単位の具体例としては、エチレンオキシド単位、プロピレンオキシド単位、1,2-ブチレンオキシド単位などのアルキレンオキシド単量体単位;エピクロロヒドリン単位、エピブロモヒドリン単位、エピヨードヒドリン単位などのエピハロヒドリン単量体単位;アリルグリシジルエーテル単位などのアルケニル基含有オキシラン単量体単位;フェニルグリシジルエーテル単位などの芳香族エーテル基含有オキシラン単量体単位;グリシジルアクリレート単位、グリシジルメタクリレート単位などの(メタ)アクリロイル基含有オキシラン単量体単位;などを挙げることができるが、これらに限定されるものではない。 Specific examples of the oxirane monomer unit for forming the polyether compound having a cationic group used in the present invention include alkylene oxide monomer units such as ethylene oxide units, propylene oxide units, and 1,2-butylene oxide units; Epihalohydrin monomer units such as epichlorohydrin units, epibromohydrin units, epiiodohydrin units; alkenyl group-containing oxirane monomer units such as allyl glycidyl ether units; aromatic ether groups such as phenyl glycidyl ether units Examples thereof include, but are not limited to, containing oxirane monomer units; (meth) acryloyl group-containing oxirane monomer units such as glycidyl acrylate units and glycidyl methacrylate units.
 本発明で用いるカチオン性基を有するポリエーテル化合物は、2種以上のオキシラン単量体単位を含有するものであってもよく、この場合においては、それら複数の繰り返し単位の分布様式は特に限定されないが、ランダムな分布を有していることが好ましい。 The polyether compound having a cationic group used in the present invention may contain two or more oxirane monomer units. In this case, the distribution pattern of the plurality of repeating units is not particularly limited. However, it is preferable to have a random distribution.
 なお、上記単量体単位のうち、エピハロヒドリン単量体単位、アルケニル基含有オキシラン単量体単位、および(メタ)アクリロイル基含有オキシラン単量体単位は、架橋性基を有するオキシラン単量体単位であり、このような架橋性基を有するオキシラン単量体単位を含有することで、本発明で用いるカチオン性基を有するポリエーテル化合物中に、カチオン性基に加えて架橋性基をも導入でき、この場合には、架橋剤を組み合わせて用いることで、カチオン性基を有するポリエーテル化合物を架橋可能なものとすることができる。この場合における、架橋性基を有するオキシラン単量体単位の割合は、任意の割合とすることができる。なお、架橋性基を有するオキシラン単量体単位としては、架橋性基を有する単量体単位であればよく、上記したものに特に限定されるものではない。また、カチオン性基を有するポリエーテル化合物を構成するオキシラン単量体単位において、カチオン性基と架橋性基とは、同一の繰り返し単位として含まれていてもよいし、別個の繰り返し単位として含まれていてもよいが、別個の繰り返し単位として含まれていることが好ましい。 Among the above monomer units, the epihalohydrin monomer unit, the alkenyl group-containing oxirane monomer unit, and the (meth) acryloyl group-containing oxirane monomer unit are oxirane monomer units having a crosslinkable group. Yes, by containing an oxirane monomer unit having such a crosslinkable group, in the polyether compound having a cationic group used in the present invention, a crosslinkable group can be introduced in addition to the cationic group, In this case, a polyether compound having a cationic group can be crosslinked by using a combination of crosslinking agents. In this case, the ratio of the oxirane monomer unit having a crosslinkable group can be any ratio. The oxirane monomer unit having a crosslinkable group may be a monomer unit having a crosslinkable group, and is not particularly limited to those described above. Further, in the oxirane monomer unit constituting the polyether compound having a cationic group, the cationic group and the crosslinkable group may be contained as the same repeating unit or as separate repeating units. However, it is preferably contained as a separate repeating unit.
 また、本発明で用いるカチオン性基を有するポリエーテル化合物は、オキシラン単量体単位のうち少なくとも一部として、カチオン性基を有するオキシラン単量体単位を含有するものである。本発明で用いるカチオン性基を有するポリエーテル化合物に含有させることのできるカチオン性基としては、特に限定されないが、得られる架橋物および成形体の気体や液体に対するバリア性をより高めるという観点から、周期表第15族または第16族の原子がオニウムカチオン構造を形成したカチオン性基であることが好ましく、窒素原子がオニウムカチオン構造を形成したカチオン性基であることがより好ましい。 The polyether compound having a cationic group used in the present invention contains an oxirane monomer unit having a cationic group as at least a part of the oxirane monomer unit. The cationic group that can be contained in the polyether compound having a cationic group used in the present invention is not particularly limited, but from the viewpoint of further improving the barrier property against the gas and liquid of the resulting crosslinked product and molded product, The group 15 or group 16 atom of the periodic table is preferably a cationic group having an onium cation structure, and the nitrogen atom is more preferably a cationic group having an onium cation structure.
 カチオン性基の具体例としては、アンモニウム基、メチルアンモニウム基、ブチルアンモニウム基、シクロヘキシルアンモニウム基、アニリニウム基、ベンジルアンモニウム基、エタノールアンモニウム基、ジメチルアンモニウム基、ジエチルアンモニウム基、ジブチルアンモニウム基、ノニルフェニルアンモニウム基、トリメチルアンモニウム基、トリエチルアンモニウム基、n-ブチルジメチルアンモニウム基、n-オクチルジメチルアンモニウム基、n-ステアリルジメチルアンモニウム基、トリブチルアンモニウム基、トリビニルアンモニウム基、トリエタノールアンモニウム基、N,N-ジメチルエタノールアンモニウム基、トリ(2-エトキシエチル)アンモニウム基等のアンモニウム基;ピペリジニウム基、1-ピロリジニウム基、1-メチルピロリジニウム基、イミダゾリウム基、1-メチルイミダゾリウム基、1-エチルイミダゾリウム基、ベンズイミダゾリウム基、ピロリウム基、1-メチルピロリウム基、オキサゾリウム基、ベンズオキサゾリウム基、ベンズイソオキサゾリウム基、ピラゾリウム基、イソオキサゾリウム基、ピリジニウム基、2,6-ジメチルピリジニウム基、ピラジニウム基、ピリミジニウム基、ピリダジニウム基、トリアジニウム基、N,N-ジメチルアニリニウム基、キノリニウム基、イソキノリニウム基、インドリニウム基、イソインドリウム基、キノキサリウム基、イソキノキサリウム基、チアゾリウム基等のカチオン性の窒素原子を含有する複素環を含んでなる基;トリフェニルホスホニウム塩、トリブチルホスホニウム基等のカチオン性のリン原子を含んでなる基;等が挙げられるが、これらに限定されるものではない。これらの中でも、1-メチルピロリジニウム基、トリメチルアンモニウム基、n-ブチルジメチルアンモニウム基、イミダゾリウム基、1-メチルイミダゾリウム基、1-エチルイミダゾリウム基、ベンズイミダゾリウム基、ピリジニウム基、2,6-ジメチルピリジニウム基等が好ましい。なお、本発明で用いるカチオン性基を有するポリエーテル化合物中、含有するカチオン性基は、全て同じものであってもよいし、異なる2種類以上の基を含有するような態様であってもよい。 Specific examples of the cationic group include ammonium group, methylammonium group, butylammonium group, cyclohexylammonium group, anilinium group, benzylammonium group, ethanolammonium group, dimethylammonium group, diethylammonium group, dibutylammonium group, and nonylphenylammonium. Group, trimethylammonium group, triethylammonium group, n-butyldimethylammonium group, n-octyldimethylammonium group, n-stearyldimethylammonium group, tributylammonium group, trivinylammonium group, triethanolammonium group, N, N-dimethyl Ammonium groups such as ethanolammonium group, tri (2-ethoxyethyl) ammonium group; piperidinium group, 1-pyrrolidini Group, 1-methylpyrrolidinium group, imidazolium group, 1-methylimidazolium group, 1-ethylimidazolium group, benzimidazolium group, pyrrolium group, 1-methylpyrrolium group, oxazolium group, benzoxazo Rium group, benzisoxazolium group, pyrazolium group, isoxazolium group, pyridinium group, 2,6-dimethylpyridinium group, pyrazinium group, pyrimidinium group, pyridazinium group, triazinium group, N, N-dimethylanilinium group A group containing a heterocyclic ring containing a cationic nitrogen atom such as a quinolinium group, an isoquinolinium group, an indolinium group, an isoindolinium group, a quinoxalium group, an isoquinoxalium group, a thiazolium group; a triphenylphosphonium salt; Tributylphosphonium group Group comprising phosphorus atoms of the cationic, and the like, but not limited thereto. Among these, 1-methylpyrrolidinium group, trimethylammonium group, n-butyldimethylammonium group, imidazolium group, 1-methylimidazolium group, 1-ethylimidazolium group, benzimidazolium group, pyridinium group, 2 1,6-dimethylpyridinium group and the like are preferable. In the polyether compound having a cationic group used in the present invention, all the cationic groups contained may be the same, or an embodiment containing two or more different groups may be used. .
 また、カチオン性基は、通常、対アニオンを有するものであるが、その対アニオンとしては特に限定されないが、たとえば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲン化物イオン;硫酸イオン;亜硫酸イオン;水酸化物イオン;炭酸イオン;炭酸水素イオン;硝酸イオン;酢酸イオン;過塩素酸イオン;リン酸イオン;アルキルオキシイオン;トリフルオロメタンスルホン酸イオン;ビストリフルオロメタンスルホニルイミドイオン;ヘキサフルオロリン酸イオン;テトラフルオロホウ酸イオン;などを挙げることができる。これら対アニオンは、得ようとするポリマー組成物の特性に応じて適宜選択すればよい。なお、本発明で用いるカチオン性基を有するポリエーテル化合物中、対アニオンは、全て同じものであってもよいし、異なる2種類以上のアニオンを含有するような態様であってもよい。 The cationic group usually has a counter anion, but the counter anion is not particularly limited. For example, halide ions such as fluoride ion, chloride ion, bromide ion, iodide ion; Sulfate ion; Sulphite ion; Hydroxide ion; Carbonate ion; Hydrogen carbonate ion; Nitrate ion; Acetic acid ion; Perchlorate ion; Phosphate ion; Alkyloxy ion; Trifluoromethanesulfonate ion; Hexafluorophosphate ion; tetrafluoroborate ion; and the like. These counter anions may be appropriately selected according to the properties of the polymer composition to be obtained. In the polyether compound having a cationic group used in the present invention, the counter anions may all be the same, or may be an embodiment containing two or more different types of anions.
