WO2018150572A1 - Switching power supply device - Google Patents

Switching power supply device Download PDF

Info

Publication number
WO2018150572A1
WO2018150572A1 PCT/JP2017/006127 JP2017006127W WO2018150572A1 WO 2018150572 A1 WO2018150572 A1 WO 2018150572A1 JP 2017006127 W JP2017006127 W JP 2017006127W WO 2018150572 A1 WO2018150572 A1 WO 2018150572A1
Authority
WO
WIPO (PCT)
Prior art keywords
comparison value
filter
output voltage
filter characteristic
power supply
Prior art date
Application number
PCT/JP2017/006127
Other languages
French (fr)
Japanese (ja)
Inventor
中村 勝
Original Assignee
サンケン電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンケン電気株式会社 filed Critical サンケン電気株式会社
Priority to CN201790001547.0U priority Critical patent/CN210351013U/en
Priority to PCT/JP2017/006127 priority patent/WO2018150572A1/en
Publication of WO2018150572A1 publication Critical patent/WO2018150572A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a switching power supply device applied to a non-insulated step-down chopper circuit or the like.
  • a non-insulated step-down chopper circuit is widely used as a method for generating a stable voltage lower than the input voltage.
  • a POL (Point of Load) module power supply is often used for communication infrastructure and the like.
  • This module power supply has a control circuit, a power MOSFET, and an inductor mounted on a single substrate.
  • the user adjusts the output capacitor value by adding an output capacitor between the output terminal of the module and GND.
  • the output ripple voltage associated with the switching operation can be suppressed, and the output voltage fluctuation when the output load current suddenly fluctuates can be adjusted to fall within the standard range.
  • the filter constant is set so that the control circuit can operate stably within an assumed range. For this reason, for example, when the output capacitor is made larger than expected, there is a problem that the phase margin is insufficient and the operation becomes unstable in the worst case.
  • the switching power supply device described in Patent Document 1 obtains the filter characteristics from the fluctuation of the output voltage generated during the filter characteristic analysis period after the output voltage starts to rise and reaches a predetermined value after the power is turned on. Extract.
  • the apparatus analyzes the filter characteristic by comparing the extracted filter characteristic with a plurality of preset model frequency characteristics. Thereafter, the apparatus can ensure a wide operating range by automatically selecting a filter constant (control response characteristic) corresponding to the model frequency characteristic.
  • the model frequency characteristic of Patent Document 1 is optimized when the output voltage reaches the set voltage after the power supply is turned on. For this reason, the filter characteristic analysis period must be provided at a timing after the output voltage reaches the set voltage. For this reason, the filter characteristics cannot be analyzed in a state where the output voltage is low immediately after the power is turned on, and the filter constant setting is not completed. For this reason, feedback control becomes unstable during the rising period until the output voltage reaches the set voltage.
  • the switching power supply device disclosed in Patent Document 1 extracts the filter characteristic from the fluctuation of the output voltage generated during the filter characteristic analysis period after the output voltage starts to rise and reaches the set voltage after the power supply is started. Set the appropriate filter constant. For this reason, the filter setting is not completed during the rising period until the output voltage reaches the set voltage, resulting in an unstable operation.
  • An object of the present invention is to provide a switching power supply device that can prevent an unstable operation during a rising period until an output voltage reaches a set voltage.
  • the switching power supply device of the present invention converts the first DC voltage supplied from the power supply to the second DC voltage via the inductor and the output capacitor by turning on and off the switching element.
  • a switching power supply that supplies an output voltage to an output load, having a first comparison value and a second comparison value that is larger than the first comparison value, generating the first comparison value after the power supply is activated, Generated by the comparison value generator and the comparison value generator for increasing the comparison value from the first comparison value to the second comparison value after the output voltage reaches the first output voltage corresponding to the first comparison value
  • a digital filter that performs a predetermined calculation on an error between the output voltage and the first comparison value or the second comparison value, and an on / off state of the switching element according to a calculation result of the digital filter.
  • a drive unit that controls a duty of the current detection unit, a current detection unit that detects a current flowing through the inductor and outputs the detected current as a current detection signal, the current detection signal, the first output voltage, and the first comparison value.
  • a filter characteristic analysis unit that analyzes a filter characteristic determined by the inductor and the output capacitor based on a filter characteristic analysis period from when the output voltage reaches the first output voltage to a time when the output voltage reaches the first output voltage;
  • a plurality of digital filter constant tables storing a plurality of filter constants corresponding to filter characteristics, and the plurality of digital filter constants during a period until the comparison value shifts from the first comparison value to the second comparison value; Referring to the table, select and select the filter constant according to the filter characteristic analyzed by the filter characteristic analysis unit It said filter constants and a filter constant storing unit to be supplied to the digital filter.
  • the switching power supply device of the present invention converts the first DC voltage supplied from the power supply to the second DC voltage via the inductor and the output capacitor by turning on and off the switching element, and outputs the output voltage to the output load.
  • a switching power supply apparatus for supplying, having a first comparison value and a second comparison value larger than the first comparison value, generating the first comparison value after the power is turned on, and the output voltage being the first comparison value After reaching the first output voltage corresponding to the comparison value, the comparison value generation unit that raises the comparison value from the first comparison value to the second comparison value, and the first comparison generated by the comparison value generation unit
  • a digital filter that performs a predetermined calculation on an error between a value or the second comparison value and the output voltage, and an on / off duty of the switching element is controlled according to a calculation result of the digital filter.
  • a drive unit that detects the current flowing through the inductor and outputs the detected current as a current detection signal; and from the time when the current detection signal, the first output voltage, and the first comparison value are generated
  • a filter characteristic analyzer for analyzing a filter characteristic determined by the inductor and the output capacitor based on a filter characteristic analysis period until the output voltage reaches the first output voltage; and the comparison value is the first value
  • a filter constant is calculated according to the filter characteristic analyzed by the filter characteristic analysis unit, and the calculated filter constant is supplied to the digital filter.
  • a filter constant calculation unit
  • the filter characteristic analysis unit analyzes the filter characteristic based on the inrush current value flowing in the filter characteristic analysis period immediately after starting the power supply and before the output voltage starts to rise.
  • the filter constant storage unit refers to a plurality of stored digital filter constant tables, selects a filter constant corresponding to the analyzed filter characteristic, and applies the selected filter constant to the digital filter.
  • the comparison value generation unit increases the comparison value from the first comparison value to the second comparison value after the output voltage reaches the first output voltage. That is, the soft start operation causes the output voltage to slowly rise to the set voltage.
  • FIG. 1 is a circuit configuration diagram of the switching power supply device according to the first embodiment.
  • FIG. 2 is a diagram showing frequency characteristics of a general voltage mode DC / DC converter.
  • FIG. 3 is a diagram showing frequency characteristics of a digital filter and a converter obtained by decomposing the frequency characteristics shown in FIG. 2 for each element.
  • FIG. 4 is a diagram showing frequency characteristics when a sufficient phase margin can be secured with a small output capacitor.
  • FIG. 5 is a diagram showing frequency characteristics when the output capacitor is large and the phase margin is insufficient.
  • FIG. 6 is a timing chart of each part for explaining the operation of the switching power supply device according to the first embodiment.
  • FIG. 7 is a diagram showing frequency characteristics when the crossover frequency and the phase margin are lowered when the output capacitor is large and the resonance frequency is lower than the zero point frequency.
  • FIG. 8 is a diagram showing frequency characteristics when the zero point frequency is shifted to a lower frequency and the gain is lowered as the resonance frequency is lowered with a large output capacitor value.
  • FIG. 9 is a circuit configuration diagram of the switching power supply device according to the second embodiment.
  • FIG. 10 is a circuit configuration diagram of the switching power supply device according to the third embodiment.
  • FIG. 1 is a circuit configuration diagram of the switching power supply device according to the first embodiment. 1 includes a voltage detection unit 1, a comparison value generation unit 2, a subtractor 3, a digital filter 4, a drive unit 5, a current detection unit 6, a filter characteristic analysis unit 7, and a filter constant storage. Unit 8, high-side MOSFET 101, low-side MOSFET 102, inductor 103, output capacitor 104, and output load 105. The high side MOSFET 101 and the low side MOSFET 102 correspond to the switching element of the present invention.
  • the switching power supply device alternately turns on and off the high-side MOSFET 101 and the low-side MOSFET 102 to convert the first DC voltage supplied from the power source Vi into a second DC voltage via the inductor 103 and the output capacitor 104, and outputs it.
  • An output voltage Vo is supplied to the load 105.
  • the drain of the N-channel high-side MOSFET 101 is connected to the positive electrode of the power source Vi, and the source of the high-side MOSFET 101 and the drain of the N-channel low-side MOSFET 102 are connected to one end of the inductor L.
  • the source of the low side MOSFET 102 is grounded.
  • One end of the output capacitor 104 and one end of the load 105 are connected to the other end of the inductor L.
  • the other end of the output capacitor 104 and the other end of the output load 105 are grounded.
  • the drive unit 5 generates a rectangular wave voltage at the SW terminal (a connection point between the high-side MOSFET 101 and the low-side MOSFET 102) by alternately switching the high-side MOSFET 101 and the low-side MOSFET 102.
  • An output filter including the inductor 103 and the output capacitor 104 supplies the output voltage Vo composed of a stable DC voltage to the load 105 by smoothing the rectangular wave voltage.
  • the voltage detector 1 is connected to one end of the output capacitor 104, detects the output voltage Vo, converts the detected output voltage Vo into a digital voltage value of a predetermined number of bits, and subtracts the converted digital voltage value 3 is output.
  • the comparison value generation unit 2 has a first comparison value of the output voltage Vo and a second comparison value larger than the first comparison value, generates a first comparison value after the power is turned on, and generates the generated comparison value as a predetermined value.
  • the digital value is converted into a bit number digital value, and the converted digital value is output to the subtractor 3.
  • the comparison value generating unit 2 increases the comparison value from the first comparison value to the second comparison value after the output voltage reaches the first output voltage corresponding to the first comparison value.
  • the comparison value generation unit 2 slowly changes the comparison value from the first comparison value to the second comparison value in a predetermined period from the end of the filter characteristic analysis period, which will be described later, and changes the output voltage Vo. Slowly rise from the first output voltage to the second output voltage. As a result, overshoot and excessive rush current flowing from the power source Vi to the output capacitor 104 via the high-side MOSFET 101 and the inductor 103 are suppressed.
  • the subtractor 3 calculates an error between the digital voltage value from the voltage detection unit 1 and the comparison value generated by the comparison value generation unit 2 and outputs the obtained error to the digital filter 4.
  • the digital filter 4 mainly performs PID (proportional / integral / derivative) operation on the error from the subtractor 3 and outputs the operation result to the drive unit 5.
  • PID proportional / integral / derivative
  • the driving unit 5 alternately drives the high-side MOSFET 101 and the low-side MOSFET 102 on and off based on the calculation result from the digital filter 4.
  • the on / off duty ratio of the high-side MOSFET 101 and the low-side MOSFET 102 is controlled according to the calculation result of the digital filter 4.
  • the current detection unit 6 detects the current value flowing through the inductor 103, converts the detected current value into a current detection signal that is a digital voltage value of a predetermined number of bits, and outputs the current detection signal to the filter characteristic analysis unit 7. To do.
  • the filter characteristic analysis unit 7 is a filter characteristic analysis period from when the current detection signal from the current detection unit 6, the first output voltage, and the first comparison value are generated to when the output voltage reaches the first output voltage value. Based on Tr, the filter characteristic (LC resonance frequency f 0 ) determined by the inductor 103 and the output capacitor 104 is analyzed, and the analyzed filter characteristic is output to the filter constant storage unit 8.
  • the filter constant storage unit 8 includes a plurality of digital filter constant tables 81 that store a plurality of filter constants corresponding to a plurality of filter characteristics.
  • the filter constant storage unit 8 refers to the plurality of digital filter constant tables 81 during the period until the comparison value shifts from the first comparison value to the second comparison value, and the filter characteristics ( A filter constant corresponding to the LC resonance frequency f 0 ) is selected, and the selected filter constant is supplied to the digital filter 4.
  • the digital filter 4 inputs an error between the output voltage Vo and the comparison value VREF and performs a predetermined calculation.
  • the drive unit 5 controls the duty ratio of the high side MOSFET 101 and the low side MOSFET 102. Thus, feedback control is performed so that the error between the output voltage Vo and the comparison value VREF is reduced.
