WO2018150528A1 - Local oscillation device and array antenna device - Google Patents

Local oscillation device and array antenna device Download PDF

Info

Publication number
WO2018150528A1
WO2018150528A1 PCT/JP2017/005822 JP2017005822W WO2018150528A1 WO 2018150528 A1 WO2018150528 A1 WO 2018150528A1 JP 2017005822 W JP2017005822 W JP 2017005822W WO 2018150528 A1 WO2018150528 A1 WO 2018150528A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
local oscillation
local
output
wave
Prior art date
Application number
PCT/JP2017/005822
Other languages
French (fr)
Japanese (ja)
Inventor
浩之 水谷
英之 中溝
田島 賢一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/005822 priority Critical patent/WO2018150528A1/en
Priority to JP2018519778A priority patent/JP6399256B1/en
Priority to US16/481,264 priority patent/US10784911B2/en
Priority to PCT/JP2018/000394 priority patent/WO2018150767A1/en
Publication of WO2018150528A1 publication Critical patent/WO2018150528A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining

Definitions

  • the present invention relates to a local oscillation device and an array antenna device used for wireless communication, radar, and the like.
  • multi-value modulation that is, technology for increasing the amount of information that can be transmitted to the user at one time.
  • multi-value modulation that is, technology for increasing the amount of information that can be transmitted to the user at one time.
  • it becomes weak against noise as the multi-level number of modulation is increased, and improvement of the signal-to-noise ratio has been a problem.
  • Patent Document 1 discloses a configuration in which an independent local oscillator is provided for each of a plurality of transmitters or receivers constituting an array antenna. Since the noise component (phase noise) included in the local oscillation wave output from an independent local oscillator is independent, if the signals output from multiple transmitters or receivers are synthesized, the desired signal component is amplitude synthesized. In contrast, the noise components are power combined. For this reason, the phase noise characteristic of the signal is improved and the signal-to-noise ratio is improved as compared with the configuration using a single local oscillator.
  • phase noise phase noise
  • the communication speed per user can be increased by increasing the multi-value number of modulation. In this case, the demand for the signal-to-noise ratio for the communication device is high. Conversely, when there are many users around the communication device, it is necessary to reduce the communication speed per user by reducing the multi-value number of modulation. In this case, the signal to noise ratio requirement for the communication device is low.
  • An object of the present invention is to solve the above-described problems, and is an array that can change the power consumption of a local oscillation device in accordance with a change in the signal-to-noise ratio requirement according to the situation around the communication device.
  • the purpose is to obtain an antenna.
  • the local oscillation device of the present invention outputs a first local oscillation wave synchronized with a reference signal, a first local oscillator that switches ON / OFF of a power supply according to a control signal, and a second local oscillator synchronized with the reference signal
  • a signal that outputs a local oscillation wave and is connected to the second local oscillator that switches the power ON / OFF according to the control signal, the first local oscillator, and the second local oscillator, and is synchronized with the control signal or the control signal
  • a path switching circuit for switching the path of the first local oscillation wave and the second local oscillation wave according to.
  • the present invention it is possible to change the power consumption of the local oscillation device in accordance with the change in the request for the signal-to-noise ratio.
  • Embodiment 1. 1 is a block diagram showing an example of the configuration of an array antenna apparatus according to Embodiment 1 of the present invention.
  • This array antenna includes antennas 1a and 1b, low noise amplifiers 2a and 2b, filters 3a and 3b, mixers 4a and 4b, filters 5a and 5b, amplifiers 6a and 6b, ADCs (Analog-to-Digital Converters) 7a and 7b ( An example of an analog-digital converter), a signal processing circuit 8, a reference oscillator 9, a local oscillation wave generation circuit 10, and a control signal generation circuit 14 are provided.
  • the local oscillation wave generation circuit 10 includes local oscillators 11a and 11b, a path switching circuit 12, and variable gain amplifiers 13a and 13b.
  • Antennas 1a and 1b are antennas that receive radio waves.
  • the antennas 1a and 1b are antennas that receive radio waves transmitted by the user and output them to the low noise amplifiers 2a and 2b, respectively.
  • a dipole antenna or a patch antenna is used for the antennas 1a and 1b.
  • the low noise amplifiers 2a and 2b are amplifiers that amplify the signal to low noise, respectively.
  • the low noise amplifiers 2a and 2b are low noise amplifiers that amplify signals received by the antennas 1a and 1b to low noise and output the amplified signals to the filters 3a and 3b.
  • the low-noise amplifiers 2a and 2b include ICs (Integrated Circuits), ICs (Integrated Circuits), GaAs (Gallium-Arsenide), SiGe (Silicon-Germanium), CMOS (Complementary-Metal-Oxide-Semiconductor) and other integrated semiconductor processes.
  • a hybrid IC in which components such as a capacitor are mounted on a substrate is used.
  • the low noise amplifiers 2a and 2b may be variable gain amplifiers that can vary the gain for amplifying the signal.
  • Filters 3a and 3b are filters that remove unwanted waves contained in the input signal and pass the desired waves.
  • the filters 3a and 3b remove unnecessary waves contained in the signals output from the low noise amplifiers 2a and 3b, respectively, pass the desired waves, and output them to the mixers 4a and 4b.
  • a band pass filter, a band rejection filter, a low pass filter, a high pass filter, or the like is used for the filters 3a and 3b.
  • the filters 3a and 3b may be variable filters that can vary the signal band to pass or remove.
  • the mixers 4a and 4b are mixers that mix a signal and a local oscillation wave and output the mixed wave.
  • the mixers 4a and 4b mix the signals output from the filters 3a and 3b and the local oscillation wave output from the local oscillation wave generation circuit 10, respectively, and output the mixed waves to the filters 5a and 5b.
  • a diode mixer using a diode an FET mixer using an FET (Field Effect Transistor), or the like is used as the mixers 4a and 4b.
  • Filters 5a and 5b are filters that remove unwanted waves contained in the input signal and pass the desired waves.
  • the filters 5a and 5b remove unnecessary waves contained in the signals output from the mixers 4a and 4b, respectively, pass the desired waves, and output them to the amplifiers 6a and 6b.
  • a band pass filter, a band rejection filter, a low pass filter, a high pass filter, or the like is used for the filters 5a and 5b.
  • the filters 5a and 5b may be variable filters that can vary the signal band to be passed or removed.
  • the amplifiers 6a and 6b are amplifiers that amplify signals.
  • the amplifiers 6a and 6b are amplifiers that amplify the signals output from the filters 5a and 5b and output the amplified signals to the ADCs 7a and 7b.
  • an IC integrated by a semiconductor process such as GaAs, SiGe, or CMOS, or a hybrid IC in which components such as transistors, resistors, and capacitors are mounted on a substrate is used.
  • the amplifiers 6a and 6b may be variable gain amplifiers that can vary the gain for amplifying the signal.
  • ADCs 7a and 7b are ADCs that convert analog signals into digital signals.
  • the ADCs 7a and 7b convert the analog signals output from the amplifiers 6a and 6b into digital signals, respectively.
  • ADCs such as a successive approximation type, a pipeline type, and a delta sigma type are used for the ADCs 7a and 7b.
  • the signal processing circuit 8 is a signal processing circuit that obtains necessary information from the input digital signal by calculation.
  • the signal processing circuit 8 obtains information included in the radio wave transmitted by the user from the digital signals output from the ADCs 7a and 7b.
  • a state switching signal for switching the state of the local oscillation wave generation circuit 10 is output to the control signal generation circuit 14 depending on whether the information has been correctly obtained.
  • the state of the local oscillation wave generation circuit 10 is the state shown in FIG.
  • the signal processing circuit 8 includes an FPGA (Field Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), a logical operation circuit, and the like.
  • the reference oscillator 9 is a reference oscillator that outputs a reference signal.
  • the reference oscillator 9 outputs a reference signal for synchronizing the plurality of local oscillators 11a and 11b.
  • a crystal oscillator, a MEMS (Micro Electro Mechanical Systems) oscillator, or the like is used as the reference oscillator 9.
  • the local oscillation wave generation circuit 10 is a circuit that outputs local oscillation waves to the mixers 4a and 4b.
  • the local oscillation wave generation circuit 10 includes a local oscillator 11a, a local oscillator 11b, a path switching circuit 12, a variable gain amplifier 13a, and a variable gain amplifier 13b.
  • the local oscillation wave generation circuit 10 is synchronized with the reference signal output from the reference oscillator 9, and based on a plurality of control signals output from the control signal generation circuit 14 in response to a change in the signal-to-noise ratio requirement for the array antenna, It controls ON / OFF of the power supplies of the local oscillators 11a and 11b, the output destination of the local oscillation wave output from the local oscillators 11a and 11b, and the gains of the variable gain amplifiers 13a and 13b.
  • the local oscillators 11 a and 11 b are local oscillators that output local oscillation waves to the mixers 4 a and 4 b via the path switching circuit 12.
  • the local oscillators 11a and 11b turn on / off the power based on the power supply control signal output from the control signal generation circuit 14, synchronize with the reference signal output from the reference oscillator 9, and route local oscillation waves to the mixers 4a and 4b. Output to the switching circuit 12.
  • the power supply control signal may be a signal for controlling ON / OFF of the power supply of the local oscillators 11a and 11b, or a signal for controlling whether or not to turn on the power to the local oscillators 11a and 11b. May be.
  • a PLL Phase Locked Loop
  • DDS Direct Digital Synthesizer
  • the path switching circuit 12 is a circuit that switches the path of the local oscillation wave output from the local oscillators 11a and 11b.
  • the path switching circuit 12 switches paths based on the path control signal output from the control signal generation circuit 14 and changes the output destination of the local oscillation wave.
  • the path switching circuit 12 includes a switch, a signal distributor, a signal synthesizer, and the like.
  • the variable gain amplifiers 13a and 13b are amplifiers that amplify the input signal by varying the gain according to the control signal output from the control signal generation circuit 14.
  • the variable gain amplifiers 13a and 13b amplify the signal output from the path switching circuit 12 with a gain corresponding to the gain control signal output from the control signal generation circuit 14, and output the amplified signal to the mixers 4a and 4b.
  • an IC integrated by a semiconductor process such as GaAs, SiGe, or CMOS, or a hybrid IC in which components such as transistors, resistors, and capacitors are mounted on a substrate is used. .
  • the control signal generation circuit 14 is a circuit that generates a control signal in accordance with a signal output from the signal processing circuit 8.
  • the control signal generation circuit 14 outputs a plurality of control signals for controlling the operation of the local oscillation wave generation circuit 10 to the local oscillation wave generation circuit 10 based on the state switching signal output from the signal processing circuit 8.
  • the control signal generation circuit 14 outputs a power supply control signal to the local oscillators 11a and 11b, and changes ON / OFF of the power supplies of the local oscillators 11a and 11b.
  • the control signal generation circuit 14 outputs a path control signal to the path switching circuit 12 and switches the path of the local oscillation wave output from the local oscillators 11a and 11b.
  • the control signal generation circuit 14 outputs a gain control signal to the variable gain amplifiers 13a and 13b to change the gain.
  • the control signal generation circuit 14 includes an FPGA, an ASIC, a logical operation circuit, and the like.
  • the antennas 1a and 1b receive the pilot signals (signals of a predetermined pattern) transmitted by the user and output them to the low noise amplifiers 2a and 2b, respectively.
  • the low noise amplifiers 2a and 2b amplify the signals received by the antennas 1a and 1b to low noise and output the amplified signals to the filters 3a and 3b, respectively.
  • the filters 3a and 3b remove unnecessary waves contained in the signals output from the low noise amplifiers 2a and 2b, pass the desired waves, and output them to the mixers 4a and 4b, respectively.
  • the mixers 4a and 4b mix the signals output from the filters 3a and 3b and the local oscillation wave output from the local oscillation wave generation circuit 10, respectively, and output the mixed waves to the filters 5a and 5b.
  • the filters 5a and 5b remove unnecessary waves contained in the signals output from the mixers 4a and 4b, respectively, pass the desired waves, and output them to the amplifiers 6a and 6b.
  • the amplifiers 6a and 6b amplify the signals output from the filters 5 and 5b, respectively, and output the amplified signals to the ADCs 7a and 7b.
  • the ADCs 7a and 7b convert the analog signals output from the amplifiers 6a and 6b into digital signals, respectively.
  • the signal processing circuit 8 obtains information included in the radio wave transmitted by the user from the digital signals output from the ADCs 7a and 7b.
  • the reference oscillator 9 outputs a reference signal to the local oscillation wave generation circuit 10.
  • the local oscillation wave generation circuit 10 outputs local oscillation waves synchronized with the reference signal output from the reference oscillator 9 to the mixers 4a and 4b.
  • the signal processing circuit 8 Is output to the control signal generation circuit 14.
  • the control signal generation circuit 14 outputs a plurality of control signals for controlling the operation of the local oscillation wave generation circuit 10 to the local oscillation wave generation circuit 10 based on the state switching signal output from the signal processing circuit 8. Specifically, the control signal generation circuit 14 outputs power control signals to the local oscillators 11a and 11b to control the power on / off of the local oscillators 11a and 11b, and sends the path control signal to the path switching circuit 12. By outputting, the path of the local oscillation wave is switched, and by outputting a gain control signal to the variable gain amplifiers 13a and 13, the gains of the variable gain amplifiers 13a and 13 are changed.
  • These control signals are all constituted by digital signals, for example, but may be analog signals.
  • FIG. 2 is a diagram showing a state of the local oscillation wave generation circuit 10 constituting the array antenna apparatus according to Embodiment 1 of the present invention.
  • the path switching circuit 12 includes a signal distributor 15 and a switch 16.
  • FIG. 2A shows one of the states of the local oscillation wave generation circuit 10.
  • the local oscillators 11a and 11b are both powered on.
  • the path switching circuit 12 connects the local oscillator 11a to the variable gain amplifier 13a and the local oscillator 11b to the variable gain amplifier 13b by switching the switch 16 to the local oscillator 11b side.
  • the variable gain amplifiers 13a and 13b are both in a state where the gain is lower than that in FIG.
  • the state shown in FIG. 2 (a) is used when the signal-to-noise ratio requirement is high. For example, it is used when there are few users around the communication device and the multi-value number of modulation is increased in order to increase the communication speed per user.
  • the local oscillators 11a and 11b output independent local oscillation waves, the noise components included in the digital signals output from the ADCs 7a and 7b become independent from each other.
  • the signal-to-noise ratio of the received signal can be increased by 3 dB.
  • FIG. 2B shows another state of the local oscillation wave generation circuit 10.
  • the local oscillator 11a is powered on, and the local oscillator 11b is powered off.
  • the path switching circuit 12 connects the local oscillator 11a to both the variable gain amplifier 13a and the variable gain amplifier 13b by switching the switch 16 to the local oscillator 11a side, and the local oscillator 11b is opened.
  • the variable gain amplifiers 13a and 13b have a higher gain than that in FIG.
  • the state shown in FIG. 2B is used when the signal-to-noise ratio requirement is low. For example, it is used when there are many users around a communication device, and the number of modulations is reduced to distribute limited resources, and the communication speed per user is reduced. In this case, by outputting the local oscillation wave from the local oscillator 11a, it is possible to suppress the power consumption for driving the local oscillator 11b while operating with the minimum signal-to-noise ratio.
  • the local oscillation wave output from the local oscillator 11a is distributed and output to the two variable gain amplifiers 13a and 13b, the local oscillation wave input to each variable gain amplifier is The power is half of the state shown in FIG. Therefore, the gains of the two variable gain amplifiers 13a and 13b are set to a state 3 dB higher than that in FIG.
  • the path switching circuit 12 includes a signal distributor 15, a switch 16, and a signal synthesizer 17.
  • the switch 16 connected to the local oscillator 11b switches the path to the signal synthesizer 17 side. Since the local oscillators 11a and 11b output independent local oscillation waves, the signal-to-noise ratio of the received signal can be improved as in the case of FIG.
  • FIG. 2D Even if the circuit shown in FIG. 2D is used instead of FIG. 2B, the same effect as in FIG. 2B can be obtained.
  • the switch 16 since the switch 16 is not switched to the signal synthesizer 17 side, only the local oscillation wave output from the local oscillator 11 a is input to the signal synthesizer 17. In this case, since the local oscillator 11b is not powered on, power consumption for driving the local oscillator 11b can be suppressed.
  • the switch 16 is an SPDT (Single
  • the local oscillation wave generation circuit 10 is in the state shown in FIG.
  • the signal processing circuit 8 starts from the state of FIG.
  • a state switching signal for switching to the state 2 (b) is output to the control signal generation circuit 14.
  • the control signal generation circuit 14 outputs a power supply control signal, a path control signal, and a gain control signal to the local oscillators 11a and 11b, the path switching circuit 12, and the variable gain amplifier 13, respectively, from the state of FIG. Switch to the state of 2 (b).
  • the local oscillators 11a and 11b constituting the local oscillation wave generation circuit 10 are turned on / off and the local oscillators 11a and 11b according to the request for the signal-to-noise ratio. Since the output destination of the local oscillation wave output from the signal and the gains of the variable gain amplifiers 13a and 13b are changed, the power consumption of the local oscillation wave generation circuit 10 is changed in accordance with the change in the signal-to-noise ratio requirement. Can do.
  • N there are two antennas (antennas 1a and 1b) for receiving signals
  • N antennas When N antennas are used, N local oscillators are also required.
  • a plurality of local oscillators can be operated with the minimum necessary power consumption by adaptively changing the number of local oscillators to be used in accordance with the request for the signal-to-noise ratio.
  • a configuration using the same number of filters, amplifiers, and ADCs as the number of antennas has been described. However, it is also possible to combine the mixer outputs and use only one filter, amplifier, and ADC. Similarly, a configuration for synthesizing the output of the filter or a configuration for synthesizing the output of the amplifier may be used. In any configuration, a plurality of local oscillators can be configured by adaptively changing the number of local oscillators to be used. It can be operated with the minimum power consumption.
  • Embodiment 2 In the first embodiment, the optimization of the power consumption of the local oscillation wave generation circuit used for the receiver has been described. In the second embodiment, optimization of power consumption of a local oscillation wave generation circuit used for a transmitter will be described.
  • FIG. 3 is a block diagram showing a configuration example of an array antenna according to Embodiment 2 of the present invention. 3, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • This array antenna includes transmission antennas 1c and 1d, high-power amplifiers 2c and 2d, filters 3c and 3d, mixers 4c and 4d, filters 5c and 5d, amplifiers 6c and 6d, DAC (Digital-to-Analog Converter) 7c and 7d. (An example of a digital-analog converter), a signal processing circuit 21, a reference oscillator 9, a local oscillation wave generation circuit 10, a control signal generation circuit 14, a reception antenna 25, and a receiver 26 are provided.
  • the transmission antennas 1c and 1d, high-power amplifiers 2c and 2d, filters 3c and 3d, mixers 4c and 4d, filters 5c and 5d, and amplifiers 6c and 6d are different between the transmitter and the receiver. These correspond to antennas 1a and 1b, low noise amplifiers 2a and 2b, filters 3a and 3b, mixers 4a and 4b, filters 5a and 5b, and amplifiers 6a and 6b, respectively, in FIG.
  • the signal processing circuit 21 is a signal processing circuit that outputs a digital signal by calculation and obtains necessary information by calculation from the input digital signal.
  • the signal processing circuit 21 outputs a signal to be transmitted to the user to the DACs 7c and 7d as a digital signal. Further, information included in the radio wave transmitted by the user is obtained from the digital signal output from the receiver 26 by calculation.
  • a state switching signal for switching the state of the local oscillation wave generation circuit 10 according to whether or not information has been correctly obtained is output to the control signal generation circuit 14.
  • the signal processing circuit 21 includes an FPGA, an ASIC, a logical operation circuit, and the like.
  • DACs 7c and 7d are DACs that convert digital signals into analog signals.
  • the DACs 7c and 7d are DACs that convert the digital signal output from the signal processing circuit 21 into an analog signal and output the analog signal to the amplifiers 6c and 6d.
  • ADCs of a resistance ladder type, a current output type, a delta sigma type, etc. are used for the DACs 7c and 7d.
  • the receiving antenna 25 is an antenna that receives radio waves.
  • the receiving antenna 25 is a receiving antenna that receives radio waves transmitted by the user and outputs them to the receiver 26.
  • a dipole antenna or a patch antenna is used for the receiving antenna 25.
  • the receiving antenna 25 may be the same as the antennas 1a and 1b shown in FIG.
  • the receiver 26 is a receiver that amplifies the input signal, removes unnecessary waves contained in the signal, converts the frequency of the signal into a frequency that can be processed by the signal processing circuit, and converts the signal into a digital signal.
  • the receiver 26 amplifies the signal received by the receiving antenna 25, removes unnecessary waves included in the signal, converts the frequency of the signal to a frequency that can be processed by the signal processing circuit 21, converts the signal to a digital signal, and performs signal processing. Output to the circuit 21.
  • the receiver 26 may be a receiver including the antennas 1a and 1b to ADCs 7a and 7b, the reference oscillator 9, and the local oscillation wave generation circuit 10 shown in FIG. Alternatively, a configuration using a single local oscillator may be used.
  • FIG. 3 shows a configuration in which one reception antenna 25 and one receiver 26 are used, a configuration in which N reception antennas 25 and N receivers 26 are used may be used.
  • the signal processing circuit 21 outputs a pilot signal transmitted to the user to the DACs 7c and 7d as a digital signal.
  • the DAC 22 converts the digital signal output from the signal processing circuit 21 into an analog signal and outputs the analog signal to the amplifiers 6c and 6d.
  • the amplifiers 6c and 6d amplify the signals output from the DACs 7c and 7d, respectively, and output the amplified signals to the filters 5c and 5d.
  • Filters 5c and 5d remove unnecessary waves contained in the signals output from the amplifiers 6c and 6d, respectively, pass desired waves, and output them to the mixers 4c and 4d.
  • the mixers 4c and 4d respectively mix the signals output from the filters 5c and 5d and the local oscillation wave output from the local oscillation wave generation circuit 10, and output the mixed waves to the filters 3c and 3d.
  • Filters 3c and 3d remove unnecessary waves contained in signals output from the mixers 4c and 4d, respectively, pass desired waves, and output the high-power amplifiers 2c and 2d.
  • the high output amplifiers 2c and 2d amplify the signals output from the filters 3c and 3d to high outputs, respectively, and output the amplified signals to the transmission antennas 1c and 1d.
  • the transmission antennas 1c and 1d transmit signals output from the high-power amplifiers 2c and 2d as radio waves to the user, respectively.
  • the user receives the pilot signals transmitted by the transmission antennas 1c and 1d, determines whether or not a desired communication quality is obtained, and transmits a response signal including the result to the reception antenna 25.
  • the receiving antenna 25 receives the response signal transmitted by the user and outputs it to the receiver 26.
  • the receiver 26 amplifies the response signal received by the receiving antenna 25, removes unnecessary waves contained in the signal, converts the frequency of the signal to a frequency that can be processed by the signal processing circuit 21, and converts the signal to a digital signal. Output to the processing circuit 21.
  • the signal processing circuit 21 reads the content of the response signal from the digital signal output from the receiver 26 and controls a state switching signal for switching the state of the local oscillation wave generation circuit 10 according to whether or not a desired communication quality is obtained.
  • the signal is output to the signal generation circuit 14.
  • the signal processing circuit 21 determines whether or not the user has received correctly depending on whether the value of a specific bit is “1” or “0” in the digital bit string obtained by demodulating the response signal.
  • the state switching signal is a signal for switching the state shown in FIG.
  • the ON / OFF of the power supply of the local oscillators 11a and 11b constituting the local oscillation wave generation circuit 10 the output destination of the local oscillation wave output from the local oscillators 11a and 11b, and the gains of the variable gain amplifiers 13a and 13b. It is a signal for switching the state representing the combination.
  • the state switching signal is a 1-bit digital signal. If “HIGH”, the state shown in FIG. 2A is indicated. If “LOW”, the state shown in FIG. 2B is indicated.
  • the control signal generation circuit 14 outputs a plurality of control signals for controlling the state of the local oscillation wave generation circuit 10 to the local oscillation wave generation circuit 10 based on the state switching signal output from the signal processing circuit 21.
  • the local oscillation wave generation circuit 10 is in the state shown in FIG.
  • the signal processing circuit 21 switches from the state of FIG. 2A to the state of FIG. 2B. Is output to the control signal generation circuit 14.
  • the control signal generation circuit 14 outputs a power supply control signal, a path control signal, and a gain control signal to the local oscillators 11a and 11b, the path switching circuit 12, and the variable gain amplifiers 13a and 13b, respectively, from the state of FIG. Switch to the state of FIG.
  • a state switching signal for returning from the state of FIG. 2B to the state of FIG. 2A is output to the control signal generation circuit 14, and thereafter Starts communication while maintaining the state of FIG.
  • the local oscillator 11a and the local oscillator 11a included in the local oscillation wave generation circuit 10 according to the request for the signal-to-noise ratio of signals transmitted from the transmission antennas 1c and 1d to the user. Since the power supply of 11b is changed, the output destination of the local oscillation wave output from the local oscillators 11a and 11b, and the gain of the variable gain amplifiers 13a and 13b are changed, according to the change in the request of the signal-to-noise ratio, A plurality of local oscillators (local oscillators 11a and 11b) can be operated with a minimum power consumption.
  • N there are two transmission antennas.
  • N antennas 1 When N antennas 1 are used, N local oscillators are also required.
  • an array antenna that operates a plurality of local oscillators with the minimum power consumption can be obtained by adaptively changing the number of local oscillators to be used in accordance with the requirement of the signal-to-noise ratio.
  • the configuration using the same number of DACs, amplifiers, and filters as the number of transmission antennas has been described, but the configuration may be such that the output of one DAC is distributed to a plurality of amplifiers.
  • a plurality of local oscillators can be operated with a minimum power consumption by adaptively changing the number of local oscillators to be used.

Abstract

Conventionally, local oscillation devices operate all of a plurality of local oscillators regardless of a change in the requested signal-to-noise ratio according to conditions around a communication device; hence, when the requested signal-to-noise ratio is low, operation occurs at an excessive level of performance while maintaining a high state of power consumption. This local oscillation device is equipped with: a first local oscillator for outputting a first local oscillation wave which is synchronized with a reference signal, and switching the power supply on and off according to a control signal; a second local oscillator for outputting a second local oscillation wave which is synchronized with the reference signal, and switching the power supply on and off according to the control signal; and a path-switching circuit which is connected to the first and second local oscillators, and switches the paths of the first and second local oscillation waves according to the control signal or a signal which is synchronized with the control signal.

Description

局部発振装置及びアレーアンテナ装置Local oscillation device and array antenna device
 本発明は、無線通信、レーダなどに用いられる局部発振装置及びアレーアンテナ装置に関するものである。 The present invention relates to a local oscillation device and an array antenna device used for wireless communication, radar, and the like.
 従来から、通信装置の高速大容量化の要求が高まっており、この要求に対して近年、特定のユーザに向けて電波を絞り込み、電波の干渉を抑えることで高速化を狙ったビームフォーミング技術の開発が盛んに行われている。ビームフォーミングを行うためには、複数のアンテナを配列したアレーアンテナが用いられる。 In recent years, there has been a growing demand for high-speed and large-capacity communication devices. In response to this demand, in recent years, beam forming technology aimed at increasing speed by narrowing radio waves toward specific users and suppressing radio wave interference has been developed. Development is actively underway. In order to perform beam forming, an array antenna in which a plurality of antennas are arranged is used.
 通信の高速大容量化のもう一つの技術として、変調の多値化、すなわちユーザに一度に送信できる情報量を多くする技術の開発が行われてきた。しかし、変調の多値数を大きくするにつれて雑音に弱くなる問題があり、信号対雑音比の改善が課題であった。 As another technology for high-speed and large-capacity communication, multi-value modulation, that is, technology for increasing the amount of information that can be transmitted to the user at one time has been developed. However, there is a problem that it becomes weak against noise as the multi-level number of modulation is increased, and improvement of the signal-to-noise ratio has been a problem.
 信号対雑音比を改善する構成の一つとして、特許文献1にアレーアンテナを構成する複数の送信機あるいは受信機ごとに独立した局部発振器を設ける構成が示されている。独立した局部発振器から出力する局部発振波に含まれる雑音成分(位相雑音)はそれぞれ独立していることから、複数の送信機あるいは受信機が出力する信号を合成すると、所望の信号成分は振幅合成されるのに対して、雑音成分は電力合成される。このため、単一の局部発振器を用いる構成と比べて信号の位相雑音特性が改善し、信号対雑音比が改善する。 As one configuration for improving the signal-to-noise ratio, Patent Document 1 discloses a configuration in which an independent local oscillator is provided for each of a plurality of transmitters or receivers constituting an array antenna. Since the noise component (phase noise) included in the local oscillation wave output from an independent local oscillator is independent, if the signals output from multiple transmitters or receivers are synthesized, the desired signal component is amplitude synthesized. In contrast, the noise components are power combined. For this reason, the phase noise characteristic of the signal is improved and the signal-to-noise ratio is improved as compared with the configuration using a single local oscillator.
特許第5377750号公報 Japanese Patent No. 5377750
 通信装置には、高速大容量化に加えて低消費電力化が求められている。特許文献1に記載の構成は複数の局部発振器を用いるため、局部発振器の数だけ消費電力が増加する問題がある。 Communication devices are required to have low power consumption in addition to high speed and large capacity. Since the configuration described in Patent Document 1 uses a plurality of local oscillators, there is a problem that power consumption increases by the number of local oscillators.
一つの通信装置から同時に送受信できる情報量には、限りがある。例えば、通信装置の周囲のユーザが少ない場合は、変調の多値数を大きくすることによりユーザ一人あたりの通信速度を高速にできる。この場合、通信装置に対する信号対雑音比の要求は高くなる。逆に、通信装置の周囲のユーザが多い場合は、変調の多値数を小さくすることによりユーザ一人あたりの通信速度を低速にする必要がある。この場合、通信装置に対する信号対雑音比の要求は低くなる。 There is a limit to the amount of information that can be transmitted and received simultaneously from one communication device. For example, when there are few users around the communication device, the communication speed per user can be increased by increasing the multi-value number of modulation. In this case, the demand for the signal-to-noise ratio for the communication device is high. Conversely, when there are many users around the communication device, it is necessary to reduce the communication speed per user by reducing the multi-value number of modulation. In this case, the signal to noise ratio requirement for the communication device is low.
 特許文献1に記載の構成を用いる場合、通信装置の周囲の状況に応じた信号対雑音比の要求の変化に関わらず、複数の局部発振器が全て動作している。そのため、信号対雑音比の要求が低い場合に、消費電力が高い状態を維持したまま過剰な性能で動作してしまう問題がある。 When the configuration described in Patent Document 1 is used, all of the plurality of local oscillators are operating regardless of a change in the signal-to-noise ratio request according to the situation around the communication device. Therefore, when the signal-to-noise ratio requirement is low, there is a problem that the device operates with excessive performance while maintaining high power consumption.
本発明は、上記の問題点を解決するためのもので、通信装置の周囲の状況に応じた信号対雑音比の要求の変化に応じて、局部発振装置の消費電力を変化させることができるアレーアンテナを得ることを目的とする。 An object of the present invention is to solve the above-described problems, and is an array that can change the power consumption of a local oscillation device in accordance with a change in the signal-to-noise ratio requirement according to the situation around the communication device. The purpose is to obtain an antenna.
 本発明の局部発振装置は、基準信号に同期した第1の局部発振波を出力し、制御信号に応じて電源のON/OFFを切り替える第1の局部発振器と、基準信号に同期した第2の局部発振波を出力し、制御信号に応じて電源のON/OFFを切り替える第2の局部発振器と、第1の局部発振器及び第2の局部発振器に接続され、制御信号または制御信号に同期する信号に応じて第1の局部発振波及び第2の局部発振波の経路を切り替える経路切替回路とを備える。 The local oscillation device of the present invention outputs a first local oscillation wave synchronized with a reference signal, a first local oscillator that switches ON / OFF of a power supply according to a control signal, and a second local oscillator synchronized with the reference signal A signal that outputs a local oscillation wave and is connected to the second local oscillator that switches the power ON / OFF according to the control signal, the first local oscillator, and the second local oscillator, and is synchronized with the control signal or the control signal And a path switching circuit for switching the path of the first local oscillation wave and the second local oscillation wave according to.
 この発明によれば、信号対雑音比の要求の変化に応じて、局部発振装置の消費電力を変化させることができる。 According to the present invention, it is possible to change the power consumption of the local oscillation device in accordance with the change in the request for the signal-to-noise ratio.
この発明の実施の形態1に係るアレーアンテナ装置の一構成例を示す構成図である。It is a block diagram which shows one structural example of the array antenna apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るアレーアンテナ装置を構成する局部発振波生成回路10の状態を示す図である。It is a figure which shows the state of the local oscillation wave generation circuit 10 which comprises the array antenna apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係るアレーアンテナ装置の一構成例を示す構成図である。It is a block diagram which shows the example of 1 structure of the array antenna apparatus which concerns on Embodiment 2 of this invention.
実施の形態1.
 図1は、この発明の実施の形態1に係るアレーアンテナ装置の一構成例を示す構成図である。
本アレーアンテナは、アンテナ1a及び1b、低雑音増幅器2a及び2b、フィルタ3a及び3b、ミクサ4a及び4b、フィルタ5a及び5b、増幅器6a及び6b、ADC(Analog-to-Digital Converter)7a及び7b(アナログデジタル変換器の一例)、信号処理回路8、基準発振器9、局部発振波生成回路10、制御信号生成回路14を備える。
Embodiment 1.
1 is a block diagram showing an example of the configuration of an array antenna apparatus according to Embodiment 1 of the present invention.
This array antenna includes antennas 1a and 1b, low noise amplifiers 2a and 2b, filters 3a and 3b, mixers 4a and 4b, filters 5a and 5b, amplifiers 6a and 6b, ADCs (Analog-to-Digital Converters) 7a and 7b ( An example of an analog-digital converter), a signal processing circuit 8, a reference oscillator 9, a local oscillation wave generation circuit 10, and a control signal generation circuit 14 are provided.
 局部発振波生成回路10は、局部発振器11a及び11b、経路切替回路12、可変利得増幅器13a及び13bを備える。 The local oscillation wave generation circuit 10 includes local oscillators 11a and 11b, a path switching circuit 12, and variable gain amplifiers 13a and 13b.
 アンテナ1a及び1bは、電波を受信するアンテナである。アンテナ1a及び1bは、それぞれ、ユーザが送信した電波を受信し、低雑音増幅器2a及び2bに出力するアンテナである。例えば、アンテナ1a及び1bには、ダイポールアンテナやパッチアンテナなどが用いられる。 Antennas 1a and 1b are antennas that receive radio waves. The antennas 1a and 1b are antennas that receive radio waves transmitted by the user and output them to the low noise amplifiers 2a and 2b, respectively. For example, a dipole antenna or a patch antenna is used for the antennas 1a and 1b.
 低雑音増幅器2a及び2bは、それぞれ、信号を低雑音に増幅する増幅器である。低雑音増幅器2a及び2bは、アンテナ1a及び1bが受信した信号を低雑音に増幅し、フィルタ3a及び3bに出力する低雑音増幅器である。例えば、低雑音増幅器2a及び2bには、GaAs(Gallium Arsenide)やSiGe(Silicon Germanium)、CMOS(Complementary Metal Oxide Semiconductor)などの半導体プロセスで集積化されたIC(Integrated Circuit)や、トランジスタや抵抗、コンデンサなどの部品を基板上に実装したハイブリッドICが用いられる。なお、低雑音増幅器2a及び2bは、信号を増幅する利得を可変できる可変利得増幅器であっても良い。 The low noise amplifiers 2a and 2b are amplifiers that amplify the signal to low noise, respectively. The low noise amplifiers 2a and 2b are low noise amplifiers that amplify signals received by the antennas 1a and 1b to low noise and output the amplified signals to the filters 3a and 3b. For example, the low- noise amplifiers 2a and 2b include ICs (Integrated Circuits), ICs (Integrated Circuits), GaAs (Gallium-Arsenide), SiGe (Silicon-Germanium), CMOS (Complementary-Metal-Oxide-Semiconductor) and other integrated semiconductor processes. A hybrid IC in which components such as a capacitor are mounted on a substrate is used. The low noise amplifiers 2a and 2b may be variable gain amplifiers that can vary the gain for amplifying the signal.
 フィルタ3a及び3bは、入力信号に含まれる不要波を除去し、所望波を通過させるフィルタである。フィルタ3a及び3bは、それぞれ、低雑音増幅器2a及び3bが出力した信号に含まれる不要波を除去し、所望波を通過させ、ミクサ4a及び4bに出力する。例えば、フィルタ3a及び3bには、帯域通過フィルタ、帯域阻止フィルタ、低域通過フィルタ、高域通過フィルタなどが用いられる。なお、フィルタ3a及び3bは、通過あるいは除去する信号帯域を可変できる可変フィルタであっても良い。 Filters 3a and 3b are filters that remove unwanted waves contained in the input signal and pass the desired waves. The filters 3a and 3b remove unnecessary waves contained in the signals output from the low noise amplifiers 2a and 3b, respectively, pass the desired waves, and output them to the mixers 4a and 4b. For example, a band pass filter, a band rejection filter, a low pass filter, a high pass filter, or the like is used for the filters 3a and 3b. The filters 3a and 3b may be variable filters that can vary the signal band to pass or remove.
 ミクサ4a及び4bは、信号と局部発振波とを混合し、その混合波を出力するミクサである。ミクサ4a及び4bは、それぞれ、フィルタ3a及び3bが出力した信号と局部発振波生成回路10が出力した局部発振波とを混合し、その混合波をフィルタ5a及び5bに出力する。例えば、ミクサ4a及び4bは、ダイオードを用いたダイオードミクサや、FET(Field Effect Transistor)を用いたFETミクサなどが用いられる。 The mixers 4a and 4b are mixers that mix a signal and a local oscillation wave and output the mixed wave. The mixers 4a and 4b mix the signals output from the filters 3a and 3b and the local oscillation wave output from the local oscillation wave generation circuit 10, respectively, and output the mixed waves to the filters 5a and 5b. For example, as the mixers 4a and 4b, a diode mixer using a diode, an FET mixer using an FET (Field Effect Transistor), or the like is used.
 フィルタ5a及び5bは、入力信号に含まれる不要波を除去し、所望波を通過させるフィルタである。フィルタ5a及び5bは、それぞれ、ミクサ4a及び4bが出力した信号に含まれる不要波を除去し、所望波を通過させ、増幅器6a及び6bに出力する。例えば、フィルタ5a及び5bには、帯域通過フィルタ、帯域阻止フィルタ、低域通過フィルタ、高域通過フィルタなどが用いられる。なお、フィルタ5a及び5bは、通過あるいは除去する信号帯域を可変できる可変フィルタであっても良い。 Filters 5a and 5b are filters that remove unwanted waves contained in the input signal and pass the desired waves. The filters 5a and 5b remove unnecessary waves contained in the signals output from the mixers 4a and 4b, respectively, pass the desired waves, and output them to the amplifiers 6a and 6b. For example, a band pass filter, a band rejection filter, a low pass filter, a high pass filter, or the like is used for the filters 5a and 5b. The filters 5a and 5b may be variable filters that can vary the signal band to be passed or removed.
 増幅器6a及び6bは、それぞれ、信号を増幅する増幅器である。増幅器6a及び6bは、フィルタ5a及び5bが出力した信号を増幅し、ADC7a及び7bに出力する増幅器である。例えば、増幅器6a及び6bには、GaAsやSiGe、CMOSなどの半導体プロセスで集積化されたICや、トランジスタや抵抗、コンデンサなどの部品を基板上に実装したハイブリッドICが用いられる。なお、増幅器6a及び6bは、信号を増幅する利得を可変できる可変利得増幅器であっても良い。 The amplifiers 6a and 6b are amplifiers that amplify signals. The amplifiers 6a and 6b are amplifiers that amplify the signals output from the filters 5a and 5b and output the amplified signals to the ADCs 7a and 7b. For example, for the amplifiers 6a and 6b, an IC integrated by a semiconductor process such as GaAs, SiGe, or CMOS, or a hybrid IC in which components such as transistors, resistors, and capacitors are mounted on a substrate is used. The amplifiers 6a and 6b may be variable gain amplifiers that can vary the gain for amplifying the signal.
 ADC7a及び7bは、アナログ信号をディジタル信号に変換するADCである。ADC7a及び7bは、それぞれ、増幅器6a及び6bが出力したアナログ信号を、ディジタル信号に変換する。例えば、ADC7a及び7bには、逐次比較形、パイプライン形、デルタシグマ形などのADCが用いられる。 ADCs 7a and 7b are ADCs that convert analog signals into digital signals. The ADCs 7a and 7b convert the analog signals output from the amplifiers 6a and 6b into digital signals, respectively. For example, ADCs such as a successive approximation type, a pipeline type, and a delta sigma type are used for the ADCs 7a and 7b.
 信号処理回路8は、入力したディジタル信号から演算により必要な情報を得る信号処理回路である。信号処理回路8は、ADC7a及び7bが出力したディジタル信号から、ユーザが送信した電波に含まれる情報を演算により得る。加えて、情報を正しく得ることができたかどうかに応じて、局部発振波生成回路10の状態を切り替える状態切替信号を、制御信号生成回路14に出力する。ここで、局部発振波生成回路10の状態とは、後述する図2に示す状態、つまり、局部発振波生成回路10を構成する局部発振器11a及び11bの電源のON/OFFと、局部発振器11a及び11bが出力する局部発振波の出力先と、可変利得増幅器13a及び13bの利得との組合せを表す状態を言う。例えば、信号処理回路8は、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)、論理演算回路などで構成される。 The signal processing circuit 8 is a signal processing circuit that obtains necessary information from the input digital signal by calculation. The signal processing circuit 8 obtains information included in the radio wave transmitted by the user from the digital signals output from the ADCs 7a and 7b. In addition, a state switching signal for switching the state of the local oscillation wave generation circuit 10 is output to the control signal generation circuit 14 depending on whether the information has been correctly obtained. Here, the state of the local oscillation wave generation circuit 10 is the state shown in FIG. 2 described later, that is, the ON / OFF of the power supplies of the local oscillators 11a and 11b constituting the local oscillation wave generation circuit 10, the local oscillator 11a, This state represents a combination of the output destination of the local oscillation wave output by 11b and the gains of the variable gain amplifiers 13a and 13b. For example, the signal processing circuit 8 includes an FPGA (Field Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), a logical operation circuit, and the like.
 基準発振器9は、基準信号を出力する基準発振器である。基準発振器9は、複数の局部発振器11a及び11bを同期するための基準信号を出力する。例えば、基準発振器9には、水晶発振器、MEMS(Micro Electro Mechanical Systems)発振器などが用いられる。 The reference oscillator 9 is a reference oscillator that outputs a reference signal. The reference oscillator 9 outputs a reference signal for synchronizing the plurality of local oscillators 11a and 11b. For example, a crystal oscillator, a MEMS (Micro Electro Mechanical Systems) oscillator, or the like is used as the reference oscillator 9.
 局部発振波生成回路10は、ミクサ4a及び4bに対して局部発振波を出力する回路である。局部発振波生成回路10は、局部発振器11a、局部発振器11b、経路切替回路12、可変利得増幅器13a、可変利得増幅器13bを備える。局部発振波生成回路10は、基準発振器9が出力する基準信号に同期し、アレーアンテナに対する信号対雑音比の要求の変化に応じて制御信号生成回路14が出力する複数の制御信号に基づいて、局部発振器11a及び11bの電源のON/OFFと、局部発振器11a及び11bが出力する局部発振波の出力先と、可変利得増幅器13a及び13bの利得とを制御する。 The local oscillation wave generation circuit 10 is a circuit that outputs local oscillation waves to the mixers 4a and 4b. The local oscillation wave generation circuit 10 includes a local oscillator 11a, a local oscillator 11b, a path switching circuit 12, a variable gain amplifier 13a, and a variable gain amplifier 13b. The local oscillation wave generation circuit 10 is synchronized with the reference signal output from the reference oscillator 9, and based on a plurality of control signals output from the control signal generation circuit 14 in response to a change in the signal-to-noise ratio requirement for the array antenna, It controls ON / OFF of the power supplies of the local oscillators 11a and 11b, the output destination of the local oscillation wave output from the local oscillators 11a and 11b, and the gains of the variable gain amplifiers 13a and 13b.
 局部発振器11a及び11bは、経路切替回路12を介してミクサ4a及び4bに局部発振波を出力する局部発振器である。局部発振器11a及び11bは、制御信号生成回路14が出力する電源制御信号に基づいて電源をON/OFFし、基準発振器9が出力する基準信号に同期し、ミクサ4a及び4bに対する局部発振波を経路切替回路12に出力する。なお、電源制御信号は、局部発振器11a及び11bの電源のON/OFFを制御する信号であっても良いし、局部発振器11a及び11bに対して電源を投入するかしないかを制御する信号であっても良い。つまり、(1)電源回路を局部発振器11a及び11bに持たせて「電源制御信号=電源のON/OFFを制御する信号」としても良いし、(2)電源回路を制御信号生成回路14に持たせて「電源制御信号=局部発振器11a及び11bを駆動する電圧」として、局部発振器11a及び11bのON/OFFを制御しても良い。例えば、局部発振器11a及び11bには、PLL(Phase Locked Loop)、DDS(Direct Digital Synthesizer)などが用いられる。 The local oscillators 11 a and 11 b are local oscillators that output local oscillation waves to the mixers 4 a and 4 b via the path switching circuit 12. The local oscillators 11a and 11b turn on / off the power based on the power supply control signal output from the control signal generation circuit 14, synchronize with the reference signal output from the reference oscillator 9, and route local oscillation waves to the mixers 4a and 4b. Output to the switching circuit 12. The power supply control signal may be a signal for controlling ON / OFF of the power supply of the local oscillators 11a and 11b, or a signal for controlling whether or not to turn on the power to the local oscillators 11a and 11b. May be. That is, (1) the power supply circuit may be provided to the local oscillators 11a and 11b so that “power supply control signal = signal for controlling ON / OFF of the power supply”, or (2) the control signal generation circuit 14 may be provided with the power supply circuit. The ON / OFF of the local oscillators 11a and 11b may be controlled as “power control signal = voltage for driving the local oscillators 11a and 11b”. For example, a PLL (Phase Locked Loop), a DDS (Direct Digital Synthesizer), or the like is used for the local oscillators 11a and 11b.
経路切替回路12は、局部発振器11a及び11bが出力した局部発振波の経路を切り替える回路である。経路切替回路12は、制御信号生成回路14が出力する経路制御信号に基づいて経路を切り替え、局部発振波の出力先を変更する。例えば、経路切替回路12は、スイッチ、信号分配器、信号合成器などから構成される。 The path switching circuit 12 is a circuit that switches the path of the local oscillation wave output from the local oscillators 11a and 11b. The path switching circuit 12 switches paths based on the path control signal output from the control signal generation circuit 14 and changes the output destination of the local oscillation wave. For example, the path switching circuit 12 includes a switch, a signal distributor, a signal synthesizer, and the like.
 可変利得増幅器13a及び13bは、制御信号生成回路14が出力する制御信号に応じて利得を可変して、入力信号を増幅する増幅器である。可変利得増幅器13a及び13bは、それぞれ、経路切替回路12が出力する信号を、制御信号生成回路14が出力する利得制御信号に応じた利得で増幅し、ミクサ4a及び4bに出力する。例えば、可変利得増幅器13a及び13bには、には、GaAsやSiGe、CMOSなどの半導体プロセスで集積化されたICや、トランジスタや抵抗、コンデンサなどの部品を基板上に実装したハイブリッドICが用いられる。 The variable gain amplifiers 13a and 13b are amplifiers that amplify the input signal by varying the gain according to the control signal output from the control signal generation circuit 14. The variable gain amplifiers 13a and 13b amplify the signal output from the path switching circuit 12 with a gain corresponding to the gain control signal output from the control signal generation circuit 14, and output the amplified signal to the mixers 4a and 4b. For example, as the variable gain amplifiers 13a and 13b, an IC integrated by a semiconductor process such as GaAs, SiGe, or CMOS, or a hybrid IC in which components such as transistors, resistors, and capacitors are mounted on a substrate is used. .
 制御信号生成回路14は、信号処理回路8が出力する信号に応じて制御信号を生成する回路である。制御信号生成回路14は、信号処理回路8が出力する状態切替信号に基づき、局部発振波生成回路10の動作を制御する複数の制御信号を局部発振波生成回路10に出力する。具体的には、制御信号生成回路14は、局部発振器11a及び11bに電源制御信号を出力し、局部発振器11a及び11bの電源のON/OFFを変化させる。また、制御信号生成回路14は、経路切替回路12に経路制御信号を出力し、局部発振器11a及び11bが出力する局部発振波の経路を切り替える。また、制御信号生成回路14は、可変利得増幅器13a及び13bに利得制御信号を出力し、利得を変化させる。例えば、制御信号生成回路14は、FPGA、ASIC、論理演算回路などで構成される。 The control signal generation circuit 14 is a circuit that generates a control signal in accordance with a signal output from the signal processing circuit 8. The control signal generation circuit 14 outputs a plurality of control signals for controlling the operation of the local oscillation wave generation circuit 10 to the local oscillation wave generation circuit 10 based on the state switching signal output from the signal processing circuit 8. Specifically, the control signal generation circuit 14 outputs a power supply control signal to the local oscillators 11a and 11b, and changes ON / OFF of the power supplies of the local oscillators 11a and 11b. The control signal generation circuit 14 outputs a path control signal to the path switching circuit 12 and switches the path of the local oscillation wave output from the local oscillators 11a and 11b. The control signal generation circuit 14 outputs a gain control signal to the variable gain amplifiers 13a and 13b to change the gain. For example, the control signal generation circuit 14 includes an FPGA, an ASIC, a logical operation circuit, and the like.
 次に、この発明の実施の形態1に係るアレーアンテナの動作を説明する。 Next, the operation of the array antenna according to Embodiment 1 of the present invention will be described.
 アンテナ1a及び1bは、それぞれ、ユーザが送信したパイロット信号(決められたパターンの信号)を受信し、低雑音増幅器2a及び2bに出力する。 The antennas 1a and 1b receive the pilot signals (signals of a predetermined pattern) transmitted by the user and output them to the low noise amplifiers 2a and 2b, respectively.
 低雑音増幅器2a及び2bは、それぞれ、アンテナ1a及び1bが受信した信号を低雑音に増幅し、フィルタ3a及び3bに出力する。フィルタ3a及び3bは、低雑音増幅器2a及び2bが出力した信号に含まれる不要波を除去し、所望波を通過させ、それぞれミクサ4a及び4bに出力する。 The low noise amplifiers 2a and 2b amplify the signals received by the antennas 1a and 1b to low noise and output the amplified signals to the filters 3a and 3b, respectively. The filters 3a and 3b remove unnecessary waves contained in the signals output from the low noise amplifiers 2a and 2b, pass the desired waves, and output them to the mixers 4a and 4b, respectively.
 ミクサ4a及び4bは、それぞれ、フィルタ3a及び3bが出力した信号と局部発振波生成回路10が出力した局部発振波とを混合し、その混合波をフィルタ5a及び5bに出力する。フィルタ5a及び5bは、それぞれ、ミクサ4a及び4bが出力した信号に含まれる不要波を除去し、所望波を通過させ、増幅器6a及び6bに出力する。 The mixers 4a and 4b mix the signals output from the filters 3a and 3b and the local oscillation wave output from the local oscillation wave generation circuit 10, respectively, and output the mixed waves to the filters 5a and 5b. The filters 5a and 5b remove unnecessary waves contained in the signals output from the mixers 4a and 4b, respectively, pass the desired waves, and output them to the amplifiers 6a and 6b.
 増幅器6a及び6bは、それぞれ、フィルタ5及び5bが出力した信号を増幅し、ADC7a及び7bに出力する。ADC7a及び7bは、それぞれ、増幅器6a及び6bが出力したアナログ信号をディジタル信号に変換する。信号処理回路8は、ADC7a及び7bが出力したディジタル信号から、ユーザが送信した電波に含まれる情報を演算により得る。 The amplifiers 6a and 6b amplify the signals output from the filters 5 and 5b, respectively, and output the amplified signals to the ADCs 7a and 7b. The ADCs 7a and 7b convert the analog signals output from the amplifiers 6a and 6b into digital signals, respectively. The signal processing circuit 8 obtains information included in the radio wave transmitted by the user from the digital signals output from the ADCs 7a and 7b.
 一方、基準発振器9は、局部発振波生成回路10に基準信号を出力する。局部発振波生成回路10は、基準発振器9が出力する基準信号に同期した局部発振波をミクサ4a及び4bに出力する。ユーザが送信したパイロット信号を最終的に信号処理回路8で処理した結果、目標とする信号対雑音比を満足しているかどうかに応じて、信号処理回路8は、局部発振波生成回路10の状態を切り替える状態切替信号を制御信号生成回路14に出力する。 On the other hand, the reference oscillator 9 outputs a reference signal to the local oscillation wave generation circuit 10. The local oscillation wave generation circuit 10 outputs local oscillation waves synchronized with the reference signal output from the reference oscillator 9 to the mixers 4a and 4b. Depending on whether the pilot signal transmitted by the user is finally processed by the signal processing circuit 8 and the target signal-to-noise ratio is satisfied, the signal processing circuit 8 Is output to the control signal generation circuit 14.
 制御信号生成回路14は、信号処理回路8が出力する状態切替信号に基づいて、局部発振波生成回路10の動作を制御する複数の制御信号を局部発振波生成回路10に出力する。具体的には、制御信号生成回路14は、局部発振器11a及び11bに電源制御信号を出力することで局部発振器11a及び11bの電源のON/OFFを制御し、経路切替回路12に経路制御信号を出力することで局部発振波の経路を切り替え、可変利得増幅器13a及び13に利得制御信号を出力することで、可変利得増幅器13a及び13の利得を変化させる。これらの制御信号は、例えば、全てディジタル信号で構成されるが、アナログ信号であっても良い。 The control signal generation circuit 14 outputs a plurality of control signals for controlling the operation of the local oscillation wave generation circuit 10 to the local oscillation wave generation circuit 10 based on the state switching signal output from the signal processing circuit 8. Specifically, the control signal generation circuit 14 outputs power control signals to the local oscillators 11a and 11b to control the power on / off of the local oscillators 11a and 11b, and sends the path control signal to the path switching circuit 12. By outputting, the path of the local oscillation wave is switched, and by outputting a gain control signal to the variable gain amplifiers 13a and 13, the gains of the variable gain amplifiers 13a and 13 are changed. These control signals are all constituted by digital signals, for example, but may be analog signals.
 図2は、この発明の実施の形態1に係るアレーアンテナ装置を構成する局部発振波生成回路10の状態を示す図である。図2(a)及び(b)において、経路切替回路12は、信号分配器15及びスイッチ16から構成される。 FIG. 2 is a diagram showing a state of the local oscillation wave generation circuit 10 constituting the array antenna apparatus according to Embodiment 1 of the present invention. 2A and 2B, the path switching circuit 12 includes a signal distributor 15 and a switch 16.
 図2(a)は、局部発振波生成回路10の状態の1つを示している。局部発振器11a及び11bは、ともに電源がONである。経路切替回路12は、スイッチ16を局部発振器11b側に切り替えることにより、局部発振器11aを可変利得増幅器13aに、局部発振器11bを可変利得増幅器13bに接続している。ここで、可変利得増幅器13a及び13bは、ともに図2(b)に比べて利得が低い状態である。 FIG. 2A shows one of the states of the local oscillation wave generation circuit 10. The local oscillators 11a and 11b are both powered on. The path switching circuit 12 connects the local oscillator 11a to the variable gain amplifier 13a and the local oscillator 11b to the variable gain amplifier 13b by switching the switch 16 to the local oscillator 11b side. Here, the variable gain amplifiers 13a and 13b are both in a state where the gain is lower than that in FIG.
 図2(a)に示す状態は、信号対雑音比の要求が高い場合に用いる。例えば、通信装置の周囲にユーザが少なく、ユーザ一人あたりの通信速度を高速にするために変調の多値数を大きくする場合に用いる。この場合、局部発振器11a及び11bが、それぞれ独立した局部発振波を出力することにより、ADC7aおよび7bが出力するディジタル信号に含まれる雑音成分はそれぞれ独立になるので、図2(b)に示す単一の局部発振器を用いる構成と比べて、受信信号の信号対雑音比を3dB高めることができる。 The state shown in FIG. 2 (a) is used when the signal-to-noise ratio requirement is high. For example, it is used when there are few users around the communication device and the multi-value number of modulation is increased in order to increase the communication speed per user. In this case, since the local oscillators 11a and 11b output independent local oscillation waves, the noise components included in the digital signals output from the ADCs 7a and 7b become independent from each other. Compared to a configuration using one local oscillator, the signal-to-noise ratio of the received signal can be increased by 3 dB.
 図2(b)は、局部発振波生成回路10のもう一つの状態を示している。局部発振器11a及び11bのうち、局部発振器11aの電源がONであり、局部発振器11bの電源はOFFである。経路切替回路12は、スイッチ16を局部発振器11a側に切り替えることにより、局部発振器11aを可変利得増幅器13aと可変利得増幅器13bの両方に接続し、局部発振器11bは開放状態にする。ここで、可変利得増幅器13a及び13bは、図2(a)に比べて利得が高い状態である。 FIG. 2B shows another state of the local oscillation wave generation circuit 10. Of the local oscillators 11a and 11b, the local oscillator 11a is powered on, and the local oscillator 11b is powered off. The path switching circuit 12 connects the local oscillator 11a to both the variable gain amplifier 13a and the variable gain amplifier 13b by switching the switch 16 to the local oscillator 11a side, and the local oscillator 11b is opened. Here, the variable gain amplifiers 13a and 13b have a higher gain than that in FIG.
 図2(b)に示す状態は、信号対雑音比の要求が低い場合に用いる。例えば、通信装置の周囲にユーザが多く、限られたリソースを分配するために変調の多値数を小さくし、ユーザ一人あたりの通信速度を低速にする場合に用いる。この場合、局部発振器11aから局部発振波を出力することにより、必要最低限の信号対雑音比で動作しつつ、局部発振器11bを駆動する分の消費電力を抑制することができる。なお、図2(b)に示す状態は、局部発振器11aから出力する局部発振波を分配して2つの可変利得増幅器13a、13bに出力するため、それぞれの可変利得増幅器に入力する局部発振波の電力が図2(a)に示す状態の半分となる。そのため、2つの可変利得増幅器13a及び13bの利得を図2(a)より3dB高い状態とする。 The state shown in FIG. 2B is used when the signal-to-noise ratio requirement is low. For example, it is used when there are many users around a communication device, and the number of modulations is reduced to distribute limited resources, and the communication speed per user is reduced. In this case, by outputting the local oscillation wave from the local oscillator 11a, it is possible to suppress the power consumption for driving the local oscillator 11b while operating with the minimum signal-to-noise ratio. In the state shown in FIG. 2B, since the local oscillation wave output from the local oscillator 11a is distributed and output to the two variable gain amplifiers 13a and 13b, the local oscillation wave input to each variable gain amplifier is The power is half of the state shown in FIG. Therefore, the gains of the two variable gain amplifiers 13a and 13b are set to a state 3 dB higher than that in FIG.
 図2(a)の代わりに図2(c)に示す回路としても、図2(a)と同様の効果が得られる。図2(c)は、経路切替回路12を信号分配器15、スイッチ16、及び信号合成器17から構成している。局部発振器11bに接続したスイッチ16は、信号合成器17側に経路を切り替えている。局部発振器11a及び11bが、それぞれ独立した局部発振波を出力するので、図2(a)の場合と同様に、受信信号の信号対雑音比を改善できる。 Even if the circuit shown in FIG. 2 (c) is used instead of FIG. 2 (a), the same effect as in FIG. 2 (a) can be obtained. In FIG. 2C, the path switching circuit 12 includes a signal distributor 15, a switch 16, and a signal synthesizer 17. The switch 16 connected to the local oscillator 11b switches the path to the signal synthesizer 17 side. Since the local oscillators 11a and 11b output independent local oscillation waves, the signal-to-noise ratio of the received signal can be improved as in the case of FIG.
 図2(b)の代わりに図2(d)に示す回路としても、図2(b)と同様の効果が得られる。図2(d)において、スイッチ16は信号合成器17側に切り替わっていないため、局部発振器11aが出力する局部発振波のみを信号合成器17に入力する。この場合、局部発振器11bには電源を投入しないため、局部発振器11bを駆動する消費電力を抑制することができる。なお、スイッチ16が、SPDT(Single Pole Dual Throw)スイッチの場合について説明したが、2状態を切り替えることができれば、SPST(Single Pole Single Throw)を2個使う構成であっても良い。 Even if the circuit shown in FIG. 2D is used instead of FIG. 2B, the same effect as in FIG. 2B can be obtained. In FIG. 2D, since the switch 16 is not switched to the signal synthesizer 17 side, only the local oscillation wave output from the local oscillator 11 a is input to the signal synthesizer 17. In this case, since the local oscillator 11b is not powered on, power consumption for driving the local oscillator 11b can be suppressed. In addition, although the case where the switch 16 is an SPDT (Single | Pole | Dual | Throw) switch was demonstrated, the structure which uses two SPST (Single | Pole | Single | Throw) may be sufficient as long as two states can be switched.
 次に、図2に示した局部発振波生成回路10の状態を切り替える手順を示す。 Next, a procedure for switching the state of the local oscillation wave generation circuit 10 shown in FIG.
 はじめに、局部発振波生成回路10が図2(a)の状態であったとする。アンテナ1a及び1bが受信したパイロット信号を最終的に信号処理回路8で処理した結果、目標とする信号対雑音比を満足している場合、信号処理回路8は図2(a)の状態から図2(b)の状態に切り替える状態切替信号を制御信号生成回路14に出力する。 First, it is assumed that the local oscillation wave generation circuit 10 is in the state shown in FIG. When the pilot signals received by the antennas 1a and 1b are finally processed by the signal processing circuit 8 and the target signal-to-noise ratio is satisfied, the signal processing circuit 8 starts from the state of FIG. A state switching signal for switching to the state 2 (b) is output to the control signal generation circuit 14.
 制御信号生成回路14は、局部発振器11a及び11b、経路切替回路12、並びに可変利得増幅器13にそれぞれ電源制御信号、経路制御信号、及び利得制御信号を出力し、図2(a)の状態から図2(b)の状態に切り替える。 The control signal generation circuit 14 outputs a power supply control signal, a path control signal, and a gain control signal to the local oscillators 11a and 11b, the path switching circuit 12, and the variable gain amplifier 13, respectively, from the state of FIG. Switch to the state of 2 (b).
 図2(b)の状態において、アンテナ1a及び1bが受信したパイロット信号を最終的に信号処理回路8で処理した結果、目標とする信号対雑音比を満足している場合は、図2(b)の状態を維持し、アレーアンテナ装置を低消費電力な状態で動作させた上で、通信を開始する。 In the state shown in FIG. 2B, when the pilot signals received by the antennas 1a and 1b are finally processed by the signal processing circuit 8, the target signal-to-noise ratio is satisfied. ), And the array antenna apparatus is operated with low power consumption, and then communication is started.
 逆に、目標とする信号対雑音比を満足しない場合は、図2(b)の状態から再び図2(a)の状態に戻すための状態切替信号を制御信号生成回路14に出力し、これ以降は図2(a)の状態を維持した上で通信を開始する。 On the other hand, if the target signal-to-noise ratio is not satisfied, a state switching signal for returning from the state of FIG. 2B to the state of FIG. 2A is output to the control signal generation circuit 14. Thereafter, communication is started after maintaining the state of FIG.
以上のように、実施の形態1によれば、信号対雑音比の要求に合わせて、局部発振波生成回路10を構成する局部発振器11a及び11bの電源のON/OFFと、局部発振器11a及び11bが出力する局部発振波の出力先と、可変利得増幅器13a及び13bの利得とを変化させるので、信号対雑音比の要求の変化に応じて、局部発振波生成回路10の消費電力を変化させることができる。 As described above, according to the first embodiment, the local oscillators 11a and 11b constituting the local oscillation wave generation circuit 10 are turned on / off and the local oscillators 11a and 11b according to the request for the signal-to-noise ratio. Since the output destination of the local oscillation wave output from the signal and the gains of the variable gain amplifiers 13a and 13b are changed, the power consumption of the local oscillation wave generation circuit 10 is changed in accordance with the change in the signal-to-noise ratio requirement. Can do.
なお、以上の説明では、信号を受信するアンテナ(アンテナ1a及び1b)が2つの場合について説明したが、N個であっても良い。N個のアンテナを用いる場合、局部発振器もN個必要となる。この場合も、信号対雑音比の要求に合わせて、使用する局部発振器の数を適応的に変えることにより、複数の局部発振器を必要最低限の消費電力で動作させることができる。 In the above description, the case where there are two antennas (antennas 1a and 1b) for receiving signals has been described, but N may be used. When N antennas are used, N local oscillators are also required. In this case as well, a plurality of local oscillators can be operated with the minimum necessary power consumption by adaptively changing the number of local oscillators to be used in accordance with the request for the signal-to-noise ratio.
また、以上の説明では、アンテナの数と同数のフィルタ、増幅器及びADCを用いる構成について説明したが、ミクサの出力を合成し、フィルタ、増幅器、及びADCを1つだけ用いる構成としても良い。同様に、フィルタの出力を合成する構成や、増幅器の出力を合成する構成としても良く、いずれの構成であっても、使用する局部発振器の数を適応的に変えることにより、複数の局部発振器を必要最低限の消費電力で動作させることができる。 In the above description, the configuration using the same number of filters, amplifiers, and ADCs as the number of antennas has been described. However, it is also possible to combine the mixer outputs and use only one filter, amplifier, and ADC. Similarly, a configuration for synthesizing the output of the filter or a configuration for synthesizing the output of the amplifier may be used. In any configuration, a plurality of local oscillators can be configured by adaptively changing the number of local oscillators to be used. It can be operated with the minimum power consumption.
実施の形態2.
実施の形態1では、受信機に用いる局部発振波生成回路の消費電力の最適化について説明した。実施の形態2では、送信機に用いる局部発振波生成回路の消費電力の最適化について説明する。
Embodiment 2.
In the first embodiment, the optimization of the power consumption of the local oscillation wave generation circuit used for the receiver has been described. In the second embodiment, optimization of power consumption of a local oscillation wave generation circuit used for a transmitter will be described.
 図3は、この発明の実施の形態2に係るアレーアンテナの一構成例を示す構成図である。図3において、図1と同一符号は、同一または相当部分を示している。本アレーアンテナは、送信アンテナ1c及び1d、高出力増幅器2c及び2d、フィルタ3c及び3d、ミクサ4c及び4d、フィルタ5c及び5d、増幅器6c及び6d、DAC(Digital-to-Analog Converter)7c及び7d(デジタルアナログ変換器の一例)、信号処理回路21、基準発振器9、局部発振波生成回路10、制御信号生成回路14、受信アンテナ25、及び受信機26を備える。 FIG. 3 is a block diagram showing a configuration example of an array antenna according to Embodiment 2 of the present invention. 3, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. This array antenna includes transmission antennas 1c and 1d, high- power amplifiers 2c and 2d, filters 3c and 3d, mixers 4c and 4d, filters 5c and 5d, amplifiers 6c and 6d, DAC (Digital-to-Analog Converter) 7c and 7d. (An example of a digital-analog converter), a signal processing circuit 21, a reference oscillator 9, a local oscillation wave generation circuit 10, a control signal generation circuit 14, a reception antenna 25, and a receiver 26 are provided.
 図3において、送信アンテナ1c及び1d、高出力増幅器2c及び2d、フィルタ3c及び3d、ミクサ4c及び4d、フィルタ5c及び5d、増幅器6c及び6dは、送信機と受信機との違いはあるが、それぞれ、図1における、アンテナ1a及び1b、低雑音増幅器2a及び2b、フィルタ3a及び3b、ミクサ4a及び4b、フィルタ5a及び5b、増幅器6a及び6bに対応している。 In FIG. 3, the transmission antennas 1c and 1d, high- power amplifiers 2c and 2d, filters 3c and 3d, mixers 4c and 4d, filters 5c and 5d, and amplifiers 6c and 6d are different between the transmitter and the receiver. These correspond to antennas 1a and 1b, low noise amplifiers 2a and 2b, filters 3a and 3b, mixers 4a and 4b, filters 5a and 5b, and amplifiers 6a and 6b, respectively, in FIG.
 信号処理回路21は、演算によりディジタル信号を出力し、また、入力したディジタル信号から演算により必要な情報を得る信号処理回路である。信号処理回路21は、ユーザに送信したい信号をディジタル信号としてDAC7c及び7dに出力する。また、受信機26が出力したディジタル信号から、ユーザが送信した電波に含まれる情報を演算により得る。加えて、情報を正しく得ることができたかどうかに応じて局部発振波生成回路10の状態を切り替える状態切替信号を、制御信号生成回路14に出力する。例えば、信号処理回路21は、FPGA、ASIC、論理演算回路などで構成される。 The signal processing circuit 21 is a signal processing circuit that outputs a digital signal by calculation and obtains necessary information by calculation from the input digital signal. The signal processing circuit 21 outputs a signal to be transmitted to the user to the DACs 7c and 7d as a digital signal. Further, information included in the radio wave transmitted by the user is obtained from the digital signal output from the receiver 26 by calculation. In addition, a state switching signal for switching the state of the local oscillation wave generation circuit 10 according to whether or not information has been correctly obtained is output to the control signal generation circuit 14. For example, the signal processing circuit 21 includes an FPGA, an ASIC, a logical operation circuit, and the like.