 本発明で用いるカチオン性基を有するポリエーテル化合物においては、ポリエーテル化合物を構成するオキシラン単量体単位のうち、その少なくとも一部がカチオン性基を有するオキシラン単量体単位であればよく、たとえば、ポリエーテル化合物を構成するオキシラン単量体単位の全てがカチオン性基を有するものであってもよく、あるいは、カチオン性基を有するオキシラン単量体単位およびカチオン性基を有しないオキシラン単量体単位が混在するものであってもよい。本発明で用いるカチオン性基を有するポリエーテル化合物において、カチオン性基を有するオキシラン単量体単位が占める割合は、特に限定されず、カチオン性基を有するポリエーテル化合物を構成するオキシラン単量体単位全体に対して、1モル%以上が好ましく、10モル%以上がより好ましく、30モル%以上が特に好ましい。なお、カチオン性基を有するオキシラン単量体単位が占める割合の上限は、特に限定されない。カチオン性基を有するオキシラン単量体単位が占める割合を上記範囲とすることにより、得られる架橋物および成形体の気体や液体に対するバリア性をより高めることができる。 In the polyether compound having a cationic group used in the present invention, at least a part of the oxirane monomer units constituting the polyether compound may be an oxirane monomer unit having a cationic group. All of the oxirane monomer units constituting the polyether compound may have a cationic group, or an oxirane monomer unit having a cationic group and an oxirane monomer having no cationic group Units may be mixed. In the polyether compound having a cationic group used in the present invention, the proportion of the oxirane monomer unit having a cationic group is not particularly limited, and the oxirane monomer unit constituting the polyether compound having a cationic group 1 mol% or more is preferable with respect to the whole, 10 mol% or more is more preferable, and 30 mol% or more is especially preferable. In addition, the upper limit of the ratio for which the oxirane monomer unit which has a cationic group accounts is not specifically limited. By making the ratio which the oxirane monomer unit which has a cationic group accounts to the said range, the barrier property with respect to the gas and liquid of the crosslinked material and molded object which are obtained can be improved more.
 本発明で用いるカチオン性基を有するポリエーテル化合物の構造としては特に限定されないが、下記一般式(1)で表される単量体単位からなるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 (上記一般式(1)中、Aは、カチオン性基またはカチオン性基含有基を表し、Xは、任意の対アニオンを表し、Rは非イオン性基を表し、nは2以上の整数であり、mは0以上の整数であり、n+mが5~500の整数である。)
Although it does not specifically limit as a structure of the polyether compound which has a cationic group used by this invention, It is preferable that it is what consists of a monomer unit represented by following General formula (1).
Figure JPOXMLDOC01-appb-C000003
(In the general formula (1), A + represents a cationic group or a cationic group-containing group, X represents an arbitrary counter anion, R represents a nonionic group, and n represents 2 or more. (It is an integer, m is an integer of 0 or more, and n + m is an integer of 5 to 500.)
 上記一般式(1)中、Aは、カチオン性基またはカチオン性基含有基を表し、カチオン性基の具体例としては、上述したものが挙げられ、また、カチオン性基含有基としては、上述したカチオン性基を含有する基が挙げられる。なお、上記一般式(1)中、Aで表されるカチオン性基またはカチオン性基含有基は、全て同じものであってもよいし、異なる2種類以上の基を含有するような態様であってもよい。 In the general formula (1), A + represents a cationic group or a cationic group-containing group, and specific examples of the cationic group include those described above. As the cationic group-containing group, The group containing the cationic group mentioned above is mentioned. In the above general formula (1), the cationic groups or the cationic group-containing groups represented by A + may all be the same, or may contain two or more different groups. There may be.
 上記一般式(1)中、Xは、任意の対アニオンを表し、たとえば、対アニオンの具体例としては、上述したものが挙げられる。なお、上記一般式(1)中、Xで表される対アニオンは、全て同じものであってもよいし、異なる2種類以上のアニオンを含有するような態様であってもよい。 In the general formula (1), X represents an arbitrary counter anion. For example, specific examples of the counter anion include those described above. In the above general formula (1), the counter anions represented by X may all be the same or may contain two or more different types of anions.
 上記一般式(1)中、Rは、非イオン性基であり、非イオン性の基であれば特に限定されない。Rとしては、たとえば、水素原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等の炭素数1~10のアルキル基;ビニル基、アリル基、プロペニル基等の炭素数2~10のアルケニル基;エチニル基、プロピニル基等の炭素数2~10のアルキニル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の炭素数3~20のシクロアルキル基;フェニル基、1-ナフチル基、2-ナフチル基等の炭素数6~20のアリール基;等が挙げられる。
 これらのうち、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数3~20のシクロアルキル基、および炭素数6~20のアリール基は、任意の位置に置換基を有していてもよい。
In the general formula (1), R is a nonionic group and is not particularly limited as long as it is a nonionic group. R is, for example, a hydrogen atom; an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group; a vinyl group, an allyl group Groups, alkenyl groups having 2 to 10 carbon atoms such as propenyl groups; alkynyl groups having 2 to 10 carbon atoms such as ethynyl groups and propynyl groups; and 3 to 20 carbon atoms such as cyclopropyl groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, etc. Cycloalkyl groups; aryl groups having 6 to 20 carbon atoms such as phenyl, 1-naphthyl and 2-naphthyl groups; and the like.
Among these, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms May have a substituent at any position.
  置換基としては、メチル基、エチル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ビニルオキシ基、アリルオキシ基等の炭素数2~6のアルケニルオキシ基;フェニル基、4-メチルフェニル基、2-クロロフェニル基、3-メトキシフェニル基等の置換基を有していてもよいアリール基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチルカルボニル基、エチルカルボニル基等の炭素数1~6のアルキルカルボニル基;アクリロイルオキシ基、メタクリロイルオキシ基等の(メタ)アクリロイルオキシ基;等が挙げられる。なお、上記一般式(1)中、Rで表される非イオン性基が複数ある場合には、それらは全て同じものであってもよいし、異なる2種類以上の基を含有するような態様であってもよい。 Examples of the substituent include an alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group and an isopropoxy group; and a carbon number such as a vinyloxy group and an allyloxy group 2-6 alkenyloxy groups; aryl groups optionally having substituents such as phenyl group, 4-methylphenyl group, 2-chlorophenyl group, 3-methoxyphenyl group; fluorine atom, chlorine atom, bromine atom, etc. A C 1-6 alkylcarbonyl group such as a methylcarbonyl group or an ethylcarbonyl group; a (meth) acryloyloxy group such as an acryloyloxy group or a methacryloyloxy group; In the above general formula (1), when there are a plurality of nonionic groups represented by R, they may all be the same, or may contain two or more different groups. It may be.
 また、上記一般式(1)中、nは2以上の整数であり、mは0以上の整数であればよいが、nは、2~500の整数であることが好ましく、2~400の整数であることがより好ましく、3~300の整数であることがさらに好ましく、50~300の整数であることが特に好ましい。また、mは、0~498の整数であることが好ましく、0~398の整数であることがより好ましく、0~297の整数であることがさらに好ましく、0~250の整数であることが特に好ましい。また、n+mは、5~500の整数であり、5~400の整数であることがより好ましく、5~300の整数であることがさらに好ましく、50~300の整数であることが特に好ましい。上記一般式(1)中、n、m、n+mを適切に調整することにより、ポリマー材料との相溶性および粘土鉱物との親和性を調整することができ、特に、n、m、n+mを上記範囲とすることにより、ポリマー材料との相溶性および粘土鉱物との親和性を良好に高めることができ、これにより、得られる架橋物および成形体の機械的特性および気体や液体に対するバリア性をより適切に高めることができる。 In the general formula (1), n is an integer of 2 or more, and m may be an integer of 0 or more, but n is preferably an integer of 2 to 500, and an integer of 2 to 400 Is more preferable, an integer of 3 to 300 is more preferable, and an integer of 50 to 300 is particularly preferable. M is preferably an integer of 0 to 498, more preferably an integer of 0 to 398, still more preferably an integer of 0 to 297, and particularly preferably an integer of 0 to 250. preferable. N + m is an integer of 5 to 500, more preferably an integer of 5 to 400, still more preferably an integer of 5 to 300, and particularly preferably an integer of 50 to 300. In the general formula (1), by appropriately adjusting n, m and n + m, compatibility with the polymer material and affinity with the clay mineral can be adjusted, and in particular, n, m and n + m are By setting the range, the compatibility with the polymer material and the affinity with the clay mineral can be improved satisfactorily, thereby further improving the mechanical properties and the barrier property against gas and liquid of the resulting crosslinked product and molded product. Can be raised appropriately.
 なお、本発明で用いるカチオン性基を有するポリエーテル化合物の構造が、上記一般式(1)で表される単量体単位からなるものである時、重合体鎖末端は、特に限定されず、任意の基とすることができる。重合体鎖末端基としては、たとえば、上述したカチオン性基、水酸基、または水素原子などが挙げられる。 In addition, when the structure of the polyether compound having a cationic group used in the present invention is a monomer unit represented by the general formula (1), the polymer chain end is not particularly limited, It can be any group. Examples of the polymer chain end group include the above-described cationic group, hydroxyl group, or hydrogen atom.
 本発明で用いるカチオン性基を有するポリエーテル化合物の合成方法は、特に限定されず、目的とする化合物を得られるものである限りにおいて、任意の合成方法を採用することができる。合成方法の一例を示すと、まず、以下の(A)または(B)の方法により、ベースポリマー(カチオン性基を有しないポリエーテル化合物)を得る。
 (A)エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリンなどのエピハロヒドリンを少なくとも含む、オキシラン単量体を含有する単量体を、触媒として、特開2010-53217号公報に開示されている、周期表第15族または第16族の原子を含有する化合物のオニウム塩と、含有されるアルキル基が全て直鎖状アルキル基であるトリアルキルアルミニウムとを含んでなる触媒との存在下で開環重合することにより、ベースポリマーを得る方法。
 (B)エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリンなどのエピハロヒドリンを少なくとも含む、オキシラン単量体を含有する単量体を、特公昭46-27534号公報に開示されている、トリイソブチルアルミニウムにリン酸とトリエチルアミンを反応させた触媒の存在下で開環重合することにより、ベースポリマーを得る方法。
The synthesis method of the polyether compound having a cationic group used in the present invention is not particularly limited, and any synthesis method can be adopted as long as the target compound can be obtained. As an example of the synthesis method, first, a base polymer (polyether compound having no cationic group) is obtained by the following method (A) or (B).
(A) JP-A 2010-53217 discloses a monomer containing an oxirane monomer including at least an epihalohydrin such as epichlorohydrin, epibromohydrin, epiiohydrin, etc. as a catalyst. In the presence of a catalyst comprising an onium salt of a compound containing a group 15 or 16 atom of the periodic table and a trialkylaluminum in which all of the alkyl groups contained are linear alkyl groups. A method of obtaining a base polymer by ring-opening polymerization.
(B) A monomer containing an oxirane monomer including at least an epihalohydrin such as epichlorohydrin, epibromohydrin, epiiodohydrin, etc. is disclosed in JP-B-46-27534. A method for obtaining a base polymer by ring-opening polymerization in the presence of a catalyst obtained by reacting phosphoric acid and triethylamine with isobutylaluminum.
 そして、上記(A)または(B)の方法において得られたベースポリマーに、イミダゾール化合物などのアミン化合物を反応させることにより、ベースポリマーのエピハロヒドリン単量体単位を構成するハロゲン基をオニウムハライド基に変換して、さらに必要に応じて、オニウムハライド基を構成するハロゲン化物イオンを、アニオン交換反応を行うことにより、カチオン性基を有するポリエーテル化合物を得ることができる。 Then, by reacting the base polymer obtained in the above method (A) or (B) with an amine compound such as an imidazole compound, the halogen group constituting the epihalohydrin monomer unit of the base polymer is converted into an onium halide group. A polyether compound having a cationic group can be obtained by performing an anion exchange reaction on the halide ions constituting the onium halide group, if necessary.
 本発明のポリマー組成物中における、カチオン性基を有するポリエーテル化合物の含有量は、ポリマー材料100重量部に対して、好ましくは0.01~40重量部、より好ましくは0.1~20重量部、さらに好ましくは0.2~10重量部である。カチオン性基を有するポリエーテル化合物の含有量を上記範囲とすることにより、得られる架橋物および成形体の機械的特性および気体や液体に対するバリア性をより高めることができる。 The content of the polyether compound having a cationic group in the polymer composition of the present invention is preferably 0.01 to 40 parts by weight, more preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the polymer material. Parts, more preferably 0.2 to 10 parts by weight. By making content of the polyether compound which has a cationic group into the said range, the barrier property with respect to the mechanical property of the obtained crosslinked material and a molded object and gas and a liquid can be improved more.
<粘土鉱物>
 本発明で用いる粘土鉱物としては、特に限定されないが、天然物由来のものであっても、天然物に精製などの処理を加えたものであっても、合成品であってもよい。本発明で用いる粘土鉱物は、通常、層状あるいは板状の形状を有するものである。
<Clay mineral>
The clay mineral used in the present invention is not particularly limited, and may be derived from a natural product, a product obtained by subjecting a natural product to a treatment such as purification, or a synthetic product. The clay mineral used in the present invention usually has a layered or plate-like shape.
 本発明で用いる粘土鉱物の具体例としては、カオリナイトやハロサイトなどのカオリナイト類;モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スティブンサイト、マイカなどのスメクタイト類;およびバーミキュライト類;緑泥石類;タルク;などが挙げられ、中でもスメクタイト類が好ましく、モンモリロナイト、マイカおよびサポナイトが特に好ましい。これらは一種単独でまたは複数種併せて用いることができる。ここで、上記のうち、モンモリロナイトは、ベントナイトに主成分として含有されるものであり、そのため、モンモリロナイトとしては、ベントナイトを精製することにより得られるものなどを用いることができる。 Specific examples of the clay mineral used in the present invention include kaolinites such as kaolinite and halosite; smectites such as montmorillonite, beidellite, nontronite, saponite, hectorite, stevensite, mica; and vermiculites; Among them, smectites are preferable, and montmorillonite, mica, and saponite are particularly preferable. These can be used individually by 1 type or in combination of multiple types. Here, among the above, montmorillonite is contained as a main component in bentonite. Therefore, as montmorillonite, those obtained by purifying bentonite can be used.
 本発明のポリマー組成物中における、粘土鉱物の含有量は、ポリマー材料100重量部に対して、好ましくは1~200重量部、より好ましくは2~120重量部、さらに好ましくは5~60重量部である。粘土鉱物の含有量を上記範囲とすることにより、得られる架橋物および成形体の機械的特性および気体や液体に対するバリア性をより高めることができる。 The content of the clay mineral in the polymer composition of the present invention is preferably 1 to 200 parts by weight, more preferably 2 to 120 parts by weight, and still more preferably 5 to 60 parts by weight with respect to 100 parts by weight of the polymer material. It is. By making content of a clay mineral into the said range, the barrier property with respect to the mechanical characteristic of the obtained crosslinked material and a molded object and gas and a liquid can be improved more.
<ポリマー組成物>
 本発明のポリマー組成物は、上述したポリマー材料、カチオン性基を有するポリエーテル化合物、および粘土鉱物を含有するものである。
<Polymer composition>
The polymer composition of the present invention contains the above-described polymer material, a polyether compound having a cationic group, and a clay mineral.
 本発明のポリマー組成物は、ポリマー材料、カチオン性基を有するポリエーテル化合物、および粘土鉱物を混合することにより調製されるものである。ここで、本発明で用いる粘土鉱物は、通常、層間に交換性陽イオンを有する多層構造を有するものである。そして、本発明のポリマー組成物においては、その調製過程において、ポリマー材料、カチオン性基を有するポリエーテル化合物、および粘土鉱物を混合した際に、カチオン性基を有するポリエーテル化合物に含まれるカチオン性基が、粘土鉱物の交換性陽イオンを介した多層構造に作用することで、このような多層構造を分離するとともに、分離した多層構造と相互作用することで、粘土鉱物が有機化することとなる。また、このように有機化された粘土鉱物は、カチオン性基を有するポリエーテル化合物と相互作用しているものであるため、カチオン性基を有するポリエーテル化合物の主鎖の作用により、親油性をも有するものとなる。そして、本発明においては、このようなカチオン性基を有するポリエーテル化合物の作用により、粘土鉱物を有機化し、さらには親油化することで、その多層構造が分離された態様にて、粘土鉱物をポリマー材料中に良好に分散させることができるものであり、これにより、得られる架橋物および成形体を、優れた機械的特性を有するものとしながら、分離された多層構造により、気体や液体に対して、優れたバリア性をも有するものとすることができるものである。 The polymer composition of the present invention is prepared by mixing a polymer material, a polyether compound having a cationic group, and a clay mineral. Here, the clay mineral used in the present invention usually has a multilayer structure having exchangeable cations between layers. In the polymer composition of the present invention, when the polymer material, the polyether compound having a cationic group, and the clay mineral are mixed in the preparation process, the cationic property contained in the polyether compound having the cationic group is included. The group acts on the multilayer structure through the exchangeable cation of the clay mineral to separate such multilayer structure and to interact with the separated multilayer structure, so that the clay mineral becomes organic. Become. In addition, since the clay mineral thus organized interacts with a polyether compound having a cationic group, it becomes lipophilic by the action of the main chain of the polyether compound having a cationic group. It will also have. In the present invention, the clay mineral is made organic by the action of the polyether compound having such a cationic group, and further made oleophilic so that the multilayer structure is separated. Can be dispersed well in the polymer material, and the resulting cross-linked product and molded product have excellent mechanical properties, while being separated into a gas or liquid by the separated multilayer structure. On the other hand, it can also have excellent barrier properties.
 特に、本発明で用いるカチオン性基を有するポリエーテル化合物は、カチオン性基に含まれるプラスの電荷により粘土鉱物と相互作用することにより、粘土鉱物を有機化するものであるが、このようなプラスの電荷によって粘土鉱物と相互作用した部位は、ポリエーテル化合物の主鎖構造によって覆われたような構造となる。そして、このように、プラスの電荷によって粘土鉱物と相互作用した部位が、ポリエーテル化合物の主鎖構造によって覆われることにより、粘土鉱物を親油化することができ、結果として、粘土鉱物をポリマー材料中に良好に分散させることができるものである。 In particular, the polyether compound having a cationic group used in the present invention is to make the clay mineral organic by interacting with the clay mineral by a positive charge contained in the cationic group. The site interacting with the clay mineral by the electric charge of the structure becomes a structure covered with the main chain structure of the polyether compound. Thus, the part that interacted with the clay mineral by the positive charge is covered with the main chain structure of the polyether compound, so that the clay mineral can be oleophilic, and as a result, the clay mineral is polymerized. It can be dispersed well in the material.
 一方、粘土鉱物を有機化する手法として、ヘキシルアンモニウムイオンなどの低分子量の有機オニウムイオンを使用する方法も考えられる。このような低分子量の有機オニウムイオンによる粘土鉱物の有機化は、有機オニウムイオンのプラスの電荷により粘土鉱物と相互作用することによって行われるものである。しかしながら、このような低分子量の有機オニウムイオンでは、プラスの電荷により粘土鉱物と相互作用している部位を覆うことができず、そのため、プラスの電荷により粘土鉱物と相互作用している部位が覆われた構造とすることができず、露出された構造となってしまう。そしてこのようなプラスの電荷により粘土鉱物と相互作用している部位の影響によって、有機化された粘土鉱物を、ポリマー材料中に良好に分散できず、そのため、粘土鉱物を配合することによる効果を充分に得ることができないものである。これに対し、本発明によれば、上述したように、このような不具合の発生を有効に抑制できるものであり、粘土鉱物を、その多層構造が分離された態様にて、ポリマー材料中に良好に分散させることができるものであり、これにより、得られる架橋物および成形体を、優れた機械的特性を有するものとしながら、分離された多層構造により、気体や液体に対して、優れたバリア性をも有するものとすることができるものである。なお、本発明の技術的範囲は、前記の考察に制限されるものではない。 On the other hand, as a technique for organicizing clay minerals, a method using low molecular weight organic onium ions such as hexyl ammonium ion is also conceivable. Organizing clay minerals with such low molecular weight organic onium ions is performed by interacting with the clay minerals by the positive charges of the organic onium ions. However, such a low molecular weight organic onium ion cannot cover the part interacting with the clay mineral by the positive charge, and therefore, the part interacting with the clay mineral by the positive charge is not covered. A broken structure cannot be obtained, resulting in an exposed structure. And due to the influence of the part interacting with the clay mineral due to such a positive charge, the organized clay mineral cannot be dispersed well in the polymer material, so the effect of blending the clay mineral is not effective. It cannot be obtained sufficiently. On the other hand, according to the present invention, as described above, the occurrence of such defects can be effectively suppressed, and the clay mineral is excellent in the polymer material in a mode in which the multilayer structure is separated. In this way, the resulting cross-linked product and molded product have excellent mechanical properties, and an excellent barrier against gas and liquid due to the separated multilayer structure. It can also have property. The technical scope of the present invention is not limited to the above consideration.
 本発明のポリマー組成物は、ポリマー材料、カチオン性基を有するポリエーテル化合物、および粘土鉱物を混合することにより調製すればよく、これらの混合順序は、特に限定されない。たとえば、ポリマー材料と、カチオン性基を有するポリエーテル化合物と、粘土鉱物とを同時に混合するような方法としてもよいし、あるいは、ポリマー材料と、カチオン性基を有するポリエーテル化合物とを予め混合し、ここに粘土鉱物を配合して、さらに混合するような方法としてもよい。さらには、カチオン性基を有するポリエーテル化合物と、粘土鉱物とを予め混合し、ここにポリマー材料を配合して、さらに混合するような方法としてもよいし、ポリマー材料と、粘土鉱物とを予め混合し、ここにカチオン性基を有するポリエーテル化合物を配合して、さらに混合するような方法としてもよい。また、ポリマー材料がラテックスの状態で得られる物である場合には、ポリマー材料と、カチオン性基を有するポリエーテル化合物と、粘土鉱物とを混合する際には、ポリマー材料をラテックスの状態にて、混合してもよい。 The polymer composition of the present invention may be prepared by mixing a polymer material, a polyether compound having a cationic group, and a clay mineral, and the mixing order thereof is not particularly limited. For example, the polymer material, the polyether compound having a cationic group, and a clay mineral may be mixed at the same time, or the polymer material and the polyether compound having a cationic group may be mixed in advance. Alternatively, a method may be used in which a clay mineral is mixed and further mixed. Furthermore, a polyether compound having a cationic group and a clay mineral may be mixed in advance, and a polymer material may be blended therein and further mixed, or the polymer material and the clay mineral may be mixed in advance. It is good also as a method which mixes, mix | blends the polyether compound which has a cationic group here, and mixes further. Further, when the polymer material is a product obtained in a latex state, when the polymer material, the polyether compound having a cationic group, and the clay mineral are mixed, the polymer material is in the latex state. , May be mixed.
 さらに、ポリマー材料、カチオン性基を有するポリエーテル化合物、および粘土鉱物を混合する方法としては特に限定されないが、ニーダー、バンバリー、ブラベンダー、オープンロール、カレンダーロール、二軸押出機など任意の混合機を一つあるいは複数組み合わせて用いて混合する方法などが挙げられる。特に、本発明においては、ポリマー材料、カチオン性基を有するポリエーテル化合物、および粘土鉱物を混合し、ポリマー組成物を得る際には、せん断力を印加し、せん断混合を行うことで、ポリマー組成物を得ることが好ましく、これにより、粘土鉱物を、その多層構造がより分離された状態にて分散させることができ、得られる架橋物および成形体の気体や液体に対するバリア性をより高めることができる。 Furthermore, the method of mixing the polymer material, the polyether compound having a cationic group, and the clay mineral is not particularly limited, but any mixer such as a kneader, a banbury, a brabender, an open roll, a calender roll, a twin screw extruder, or the like. And a method of mixing by using one or a plurality of them in combination. In particular, in the present invention, when a polymer material, a polyether compound having a cationic group, and a clay mineral are mixed to obtain a polymer composition, a shear force is applied and shear mixing is performed to obtain a polymer composition. It is preferable to obtain a product, whereby the clay mineral can be dispersed in a state where the multilayer structure is further separated, and the barrier property against gas and liquid of the resulting crosslinked product and molded product can be further increased. it can.
 また、本発明のポリマー組成物には、ポリマー材料に通常配合されるその他の添加剤を含有していてもよい。このような添加剤としては、特に限定されないが、たとえば、充填剤;受酸剤;補強剤;老化防止剤;可塑剤;紫外線吸収剤;耐光安定剤;粘着付与剤;界面活性剤;導電性付与剤;電解質物質;着色剤(染料・顔料);難燃剤;などが挙げられる。 In addition, the polymer composition of the present invention may contain other additives usually blended in the polymer material. Examples of such additives include, but are not limited to, fillers; acid acceptors; reinforcing agents; anti-aging agents; plasticizers; ultraviolet absorbers; light stabilizers; tackifiers; Examples include an imparting agent, an electrolyte substance, a colorant (dye / pigment), a flame retardant, and the like.
<架橋性樹脂組成物>
 本発明の架橋性組成物は、上述した本発明のポリマー組成物に、架橋剤を配合してなる、架橋可能な組成物である。
<Crosslinkable resin composition>
The crosslinkable composition of the present invention is a crosslinkable composition obtained by blending the above-described polymer composition of the present invention with a crosslinking agent.
 架橋剤としては、ポリマー材料を架橋可能な化合物であればよく、用いるポリマー材料が有する架橋性基の種類などに応じて適宜選択すればよい。たとえば、ポリマー材料として、ニトリルゴムまたは水素化ニトリルゴムを含有する、ポリマー組成物を用いる場合には、硫黄系架橋剤や、有機過酸化物架橋剤を用いることができる。 The crosslinking agent may be any compound that can crosslink the polymer material, and may be appropriately selected according to the type of the crosslinkable group possessed by the polymer material to be used. For example, when a polymer composition containing nitrile rubber or hydrogenated nitrile rubber is used as the polymer material, a sulfur-based crosslinking agent or an organic peroxide crosslinking agent can be used.
 硫黄系架橋剤としては、粉末硫黄、硫黄華、沈降性硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄などの硫黄;塩化硫黄、二塩化硫黄、モルホリンジスルフィド、アルキルフェノールジスルフィド、ジベンゾチアジルジスルフィド、N,N’-ジチオ-ビス(ヘキサヒドロ-2H-アゼピノン-2)、含リンポリスルフィド、高分子多硫化物などの含硫黄化合物;テトラメチルチウラムジスルフィド、ジメチルジチオカルバミン酸セレン、2-(4’-モルホリノジチオ)ベンゾチアゾールなどの硫黄供与性化合物;などが挙げられる。これらは一種単独でまたは複数種併せて用いることができる。 Sulfur-based crosslinking agents include powdered sulfur, sulfur white, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur, and other sulfur; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothiazyl disulfide, N, Sulfur-containing compounds such as N′-dithio-bis (hexahydro-2H-azepinone-2), phosphorus-containing polysulfides, polymer polysulfides; tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, 2- (4′-morpholinodithio) And sulfur donating compounds such as benzothiazole; These can be used individually by 1 type or in combination of multiple types.
 有機過酸化物架橋剤としては、ジクミルペルオキシド、クメンヒドロペルオキシド、t-ブチルクミルペルオキシド、パラメンタンヒドロペルオキシド、ジ-t-ブチルペルオキシド、1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、1,4-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、1,1-ジ-t-ブチルペルオキシ-3,3-トリメチルシクロヘキサン、4,4-ビス-(t-ブチル-ペルオキシ)-n-ブチルバレレート、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシヘキサン、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシヘキシン-3、1,1-ジ-t-ブチルペルオキシ-3,5,5-トリメチルシクロヘキサン、p-クロロベンゾイルペルオキシド、t-ブチルペルオキシイソプロピルカーボネート、t-ブチルペルオキシベンゾエート等が挙げられる。これらは一種単独でまたは複数種併せて用いることができる。 Examples of organic peroxide crosslinking agents include dicumyl peroxide, cumene hydroperoxide, t-butylcumyl peroxide, paramentane hydroperoxide, di-t-butyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, 1,4-bis (t-butylperoxyisopropyl) benzene, 1,1-di-t-butylperoxy-3,3-trimethylcyclohexane, 4,4-bis- (t-butyl-peroxy) -n-butylvale 2,5-dimethyl-2,5-di-t-butylperoxyhexane, 2,5-dimethyl-2,5-di-t-butylperoxyhexyne-3, 1,1-di-t-butyl Peroxy-3,5,5-trimethylcyclohexane, p-chlorobenzoyl peroxide, t-butylperoxy Isopropyl carbonate, t- butyl peroxybenzoate, and the like. These can be used individually by 1 type or in combination of multiple types.
 本発明の架橋性組成物中における、架橋剤の含有量は特に限定されないが、ポリマー材料100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.2~5重量部である。 The content of the crosslinking agent in the crosslinkable composition of the present invention is not particularly limited, but is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight with respect to 100 parts by weight of the polymer material. It is.
 また、架橋剤として、硫黄または含硫黄化合物を用いる場合には、架橋促進助剤、および架橋促進剤を併用することが好ましい。架橋促進助剤としては、特に限定されないが、たとえば、酸化亜鉛、ステアリン酸などが挙げられる。架橋促進剤としては、特に限定されないが、たとえば、グアニジン系化合物;アルデヒド-アミン系化合物;アルデヒド-アンモニア系化合物;チアゾール系化合物;スルフェンアミド系化合物;チオ尿素系化合物;チウラム系化合物;ジチオカルバミン酸塩系化合物;などを用いることができる。架橋助剤および架橋促進剤は、それぞれ1種を単独で使用してもよく、2種以上併用して用いてもよい。架橋促進助剤および架橋促進剤の各使用量は、特に限定されないが、ポリマー材料100重量部に対して、0.01~15重量部が好ましく、0.1~10重量部がより好ましい。 Further, when sulfur or a sulfur-containing compound is used as the crosslinking agent, it is preferable to use a crosslinking accelerator and a crosslinking accelerator in combination. The crosslinking acceleration aid is not particularly limited, and examples thereof include zinc oxide and stearic acid. Although it does not specifically limit as a crosslinking accelerator, For example, a guanidine type compound; an aldehyde-amine type compound; an aldehyde-ammonia type compound; a thiazole type compound; a sulfenamide type compound; a thiourea type compound; a thiuram type compound; Salt-based compounds; and the like can be used. As the crosslinking assistant and the crosslinking accelerator, one kind may be used alone, or two or more kinds may be used in combination. The amount of each of the crosslinking accelerator and the crosslinking accelerator is not particularly limited, but is preferably 0.01 to 15 parts by weight and more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the polymer material.
<架橋物>
 本発明の架橋物は、上述した本発明の架橋性組成物を架橋することにより得られるものである。架橋方法としては、特に限定されないが、得ようとする架橋体の形状、大きさなどに応じて選択すればよいが、たとえば、一軸や多軸の押出機を使用して、架橋性組成物を押し出して成形体とした後、加熱して架橋する方法;射出成形機、押出ブロー成形機、トランスファー成形機、プレス成形機などを使用して金型により成形し、成形と同時に成形時の加熱で架橋する方法;などが挙げられる。成形温度は、通常、10~200℃、好ましくは25~120℃である。架橋温度は、通常、100~200℃、好ましくは130~190℃であり、架橋時間は、通常、1分~24時間、好ましくは2分~2時間である。
<Crosslinked product>
The crosslinked product of the present invention is obtained by crosslinking the above-described crosslinkable composition of the present invention. The cross-linking method is not particularly limited, and may be selected according to the shape and size of the cross-linked product to be obtained. For example, a cross-linkable composition is formed using a uniaxial or multi-axial extruder. A method of extruding to form a molded body, followed by heating and crosslinking; injection molding machine, extrusion blow molding machine, transfer molding machine, press molding machine, etc. A method of crosslinking; and the like. The molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C. The crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C., and the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 2 hours.
 また、架橋物は、その形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。 Also, depending on the shape and size of the cross-linked product, even if the surface is cross-linked, it may not be sufficiently cross-linked to the inside, so it may be further heated to carry out secondary cross-linking.
<成形体>
 本発明の成形体は、上述した本発明のポリマー組成物を成形することにより得られるものである。成形方法としては、特に限定されないが、得ようとする成形体の形状、大きさなどに応じて選択すればよいが、たとえば、一軸や多軸の押出機を使用して、成形体用組成物を押し出して成形体を得る方法や、射出成形機、押出ブロー成形機、トランスファー成形機、プレス成形機などを使用して金型により成形する方法などが挙げられる。成形温度は、通常、50~400℃、好ましくは100~350℃である。
<Molded body>
The molded article of the present invention is obtained by molding the above-described polymer composition of the present invention. The molding method is not particularly limited, and may be selected according to the shape, size, etc. of the molded body to be obtained. For example, a composition for a molded body using a uniaxial or multiaxial extruder is used. And a method of forming a molded product by extruding, and a method of molding with a mold using an injection molding machine, an extrusion blow molding machine, a transfer molding machine, a press molding machine, and the like. The molding temperature is usually 50 to 400 ° C, preferably 100 to 350 ° C.
 本発明の架橋物および成形体は、上述した本発明のポリマー組成物を用いて得られるものであるため、機械的特性に優れ、かつ、気体や液体に対して、優れたバリア性を備えるものである。そのため、本発明の架橋物および成形体は、このような特性を活かし、ポリマー材料が樹脂である場合には、自動車や電気機器類などの筐体・パネル、包装フィルム、光学レンズなどの各種用途に好適に用いることができるものである。また、ポリマー材料がゴムである場合には、シール材、ガスケット、ベルトまたはホースなどの各種用途に好適に用いることができるものであり、特に、ホース用途に好適に用いることができる。たとえば、本発明の架橋物を、多層構造を有するホース用途に用いる場合には、ホースを構成する多層構造のうち、少なくとも一層を、本発明の架橋物にて形成すればよい。 Since the crosslinked product and molded product of the present invention are obtained using the above-described polymer composition of the present invention, they have excellent mechanical properties and have excellent barrier properties against gases and liquids. It is. Therefore, the cross-linked product and molded product of the present invention make use of such properties, and when the polymer material is a resin, various uses such as a case / panel, packaging film, optical lens, etc. for automobiles and electrical devices. Can be suitably used. Further, when the polymer material is rubber, it can be suitably used for various applications such as a sealing material, a gasket, a belt, or a hose, and can be particularly suitably used for a hose. For example, when the crosslinked product of the present invention is used for a hose having a multilayer structure, at least one layer of the multilayer structure constituting the hose may be formed of the crosslinked product of the present invention.
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。なお、以下において、「部」は、特に断りのない限り重量基準である。また、試験および評価は下記に従った。 Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples. In the following, “part” is based on weight unless otherwise specified. Moreover, the test and evaluation followed the following.
(1)数平均分子量(Mn)、および分子量分布(Mw/Mn)
 ベースポリマー(カチオン性基を有しないポリエーテル化合物)の数平均分子量(Mn)、および分子量分布(Mw/Mn)は、テトラヒドロフランを溶媒とするゲルパーミッションクロマトグラフィー(GPC)により、ポリスチレン換算値として測定した。なお、測定器としてはHLC-8320(東ソー社製)を用い、カラムはTSKgel SuperMultiporeHZ-H(東ソー社製)4本を直列に連結して用い、検出器は示差屈折計RI-8320(東ソー社製)を用いた。
(1) Number average molecular weight (Mn) and molecular weight distribution (Mw / Mn)
The number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of the base polymer (polyether compound having no cationic group) are measured as polystyrene equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent. did. In addition, HLC-8320 (manufactured by Tosoh Corporation) is used as a measuring instrument, four TSKgel SuperMultipore HZ-H (manufactured by Tosoh Corporation) are connected in series, and a differential refractometer RI-8320 (Tosoh Corporation) is used as a measuring instrument. Made).
(2)カチオン性基を有するポリエーテル化合物の構造
 カチオン性基を有するポリエーテル化合物の構造、およびカチオン性基を有するオキシラン単量体単位の含有率は、核磁気共鳴装置(NMR)を用いて、以下のように測定した。すなわち、まず、試料となるカチオン性基を有するポリエーテル化合物30mgを、1.0mLの重ジメチルスルホキシドに加え、1時間振蕩することにより均一に溶解させた。そして、得られた溶液についてNMR測定を行って、H-NMRスペクトルを得て、定法に従いカチオン性基を有するポリエーテル化合物の構造を帰属した。
(2) Structure of the polyether compound having a cationic group The structure of the polyether compound having a cationic group and the content of the oxirane monomer unit having the cationic group are determined using a nuclear magnetic resonance apparatus (NMR). The measurement was performed as follows. That is, first, 30 mg of a polyether compound having a cationic group as a sample was added to 1.0 mL of heavy dimethyl sulfoxide and shaken for 1 hour to be uniformly dissolved. Then, NMR measurement was performed on the obtained solution to obtain a 1 H-NMR spectrum, and the structure of the polyether compound having a cationic group was assigned according to a conventional method.
(3)ムーニー粘度
 ゴムのムーニー粘度(ML1+4,100℃)は、JIS  K6300に従って、100℃で測定した。
(3) Mooney viscosity The Mooney viscosity (ML1 + 4, 100 ° C) of the rubber was measured at 100 ° C according to JIS K6300.
(4)100%引張応力
 シート状のゴム架橋物を3号形ダンベルで打ち抜くことで、試験片を作製した。そして、得られたこの試験片を用いて、JIS  K6251に従い、ゴム架橋物の100%引張応力を測定した。100%引張応力は、比較例1の結果を100とした指数にて求めた。この値が大きいほど、100%引張応力が高く、100%引張応力に優れる。
(4) 100% tensile stress A test piece was produced by punching a sheet-like rubber cross-linked product with a No. 3 dumbbell. And 100% tensile stress of the rubber cross-linked product was measured according to JIS K6251 using the obtained test piece. The 100% tensile stress was determined by an index with the result of Comparative Example 1 as 100. The larger this value, the higher the 100% tensile stress and the better the 100% tensile stress.
(5)燃料透過性
 シート状のゴム架橋物を用いて、アルミカップ法によりエタノール透過係数を測定した。具体的には、100ml容量のアルミニウム製のカップに、イソオクタン/トルエン/エタノール=2/2/1の溶液を50ml入れ、その上にシート状のゴム架橋物をのせ、これで蓋をして、締め具で、シート状のゴム架橋物によりアルミカップ内外を隔てる面積が25.50cmになるように調整し、該アルミカップを23℃の恒温槽内にて、放置し、24時間毎に重量測定することにより24時間毎の上記溶液の透過量を測定し、その最大量を燃料透過係数(単位:g・mm/m・day)とした。なお、測定は14日間行った。燃料透過係数は、比較例1の結果を100とした指数にて求めた。この値が小さいほど、燃料透過係数が低く、耐燃料透過性に優れる。
(5) Fuel permeability The ethanol permeability coefficient was measured by an aluminum cup method using a sheet-like rubber cross-linked product. Specifically, 50 ml of a solution of isooctane / toluene / ethanol = 2/2/1 is placed in a 100 ml capacity aluminum cup, and a sheet-like rubber cross-linked product is placed thereon, which is then capped. With a fastener, adjust the area separating the inside and outside of the aluminum cup with a sheet-like rubber cross-linked product to 25.50 cm 2 , leave the aluminum cup in a constant temperature bath at 23 ° C., and weight every 24 hours. By measuring, the permeation amount of the solution every 24 hours was measured, and the maximum amount was defined as a fuel permeation coefficient (unit: g · mm / m 2 · day). The measurement was performed for 14 days. The fuel permeation coefficient was determined by an index with the result of Comparative Example 1 as 100. The smaller this value, the lower the fuel permeation coefficient and the better the fuel permeation resistance.
(6)曲げ弾性率
 シート状の樹脂状成型体から、縦120mm、横13mm、厚さ3mmの試験片を削り出し、得られた試験片について、ASTM D790に準拠して曲げ試験を行うことで、曲げ弾性率を測定した。曲げ弾性率は、比較例2の結果を100とした指数にて求めた。この値が大きいほど、曲げ弾性率が高く、曲げ弾性率に優れる。
(6) Flexural modulus By cutting out a test piece having a length of 120 mm, a width of 13 mm, and a thickness of 3 mm from a sheet-like resin-like molded product, the obtained test piece is subjected to a bending test in accordance with ASTM D790. The flexural modulus was measured. The flexural modulus was obtained as an index with the result of Comparative Example 2 as 100. The larger this value, the higher the flexural modulus and the better the flexural modulus.
(7)酸素透過性
 シート状の樹脂状成型体に対し、熱プレスを行うことで厚さ100μmの試験片とした。そして、得られた試験片について、JIS  K7126-2に準拠して、23℃、相対湿度0%の条件にて、酸素透過量測定装置(製品名「OX-TRAN 2/21MH」、MOCON社製)を使用して、試験片1m当たりの酸素透過速度(cc/m・day・atm)を測定した。酸素透過速度は、比較例2の結果を100とした指数にて求めた。この値が小さいほど、酸素透過速度が低く、ガスバリア性に優れる。
(7) Oxygen permeability A test piece having a thickness of 100 μm was obtained by hot pressing the sheet-like resin-like molded body. The obtained test piece was subjected to oxygen permeation measuring device (product name “OX-TRAN 2 / 21MH”, manufactured by MOCON Co., Ltd.) under the conditions of 23 ° C. and 0% relative humidity in accordance with JIS K7126-2. ) Was used to measure the oxygen transmission rate per 1 m 2 of the test piece (cc / m 2 · day · atm). The oxygen transmission rate was determined by an index with the result of Comparative Example 2 as 100. The smaller this value, the lower the oxygen transmission rate and the better the gas barrier property.
〔製造例1〕
(エピクロロヒドリンのリビングアニオン重合)
 アルゴンで置換した攪拌機付きガラス反応器に、テトラノルマルブチルアンモニウムブロミド0.322gおよびトルエン5mlを添加し、これを0℃に冷却した。次いで、トリエチルアルミニウム0.137g(テトラノルマルブチルアンモニウムブロミドに対して1.2モル当量)をノルマルヘキサン0.5mlに溶解したものを添加して、15分間反応させることで、触媒組成物を得た。そして、得られた触媒組成物に、エピクロロヒドリン10.0gを添加し、0℃において重合反応を行った。重合反応開始後、徐々に溶液の粘度が上昇した。1時間反応させた後、重合反応液に少量の2-プロパノールを添加し、反応を停止した。得られた重合反応液をトルエンで希釈した後、2-プロパノールに注ぐことで、白色のゴム状物質を11.9gの収量で得た。また得られたゴム状物質のGPCによる数平均分子量(Mn)は10,300、分子量分布(Mw/Mn)は1.20であった。さらに得られたゴム状物質について、H-NMR測定を行ったところ、このゴム状物質は、エピクロロヒドリンが開環した繰り返し単位からなるものであることが確認できた。以上より、得られたゴム状物質は、エピクロロヒドリン単位により構成されたポリマー(重合度=110;平均で、エピクロロヒドリン単位110量体)であるといえる。
[Production Example 1]
(Living anionic polymerization of epichlorohydrin)
To a glass reactor equipped with a stirrer substituted with argon, 0.322 g of tetranormalbutylammonium bromide and 5 ml of toluene were added and cooled to 0 ° C. Next, 0.137 g of triethylaluminum (1.2 molar equivalent to tetranormalbutylammonium bromide) dissolved in 0.5 ml of normal hexane was added and reacted for 15 minutes to obtain a catalyst composition. . And 10.0 g of epichlorohydrin was added to the obtained catalyst composition, and a polymerization reaction was performed at 0 ° C. After the polymerization reaction started, the viscosity of the solution gradually increased. After reacting for 1 hour, a small amount of 2-propanol was added to the polymerization reaction solution to stop the reaction. The obtained polymerization reaction liquid was diluted with toluene and then poured into 2-propanol to obtain a white rubbery substance with a yield of 11.9 g. Moreover, the number average molecular weight (Mn) by GPC of the obtained rubber-like substance was 10,300, and molecular weight distribution (Mw / Mn) was 1.20. Further, 1 H-NMR measurement was performed on the obtained rubber-like substance, and it was confirmed that this rubber-like substance was composed of a repeating unit in which epichlorohydrin was opened. From the above, it can be said that the obtained rubber-like substance is a polymer composed of epichlorohydrin units (degree of polymerization = 110; on average, 110-mer of epichlorohydrin units).
〔製造例2〕
(ポリマー中のエピクロロヒドリン単位の1-メチルイミダゾールによる4級化)
 製造例1で得られたポリマー8.0g、1-メチルイミダゾール22.0g、およびN, N-ジメチルホルムアミド16.0gを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱することで反応を開始した。80℃で144時間反応させた後、室温に冷却することで反応を停止した。得られた反応溶液を一部抜き取り、50℃で120時間減圧乾燥をしたところ、赤褐色の樹脂状物質を15.0gの収量で得た。この樹脂状物質について、H-NMR測定を行ったところ、H-NMR(DMSO-d6)δ=9.80-9.40(brs,1H,MeIm+),8.10-7.70(brs,2H,MeIm+),4.80-3.75(brs,-CHCH(CHR)O-),3.63(3H,MeIm+)であり、プロトンの積分比から、出発原料の製造例1で得られたポリマー中の全てのエピクロロヒドリン単位におけるクロロ基が、1-メチルイミダゾリウムクロリド基に置換された、ポリ(メチルグリシジルイミダゾリウムクロリド)であると同定された。また、得られた樹脂状物質について、元素分析を行ったところ、各元素の組成比は、構造から予測される組成比とよく一致した。以上により、1-メチルイミダゾリウムクロリド基を有する、重合度=110である、カチオン性基含有ポリエーテル化合物Aであると同定された。
[Production Example 2]
(Quaternization of epichlorohydrin unit in polymer with 1-methylimidazole)
8.0 g of the polymer obtained in Preparation Example 1, 22.0 g of 1-methylimidazole, and 16.0 g of N, N-dimethylformamide are added to a glass reactor equipped with a stirrer substituted with argon and heated to 80 ° C. The reaction started. After reacting at 80 ° C. for 144 hours, the reaction was stopped by cooling to room temperature. A part of the obtained reaction solution was extracted and dried under reduced pressure at 50 ° C. for 120 hours to obtain a reddish brown resinous substance in a yield of 15.0 g. When 1 H-NMR measurement was performed on this resinous substance, 1 H-NMR (DMSO-d6) δ = 9.80-9.40 (brs, 1H, MeIm +), 8.10-7.70 ( brs, 2H, MeIm +), 4.80-3.75 (brs, -CH 2 CH (CH 2 R) O -), a 3.63 (3H, MeIm +), from the area ratio of the proton, the starting material It was identified that the chloro group in all epichlorohydrin units in the polymer obtained in Production Example 1 was poly (methylglycidylimidazolium chloride) substituted with 1-methylimidazolium chloride group. Moreover, when the elemental analysis was conducted about the obtained resinous substance, the composition ratio of each element was in good agreement with the composition ratio predicted from the structure. From the above, it was identified as a cationic group-containing polyether compound A having a 1-methylimidazolium chloride group and a polymerization degree of 110.
〔製造例3〕
(ニトリルゴムBの製造)
 反応容器に、水240部、アクリロニトリル75.7部、2-ビニルピリジン2.2部およびドデシルベンゼンスルホン酸ナトリウム(乳化剤)2.5部を仕込み、温度を5℃に調整した。次いで、気相を減圧して十分に脱気してから、1,3-ブタジエン22部、重合開始剤であるパラメンタンヒドロペルオキシド0.06部、エチレンジアミン四酢酸ナトリウム0.02部、硫酸第一鉄(7水塩)0.006部およびホルムアルデヒドスルホキシル酸ナトリウム0.06部、ならびに連鎖移動剤のt-ドデシルメルカプタン1部を添加して乳化重合の1段目の反応を開始した。反応開始後、仕込み単量体に対する重合転化率が40重量%、60重量%に達した時点で、反応容器に1,3-ブタジエンをそれぞれ12部追加して2段目および3段目の重合反応を行った。その後、仕込み全単量体に対する重合転化率が75重量%に達した時点でヒドロキシルアミン硫酸塩0.3部と水酸化カリウム0.2部を添加して重合反応を停止させた。反応停止後、反応容器の内容物を70℃に加温し、減圧下に水蒸気蒸留により未反応の単量体を回収してニトリルゴムBのラテックス(固形分24重量%)を得た。そして、得られたニトリルゴムBのラテックスについて、凝固・水洗・乾燥を行うことで、固形状のニトリルゴムBを得た。
[Production Example 3]
(Manufacture of nitrile rubber B)
A reaction vessel was charged with 240 parts of water, 75.7 parts of acrylonitrile, 2.2 parts of 2-vinylpyridine and 2.5 parts of sodium dodecylbenzenesulfonate (emulsifier), and the temperature was adjusted to 5 ° C. Next, after the gas phase is depressurized and sufficiently deaerated, 22 parts of 1,3-butadiene, 0.06 part of paramentane hydroperoxide as a polymerization initiator, 0.02 part of sodium ethylenediaminetetraacetate, First stage reaction of emulsion polymerization was started by adding 0.006 part of iron (7-hydrate), 0.06 part of sodium formaldehyde sulfoxylate and 1 part of chain transfer agent t-dodecyl mercaptan. After the start of the reaction, when the polymerization conversion ratio with respect to the charged monomer reaches 40% by weight and 60% by weight, 12 parts of 1,3-butadiene are added to the reaction vessel respectively, and the second and third stage polymerizations are performed. Reaction was performed. Thereafter, when the polymerization conversion rate with respect to all charged monomers reached 75% by weight, 0.3 part of hydroxylamine sulfate and 0.2 part of potassium hydroxide were added to stop the polymerization reaction. After stopping the reaction, the contents in the reaction vessel were heated to 70 ° C., and unreacted monomers were recovered by steam distillation under reduced pressure to obtain a latex of nitrile rubber B (solid content: 24% by weight). And about the obtained latex of the nitrile rubber B, solid nitrile rubber B was obtained by performing coagulation | solidification, water washing, and drying.
 得られたニトリルゴムBの単量体を構成する各単量体の含有割合を、FT-NMR装置(商品名:JNM-EX400WB,日本電子株式会社製)を用いたH-NMRによって測定したところ、アクリロニトリル単量体単位50重量%、1,3-ブタジエン単量体単位48重量%、2-ビニルピリジン単量体単位2重量%であった。また、得られたニトリルゴムBのムーニー粘度〔ML1+4(100℃)〕は85であった。 The content ratio of each monomer constituting the monomer of the obtained nitrile rubber B was measured by H 1 -NMR using an FT-NMR apparatus (trade name: JNM-EX400WB, manufactured by JEOL Ltd.). However, it was 50% by weight of acrylonitrile monomer unit, 48% by weight of 1,3-butadiene monomer unit, and 2% by weight of 2-vinylpyridine monomer unit. The Mooney viscosity [ML1 + 4 (100 ° C.)] of the obtained nitrile rubber B was 85.
〔製造例4〕
(ニトリルゴムCの製造)
 製造例3において、乳化重合1段目の反応の仕込み単量体として、2-ビニルピリジン2.2部を使用しなかった以外は、製造例3と同様にして、ニトリルゴムCのラテックス(固形分:24重量%)を得た。そして、得られたニトリルゴムCのラテックスについて、凝固・水洗・乾燥を行うことで、固形状のニトリルゴムCを得た。得られたニトリルゴムCを構成する各単量体単位の含有割合を、製造例3と同様にして測定したところ、アクリロニトリル単量体単位50重量%、1,3-ブタジエン単位50重量%であった。また、得られたニトリルゴムCのムーニー粘度〔ML1+4(100℃)〕は78であった。
[Production Example 4]
(Manufacture of nitrile rubber C)
In Production Example 3, a latex of nitrile rubber C (solid) was prepared in the same manner as in Production Example 3, except that 2.2 parts of 2-vinylpyridine was not used as a charge monomer for the first stage of emulsion polymerization. Min: 24% by weight). And about the obtained latex of the nitrile rubber C, solid nitrile rubber C was obtained by performing coagulation | solidification, water washing, and drying. The content ratio of each monomer unit constituting the obtained nitrile rubber C was measured in the same manner as in Production Example 3. As a result, it was found that the acrylonitrile monomer unit was 50% by weight and the 1,3-butadiene unit was 50% by weight. It was. The Mooney viscosity [ML1 + 4 (100 ° C.)] of the obtained nitrile rubber C was 78.
〔実施例1〕
 製造例3で得られたニトリルゴムB 100部、精製ベントナイト(商品名「ベンゲル HVP」、ホージュン社製、粘土鉱物)15部、および製造例2で得られたカチオン性基含有ポリエーテル化合物A 1.5部を、110℃に加熱したブラベンダー社製 プラスチコーダ ラボステーション(W50EHT)内に投入し、50rpmの回転数で5分間せん断混合を行うことで、ゴム状のポリマー組成物を得た。次いで、得られたゴム状のポリマー組成物に、酸化亜鉛(酸化亜鉛#1、充填剤)5部、硫黄(架橋剤)0.5部、テトラメチルチウラムジスルフィド(商品名「ノクセラーTT」、大内新興化学工業社製、架橋促進剤)1.5部、N-シクロヘキシル-2-ベンゾベンゾチアジスルフェンアミド(商品名「ノクセラーCZ」、大内新興化学工業社製、架橋促進剤)1.5部、カーボンブラック(商品名「シーストSO」、東海カーボン社製、充填剤)30部、およびアジピン酸エーテルエステル系可塑剤(商品名「アデカサイザーRS-107」、ADEKA社製)20部を添加して、6インチロールを用いて混合し、厚さ2mmの架橋性組成物を得た。そして、得られた架橋性組成物を、160℃で20分の条件にて熱プレスすることで、成形および架橋を行い、厚さ2mmのシート状のゴム架橋物を得た。得られたシート状のゴム架橋物を用いて、100%引張応力の測定および燃料透過性の評価を行った。結果を表1に示す。
[Example 1]
100 parts of nitrile rubber B obtained in Production Example 3, 15 parts of purified bentonite (trade name “Bengel HVP”, manufactured by Hojun Co., clay mineral), and cationic group-containing polyether compound A 1 obtained in Production Example 2 .5 parts was charged into a plastic coder lab station (W50EHT) manufactured by Brabender, which was heated to 110 ° C., and shear mixing was performed at a rotation speed of 50 rpm for 5 minutes to obtain a rubber-like polymer composition. Next, 5 parts of zinc oxide (zinc oxide # 1, filler), 0.5 part of sulfur (crosslinking agent), tetramethylthiuram disulfide (trade name “Noxeller TT”, large size) were added to the rubbery polymer composition obtained. 1.5 parts Nichicyclohexyl-2-benzobenzothiadisulfenamide (trade name “Noxeller CZ”, made by Ouchi Shinsei Chemical Co., Ltd., crosslinking accelerator) 1 .5 parts, 30 parts of carbon black (trade name “SEAST SO”, manufactured by Tokai Carbon Co., Ltd., filler), and 20 parts of adipic acid ether ester plasticizer (trade name “ADEKA SIZER RS-107”, manufactured by ADEKA) Was added and mixed using a 6-inch roll to obtain a crosslinkable composition having a thickness of 2 mm. The resulting crosslinkable composition was hot pressed at 160 ° C. for 20 minutes to form and crosslink, thereby obtaining a sheet-like rubber cross-linked product having a thickness of 2 mm. Using the obtained sheet-like rubber cross-linked product, measurement of 100% tensile stress and evaluation of fuel permeability were performed. The results are shown in Table 1.
〔実施例2〕
 カチオン性基含有ポリエーテル化合物Aの使用量を1.5部から5部に変更した以外は、実施例1と同様にして、ポリマー組成物、架橋性組成物およびシート状のゴム架橋物を得て、同様に評価を行った。結果を表1に示す。
[Example 2]
A polymer composition, a crosslinkable composition, and a sheet-like rubber cross-linked product are obtained in the same manner as in Example 1 except that the amount of the cationic group-containing polyether compound A is changed from 1.5 parts to 5 parts. The same evaluation was performed. The results are shown in Table 1.
〔実施例3〕
 カチオン性基含有ポリエーテル化合物Aの使用量を1.5部から5部に変更するとともに、精製ベントナイトの使用量を15部から30部に変更した以外は、実施例1と同様にして、ポリマー組成物、架橋性組成物およびシート状のゴム架橋物を得て、同様に評価を行った。結果を表1に示す。
Example 3
The polymer was changed in the same manner as in Example 1 except that the amount of the cationic group-containing polyether compound A was changed from 1.5 parts to 5 parts and the amount of purified bentonite was changed from 15 parts to 30 parts. A composition, a crosslinkable composition, and a sheet-like rubber cross-linked product were obtained and evaluated in the same manner. The results are shown in Table 1.
〔実施例4〕
 製造例3で得られたニトリルゴムB 100部に代えて、製造例4で得られたニトリルゴムC 100部を使用するとともに、カチオン性基含有ポリエーテル化合物Aの使用量を1.5部から5部に変更した以外は、実施例1と同様にして、ポリマー組成物、架橋性組成物およびシート状のゴム架橋物を得て、同様に評価を行った。結果を表1に示す。
Example 4
Instead of 100 parts of the nitrile rubber B obtained in Production Example 3, 100 parts of the nitrile rubber C obtained in Production Example 4 was used, and the amount of the cationic group-containing polyether compound A was used from 1.5 parts. Except having changed to 5 parts, it carried out similarly to Example 1, and obtained the polymer composition, the crosslinkable composition, and the sheet-like rubber crosslinked material, and evaluated similarly. The results are shown in Table 1.
〔比較例1〕
 カチオン性基含有ポリエーテル化合物Aを配合しなかった以外は、実施例1と同様にして、ポリマー組成物、架橋性組成物およびシート状のゴム架橋物を得て、同様に評価を行った。結果を表1に示す。
[Comparative Example 1]
A polymer composition, a crosslinkable composition, and a sheet-like rubber cross-linked product were obtained in the same manner as in Example 1 except that the cationic group-containing polyether compound A was not blended, and evaluation was performed in the same manner. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
〔実施例1~4、比較例1の評価〕
 表1に示すように、ポリマー材料としてのニトリルゴム、カチオン性基を有するポリエーテル化合物、および粘土鉱物を含むポリマー組成物を用いて得られたゴム架橋物(実施例1~4)は、カチオン性基を有するポリエーテル化合物を含有しない場合(比較例1)と比較して、いずれも、引張応力が高く、機械的特性に優れ、また、燃料透過性が低く、耐燃料透過性に優れるものであった。
[Evaluation of Examples 1 to 4 and Comparative Example 1]
As shown in Table 1, rubber cross-links (Examples 1 to 4) obtained using a polymer composition containing a nitrile rubber as a polymer material, a polyether compound having a cationic group, and a clay mineral, Compared with the case where the polyether compound having a functional group is not contained (Comparative Example 1), all have high tensile stress, excellent mechanical properties, low fuel permeability, and excellent fuel permeation resistance Met.
〔実施例5〕
 シクロオレフィンポリマーのペレット(商品名「ゼオネックス E48R」、日本ゼオン社製、重量平均分子量(Mw)=46,000)100部、精製ベントナイト(商品名「ベンゲル HVP」、ホージュン社製、粘土鉱物)15部、および製造例2で得られたカチオン性基含有ポリエーテル化合物A 5部を、ブレンダーで混合した。次いで、二軸混練機(製品名「TEM-35B」、東芝機械社製)を用いて、以下の混練条件にて混練および押し出しを行い、ペレット状のポリマー組成物を得た。
   スクリュー径:37mm
   L/D:32
   スクリュー回転数:250rpm
   樹脂温度:280℃
   フィードレート:15kg/時間
 次いで、片面を鏡面加工した、縦130mm、横15mm、厚さ4mmの金型を用いて、樹脂温度280℃、型温度120℃にて、小型射出成形機(製品名「Micro Injection Moulding Machine」、DSM Xplore社製)を用いて、上記にて得られたペレット状のポリマー組成物について、射出成形を行うことで、厚さ4mmのシート状の樹脂状成型体を得た。そして、得られたシート状の樹脂状成型体を用いて、曲げ弾性率の測定および酸素透過性の評価を行った。結果を表2に示す。
Example 5
Cycloolefin polymer pellets (trade name “Zeonex E48R”, manufactured by Nippon Zeon Co., Ltd., weight average molecular weight (Mw) = 46,000) 100 parts, purified bentonite (trade name “Benger HVP”, manufactured by Hojun Co., clay mineral) 15 And 5 parts of the cationic group-containing polyether compound A obtained in Production Example 2 were mixed with a blender. Next, using a biaxial kneader (product name “TEM-35B”, manufactured by Toshiba Machine Co., Ltd.), kneading and extrusion were performed under the following kneading conditions to obtain a pellet-shaped polymer composition.
Screw diameter: 37mm
L / D: 32
Screw rotation speed: 250rpm
Resin temperature: 280 ° C
Feed rate: 15 kg / hour Next, a small injection molding machine (product name “product name”) with a resin temperature of 280 ° C. and a mold temperature of 120 ° C. using a mold with a mirror finish on one side and a length of 130 mm, width of 15 mm, and thickness of 4 mm. The pellet-shaped polymer composition obtained above was injection-molded using “Micro Injection Mounting Machine” (manufactured by DSM Xplore) to obtain a sheet-like resin-like molded body having a thickness of 4 mm. . And the measurement of a bending elastic modulus and evaluation of oxygen permeability were performed using the obtained sheet-like resinous molding. The results are shown in Table 2.
〔比較例2〕
 カチオン性基含有ポリエーテル化合物Aを配合しなかった以外は、実施例5と同様にして、ポリマー組成物、およびシート状の樹脂状成型体を得て、同様に評価を行った。結果を表2に示す。
[Comparative Example 2]
A polymer composition and a sheet-like resin-like molded product were obtained in the same manner as in Example 5 except that the cationic group-containing polyether compound A was not blended, and evaluation was performed in the same manner. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
〔実施例5、比較例2の評価〕
 表2に示すように、ポリマー材料としてのシクロオレフィンポリマー、カチオン性基を有するポリエーテル化合物、および粘土鉱物を含むポリマー組成物を用いて得られた樹脂状成型体(実施例5)は、カチオン性基を有するポリエーテル化合物を含有しない場合(比較例2)と比較して、曲げ弾性率が高く、機械的特性に優れ、また、酸素透過性が低く、ガスバリア性に優れるものであった。
[Evaluation of Example 5 and Comparative Example 2]
As shown in Table 2, a resin-like molded product (Example 5) obtained by using a polymer composition containing a cycloolefin polymer as a polymer material, a polyether compound having a cationic group, and a clay mineral was a cation. Compared with the case where the polyether compound having a functional group is not contained (Comparative Example 2), the flexural modulus is high, the mechanical properties are excellent, the oxygen permeability is low, and the gas barrier properties are excellent.

Claims (8)

  1.  ポリマー材料、カチオン性基を有するポリエーテル化合物、および粘土鉱物を含むポリマー組成物。 A polymer composition comprising a polymer material, a polyether compound having a cationic group, and a clay mineral.
  2.  前記カチオン性基を有するポリエーテル化合物が、下記一般式(1)で表される単量体単位からなる請求項1に記載のポリマー組成物。
    Figure JPOXMLDOC01-appb-C000001
     (上記一般式(1)中、Aは、カチオン性基またはカチオン性基含有基を表し、Xは、任意の対アニオンを表し、Rは非イオン性基を表し、nは2以上の整数であり、mは0以上の整数であり、n+mが5~500の整数である。)
    The polymer composition according to claim 1, wherein the polyether compound having a cationic group comprises a monomer unit represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), A + represents a cationic group or a cationic group-containing group, X represents an arbitrary counter anion, R represents a nonionic group, and n represents 2 or more. (It is an integer, m is an integer of 0 or more, and n + m is an integer of 5 to 500.)
  3.  前記カチオン性基を有するポリエーテル化合物の含有量が、前記ポリマー材料100重量部に対して、0.01~40重量部である請求項1または2に記載のポリマー組成物。 The polymer composition according to claim 1 or 2, wherein the content of the polyether compound having a cationic group is 0.01 to 40 parts by weight with respect to 100 parts by weight of the polymer material.
  4.  前記粘土鉱物の含有量が、前記ポリマー材料100重量部に対して、1~200重量部である請求項1~3のいずれかに記載のポリマー組成物。 The polymer composition according to any one of claims 1 to 3, wherein a content of the clay mineral is 1 to 200 parts by weight with respect to 100 parts by weight of the polymer material.
  5.  請求項1~4のいずれかに記載のポリマー組成物に、架橋剤を配合してなる架橋性組成物。 A crosslinkable composition obtained by blending a polymer composition according to any one of claims 1 to 4 with a crosslinking agent.
  6.  請求項5に記載の架橋性組成物を架橋してなる架橋物。 A cross-linked product obtained by cross-linking the cross-linkable composition according to claim 5.
  7.  請求項1~4のいずれかに記載のポリマー組成物を成形してなる成形体。 A molded body formed by molding the polymer composition according to any one of claims 1 to 4.
  8.  請求項6に記載の架橋物を含むホース。 A hose containing the cross-linked product according to claim 6.
PCT/JP2018/005112 2017-02-15 2018-02-14 Polymer composition, crosslinked product using same, and molded body using same WO2018151163A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018568574A JP7103236B2 (en) 2017-02-15 2018-02-14 Polymer composition, and crosslinked products and molded products using it.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017026305 2017-02-15
JP2017-026305 2017-02-15

Publications (1)

Publication Number Publication Date
WO2018151163A1 true WO2018151163A1 (en) 2018-08-23

Family

ID=63170610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005112 WO2018151163A1 (en) 2017-02-15 2018-02-14 Polymer composition, crosslinked product using same, and molded body using same

Country Status (2)

Country Link
JP (1) JP7103236B2 (en)
WO (1) WO2018151163A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155520A (en) * 2007-12-27 2009-07-16 Kao Corp Allergen inactivating agent
WO2011001657A1 (en) * 2009-07-01 2011-01-06 独立行政法人科学技術振興機構 Polyionic dendrimer and hydrogel comprising same
JP2013227432A (en) * 2012-04-26 2013-11-07 Nippon Zeon Co Ltd Crosslinked rubber and conductive member
JP2014224194A (en) * 2013-05-16 2014-12-04 日産化学工業株式会社 Cationic water-soluble polymer and hydrogel comprising the same
JP2016192502A (en) * 2015-03-31 2016-11-10 日本ゼオン株式会社 Dye-sensitized solar cell element
WO2017170367A1 (en) * 2016-03-31 2017-10-05 日本ゼオン株式会社 Polyether polymer composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155520A (en) * 2007-12-27 2009-07-16 Kao Corp Allergen inactivating agent
WO2011001657A1 (en) * 2009-07-01 2011-01-06 独立行政法人科学技術振興機構 Polyionic dendrimer and hydrogel comprising same
JP2013227432A (en) * 2012-04-26 2013-11-07 Nippon Zeon Co Ltd Crosslinked rubber and conductive member
JP2014224194A (en) * 2013-05-16 2014-12-04 日産化学工業株式会社 Cationic water-soluble polymer and hydrogel comprising the same
JP2016192502A (en) * 2015-03-31 2016-11-10 日本ゼオン株式会社 Dye-sensitized solar cell element
WO2017170367A1 (en) * 2016-03-31 2017-10-05 日本ゼオン株式会社 Polyether polymer composition

Also Published As

Publication number Publication date
JPWO2018151163A1 (en) 2019-12-12
JP7103236B2 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
US20200002523A1 (en) Acrylic rubber, acrylic rubber composition, and crosslinked acrylic rubber
KR102229325B1 (en) Functionalized copolymer rubber containing nitrile groups
JP5742836B2 (en) Nitrile copolymer rubber composition for hose and cross-linked product
JP5892171B2 (en) Nitrile copolymer rubber composition and rubber cross-linked product
KR102269046B1 (en) Nitrile copolymer rubber composition
DE2631108A1 (en) POLYMER COMPOSITION
JPWO2014098168A1 (en) Nitrile copolymer rubber composition
US20170335037A1 (en) Vulcanizable compositions containing epoxy group-containing ethylene-vinyl acetate copolymers
JP5287223B2 (en) Crosslinkable rubber composition
Yazıcı et al. Effect of octavinyl-polyhedral oligomeric silsesquioxane on the cross-linking, cure kinetics, and adhesion properties of natural rubber/textile cord composites
JP4807255B2 (en) Acrylic rubber and crosslinkable acrylic rubber composition
JPWO2013133358A1 (en) Method for producing nitrile copolymer rubber composition
US20070232752A1 (en) Rubber composition, vulcanizate, and air intake hose
JP7169191B2 (en) acrylic rubber composition
JP2010155883A (en) Nitrile copolymer rubber composition
US6984681B2 (en) Method for producing a carboxyl group containing rubber
JP5163390B2 (en) Acrylic rubber
WO2018151163A1 (en) Polymer composition, crosslinked product using same, and molded body using same
JP7020436B2 (en) Antistatic agent, composition for molded article and crosslinkable composition using it
WO2019163482A1 (en) Nitrile copolymer rubber composition, crosslinkable rubber composition, crosslinked rubber object, and hose
KR102516016B1 (en) Acryl based copolymer composition, method for preparing the same and acryl based copolymer formulation comprising the acryl based copolymer composition
KR20130098066A (en) Acrylic rubber and acrylic rubber composition comprising the same
JPH043773B2 (en)
CN117043207A (en) Acrylic copolymer, composition containing acrylic copolymer, and acrylic copolymer crosslinked product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18753915

Country of ref document: EP

Kind code of ref document: A1