  • FIG. 2 is an image of a Bode diagram of a general voltage mode DC / DC converter. As the frequency increases, the gain and phase change, and eventually the gain becomes 1 time (0 dB). This frequency is called a crossover frequency fc.
  • phase margin PM phase margin
  • the higher the margin the higher the stability.
  • a phase margin of about 60 degrees is the best value that can achieve both stability and responsiveness.
  • the gain and phase have an inflection point with respect to the change in frequency, and in the region I where the frequency is low, the gain decreases at ⁇ 20 dB / dec as the frequency increases.
  • the frequency fz 1 is the first zero point, the gain is increased by +20 dB / dec, and the phase is advanced by +90 deg. For this reason, there is no gain change in the region II, and the phase advances to 0 deg at the maximum.
  • the frequency f 0 is an LC resonance frequency determined by the inductor 103 and the output capacitor 104, and is given by Expression (1).
  • the gain is decreased by ⁇ 40 dB / dec and the phase is delayed by ⁇ 180 deg. For this reason, in region III, the gain changes at ⁇ 40 dB / dec, and the phase is delayed up to ⁇ 180 deg.
  • the frequency fz 2 is the second zero, and similarly to the first zero fz 1 , the gain is increased by +20 dB / dec and the phase is advanced by +90 deg. Therefore, in region IV, the gain changes at ⁇ 20 dB / dec, and the phase delayed up to ⁇ 180 deg in region III is restored. As a result, the phase margin can be ensured at the crossover frequency fc.
  • FIG. 3 is an exploded view of the frequency characteristics of FIG. 2 for each element.
  • the digital filter characteristic is a characteristic determined by the digital filter 4 in FIG. 1, and the converter characteristic is a characteristic determined by other than the digital filter 4.
  • the digital filter 4 adds two zeros fz 1 and fz 2 in addition to the integral characteristic that decreases the gain by ⁇ 20 dB / dec in accordance with the frequency, and appropriately arranges them, thereby arranging the LC resonance frequency f of the converter characteristic. Reduce the slope of the gain drop at zero .
  • the digital filter 4 generates two zeros fz 1 and fz 2 in order to return the phase delayed by ⁇ 180 deg at the maximum.
  • the phase margin PM can be sufficiently secured.
  • a condition is considered in which the first zero point fz 1 and the second zero point fz 2 are optimized so that the output capacitor 104 can secure a sufficient phase margin PM with a small value. If only the output capacitor 104 is increased while maintaining this filter condition, the LC resonance frequency moves to f 0 ′ lower than f 0 as shown in FIG. For this reason, the positional relationship between the first zero point fz 1 and the resonance point f 0 ′ is reversed, and in particular, in the region II, ⁇ 60 dB / dec, and the slope becomes very steep.
  • the present invention provides a filter from the time immediately after the power source Vi is turned on until the first output voltage determined by the first comparison value is reached by causing the comparison value generating unit 2 to generate a small offset (first comparison value) in the comparison value.
  • Inrush current is actively generated during the characteristic analysis period.
  • the present invention calculates the value of the output capacitor 104 and the resonance frequency f 0 by measuring the inrush current value and the filter characteristic analysis period Tr (inrush current generation period).
  • the zeros fz 1 and fz 2 are optimally set according to the calculated resonance frequency f 0 . This will be described with reference to FIG.
  • the comparison value generator 2 After the power source Vi is turned on, the comparison value generator 2 generates a first comparison value (small offset) in the filter characteristic analysis period Tr. For this reason, the output voltage Vo rises rapidly to the first output voltage determined by the first comparison value. At this time, an inrush current having a current value higher than that of the subsequent filter setting period Tf flows in the inductor current IL.
  • the current detection unit 6 calculates a peak current and a bottom current (in the example of FIG. 6, peak currents: IL 1 and IL 3 , bottom current: IL 2 ) in a rush current generation period (filter characteristic analysis period Tr) with a predetermined number of bits. Convert to digital value. Specifically, the average value of the inrush current is obtained by applying to the equation (2).
  • the filter characteristic analysis unit 7 obtains the value of the output capacitor 104 by substituting the inrush current average value ILave, the filter characteristic analysis period (inrush current generation period) Tr, and the first output voltage Vo1 into Expression (3). .
  • the filter characteristic analysis unit 7 obtains the resonance frequency f 0 by applying the capacitance value C of the output capacitor 104 and the inductor value L of the inductor 103 obtained in Expression (3) to Expression (1).
  • the resonance frequency f 0 determined by the filter characteristic analysis unit 7 from the plurality of digital filter constant tables 81 set and stored in advance in the filter constant storage unit 8 is used.
  • a filter constant is selected, and the selected filter constant is applied to the digital filter 4.
  • Filter constant is composed of a first zero point fz 1 and the second zero point fz 2 and gain Aac.
  • the digital filter constant table 81 is selected such that the first zero point fz 1 , the second zero point fz 2, and the gain Aac decrease as the LC resonance frequency f 0 value decreases.
  • the crossover frequency fc indicates the maximum frequency that can be controlled by the feedback control loop.
  • the higher the crossover frequency fc the higher the response performance of the feedback control.
  • the crossover frequency fc is adjusted to be about 1/10 of the switching frequency.
  • Table 1 shows a setting relationship between the resonance frequency and the digital filter constants of the plurality of digital filter constant tables 81.
  • the first zero point fz 1 ′, the second zero point fz 2 ′, and the gain Aac are lowered according to the LC resonance frequency f 0 . Accordingly, it is possible to configure a power supply with higher stability by preventing the crossover frequency fc ′ from becoming too high while sufficiently securing the phase margin PM.
  • the comparison value generation unit 2 slowly increases the comparison value from the first comparison value to the second comparison value, thereby realizing a soft start operation of the output voltage Vo and preventing overshoot. To do. After that, when the output voltage Vo reaches the set voltage determined by the second comparison value, the steady operation period Tc is started and the steady operation is started.
  • a method of detecting the inductor current IL a method of directly detecting using the shunt resistor, a method of detecting indirectly using the DCR (DC resistance) of the inductor 103, or a non-contact detecting using the Hall element. You may use the method to do.
  • the filter characteristic analysis unit 7 may end the filter characteristic analysis period when the output voltage Vo detected by the voltage detection unit 1 reaches a predetermined voltage lower than the first output voltage.
  • the filter characteristic analysis unit 7 may end the filter characteristic analysis period when the peak value of the inductor current detected by the current detection unit 1 reaches a predetermined current or less.
  • the filter characteristic analysis unit 7 performs filtering based on the inrush current value that flows in the filter characteristic analysis period immediately after starting the power supply and before the output voltage starts to increase. Analyze the characteristics.
  • the filter constant storage unit 8 refers to a plurality of stored digital filter constant tables, selects a filter constant according to the analyzed filter characteristics, and applies the selected filter constant to the digital filter.
  • the comparison value generator 2 increases the comparison value from the first comparison value to the second comparison value after the output voltage reaches the first output voltage. That is, the soft start operation causes the output voltage to slowly rise to the set voltage. Since the filter constant setting is completed before the output voltage rises to the set voltage, the feedback control during the soft start period can be stabilized. Therefore, it is possible to prevent an unstable operation during the rising period of the output voltage.
  • FIG. 9 is a configuration diagram of the switching power supply device according to the second embodiment.
  • the second embodiment is different from the first embodiment in that a filter constant calculation unit 9 is provided instead of the filter constant storage unit 8. Since the other configuration of the second embodiment is the same as that of the first embodiment, only the filter constant calculation unit 9 will be described.
  • the filter constant calculation unit 9 uses the filter characteristic analysis result (LC resonance frequency f 0 value) from the filter characteristic analysis unit 7, the target crossover frequency fca, the target phase margin PMa, and other information necessary for setting. Based on this, a filter constant satisfying the condition is calculated, and the calculated filter constant is applied to the digital filter 4. An example of a calculation method in the filter constant calculation unit 9 will be described.
  • the second zero point fz 2 is expressed by an equation ( 2) where the target crossover frequency is fca and the target phase margin is PMa. It can be estimated in 4).
  • the gain can be approximated by Expression (5), where Aac is a gain at an arbitrary frequency f (for example, a low frequency of about 10 Hz).
  • the filter constant calculation unit 9 calculates the first zero point fz 1 , the second zero point fz 2 , and the gain Aac from the equations (4), (5), and (6) shown above, and applies them to the digital filter 4. . Thereby, feedback control with sufficient stability can be realized.
  • the filter constant storage unit 8 selects an optimal constant from the stored filter constant table in accordance with the LC resonance frequency f 0 calculated by the filter characteristic analysis unit 7. Therefore, the variation range of acceptable LC resonance frequency f 0 will be limited to some extent.
  • the filter constant calculation unit 9 calculates the filter constant by calculation, stable feedback control can be realized even if the LC resonance frequency f 0 varies in a wider range.
  • a method of detecting the inductor current IL a method of directly detecting using the shunt resistor, a method of detecting indirectly using the DCR (DC resistance) of the inductor 103, or a non-contact detecting using the Hall element. You may use the method to do.
  • the filter characteristic analysis unit 7 may end the filter characteristic analysis period when the output voltage Vo detected by the voltage detection unit 1 reaches a predetermined voltage lower than the first output voltage.
  • the filter characteristic analysis unit 7 may end the filter characteristic analysis period when the peak value of the inductor current detected by the current detection unit 1 reaches a predetermined current or less.
  • the filter characteristic analysis unit 7 performs the filter characteristic based on the inrush current value that flows in the filter characteristic analysis period immediately after starting the power supply and before the output voltage starts to increase. Analyze.
  • the filter constant calculation unit 9 calculates an optimum filter constant corresponding to the filter characteristic and applies it to the digital filter.
  • the comparison value generator 2 increases the comparison value from the first comparison value to the second comparison value after the output voltage reaches the first output voltage. That is, the soft start operation causes the output voltage to slowly rise to the set voltage. Since the filter constant setting is completed before the output voltage rises to the set voltage, the feedback control during the soft start period can be stabilized. Therefore, it is possible to prevent an unstable operation during the rising period of the output voltage.
  • FIG. 10 is a configuration diagram of the switching power supply device according to the third embodiment.
  • the overcurrent protection unit 10 is added to the switching power supply device according to the second embodiment, and the driving unit 5 is changed to the driving unit 5b. Since the other configuration shown in FIG. 10 is the same as the configuration shown in FIG. 9, only the different configuration will be described.
  • the overcurrent protection unit 10 compares the peak value of the current detection signal detected by the current detection unit 6 with the overcurrent threshold IOCP, and when the peak value reaches the overcurrent threshold IOCP, the overcurrent protection unit 10 is off-triggered. Output a signal. That is, the overcurrent protection unit 10 limits the ON period of the switching element.
  • the driving unit 5b receives the off-trigger signal from the overcurrent protection unit 10 and stops the high-side MOSFET 101 in a pulse-by-pulse manner.
  • the inrush current flowing during the filter characteristic analysis period can be limited by the overcurrent threshold IOCP.
  • the peak current and the bottom current in the inrush current generation period Tr are measured and the inrush current average value ILave is obtained using the equation (2). Then, since the peak value of the inrush current is limited by the overcurrent threshold IOCP, a certain amount of inrush current average value ILave can be predicted without measurement, and the configuration can be simplified.
  • a method of detecting the inductor current IL a method of directly detecting using the shunt resistor, a method of detecting indirectly using the DCR (DC resistance) of the inductor 103, or a non-contact detecting using the Hall element. You may use the method to do.
  • the filter characteristic analysis unit 7 may end the filter characteristic analysis period when the output voltage Vo detected by the voltage detection unit 1 reaches a predetermined voltage lower than the first output voltage.
  • the filter characteristic analysis unit 7 may end the filter characteristic analysis period when the peak current value of the inductor current detected by the current detection unit 1 falls below the overcurrent threshold.
  • the present invention can be applied to a non-insulated step-down chopper circuit or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A switching power supply device of the present invention is provided with: a comparison value generation unit 2 that generates a first comparison value after starting up a power supply and raises a comparison value from the first comparison value up to a second comparison value larger than the first comparison value after an output voltage Vo reaches a first output voltage corresponding to the first comparison value; a digital filter 4 that performs a predetermined calculation on the error between the comparison value and the output voltage; a filter characteristic analysis unit 7 that analyzes, on the basis of a current detection signal output from a current detection unit 6 for detecting the current flowing through an inductor 103, the first output voltage, and a filter characteristic analysis period, a filter characteristic determined by the inductor and an output capacitor 104; and a filter constant storage unit 8 that selects, with reference to a plurality of digital filter constant tables 81, in a period during which the comparison value makes a transition from the first comparison value to the second comparison value, a filter constant according to the filter characteristic obtained from the filter characteristic analysis unit and supplies the selected filter constant to the digital filter.

Description

スイッチング電源装置Switching power supply
 本発明は、非絶縁型の降圧チョッパ回路等に適用されるスイッチング電源装置に関する。 The present invention relates to a switching power supply device applied to a non-insulated step-down chopper circuit or the like.
 入力電圧より低い安定した電圧を生成する方法として、非絶縁型の降圧チョッパ回路が広く使用されている。特に、通信インフラなどには、POL(Point of Load)モジュール電源が多く用いられている。 A non-insulated step-down chopper circuit is widely used as a method for generating a stable voltage lower than the input voltage. In particular, a POL (Point of Load) module power supply is often used for communication infrastructure and the like.
 このモジュール電源は、制御回路とPower MOSFETと、インダクタが単一基盤上に搭載されている。ユーザーはモジュールの出力端子とGND間に出力コンデンサを追加し、出力コンデンサ値を調整する。これによって、スイッチング動作に伴う出力リップル電圧が抑制でき、出力負荷電流の急激な変動が発生した際の出力電圧の変動が規格範囲に入るように調整することができる。 This module power supply has a control circuit, a power MOSFET, and an inductor mounted on a single substrate. The user adjusts the output capacitor value by adding an output capacitor between the output terminal of the module and GND. As a result, the output ripple voltage associated with the switching operation can be suppressed, and the output voltage fluctuation when the output load current suddenly fluctuates can be adjusted to fall within the standard range.
 一般には出力コンデンサ値を大きく調整するほど、出力リップル電圧と負荷急変時の出力電圧変動は少なくなる。しかし、制御回路は、想定される範囲内で安定動作できるようにフィルタ定数が設定されている。このため、例えば、出力コンデンサを想定以上に大きくした際には位相余裕度が不足して、最悪の場合には動作が不安定になってしまう問題があった。 In general, the larger the output capacitor value is adjusted, the smaller the output ripple voltage and the output voltage fluctuation during a sudden load change. However, the filter constant is set so that the control circuit can operate stably within an assumed range. For this reason, for example, when the output capacitor is made larger than expected, there is a problem that the phase margin is insufficient and the operation becomes unstable in the worst case.
 これに対して、特許文献1に記載されたスイッチング電源装置は、電源起動後に出力電圧が上昇を開始し所定値に達した後のフィルタ特性分析期間中に発生した出力電圧の変動からフィルタ特性を抽出する。その装置は、抽出されたフィルタ特性を予め設定してある複数のモデル周波数特性と比較することでフィルタ特性を分析する。その後、その装置は、モデル周波数特性に対応したフィルタ定数(制御応答特性)を自動選択することで広い動作範囲を確保できる。 On the other hand, the switching power supply device described in Patent Document 1 obtains the filter characteristics from the fluctuation of the output voltage generated during the filter characteristic analysis period after the output voltage starts to rise and reaches a predetermined value after the power is turned on. Extract. The apparatus analyzes the filter characteristic by comparing the extracted filter characteristic with a plurality of preset model frequency characteristics. Thereafter, the apparatus can ensure a wide operating range by automatically selecting a filter constant (control response characteristic) corresponding to the model frequency characteristic.
特許第5925724号公報Japanese Patent No. 5925724
 しかしながら、特許文献1のモデル周波数特性は、出力電圧が電源立ち上がり後の設定電圧に達したところで最適化されている。このため、フィルタ特性分析期間は、必ず出力電圧が設定電圧に達した以降のタイミングに設ける必要がある。このため、電源起動直後の出力電圧が低い状態ではフィルタ特性を分析できず、フィルタ定数設定が完了していない。このため、出力電圧が設定電圧に達するまでの立ち上がり期間はフィードバック制御が不安定になる。 However, the model frequency characteristic of Patent Document 1 is optimized when the output voltage reaches the set voltage after the power supply is turned on. For this reason, the filter characteristic analysis period must be provided at a timing after the output voltage reaches the set voltage. For this reason, the filter characteristics cannot be analyzed in a state where the output voltage is low immediately after the power is turned on, and the filter constant setting is not completed. For this reason, feedback control becomes unstable during the rising period until the output voltage reaches the set voltage.
 このように、特許文献1のスイッチング電源装置は、電源起動後に出力電圧が上昇を開始し設定電圧に達した後のフィルタ特性分析期間中に発生した出力電圧の変動からフィルタ特性を抽出して最適なフィルタ定数を設定する。このため、出力電圧が設定電圧に達するまでの立ち上がり期間中にはフィルタ設定が完了しておらず不安定動作に陥る。 As described above, the switching power supply device disclosed in Patent Document 1 extracts the filter characteristic from the fluctuation of the output voltage generated during the filter characteristic analysis period after the output voltage starts to rise and reaches the set voltage after the power supply is started. Set the appropriate filter constant. For this reason, the filter setting is not completed during the rising period until the output voltage reaches the set voltage, resulting in an unstable operation.
 本発明の課題は、出力電圧が設定電圧に達するまでの立ち上がり期間中に不安定動作に陥るのを防止できるスイッチング電源装置を提供することである。 An object of the present invention is to provide a switching power supply device that can prevent an unstable operation during a rising period until an output voltage reaches a set voltage.
 前記課題を解決するために、本発明のスイッチング電源装置は、スイッチング素子をオンオフすることで電源から供給される第1の直流電圧をインダクタと出力コンデンサを介して第2の直流電圧に変換して出力負荷へ出力電圧を供給するスイッチング電源装置であって、第1比較値と該第1比較値よりも大きい第2比較値を有し、前記電源起動後に前記第1比較値を生成し、前記出力電圧が前記第1比較値に対応する第1出力電圧に達した後に、比較値を前記第1比較値から前記第2比較値まで上昇させる比較値生成部と、前記比較値生成部で生成された前記第1比較値又は前記第2比較値と前記出力電圧との誤差に対して所定の演算を行うデジタルフィルタと、前記デジタルフィルタの演算結果に応じて前記スイッチング素子のオンオフのデューティーを制御する駆動部と、前記インダクタに流れる電流を検出し検出された電流を電流検出信号として出力する電流検出部と、前記電流検出信号と前記第1出力電圧と前記第1比較値を生成した時から前記出力電圧が前記第1出力電圧に達する時までのフィルタ特性分析期間とに基づいて前記インダクタと前記出力コンデンサとにより決定されるフィルタ特性を分析するフィルタ特性分析部と、複数のフィルタ特性に対応した複数のフィルタ定数を格納した複数のデジタルフィルタ定数テーブルを有し、前記比較値が前記第1比較値から前記第2比較値に移行するまでの期間に前記複数のデジタルフィルタ定数テーブルを参照して、前記フィルタ特性分析部で分析された前記フィルタ特性に応じた前記フィルタ定数を選択し選択された前記フィルタ定数を前記デジタルフィルタに供給するフィルタ定数格納部とを備える。 In order to solve the above-described problem, the switching power supply device of the present invention converts the first DC voltage supplied from the power supply to the second DC voltage via the inductor and the output capacitor by turning on and off the switching element. A switching power supply that supplies an output voltage to an output load, having a first comparison value and a second comparison value that is larger than the first comparison value, generating the first comparison value after the power supply is activated, Generated by the comparison value generator and the comparison value generator for increasing the comparison value from the first comparison value to the second comparison value after the output voltage reaches the first output voltage corresponding to the first comparison value A digital filter that performs a predetermined calculation on an error between the output voltage and the first comparison value or the second comparison value, and an on / off state of the switching element according to a calculation result of the digital filter. A drive unit that controls a duty of the current detection unit, a current detection unit that detects a current flowing through the inductor and outputs the detected current as a current detection signal, the current detection signal, the first output voltage, and the first comparison value. A filter characteristic analysis unit that analyzes a filter characteristic determined by the inductor and the output capacitor based on a filter characteristic analysis period from when the output voltage reaches the first output voltage to a time when the output voltage reaches the first output voltage; A plurality of digital filter constant tables storing a plurality of filter constants corresponding to filter characteristics, and the plurality of digital filter constants during a period until the comparison value shifts from the first comparison value to the second comparison value; Referring to the table, select and select the filter constant according to the filter characteristic analyzed by the filter characteristic analysis unit It said filter constants and a filter constant storing unit to be supplied to the digital filter.
 また、本発明のスイッチング電源装置は、スイッチング素子をオンオフすることで電源から供給される第1の直流電圧をインダクタと出力コンデンサを介して第2の直流電圧に変換して出力負荷へ出力電圧を供給するスイッチング電源装置であって、第1比較値と該第1比較値よりも大きい第2比較値を有し、前記電源起動後に前記第1比較値を生成し、前記出力電圧が前記第1比較値に対応する第1出力電圧に達した後に、比較値を前記第1比較値から前記第2比較値まで上昇させる比較値生成部と、前記比較値生成部で生成された前記第1比較値又は前記第2比較値と前記出力電圧との誤差に対して所定の演算を行うデジタルフィルタと、前記デジタルフィルタの演算結果に応じて前記スイッチング素子のオンオフのデューティーを制御する駆動部と、前記インダクタに流れる電流を検出し検出された電流を電流検出信号として出力する電流検出部と、前記電流検出信号と前記第1出力電圧と前記第1比較値を生成した時から前記出力電圧が前記第1出力電圧に達する時までのフィルタ特性分析期間とに基づいて前記インダクタと前記出力コンデンサとにより決定されるフィルタ特性を分析するフィルタ特性分析部と、前記比較値が前記第1比較値から前記第2比較値に移行するまでの期間に、前記フィルタ特性分析部で分析された前記フィルタ特性に応じてフィルタ定数を算出し算出された前記フィルタ定数を前記デジタルフィルタに供給するフィルタ定数演算部とを備える。 Also, the switching power supply device of the present invention converts the first DC voltage supplied from the power supply to the second DC voltage via the inductor and the output capacitor by turning on and off the switching element, and outputs the output voltage to the output load. A switching power supply apparatus for supplying, having a first comparison value and a second comparison value larger than the first comparison value, generating the first comparison value after the power is turned on, and the output voltage being the first comparison value After reaching the first output voltage corresponding to the comparison value, the comparison value generation unit that raises the comparison value from the first comparison value to the second comparison value, and the first comparison generated by the comparison value generation unit A digital filter that performs a predetermined calculation on an error between a value or the second comparison value and the output voltage, and an on / off duty of the switching element is controlled according to a calculation result of the digital filter. A drive unit that detects the current flowing through the inductor and outputs the detected current as a current detection signal; and from the time when the current detection signal, the first output voltage, and the first comparison value are generated A filter characteristic analyzer for analyzing a filter characteristic determined by the inductor and the output capacitor based on a filter characteristic analysis period until the output voltage reaches the first output voltage; and the comparison value is the first value In the period from the comparison value to the second comparison value, a filter constant is calculated according to the filter characteristic analyzed by the filter characteristic analysis unit, and the calculated filter constant is supplied to the digital filter. And a filter constant calculation unit.
 本発明によれば、フィルタ特性分析部は、電源を起動した直後で且つ出力電圧が上昇を開始する以前のフィルタ特性分析期間に流れる突入電流値に基づきフィルタ特性を分析する。フィルタ定数格納部は、格納されている複数のデジタルフィルタ定数テーブルを参照して、分析されたフィルタ特性に応じたフィルタ定数を選択し、選択されたフィルタ定数をデジタルフィルタに適用する。 According to the present invention, the filter characteristic analysis unit analyzes the filter characteristic based on the inrush current value flowing in the filter characteristic analysis period immediately after starting the power supply and before the output voltage starts to rise. The filter constant storage unit refers to a plurality of stored digital filter constant tables, selects a filter constant corresponding to the analyzed filter characteristic, and applies the selected filter constant to the digital filter.
 その後、比較値生成部は、出力電圧が第1出力電圧に達した後に、比較値を第1比較値から第2比較値まで上昇させる。即ち、ソフトスタート動作させることによって、出力電圧が設定電圧までゆっくりと上昇する。 Thereafter, the comparison value generation unit increases the comparison value from the first comparison value to the second comparison value after the output voltage reaches the first output voltage. That is, the soft start operation causes the output voltage to slowly rise to the set voltage.
 出力電圧が設定電圧まで上昇する以前にフィルタ定数設定が完了するために、ソフトスタート期間中のフィードバック制御を安定化することができる。このため、出力電圧の立ち上がり期間中に不安定動作に陥るのを防止できる。 ∙ Since the filter constant setting is completed before the output voltage rises to the set voltage, feedback control during the soft start period can be stabilized. Therefore, it is possible to prevent an unstable operation during the rising period of the output voltage.
図1は実施例1のスイッチング電源装置の回路構成図である。FIG. 1 is a circuit configuration diagram of the switching power supply device according to the first embodiment. 図2は一般的な電圧モードDC/DCコンバータの周波数特性を示す図である。FIG. 2 is a diagram showing frequency characteristics of a general voltage mode DC / DC converter. 図3は図2に示す周波数特性を要素毎に分解したデジタルフィルタとコンバータの周波数特性を示す図である。FIG. 3 is a diagram showing frequency characteristics of a digital filter and a converter obtained by decomposing the frequency characteristics shown in FIG. 2 for each element. 図4は出力コンデンサが小さい値で十分な位相余裕度を確保できる場合の周波数特性を示す図である。FIG. 4 is a diagram showing frequency characteristics when a sufficient phase margin can be secured with a small output capacitor. 図5は出力コンデンサが大きい値で位相余裕度が不足した場合の周波数特性を示す図である。FIG. 5 is a diagram showing frequency characteristics when the output capacitor is large and the phase margin is insufficient. 図6は実施例1のスイッチング電源装置の動作を説明するための各部のタイミングチャートである。FIG. 6 is a timing chart of each part for explaining the operation of the switching power supply device according to the first embodiment. 図7は出力コンデンサが大きい値で共振周波数が零点周波数に対して低い場合にクロスオーバー周波数と位相余裕度が低下したときの周波数特性を示す図である。FIG. 7 is a diagram showing frequency characteristics when the crossover frequency and the phase margin are lowered when the output capacitor is large and the resonance frequency is lower than the zero point frequency. 図8は出力コンデンサが大きい値で共振周波数が低くなるに伴って零点周波数を低い周波数にシフトさせると共に利得を低下させたときの周波数特性を示す図である。FIG. 8 is a diagram showing frequency characteristics when the zero point frequency is shifted to a lower frequency and the gain is lowered as the resonance frequency is lowered with a large output capacitor value. 図9は実施例2のスイッチング電源装置の回路構成図である。FIG. 9 is a circuit configuration diagram of the switching power supply device according to the second embodiment. 図10は実施例3のスイッチング電源装置の回路構成図である。FIG. 10 is a circuit configuration diagram of the switching power supply device according to the third embodiment.
 以下、本発明のスイッチング電源装置の実施例を図面を参照しながら説明する。 Hereinafter, embodiments of the switching power supply device of the present invention will be described with reference to the drawings.
 (実施例1)
 図1は実施例1のスイッチング電源装置の回路構成図である。図1に示す実施例1のスイッチング電源装置は、電圧検出部1、比較値生成部2、減算器3、デジタルフィルタ4、駆動部5、電流検出部6、フィルタ特性分析部7、フィルタ定数格納部8、ハイサイドMOSFET101、ローサイドMOSFET102、インダクタ103、出力コンデンサ104、出力負荷105を備える。ハイサイドMOSFET101、ローサイドMOSFET102は、本発明のスイッチング素子に対応する。
Example 1
FIG. 1 is a circuit configuration diagram of the switching power supply device according to the first embodiment. 1 includes a voltage detection unit 1, a comparison value generation unit 2, a subtractor 3, a digital filter 4, a drive unit 5, a current detection unit 6, a filter characteristic analysis unit 7, and a filter constant storage. Unit 8, high-side MOSFET 101, low-side MOSFET 102, inductor 103, output capacitor 104, and output load 105. The high side MOSFET 101 and the low side MOSFET 102 correspond to the switching element of the present invention.
 スイッチング電源装置は、ハイサイドMOSFET101とローサイドMOSFET102とを交互にオンオフすることで電源Viから供給される第1の直流電圧をインダクタ103と出力コンデンサ104を介して第2の直流電圧に変換して出力負荷105へ出力電圧Voを供給する。 The switching power supply device alternately turns on and off the high-side MOSFET 101 and the low-side MOSFET 102 to convert the first DC voltage supplied from the power source Vi into a second DC voltage via the inductor 103 and the output capacitor 104, and outputs it. An output voltage Vo is supplied to the load 105.
 電源Viの正極にはNチャネルのハイサイドMOSFET101のドレインが接続され、ハイサイドMOSFET101のソースとNチャネルのローサイドMOSFET102のドレインとはインダクタLの一端に接続されている。ローサイドMOSFET102のソースは接地されている。 The drain of the N-channel high-side MOSFET 101 is connected to the positive electrode of the power source Vi, and the source of the high-side MOSFET 101 and the drain of the N-channel low-side MOSFET 102 are connected to one end of the inductor L. The source of the low side MOSFET 102 is grounded.
 インダクタLの他端には出力コンデンサ104の一端と負荷105の一端が接続されている。出力コンデンサ104の他端と出力負荷105の他端は接地されている。 One end of the output capacitor 104 and one end of the load 105 are connected to the other end of the inductor L. The other end of the output capacitor 104 and the other end of the output load 105 are grounded.
 駆動部5は、ハイサイドMOSFET101と、ローサイドMOSFET102を交互にスイッチ動作させることで、SW端子(ハイサイドMOSFET101とローサイドMOSFET102の接続点)に矩形波電圧を発生させる。インダクタ103と出力コンデンサ104で構成される出力フィルタは、矩形波電圧を平滑することによって、負荷105に安定した直流電圧からなる出力電圧Voを供給する。 The drive unit 5 generates a rectangular wave voltage at the SW terminal (a connection point between the high-side MOSFET 101 and the low-side MOSFET 102) by alternately switching the high-side MOSFET 101 and the low-side MOSFET 102. An output filter including the inductor 103 and the output capacitor 104 supplies the output voltage Vo composed of a stable DC voltage to the load 105 by smoothing the rectangular wave voltage.
 電圧検出部1は、出力コンデンサ104の一端に接続され、出力電圧Voを検出し、検出された出力電圧Voを所定のビット数のデジタル電圧値に変換し、変換されたデジタル電圧値を減算器3に出力する。 The voltage detector 1 is connected to one end of the output capacitor 104, detects the output voltage Vo, converts the detected output voltage Vo into a digital voltage value of a predetermined number of bits, and subtracts the converted digital voltage value 3 is output.
 比較値生成部2は、出力電圧Voの第1比較値と該第1比較値よりも大きい第2比較値を有し、電源起動後に第1比較値を生成し、生成した比較値を所定のビット数のデジタル値に変換し、変換されたデジタル値を減算器3に出力する。比較値生成部2は、出力電圧が第1比較値に対応する第1出力電圧に達した後に、比較値を第1比較値から第2比較値まで上昇させる。 The comparison value generation unit 2 has a first comparison value of the output voltage Vo and a second comparison value larger than the first comparison value, generates a first comparison value after the power is turned on, and generates the generated comparison value as a predetermined value. The digital value is converted into a bit number digital value, and the converted digital value is output to the subtractor 3. The comparison value generating unit 2 increases the comparison value from the first comparison value to the second comparison value after the output voltage reaches the first output voltage corresponding to the first comparison value.
 具体的には、比較値生成部2は、後述するフィルタ特性分析期間の終了時点から所定の期間において、比較値を第1比較値から第2比較値までゆっくりと変化させて、出力電圧Voを第1出力電圧から第2出力電圧までゆっくりと立ち上げる。これにより、オーバーシュートと電源ViからハイサイドMOSFET101及びインダクタ103を経由して出力コンデンサ104に流れる過度なラッシュ電流を抑制する。 Specifically, the comparison value generation unit 2 slowly changes the comparison value from the first comparison value to the second comparison value in a predetermined period from the end of the filter characteristic analysis period, which will be described later, and changes the output voltage Vo. Slowly rise from the first output voltage to the second output voltage. As a result, overshoot and excessive rush current flowing from the power source Vi to the output capacitor 104 via the high-side MOSFET 101 and the inductor 103 are suppressed.
 減算器3は、電圧検出部1からのデジタル電圧値と、比較値生成部2で生成した比較値との誤差を演算して、得られた誤差をデジタルフィルタ4に出力する。 The subtractor 3 calculates an error between the digital voltage value from the voltage detection unit 1 and the comparison value generated by the comparison value generation unit 2 and outputs the obtained error to the digital filter 4.
 デジタルフィルタ4は、減算器3からの誤差に対して、主にPID(比例・積分・微分)演算を行い、演算結果を駆動部5に出力する。 The digital filter 4 mainly performs PID (proportional / integral / derivative) operation on the error from the subtractor 3 and outputs the operation result to the drive unit 5.
 駆動部5は、デジタルフィルタ4からの演算結果に基づいてハイサイドMOSFET101とローサイドMOSFET102を交互にオンオフ駆動させる。ハイサイドMOSFET101とローサイドMOSFET102のオンオフのデューティー比は、デジタルフィルタ4の演算結果に応じて制御される。 The driving unit 5 alternately drives the high-side MOSFET 101 and the low-side MOSFET 102 on and off based on the calculation result from the digital filter 4. The on / off duty ratio of the high-side MOSFET 101 and the low-side MOSFET 102 is controlled according to the calculation result of the digital filter 4.
 電流検出部6は、インダクタ103に流れる電流値を検出し、検出された電流値を所定のビット数のデジタル電圧値である電流検出信号に変換して電流検出信号をフィルタ特性分析部7に出力する。 The current detection unit 6 detects the current value flowing through the inductor 103, converts the detected current value into a current detection signal that is a digital voltage value of a predetermined number of bits, and outputs the current detection signal to the filter characteristic analysis unit 7. To do.
 フィルタ特性分析部7は、電流検出部6からの電流検出信号と、第1出力電圧と、第1比較値を生成した時から出力電圧が第1出力電圧値に達する時までのフィルタ特性分析期間Trとに基づいてインダクタ103と出力コンデンサ104とにより決定されるフィルタ特性(LC共振周波数f)を分析し、分析されたフィルタ特性をフィルタ定数格納部8に出力する。 The filter characteristic analysis unit 7 is a filter characteristic analysis period from when the current detection signal from the current detection unit 6, the first output voltage, and the first comparison value are generated to when the output voltage reaches the first output voltage value. Based on Tr, the filter characteristic (LC resonance frequency f 0 ) determined by the inductor 103 and the output capacitor 104 is analyzed, and the analyzed filter characteristic is output to the filter constant storage unit 8.
 フィルタ定数格納部8は、複数のフィルタ特性に対応した複数のフィルタ定数を格納した複数のデジタルフィルタ定数テーブル81を有する。フィルタ定数格納部8は、比較値が第1比較値から第2比較値に移行するまでの期間に複数のデジタルフィルタ定数テーブル81を参照して、フィルタ特性分析部7で分析されたフィルタ特性(LC共振周波数f)に応じたフィルタ定数を選択し選択されたフィルタ定数をデジタルフィルタ4に供給する。 The filter constant storage unit 8 includes a plurality of digital filter constant tables 81 that store a plurality of filter constants corresponding to a plurality of filter characteristics. The filter constant storage unit 8 refers to the plurality of digital filter constant tables 81 during the period until the comparison value shifts from the first comparison value to the second comparison value, and the filter characteristics ( A filter constant corresponding to the LC resonance frequency f 0 ) is selected, and the selected filter constant is supplied to the digital filter 4.
 次に、フィードバック制御について説明する。デジタルフィルタ4が出力電圧Voと比較値VREFの誤差を入力して所定の演算を行う。駆動部5がハイサイドMOSFET101と、ローサイドMOSFET102のデューティー比を制御する。これによって、出力電圧Voと比較値VREFの誤差が小さくなるようにフィードバック制御が行われる。 Next, feedback control will be described. The digital filter 4 inputs an error between the output voltage Vo and the comparison value VREF and performs a predetermined calculation. The drive unit 5 controls the duty ratio of the high side MOSFET 101 and the low side MOSFET 102. Thus, feedback control is performed so that the error between the output voltage Vo and the comparison value VREF is reduced.
 フィードバックループの安定性を判別する方法としてボーデ線図が広く用いられている。図2は、一般的な電圧モードDC/DCコンバータのボーデ線図のイメージである。周波数が高くなるほど利得と位相が変化し、やがて、利得が1倍(0dB)となる。この時の周波数をクロスオーバー周波数fcという。 The Bode diagram is widely used as a method for determining the stability of the feedback loop. FIG. 2 is an image of a Bode diagram of a general voltage mode DC / DC converter. As the frequency increases, the gain and phase change, and eventually the gain becomes 1 time (0 dB). This frequency is called a crossover frequency fc.
 クロスオーバー周波数fcにおける位相が、発振限界(-180deg)に対して、十分に余裕があればフィードバック制御は安定と判断できる。この余裕を位相余裕PMといい、高い程、安定性が向上する。一般的には60deg程度の位相余裕が安定性と応答性を両立できる最良値とされている。利得と位相は周波数の変化に対して変極点を持ち、周波数が低い領域Iでは、周波数の上昇に伴い、利得は-20dB/decで低下する。 If the phase at the crossover frequency fc has a sufficient margin with respect to the oscillation limit (−180 deg), the feedback control can be determined to be stable. This margin is referred to as phase margin PM, and the higher the margin, the higher the stability. Generally, a phase margin of about 60 degrees is the best value that can achieve both stability and responsiveness. The gain and phase have an inflection point with respect to the change in frequency, and in the region I where the frequency is low, the gain decreases at −20 dB / dec as the frequency increases.
 周波数fzは第1零点であり、利得を+20dB/decで上昇させ、位相を+90deg進める。このため、領域IIでは利得の変化はなくなり、位相は最大で0degまで進む。 The frequency fz 1 is the first zero point, the gain is increased by +20 dB / dec, and the phase is advanced by +90 deg. For this reason, there is no gain change in the region II, and the phase advances to 0 deg at the maximum.
 周波数fは、インダクタ103と出力コンデンサ104で決まるLC共振周波数であり、式(1)で与えられる。周波数の上昇に伴い、利得を-40dB/decで低下させ、位相を-180deg遅らせる。このため、領域IIIでは利得が-40dB/decで変化し、位相は最大で-180degまで遅れる。 The frequency f 0 is an LC resonance frequency determined by the inductor 103 and the output capacitor 104, and is given by Expression (1). As the frequency increases, the gain is decreased by −40 dB / dec and the phase is delayed by −180 deg. For this reason, in region III, the gain changes at −40 dB / dec, and the phase is delayed up to −180 deg.
     f=1/(2・π・√(L・C))・・・(1)
 周波数fzは第2零点であり、第1零点fzと同様に、利得を+20dB/decで上昇させ、位相を+90deg進める。このため、領域IVでは利得が-20dB/decで変化し、領域IIIで最大で-180degまで遅れた位相を戻す。これによって、クロスオーバー周波数fcにおいて、位相余裕度を確保することができる。
f 0 = 1 / (2 · π · √ (L · C)) (1)
The frequency fz 2 is the second zero, and similarly to the first zero fz 1 , the gain is increased by +20 dB / dec and the phase is advanced by +90 deg. Therefore, in region IV, the gain changes at −20 dB / dec, and the phase delayed up to −180 deg in region III is restored. As a result, the phase margin can be ensured at the crossover frequency fc.
 図3は、図2の周波数特性を要素毎に分解した図である。デジタルフィルタ特性は、図1のデジタルフィルタ4で決定される特性であり、コンバータ特性は、デジタルフィルタ4以外で決定する特性である。デジタルフィルタ4は、周波数に応じて利得を-20dB/decで低下する積分特性に加えて、二つの零点fzとfzを追加し、適切に配置することによって、コンバータ特性のLC共振周波数fにおける利得低下の傾斜を緩くする。 FIG. 3 is an exploded view of the frequency characteristics of FIG. 2 for each element. The digital filter characteristic is a characteristic determined by the digital filter 4 in FIG. 1, and the converter characteristic is a characteristic determined by other than the digital filter 4. The digital filter 4 adds two zeros fz 1 and fz 2 in addition to the integral characteristic that decreases the gain by −20 dB / dec in accordance with the frequency, and appropriately arranges them, thereby arranging the LC resonance frequency f of the converter characteristic. Reduce the slope of the gain drop at zero .
 また、デジタルフィルタ4は、最大で-180deg遅れる位相を戻すために、二つの零点fzとfzを生成する。この零点fzとfzを適切に配置することによって、位相余裕度PMを十分に確保することができる。一般的には、第1零点fzは、共振周波数fよりも低く設定し、第2零点fzは、LC共振周波数fからクロスオーバー周波数fcの間に配置するのが望ましい。 Also, the digital filter 4 generates two zeros fz 1 and fz 2 in order to return the phase delayed by −180 deg at the maximum. By appropriately arranging the zeros fz 1 and fz 2 , the phase margin PM can be sufficiently secured. In general, it is desirable that the first zero point fz 1 is set lower than the resonance frequency f 0 and the second zero point fz 2 is arranged between the LC resonance frequency f 0 and the crossover frequency fc.
 しかし、モジュール電源のユーザーの多くは、モジュール電源の出力端子とGND間にコンデンサを追加し、コンデンサ値を調整する。これによって、スイッチング動作に伴う出力リップル電圧を抑制し、出力負荷電流の急激な変動が発生した際の出力電圧の変動が規格範囲に入るように調整する。このため、(1)式で与えられたLC共振周波数fが変化し、フィードバック動作が不安定になる場合がある。これについて、図4を参照しながら詳しく説明する。 However, many users of the module power supply add a capacitor between the output terminal of the module power supply and GND to adjust the capacitor value. As a result, the output ripple voltage associated with the switching operation is suppressed, and adjustment is made so that the fluctuation of the output voltage when the sudden fluctuation of the output load current occurs falls within the standard range. For this reason, the LC resonance frequency f 0 given by the equation (1) may change and the feedback operation may become unstable. This will be described in detail with reference to FIG.
 例えば、図4に示したように、出力コンデンサ104が小さな値で十分な位相余裕度PMを確保できるように第1零点fzと第2零点fzを最適化した条件を考える。このフィルタ条件を維持したまま、出力コンデンサ104のみを大きくすると、図5に示したように、LC共振周波数はfよりも低いf’に移動する。このために、第1零点fzと共振点f’の位置関係が逆転してしまい、特に、領域IIにおいて-60dB/decとなり、非常に傾斜が急峻となる。 For example, as shown in FIG. 4, a condition is considered in which the first zero point fz 1 and the second zero point fz 2 are optimized so that the output capacitor 104 can secure a sufficient phase margin PM with a small value. If only the output capacitor 104 is increased while maintaining this filter condition, the LC resonance frequency moves to f 0 ′ lower than f 0 as shown in FIG. For this reason, the positional relationship between the first zero point fz 1 and the resonance point f 0 ′ is reversed, and in particular, in the region II, −60 dB / dec, and the slope becomes very steep.
 この結果、クロスオーバー周波数fc’が低くなるため、第2零点fzによる位相進み効果が十分に得られない。このため、位相余裕度PM’が不足して不安定動作に陥る。この問題を解決するには、出力コンデンサ104の値を計測した上でLC共振周波数f’を求め、この結果に基づき第1零点fzと第2零点fzを最適化する必要がある。 As a result, since the crossover frequency fc ′ is lowered, the phase advance effect by the second zero point fz 2 cannot be sufficiently obtained. For this reason, the phase margin PM ′ is insufficient, resulting in unstable operation. In order to solve this problem, it is necessary to obtain the LC resonance frequency f 0 ′ after measuring the value of the output capacitor 104 and to optimize the first zero point fz 1 and the second zero point fz 2 based on this result.
 そこで、本発明は、比較値生成部2が比較値に小さなオフセット(第1比較値)を発生させることで、電源Viの投入直後から第1比較値で決まる第1出力電圧に達するまでのフィルタ特性分析期間中に突入電流を積極的に発生させる。本発明は、この突入電流値とフィルタ特性分析期間Tr(突入電流発生期間)を計測することによって出力コンデンサ104の値と共振周波数fを算出する。本発明は、算出された共振周波数fに応じて、零点fzとfzを最適に設定する。この様子について、図6を参照しながら説明する。 Accordingly, the present invention provides a filter from the time immediately after the power source Vi is turned on until the first output voltage determined by the first comparison value is reached by causing the comparison value generating unit 2 to generate a small offset (first comparison value) in the comparison value. Inrush current is actively generated during the characteristic analysis period. The present invention calculates the value of the output capacitor 104 and the resonance frequency f 0 by measuring the inrush current value and the filter characteristic analysis period Tr (inrush current generation period). In the present invention, the zeros fz 1 and fz 2 are optimally set according to the calculated resonance frequency f 0 . This will be described with reference to FIG.
 まず、電源Viを投入後、フィルタ特性分析期間Trにおいて、比較値生成部2は、第1比較値(小さなオフセット)を発生させる。このため、出力電圧Voは第1比較値で決まる第1出力電圧まで急激に上昇する。この際に、インダクタ電流ILには、後続のフィルタ設定期間Tfよりも電流値が高い突入電流が流れる。 First, after the power source Vi is turned on, the comparison value generator 2 generates a first comparison value (small offset) in the filter characteristic analysis period Tr. For this reason, the output voltage Vo rises rapidly to the first output voltage determined by the first comparison value. At this time, an inrush current having a current value higher than that of the subsequent filter setting period Tf flows in the inductor current IL.
 電流検出部6は、突入電流発生期間(フィルタ特性分析期間Tr)におけるピーク電流とボトム電流(図6の例ではピーク電流:ILとIL、ボトム電流:IL)を所定のビット数のデジタル値に変換する。具体的には、式(2)に適用することで突入電流の平均値を求める。 The current detection unit 6 calculates a peak current and a bottom current (in the example of FIG. 6, peak currents: IL 1 and IL 3 , bottom current: IL 2 ) in a rush current generation period (filter characteristic analysis period Tr) with a predetermined number of bits. Convert to digital value. Specifically, the average value of the inrush current is obtained by applying to the equation (2).
    ILave=(IL+IL+IL+・・・+IL)/n・・・(2)
 次に、フィルタ特性分析部7は、突入電流平均値ILaveとフィルタ特性分析期間(突入電流発生期間)Trと第1出力電圧Vo1を式(3)に代入することによって出力コンデンサ104の値を求める。
ILave = (IL 1 + IL 2 + IL 3 +... + IL n ) / n (2)
Next, the filter characteristic analysis unit 7 obtains the value of the output capacitor 104 by substituting the inrush current average value ILave, the filter characteristic analysis period (inrush current generation period) Tr, and the first output voltage Vo1 into Expression (3). .
      C=ILave×Tr/Vo1・・・(3)
 フィルタ特性分析部7は、式(3)で求めた出力コンデンサ104の容量値Cと、インダクタ103のインダクタ値Lを式(1)に適用することによって、共振周波数fを求める。
C = ILave × Tr / Vo1 (3)
The filter characteristic analysis unit 7 obtains the resonance frequency f 0 by applying the capacitance value C of the output capacitor 104 and the inductor value L of the inductor 103 obtained in Expression (3) to Expression (1).
     f=1/(2・π・√(L・C))・・・(1)
 図6に示すフィルタ設定期間Tfでは、フィルタ定数格納部8に予め設定され格納されている複数のデジタルフィルタ定数テーブル81の中から、フィルタ特性分析部7で求めた共振周波数f値に応じたフィルタ定数を選択し、選択されたフィルタ定数をデジタルフィルタ4に適用する。フィルタ定数は、第1零点fzと第2零点fzと利得Aacからなる。具体的には、LC共振周波数f値が低くなるほど、第1零点fzと第2零点fzと利得Aacが低くなるようなデジタルフィルタ定数テーブル81を選択する。
f 0 = 1 / (2 · π · √ (L · C)) (1)
In the filter setting period Tf shown in FIG. 6, the resonance frequency f 0 determined by the filter characteristic analysis unit 7 from the plurality of digital filter constant tables 81 set and stored in advance in the filter constant storage unit 8 is used. A filter constant is selected, and the selected filter constant is applied to the digital filter 4. Filter constant is composed of a first zero point fz 1 and the second zero point fz 2 and gain Aac. Specifically, the digital filter constant table 81 is selected such that the first zero point fz 1 , the second zero point fz 2, and the gain Aac decrease as the LC resonance frequency f 0 value decreases.
 ここで、利得Aacの調整が必要になる理由を説明する。仮に零点のみが低くなるように設定すると、クロスオーバー周波数fcが高くなる。クロスオーバー周波数fcは、フィードバック制御ループが制御可能な最大周波数を示しており、クロスオーバー周波数fcが高ければ高い程、フィードバック制御の応答性能は高まる。しかし、クロスオーバー周波数fcが過度に高いと、ノイズに対して敏感になるため、一般的には、クロスオーバー周波数fcがスイッチング周波数の1/10程度になるよう調整する。 Here, the reason why the gain Aac needs to be adjusted will be described. If only the zero point is set to be low, the crossover frequency fc is high. The crossover frequency fc indicates the maximum frequency that can be controlled by the feedback control loop. The higher the crossover frequency fc, the higher the response performance of the feedback control. However, if the crossover frequency fc is excessively high, it becomes sensitive to noise. Therefore, in general, the crossover frequency fc is adjusted to be about 1/10 of the switching frequency.
 そこで、本発明では、下記表1に示したように、第1零点fzと第2零点fzと利得Aacが連動するように設定している。表1は、複数のデジタルフィルタ定数テーブル81の共振周波数とデジタルフィルタ定数との設定の関係を示す。 Therefore, in the present invention, as shown in Table 1 below, the first zero point fz 1 , the second zero point fz 2, and the gain Aac are set to work together. Table 1 shows a setting relationship between the resonance frequency and the digital filter constants of the plurality of digital filter constant tables 81.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 これによって、図7に示したように、零点調整前では、第1零点fzと共振点fの位置関係が逆転し、特に、領域IIにおいて利得が-60dB/decとなり、非常に傾斜が急峻となる。このため、クロスオーバー周波数fcが低くなり、第2零点fzによる位相進み効果が得られず、位相余裕度PMが不足している。 As a result, as shown in FIG. 7, before the zero adjustment, the positional relationship between the first zero fz 1 and the resonance point f 0 is reversed. In particular, in the region II, the gain becomes −60 dB / dec, and the inclination is very small. It becomes steep. For this reason, the crossover frequency fc becomes low, the phase advance effect by the second zero point fz 2 cannot be obtained, and the phase margin PM is insufficient.
 しかし、零点調整後は、図8に示したように、LC共振周波数fに応じて、第1零点fz’と第2零点fz’と利得Aacを低下させる。これによって、位相余裕度PMを十分に確保しつつ、クロスオーバー周波数fc’が高くなりすぎるのを防止することで、より安定度の高い電源を構成できる。 However, after the zero point adjustment, as shown in FIG. 8, the first zero point fz 1 ′, the second zero point fz 2 ′, and the gain Aac are lowered according to the LC resonance frequency f 0 . Accordingly, it is possible to configure a power supply with higher stability by preventing the crossover frequency fc ′ from becoming too high while sufficiently securing the phase margin PM.
 図6のソフトスタート期間Tsでは、比較値生成部2が比較値を第1比較値から第2比較値までゆっくりと上昇させることで、出力電圧Voのソフトスタート動作を実現し、オーバーシュートを防止する。その後、出力電圧Voが第2比較値で決まる設定電圧に達すると、定常動作期間Tcに移行して定常動作を開始する。 In the soft start period Ts in FIG. 6, the comparison value generation unit 2 slowly increases the comparison value from the first comparison value to the second comparison value, thereby realizing a soft start operation of the output voltage Vo and preventing overshoot. To do. After that, when the output voltage Vo reaches the set voltage determined by the second comparison value, the steady operation period Tc is started and the steady operation is started.
 尚、従来技術では、ソフトスタート動作期間終了後にフィルタ特性の設定を行うため、ソフトスタート動作期間中にフィードバック動作が不安定になる問題があった。これに対して、本発明では、出力電圧Voがソフトスタート動作を開始する以前にデジタルフィルタ4の設定が完了しているため、前記問題が発生しない。 In the prior art, since the filter characteristics are set after the soft start operation period, the feedback operation becomes unstable during the soft start operation period. On the other hand, in the present invention, since the setting of the digital filter 4 is completed before the output voltage Vo starts the soft start operation, the above problem does not occur.
 尚、インダクタ電流ILを検出する方法としては、シャント抵抗を用いて直接検出する方法、インダクタ103のDCR(直流抵抗)を利用して間接的に検出する方法、ホール素子を用いて非接触で検出する方法を用いても良い。 As a method of detecting the inductor current IL, a method of directly detecting using the shunt resistor, a method of detecting indirectly using the DCR (DC resistance) of the inductor 103, or a non-contact detecting using the Hall element. You may use the method to do.
 また、フィルタ特性分析部7は、電圧検出部1で検出された出力電圧Voが第1出力電圧よりも低い所定電圧に達した時に、フィルタ特性分析期間を終了させても良い。また、フィルタ特性分析部7は、電流検出部1で検出されたインダクタ電流のピーク値が所定電流以下に達した時に、フィルタ特性分析期間を終了させても良い。 Further, the filter characteristic analysis unit 7 may end the filter characteristic analysis period when the output voltage Vo detected by the voltage detection unit 1 reaches a predetermined voltage lower than the first output voltage. The filter characteristic analysis unit 7 may end the filter characteristic analysis period when the peak value of the inductor current detected by the current detection unit 1 reaches a predetermined current or less.
 このように、実施例1のスイッチング電源装置によれば、フィルタ特性分析部7は、電源を起動した直後で且つ出力電圧が上昇を開始する以前のフィルタ特性分析期間に流れる突入電流値に基づきフィルタ特性を分析する。フィルタ定数格納部8は、格納されている複数のデジタルフィルタ定数テーブルを参照して、分析されたフィルタ特性に応じたフィルタ定数を選択し、選択されたフィルタ定数をデジタルフィルタに適用する。 As described above, according to the switching power supply device of the first embodiment, the filter characteristic analysis unit 7 performs filtering based on the inrush current value that flows in the filter characteristic analysis period immediately after starting the power supply and before the output voltage starts to increase. Analyze the characteristics. The filter constant storage unit 8 refers to a plurality of stored digital filter constant tables, selects a filter constant according to the analyzed filter characteristics, and applies the selected filter constant to the digital filter.
 その後、比較値生成部2は、出力電圧が第1出力電圧に達した後に、比較値を第1比較値から第2比較値まで上昇させる。即ち、ソフトスタート動作させることによって、出力電圧が設定電圧までゆっくりと上昇する。出力電圧が設定電圧まで上昇する以前にフィルタ定数設定が完了するために、ソフトスタート期間中のフィードバック制御を安定化することができる。このため、出力電圧の立ち上がり期間中に不安定動作に陥るのを防止できる。 Thereafter, the comparison value generator 2 increases the comparison value from the first comparison value to the second comparison value after the output voltage reaches the first output voltage. That is, the soft start operation causes the output voltage to slowly rise to the set voltage. Since the filter constant setting is completed before the output voltage rises to the set voltage, the feedback control during the soft start period can be stabilized. Therefore, it is possible to prevent an unstable operation during the rising period of the output voltage.
 (実施例2)
 図9は、実施例2のスイッチング電源装置の構成図である。実施例2は、実施例1に対して、フィルタ定数格納部8の代わりにフィルタ定数演算部9を備えている。実施例2のその他の構成は実施例1の同一構成であるので、フィルタ定数演算部9のみを説明する。
(Example 2)
FIG. 9 is a configuration diagram of the switching power supply device according to the second embodiment. The second embodiment is different from the first embodiment in that a filter constant calculation unit 9 is provided instead of the filter constant storage unit 8. Since the other configuration of the second embodiment is the same as that of the first embodiment, only the filter constant calculation unit 9 will be described.
 フィルタ定数演算部9は、フィルタ特性分析部7からのフィルタ特性分析結果(LC共振周波数f値)と、目標クロスオーバー周波数fcaと、目標位相余裕PMaと、その他の設定に必要な情報とに基づいて、条件を満たすフィルタ定数を演算し、演算されたフィルタ定数をデジタルフィルタ4に適用する。フィルタ定数演算部9での演算方法の一例を説明する。 The filter constant calculation unit 9 uses the filter characteristic analysis result (LC resonance frequency f 0 value) from the filter characteristic analysis unit 7, the target crossover frequency fca, the target phase margin PMa, and other information necessary for setting. Based on this, a filter constant satisfying the condition is calculated, and the calculated filter constant is applied to the digital filter 4. An example of a calculation method in the filter constant calculation unit 9 will be described.
 最適化後のフィルタ特性が、fz<<f<fz<<fcaを満たすものと仮定すると、第2零点fzは、目標クロスオーバー周波数をfca、目標位相余裕をPMaとすると式(4)で概算できる。 Assuming that the optimized filter characteristics satisfy fz 1 << f 0 <fz 2 << fca, the second zero point fz 2 is expressed by an equation ( 2) where the target crossover frequency is fca and the target phase margin is PMa. It can be estimated in 4).
    fz≒-fca・tan(PMa+90deg)-fz・・・(4)
 また、利得は、任意の周波数f(例えば10Hz程度の低い周波数)における利得をAacとすると式(5)で概算できる。
fz 2 ≈−fca · tan (PMa + 90 deg) −fz 1 (4)
Further, the gain can be approximated by Expression (5), where Aac is a gain at an arbitrary frequency f (for example, a low frequency of about 10 Hz).
     Aac≒fca・fz・fz/(f・f・f)・・・(5)
 また、fzは、fz<<fzが前提条件であるため式(6)で表される。
Aac ≒ fca · fz 1 · fz 2 / (f · f 0 · f 0) ··· (5)
Further, fz 1 is expressed by Expression (6) because fz 1 << fz 2 is a precondition.
        fz≒fz/10・・・(6)
 フィルタ定数演算部9は、以上に示した式(4)、(5)、(6)から、第1零点fz、第2零点fz、利得Aacを算出して、デジタルフィルタ4に適用する。これによって、十分な安定性を持つフィードバック制御を実現することができる。実施例1では、フィルタ特性分析部7で演算されたLC共振周波数fに応じて、フィルタ定数格納部8が、格納されているフィルタ定数テーブルの中から最適な定数を選択する。このため、許容できるLC共振周波数fのばらつき範囲がある程度限定されてしまう。
fz 1 ≒ fz 2/10 ··· (6)
The filter constant calculation unit 9 calculates the first zero point fz 1 , the second zero point fz 2 , and the gain Aac from the equations (4), (5), and (6) shown above, and applies them to the digital filter 4. . Thereby, feedback control with sufficient stability can be realized. In the first embodiment, the filter constant storage unit 8 selects an optimal constant from the stored filter constant table in accordance with the LC resonance frequency f 0 calculated by the filter characteristic analysis unit 7. Therefore, the variation range of acceptable LC resonance frequency f 0 will be limited to some extent.
 これに対して、実施例2では、フィルタ定数演算部9が、フィルタ定数を演算で求めるため、LC共振周波数fがより広い範囲でばらついても安定したフィードバック制御を実現できる。 On the other hand, in the second embodiment, since the filter constant calculation unit 9 calculates the filter constant by calculation, stable feedback control can be realized even if the LC resonance frequency f 0 varies in a wider range.
 尚、インダクタ電流ILを検出する方法としては、シャント抵抗を用いて直接検出する方法、インダクタ103のDCR(直流抵抗)を利用して間接的に検出する方法、ホール素子を用いて非接触で検出する方法を用いても良い。 As a method of detecting the inductor current IL, a method of directly detecting using the shunt resistor, a method of detecting indirectly using the DCR (DC resistance) of the inductor 103, or a non-contact detecting using the Hall element. You may use the method to do.
 また、フィルタ特性分析部7は、電圧検出部1で検出された出力電圧Voが第1出力電圧よりも低い所定電圧に達した時に、フィルタ特性分析期間を終了させても良い。また、フィルタ特性分析部7は、電流検出部1で検出されたインダクタ電流のピーク値が所定電流以下に達した時に、フィルタ特性分析期間を終了させも良い。 Further, the filter characteristic analysis unit 7 may end the filter characteristic analysis period when the output voltage Vo detected by the voltage detection unit 1 reaches a predetermined voltage lower than the first output voltage. The filter characteristic analysis unit 7 may end the filter characteristic analysis period when the peak value of the inductor current detected by the current detection unit 1 reaches a predetermined current or less.
 このように実施例2のスイッチング電源装置によれば、フィルタ特性分析部7は、電源を起動した直後で且つ出力電圧が上昇を開始する以前のフィルタ特性分析期間に流れる突入電流値に基づきフィルタ特性を分析する。フィルタ定数演算部9は、フィルタ特性に応じた最適なフィルタ定数を演算しデジタルフィルタに適用する。 As described above, according to the switching power supply device of the second embodiment, the filter characteristic analysis unit 7 performs the filter characteristic based on the inrush current value that flows in the filter characteristic analysis period immediately after starting the power supply and before the output voltage starts to increase. Analyze. The filter constant calculation unit 9 calculates an optimum filter constant corresponding to the filter characteristic and applies it to the digital filter.
 その後、比較値生成部2は、出力電圧が第1出力電圧に達した後に、比較値を第1比較値から第2比較値まで上昇させる。即ち、ソフトスタート動作させることによって、出力電圧が設定電圧までゆっくりと上昇する。出力電圧が設定電圧まで上昇する以前にフィルタ定数設定が完了するために、ソフトスタート期間中のフィードバック制御を安定化することができる。このため、出力電圧の立ち上がり期間中に不安定動作に陥るのを防止できる。 Thereafter, the comparison value generator 2 increases the comparison value from the first comparison value to the second comparison value after the output voltage reaches the first output voltage. That is, the soft start operation causes the output voltage to slowly rise to the set voltage. Since the filter constant setting is completed before the output voltage rises to the set voltage, the feedback control during the soft start period can be stabilized. Therefore, it is possible to prevent an unstable operation during the rising period of the output voltage.
 (実施例3)
 図10は実施例3のスイッチング電源装置の構成図である。実施例3のスイッチング電源装置は、実施例2のスイッチング電源装置に対して、過電流保護部10が追加となり、駆動部5から駆動部5bに変更になっている。図10に示すその他の構成は、図9に示す構成と同一であるため、相違する構成のみを説明する。
(Example 3)
FIG. 10 is a configuration diagram of the switching power supply device according to the third embodiment. In the switching power supply device according to the third embodiment, the overcurrent protection unit 10 is added to the switching power supply device according to the second embodiment, and the driving unit 5 is changed to the driving unit 5b. Since the other configuration shown in FIG. 10 is the same as the configuration shown in FIG. 9, only the different configuration will be described.
 過電流保護部10は、電流検出部6により検出された電流検出信号のピーク値と過電流閾値IOCPを比較して、ピーク値が過電流閾値IOCPに達した際に駆動部5bに対してオフトリガ信号を出力する。即ち、過電流保護部10は、スイッチング素子のオン期間を制限する。 The overcurrent protection unit 10 compares the peak value of the current detection signal detected by the current detection unit 6 with the overcurrent threshold IOCP, and when the peak value reaches the overcurrent threshold IOCP, the overcurrent protection unit 10 is off-triggered. Output a signal. That is, the overcurrent protection unit 10 limits the ON period of the switching element.
 駆動部5bは、過電流保護部10からのオフトリガ信号を受けて、ハイサイドMOSFET101をパルス・バイ・パルスで停止させる。これによって、フィルタ特性分析期間に流れる突入電流を過電流閾値IOCPで制限することができる。このため、実施例2では、突入電流発生期間Tr(フィルタ特性分析期間)におけるピーク電流とボトム電流を計測して式(2)を用いて突入電流平均値ILaveを求めていたが、実施例3では、突入電流のピーク値は過電流閾値IOCPで制限されるため、計測しなくてもある程度の突入電流平均値ILaveを予測することができ、構成の簡略化を実現できる。 The driving unit 5b receives the off-trigger signal from the overcurrent protection unit 10 and stops the high-side MOSFET 101 in a pulse-by-pulse manner. As a result, the inrush current flowing during the filter characteristic analysis period can be limited by the overcurrent threshold IOCP. For this reason, in the second embodiment, the peak current and the bottom current in the inrush current generation period Tr (filter characteristic analysis period) are measured and the inrush current average value ILave is obtained using the equation (2). Then, since the peak value of the inrush current is limited by the overcurrent threshold IOCP, a certain amount of inrush current average value ILave can be predicted without measurement, and the configuration can be simplified.
 尚、インダクタ電流ILを検出する方法としては、シャント抵抗を用いて直接検出する方法、インダクタ103のDCR(直流抵抗)を利用して間接的に検出する方法、ホール素子を用いて非接触で検出する方法を用いても良い。 As a method of detecting the inductor current IL, a method of directly detecting using the shunt resistor, a method of detecting indirectly using the DCR (DC resistance) of the inductor 103, or a non-contact detecting using the Hall element. You may use the method to do.
 また、フィルタ特性分析部7は、電圧検出部1で検出された出力電圧Voが第1出力電圧よりも低い所定電圧に達した時に、フィルタ特性分析期間を終了させても良い。また、フィルタ特性分析部7は、電流検出部1で検出されたインダクタ電流のピーク電流値が過電流閾値以下に低下した時に、フィルタ特性分析期間を終了させも良い。 Further, the filter characteristic analysis unit 7 may end the filter characteristic analysis period when the output voltage Vo detected by the voltage detection unit 1 reaches a predetermined voltage lower than the first output voltage. The filter characteristic analysis unit 7 may end the filter characteristic analysis period when the peak current value of the inductor current detected by the current detection unit 1 falls below the overcurrent threshold.
 本発明は、非絶縁型の降圧チョッパ回路等に適用可能である。 The present invention can be applied to a non-insulated step-down chopper circuit or the like.
1 電圧検出部
2 比較値生成部
3 減算器
4 デジタルフィルタ
5,5b 駆動部
6 電流検出部
7 フィルタ特性分析部
8 フィルタ定数格納部
9 フィルタ演算部
10 過電流保護部
81 複数のデジタルフィルタ定数テーブル
101 ハイサイドMOSFET
102 ローサイドMOSFET
103 インダクタ
104 出力コンデンサ
105 出力負荷
Vi 電源
DESCRIPTION OF SYMBOLS 1 Voltage detection part 2 Comparison value generation part 3 Subtractor 4 Digital filter 5, 5b Drive part 6 Current detection part 7 Filter characteristic analysis part 8 Filter constant storage part 9 Filter operation part 10 Overcurrent protection part 81 Several digital filter constant table 101 high-side MOSFET
102 Low-side MOSFET
103 Inductor 104 Output capacitor 105 Output load Vi Power supply

Claims (14)

  1.  スイッチング素子をオンオフすることで電源から供給される第1の直流電圧をインダクタと出力コンデンサを介して第2の直流電圧に変換して出力負荷へ出力電圧を供給するスイッチング電源装置であって、
     第1比較値と該第1比較値よりも大きい第2比較値を有し、前記電源起動後に前記第1比較値を生成し、前記出力電圧が前記第1比較値に対応する第1出力電圧に達した後に、比較値を前記第1比較値から前記第2比較値まで上昇させる比較値生成部と、
     前記比較値生成部で生成された前記第1比較値又は前記第2比較値と前記出力電圧との誤差に対して所定の演算を行うデジタルフィルタと、
     前記デジタルフィルタの演算結果に応じて前記スイッチング素子のオンオフのデューティーを制御する駆動部と、
     前記インダクタに流れる電流を検出し検出された電流を電流検出信号として出力する電流検出部と、
     前記電流検出信号と前記第1出力電圧と前記第1比較値を生成した時から前記出力電圧が前記第1出力電圧に達する時までのフィルタ特性分析期間とに基づいて前記インダクタと前記出力コンデンサとにより決定されるフィルタ特性を分析するフィルタ特性分析部と、
     複数のフィルタ特性に対応した複数のフィルタ定数を格納した複数のデジタルフィルタ定数テーブルを有し、前記比較値が前記第1比較値から前記第2比較値に移行するまでの期間に前記複数のデジタルフィルタ定数テーブルを参照して、前記フィルタ特性分析部で分析された前記フィルタ特性に応じた前記フィルタ定数を選択し選択された前記フィルタ定数を前記デジタルフィルタに供給するフィルタ定数格納部と、
    を備えるスイッチング電源装置。
    A switching power supply device that converts a first DC voltage supplied from a power supply by turning on and off a switching element into a second DC voltage via an inductor and an output capacitor and supplies the output voltage to an output load,
    A first output voltage having a first comparison value and a second comparison value greater than the first comparison value, generating the first comparison value after the power is turned on, and the output voltage corresponding to the first comparison value A comparison value generating unit that raises the comparison value from the first comparison value to the second comparison value after reaching
    A digital filter that performs a predetermined operation on an error between the first comparison value or the second comparison value generated by the comparison value generation unit and the output voltage;
    A drive unit for controlling on / off duty of the switching element in accordance with a calculation result of the digital filter;
    A current detection unit that detects a current flowing through the inductor and outputs the detected current as a current detection signal;
    The inductor, the output capacitor, and the output capacitor based on a filter characteristic analysis period from when the current detection signal, the first output voltage, and the first comparison value are generated to when the output voltage reaches the first output voltage. A filter characteristic analysis unit for analyzing the filter characteristic determined by
    A plurality of digital filter constant tables storing a plurality of filter constants corresponding to a plurality of filter characteristics, and the plurality of digital filters in a period until the comparison value shifts from the first comparison value to the second comparison value; A filter constant storage unit that refers to a filter constant table, selects the filter constant according to the filter characteristic analyzed by the filter characteristic analysis unit, and supplies the selected filter constant to the digital filter;
    A switching power supply device comprising:
  2.  前記フィルタ特性は、前記インダクタと前記出力コンデンサとにより決定される共振周波数であり、
     前記フィルタ定数格納部は、前記共振周波数と、フィードバックループの安定性を判別するためのボーデ線図の利得における零点とを対応付けて複数格納し、複数の前記零点の中から前記フィルタ特性分析部からの前記共振周波数に対応する零点を選択して前記デジタルフィルタに供給する請求項1に記載のスイッチング電源装置。
    The filter characteristic is a resonance frequency determined by the inductor and the output capacitor,
    The filter constant storage unit stores a plurality of the resonance frequencies and zeros in the gain of the Bode diagram for determining the stability of the feedback loop, and stores the filter characteristic analysis unit from the plurality of zeros. The switching power supply device according to claim 1, wherein a zero point corresponding to the resonance frequency from is selected and supplied to the digital filter.
  3.  前記フィルタ定数格納部は、少なくとも一つの前記零点を前記共振周波数よりも低い周波数に設定する請求項2に記載のスイッチング電源装置。 The switching power supply device according to claim 2, wherein the filter constant storage unit sets at least one of the zeros to a frequency lower than the resonance frequency.
  4.  前記電流検出部は、前記フィルタ特性分析期間中に前記インダクタに流れる前記電流のピーク値とボトム値に基づいて平均値を算出し算出された前記平均値を前記電流検出信号として出力する請求項1に記載のスイッチング電源装置。 The current detection unit calculates an average value based on a peak value and a bottom value of the current flowing through the inductor during the filter characteristic analysis period, and outputs the calculated average value as the current detection signal. The switching power supply device described in 1.
  5.  前記フィルタ特性分析期間中に前記インダクタに流れる前記電流のピーク値を過電流閾値で制限することにより、前記スイッチング素子のオン期間を制限する過電流保護部を備え、
     前記電流検出部は、前記過電流閾値に基づき前記フィルタ特性分析期間中に前記インダクタに流れる電流の平均値を予測し予測された前記平均値を前記電流検出信号として出力する請求項1に記載のスイッチング電源装置。
    An overcurrent protection unit that limits an on period of the switching element by limiting a peak value of the current flowing through the inductor during the filter characteristic analysis period with an overcurrent threshold;
    2. The current detection unit according to claim 1, wherein the current detection unit predicts an average value of a current flowing through the inductor during the filter characteristic analysis period based on the overcurrent threshold and outputs the predicted average value as the current detection signal. Switching power supply.
  6.  前記フィルタ特性分析部は、前記出力電圧が前記第1出力電圧よりも低い所定電圧に達した時に、前記フィルタ特性分析期間を終了させる請求項4又は請求項5に記載のスイッチング電源装置。 6. The switching power supply device according to claim 4, wherein the filter characteristic analysis unit ends the filter characteristic analysis period when the output voltage reaches a predetermined voltage lower than the first output voltage.
  7.  前記フィルタ特性分析部は、前記電流検出部で検出された前記インダクタ電流の前記ピーク値が所定電流以下に達した時に、前記フィルタ特性分析期間を終了させる請求項4又は請求項5に記載のスイッチング電源装置。 The switching according to claim 4 or 5, wherein the filter characteristic analysis unit ends the filter characteristic analysis period when the peak value of the inductor current detected by the current detection unit reaches a predetermined current or less. Power supply.
  8.  スイッチング素子をオンオフすることで電源から供給される第1の直流電圧をインダクタと出力コンデンサを介して第2の直流電圧に変換して出力負荷へ出力電圧を供給するスイッチング電源装置であって、
     第1比較値と該第1比較値よりも大きい第2比較値を有し、前記電源起動後に前記第1比較値を生成し、前記出力電圧が前記第1比較値に対応する第1出力電圧に達した後に、比較値を前記第1比較値から前記第2比較値まで上昇させる比較値生成部と、
     前記比較値生成部で生成された前記第1比較値又は前記第2比較値と前記出力電圧との誤差に対して所定の演算を行うデジタルフィルタと、
     前記デジタルフィルタの演算結果に応じて前記スイッチング素子のオンオフのデューティーを制御する駆動部と、
     前記インダクタに流れる電流を検出し検出された電流を電流検出信号として出力する電流検出部と、
     前記電流検出信号と前記第1出力電圧と前記第1比較値を生成した時から前記出力電圧が前記第1出力電圧に達する時までのフィルタ特性分析期間とに基づいて前記インダクタと前記出力コンデンサとにより決定されるフィルタ特性を分析するフィルタ特性分析部と、
     前記比較値が前記第1比較値から前記第2比較値に移行するまでの期間に、前記フィルタ特性分析部で分析された前記フィルタ特性に応じてフィルタ定数を算出し算出された前記フィルタ定数を前記デジタルフィルタに供給するフィルタ定数演算部と、
    を備えるスイッチング電源装置。
    A switching power supply device that converts a first DC voltage supplied from a power supply by turning on and off a switching element into a second DC voltage via an inductor and an output capacitor and supplies the output voltage to an output load,
    A first output voltage having a first comparison value and a second comparison value greater than the first comparison value, generating the first comparison value after the power is turned on, and the output voltage corresponding to the first comparison value A comparison value generating unit that raises the comparison value from the first comparison value to the second comparison value after reaching
    A digital filter that performs a predetermined operation on an error between the first comparison value or the second comparison value generated by the comparison value generation unit and the output voltage;
    A drive unit for controlling on / off duty of the switching element in accordance with a calculation result of the digital filter;
    A current detection unit that detects a current flowing through the inductor and outputs the detected current as a current detection signal;
    The inductor, the output capacitor, and the output capacitor based on a filter characteristic analysis period from when the current detection signal, the first output voltage, and the first comparison value are generated to when the output voltage reaches the first output voltage. A filter characteristic analysis unit for analyzing the filter characteristic determined by
    In the period until the comparison value shifts from the first comparison value to the second comparison value, a filter constant is calculated according to the filter characteristic analyzed by the filter characteristic analysis unit, and the calculated filter constant is A filter constant calculator for supplying to the digital filter;
    A switching power supply device comprising:
  9.  前記フィルタ特性は、前記インダクタと前記出力コンデンサとにより決定される共振周波数であり、
     前記フィルタ定数演算部は、前記共振周波数と、フィードバックループの安定性を判別するためのボーデ線図の利得における目標クロスオーバー周波数と、前記ボーデ線図の位相における目標位相余裕とに基づき前記フィルタ特性を演算し、演算された前記フィルタ特性を前記デジタルフィルタに供給する請求項8に記載のスイッチング電源装置。
    The filter characteristic is a resonance frequency determined by the inductor and the output capacitor,
    The filter constant calculation unit is configured to filter the filter characteristics based on the resonance frequency, a target crossover frequency in a gain of a Bode diagram for determining stability of a feedback loop, and a target phase margin in a phase of the Bode diagram. The switching power supply according to claim 8, wherein the calculated filter characteristic is supplied to the digital filter.
  10.  前記フィルタ定数演算部は、前記ボーデ線図の利得における少なくとも一つの零点が前記共振周波数よりも低い周波数になるように演算を行う請求項9に記載のスイッチング電源装置。 The switching power supply device according to claim 9, wherein the filter constant calculation unit performs calculation so that at least one zero point in the gain of the Bode diagram is lower than the resonance frequency.
  11.  前記電流検出部は、前記フィルタ特性分析期間中に前記インダクタに流れる前記電流のピーク値とボトム値から平均値を算出して算出された前記平均値を前記電流検出信号として出力する請求項8に記載のスイッチング電源装置。 The current detection unit outputs the average value calculated by calculating an average value from a peak value and a bottom value of the current flowing through the inductor during the filter characteristic analysis period as the current detection signal. The switching power supply device described.
  12.  前記フィルタ特性分析期間中に前記インダクタに流れる前記電流のピーク値を過電流閾値で制限することにより、前記スイッチング素子のオン期間を制限する過電流保護部を備え、
     前記電流検出部は、前記過電流閾値から前記フィルタ特性分析期間中に前記インダクタに流れる電流の平均値を予測し予測された前記平均値を前記電流検出信号として出力する請求項8に記載のスイッチング電源装置。
    An overcurrent protection unit that limits an on period of the switching element by limiting a peak value of the current flowing through the inductor during the filter characteristic analysis period with an overcurrent threshold;
    The switching according to claim 8, wherein the current detection unit predicts an average value of a current flowing through the inductor during the filter characteristic analysis period from the overcurrent threshold and outputs the predicted average value as the current detection signal. Power supply.
  13.  前記フィルタ特性分析部は、前記出力電圧が前記第1出力電圧よりも低い所定電圧に達した時に、前記フィルタ特性分析期間を終了させる請求項11又は請求項12に記載のスイッチング電源装置。 The switching power supply device according to claim 11 or 12, wherein the filter characteristic analysis unit ends the filter characteristic analysis period when the output voltage reaches a predetermined voltage lower than the first output voltage.
  14.  前記フィルタ特性分析部は、前記電流検出部で検出された前記インダクタ電流の前記ピーク値が所定電流以下に達した時に、前記フィルタ特性分析期間を終了させる請求項11又は請求項12に記載のスイッチング電源装置。 The switching according to claim 11 or 12, wherein the filter characteristic analysis unit ends the filter characteristic analysis period when the peak value of the inductor current detected by the current detection unit reaches a predetermined current or less. Power supply.
PCT/JP2017/006127 2017-02-20 2017-02-20 Switching power supply device WO2018150572A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201790001547.0U CN210351013U (en) 2017-02-20 2017-02-20 Switching power supply device
PCT/JP2017/006127 WO2018150572A1 (en) 2017-02-20 2017-02-20 Switching power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006127 WO2018150572A1 (en) 2017-02-20 2017-02-20 Switching power supply device

Publications (1)

Publication Number Publication Date
WO2018150572A1 true WO2018150572A1 (en) 2018-08-23

Family

ID=63169189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006127 WO2018150572A1 (en) 2017-02-20 2017-02-20 Switching power supply device

Country Status (2)

Country Link
CN (1) CN210351013U (en)
WO (1) WO2018150572A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020202335A1 (en) * 2019-03-29 2020-10-08

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116804A (en) * 2005-10-19 2007-05-10 Canon Inc Switching power supply, electronic apparatus including the switching power supply, and control method of switching power supply
JP2014217132A (en) * 2013-04-24 2014-11-17 コーセル株式会社 Switching power supply device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116804A (en) * 2005-10-19 2007-05-10 Canon Inc Switching power supply, electronic apparatus including the switching power supply, and control method of switching power supply
JP2014217132A (en) * 2013-04-24 2014-11-17 コーセル株式会社 Switching power supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020202335A1 (en) * 2019-03-29 2020-10-08
WO2020202335A1 (en) * 2019-03-29 2020-10-08 サンケン電気株式会社 Switching power supply device
CN113424422A (en) * 2019-03-29 2021-09-21 三垦电气株式会社 Switching power supply device
JP7184168B2 (en) 2019-03-29 2022-12-06 サンケン電気株式会社 switching power supply
CN113424422B (en) * 2019-03-29 2023-11-07 三垦电气株式会社 Switching power supply device

Also Published As

Publication number Publication date
CN210351013U (en) 2020-04-17

Similar Documents

Publication Publication Date Title
KR101131751B1 (en) Switch mode power supply smps and methods thereof
JP4762134B2 (en) Resonant switching power supply
US7298124B2 (en) PWM regulator with discontinuous mode and method therefor
JP4303731B2 (en) Dual mode voltage regulator
US9525351B2 (en) Inductor current sensing in a buck converter using multiple filters
US9071125B2 (en) Switching regulator, control method thereof and power-supply device
US10790737B2 (en) Current threshold regulation method used in switching converters
US20090153124A1 (en) Dc-to-dc converter
US9515550B2 (en) Inductor current zero-crossing detection method and circuit and switching power supply thereof
US20200127566A1 (en) Common control for multiple power converter operation modes
JP2007159395A (en) Hysteresis switching regulator
US20130043849A1 (en) Voltage Converter Including Variable Mode Switching Regulator And Related Method
US20120257312A1 (en) System and method for programming and controlling over current trip point limits in voltage regulators
KR20090028498A (en) Switching regulator and method of controlling the same
US8476880B2 (en) System and method for reducing output voltage of a power regulator under light load
US7986134B2 (en) Power supplies, power supply controllers, and power supply controlling methods
KR20060049915A (en) Dc-dc converter circuit
JP4554243B2 (en) Method for reducing cost of voltage regulator circuit of switching mode power supply
JP5287261B2 (en) DC-DC converter
US6972974B2 (en) Compensator to achieve constant bandwidth in a switching regulator
WO2018150572A1 (en) Switching power supply device
US20060279268A1 (en) Method for Operational Amplifier Output Clamping for Switching Regulators
JP4464263B2 (en) Switching power supply
US20150270778A1 (en) Adaptive Pre-Charge Voltage Converter
JP7184168B2 (en) switching power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP