JPH0248008B2 - - Google Patents

Info

Publication number
JPH0248008B2
JPH0248008B2 JP58135383A JP13538383A JPH0248008B2 JP H0248008 B2 JPH0248008 B2 JP H0248008B2 JP 58135383 A JP58135383 A JP 58135383A JP 13538383 A JP13538383 A JP 13538383A JP H0248008 B2 JPH0248008 B2 JP H0248008B2
Authority
JP
Japan
Prior art keywords
glycol
diisocyanate
mol
properties
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58135383A
Other languages
Japanese (ja)
Other versions
JPS6026021A (en
Inventor
Mitsuru Ikeda
Kenichi Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP58135383A priority Critical patent/JPS6026021A/en
Publication of JPS6026021A publication Critical patent/JPS6026021A/en
Publication of JPH0248008B2 publication Critical patent/JPH0248008B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は匟性回埩性、特に䜎枩時の匟性回埩性
の優れたポリりレタン重合䜓の補造法に関するも
のである。 近幎柔軟ないわゆる゜フトセグメントから成る
゜フトドメむンず氎玠結合で凝集し剛性のあるパ
ラクリスタリン的ないわゆるハヌドセグメントか
ら成るハヌドドメむンの盞ミクロ構造を持぀た
熱可塑性セグメント化ポリりレタン重合䜓がドメ
むンの性質、濃床、サむズ、サむズ分垃等を倉化
せしめるこずにより最終目的に適合した性質を付
䞎し埗るこずにより泚目され皮々の展開がなされ
おいる。ハヌドセグメントずしおは通垞短鎖のゞ
オヌルや短鎖のゞアミンず結合した芳銙族あるい
は脂肪族のゞむ゜シアネヌトから成り、゜フトセ
グメントずしおはポリオキシアルキレングリコヌ
ル、瞮合系ポリ゚ステルグリコヌル、ラクトン系
ポリ゚ステルグリコヌル、ポリカヌボネヌトゞオ
ヌル等が甚いられる。これらの゜フトセグメント
成分の内、䜎枩特性、耐加氎分解性の面からポリ
オキシアルキレングリコヌル、特に優れた機械的
性質、耐吞湿性等の面からポリオキシテトラメチ
レングリコヌルが賞甚され、ポリりレタン重合䜓
ずしお繊維、人工皮革、熱可塑性りレタン暹脂、
泚型゚ラストマヌ甚ずしお甚いられおいる。確か
にポリオキシアルキレングリコヌルの内ポリオキ
シテトラメチレングリコヌルは䞊述の様に優れた
性質をポリりレタン重合䜓に付䞎するもののポリ
オキシテトラメチレングリコヌルの持぀結晶化傟
向のため゜フトセグメントに機胜する匟性的な性
質が損われ、特に䜎枩時の匟性回埩等䜎枩特性は
必ずしも満足されるものではなく垞枩においおも
匟性回埩等の向䞊が望たれおいるのが珟状であ
る。 本発明者らはこのような問題を解決すべく鋭意
研究を加えおきた結果、偎鎖メチル基を持぀特定
のポリアルキレン゚ヌテルゞオヌルを゜フトセグ
メント成分ずしお甚いた堎合優れた䜎枩特性およ
び匟性回埩性を持぀ポリりレタン重合䜓を䞎える
こずを芋出し、本発明に到達した。 すなわち、本発明は有機倚官胜む゜シアネヌト
ずポリオキシアルキレングリコヌルから䜎分子量
の個又は個以䞊の掻性氎玠含有化合物の存圚
䞋又は非存圚䞋でポリりレタン重合䜓を補造する
にあたり、該ポリオキシアルキレングリコヌルの
内少くずも10重量以䞊は䞋蚘匏で衚わさ
れるポリアルキレン゚ヌテルゞオヌルを甚いるこ
ずを特城ずするポリりレタン重合䜓の補造を䟛す
るものである。 HO−−−n−−−o  䜆し、繰返し単䜍が
The present invention relates to a method for producing a polyurethane polymer having excellent elastic recovery properties, especially elastic recovery properties at low temperatures. In recent years, thermoplastic segmented polyurethane polymers with a two-phase microstructure of a soft domain consisting of flexible so-called soft segments and a hard domain consisting of rigid paracrystalline so-called hard segments aggregated by hydrogen bonding have been developed. It has attracted attention because it can impart properties suitable for the final purpose by changing its concentration, size, size distribution, etc., and has been developed in various ways. Hard segments usually consist of aromatic or aliphatic diisocyanates bonded to short-chain diols or short-chain diamines, while soft segments include polyoxyalkylene glycols, condensed polyester glycols, lactone polyester glycols, polycarbonate diols, etc. used. Among these soft segment components, polyoxyalkylene glycol is preferred for its low-temperature properties and hydrolysis resistance, polyoxytetramethylene glycol is preferred for its excellent mechanical properties and moisture absorption resistance, and polyurethane polymer as fibers, artificial leather, thermoplastic urethane resin,
Used for cast elastomers. It is true that among polyoxyalkylene glycols, polyoxytetramethylene glycol imparts excellent properties to polyurethane polymers as mentioned above, but due to the crystallization tendency of polyoxytetramethylene glycol, it has elastic properties that function as a soft segment. In particular, low-temperature properties such as elastic recovery at low temperatures are not necessarily satisfied, and it is currently desired to improve elastic recovery even at room temperature. The present inventors have conducted intensive research to solve these problems, and have found that when a specific polyalkylene ether diol having a side chain methyl group is used as a soft segment component, excellent low-temperature properties and elastic recovery properties can be obtained. The present invention was achieved by discovering that a polyurethane polymer having the following properties can be obtained. That is, the present invention provides a method for producing a polyurethane polymer from an organic polyfunctional isocyanate and a polyoxyalkylene glycol in the presence or absence of two or more active hydrogen-containing compounds of low molecular weight. The purpose of the present invention is to produce a polyurethane polymer characterized in that at least 10% by weight of the polyalkylene ether diol represented by the following formula (2) is used. HO−(A-O−) n −(B−O−) o H () (However, if the repeating unit is

【匏】 −CH2−CH2−CH2−CH2−−であり、は
[Formula] −(CH 2 −CH 2 −CH 2 −CH 2 −O−), and A is

【匏】は−CH2−CH2−CH2 −CH2−で、ずはないし140で
1090〜100モル比を満足する正
の数 次に本発明に぀いお詳现に説明する。 本発明に甚いられる有機倚官胜む゜シアネヌト
ずしおは特に限られるものではなく、通垞ポリり
レタン重合䜓を埗るに甚いられる有機ゞむ゜シア
ネヌト、有機トリむ゜シアネヌトは䜕れでも甚い
るこずが出来る。すなわち芳銙族系のゞむ゜シア
ネヌトずしおは−トリレンゞむ゜シアネヌ
ト、−トリレンゞむ゜シアネヌト、
4′−ゞプニルメタンゞむ゜シアネヌト、
−ナフタレンゞむ゜シアネヌト、−キシリレン
ゞむ゜シアネヌト、−キシリレンゞむ゜シアネ
ヌト、−プニレンゞむ゜シアネヌト、−フ
゚ニレンゞむ゜シアネヌト、トリゞンむ゜シアネ
ヌト等が甚いられる。たた若干の架橋を必芁ずす
る堎合は有機トリむ゜シアネヌトずしおトリプ
ニルメタントリむ゜シアネヌト、トリスむ゜シ
アネヌトプニルチオフオスプヌトなどを少
量䜵甚しおも良い。脂肪族ゞむ゜シアネヌトずし
おは−ヘキサメチレンゞむ゜シアネヌト、
10−デカメチレンゞむ゜シアネヌト、む゜フ
オロンゞむ゜シアネヌト、ビスむ゜シアナヌト
メチルシクロヘキサン、ゞシクロヘキシルメタ
ンゞむ゜シアネヌト、トリメチルヘキサメチレン
ゞむ゜シアネヌト、リゞンゞむ゜シアネヌトなど
が甚いられる。 䜎分子量の個たたは個以䞊の掻性氎玠をも
぀化合物ずしおは官胜性䜎分子化合物ずしお
氎、゚チレンゞアミン、プロピレンゞアミン、フ
゚ニレンゞアミン、ゞプニルメタンゞアミン、
キシレンゞアミン等の脂肪族あるいは芳銙族のゞ
アミン、゚チレングリコヌル、プロピレングリコ
ヌル、ブチレングリコヌル等のゞオヌル、その他
゚タノヌルアミンヒドラゞンなどを甚いるこずが
出来、通垞これらの化合物は鎖延長剀ずしお甚い
られ、たた若干の架橋を必芁ずする堎合はトリメ
チロヌルプロパン、グリセリンのような官胜
性、たたはN′N′−テトラキス−
ヒドロキシプロピル゚チレンゞアミンのような
官胜性化合物が架橋剀ずしお少量甚いられる。 ポリオキシアルキレングリコヌルずしおはポリ
゚チレングリコヌル、ポリおよび
−プロピレングリコヌル、ポリオキシテトラメ
チレングリコヌル、ポリオキシヘキサメチレング
リコヌル、゚チレンオキサむドずプロピレンオキ
サむドや゚チレンオキサむドずテトラヒドロフラ
ンから埗られるランダム共重合䜓たたはブロツク
共重合䜓のグリコヌルが甚いられる。曎にこのポ
リオキシアルキレングリコヌルの内少くずも10重
量以䞊奜たしくは20重量以䞊は偎鎖メチル基
を持぀た前蚘匏で瀺される特定のポリアル
キレン゚ヌテルゞオヌルが甚いられる。 この特定のポリアルキレン゚ヌテルゞオヌル
は、−メチルオキセタンたたは−メチルオキ
セタンずテトラヒドロフランのカチオン開環重合
たたはカチオン開環重合により容易に埗られる
が、この補造に぀いおの詳现は特願昭57−8610お
よび特願昭57−8611号各明现曞に述べおいる。す
なわち−メチルオキセタンたたは−メチルオ
キセタンずテトラヒドロフランの混合系に過塩玠
酞ず無氎酢酞たたは過塩玠酞ず発煙硫酞、さらに
はフルオロスルホン酞のような超匷酞を重合開始
剀にするこずにより埗られる反応生成物を鹞化凊
理を行぀お末端ゞオヌルにしお埗られる。−メ
チルオキセタンずテトラヒドロフランのコポリマ
ヌの堎合−メチル−−プロピレン単䜍ず
−テトラメチレン単䜍はランダムに分垃し
おいおもブロツクで分垃しおいおも良く、これら
の分垃の状態は共重合の方法および条件に䟝存す
る。ただ匏で瀺したずの和が玄から
140迄の間奜たしくは玄から100迄の間にあ぀お
か぀の比が1090ないし100モル比
を満足しなければならない。ずの和がより
小さいず゜フトセグメント成分ずしおの分子量が
小さすぎ、゜フトドメむンの機胜が䞍十分になる
したた140より倧きくなるずポリりレタン補造時
の取扱い性、反応性、特に盞分離傟向が珟われる
こず等の面から奜たしくない。たたの比は
が倧になりか぀100すなわち−メチルオキセ
タンのホモポリマヌに近ずく堎合は良いが、10
90未満すなわち共重合䜓䞭に占める−メチルオ
キセタン単䜍が10モル未満になるず偎鎖メチル
基の分垃が少くなり過ぎテトラヒドロフランに基
くポリオキシテトラメチレンブロツクの結晶性が
珟われおくるため目的ずする䜎枩特性、匟性回埩
性の機胜がそこなわれるため奜たしくない。たた
同様な理由で、本発明によるポリアルキレン゚ヌ
テルゞオヌルをポリテトラメチレングリコヌル
等、他のポリアルキレングリコヌルず䜵甚するこ
ずも出来るが本発明によるポリアルキレン゚ヌテ
ルゞオヌル匏は少くずも10重量以䞊
奜たしくは20重量以䞊甚いなければならない。
なお䜵甚出来るポリアルキレングリコヌルは特に
限定されないが、ポリ゚チレングリコヌル、ポリ
プロピレングリコヌル、゚チレンオキサむドずプ
ロピレンオキサむドたたぱチレンオキサむドず
テトラヒドロフランから埗られるランダムたたは
ブロツク共重合䜓は芪氎性が倧き過ぎるため奜た
しくなく、玚のアルコヌルを含むポリ−
−プロピレングリコヌルはポリりレタン化の反応
性が䜎い点から奜たしくない。䞀般には垂堎で容
易に入手し埗る点からポリテトラメチレングリコ
ヌルが良奜な結果を䞎える。 次にポリりレタン化の反応であるが、反応成分
を䞀床に反応させるいわゆるワンシペツト法たた
は本発明のポリアルキレン゚ヌテルゞオヌルない
しは他のポリオキシアルキレングリコヌルずの混
合物より先ずむ゜シアネヌト末端を持぀プレポリ
マヌを䜜り鎖延長剀ずしお䜎分子のゞオヌルやゞ
アミン等を反応させるいわゆるプレポリマヌ法を
甚いるこずが出来るし、これらの反応にアニ゜ヌ
ル、クロルベンれン、−ゞクロルベンれン、
−メチルペンタノン−、ゞメチルホルムアミ
ド、−ゞメチルアセトアミドなどの溶媒を
甚いお溶液状態で反応させおも良い。曎にたた掻
性氎玠化合物ずむ゜シアネヌト基ずの反応を促進
するために第玚アミン、䟋えばトリ゚チルアミ
ン、ゞメチル゚タノヌルアミン、−ゞアザ
ビシクロ〔5.4.0〕−−りンデセン、モルホリン
誘導䜓など、あるいはゞブチル錫ゞラりリレヌ
ト、−゚チルカプロン酞第錫、ゞブチル錫−
ゞ−゚チルヘキ゜゚ヌト等の有機金属化合
物を觊媒ずしお甚いるこずが出来る。 次に実斜䟋により本発明の内容を具䜓的に説明
する。 なお実斜䟋に瀺しおいる氎酞基䟡は無氎フタル
酞−ピリゞン法で枬定した倀であり酞䟡は同じく
ピリゞン容液の盎接䞭和滎定法によ぀お埗られた
倀である。 匕匵匷䌞床特性は玄mm厚のプレスシヌトから
JIS準拠のダンベル型詊隓片を打抜き、23℃、65
RH条件䞋で10日以䞊調湿しおからクロスヘツ
ド速床50mmminでテンシロン䞇胜匕匵詊隓機を
甚いお枬定した。匕匵砎断匷床、匕匵砎断䌞床、
匕匵降䌏匷床、100モゞナラス、300モゞナラ
スは埗られた応力−歪曲線から求めた倀である。
たた瞬間匟性回埩率および遅延匟性回埩率は前蚘
ダンベル型詊隓片に距離の暙線を぀け、これを
200延しお分間この延䌞状態に保ち埌応力を
陀いお自由状態にしおから盎ちに暙線間距離を
枬定、続いお応力陀去埌10分が経過しおから再床
暙線間距離を枬定しお次匏から求めた。 瞬間匟性回埩率2a−×100 遅延匟性回埩率2a−×100 実斜䟋  先ず、本発明に甚いられるポリ゚ヌテルゞオヌ
ルの補造法に぀いお述べる。 新しく苛性カリペレツトを加え䞀晩脱氎也燥を
行な぀た−メチルオキセタンに金属ナトリりム
を加え還流脱氎埌蒞溜しお埗た無氎の−メチル
オキセタン100mlに無氎酢酞6.8mlを加え、ドラむ
アむス−メタノヌルの寒剀を甚いお−70℃に冷华
した。この系に70過塩玠酞2.8mlを玄20分にわ
た぀お激しい撹拌䞋に滎䞋した。滎䞋終了埌曎に
−70℃で玄時間撹拌を続けおから玄時間にわ
た぀お埐々に昇枩しお宀枩にもたらした。この間
反応は吞湿を防ぐため倧気ずの接觊を避け也燥窒
玠雰囲気䞋で行われた。埌反応系を密封し宀枩で
50時間攟眮した。反応系は無色透明な粘皠液にな
぀た。玄100mlの玔氎を加えお反応を停止させ、
撹拌䞋に玄90℃に玄時間加枩しお未反応のモノ
マヌを陀去した。氎局を陀去しおから1/2苛性
カリ゚タノヌル溶液を200ml加え玄90℃で時間
加熱撹拌しお鹞化を行な぀た。゚タノヌルを溜去
し゚ヌテルを加え゚ヌテル溶液にしおから掻性炭
および掻性癜土を加え数時間攟眮した。埌固圢分
を別しお゚ヌテルを溜去するず無色透明な粘皠
液状でポリオキシ−−メチルプロピレング
リコヌル玄67収率79.5が埗られた。この
生成物は氎酞基䟡100.9mgKOH、酞䟡1.2mg
KOH、氎酞基䟡から求めた数平均分子量
1112であ぀た。 次にこの埗られたポリオキシ−−メチルプ
ロピレングリコヌルを甚いおポリりレタン化を
詊みた。すなわちポリオキシ−−メチルプロ
ピレングリコヌル20.00.0180モルを300
ml容のフラスコにより先ず撹拌䞋に100℃に加熱
曎に玄mmHg迄枛圧にしお時間脱氎也燥を行
な぀た。内容物を也燥窒玠により垞圧に戻し枩床
が宀枩に䞋぀おから−ゞメチルアセトアミ
ド50mlを加え撹拌溶解した。この溶液にゞプニ
ルメタンゞむ゜シアネヌト9.00.0360モル
を−ゞメチルアセトアミド50mlに溶かした
溶液䞀郚懞濁状を加え曎に觊媒ずしお
−ゞアザビシクロ〔5.4.0〕−−りンデセン以
例DBUず略すの−ゞメチルアセト
アミド溶液を0.05ml加え宀枩で時間撹拌を行な
぀た。この溶液に゚チレンゞアミン1.08
0.0180モルを−ゞメチルアセトアミド
25mlに溶かした溶液を玄20分にわた぀お滎䞋し曎
に宀枩で時間反応を続行した。反応生成物を倧
量の玔氎䞭に加えポリマヌを沈柱させ氎ずメタノ
ヌルで亀互に掗滌し60℃の真空也燥機で玄10時間
也燥するこずによりポリりレタンを埗た。このポ
リりレタンを再床−ゞメチルアセトアミド
に溶解し、10濃床に調補しおからシリコン離型
剀を焌付けたガラス板状にキダステむングした。
颚也、氎掗、也燥埌曎にキダステむングを繰返し
所定の厚味のフむルムを䜜成した。 比范䟋  数平均分子量1003のポリオキシテトラメチレ
ングリコヌル200.0199モル、ゞプニル
メタンゞむ゜シアネヌト9.980.0399モル、
゚チレンゞアミン1.200.0199モルから実斜
䟋ず同様にポリりレタンフむルムを䜜成した。 実斜䟋及び比范䟋で埗られたポリりレタン
フむルムの性胜を比范しお次に瀺す。
[Formula] B is -CH 2 -CH 2 -CH 2 -CH 2 -, m and n are positive values satisfying m+n=6 to 140 and m/n=10/90 to 100/0 (molar ratio). (number) Next, the present invention will be explained in detail. The organic polyfunctional isocyanate used in the present invention is not particularly limited, and any organic diisocyanate or organic triisocyanate that is normally used to obtain a polyurethane polymer can be used. That is, the aromatic diisocyanates include 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, 4,
4'-diphenylmethane diisocyanate, 1,5
- Naphthalene diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, tolidine isocyanate, etc. are used. Further, if some degree of crosslinking is required, a small amount of organic triisocyanate such as triphenylmethane triisocyanate or tris(isocyanate phenyl) thiophosphate may be used in combination. As the aliphatic diisocyanate, 1,6-hexamethylene diisocyanate,
1,10-decamethylene diisocyanate, isophorone diisocyanate, bis(isocyanatomethyl)cyclohexane, dicyclohexylmethane diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, etc. are used. Examples of low molecular weight compounds having two or more active hydrogens include water, ethylenediamine, propylene diamine, phenylene diamine, diphenylmethane diamine, and bifunctional low molecular weight compounds.
Aliphatic or aromatic diamines such as xylene diamine, diols such as ethylene glycol, propylene glycol, butylene glycol, and other ethanolamine hydrazine can be used. These compounds are usually used as chain extenders, and some If cross-linking is required, trifunctional materials such as trimethylolpropane, glycerin, or N,N,N',N'-tetrakis (2-
Tetrafunctional compounds such as (hydroxypropyl) ethylenediamine are used in small amounts as crosslinking agents. Polyoxyalkylene glycols include polyethylene glycol, poly(1,2 and 1,3
-propylene glycol, polyoxytetramethylene glycol, polyoxyhexamethylene glycol, and random or block copolymer glycols obtained from ethylene oxide and propylene oxide or ethylene oxide and tetrahydrofuran. Further, at least 10% by weight, preferably 20% by weight or more of this polyoxyalkylene glycol is a specific polyalkylene ether diol having a side chain methyl group and represented by the above formula (). This particular polyalkylene ether diol can be easily obtained by cationic ring-opening polymerization or cationic ring-opening polymerization of 3-methyloxetane or 3-methyloxetane and tetrahydrofuran, and details regarding its production can be found in Japanese Patent Application No. 57-8610 and This is stated in the specifications of Japanese Patent Application No. 57-8611. That is, it can be obtained by adding perchloric acid and acetic anhydride or perchloric acid and fuming sulfuric acid to a mixed system of 3-methyloxetane or 3-methyloxetane and tetrahydrofuran, or using a super strong acid such as fluorosulfonic acid as a polymerization initiator. The reaction product is saponified to obtain a terminal diol. In the case of a copolymer of 3-methyloxetane and tetrahydrofuran, the 2-methyl-1,3-propylene units and 1,4-tetramethylene units may be distributed randomly or in blocks, and the state of these distributions depends on the copolymerization method and conditions. However, the sum of m and n shown in formula () is approximately 6.
up to 140, preferably between about 9 and 100, and the m/n ratio is 10/90 to 100/0 (molar ratio)
must be satisfied. If the sum of m and n is less than 6, the molecular weight as a soft segment component will be too small and the function of the soft domain will be insufficient, and if it is larger than 140, the handling properties and reactivity during polyurethane production, especially the tendency for phase separation, will deteriorate. It is not desirable in terms of appearance etc. Also, the m/n ratio is good when m is large and approaches 100, that is, a homopolymer of 3-methyloxetane, but it is 10/n.
If the proportion of 3-methyloxetane units in the copolymer is less than 90, that is, less than 10 mol%, the distribution of side chain methyl groups becomes too small, and crystallinity of the polyoxytetramethylene block based on tetrahydrofuran appears, which is the objective. This is not preferable because the low-temperature properties and elastic recovery functions are impaired. For the same reason, the polyalkylene ether diol according to the present invention can be used in combination with other polyalkylene glycols such as polytetramethylene glycol, but the polyalkylene ether diol according to the present invention (formula ()) is at least 10% by weight. It should preferably be used in an amount of 20% by weight or more.
The polyalkylene glycol that can be used in combination is not particularly limited, but polyethylene glycol, polypropylene glycol, random or block copolymers obtained from ethylene oxide and propylene oxide or ethylene oxide and tetrahydrofuran are undesirable because they have too high hydrophilicity, and Poly-1,2 containing alcohol
-Propylene glycol is not preferred because of its low reactivity in polyurethanization. In general, polytetramethylene glycol gives good results because it is easily available on the market. Next is the polyurethanization reaction, which involves the so-called one-shot method in which the reaction components are reacted all at once, or the polyalkylene ether diol of the present invention or a mixture with other polyoxyalkylene glycols to first produce a prepolymer with isocyanate ends and chain extension. A so-called prepolymer method can be used in which low-molecular diols, diamines, etc. are reacted as agents, and anisole, chlorobenzene, o-dichlorobenzene,
The reaction may be carried out in a solution state using a solvent such as -methylpentanone-2, dimethylformamide, or N,N-dimethylacetamide. Furthermore, in order to promote the reaction between the active hydrogen compound and the isocyanate group, tertiary amines such as triethylamine, dimethylethanolamine, 1,8-diazabicyclo[5.4.0]-7-undecene, morpholine derivatives, or dibutyltin are added. Dilaurylate, stannous 2-ethylcaproate, dibutyltin-
Organometallic compounds such as di(2-ethylhexoate) can be used as catalysts. Next, the content of the present invention will be specifically explained with reference to Examples. Note that the hydroxyl values shown in the Examples are values measured by the phthalic anhydride-pyridine method, and the acid values are also values obtained by the direct neutralization titration method of a pyridine solution. Tensile strength and elongation properties are determined from a press sheet with a thickness of approximately 1 mm.
Punch out JIS-compliant dumbbell-shaped test pieces, 23℃, 65
The humidity was adjusted for 10 days or more under %RH conditions and then measured using a Tensilon universal tensile tester at a crosshead speed of 50 mm/min. Tensile strength at break, tensile elongation at break,
The tensile yield strength, 100% modulus, and 300% modulus are values determined from the obtained stress-strain curve.
In addition, the instantaneous elastic recovery rate and the delayed elastic recovery rate are determined by attaching a marked line at a distance a to the dumbbell-shaped test piece.