 DAC7c及び7dは、ディジタル信号をアナログ信号に変換するDACである。DAC7c及び7dは、信号処理回路21が出力したディジタル信号をアナログ信号に変換し、増幅器6c及び6dに出力するDACである。例えば、DAC7c及び7dには、抵抗ラダー形、電流出力形、デルタシグマ形などのADCが用いられる。 DACs 7c and 7d are DACs that convert digital signals into analog signals. The DACs 7c and 7d are DACs that convert the digital signal output from the signal processing circuit 21 into an analog signal and output the analog signal to the amplifiers 6c and 6d. For example, ADCs of a resistance ladder type, a current output type, a delta sigma type, etc. are used for the DACs 7c and 7d.
 受信アンテナ25は、電波を受信するアンテナである。受信アンテナ25は、ユーザが送信した電波を受信し、受信機26に出力する受信アンテナである。例えば、受信アンテナ25には、ダイポールアンテナやパッチアンテナなどが用いられる。受信アンテナ25は、図1に示すアンテナ1a及び1bと同じものを用いても良い。 The receiving antenna 25 is an antenna that receives radio waves. The receiving antenna 25 is a receiving antenna that receives radio waves transmitted by the user and outputs them to the receiver 26. For example, a dipole antenna or a patch antenna is used for the receiving antenna 25. The receiving antenna 25 may be the same as the antennas 1a and 1b shown in FIG.
受信機26は、入力した信号を増幅し、信号に含まれる不要波を除去し、信号の周波数を信号処理回路で処理できる周波数に変換し、ディジタル信号に変換する受信機である。受信機26は、受信アンテナ25が受信した信号を増幅し、信号に含まれる不要波を除去し、信号の周波数を信号処理回路21で処理できる周波数に変換し、ディジタル信号に変換し、信号処理回路21に出力する。なお、受信機26は、図1に示すアンテナ1a及び1b~ADC7a及び7b、基準発振器9及び局部発振波生成回路10から構成される受信機を用いても良いし、局部発振波生成回路10の代わりに単一の局部発振器を用いた構成でも良い。図3には、受信アンテナ25及び受信機26を1つずつ用いる構成を示しているが、受信アンテナ25及び受信機26をN個ずつ用いる構成でも良い。 The receiver 26 is a receiver that amplifies the input signal, removes unnecessary waves contained in the signal, converts the frequency of the signal into a frequency that can be processed by the signal processing circuit, and converts the signal into a digital signal. The receiver 26 amplifies the signal received by the receiving antenna 25, removes unnecessary waves included in the signal, converts the frequency of the signal to a frequency that can be processed by the signal processing circuit 21, converts the signal to a digital signal, and performs signal processing. Output to the circuit 21. The receiver 26 may be a receiver including the antennas 1a and 1b to ADCs 7a and 7b, the reference oscillator 9, and the local oscillation wave generation circuit 10 shown in FIG. Alternatively, a configuration using a single local oscillator may be used. Although FIG. 3 shows a configuration in which one reception antenna 25 and one receiver 26 are used, a configuration in which N reception antennas 25 and N receivers 26 are used may be used.
 次に、この発明の実施の形態2に係るアレーアンテナ装置の動作を説明する。 Next, the operation of the array antenna apparatus according to Embodiment 2 of the present invention will be described.
 信号処理回路21は、ユーザに送信するパイロット信号をディジタル信号としてDAC7c及び7dに出力する。DAC22は、信号処理回路21が出力したディジタル信号をアナログ信号に変換し、増幅器6c及び6dに出力する。増幅器6c及び6dは、それぞれ、DAC7c及び7dが出力した信号を増幅し、フィルタ5c及び5dに出力する。 The signal processing circuit 21 outputs a pilot signal transmitted to the user to the DACs 7c and 7d as a digital signal. The DAC 22 converts the digital signal output from the signal processing circuit 21 into an analog signal and outputs the analog signal to the amplifiers 6c and 6d. The amplifiers 6c and 6d amplify the signals output from the DACs 7c and 7d, respectively, and output the amplified signals to the filters 5c and 5d.
 フィルタ5c及び5dは、それぞれ、増幅器6c及び6dが出力した信号に含まれる不要波を除去し、所望波を通過させ、ミクサ4c及び4dに出力する。 Filters 5c and 5d remove unnecessary waves contained in the signals output from the amplifiers 6c and 6d, respectively, pass desired waves, and output them to the mixers 4c and 4d.
 ミクサ4c及び4dは、それぞれ、フィルタ5c及び5dが出力した信号と局部発振波生成回路10が出力した局部発振波とを混合し、その混合波をフィルタ3c及び3dに出力する。 The mixers 4c and 4d respectively mix the signals output from the filters 5c and 5d and the local oscillation wave output from the local oscillation wave generation circuit 10, and output the mixed waves to the filters 3c and 3d.
 フィルタ3c及び3dは、それぞれ、ミクサ4c及び4dが出力した信号に含まれる不要波を除去し、所望波を通過させ、高出力増幅器2c及び2dに出力する。 Filters 3c and 3d remove unnecessary waves contained in signals output from the mixers 4c and 4d, respectively, pass desired waves, and output the high- power amplifiers 2c and 2d.
 高出力増幅器2c及び2dは、それぞれ、フィルタ3c及び3dが出力した信号を高出力に増幅し、送信アンテナ1c及び1dに出力する。送信アンテナ1c及び1dは、それぞれ、高出力増幅器2c及び2dが出力した信号を電波としてユーザに送信する。 The high output amplifiers 2c and 2d amplify the signals output from the filters 3c and 3d to high outputs, respectively, and output the amplified signals to the transmission antennas 1c and 1d. The transmission antennas 1c and 1d transmit signals output from the high- power amplifiers 2c and 2d as radio waves to the user, respectively.
ユーザは、送信アンテナ1c及び1dが送信したパイロット信号を受信し、所望の通信品質が得られたかどうかを判断し、その結果が含まれた応答信号を受信アンテナ25に送信する。 The user receives the pilot signals transmitted by the transmission antennas 1c and 1d, determines whether or not a desired communication quality is obtained, and transmits a response signal including the result to the reception antenna 25.
 受信アンテナ25は、ユーザが送信した応答信号を受信し、受信機26に出力する。受信機26は、受信アンテナ25が受信した応答信号を増幅し、信号に含まれる不要波を除去し、信号の周波数を信号処理回路21で処理できる周波数に変換するとともにディジタル信号に変換し、信号処理回路21に出力する。 The receiving antenna 25 receives the response signal transmitted by the user and outputs it to the receiver 26. The receiver 26 amplifies the response signal received by the receiving antenna 25, removes unnecessary waves contained in the signal, converts the frequency of the signal to a frequency that can be processed by the signal processing circuit 21, and converts the signal to a digital signal. Output to the processing circuit 21.
 信号処理回路21は、受信機26が出力したディジタル信号から応答信号の内容を読み取り、所望の通信品質が得られたかどうかに応じて、局部発振波生成回路10の状態を切り替える状態切替信号を制御信号生成回路14に出力する。例えば、信号処理回路21は、応答信号を復調したディジタルのビット列の中で、特定のビットの値が“1”か“0”かによって、ユーザが正しく受信できたか否かを判断する。また、ここで、状態切替信号とは、図2に示す状態を切り替える信号である。つまり、局部発振波生成回路10を構成する局部発振器11a及び11bの電源のON/OFFと、局部発振器11a及び11bが出力する局部発振波の出力先と、可変利得増幅器13a及び13bの利得との組合せを表す状態を切り替える信号である。例えば、状態切替信号は、1ビットのディジタル信号であり、“HIGH”なら図2(a)の状態、“LOW”なら図2(b)の状態を示す。 The signal processing circuit 21 reads the content of the response signal from the digital signal output from the receiver 26 and controls a state switching signal for switching the state of the local oscillation wave generation circuit 10 according to whether or not a desired communication quality is obtained. The signal is output to the signal generation circuit 14. For example, the signal processing circuit 21 determines whether or not the user has received correctly depending on whether the value of a specific bit is “1” or “0” in the digital bit string obtained by demodulating the response signal. Here, the state switching signal is a signal for switching the state shown in FIG. That is, the ON / OFF of the power supply of the local oscillators 11a and 11b constituting the local oscillation wave generation circuit 10, the output destination of the local oscillation wave output from the local oscillators 11a and 11b, and the gains of the variable gain amplifiers 13a and 13b. It is a signal for switching the state representing the combination. For example, the state switching signal is a 1-bit digital signal. If “HIGH”, the state shown in FIG. 2A is indicated. If “LOW”, the state shown in FIG. 2B is indicated.
 制御信号生成回路14は、信号処理回路21が出力する状態切替信号に基づいて、局部発振波生成回路10の状態を制御する複数の制御信号を局部発振波生成回路10に出力する。 The control signal generation circuit 14 outputs a plurality of control signals for controlling the state of the local oscillation wave generation circuit 10 to the local oscillation wave generation circuit 10 based on the state switching signal output from the signal processing circuit 21.
 はじめに、局部発振波生成回路10が図2(a)の状態であったとする。送信アンテナ1c及び1dが送信したパイロット信号をユーザが受信し、所望の通信品質が得られた場合、信号処理回路21は、図2(a)の状態から図2(b)の状態に切り替えるための状態切替信号を制御信号生成回路14に出力する。 First, it is assumed that the local oscillation wave generation circuit 10 is in the state shown in FIG. When the user receives pilot signals transmitted from the transmission antennas 1c and 1d and a desired communication quality is obtained, the signal processing circuit 21 switches from the state of FIG. 2A to the state of FIG. 2B. Is output to the control signal generation circuit 14.
 制御信号生成回路14は、局部発振器11a及び11b、経路切替回路12、並びに可変利得増幅器13a及び13bにそれぞれ電源制御信号、経路制御信号及び利得制御信号を出力し、図2(a)の状態から図2(b)の状態に切り替える。 The control signal generation circuit 14 outputs a power supply control signal, a path control signal, and a gain control signal to the local oscillators 11a and 11b, the path switching circuit 12, and the variable gain amplifiers 13a and 13b, respectively, from the state of FIG. Switch to the state of FIG.
 図2(b)の状態において、送信アンテナ1c及び1dが送信したパイロット信号をユーザが受信した結果、所望の通信品質が得られた場合は、図2(b)の状態を維持し、アレーアンテナを低消費電力な状態で動作させた上で通信を開始する。 In the state of FIG. 2 (b), when a desired communication quality is obtained as a result of the user receiving the pilot signals transmitted by the transmission antennas 1c and 1d, the state of FIG. 2 (b) is maintained, and the array antenna is maintained. Is operated in a low power consumption state, and communication is started.
 逆に、所望の通信品質が得られなかった場合は、図2(b)の状態から再び図2(a)の状態に戻すための状態切替信号を制御信号生成回路14に出力し、これ以降は図2(a)の状態を維持した上で通信を開始する。 Conversely, when the desired communication quality is not obtained, a state switching signal for returning from the state of FIG. 2B to the state of FIG. 2A is output to the control signal generation circuit 14, and thereafter Starts communication while maintaining the state of FIG.
以上のように、実施の形態2によれば、送信アンテナ1c及び1dからユーザに対して送信する信号の信号対雑音比の要求に合わせて、局部発振波生成回路10を構成する局部発振器11a及び11bの電源のON/OFFと、局部発振器11a及び11bが出力する局部発振波の出力先と、可変利得増幅器13a及び13bの利得を変化させるので、信号対雑音比の要求の変化に応じて、複数の局部発振器(局部発振器11a及び11b)を必要最低限の消費電力で動作することができる。 As described above, according to the second embodiment, the local oscillator 11a and the local oscillator 11a included in the local oscillation wave generation circuit 10 according to the request for the signal-to-noise ratio of signals transmitted from the transmission antennas 1c and 1d to the user. Since the power supply of 11b is changed, the output destination of the local oscillation wave output from the local oscillators 11a and 11b, and the gain of the variable gain amplifiers 13a and 13b are changed, according to the change in the request of the signal-to-noise ratio, A plurality of local oscillators ( local oscillators 11a and 11b) can be operated with a minimum power consumption.
なお、以上の説明では、送信アンテナが2つの場合について説明したが、N個であってもよい。N個のアンテナ1を用いる場合、局部発振器もN個必要となる。この場合も、信号対雑音比の要求に合わせて、使用する局部発振器の数を適応的に変えることにより、複数の局部発振器を必要最低限の消費電力で動作するアレーアンテナを得ることができる。 In the above description, the case where there are two transmission antennas has been described, but N may be used. When N antennas 1 are used, N local oscillators are also required. Also in this case, an array antenna that operates a plurality of local oscillators with the minimum power consumption can be obtained by adaptively changing the number of local oscillators to be used in accordance with the requirement of the signal-to-noise ratio.
また、以上の説明では、送信アンテナの数と同数のDAC、増幅器、及びフィルタを用いる構成について説明したが、1つのDACの出力を複数の増幅器に分配する構成としても良い。同様に、DACと増幅器とを1つだけ用いて、増幅器の出力を複数のフィルタに分配する構成や、DACと増幅器とフィルタを1つだけ用いてフィルタの出力を複数のミクサに分配する構成としても良く、いずれの構成であっても、使用する局部発振器の数を適応的に変えることにより、複数の局部発振器を必要最低限の消費電力で動作することができる。 In the above description, the configuration using the same number of DACs, amplifiers, and filters as the number of transmission antennas has been described, but the configuration may be such that the output of one DAC is distributed to a plurality of amplifiers. Similarly, a configuration in which only one DAC and amplifier is used to distribute the output of the amplifier to a plurality of filters, or a configuration in which only one DAC, amplifier and filter are used to distribute the output of the filter to a plurality of mixers. In any configuration, a plurality of local oscillators can be operated with a minimum power consumption by adaptively changing the number of local oscillators to be used.
 1a 1b アンテナ、1c 1d 送信アンテナ、2a 2b 低雑音増幅器、2c 2d 高出力増幅器、3a 3b 3c 3d フィルタ、4a 4b 4c 4d ミクサ、5a 5b 5c 5d フィルタ、6a 6b 6c 6d 増幅器、7a 7b ADC、7c 7d DAC、8 信号処理回路、9 基準発振器、10 局部発振波生成回路、11a 11b 局部発振器、12 経路切替回路、13a 13b 可変利得増幅器、14 制御信号生成回路、15 信号分配器、16 スイッチ、17 信号合成器、21 信号処理回路、25 受信アンテナ、26 受信機。 1a 1b antenna, 1c 1d transmit antenna, 2a 2b low noise amplifier, 2c 2d high output amplifier, 3a 3b 3c 3d filter, 4a 4b 4c 4d mixer, 5a 5b 5c 5d filter, 6a 6b 6c 6d amplifier, 7a 7b A 7d DAC, 8 signal processing circuit, 9 reference oscillator, 10 local oscillation wave generation circuit, 11a 11b local oscillator, 12 path switching circuit, 13a 13b variable gain amplifier, 14 control signal generation circuit, 15 signal distributor, 16 switch, 17 Signal synthesizer, 21 signal processing circuit, 25 receiving antenna, 26 receiver.

Claims (7)

  1.  基準信号に同期した第1の局部発振波を出力し、制御信号に応じて電源のON/OFFを切り替える第1の局部発振器と、
     前記基準信号に同期した第2の局部発振波を出力し、前記制御信号に応じて電源のON/OFFを切り替える第2の局部発振器と、
    前記第1の局部発振器及び前記第2の局部発振器に接続され、前記制御信号または前記制御信号に同期する信号に応じて前記第1の局部発振波及び前記第2の局部発振波の経路を切り替える経路切替回路と、
    を備えたことを特徴とする局部発振装置。
    A first local oscillator that outputs a first local oscillation wave that is synchronized with a reference signal, and that switches the power ON / OFF according to a control signal;
    A second local oscillator that outputs a second local oscillation wave that is synchronized with the reference signal, and that switches ON / OFF of a power source in accordance with the control signal;
    Connected to the first local oscillator and the second local oscillator, and switches the path of the first local oscillation wave and the second local oscillation wave according to the control signal or a signal synchronized with the control signal. A path switching circuit;
    A local oscillation device comprising:
  2.  前記経路切替回路は、前記第2の局部発振器の電源がONの場合に前記第1の局部発振波及び前記第2の局部発振波をそれぞれ出力し、前記第2の局部発振器の電源がOFFの場合に前記第1の局部発振波を分配して出力するように、経路を切り替えることを特徴とする請求項1に記載の局部発振装置。 The path switching circuit outputs the first local oscillation wave and the second local oscillation wave, respectively, when the power supply of the second local oscillator is ON, and the power supply of the second local oscillator is OFF. 2. The local oscillation device according to claim 1, wherein the path is switched so that the first local oscillation wave is distributed and output in some cases.
  3.  前記経路切替回路は、
     前記第1の局部発振器に接続される第1の入力端子、第2の入力端子、及び出力端子を備える信号分配器と
     前記第2の局部発振器に接続される第1の端子、前記信号分配器の前記第2の入力端子に接続される第2の端子、及び出力端子である第3の端子を備え、接続を切り替えるスイッチと、
     を備えたことを特徴とする請求項2に記載の局部発振装置。
    The path switching circuit is
    A signal distributor having a first input terminal, a second input terminal, and an output terminal connected to the first local oscillator; a first terminal connected to the second local oscillator; and the signal distributor A second terminal connected to the second input terminal and a third terminal which is an output terminal, and a switch for switching the connection;
    The local oscillation device according to claim 2, further comprising:
  4.  前記経路切替回路は、
     前記第1の局部発振器に接続され、信号を合成する信号合成器と、
     前記第2の局部発振器及び前記信号合成器に接続され、接続を切り替えるスイッチと、
     前記信号合成器の出力端子に接続され、前記信号合成器の出力信号を分配する信号分配器と、
     を備えたことを特徴とする請求項2に記載の局部発振装置。
    The path switching circuit is
    A signal synthesizer connected to the first local oscillator for synthesizing signals;
    A switch connected to the second local oscillator and the signal synthesizer for switching the connection;
    A signal distributor connected to an output terminal of the signal synthesizer and distributing an output signal of the signal synthesizer;
    The local oscillation device according to claim 2, further comprising:
  5.  請求項1に記載の局部発振装置と、
     第1の受信信号を受信する第1のアンテナと、
     第2の受信信号を受信する第2のアンテナと、
     前記第1の受信信号と前記局部発振装置が出力する前記第1の局部発振波または前記第2の局部発振波とを混合し、第1の混合波を出力する第1の混合器と、
     前記第2の受信信号と前記局部発振装置が出力する前記第1の局部発振波または前記第2の局部発振波とを混合し、第2の混合波を出力する第2の混合器と、
     前記第1の混合波を第1のデジタル信号に変換する第1のアナログデジタル変換器と、
     前記第2の混合波を第2のデジタル信号に変換する第2のアナログデジタル変換器と、
     前記第1のデジタル信号及び前記第2のデジタル信号を処理し、前記第1の受信信号及び前記第2の受信信号の雑音特性を算出する信号処理回路と、
     前記信号処理回路が算出した雑音特性にしたがって、前記制御信号を前記第1の局部発振器及び前記第2の局部発振器に出力し、前記制御信号または前記制御信号に同期する信号を出力する制御信号生成回路と、
     を備えたことを特徴とするアレーアンテナ装置。
    A local oscillation device according to claim 1;
    A first antenna for receiving a first received signal;
    A second antenna for receiving a second received signal;
    A first mixer that mixes the first reception signal and the first local oscillation wave or the second local oscillation wave output from the local oscillation device and outputs a first mixed wave;
    A second mixer for mixing the second received signal and the first local oscillation wave or the second local oscillation wave output from the local oscillation device and outputting a second mixed wave;
    A first analog-to-digital converter that converts the first mixed wave into a first digital signal;
    A second analog-to-digital converter that converts the second mixed wave into a second digital signal;
    A signal processing circuit that processes the first digital signal and the second digital signal and calculates noise characteristics of the first received signal and the second received signal;
    Control signal generation that outputs the control signal to the first local oscillator and the second local oscillator according to the noise characteristic calculated by the signal processing circuit, and outputs a signal synchronized with the control signal or the control signal Circuit,
    An array antenna apparatus comprising:
  6.  請求項1に記載の局部発振装置と、
     デジタル信号を出力する信号処理回路と、
     前記信号処理回路が出力する前記デジタル信号の雑音特性にしたがって、前記制御信号を前記第1の局部発振器及び前記第2の局部発振器に出力し、前記制御信号または前記制御信号に同期する信号を出力する制御信号生成回路と、
     前記デジタル信号を第1のアナログ信号に変換する第1のデジタルアナログ変換器と、
     前記デジタル信号を第2のアナログ信号に変換する第2のデジタルアナログ変換器と、
     前記第1のアナログ信号と前記局部発振装置が出力する前記第1の局部発振波または前記第2の局部発振波とを混合し、第1の混合波を出力する第1の混合器と、
     前記第2のアナログ信号と前記局部発振装置が出力する前記第1の局部発振波または前記第2の局部発振波とを混合し、第2の混合波を出力する第2の混合器と、
     前記第1の混合波を送信する第1のアンテナと、
     前記第2の混合波を送信する第2のアンテナと、
     を備えたことを特徴とするアレーアンテナ装置。
    A local oscillation device according to claim 1;
    A signal processing circuit for outputting a digital signal;
    According to the noise characteristics of the digital signal output by the signal processing circuit, the control signal is output to the first local oscillator and the second local oscillator, and the control signal or a signal synchronized with the control signal is output. A control signal generation circuit to
    A first digital-to-analog converter for converting the digital signal into a first analog signal;
    A second digital-analog converter for converting the digital signal into a second analog signal;
    A first mixer that mixes the first analog signal and the first local wave or the second local wave output from the local oscillation device and outputs a first mixed wave;
    A second mixer for mixing the second analog signal and the first local oscillation wave output from the local oscillation device or the second local oscillation wave and outputting a second mixed wave;
    A first antenna for transmitting the first mixed wave;
    A second antenna for transmitting the second mixed wave;
    An array antenna apparatus comprising:
  7.  前記信号処理回路が出力したパイロット信号に対する応答信号を受信する受信アンテナと、
     前記応答信号の周波数を変換する受信機と、
     を備え、
     前記信号処理回路は、周波数を変換した前記応答信号を受信し、受信結果にしたがって、前記制御信号生成回路を制御することを特徴とする請求項6に記載のアレーアンテナ装置。
    A receiving antenna that receives a response signal to the pilot signal output by the signal processing circuit;
    A receiver for converting the frequency of the response signal;
    With
    The array antenna apparatus according to claim 6, wherein the signal processing circuit receives the response signal whose frequency is converted, and controls the control signal generation circuit according to a reception result.
PCT/JP2017/005822 2017-02-17 2017-02-17 Local oscillation device and array antenna device WO2018150528A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/005822 WO2018150528A1 (en) 2017-02-17 2017-02-17 Local oscillation device and array antenna device
JP2018519778A JP6399256B1 (en) 2017-02-17 2018-01-11 Local oscillation device and array antenna device
US16/481,264 US10784911B2 (en) 2017-02-17 2018-01-11 Local oscillation device and array antenna device
PCT/JP2018/000394 WO2018150767A1 (en) 2017-02-17 2018-01-11 Local oscillation device and array antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005822 WO2018150528A1 (en) 2017-02-17 2017-02-17 Local oscillation device and array antenna device

Publications (1)

Publication Number Publication Date
WO2018150528A1 true WO2018150528A1 (en) 2018-08-23

Family

ID=63169780

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/005822 WO2018150528A1 (en) 2017-02-17 2017-02-17 Local oscillation device and array antenna device
PCT/JP2018/000394 WO2018150767A1 (en) 2017-02-17 2018-01-11 Local oscillation device and array antenna device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000394 WO2018150767A1 (en) 2017-02-17 2018-01-11 Local oscillation device and array antenna device

Country Status (3)

Country Link
US (1) US10784911B2 (en)
JP (1) JP6399256B1 (en)
WO (2) WO2018150528A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020381501B2 (en) * 2019-11-15 2023-11-02 Thales USA, Inc. Antenna and glide path array for small footprint aircraft precision approach and landing system
US11728839B2 (en) * 2020-05-26 2023-08-15 KMB Telematics, Inc. Oscillator synchronization in multiple antennas systems using mutual coupling signals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341188A (en) * 1999-05-26 2000-12-08 Mitsubishi Electric Corp Radio communications equipment and radio communication method
US20080132192A1 (en) * 2006-10-20 2008-06-05 Fci Inc. Multi-band receiver
JP5377750B2 (en) * 2010-03-04 2013-12-25 三菱電機株式会社 Array antenna device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565160B2 (en) * 2000-11-17 2004-09-15 日本電気株式会社 Cross polarization interference compensation circuit
JP2005244854A (en) 2004-02-27 2005-09-08 Kyocera Corp Radio communication apparatus and array antenna control method
JP2006203653A (en) * 2005-01-21 2006-08-03 Matsushita Electric Ind Co Ltd Receiving circuit, and receiving device and receiving system using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341188A (en) * 1999-05-26 2000-12-08 Mitsubishi Electric Corp Radio communications equipment and radio communication method
US20080132192A1 (en) * 2006-10-20 2008-06-05 Fci Inc. Multi-band receiver
JP5377750B2 (en) * 2010-03-04 2013-12-25 三菱電機株式会社 Array antenna device

Also Published As

Publication number Publication date
US20190393916A1 (en) 2019-12-26
WO2018150767A1 (en) 2018-08-23
JPWO2018150767A1 (en) 2019-02-21
JP6399256B1 (en) 2018-10-03
US10784911B2 (en) 2020-09-22

Similar Documents

Publication Publication Date Title
US8340606B2 (en) Doherty amplifier and transmitter using mixer
US8396417B2 (en) Frequency shifting repeater
US8090314B2 (en) Method and system for communicating via a frequency shifting repeater
US7853212B2 (en) Multi-mode modulator
US20130093624A1 (en) Hybrid Beamforming for a Wireless Communication Device
CN101316105A (en) Multi-standard multi-module wireless transceiver
US20050020298A1 (en) Radio communication apparatus and its transmission and reception circuit
US20130165059A1 (en) Beamforming apparatus and method in mobile communication system
CN108141258B (en) Analog processing system for massive MIMO
US11736131B2 (en) Segmented receiver for wireless communications
WO2018098634A1 (en) Transceiver, base station, and signal processing method
JP4655153B2 (en) Receiving device and electronic device using the same
US20120243641A1 (en) Quadrature signal phase controller for controlling phase
JP4711892B2 (en) Multi-antenna communication device
JP6399256B1 (en) Local oscillation device and array antenna device
KR20070023948A (en) Wireless transceiver supporting plurality of communication/broadcast service
US20180115328A1 (en) Method and apparatus for joint equalization and noise shaping in a software defined radio
WO2007125793A1 (en) Receiving apparatus and electronic device using same
US10014884B1 (en) Analog modulated repeater/transceiver
JP2006141022A (en) Zero-if receiver for digital multimedia broadcasting
US8559553B2 (en) Transmitter apparatus
US8718190B2 (en) Receiver/transmitter capable of simultaneously receiving/transmitting discontinuous frequency signals and method thereof
KR20040049528A (en) Dual band wireless lan transceiver
US7606550B2 (en) Method and system for a dual mode receiver with low intermediate frequency (IF) and zero second IF
US11894968B2 (en) Inphase quadrature current selector amplifiers for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP