WO2018151057A1 - Copolyether polyol, polyurethane and method for producing copolyether polyol - Google Patents

Copolyether polyol, polyurethane and method for producing copolyether polyol Download PDF

Info

Publication number
WO2018151057A1
WO2018151057A1 PCT/JP2018/004735 JP2018004735W WO2018151057A1 WO 2018151057 A1 WO2018151057 A1 WO 2018151057A1 JP 2018004735 W JP2018004735 W JP 2018004735W WO 2018151057 A1 WO2018151057 A1 WO 2018151057A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolyether polyol
unit derived
polyurethane
copolyether
monomer unit
Prior art date
Application number
PCT/JP2018/004735
Other languages
French (fr)
Japanese (ja)
Inventor
明展 竹田
浩介 千田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201880009990.1A priority Critical patent/CN110291132B/en
Priority to JP2018568503A priority patent/JPWO2018151057A1/en
Publication of WO2018151057A1 publication Critical patent/WO2018151057A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/20Tetrahydrofuran

Definitions

  • the present invention relates to a copolyether polyol, a polyurethane containing a unit derived from the copolyether polyol, and a method for producing the copolyether polyol.
  • Polyether polyol is often used as a soft segment component of polyurethane.
  • polyurethane resins using polytetramethylene ether glycol (PTMG) which is a polymer of tetrahydrofuran (THF)
  • PTMG polytetramethylene ether glycol
  • THF tetrahydrofuran
  • PTMG has a molecular weight of 500 to 4,000, which is usually used as a component of polyurethane, has a melting point in the range of 20 to 40 ° C., and crystallizes at normal temperature and below, so handling and workability There is a problem.
  • a copolyether polyol which is a copolymer of THF and alkyltetrahydrofuran (alkyl THF) such as 3-methyltetrahydrofuran (MTHF), is known as an improved product that solves the above problems of PTMG.
  • This copolyether polyol has a low melting point, and those having a molecular weight that is usually used maintain a liquid state at room temperature (Patent Document 1, Non-Patent Documents 1, 2, etc.).
  • An object of the present invention is to provide a copolyether polyol having excellent strength, elongation and low-temperature elastic recovery property when used as a raw material for polyurethane and suppressing bleeding out, and a unit derived from the copolyether polyol. It is in providing the manufacturing method of the polyurethane containing and the said copolyether polyol.
  • copolyether polyols containing conventional THF-derived monomer units and alkyl THF-derived monomer units have a large molecular weight distribution (Mw / Mn) and low terminal hydroxyl group purity,
  • Mw / Mn molecular weight distribution
  • terminal hydroxyl group purity low terminal hydroxyl group purity
  • the present invention relates to the following [1] to [5].
  • a copolyether polyol comprising a monomer unit derived from THF and a monomer unit derived from alkyl THF, having a terminal hydroxyl group purity of 97.0 to 100.0% and a molecular weight distribution (Mw / Mn) Is a copolyether polyol having a ratio of 1.05 to 2.5.
  • Mw / Mn molecular weight distribution
  • copolyether polyol according to any one of [1] to [3], which comprises cationic ring-opening polymerization of THF and alkyl THF in the presence of acetic acid, acetic anhydride and a cation exchange resin, followed by deacetylation
  • a manufacturing method of A method for producing a copolyether polyol, wherein a mass ratio of acetic acid and acetic anhydride used in the cationic ring-opening polymerization is acetic acid / acetic anhydride 30/70 to 70/30.
  • the resulting polyurethane when used as a polyurethane raw material, the resulting polyurethane has excellent strength, elongation and elastic recovery at low temperatures, and suppresses bleeding out, a unit derived from the copolyether polyol. And a method for producing the copolyether polyol.
  • the copolyether polyol of the present invention includes a monomer unit derived from THF and a monomer unit derived from alkyl THF, the terminal hydroxyl group purity is 97.0 to 100.0%, and the molecular weight distribution (Mw / Mn) is 1.05 to 2.5.
  • Alkyl THF is one in which one or more hydrogen atoms of THF are substituted with an alkyl group.
  • the alkyl group is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, still more preferably an alkyl group having 1 to 2 carbon atoms, and particularly preferably a methyl group.
  • the number of alkyl groups is not particularly limited, but is preferably 2 or less, more preferably 1.
  • the position of the alkyl group is not particularly limited, but the 3-position is preferred.
  • alkyl THF examples include 2-methyltetrahydrofuran, 3-methyltetrahydrofuran (MTHF), 2-ethyltetrahydrofuran, 3-ethyltetrahydrofuran, 2-n-propyltetrahydrofuran, 3-n-propyltetrahydrofuran, 2,3-dimethyltetrahydrofuran, etc. Is mentioned. From the viewpoints of economy and polymerizability, MTHF or 2-methyltetrahydrofuran is preferable, and MTHF is more preferable. These may be used alone or in combination of two or more.
  • the number average molecular weight (Mn) of the copolyether polyol of the present invention is preferably 500 or more, more preferably 800 or more, 1,500 or more, 2,000 or more, and further 2,100 or more. Moreover, it is preferable that it is 10,000 or less, and it is more preferable that it is 4,500 or less.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the copolyether polyol can be determined by gel permeation chromatography (GPC) analysis, and specifically determined by the method described later in the examples. be able to.
  • the copolyether polyol of the present invention has a terminal hydroxyl group purity of 97.0 to 100.0%, preferably 98.0 to 100.0%, more preferably 99.0 to 100.0%, More preferably, it is 99.5 to 100.0%.
  • a terminal hydroxyl group purity 97.0 to 100.0%, preferably 98.0 to 100.0%, more preferably 99.0 to 100.0%, More preferably, it is 99.5 to 100.0%.
  • a macrocyclic polyether in which terminal hydroxyl groups are ether-bonded is by-produced. According to the study by the present inventors, this tendency becomes particularly prominent when copolymerizing with alkyl THF. Therefore, conventional copolyether polyols containing monomer units derived from THF and monomer units derived from alkyl THF are It was found that the terminal hydroxyl group purity was low.
  • the macrocyclic polyether does not have a hydroxyl group, it cannot be urethaned and remains unreacted in the polyurethane, which causes a decrease in the strength and elongation of the polyurethane and a bleed-out.
  • the copolyether polyol having the terminal hydroxyl group purity can be obtained by a production method described later.
  • “terminal hydroxyl group purity” refers to “ ⁇ copolyetherpolyol mass / (copolyetherpolyol mass + macrocyclic polyether mass) ⁇ ⁇ 100 (%)”, and matrix-assisted laser desorption / ionization flight. It can be measured by time-type mass spectrometry (MALDI-TOFMS analysis), and specifically by the method described later in the examples.
  • the copolyether polyol of the present invention has a molecular weight distribution (Mw / Mn) of 1.05 to 2.5, preferably 1.05 to 2.3, more preferably 1.05 to 2.1. .
  • Mw / Mn molecular weight distribution
  • the copolyether polyol having the above molecular weight distribution (Mw / Mn) can be obtained by a production method described later.
  • the molar ratio of the monomer unit derived from THF and the monomer unit derived from alkyl THF is from the viewpoint of melting point and ease of polymerization.
  • Monomer unit 88/12 to 50/50 is preferable, and 86/14 to 70/30 is more preferable.
  • the method for producing a copolyether polyol according to the present invention comprises a step of deacetylating THF and alkyl THF in the presence of acetic acid, acetic anhydride and a cation exchange resin, followed by deacetylation.
  • the copolyether polyol of the present invention can be produced by the above production method.
  • the cation exchange resin functions as an acid catalyst.
  • the cation exchange resin that can be used is not particularly limited, but those having a sulfo group are preferred, and those composed of a tetrafluoroethylene skeleton and a perfluoro side chain having a sulfo group (such as Nafion (registered trademark) NR50). More preferred. These may be used alone or in combination of two or more.
  • the amount of the cation exchange resin used is not particularly limited, but is preferably 0.01 to 30% by mass, more preferably 0.05 to 15% by mass, and further preferably 0.1 to 10% by mass of the reaction mixture.
  • acetic acid / acetic anhydride 30/70 to 70/30, preferably 40/60 to 60/40, more preferably 45 / It is 55 to 55/45, more preferably 47/53 to 53/47, and particularly preferably 48/52 to 52/48.
  • the amount of acetic acid used is not particularly limited, but is preferably 0.01 to 30% by mass, more preferably 0.05 to 15% by mass, and 0.1 to 10% by mass with respect to the total amount of THF and alkyl THF used. Is more preferable.
  • a solvent may be used.
  • the solvent is not particularly limited as long as it does not inhibit the reaction.
  • aliphatic hydrocarbons such as hexane, heptane and octane; aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene; halogenated aromatic hydrocarbons such as chlorobenzene and fluorobenzene; diethyl ether, diisopropyl ether, dibutyl ether and dioxane 1,2-dimethoxyethane, diglyme, triglyme, tetraglyme and other ethers; dichloromethane, chloroform, 1,2-dichloroethane and other halogenated aliphatic hydrocarbons; acetonitrile and the like. These may be used alone or in combination of two or more.
  • the reaction temperature in the cationic ring-opening polymerization is preferably ⁇ 30 to 120 ° C., more preferably ⁇ 10 to 100 ° C., and further preferably 0 to 80 ° C.
  • the cation exchange resin is preferably separated and removed, and unreacted THF, alkyl THF, acetic acid and acetic anhydride are removed under reduced pressure.
  • THF and alkyl THF are subjected to cationic ring-opening polymerization and then deacetylated.
  • the deacetylation is preferably performed using a basic substance.
  • Examples of basic substances used for deacetylation include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkali metal alcoholates such as lithium methoxide, sodium methoxide, and potassium methoxide; Examples thereof include hydroxides of alkaline earth metals such as magnesium hydroxide, calcium hydroxide and barium hydroxide; organic basic compounds such as triethylamine and pyridine. Of these, alkali metal hydroxides or alkali metal alcoholates are preferred.
  • the amount of the basic substance used is not particularly limited, but is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass, and more preferably 0.1% to 0.1% by mass with respect to the diacetate obtained by cationic ring-opening polymerization. More preferably, it is ⁇ 5% by mass.
  • Deacetylation is preferably performed in the presence of an alcohol such as methanol, ethanol or isopropyl alcohol while distilling off the generated alkyl acetate.
  • an alcohol such as methanol, ethanol or isopropyl alcohol while distilling off the generated alkyl acetate.
  • a solvent may be used.
  • the solvent is not particularly limited as long as it does not inhibit the reaction.
  • aliphatic hydrocarbons such as hexane, heptane and octane
  • aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene
  • halogenated aromatic hydrocarbons such as chlorobenzene and fluorobenzene
  • diethyl ether, diisopropyl ether, dibutyl ether and tetrahydrofuran Ethers such as dioxane, 1,2-dimethoxyethane, diglyme, triglyme, and tetraglyme
  • halogenated aliphatic hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane, and the like. These may be used alone or in combination of two or more.
  • the reaction temperature at the time of deacetylation is preferably 0 to 150 ° C, more preferably 10 to 130 ° C, and further preferably 20 to 120 ° C.
  • Deacetylation can be carried out under normal pressure or reduced pressure.
  • Copolyether polyols can be obtained.
  • the polyurethane of the present invention contains units derived from the copolyether polyol of the present invention.
  • the polyurethane of the present invention can be prepared, for example, by a method of reacting the copolyether polyol of the present invention with a polyisocyanate to synthesize a prepolymer containing an isocyanate group and then reacting with an active hydrogen atom-containing compound, It can be obtained by a one-shot method in which ether polyol, polyisocyanate, and active hydrogen atom-containing compound are simultaneously reacted. Known conditions may be applied mutatis mutandis for various conditions during the reaction.
  • the polyisocyanate that can be used is not particularly limited, but generally polyurethanes such as tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, naphthylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and the like.
  • Polyisocyanate used for the synthesis of These may be used alone or in combination of two or more.
  • the active hydrogen atom-containing compound that can be used is a compound having two or more hydroxyl groups or amino groups.
  • examples of such compounds include ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, cyclohexylenediamine, piperazine, 2-methylpiperazine, phenylenediamine, tolylenediamine, xylenediamine, and 3,3′-dichloro-4.
  • KF-802.5 and KF-803L manufactured by Showa Denko KK were connected in series as measurement columns, and the analysis was performed under the conditions of THF as the solvent, 0.9 ml / min as the flow rate, and 40 ° C. as the column temperature.
  • polystyrene standard type: PS-oligomer kit manufactured by Tosoh Corporation was used.
  • Example 1 In a reaction vessel equipped with a stirrer, a thermometer and a nitrogen seal tube, 281.4 g (3.90 mol) of THF, 105.7 g (1.23 mol) of MTHF, 7.6 g (0.07 mol) of acetic anhydride, 7.3 g (0.12 mol) of acetic acid and 20 g of Nafion (registered trademark) NR50 were added and stirred at 23 ° C. for 29 hours. After the reaction, Nafion (registered trademark) NR50 was filtered off and concentrated under reduced pressure to distill off unreacted monomers, acetic acid and acetic anhydride.
  • Nafion (registered trademark) NR50 was filtered off and concentrated under reduced pressure to distill off unreacted monomers, acetic acid and acetic anhydride.
  • 30 g of methanol and 0.03 g (0.75 mmol) of sodium hydroxide were added to the obtained residue, and the reaction was carried out for 4 hours while distilling off methanol and generated methyl acetate while heating under reflux.
  • 0.045 g (0.75 mmol) of acetic acid and 100 g of toluene were added, the organic layer was washed 5 times with 20 g of distilled water, and the organic layer was concentrated under reduced pressure to obtain 42.2 g of a copolyether polyol.
  • the obtained polyol had a number average molecular weight (Mn) of 3,169 and a molecular weight distribution (Mw / Mn) of 3.08.
  • Mn number average molecular weight
  • Mw / Mn molecular weight distribution
  • Example 2 In a reaction vessel equipped with a stirrer, a thermometer, and a nitrogen seal tube, 79.2 g (25.5 mmol) of the copolyether polyol obtained in Example 1 and 10.2 g of 40,4′-diphenylmethane diisocyanate (MDI) (40 8 mmol), and a prepolymerization reaction was performed at 60 ° C. for 5 hours.
  • MDI 40,4′-diphenylmethane diisocyanate
  • DMAc dimethylacetamide
  • Example 2 it replaced with the copolyether polyol obtained in Example 1, and performed the same operation as Example 2 except having used the copolyether polyol obtained in Comparative Example 1, and obtained the polyurethane solution. It was.
  • Example 2 In Example 2, it replaced with the copolyether polyol obtained in Example 1, and performed the same operation as Example 2 except having used the copolyether polyol of the comparative example 2, and obtained the polyurethane solution.
  • Example 2 The polyurethane solutions obtained in Example 2 and Comparative Examples 3 and 4 were coated on a polypropylene sheet using a bar coater and dried with hot air at 80 ° C. for 24 hours to obtain a polyurethane film having a thickness of 100 ⁇ m. From this film, a JIS No. 4 dumbbell-shaped test piece and a 5 cm ⁇ 5 mm strip-shaped test piece were prepared. This test piece was subjected to various tensile tests using an Instron 5566 type tensile tester. The breaking strength and breaking elongation were JIS No.
  • the polyurethane obtained in Example 2 has improved elastic recovery at low temperatures as compared with the polyurethane obtained in Comparative Example 3. This is because, in Comparative Example 3, since the molecular weight distribution (Mw / Mn) in the used copolyether polyol is large, the high molecular weight polyurethane based on the copolyether polyol having a molecular weight considerably higher than the number average molecular weight (Mn). This is thought to be due to the relatively large amount. In addition, the polyurethane obtained in Example 2 has improved strength and elongation, and further suppressed bleed out, compared with the polyurethane obtained in Comparative Example 4.
  • the polyurethane using the copolyether polyol of the present invention is useful as a raw material for elastic fibers, for example, because it is superior in strength, elongation, and elastic recovery at low temperatures and suppresses bleed out as compared with conventional products.
  • the copolyether polyol of the present invention can be suitably used for various uses such as industrial chemicals and raw materials in addition to the use of polyurethane raw materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polyethers (AREA)

Abstract

The present invention relates to: a copolyether polyol which contains a monomer unit derived from tetrahydrofuran and a monomer unit derived from an alkyl tetrahydrofuran, and which has a terminal hydroxyl group purity of 97.0% to 100.0% and a molecular weight distribution (Mw/Mn) of 1.05 to 2.5; a polyurethane which contains a unit derived from this copolyether polyol; and a method for producing this copolyether polyol.

Description

コポリエーテルポリオール、ポリウレタンおよびコポリエーテルポリオールの製造方法Copolyether polyol, polyurethane and method for producing copolyether polyol
 本発明はコポリエーテルポリオール、前記コポリエーテルポリオール由来の単位を含むポリウレタン、および前記コポリエーテルポリオールの製造方法に関する。 The present invention relates to a copolyether polyol, a polyurethane containing a unit derived from the copolyether polyol, and a method for producing the copolyether polyol.
 ポリウレタンのソフトセグメント成分としてポリエーテルポリオールがよく用いられる。中でもテトラヒドロフラン(THF)の重合体であるポリテトラメチレンエーテルグリコール(PTMG)を用いたポリウレタン樹脂は弾性特性、低温特性および耐加水分解性などの点において優れるため特に注目されている。
 しかし、PTMGはポリウレタンの成分として通常用いられる分子量500~4,000のもので融点が20~40℃の範囲にあり、常温域およびそれ以下の温度において結晶化が起こるため、ハンドリング性、加工性に課題がある。従来、結晶化を防ぐため適当な有機溶媒を添加する方法が対策として採られているが、近年は公害防止および経済合理性の観点から、有機溶媒を使用せずに結晶性を改善することが強く望まれている。
 PTMGの上記問題点を解決する改良品として、THFと3-メチルテトラヒドロフラン(MTHF)などのアルキルテトラヒドロフラン(アルキルTHF)との共重合体であるコポリエーテルポリオールが知られている。このコポリエーテルポリオールは融点が低く、通常用いられる分子量のものは常温で液体状態を保持する(特許文献1、非特許文献1、2等)。
Polyether polyol is often used as a soft segment component of polyurethane. Among them, polyurethane resins using polytetramethylene ether glycol (PTMG), which is a polymer of tetrahydrofuran (THF), are particularly attracting attention because they are excellent in terms of elastic properties, low temperature properties, hydrolysis resistance, and the like.
However, PTMG has a molecular weight of 500 to 4,000, which is usually used as a component of polyurethane, has a melting point in the range of 20 to 40 ° C., and crystallizes at normal temperature and below, so handling and workability There is a problem. Conventionally, a method of adding an appropriate organic solvent to prevent crystallization has been taken as a countermeasure, but in recent years, from the viewpoint of pollution prevention and economic rationality, crystallinity can be improved without using an organic solvent. It is strongly desired.
A copolyether polyol, which is a copolymer of THF and alkyltetrahydrofuran (alkyl THF) such as 3-methyltetrahydrofuran (MTHF), is known as an improved product that solves the above problems of PTMG. This copolyether polyol has a low melting point, and those having a molecular weight that is usually used maintain a liquid state at room temperature (Patent Document 1, Non-Patent Documents 1, 2, etc.).
特開昭52-138598号公報JP-A-52-138598
 しかしながら、本発明者らがこのコポリエーテルポリオールを用いて製造されたポリウレタンを評価したところ、強度、伸度および低温における弾性回復性に改良の余地があることが判明した。さらに、条件によってはブリードアウトが発生することを発見した。
 本発明の目的は、ポリウレタンの原料として用いた場合に、得られるポリウレタンの強度、伸度および低温における弾性回復性に優れ、ブリードアウトが抑制されるコポリエーテルポリオール、前記コポリエーテルポリオール由来の単位を含むポリウレタン、および前記コポリエーテルポリオールの製造方法を提供することにある。
However, when the present inventors evaluated a polyurethane produced using this copolyether polyol, it was found that there was room for improvement in strength, elongation, and elastic recovery at low temperatures. Furthermore, it was discovered that bleed out occurs depending on conditions.
An object of the present invention is to provide a copolyether polyol having excellent strength, elongation and low-temperature elastic recovery property when used as a raw material for polyurethane and suppressing bleeding out, and a unit derived from the copolyether polyol. It is in providing the manufacturing method of the polyurethane containing and the said copolyether polyol.
 本発明者らは鋭意検討した結果、従来のTHF由来の単量体単位とアルキルTHF由来の単量体単位を含むコポリエーテルポリオールは分子量分布(Mw/Mn)が大きく末端水酸基純度が低いこと、分子量分布(Mw/Mn)および末端水酸基純度を特定の範囲とすることで、得られるポリウレタンの強度、伸度および低温における弾性回復性が改善され、さらにブリードアウトが抑制されること等を見出し、当該知見に基づいてさらに検討を重ねて本発明を完成した。 As a result of intensive studies, the present inventors have found that copolyether polyols containing conventional THF-derived monomer units and alkyl THF-derived monomer units have a large molecular weight distribution (Mw / Mn) and low terminal hydroxyl group purity, By making the molecular weight distribution (Mw / Mn) and terminal hydroxyl group purity within a specific range, the strength, elongation, and elastic recovery at low temperature of the resulting polyurethane are improved, and bleed out is further suppressed. The present invention was completed through further studies based on the findings.
 本発明は、下記[1]~[5]に関する。
[1]THF由来の単量体単位とアルキルTHF由来の単量体単位を含むコポリエーテルポリオールであって、末端水酸基純度が97.0~100.0%であり、分子量分布(Mw/Mn)が1.05~2.5である、コポリエーテルポリオール。
[2]前記アルキルTHFがMTHFである、[1]のコポリエーテルポリオール。
[3]THF由来の単量体単位およびアルキルTHF由来の単量体単位のモル比が、THF由来の単量体単位/アルキルTHF由来の単量体単位=88/12~50/50である、[1]または[2]のコポリエーテルポリオール。
[4][1]~[3]のいずれかのコポリエーテルポリオール由来の単位を含むポリウレタン。
[5]酢酸、無水酢酸および陽イオン交換樹脂の存在下にTHFおよびアルキルTHFをカチオン開環重合させた後、脱アセチル化する工程を含む[1]~[3]のいずれかのコポリエーテルポリオールの製造方法であって、
 前記カチオン開環重合において使用される酢酸および無水酢酸の質量比が、酢酸/無水酢酸=30/70~70/30である、コポリエーテルポリオールの製造方法。
The present invention relates to the following [1] to [5].
[1] A copolyether polyol comprising a monomer unit derived from THF and a monomer unit derived from alkyl THF, having a terminal hydroxyl group purity of 97.0 to 100.0% and a molecular weight distribution (Mw / Mn) Is a copolyether polyol having a ratio of 1.05 to 2.5.
[2] The copolyether polyol of [1], wherein the alkyl THF is MTHF.
[3] The molar ratio of the monomer unit derived from THF and the monomer unit derived from alkyl THF is monomer unit derived from THF / monomer unit derived from alkyl THF = 88/12 to 50/50. [1] or [2] copolyether polyol.
[4] A polyurethane comprising units derived from the copolyether polyol of any one of [1] to [3].
[5] The copolyether polyol according to any one of [1] to [3], which comprises cationic ring-opening polymerization of THF and alkyl THF in the presence of acetic acid, acetic anhydride and a cation exchange resin, followed by deacetylation A manufacturing method of
A method for producing a copolyether polyol, wherein a mass ratio of acetic acid and acetic anhydride used in the cationic ring-opening polymerization is acetic acid / acetic anhydride = 30/70 to 70/30.
 本発明によれば、ポリウレタンの原料として用いた場合に、得られるポリウレタンの強度、伸度および低温における弾性回復性に優れ、ブリードアウトが抑制されるコポリエーテルポリオール、前記コポリエーテルポリオール由来の単位を含むポリウレタン、および前記コポリエーテルポリオールの製造方法を提供できる。 According to the present invention, when used as a polyurethane raw material, the resulting polyurethane has excellent strength, elongation and elastic recovery at low temperatures, and suppresses bleeding out, a unit derived from the copolyether polyol. And a method for producing the copolyether polyol.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
(コポリエーテルポリオール)
 本発明のコポリエーテルポリオールは、THF由来の単量体単位とアルキルTHF由来の単量体単位を含み、末端水酸基純度が97.0~100.0%であり、分子量分布(Mw/Mn)が1.05~2.5である。
(Copolyether polyol)
The copolyether polyol of the present invention includes a monomer unit derived from THF and a monomer unit derived from alkyl THF, the terminal hydroxyl group purity is 97.0 to 100.0%, and the molecular weight distribution (Mw / Mn) is 1.05 to 2.5.
 アルキルTHFはTHFの1つ以上の水素原子がアルキル基により置換されたものである。
 前記アルキル基としては、炭素数1~6のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましく、炭素数1~2のアルキル基がさらに好ましく、メチル基が特に好ましい。
 アルキル基の数は特に限定されないが、2個以下であることが好ましく、1個であることがより好ましい。
 アルキル基の位置は特に限定されないが、3位が好ましい。
 アルキルTHFとしては例えば、2-メチルテトラヒドロフラン、3-メチルテトラヒドロフラン(MTHF)、2-エチルテトラヒドロフラン、3-エチルテトラヒドロフラン、2-n-プロピルテトラヒドロフラン、3-n-プロピルテトラヒドロフラン、2,3-ジメチルテトラヒドロフランなどが挙げられる。経済性、重合性の観点から、中でもMTHFまたは2-メチルテトラヒドロフランが好ましく、MTHFがより好ましい。これらは1種を単独で使用しても、2種以上を併用してもよい。
Alkyl THF is one in which one or more hydrogen atoms of THF are substituted with an alkyl group.
The alkyl group is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, still more preferably an alkyl group having 1 to 2 carbon atoms, and particularly preferably a methyl group.
The number of alkyl groups is not particularly limited, but is preferably 2 or less, more preferably 1.
The position of the alkyl group is not particularly limited, but the 3-position is preferred.
Examples of the alkyl THF include 2-methyltetrahydrofuran, 3-methyltetrahydrofuran (MTHF), 2-ethyltetrahydrofuran, 3-ethyltetrahydrofuran, 2-n-propyltetrahydrofuran, 3-n-propyltetrahydrofuran, 2,3-dimethyltetrahydrofuran, etc. Is mentioned. From the viewpoints of economy and polymerizability, MTHF or 2-methyltetrahydrofuran is preferable, and MTHF is more preferable. These may be used alone or in combination of two or more.
 本発明のコポリエーテルポリオールの数平均分子量(Mn)は500以上であることが好ましく、800以上であることがより好ましく、1,500以上、2,000以上、さらには2,100以上であってもよく、また、10,000以下であることが好ましく、4,500以下であることがより好ましい。なお本明細書においてコポリエーテルポリオールの数平均分子量(Mn)および重量平均分子量(Mw)はゲルパーミエーションクロマトグラフィー(GPC)分析によって求めることができ、具体的には実施例において後述する方法により求めることができる。 The number average molecular weight (Mn) of the copolyether polyol of the present invention is preferably 500 or more, more preferably 800 or more, 1,500 or more, 2,000 or more, and further 2,100 or more. Moreover, it is preferable that it is 10,000 or less, and it is more preferable that it is 4,500 or less. In the present specification, the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the copolyether polyol can be determined by gel permeation chromatography (GPC) analysis, and specifically determined by the method described later in the examples. be able to.
 本発明のコポリエーテルポリオールは、末端水酸基純度が97.0~100.0%であり、好ましくは98.0~100.0%であり、より好ましくは99.0~100.0%であり、さらに好ましくは99.5~100.0%である。
 THFのような環状エーテルを酸触媒の存在下に開環重合する際には、末端の水酸基同士がエーテル結合した大環状ポリエーテルが副生する。本発明者らの検討により、この傾向は特にアルキルTHFと共重合させる際に顕著となること、そのため従来のTHF由来の単量体単位とアルキルTHF由来の単量体単位を含むコポリエーテルポリオールは末端水酸基純度が低いことが判明した。大環状ポリエーテルは水酸基を持たないためウレタン化できず、ポリウレタン中に未反応のまま残ることとなり、ポリウレタンの強度や伸度低下、およびブリードアウトの原因となる。
 末端水素基純度を上記範囲とすることにより、得られるポリウレタンは強度および伸度に優れるものとなる。
 上記の末端水酸基純度を有するコポリエーテルポリオールは、後述する製造方法により得ることができる。
 なお、本明細書において「末端水酸基純度」とは、「{コポリエーテルポリオール質量/(コポリエーテルポリオール質量+大環状ポリエーテル質量)}×100(%)」を指し、マトリックス支援レーザー脱離イオン化飛行時間型質量分析(MALDI-TOFMS分析)により測定することができ、具体的には実施例において後述する方法により測定することができる。
The copolyether polyol of the present invention has a terminal hydroxyl group purity of 97.0 to 100.0%, preferably 98.0 to 100.0%, more preferably 99.0 to 100.0%, More preferably, it is 99.5 to 100.0%.
When ring-opening polymerization of a cyclic ether such as THF in the presence of an acid catalyst, a macrocyclic polyether in which terminal hydroxyl groups are ether-bonded is by-produced. According to the study by the present inventors, this tendency becomes particularly prominent when copolymerizing with alkyl THF. Therefore, conventional copolyether polyols containing monomer units derived from THF and monomer units derived from alkyl THF are It was found that the terminal hydroxyl group purity was low. Since the macrocyclic polyether does not have a hydroxyl group, it cannot be urethaned and remains unreacted in the polyurethane, which causes a decrease in the strength and elongation of the polyurethane and a bleed-out.
By setting the terminal hydrogen group purity within the above range, the resulting polyurethane is excellent in strength and elongation.
The copolyether polyol having the terminal hydroxyl group purity can be obtained by a production method described later.
In this specification, “terminal hydroxyl group purity” refers to “{copolyetherpolyol mass / (copolyetherpolyol mass + macrocyclic polyether mass)} × 100 (%)”, and matrix-assisted laser desorption / ionization flight. It can be measured by time-type mass spectrometry (MALDI-TOFMS analysis), and specifically by the method described later in the examples.
 本発明のコポリエーテルポリオールは、分子量分布(Mw/Mn)が1.05~2.5であり、好ましくは1.05~2.3であり、より好ましくは1.05~2.1である。
 分子量分布(Mw/Mn)を上記範囲とすることにより、得られるポリウレタンは低温における弾性回復性に優れたものとなる。
 上記の分子量分布(Mw/Mn)を有するコポリエーテルポリオールは、後述する製造方法により得ることができる。
The copolyether polyol of the present invention has a molecular weight distribution (Mw / Mn) of 1.05 to 2.5, preferably 1.05 to 2.3, more preferably 1.05 to 2.1. .
By setting the molecular weight distribution (Mw / Mn) within the above range, the resulting polyurethane has excellent elastic recovery at low temperatures.
The copolyether polyol having the above molecular weight distribution (Mw / Mn) can be obtained by a production method described later.
 本発明のコポリエーテルポリオールは、融点および重合容易性の観点から、THF由来の単量体単位およびアルキルTHF由来の単量体単位のモル比が、THF由来の単量体単位/アルキルTHF由来の単量体単位=88/12~50/50であることが好ましく、86/14~70/30であることがより好ましい。 In the copolyether polyol of the present invention, the molar ratio of the monomer unit derived from THF and the monomer unit derived from alkyl THF is from the viewpoint of melting point and ease of polymerization. Monomer unit = 88/12 to 50/50 is preferable, and 86/14 to 70/30 is more preferable.
(コポリエーテルポリオールの製造方法)
 本発明のコポリエーテルポリオールの製造方法は、酢酸、無水酢酸および陽イオン交換樹脂の存在下にTHFおよびアルキルTHFをカチオン開環重合させた後、脱アセチル化する工程を含むコポリエーテルポリオールの製造方法であって、前記カチオン開環重合において使用される酢酸および無水酢酸の質量比が、酢酸/無水酢酸=30/70~70/30である。
 上記製造方法により、本発明のコポリエーテルポリオールを製造できる。
(Method for producing copolyether polyol)
The method for producing a copolyether polyol according to the present invention comprises a step of deacetylating THF and alkyl THF in the presence of acetic acid, acetic anhydride and a cation exchange resin, followed by deacetylation. The mass ratio of acetic acid and acetic anhydride used in the cationic ring-opening polymerization is acetic acid / acetic anhydride = 30/70 to 70/30.
The copolyether polyol of the present invention can be produced by the above production method.
 カチオン開環重合では、上記陽イオン交換樹脂が酸触媒として機能する。
 用いることのできる陽イオン交換樹脂は特に限定されないが、スルホ基を有するものが好ましく、テトラフルオロエチレン骨格と、スルホ基を有するペルフルオロ側鎖から構成されるもの(ナフィオン(登録商標)NR50等)がより好ましい。これらは1種を単独で使用しても、2種以上を併用してもよい。
 陽イオン交換樹脂の使用量は特に限定されないが、反応混合物の0.01~30質量%が好ましく、0.05~15質量%がより好ましく、0.1~10質量%がさらに好ましい。
In cation ring-opening polymerization, the cation exchange resin functions as an acid catalyst.
The cation exchange resin that can be used is not particularly limited, but those having a sulfo group are preferred, and those composed of a tetrafluoroethylene skeleton and a perfluoro side chain having a sulfo group (such as Nafion (registered trademark) NR50). More preferred. These may be used alone or in combination of two or more.
The amount of the cation exchange resin used is not particularly limited, but is preferably 0.01 to 30% by mass, more preferably 0.05 to 15% by mass, and further preferably 0.1 to 10% by mass of the reaction mixture.
 カチオン開環重合では、使用される酢酸と無水酢酸の質量比が、酢酸/無水酢酸=30/70~70/30であり、好ましくは40/60~60/40であり、より好ましくは45/55~55/45であり、さらに好ましくは47/53~53/47であり、特に好ましくは48/52~52/48である。
 使用される酢酸と無水酢酸の質量比を上記範囲とすることにより、重合制御が容易となり、かつ、必要な分子量のコポリエーテルポリオールが得られる。
 酢酸の使用量は特に限定されないが、THFおよびアルキルTHFの使用量の合計に対し、0.01~30質量%が好ましく、0.05~15質量%がより好ましく、0.1~10質量%がさらに好ましい。
In cationic ring-opening polymerization, the mass ratio of acetic acid to acetic anhydride used is acetic acid / acetic anhydride = 30/70 to 70/30, preferably 40/60 to 60/40, more preferably 45 / It is 55 to 55/45, more preferably 47/53 to 53/47, and particularly preferably 48/52 to 52/48.
By controlling the mass ratio of acetic acid and acetic anhydride to be in the above range, polymerization control is facilitated and a copolyether polyol having a necessary molecular weight can be obtained.
The amount of acetic acid used is not particularly limited, but is preferably 0.01 to 30% by mass, more preferably 0.05 to 15% by mass, and 0.1 to 10% by mass with respect to the total amount of THF and alkyl THF used. Is more preferable.
 カチオン開環重合では、使用されるTHFとアルキルTHFのモル比が、THF/アルキルTHF=82/18~50/50であることが好ましく、80/20~70/30であることがより好ましい。 In cationic ring-opening polymerization, the molar ratio of THF to alkyl THF used is preferably THF / alkyl THF = 82/18 to 50/50, more preferably 80/20 to 70/30.
 カチオン開環重合では、溶媒を用いてもよい。前記溶媒は、反応を阻害しなければ特に限定されない。例えばヘキサン、ヘプタン、オクタン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素;クロロベンゼン、フルオロベンゼン等のハロゲン化芳香族炭化水素;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジオキサン、1,2-ジメトキシエタン、ジグライム、トリグライム、テトラグライム等のエーテル;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化脂肪族炭化水素;アセトニトリルなどが挙げられる。これらは1種を単独で使用しても、2種以上を併用してもよい。 In the cationic ring-opening polymerization, a solvent may be used. The solvent is not particularly limited as long as it does not inhibit the reaction. For example, aliphatic hydrocarbons such as hexane, heptane and octane; aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene; halogenated aromatic hydrocarbons such as chlorobenzene and fluorobenzene; diethyl ether, diisopropyl ether, dibutyl ether and dioxane 1,2-dimethoxyethane, diglyme, triglyme, tetraglyme and other ethers; dichloromethane, chloroform, 1,2-dichloroethane and other halogenated aliphatic hydrocarbons; acetonitrile and the like. These may be used alone or in combination of two or more.
 カチオン開環重合の際の反応温度は、好ましくは-30~120℃、より好ましくは-10~100℃、さらに好ましくは0~80℃である。 The reaction temperature in the cationic ring-opening polymerization is preferably −30 to 120 ° C., more preferably −10 to 100 ° C., and further preferably 0 to 80 ° C.
 カチオン開環重合の反応終了後、陽イオン交換樹脂を分離・除去し、未反応のTHFおよびアルキルTHF、酢酸ならびに無水酢酸を減圧下に除去することが好ましい。 After completion of the cation ring-opening polymerization reaction, the cation exchange resin is preferably separated and removed, and unreacted THF, alkyl THF, acetic acid and acetic anhydride are removed under reduced pressure.
 本発明のコポリエーテルポリオールの製造方法においては、THFおよびアルキルTHFをカチオン開環重合させた後、脱アセチル化を行う。脱アセチル化は、塩基性物質を用いて行うことが好ましい。 In the method for producing a copolyether polyol of the present invention, THF and alkyl THF are subjected to cationic ring-opening polymerization and then deacetylated. The deacetylation is preferably performed using a basic substance.
 脱アセチル化で用いる塩基性物質としては、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物;リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド等のアルカリ金属のアルコラート;水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属の水酸化物;トリエチルアミン、ピリジン等の有機塩基性化合物などが挙げられる。中でも、アルカリ金属の水酸化物またはアルカリ金属のアルコラートが好ましい。
 塩基性物質の使用量は特に限定されないが、カチオン開環重合により得られたジアセテート体に対し、0.01~20質量%が好ましく、0.05~10質量%がより好ましく、0.1~5質量%がさらに好ましい。
Examples of basic substances used for deacetylation include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkali metal alcoholates such as lithium methoxide, sodium methoxide, and potassium methoxide; Examples thereof include hydroxides of alkaline earth metals such as magnesium hydroxide, calcium hydroxide and barium hydroxide; organic basic compounds such as triethylamine and pyridine. Of these, alkali metal hydroxides or alkali metal alcoholates are preferred.
The amount of the basic substance used is not particularly limited, but is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass, and more preferably 0.1% to 0.1% by mass with respect to the diacetate obtained by cationic ring-opening polymerization. More preferably, it is ˜5% by mass.
 脱アセチル化はメタノール、エタノール、イソプロピルアルコール等のアルコールの存在下、生成する酢酸アルキルを留去しながら反応を行うことが好ましい。 Deacetylation is preferably performed in the presence of an alcohol such as methanol, ethanol or isopropyl alcohol while distilling off the generated alkyl acetate.
 脱アセチル化では、溶媒を用いてもよい。前記溶媒は、反応を阻害しなければ特に限定されない。例えばヘキサン、ヘプタン、オクタン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素;クロロベンゼン、フルオロベンゼン等のハロゲン化芳香族炭化水素;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジグライム、トリグライム、テトラグライム等のエーテル;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化脂肪族炭化水素などが挙げられる。これらは1種を単独で使用しても、2種以上を併用してもよい。 In deacetylation, a solvent may be used. The solvent is not particularly limited as long as it does not inhibit the reaction. For example, aliphatic hydrocarbons such as hexane, heptane and octane; aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene; halogenated aromatic hydrocarbons such as chlorobenzene and fluorobenzene; diethyl ether, diisopropyl ether, dibutyl ether and tetrahydrofuran , Ethers such as dioxane, 1,2-dimethoxyethane, diglyme, triglyme, and tetraglyme; halogenated aliphatic hydrocarbons such as dichloromethane, chloroform, 1,2-dichloroethane, and the like. These may be used alone or in combination of two or more.
 脱アセチル化の際の反応温度は、好ましくは0~150℃、より好ましくは10~130℃、さらに好ましくは20~120℃である。
 脱アセチル化は常圧下または減圧下において実施できる。
The reaction temperature at the time of deacetylation is preferably 0 to 150 ° C, more preferably 10 to 130 ° C, and further preferably 20 to 120 ° C.
Deacetylation can be carried out under normal pressure or reduced pressure.
 脱アセチル化の反応終了後、塩基性化合物および他の不溶物質を濾過、水洗、遠心分離、デカンテーション等の通常の技術により除去し、減圧下に低沸点成分の除去および乾燥をする方法などでコポリエーテルポリオールを得ることができる。 After completion of the deacetylation reaction, basic compounds and other insoluble substances are removed by ordinary techniques such as filtration, washing with water, centrifugation, decantation, etc., and low boiling point components are removed and dried under reduced pressure. Copolyether polyols can be obtained.
(ポリウレタン)
 本発明のポリウレタンは、本発明のコポリエーテルポリオール由来の単位を含む。
 本発明のポリウレタンは、例えば、本発明のコポリエーテルポリオールとポリイソシアネートとを反応させてイソシアネート基を含有するプレポリマーを合成し、その後、活性水素原子含有化合物を反応させる方法や、本発明のコポリエーテルポリオール、ポリイソシアネートおよび活性水素原子含有化合物を同時に反応させるワンショット法などにより得られる。
 反応の際の諸条件は、公知の方法を準用すればよい。
(Polyurethane)
The polyurethane of the present invention contains units derived from the copolyether polyol of the present invention.
The polyurethane of the present invention can be prepared, for example, by a method of reacting the copolyether polyol of the present invention with a polyisocyanate to synthesize a prepolymer containing an isocyanate group and then reacting with an active hydrogen atom-containing compound, It can be obtained by a one-shot method in which ether polyol, polyisocyanate, and active hydrogen atom-containing compound are simultaneously reacted.
Known conditions may be applied mutatis mutandis for various conditions during the reaction.
 用いることのできるポリイソシアネートは特に限定されないが、例えばトリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ナフチレンジイソシアネート、水添ジフェニルメタンジイソシアネートなどの一般的にポリウレタンの合成に用いられるポリイソシアネートが挙げられる。これらは1種を単独で使用しても、2種以上を併用してもよい。 The polyisocyanate that can be used is not particularly limited, but generally polyurethanes such as tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, naphthylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and the like. Polyisocyanate used for the synthesis of These may be used alone or in combination of two or more.
 用いることのできる活性水素原子含有化合物は、2個以上の水酸基またはアミノ基を有する化合物である。そのような化合物としては、例えばエチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、シクロへキシレンジアミン、ピペラジン、2-メチルピペラジン、フェニレンジアミン、トリレンジアミン、キシレンジアミン、3,3’-ジクロロ-4,4’-ビフェニルジアミン、2,6-ジアミノピリジン、4,4’-ジアミノジフェニルメタン、テトラクロロ-m-フェニレンジアミン、テトラクロロ-p-フェニレンジアミン等のポリアミン;エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、キシリレングリコール、グリセリン、トリメチロールプロパン、シクロヘキサンジメタノール等のポリオールなどが挙げられる。これらは1種を単独で使用しても、2種以上を併用してもよい。 The active hydrogen atom-containing compound that can be used is a compound having two or more hydroxyl groups or amino groups. Examples of such compounds include ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, cyclohexylenediamine, piperazine, 2-methylpiperazine, phenylenediamine, tolylenediamine, xylenediamine, and 3,3′-dichloro-4. , 4'-biphenyldiamine, 2,6-diaminopyridine, 4,4'-diaminodiphenylmethane, tetrachloro-m-phenylenediamine, tetrachloro-p-phenylenediamine, and the like; ethylene glycol, propylene glycol, 1,4 -Polyols such as butanediol, 1,6-hexanediol, xylylene glycol, glycerin, trimethylolpropane, cyclohexanedimethanol and the like. These may be used alone or in combination of two or more.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はかかる実施例により何ら限定されない。なお、実施例および比較例において行った各種分析・測定の条件は下記の通りである。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples. In addition, the conditions of the various analysis and measurement performed in the Example and the comparative example are as follows.
(GPC分析による数平均分子量(Mn)および分子量分布(Mw/Mn)の測定)
 測定カラムとして昭和電工社製KF-802.5およびKF-803Lを直列に繋いで使用し、溶剤はTHF、流速は0.9ml/min、カラム温度は40℃の条件で分析を行った。標準物質としては、東ソー社製ポリスチレンスタンダード(タイプ:PS-オリゴマーキット)を用いた。
(Measurement of number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) by GPC analysis)
KF-802.5 and KF-803L manufactured by Showa Denko KK were connected in series as measurement columns, and the analysis was performed under the conditions of THF as the solvent, 0.9 ml / min as the flow rate, and 40 ° C. as the column temperature. As a standard substance, polystyrene standard (type: PS-oligomer kit) manufactured by Tosoh Corporation was used.
H-NMR分析による単量体単位のモル比の測定)
 ブルカー社製AV400を使用し、測定溶媒として重クロロホルムを使用して行った。
H-NMRで得られたスペクトルの積分比より、コポリエーテルポリオール中の各単量体単位の導入比率を算出した。
(Measurement of molar ratio of monomer units by 1 H-NMR analysis)
AV400 manufactured by Bruker was used, and deuterated chloroform was used as a measurement solvent.
From the integral ratio of the spectrum obtained by 1 H-NMR, the introduction ratio of each monomer unit in the copolyether polyol was calculated.
(MALDI-TOFMS分析による末端水酸基純度の測定)
 ブルカー社製Ultrafrextremeを使用し、マトリックスとしてトランス-2-[3-(4-t-ブチルフェニル)-2-メチル-2-プロペニリデン]マロノニトリルをカチオン化剤としてトリフルオロ酢酸ナトリウム塩を使用して行った。測定したイオン強度比率を用い、下記式から末端水酸基純度を求めた。
末端水酸基純度={コポリエーテルポリオール質量/(コポリエーテルポリオール質量+大環状ポリエーテル質量)}×100(%)
(Measurement of terminal hydroxyl group purity by MALDI-TOFMS analysis)
It is carried out using an ultraflextimer manufactured by Bruker, using trans-2- [3- (4-t-butylphenyl) -2-methyl-2-propenylidene] malononitrile as the matrix and sodium trifluoroacetate as the cationizing agent. It was. The terminal hydroxyl group purity was determined from the following formula using the measured ionic strength ratio.
Terminal hydroxyl group purity = {copolyether polyol mass / (copolyether polyol mass + macrocyclic polyether mass)} × 100 (%)
<実施例1>
 撹拌機、温度計、窒素シール管を備えた反応容器に、THFを281.4g(3.90mol)、MTHFを105.7g(1.23mol)、無水酢酸を7.6g(0.07mol)、酢酸を7.3g(0.12mol)、ナフィオン(登録商標)NR50を20g加え、23℃で29時間撹拌した。
 反応後、ナフィオン(登録商標)NR50を濾別し、減圧下で濃縮を行って未反応モノマー、酢酸、無水酢酸を留去した。得られた残渣にメタノールを100g、水酸化ナトリウムを1g(25mmol)加え、加熱還流を行いつつ、メタノールおよび発生する酢酸メチルを留去させながら4時間反応を行った。
 反応後、酢酸を1.5g(25mmol)、トルエンを200g加え、蒸留水50gで有機層を5回洗浄し、有機層を減圧下濃縮し、コポリエーテルポリオール120.7gを得た。
 GPC分析より、得られたポリオールの数平均分子量(Mn)は3,104であり、分子量分布(Mw/Mn)は2.01であった。H-NMR分析より、THF由来の単量体単位およびMTHF由来の単量体単位のモル比は、THF由来の単量体単位/MTHF由来の単量体単位=84/16であった。MALDI-TOFMS分析より、末端水酸基純度は99.8%であった。
<Example 1>
In a reaction vessel equipped with a stirrer, a thermometer and a nitrogen seal tube, 281.4 g (3.90 mol) of THF, 105.7 g (1.23 mol) of MTHF, 7.6 g (0.07 mol) of acetic anhydride, 7.3 g (0.12 mol) of acetic acid and 20 g of Nafion (registered trademark) NR50 were added and stirred at 23 ° C. for 29 hours.
After the reaction, Nafion (registered trademark) NR50 was filtered off and concentrated under reduced pressure to distill off unreacted monomers, acetic acid and acetic anhydride. 100 g of methanol and 1 g (25 mmol) of sodium hydroxide were added to the obtained residue, and the reaction was carried out for 4 hours while distilling off methanol and generated methyl acetate while heating under reflux.
After the reaction, 1.5 g (25 mmol) of acetic acid and 200 g of toluene were added, the organic layer was washed 5 times with 50 g of distilled water, and the organic layer was concentrated under reduced pressure to obtain 120.7 g of a copolyether polyol.
From the GPC analysis, the obtained polyol had a number average molecular weight (Mn) of 3,104 and a molecular weight distribution (Mw / Mn) of 2.01. From 1 H-NMR analysis, the molar ratio of the monomer unit derived from THF and the monomer unit derived from MTHF was found to be monomer unit derived from THF / monomer unit derived from MTH = 84/16. From the MALDI-TOFMS analysis, the terminal hydroxyl group purity was 99.8%.
<比較例1(特開昭52-138598号公報実施例9の追試実験)>
 撹拌機、温度計、窒素シール管を備えた反応容器に、THFを80.0g(1.11mol)、MTHFを20.0g(0.232mol)加え、ナフィオン(登録商標)NR50を1g加えた。無水酢酸を9.0g(0.088mol)、酢酸を1.0g(0.017mol)加え、22℃で4時間撹拌した。
 反応後、ナフィオン(登録商標)NR50を濾別し、減圧下で濃縮を行って未反応モノマー、酢酸、無水酢酸を留去した。得られた残渣にメタノールを30g、水酸化ナトリウムを0.03g(0.75mmol)加え、加熱還流を行いつつ、メタノールおよび発生する酢酸メチルを留去させながら4時間反応を行った。
 反応後、酢酸を0.045g(0.75mmol)、トルエンを100g加え、蒸留水20gで有機層を5回洗浄し、有機層を減圧下濃縮し、コポリエーテルポリオール42.2gを得た。
 GPC分析より、得られたポリオールの数平均分子量(Mn)は3,169であり、分子量分布(Mw/Mn)は3.08であった。H-NMR分析より、THF由来の単量体単位およびMTHF由来の単量体単位のモル比は、THF由来の単量体単位/MTHF由来の単量体単位=89/11であった。MALDI-TOFMS分析より、末端水酸基純度は99.7%であった。
<Comparative Example 1 (Follow-up Experiment of Example 9 of JP-A-52-138598)>
To a reaction vessel equipped with a stirrer, a thermometer, and a nitrogen seal tube, 80.0 g (1.11 mol) of THF, 20.0 g (0.232 mol) of MTHF, and 1 g of Nafion (registered trademark) NR50 were added. 9.0 g (0.088 mol) of acetic anhydride and 1.0 g (0.017 mol) of acetic acid were added and stirred at 22 ° C. for 4 hours.
After the reaction, Nafion (registered trademark) NR50 was filtered off and concentrated under reduced pressure to distill off unreacted monomers, acetic acid and acetic anhydride. 30 g of methanol and 0.03 g (0.75 mmol) of sodium hydroxide were added to the obtained residue, and the reaction was carried out for 4 hours while distilling off methanol and generated methyl acetate while heating under reflux.
After the reaction, 0.045 g (0.75 mmol) of acetic acid and 100 g of toluene were added, the organic layer was washed 5 times with 20 g of distilled water, and the organic layer was concentrated under reduced pressure to obtain 42.2 g of a copolyether polyol.
From the GPC analysis, the obtained polyol had a number average molecular weight (Mn) of 3,169 and a molecular weight distribution (Mw / Mn) of 3.08. From 1 H-NMR analysis, the molar ratio of the monomer unit derived from THF and the monomer unit derived from MTH was monomer unit derived from THF / monomer unit derived from MTH = 89/11. According to MALDI-TOFMS analysis, the terminal hydroxyl group purity was 99.7%.
<比較例2(保土谷化学工業株式会社製「PTG-L」の分析)>
 保土谷化学工業株式会社が製造、販売する「PTG-L3000」(THFとMTHFのコポリエーテルポリオール)を用い、分析を行った。GPC分析より、数平均分子量(Mn)は3,055であり、分子量分布(Mw/Mn)は2.04であった。H-NMR分析より、THF由来の単量体単位およびMTHF由来の単量体単位のモル比は、THF由来の単量体単位/MTHF由来の単量体単位=85/15であった。MALDI-TOFMS分析より、末端水酸基純度は95.6%であった。
<Comparative Example 2 (analysis of “PTG-L” manufactured by Hodogaya Chemical Co., Ltd.)>
Analysis was performed using “PTG-L3000” (a copolyether polyol of THF and MTHF) manufactured and sold by Hodogaya Chemical Co., Ltd. From the GPC analysis, the number average molecular weight (Mn) was 3,055 and the molecular weight distribution (Mw / Mn) was 2.04. From the 1 H-NMR analysis, the molar ratio of the monomer unit derived from THF and the monomer unit derived from MTH was monomer unit derived from THF / monomer unit derived from MTH = 85/15. According to MALDI-TOFMS analysis, the terminal hydroxyl group purity was 95.6%.
<実施例2>
 撹拌機、温度計、窒素シール管を備えた反応容器に、実施例1で得られたコポリエーテルポリオール79.2g(25.5mmol)、4,4’-ジフェニルメタンジイソシアネート(MDI)10.2g(40.8mmol)を仕込み、60℃で5時間、プレポリマー化反応を行った。その後、ジメチルアセトアミド(DMAc)100gを仕込み、ジエチルアミン0.14g(1.9mmol)、エチレンジアミン0.86g(14.3mmol)のDMAc(52g)溶液を25℃で一括添加し、30分間撹拌し、ポリウレタン溶液を得た。
<Example 2>
In a reaction vessel equipped with a stirrer, a thermometer, and a nitrogen seal tube, 79.2 g (25.5 mmol) of the copolyether polyol obtained in Example 1 and 10.2 g of 40,4′-diphenylmethane diisocyanate (MDI) (40 8 mmol), and a prepolymerization reaction was performed at 60 ° C. for 5 hours. Thereafter, 100 g of dimethylacetamide (DMAc) was charged, a solution of 0.14 g (1.9 mmol) of diethylamine and 0.86 g (14.3 mmol) of ethylenediamine in a DMAc (52 g) solution at 25 ° C., stirred for 30 minutes, and polyurethane A solution was obtained.
<比較例3>
 実施例2において、実施例1で得られたコポリエーテルポリオールに代えて、比較例1で得られたコポリエーテルポリオールを用いたこと以外は、実施例2と同様の操作を行い、ポリウレタン溶液を得た。
<Comparative Example 3>
In Example 2, it replaced with the copolyether polyol obtained in Example 1, and performed the same operation as Example 2 except having used the copolyether polyol obtained in Comparative Example 1, and obtained the polyurethane solution. It was.
<比較例4>
 実施例2において、実施例1で得られたコポリエーテルポリオールに代えて、比較例2のコポリエーテルポリオールを用いたこと以外は、実施例2と同様の操作を行い、ポリウレタン溶液を得た。
<Comparative example 4>
In Example 2, it replaced with the copolyether polyol obtained in Example 1, and performed the same operation as Example 2 except having used the copolyether polyol of the comparative example 2, and obtained the polyurethane solution.
(ポリウレタンフィルムの評価)
 実施例2、比較例3、4で得られたポリウレタン溶液を、バーコーターを用いてポリプロピレンシート上に塗布し、80℃で24時間熱風乾燥し、膜厚100μmのポリウレタンフィルムを得た。このフィルムからJIS4号ダンベル形試験片、および5cm×5mmの短冊形試験片を作製した。この試験片について、インストロン5566型引張試験機を用い、各種引張試験を行った。
 破断強度、破断伸びはJIS4号ダンベル形試験片を用い、標線区間を20mmに設定し、引張速度500mm/分、25℃の条件で引張試験を行った。
 弾性回復性は5cm×5mmの短冊形試験片を用い、初期長Lを40mmに設定し、引張速度を500mm/分とし、伸びが300%になったら、伸びを0%に戻し、応力が0になった時点の長さLを求めた。温度は-10℃で実施した。弾性回復率(%)=(2-L/L)×100と定義し、弾性回復率を求めた。
 また、得られたフィルムの表面を目視で観察し、ブリードアウト(ポリウレタン表面へのポリウレタン以外の成分の析出)がないか調べた。
 測定結果を表1に示す。
(Evaluation of polyurethane film)
The polyurethane solutions obtained in Example 2 and Comparative Examples 3 and 4 were coated on a polypropylene sheet using a bar coater and dried with hot air at 80 ° C. for 24 hours to obtain a polyurethane film having a thickness of 100 μm. From this film, a JIS No. 4 dumbbell-shaped test piece and a 5 cm × 5 mm strip-shaped test piece were prepared. This test piece was subjected to various tensile tests using an Instron 5566 type tensile tester.
The breaking strength and breaking elongation were JIS No. 4 dumbbell-shaped test pieces, the marked section was set to 20 mm, and a tensile test was performed under the conditions of a tensile speed of 500 mm / min and 25 ° C.
Elastic recovery is a strip test piece of 5 cm × 5 mm, the initial length L 0 is set to 40 mm, the tensile speed is set to 500 mm / min, and when the elongation reaches 300%, the elongation is returned to 0% and the stress is reduced. The length L when it reached zero was determined. The temperature was -10 ° C. Elastic recovery rate (%) = (2-L / L 0 ) × 100 was defined, and the elastic recovery rate was obtained.
Further, the surface of the obtained film was visually observed to check for bleed-out (deposition of components other than polyurethane on the polyurethane surface).
The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から分かるように、実施例2で得られたポリウレタンは、比較例3で得られたポリウレタンと比較し、低温における弾性回復性が改善されている。これは、比較例3においては、使用したコポリエーテルポリオール中の分子量分布(Mw/Mn)が大きいため、数平均分子量(Mn)よりも相当程度高い分子量を有するコポリエーテルポリオールに基づく高分子量ポリウレタンの量が相対的に多くなったことが原因と考えられる。
 また、実施例2で得られたポリウレタンは、比較例4で得られたポリウレタンと比較し、強度および伸度が改善され、さらにブリードアウトが抑制されている。これは、比較例4においては、使用したコポリエーテルポリオールの末端水酸基純度が低いため、大環状ポリエーテルがポリウレタン中に残り、ポリマー鎖間の水素結合が弱まったためと考えられる。
 以上より、本発明のコポリエーテルポリオールを用いたポリウレタンは、従来品に比べ、強度、伸度および低温における弾性回復性に優れ、ブリードアウトも抑制されることがわかる。
As can be seen from the results in Table 1, the polyurethane obtained in Example 2 has improved elastic recovery at low temperatures as compared with the polyurethane obtained in Comparative Example 3. This is because, in Comparative Example 3, since the molecular weight distribution (Mw / Mn) in the used copolyether polyol is large, the high molecular weight polyurethane based on the copolyether polyol having a molecular weight considerably higher than the number average molecular weight (Mn). This is thought to be due to the relatively large amount.
In addition, the polyurethane obtained in Example 2 has improved strength and elongation, and further suppressed bleed out, compared with the polyurethane obtained in Comparative Example 4. This is presumably because, in Comparative Example 4, since the terminal hydroxyl group purity of the copolyether polyol used was low, the macrocyclic polyether remained in the polyurethane and the hydrogen bonds between the polymer chains were weakened.
From the above, it can be seen that the polyurethane using the copolyether polyol of the present invention is superior in strength, elongation, and elastic recovery at low temperature, and bleed-out is also suppressed as compared with conventional products.
 本発明のコポリエーテルポリオールを用いたポリウレタンは、従来品に比べ、強度、伸度および低温における弾性回復性に優れ、ブリードアウトも抑制されるため、例えば弾性繊維などの原料として有用である。また本発明のコポリエーテルポリオールはポリウレタンの原料用途以外にも、工業薬品・原料など各種用途に好適に使用可能である。 The polyurethane using the copolyether polyol of the present invention is useful as a raw material for elastic fibers, for example, because it is superior in strength, elongation, and elastic recovery at low temperatures and suppresses bleed out as compared with conventional products. The copolyether polyol of the present invention can be suitably used for various uses such as industrial chemicals and raw materials in addition to the use of polyurethane raw materials.

Claims (5)

  1.  テトラヒドロフラン由来の単量体単位とアルキルテトラヒドロフラン由来の単量体単位を含むコポリエーテルポリオールであって、末端水酸基純度が97.0~100.0%であり、分子量分布(Mw/Mn)が1.05~2.5である、コポリエーテルポリオール。 A copolyether polyol comprising a monomer unit derived from tetrahydrofuran and a monomer unit derived from alkyltetrahydrofuran, having a terminal hydroxyl group purity of 97.0 to 100.0% and a molecular weight distribution (Mw / Mn) of 1. A copolyether polyol which is from 05 to 2.5.
  2.  前記アルキルテトラヒドロフランが3-メチルテトラヒドロフランである、請求項1に記載のコポリエーテルポリオール。 The copolyether polyol according to claim 1, wherein the alkyltetrahydrofuran is 3-methyltetrahydrofuran.
  3.  テトラヒドロフラン由来の単量体単位およびアルキルテトラヒドロフラン由来の単量体単位のモル比が、テトラヒドロフラン由来の単量体単位/アルキルテトラヒドロフラン由来の単量体単位=88/12~50/50である、請求項1または2に記載のコポリエーテルポリオール。 The molar ratio of the monomer unit derived from tetrahydrofuran and the monomer unit derived from alkyltetrahydrofuran is monomer unit derived from tetrahydrofuran / monomer unit derived from alkyltetrahydrofuran = 88/12 to 50/50. The copolyether polyol according to 1 or 2.
  4.  請求項1~3のいずれかに記載のコポリエーテルポリオール由来の単位を含むポリウレタン。 A polyurethane comprising units derived from the copolyether polyol according to any one of claims 1 to 3.
  5.  酢酸、無水酢酸および陽イオン交換樹脂の存在下にテトラヒドロフランおよびアルキルテトラヒドロフランをカチオン開環重合させた後、脱アセチル化する工程を含む請求項1~3のいずれかに記載のコポリエーテルポリオールの製造方法であって、
     前記カチオン開環重合において使用される酢酸および無水酢酸の質量比が、酢酸/無水酢酸=30/70~70/30である、コポリエーテルポリオールの製造方法。
    The method for producing a copolyether polyol according to any one of claims 1 to 3, comprising a step of subjecting tetrahydrofuran and alkyltetrahydrofuran to cationic ring-opening polymerization in the presence of acetic acid, acetic anhydride and a cation exchange resin, followed by deacetylation. Because
    A method for producing a copolyether polyol, wherein a mass ratio of acetic acid and acetic anhydride used in the cationic ring-opening polymerization is acetic acid / acetic anhydride = 30/70 to 70/30.
PCT/JP2018/004735 2017-02-16 2018-02-09 Copolyether polyol, polyurethane and method for producing copolyether polyol WO2018151057A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880009990.1A CN110291132B (en) 2017-02-16 2018-02-09 Copolymerized polyether polyol, polyurethane, and method for producing copolymerized polyether polyol
JP2018568503A JPWO2018151057A1 (en) 2017-02-16 2018-02-09 Copolyether polyol, polyurethane and method for producing copolyether polyol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017026953 2017-02-16
JP2017-026953 2017-02-16

Publications (1)

Publication Number Publication Date
WO2018151057A1 true WO2018151057A1 (en) 2018-08-23

Family

ID=63170359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004735 WO2018151057A1 (en) 2017-02-16 2018-02-09 Copolyether polyol, polyurethane and method for producing copolyether polyol

Country Status (4)

Country Link
JP (1) JPWO2018151057A1 (en)
CN (1) CN110291132B (en)
TW (1) TW201835156A (en)
WO (1) WO2018151057A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138598A (en) * 1976-03-31 1977-11-18 Du Pont Process for preparing poly*tetramethylene ether*glycol
JPS61291624A (en) * 1985-06-18 1986-12-22 Sanyo Chem Ind Ltd Production of polytetramethylene glycol
JPH0117486B2 (en) * 1980-04-11 1989-03-30 Bee Aa Esu Efu Ag
JPH11269261A (en) * 1998-03-23 1999-10-05 Mitsubishi Chemical Corp Preparation of polytetramethylene ether glycol
JP2001220439A (en) * 1999-11-29 2001-08-14 Mitsubishi Chemicals Corp Method for continuously producing polyalkylene ether glycol diester
JP2001302785A (en) * 2000-04-18 2001-10-31 Mitsubishi Chemicals Corp Polytetramethylene ether glycol with reduced amount of cyclic oligomer and its manufacturing method
JP2005036047A (en) * 2003-07-16 2005-02-10 Mitsubishi Chemicals Corp Method for producing copolymerized polyetherpolyol
JP2012524149A (en) * 2009-04-15 2012-10-11 インビスタ テクノロジーズ エス エイ アール エル Improved catalyst for the production of polymers of tetrahydrofuran

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163115A (en) * 1976-03-31 1979-07-31 E. I. Du Pont De Nemours And Company Preparation of esters of poly-(tetramethylene ether) glycol

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138598A (en) * 1976-03-31 1977-11-18 Du Pont Process for preparing poly*tetramethylene ether*glycol
JPH0117486B2 (en) * 1980-04-11 1989-03-30 Bee Aa Esu Efu Ag
JPS61291624A (en) * 1985-06-18 1986-12-22 Sanyo Chem Ind Ltd Production of polytetramethylene glycol
JPH11269261A (en) * 1998-03-23 1999-10-05 Mitsubishi Chemical Corp Preparation of polytetramethylene ether glycol
JP2001220439A (en) * 1999-11-29 2001-08-14 Mitsubishi Chemicals Corp Method for continuously producing polyalkylene ether glycol diester
JP2001302785A (en) * 2000-04-18 2001-10-31 Mitsubishi Chemicals Corp Polytetramethylene ether glycol with reduced amount of cyclic oligomer and its manufacturing method
JP2005036047A (en) * 2003-07-16 2005-02-10 Mitsubishi Chemicals Corp Method for producing copolymerized polyetherpolyol
JP2012524149A (en) * 2009-04-15 2012-10-11 インビスタ テクノロジーズ エス エイ アール エル Improved catalyst for the production of polymers of tetrahydrofuran

Also Published As

Publication number Publication date
CN110291132B (en) 2021-12-14
CN110291132A (en) 2019-09-27
TW201835156A (en) 2018-10-01
JPWO2018151057A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
EP0284289B1 (en) Polyurethane resin composition
JP5543915B2 (en) Polyurethane polymer
JP6241389B2 (en) Method for producing polycarbonate diol and method for producing polyurethane
KR101858992B1 (en) Method for preparing thermoplastic poly urethane having azide group
WO2013180006A1 (en) Polyurethane
JP5464889B2 (en) Polycarbonate diol
EP3981814B1 (en) Polyol composition comprising anhydrosugar alcohols and anhydrosugar alcohol polymer
JP2023533978A (en) Alkylene oxide-added polyol composition, polyurethane using the same, and hot-melt adhesive using the same
US8912363B2 (en) Chlorinated polyether and polyurethane obtained therefrom
WO2018151057A1 (en) Copolyether polyol, polyurethane and method for producing copolyether polyol
CN115725038A (en) Transparent stretchable polyurethane material and preparation method and application thereof
EP1252213A1 (en) Hydrophobic light stable polyurethane elastomer with improved mechanical properties
JP2011116900A (en) Chlorinated polyether composition and method for manufacturing the same
JP2010174053A (en) Polyether polyol
JP5716284B2 (en) Polyurethane resin
JP2678547B2 (en) Polyurethane resin
JPH0649166A (en) Production of polyurethane
KR20220153270A (en) Polyol composition containing lactone-based ester group capable of providing adhesive with improved adhesion strength and toughness, chain extender comprising the polyol composition and chain-extended polyurethane using the same, and adhesive comprising the chain-extended polyurethane
JP2008101178A (en) Urethane resin composition
KR20230082331A (en) Composition of chain-extended polyol with lactone-based compound capable of providing adhesive with improved adhesion strength and good economy and a method for preparing the same, and a polyurethane pepolymer, a chain-extended polyurethane and an adhesive prepared by using the polyol composition
KR20220153269A (en) Chain-extended polyol composition capable of providing adhesive with improved adhesion strength and toughness, chain extender comprising the chain-extended polyol composition and chain-extended polyurethane using the same, and adhesive comprising the chain-extended polyurethane
JP2010084029A (en) Polyether polyol
JP2022081256A (en) Polyisocyanate composition and resin composition
JPH0248008B2 (en)
JPH05194694A (en) Polyurethane polyol and polyurethane coating composition using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754393

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568503

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754393

Country of ref document: EP

Kind code of ref document: A1