Stretch it to 200% and hold it in this stretched state for 5 minutes, then remove the stress and make it into a free state, then immediately measure the distance between the gauge lines b, and then measure the distance between the gauge lines c again 10 minutes after the stress has been removed. It was measured and calculated from the following formula. Instantaneous elastic recovery rate = 2a-b/a x 100% Delayed elastic recovery rate = 2a-c/a x 100% Example 1 First, a method for producing polyether diol used in the present invention will be described. 6.8 ml of acetic anhydride was added to 100 ml of anhydrous 3-methyloxetane obtained by adding metallic sodium to 3-methyloxetane, which had been dehydrated and dried overnight after adding fresh caustic potash pellets, and then distilled after reflux dehydration. It was cooled to -70°C using cryogen. 2.8 ml of 70% perchloric acid was added dropwise to this system over about 20 minutes with vigorous stirring. After the dropwise addition was completed, stirring was continued for about 1 hour at -70°C, and then the temperature was gradually raised to room temperature over about 1 hour. During this time, the reaction was conducted under a dry nitrogen atmosphere to avoid contact with the atmosphere to prevent moisture absorption. Seal the post-reaction system at room temperature.
It was left for 50 hours. The reaction system became a colorless and transparent viscous liquid. Add about 100ml of pure water to stop the reaction,
The mixture was heated to about 90° C. for about 1 hour while stirring to remove unreacted monomers. After removing the aqueous layer, 200 ml of 1/2N caustic potassium ethanol solution was added, and the mixture was heated and stirred at about 90°C for 2 hours to effect saponification. Ethanol was distilled off, ether was added to make an ether solution, activated carbon and activated clay were added, and the mixture was left to stand for several hours. After the solid content was separated and the ether was distilled off, about 67 g (yield 79.5%) of poly(oxy-2-methylpropylene) glycol was obtained in the form of a colorless and transparent viscous liquid. This product has a hydroxyl value of 100.9mgKOH/g and an acid value of 1.2mg.
KOH/g, number average molecular weight determined from hydroxyl value
It was 1112. Next, polyurethanization was attempted using the obtained poly(oxy-2-methylpropylene) glycol. That is, 20.0 g (0.0180 mol) of poly(oxy-2-methylpropylene) glycol is
Using a ml flask, the mixture was first heated to 100° C. with stirring, and then dehydrated and dried for 1 hour under reduced pressure to about 2 mmHg. The contents were returned to normal pressure with dry nitrogen, and after the temperature had fallen to room temperature, 50 ml of N,N-dimethylacetamide was added and dissolved with stirring. Add 9.0 g (0.0360 mol) of diphenylmethane diisocyanate to this solution.
was dissolved in 50 ml of N,N-dimethylacetamide (partially suspended), and then 1,8
0.05 ml of a 4% N,N-dimethylacetamide solution of -diazabicyclo[5.4.0]-7-undecene (hereinafter abbreviated as DBU) was added and stirred at room temperature for 3 hours. 1.08g of ethylenediamine in this solution
(0.0180 mol) in N,N-dimethylacetamide
A solution dissolved in 25 ml was added dropwise over about 20 minutes, and the reaction was further continued at room temperature for 2 hours. Polyurethane was obtained by adding the reaction product to a large amount of pure water to precipitate the polymer, washing it alternately with water and methanol, and drying it in a vacuum dryer at 60°C for about 10 hours. This polyurethane was dissolved again in N,N-dimethylacetamide, adjusted to a concentration of 10%, and then casted into a glass plate with a silicone mold release agent baked on.
After air drying, water washing, and drying, casting was repeated to produce a film with a predetermined thickness. Comparative Example 1 20 g (0.0199 mol) of poly(oxytetramethylene) glycol with a number average molecular weight of 1003, 9.98 g (0.0399 mol) of diphenylmethane diisocyanate,
A polyurethane film was prepared in the same manner as in Example 1 from 1.20 g (0.0199 mol) of ethylenediamine. The performance of the polyurethane films obtained in Example 1 and Comparative Example 1 will be compared and shown below.

【衚】 実斜䟋は比范䟋に察し垞枩での瞬間および
遅延匟性回埩率および䜎枩における曲げ回埩率が
優れおいる。 実斜䟋  氎酞基䟡67.8、氎酞基䟡から求めた数平均分子
量1656の−メチルオキセタン−テトラヒドロフ
ラン2080重量比共重合ゞオヌル24.5
0.0148モルに−ブタンゞオヌル1.8
0.0200モルを加え玄mmHg、130℃で時間
撹拌しお也燥ず同時に混合を行な぀た。匕続き
130℃で撹拌䞋にゞプニルメタンゞむ゜シアネ
ヌト180.0348モルを粉末状で玄時間にわ
た぀お少量ず぀反応系に加えおい぀た。曎に時
間撹拌を続けるこずにより系の粘床䞊昇が認めら
れなくな぀たので反応生成物を取出し宀枩たで攟
冷しおからmm厚のプレスシヌトを䜜成した。 比范䟋  数平均分子量1500のポリオキシテトラメチレン
グリコヌル24.50.0163モル、−ブタ
ンゞオヌル1.70.0189モルおよびゞプニ
ルメタンゞむ゜シアネヌト8.80.0352モル
から実斜䟋ず同様にしおポリりレタンを埗た。 実斜䟋及び比范䟋で埗られたポリりレタン
の物性倀を次に瀺す。
[Table] Example 1 is superior to Comparative Example 1 in instantaneous and delayed elastic recovery rates at room temperature and bending recovery rate at low temperatures. Example 2 24.5 g of 3-methyloxetane-tetrahydrofuran (20:80 weight ratio) copolymerized diol with a hydroxyl value of 67.8 and a number average molecular weight of 1656 determined from the hydroxyl value
(0.0148 mol) to 1.8 g of 1,4-butanediol
(0.0200 mol) was added and stirred at about 3 mmHg and 130° C. for 1 hour to simultaneously dry and mix. Continued
While stirring at 130° C., 18 g (0.0348 mol) of diphenylmethane diisocyanate was added in powder form little by little to the reaction system over about 1 hour. After stirring was continued for an additional 4 hours, no increase in the viscosity of the system was observed, so the reaction product was taken out, allowed to cool to room temperature, and then a 1 mm thick press sheet was prepared. Comparative Example 2 24.5 g (0.0163 mol) of polyoxytetramethylene glycol with a number average molecular weight of 1500, 1.7 g (0.0189 mol) of 1,4-butanediol, and 8.8 g (0.0352 mol) of diphenylmethane diisocyanate.
Polyurethane was obtained in the same manner as in Example 2. The physical property values of the polyurethanes obtained in Example 2 and Comparative Example 2 are shown below.

【衚】 実斜䟋  氎酞基䟡から求めた数平均分子量1682のポリ
オキシ−−メチル−プロピレングリ
コヌル2.130.00127モルず同様に氎酞基䟡
から求めた数平均分子量1003のポリオキシテトラ
メチレングリコヌル7.870.00785モルを
mmHg、120℃で撹拌䞋に時間也燥、混合を行぀
た。−ゞメチルアセトアミド20mlを加え溶
液ずなしゞプニルメタンゞむ゜シアネヌト4.56
0.01822モルに−ゞメチルアセトア
ミド40mlを加えお䜜぀た溶液䞀郚懞濁を前蚘
グリコヌル溶液に加えた。次にDBUの
−ゞメチルアセトアミド溶液0.05mlを觊媒ずし
お加え宀枩で玄時間反応を行な぀た。かくしお
埗られたプレポリマヌ溶液に1.240.0911モ
ルの−キシレンゞアミンを溶解した−
ゞメチルアセトアミド溶液を玄20分で系に添加し
た。曎に宀枩で玄時間反応させ、この反応溶液
を倧量の玔氎に投入しおポリマヌを沈柱させた。
実斜䟋ず同様、掗滌、也燥しお溶液キダステむ
ング法によりmm厚のシヌトを䜜成し、物性を評
䟡した。 匕匵砎断匷床 255Kgcm2 匕匵砎断䌞床 890 100モゞナラス 80Kgcm2 300モゞナラス 152Kgcm2 瞬間匟性回埩率 82.0 遅延匟性回埩率 95.0
[Table] Example 3 2.13 g (0.00127 mol) of poly(oxy-2-methyl-1,3-propylene) glycol with a number average molecular weight of 1682 determined from the hydroxyl value and poly(oxy-2-methyl-1,3-propylene) glycol with a number average molecular weight of 1003 determined from the hydroxyl value in the same manner. Oxytetramethylene glycol 7.87g (0.00785mol) 3
Drying and mixing were performed for 1 hour under stirring at 120° C. and mmHg. Add 20 ml of N,N-dimethylacetamide to make a solution Diphenylmethane diisocyanate 4.56
A solution (partial suspension) prepared by adding 40 ml of N,N-dimethylacetamide to G. g (0.01822 mol) was added to the glycol solution. Next, 4%N of DBU,
0.05 ml of N-dimethylacetamide solution was added as a catalyst, and the reaction was carried out at room temperature for about 3 hours. N,N- in which 1.24 g (0.0911 mol) of p-xylene diamine was dissolved in the thus obtained prepolymer solution.
Dimethylacetamide solution was added to the system in about 20 minutes. The reaction was further carried out at room temperature for about 3 hours, and the reaction solution was poured into a large amount of pure water to precipitate the polymer.
As in Example 1, a 1 mm thick sheet was prepared by washing and drying using the solution casting method, and its physical properties were evaluated. Tensile strength at break 255Kgf/ cm2 Tensile elongation at break 890% 100% modulus 80Kgf/ cm2 300% modulus 152Kgf/ cm2 Instant elastic recovery rate 82.0% Delayed elastic recovery rate 95.0%

Claims (1)

【特蚱請求の範囲】  有機倚官胜む゜シアネヌトずポリオキシアル
キレングリコヌルから䜎分子量の個又は個以
䞊の掻性氎玠含有化合物の存圚䞋又は非存圚䞋で
ポリりレタン重合䜓を補造するにあたり、該ポリ
オキシアルキレングリコヌルの内少くずも10重量
以䞊は䞋蚘匏で衚わされるポリアルキレ
ン゚ヌテルゞオヌルを甚いるこずを特城ずするポ
リりレタン重合䜓の補造法。 HO−−−n−−−o  䜆し、繰返し単䜍が
【匏】−〔CH2−CH2−CH2 −CH2−−〕であり、は
【匏】は−CH2−CH2−CH2 −CH2−でずはないし140で、
1090〜100モル比を満足する正
の数
[Claims] 1. In producing a polyurethane polymer from an organic polyfunctional isocyanate and a polyoxyalkylene glycol in the presence or absence of two or more active hydrogen-containing compounds of low molecular weight, the polyoxyalkylene glycol A method for producing a polyurethane polymer, characterized in that at least 10% by weight of the alkylene glycol is a polyalkylene ether diol represented by the following formula (). HO-(A-O-) n -(B-O-) o H () (However, the repeating unit is [Formula]-[CH 2 -CH 2 -CH 2 -CH 2 -O-], and A is [formula] B is −CH 2 −CH 2 −CH 2 −CH 2 −, m and n are m+n=6 to 140,
m/n = 10/90 to 100/0 (a positive number that satisfies the molar ratio)
JP58135383A 1983-07-25 1983-07-25 Production of polyurethane polymer Granted JPS6026021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58135383A JPS6026021A (en) 1983-07-25 1983-07-25 Production of polyurethane polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58135383A JPS6026021A (en) 1983-07-25 1983-07-25 Production of polyurethane polymer

Publications (2)

Publication Number Publication Date
JPS6026021A JPS6026021A (en) 1985-02-08
JPH0248008B2 true JPH0248008B2 (en) 1990-10-23

Family

ID=15150419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58135383A Granted JPS6026021A (en) 1983-07-25 1983-07-25 Production of polyurethane polymer

Country Status (1)

Country Link
JP (1) JPS6026021A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158428U (en) * 1986-03-31 1987-10-08

Also Published As

Publication number Publication date
JPS6026021A (en) 1985-02-08

Similar Documents

Publication Publication Date Title
JP5381977B2 (en) Method for producing hydroxy compound, and method for producing prepolymer and polyurethane
US6987160B2 (en) Thermoplastic polyurethane
US20060293487A1 (en) Polyurethanes, polyurethaneureas and polyureas and use thereof
CN104520345B (en) The poly- poly- mephenesin Carbamate of ammonia isobutene of high intensity
CN107286313A (en) A kind of degradable polyurethane foam and its application
JPH07116276B2 (en) Method for producing polyurethane resin
JPS587648B2 (en) Method for producing polyether urethane polymer
JPS61200114A (en) Antithrombotic polyurethane compound and production thereof
JP3422857B2 (en) Thermoplastic polyurethane resin having a wide rubber region and method for producing the same
JP2007191628A (en) Thermoplastic polyurethane resin composition and moisture-permeable film
JP2764431B2 (en) Polyurethane and its manufacturing method
JPWO2010001898A1 (en) Method for producing hyperbranched polyester, method for producing polyurethane, polyurethane
JPH0248008B2 (en)
JP4790104B2 (en) Segmented polyurethane with high rigidity and high elongation
CN114752208A (en) High-dielectric-constant polymer film material and preparation method thereof
JP2022175022A (en) Thermoplastic polyurethane and method for producing thermoplastic polyurethane
JPH0674314B2 (en) New polyurethane manufacturing method
JPH0248009B2 (en)
CN116622046B (en) Post-crosslinkable high molecular weight polyurethane and preparation method thereof
JPH0585190B2 (en)
JPH0149408B2 (en)
JP2678547B2 (en) Polyurethane resin
JPS58188458A (en) Anti-thrombotic elastomer, production thereof and molded body comprising same
JP3121973B2 (en) Polyurethane elastic body and method for producing the same
JPH0372093B2 (en)