WO2018149325A1 - 反向供电方法和装置 - Google Patents

反向供电方法和装置 Download PDF

Info

Publication number
WO2018149325A1
WO2018149325A1 PCT/CN2018/075399 CN2018075399W WO2018149325A1 WO 2018149325 A1 WO2018149325 A1 WO 2018149325A1 CN 2018075399 W CN2018075399 W CN 2018075399W WO 2018149325 A1 WO2018149325 A1 WO 2018149325A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
terminal device
level
management channel
powered
Prior art date
Application number
PCT/CN2018/075399
Other languages
English (en)
French (fr)
Inventor
唐荣道
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018149325A1 publication Critical patent/WO2018149325A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/08Current supply arrangements for telephone systems with current supply sources at the substations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring

Definitions

  • the present disclosure relates to the field of communication technologies, for example, to a reverse power supply method and apparatus.
  • Optical fiber and Optical Network Unit are deployed near the user's home.
  • the last hundreds of meters of copper cable access is called the Fiber To The Distribution Point (FTTDp).
  • the meaning of Dp is the distribution point, which is the junction point of the traditional copper network wiring section and the incoming line, and also the closest handover point to the user in the network.
  • a distribution point unit (DPU) device has a reverse power supply (Reverse Power Feed, RPF).
  • the user equipment Power Sourcing Equipment (PSE)
  • PSE Power Sourcing Equipment
  • the DPU acts as a powered device (Powered Device, PD for short).
  • the reverse power supply of the DPU device is developed on the standard of Power Over Ethernet (POE) and needs to comply with the requirements of ETSI TS 101 548 (European Requirements for Reverse Powering of Remote Access Equipment). As shown in Figure 1, in terms of safety regulations (ie safety regulations), the standard borrows the requirements of IEC 60950-1.
  • the power supply device PSE that provides the reverse power supply is used as a power limited power supply (LPS) device.
  • LPS power limited power supply
  • PCB Printed Circuit Board
  • CLASS V-1 level
  • the output power can be greater than 15W, and it must be ensured that the PCB material of any connector, component, component or device connected to the copper cable must meet the V-1CLASS or higher.
  • the present disclosure provides a reverse power supply method and apparatus for solving the unknowns of other access devices other than the power supply device.
  • the output power of the power supply device can only meet the application scenario of less than 15 W.
  • the present disclosure provides a reverse power supply method applied to a PD side of a powered device, the method comprising:
  • the detecting the state of power consumption of the powered device includes:
  • the device interacts with the terminal device through the management channel, so that the terminal device supplies power to the powered device according to the output power level corresponding to the state, including:
  • the output power of the SR3 class is to supply power to the powered device;
  • the level switch request is prohibited from being sent to the terminal device, so that the terminal device supplies power to the power receiving device with an output power of an SR2 level.
  • the detecting the state of power consumption of the powered device includes:
  • the terminal device Detecting whether the current supplied by the terminal device to the power receiving device is greater than a preset current threshold; wherein, when the current is greater than the current threshold, the terminal device uses the output power of the SR3 level as the power receiving device The absolute value of the difference between the maximum allowable output power of the terminal device and the power consumption of the powered device is less than a preset power threshold;
  • the device interacts with the terminal device through the management channel, so that the terminal device supplies power to the powered device according to the output power level corresponding to the state, including:
  • the level switching request is prohibited from being sent to the terminal device, so that the terminal device supplies power to the powered device with an output power of an SR2 level.
  • the method before the receiving the power consumption of the terminal device, the method further includes: establishing a management channel with the terminal device.
  • the establishing a management channel with the terminal device includes:
  • the central processing unit CPU of the powered device establishes the management channel between the digital subscriber line DSL link and the CPU of the terminal device.
  • the interacting with the terminal device by using the management channel includes:
  • the management channel Passing, by the management channel, the PD chip of the powered device to send a level switching request to the PSE chip of the power supply device through a preset time period;
  • the present disclosure also provides a reverse power supply method, which is applied to a terminal device side, and the method includes:
  • the power supply device is powered by the management channel, and the power supply device is powered by the output power level corresponding to the state in which the power consumption device consumes power, including:
  • the power of the powered device is powered by the output power of the SR3 level
  • the power receiving device When the level switching request sent by the power receiving device is not received within the preset time length, the power receiving device is powered by the output power of the SR2 level.
  • the method further includes:
  • the management channel is established between the central processing unit CPU of the terminal device and the CPU of the powered device via a digital subscriber line DSL link.
  • the interacting with the powered device by using the management channel includes:
  • the present disclosure also provides a reverse power supply device disposed on the PD side of the power receiving device, including:
  • a detecting module configured to detect a state in which the power consumption of the powered device is in a process of receiving power from the terminal device
  • the interaction module is configured to interact with the terminal device through the management channel, so that the terminal device supplies power to the powered device according to an output power level corresponding to the state.
  • the detecting module is configured to detect whether an absolute value of a difference between a maximum allowable output power of the terminal device and a power consumption of the powered device is less than a preset power threshold;
  • the interaction module is configured to: if the absolute value of the difference is less than the power threshold, send a level switch request to the terminal device through the management channel every preset time period, so that the terminal is The device supplies power to the powered device according to the level switching request with an output power of an SR3 level;
  • the detecting module is configured to detect whether a current supplied by the terminal device to the power receiving device is greater than a preset current threshold; wherein, when the current is greater than the current threshold The terminal device supplies power to the powered device with an output power of an SR3 level, and an absolute value of a difference between a maximum allowable output power of the terminal device and a power consumption of the powered device is less than a preset power threshold;
  • the interaction module is configured to: if the current is greater than the current threshold, send a level switching request to the terminal device through the management channel every preset time period, so that the terminal device is configured according to the The level switching request supplies power to the powered device at an output power of the SR3 level;
  • the level switching request is prohibited from being sent to the terminal device, so that the terminal device supplies power to the powered device with an output power of an SR2 level.
  • the method further includes establishing a module, where the establishing module is configured to:
  • the central processing unit CPU of the powered device establishes a management channel with the CPU of the terminal device through a digital subscriber line DSL link.
  • the interaction module is further configured to:
  • the management channel Passing, by the management channel, the PD chip of the powered device to send a level switching request to the PSE chip of the power supply device through a preset time period;
  • the present disclosure also provides a reverse power supply device, which is disposed on the terminal device side, and includes:
  • An interaction module configured to interact with the powered device through a management channel during powering the powered device
  • the power supply module is configured to supply power to the power receiving device according to an output power level corresponding to a state in which the power receiving device consumes power.
  • the power supply module supplies power to the power receiving device with an output power of an SR3 level
  • the power supply module supplies power to the power receiving device with an output power of the SR2 level.
  • the method further includes a setup module, where the setup module is configured to:
  • the central processor CPU of the terminal device and the CPU of the powered device establish a management channel through a digital subscriber line DSL link.
  • the interaction module is configured to:
  • the PSE chip of the power supply device in the terminal device receives a level switching request sent by the PD chip in the power receiving device through the management channel in a process of supplying power to the power receiving device;
  • the reverse power supply method and device provided by the present disclosure can meet the safety requirements in the case of reverse power supply, and the power receiving device interacts with the terminal device through the management channel according to the power requirement, so that the power supply device on the terminal device side adjusts the output power level, so that the power supply device on the terminal device side adjusts the output power level. Its output power can meet the requirements of the powered device.
  • Figure 1 is a schematic diagram of a reverse power supply architecture.
  • 2A is a flow chart of a reverse power supply method of the first embodiment of the present application.
  • 2B is a flow chart of another reverse power supply method of the first embodiment of the present application.
  • FIG. 3A is a flowchart of a reverse power supply method according to a second embodiment of the present application.
  • FIG. 3B is a flowchart of another reverse power supply method according to the second embodiment of the present application.
  • FIG. 4 is a flow chart of a reverse power supply method of a third embodiment of the present application.
  • FIG. 5 is a schematic diagram of a reverse power supply method according to a third embodiment of the present application.
  • FIG. 6 is a logic diagram of a reverse power supply method according to a third embodiment of the present application.
  • FIG. 7 is a flowchart of a reverse power supply method according to a fourth embodiment of the present application.
  • FIG. 8 is a schematic diagram of a reverse power supply method according to a fourth embodiment of the present application.
  • FIG. 9 is a logic diagram of a reverse power supply method according to a fourth embodiment of the present application.
  • Fig. 10 is a structural diagram of a reverse power supply device of a fifth embodiment of the present application.
  • Figure 11 is a block diagram showing a reverse power supply device of a sixth embodiment of the present application.
  • This embodiment provides a reverse power supply method performed on the power receiving device side.
  • 2A is a flow chart of a reverse power supply method of the first embodiment of the present application. The method includes steps 220 and 230.
  • step 210 may be further included to establish a management channel with the terminal device.
  • the management channel is used to interact with the powered device and the terminal device that powers the powered device.
  • the terminal device can supply power to the powered device through copper wire (copper cable), and the power receiving device can adjust the output power level of the terminal device through the management channel.
  • the power receiving device may be a distribution point unit DPU.
  • the terminal device includes a power supply device PSE for powering the DPU.
  • the PD chip of the powered device is configured to establish a management channel with the PSE chip of the power supply device located in the terminal device; or the central processing unit (CPU) of the powered device is passed through the digital subscriber line.
  • the (Digital Subscriber Line, DSL for short) link establishes a management channel with the CPU of the terminal device.
  • Step 220 In the process of receiving power supply from the terminal device, detecting a state in which the power consumption device consumes power.
  • the power consumed by the powered device is the actual power that the terminal device supplies to the powered device.
  • the state of power consumption of the power receiving device corresponds to the output power level of the terminal device (power supply device).
  • the SR2 level is a security level, and the output power of the SR2 level does not damage abnormal access devices (unknown access devices) on the copper line.
  • Step 230 The management device interacts with the terminal device to enable the terminal device to supply power to the powered device according to the output power level corresponding to the state.
  • the powered device requires the output power of the terminal device to be greater than the SR2 level.
  • the terminal device can interact with the terminal device to switch the output power level to the SR3 level greater than the SR2 level.
  • the PD chip of the powered device can be sent to the PSE chip of the power supply device by the management channel every preset time period according to the path of the management channel. Switch the request.
  • the CPU of the power receiving device sends a level switching request to the CPU of the terminal device through the management channel every preset time period. The level switching request is used to request the terminal device to supply power using the SR3 level of output power.
  • the terminal device For detecting the state of power consumption of the power receiving device, and interacting with the terminal device through the management channel, the terminal device supplies power to the power receiving device according to an output power level corresponding to the state, and two Implementation mode:
  • the first mode it is detected whether the absolute value of the difference between the maximum allowable output power of the terminal device and the power consumption of the power receiving device is less than a preset power threshold. And if the absolute value of the difference is less than the power threshold, sending, by using the management channel, a level switching request to the terminal device every preset time period, so that the terminal device performs the SR3 level output power according to the level switching request. Power the powered device. If the absolute value of the difference is greater than or equal to the power threshold, the level switch request is prohibited from being sent to the terminal device, so that the terminal device supplies power to the powered device with the output power of the SR2 level.
  • the second method is to detect whether the current supplied by the terminal device to the power receiving device is greater than a preset current threshold.
  • the terminal device supplies power to the powered device with an output power of the SR3 level.
  • the absolute value of the difference between the maximum allowable output power of the terminal device and the power consumption of the powered device is less than a preset power threshold.
  • the SR2 level output may be sent to the terminal device through the management channel. Power supply request.
  • the preset power threshold can be set to 15 W.
  • the security requirements can be met in the case of reverse power supply, and the power receiving device interacts with the terminal device through the management channel according to the power requirement, so that the terminal device adjusts the output power level, so that the output power of the terminal device can meet the power receiving device.
  • the requirement is that the power obtained by any other access device connected to the copper cable will not exceed the power threshold (15W), thus meeting the security requirements required by the relevant standards.
  • FIG. 3A is a flowchart of a reverse power supply method according to a second embodiment of the present application.
  • a power supply device that supplies power to the powered device is included in the terminal device.
  • the method includes steps 320 and 330.
  • step 310 may be further included to establish a management channel with the powered device.
  • the power receiving device may be a distribution point unit DPU.
  • the terminal device includes a power supply device PSE for powering the DPU.
  • the PSE chip of the power supply device in the terminal device and the PD chip of the power receiving device establish a management channel; or, the CPU of the terminal device and the CPU of the powered device establish a management channel through the digital subscriber line DSL link. .
  • Step 320 During the process of supplying power to the powered device, interacting with the powered device through the management channel.
  • Step 330 The power supply device is powered by the output power level corresponding to the state in which the power receiving device consumes power.
  • the level switching request sent by the powered device is received through the management channel. If the level switching request sent by the power receiving device is received, the state in which the power receiving device consumes power corresponds to the output power of the SR3 level, and at this time, the power of the power receiving device is supplied with the output power of the SR3 level. If the level switching request sent by the powered device is not received within the preset time length, the state of power consumption of the powered device corresponds to the output power of the SR2 level, and the output power of the SR2 level is the powered device. powered by.
  • the time when the next level switching request is not received reaches the preset time length, and the level of the output power is switched from the SR3 level to the SR2 level.
  • the PSE chip of the power supply device in the terminal device receives the level switch request sent by the PD chip of the power receiving device through the management channel, or the CPU of the terminal device receives the CPU sent by the power receiving device through the management channel. Level switching request.
  • the embodiment of the present application can meet the security requirements in the case of reverse power supply, and the power receiving device interacts with the terminal device through the management channel according to the power requirement, so that the terminal device adjusts the output power level, so that the output power of the terminal device device can satisfy the power receiving.
  • the requirements of the equipment ensure that the power obtained by any other access equipment connected to the copper cable will not exceed the power threshold (15W), thus meeting the security requirements required by the relevant standards.
  • the reverse power supply method of the embodiment of the present application is described below by taking the distribution point unit DPU and the terminal equipment including the xDSL user terminal equipment (CPE) and the power supply equipment PSE as an example.
  • xDSL is a general term for various types of DSL.
  • the PSE and CPE can be in a split form or a combined form.
  • This embodiment provides a reverse power supply method.
  • the PSE and the CPE are in a split form.
  • 4 is a flowchart of a reverse power supply method according to a third embodiment of the present application
  • FIG. 5 is a schematic diagram of a reverse power supply method according to a third embodiment of the present application
  • FIG. 6 is a reverse power supply method according to a third embodiment of the present application.
  • step 410 the PSE supplies power to the DPU according to the output power of the SR2 level required when the DPU is initially powered on.
  • the PD chip located at each central port of the DPU is pre-programmed to the SR2 level.
  • a plurality of PD chips are used as PD controllers and are respectively connected to different terminal devices. The operations performed by the plurality of PD chips are the same. In the present embodiment, only the operation of one of the PD chips is described.
  • the PSE interacts with the DPU according to the handshake protocol.
  • the interactive PSE can know the output power level required for the initial power-on of the DPU, and output power according to the output power level required by the DPU to supply power to the DPU.
  • the power of the SR2 is first used to power the DPU when the DPU is initially powered on.
  • step 420 the DPU accepts the PSE to supply power at the SR2 level.
  • step 430 the DPU only starts the CPU minimum system, and the PD chip of the DPU establishes a management channel with the PSE chip of the PSE.
  • the PD chip of the DPU In the path of the management channel, the PD chip of the DPU, the power separator of the DPU side, the copper line, the power separator of the PSE side, and the PSE chip of the PSE are sequentially included.
  • the management channel is an AC coupling path.
  • Step 440 The PD chip detects whether the current supplied by the PSE to the DPU is greater than a current threshold; when the current threshold is greater than the current threshold, step S50 is performed; and when the current threshold is less than or equal to the current threshold, step 480 is performed.
  • the current supplied by the PSE to the DPU is greater than the current threshold. Iswitch can ensure that the PSE is powered by the DPU at the SR3 level.
  • the absolute value of the difference between the maximum allowable output power of the PSE and the actual power supplied to the DPU is less than 15W.
  • the power detecting unit in the PD chip When the current supplied by the PSE to the DPU is greater than the current threshold, the power detecting unit in the PD chip generates a SWITCH TO SR3 ENABLE signal (power dynamic switching enable signal).
  • Step 450 The PD chip periodically sends a level switching request to the PSE chip through the management channel.
  • the level switching request can be a pulse signal.
  • the pulse signal can be referred to as a SWITCH TO SR3 request pulse (power dynamic switching request pulse). If the SWITCH TO SR3 ENABLE signal is active, the level switch request transmitter in the PD chip periodically outputs a SWITCH TO SR3 request pulse to the PSE chip through the management channel.
  • the time interval for sending timing can be set according to actual needs, such as sending every 2 seconds.
  • the pulse signal may be a single frequency pulse, or may be a frequency-shift keying (FSK) pulse signal composed of two frequency points.
  • the frequency range of the pulse signal should not affect analog broadband signals such as DSL.
  • the pulse signal is below the 25KHz frequency.
  • Step 460 After receiving the level switching request, the PSE chip supplies the PDU with the output power of the SR3 level, and returns a response message to the PD chip through the management channel.
  • the level switching request receiver in the PSE chip After receiving the PD level switching request, the level switching request receiver in the PSE chip sets the output current limit point in the power level register in the PSE chip to the SR3 level to supply the PDU with the SR3 level output power, after which The response message can be returned to the PD chip side by the level switching request receiver through the management channel.
  • Step 470 after receiving the response message returned by the PSE chip of the PSE, the DPU starts other modules.
  • the PSE chip may not return a response message to the PD chip.
  • the DP chip After the DP chip sends a level switching request to the PSE chip, it waits for a predetermined period of time, and then starts other modules to make the DPU start normal operation. The length of the predetermined duration can ensure that the PSE completes the power level switching.
  • Other modules launched by the DPU include modules such as service switching and uplink services.
  • step 480 the PD chip of the DPU prohibits sending a level switch request to the PSE.
  • Step 490 The PSE chip supplies the DPU with the output power of the SR2 level if the level switch request sent by the PD chip is not received within the preset time length.
  • the PD chip stops issuing the level switching request to the PSE chip, and the PSE chip receives the level switching request from the last time.
  • the preset time length restores the output current limit to the SR2 level, so that the PDU is powered by the SR2 level output power, thereby ensuring that the power consumption of the abnormal access device is not greater than 15W.
  • each terminal device When a plurality of terminal devices simultaneously supply power to the DPU, each terminal device is connected to one PD chip, and each PD chip and each terminal device establish a management channel, and each PD chip can pass a corresponding management channel and corresponding The terminal devices interact to adjust the output power level.
  • the present embodiment is applicable to dynamic power adjustment between any power supply device and power receiving device in the case of reverse power supply, and is not limited only to the case where the power receiving device is a DPU device.
  • This embodiment provides another reverse power supply method.
  • the PSE and the CPE are in a combined form.
  • the combined form of the PSE and the CPE can also be reversely powered in the manner of the fourth embodiment.
  • 7 is a flowchart of a reverse power supply method according to a fourth embodiment of the present application
  • FIG. 8 is a schematic diagram of a reverse power supply method according to a fourth embodiment of the present application
  • FIG. 9 is a reverse power supply method according to a fourth embodiment of the present application. Schematic diagram.
  • step 710 the PSE supplies power to the DPU according to the output power of the SR2 level required when the DPU is initially powered on.
  • the PD chip located at each central port of the DPU is pre-programmed to the SR2 level.
  • Each central office port can be connected to a power supply device of a terminal device, and FIG. 8 shows two power supply devices.
  • the PSE interacts with the DPU according to the handshake protocol.
  • the interactive PSE can know the power output level required for the initial power-on of the DPU, and output the power according to the power output level required by the DPU.
  • each central office port of the DPU transmits the broadband signal of the G fast access to subscriber terminals (G.FAST) on the copper line in addition to the G-FAST wide-band signal.
  • G.FAST subscriber terminals
  • the PSE also provides reverse power to the DPU, and the reverse power of each central port is converted to DC power required by the DPU through current sharing and DC/DC conversion.
  • step 720 the DPU accepts the PSE to supply power at the SR2 level.
  • step 730 the DPU only starts the CPU minimum system, and the CPU of the DPU and the CPU of the CPE establish a management channel.
  • the management channel is a DSL link.
  • the CPU on the CPE side can control the PSE.
  • Step 740 The CPU of the DPU detects whether the current supplied by the PSE to the DPU is greater than a current threshold. If the current threshold is greater than the current threshold, step 750 is performed. If the current threshold is less than or equal to the current threshold, step 780 is performed.
  • step 750 the CPU of the DPU periodically sends a level switching request to the CPU of the CPE through the management channel.
  • Step 760 after receiving the level switching request, the CPU of the CPE controls the PSE to supply power to the DPU with the output power of the SR3 level, and returns a response message to the CPU of the DPU through the management channel.
  • the CPU of the CPE configures the power classification register (CLASS MODE register) corresponding to the PSE chip, and sets the output power current limit point to the SR3 level, so that the PSE supplies power to the DPU with the SR3 level power.
  • CLASS MODE register power classification register
  • Step 770 After receiving the response message returned by the CPU of the CPE, the CPU of the DPU starts other modules.
  • the CPU in the DPU detects the power supply status of the PSE to the DPU.
  • the DSL link corresponding to the central office port is enabled, and the CPU sends the data through the XTU-0.
  • the CPE CPU configures the power classification register corresponding to the PSE chip, sets the output power current limit point to the SR3 level, and sends a response message to the DPU, and the CPU of the DPU device receives the level switching request.
  • the modules such as service switching and uplink services are started, and the device starts to work normally.
  • step 780 the CPU of the DPU prohibits sending a level switch request to the CPU of the CPE.
  • the output power level can use the SR2 level.
  • the DPU can request the CPE to restore the output power level of the PSE to the SR2 level through the management channel.
  • the CPE CPU configures the PSE chip.
  • the corresponding power classification register sets the output power current limit to the SR2 level.
  • Step 790 The CPU of the DPU supplies the DPU with the output power of the SR2 level if the level switching request sent by the CPU of the CPE is not received within the preset time length.
  • the CPU of the DPU stops sending a level switch request to the CPU of the CPE, or the DSL is broken, or the interaction between XTU-0 and XTU-R cannot be initialized within a preset time interval, the CPU of the CPE immediately configures the output of the PSE. The current limit point is restored to the SR2 level, thereby ensuring that the power consumption of the abnormal access device is not greater than 15W.
  • the CPU of the DPU device sends a level switching request to the corresponding xDSL user interface, and the CPE communicates with the CPE to configure the maximum power limit point of the PSE.
  • the present invention establishes a management channel between the DPU device and the user terminal device, and coordinates the maximum power limit point of the PSE output according to different power consumption states of the DPU device, the number of activated ports, and the like, and ensures the maximum allowable output of the PSE.
  • the power difference between the power and the DPU device is less than 15W. Once the power consumption of the abnormal access device on the copper line exceeds 15W, the total power output of the PSE exceeds the maximum power limit, and the PSE that meets the LPS characteristics will perform current limiting. Or turn off the output, so that the power consumption of the abnormal access device will not exceed 15W.
  • Fig. 10 is a structural diagram of a reverse power supply device of a fifth embodiment of the present application.
  • the reverse power supply device disposed on the power receiving device side includes:
  • the detecting module 1020 is configured to detect a state in which the power receiving device consumes power during the process of receiving power from the terminal device.
  • the first interaction module 1030 (ie, the interaction module disposed on the PD side) is configured to interact with the terminal device through the management channel, so that the terminal device supplies power to the powered device according to an output power level corresponding to the state.
  • the reverse power supply device may further include: a first establishing module 1010 (ie, an establishing module disposed on the PD side) configured to establish a management channel with the terminal device.
  • a first establishing module 1010 ie, an establishing module disposed on the PD side
  • the detecting module 1020 is configured to detect whether an absolute value of a difference between a maximum allowable output power of the terminal device and a power consumption of the power receiving device is less than a preset power threshold.
  • the first interaction module 1030 is configured to send a level switch request to the terminal device every preset time period through the management channel, if the absolute value of the difference is less than the power threshold.
  • the terminal device supplies power to the powered device according to the level switching request with an output power of the SR3 level; if the absolute value of the difference is greater than or equal to the power threshold, prohibiting sending the level switch to the terminal device
  • the request is such that the terminal device supplies power to the powered device at an output power of an SR2 level.
  • the detecting module 1020 is configured to detect whether the current supplied by the terminal device to the power receiving device is greater than a preset current threshold; wherein, when the current is greater than the current threshold, The terminal device supplies power to the powered device at an output power of the SR3 level, and an absolute value of a difference between a maximum allowable output power of the terminal device and a power consumption of the powered device is less than a preset power threshold.
  • the first interaction module 1030 is configured to send, when the current is greater than the current threshold, a level switch request to the terminal device through the management channel every preset time period, so that the terminal device is configured according to the terminal device.
  • the level switching request is to supply the power receiving device with the output power of the SR3 level; if the current is less than or equal to the current threshold, prohibiting sending the level switching request to the terminal device, so that the terminal device
  • the output power of the SR2 class powers the powered device.
  • the first establishing module 1010 is configured to establish a management channel between the PD chip of the powered device and the PSE chip of the power supply device located in the terminal device; or, enable the powered device
  • the central processing unit CPU establishes a management channel with the CPU of the terminal device through a digital subscriber line DSL link.
  • the first interaction module 1020 is configured to enable the PD chip of the powered device to send a level switching request to the PSE chip of the power supply device through the management channel every preset time period; Alternatively, the CPU of the power receiving device sends a level switching request to the CPU of the terminal device through the management channel every preset time period.
  • FIG. 11 is a block diagram showing a reverse power supply device of a sixth embodiment of the present application.
  • the reverse power supply device disposed on the terminal device side includes:
  • the second interaction module 1120 (ie, the interaction module disposed on the terminal device side) is configured to interact with the power receiving device through the management channel in the process of supplying power to the powered device.
  • the power supply module 1130 is configured to supply power to the power receiving device according to an output power level corresponding to a state in which the power receiving device consumes power.
  • the reverse power supply device may further include: a second establishing module 1110 (ie, an establishing module disposed on the terminal device side) configured to establish a management channel with the powered device.
  • a second establishing module 1110 ie, an establishing module disposed on the terminal device side
  • the power supply module 1130 supplies power to the powered device with an output power of an SR3 level;
  • the second interaction module 1120 supplies the power receiving device with the SR2 level output power if the level switching request sent by the power receiving device is not received within the preset time length.
  • the second establishing module 1110 is configured to establish a management channel for the PSE chip of the power supply device in the terminal device and the PD chip of the power receiving device; or, to make the terminal device
  • the central processing unit CPU and the CPU of the powered device establish a management channel through a digital subscriber line DSL link.
  • the second interaction module 1120 is configured to enable a PSE chip of the power supply device in the terminal device to receive a level switch request sent by the PD chip in the power receiving device through the management channel; Alternatively, the CPU of the terminal device receives the level switching request sent by the CPU of the powered device through the management channel.
  • the reverse power supply method and device provided by the present disclosure can enable the power supply device on the terminal device side to adjust the output power level so that the output power can meet the requirements of the power receiving device.

Abstract

一种反向供电方法和装置,其中一种方法应用于受电设备侧,该方法包括:在接受终端设备供电的过程中,检测受电设备消耗功率的状态;通过管理通道与终端设备交互,使终端设备以状态对应的输出功率等级为受电设备供电。

Description

反向供电方法和装置 技术领域
本公开涉及通信技术领域,例如涉及一种反向供电方法和装置。
背景技术
光纤和光网络终端(Optical Network Unit,简称ONU)部署到用户家附近,最后的数百米距离采用铜缆接入的部署场景称为光纤到分配点(Fiber To The distribution point,简称FTTDp),其中Dp的含义是分配点,是传统铜缆网络配线段和引入线的交接点,也是网络中离用户最近的交接点。分配点单元(Distribution Point Unit,简称DPU)设备存在反向供电(Reverse Power Feed,简称RPF)的需求,需要用户侧的终端设备(供电设备(Power Sourcing Equipment,简称PSE))提供电源给DPU,DPU作为受电设备(Powered Device,简称PD)。
DPU设备的反向供电是在以太网反向供电(Power Over Ethernet,简称POE)的标准上发展起来的,需要遵循ETSI TS 101 548(European Requirements for Reverse Powering of Remote Access Equipment)等标准要求。如图1所示,在安规(即安全规范)方面,该标准借用了IEC 60950-1的要求。提供反向电源的供电设备PSE作为功率受限电源(Limited power sources,简称LPS)设备,在印刷电路板(Printed Circuit Board,简称PCB)材料使用V-1等级(CLASS)或以上等级的情况下,输出功率可以大于15W,同时必须保证任何接入到铜缆上的连接器、元件、组件或设备的PCB材料必须满足V-1CLASS或以上等级。不满足上述材料要求的设备从PSE获取的功耗必须小于15W。在ETSI TS 101 548标准中,定义了PSE的若干最大允许输出功率等级,如供电设备在最大输出电压为60V的情况下,短距离(Short Range,SR)2等级对应的最大允许输出功率为15W,SR3等级对应的最大允许输出功率为21W。由于终端用户接入设备的未知性,无法保证用户家里的所有接入到铜线上的设备都能满足上述材料要求,为了保证安规要求,PSE的输出功率只能满足小于15W的场合(SR2等级),这大大限制了受电设备DPU的端口密度和应用场景。
发明内容
本公开提供一种反向供电方法和装置,用以解决由于供电设备之外的其他接入设备的未知性,为了保证安规要求,供电设备的输出功率只能满足小于15W的应用场景。
本公开提供一种反向供电方法,应用于受电设备PD侧,所述方法包括:
在接受所述终端设备供电的过程中,检测所述受电设备消耗功率的状态;
通过与所述终端设备之间的管理通道与所述终端设备交互,使所述终端设备以所述状态对应的输出功率等级为所述受电设备供电。
在一可选地实施例中,所述检测所述受电设备消耗功率的状态,包括:
检测所述终端设备的最大允许输出功率和所述受电设备的消耗功率的差值的绝对值是否小于预设的功率阈值;
所述通过管理通道与所述终端设备交互,使所述终端设备以所述状态对应的输出功率等级为所述受电设备供电,包括:
当所述差值的绝对值小于所述功率阈值时,则通过所述管理通道每隔预设时间段向所述终端设备发送一次等级切换请求,使所述终端设备根据所述等级切换请求以SR3等级的输出功率为所述受电设备供电;
当所述差值的绝对值大于等于所述功率阈值时,则禁止向所述终端设备发送所述等级切换请求,使所述终端设备以SR2等级的输出功率为所述受电设备供电。
在一可选地实施例中,所述检测所述受电设备消耗功率的状态,包括:
检测所述终端设备供给所述受电设备的电流是否大于预设的电流阈值;其中,在所述电流大于所述电流阈值时,所述终端设备以SR3等级的输出功率为所述受电设备供电,所述终端设备的最大允许输出功率和所述受电设备的消耗功率的差值的绝对值小于预设的功率阈值;
所述通过管理通道与所述终端设备交互,使所述终端设备以所述状态对应的输出功率等级为所述受电设备供电,包括:
当所述电流大于所述电流阈值时,则通过所述管理通道每隔预设时间段向所述终端设备发送一次等级切换请求,使所述终端设备根据所述等级切换请求以SR3等级的输出功率为所述受电设备供电;
当所述电流小于等于所述电流阈值时,则禁止向所述终端设备发送所述等级切换请求,使所述终端设备以SR2等级的输出功率为所述受电设备供电。
在一可选地实施例中,在接受所述终端设备供电的过程中,检测所述受电 设备消耗功率的状态之前还包括:与所述终端设备建立管理通道。
在一可选地实施例中,所述与所述终端设备建立管理通道包括:
所述受电设备的PD芯片与位于所述终端设备中的供电设备PSE的PSE芯片之间建立所述管理通道;或者,
所述受电设备的中央处理器CPU通过数字用户线路DSL链路与所述终端设备的CPU之间建立所述管理通道。
在一可选地实施例中,所述通过所述管理通道与所述终端设备交互,包括:
使所述受电设备的PD芯片通过所述管理通道每隔预设时间段向所述供电设备的PSE芯片发送一次等级切换请求;或者,
使所述受电设备的CPU通过所述管理通道每隔预设时间段向所述终端设备的CPU发送一次等级切换请求。
本公开还提供一种反向供电方法,应用于终端设备侧,所述方法包括:
在为所述受电设备供电的过程中,通过与所述受电设备之间的管理通道与所述受电设备交互,并以所述受电设备消耗功率的状态对应的输出功率等级为所述受电设备供电。
在一可选地实施例中,所述通过管理通道与所述受电设备交互,并以所述受电设备消耗功率的状态对应的输出功率等级为所述受电设备供电,包括:
当接收到所述受电设备发送的等级切换请求时,则以SR3等级的输出功率为所述受电设备供电;
当在预设时间长度内没有接收到所述受电设备发送的等级切换请求时,则以SR2等级的输出功率为所述受电设备供电。
在一可选地实施例中,在为所述受电设备供电的过程中,通过与所述受电设备之间的管理通道与所述受电设备交互之前,还包括:
所述终端设备中的供电设备的PSE芯片和所述受电设备的PD芯片之间建立所述管理通道;或者,
所述终端设备的中央处理器CPU和所述受电设备的CPU之间通过数字用户线路DSL链路建立所述管理通道。
在一可选地实施例中,所述通过所述管理通道与所述受电设备交互,包括:
使所述终端设备中的供电设备的PSE芯片通过所述管理通道接收所述受电设备中的PD芯片发送的等级切换请求;或者,
使所述终端设备的CPU通过所述管理通道接收所述受电设备的CPU发送的 等级切换请求。
本公开还提供一种反向供电装置,设置在受电设备PD侧,包括:
检测模块,设置为在接受所述终端设备供电的过程中,检测所述受电设备消耗功率的状态;
交互模块,设置为通过管理通道与所述终端设备交互,使所述终端设备以所述状态对应的输出功率等级为所述受电设备供电。
在一可选地实施例中,所述检测模块,是设置为检测所述终端设备的最大允许输出功率和所述受电设备的消耗功率的差值的绝对值是否小于预设的功率阈值;
所述交互模块,是设置为:如果所述差值的绝对值小于所述功率阈值,则通过所述管理通道每隔预设时间段向所述终端设备发送一次等级切换请求,使所述终端设备根据所述等级切换请求以SR3等级的输出功率为所述受电设备供电;
如果所述差值的绝对值大于等于所述功率阈值,则禁止向所述终端设备发送所述等级切换请求,使所述终端设备以SR2等级的输出功率为所述受电设备供电。
在一可选地实施例中,所述检测模块,是设置为检测所述终端设备供给所述受电设备的电流是否大于预设的电流阈值;其中,在所述电流大于所述电流阈值时,所述终端设备以SR3等级的输出功率为所述受电设备供电,所述终端设备的最大允许输出功率和所述受电设备的消耗功率的差值的绝对值小于预设的功率阈值;
所述交互模块,是设置为:如果所述电流大于所述电流阈值,则通过所述管理通道每隔预设时间段向所述终端设备发送一次等级切换请求,使所述终端设备根据所述等级切换请求以SR3等级的输出功率为所述受电设备供电;
如果所述电流小于等于所述电流阈值,则禁止向所述终端设备发送所述等级切换请求,使所述终端设备以SR2等级的输出功率为所述受电设备供电。
在一可选地实施例中,还包括建立模块,所述建立模块设置为:
使所述受电设备的PD芯片与位于所述终端设备中的供电设备PSE的PSE芯片建立管理通道;或者,
使所述受电设备的中央处理器CPU通过数字用户线路DSL链路与所述终端设备的CPU建立管理通道。
在一可选地实施例中,所述交互模块,还设置为:
使所述受电设备的PD芯片通过所述管理通道每隔预设时间段向所述供电设备的PSE芯片发送一次等级切换请求;或者,
使所述受电设备的CPU通过所述管理通道每隔预设时间段向所述终端设备的CPU发送一次等级切换请求。
本公开还提供一种反向供电装置,设置在终端设备侧,包括:
交互模块,设置为在为所述受电设备供电的过程中,通过管理通道与所述受电设备交互;
供电模块,设置为以所述受电设备消耗功率的状态对应的输出功率等级为所述受电设备供电。
在一可选地实施例中,所述交互模块如果接收到所述受电设备发送的等级切换请求,则所述供电模块以SR3等级的输出功率为所述受电设备供电;
所述交互模块如果在预设时间长度内没有接收到所述受电设备发送的等级切换请求,则所述供电模块以SR2等级的输出功率为所述受电设备供电。
在一可选地实施例中,还包括建立模块,所述建立模块,设置为:
使所述终端设备中的供电设备的PSE芯片和所述受电设备的PD芯片建立管理通道;或者,
使所述终端设备的中央处理器CPU和所述受电设备的CPU通过数字用户线路DSL链路建立管理通道。
在一可选地实施例中,所述交互模块,是设置为:
在为所述受电设备供电的过程中,使所述终端设备中的供电设备的PSE芯片通过所述管理通道接收所述受电设备中的PD芯片发送的等级切换请求;或者,
使所述终端设备的CPU通过所述管理通道接收所述受电设备的CPU发送的等级切换请求。
本公开提供的反向供电方法和装置,可以在反向供电情况下满足安规要求,受电设备根据功率需求通过管理通道与终端设备交互,使终端设备侧的供电设备调整输出功率等级,使其输出功率能满足受电设备的要求。
附图说明
图1是反向供电的架构示意图。
图2A是本申请第一实施例的反向供电方法的流程图。
图2B是本申请第一实施例的另一种反向供电方法的流程图。
图3A是本申请第二实施例的反向供电方法的流程图。
图3B是本申请第二实施例的另一种反向供电方法的流程图。
图4是本申请第三实施例的反向供电方法的流程图。
图5是本申请第三实施例的反向供电方法的示意图。
图6是本申请第三实施例的反向供电方法的逻辑示意图。
图7是本申请第四实施例的反向供电方法的流程图。
图8是本申请第四实施例的反向供电方法的示意图。
图9是本申请第四实施例的反向供电方法的逻辑示意图。
图10是本申请第五实施例的反向供电装置的结构图。
图11是本申请第六实施例的反向供电装置的结构图。
具体实施方式
以下结合附图以及实施例,对本事情进行进一步的说明。应当理解,此处所描述的实施例仅用以解释本申请,并不限定本申请。
实施例一
本实施例提供一种在受电设备侧执行的反向供电方法。图2A是本申请第一实施例的反向供电方法的流程图。该方法包括步骤220和步骤230。
在一个实施例中,参考图2B,在步骤220之前还可以包括步骤210,与终端设备建立管理通道。
管理通道用于使受电设备和为该受电设备供电的终端设备进行交互。终端设备可以通过铜线(铜缆)为受电设备供电,受电设备可以通过管理通道使终端设备调整输出功率等级。
在本实施例中,受电设备可以是分配点单元DPU。终端设备包括用于为DPU供电的供电设备PSE。在一实施例中,使受电设备的PD芯片与位于终端设备中的供电设备的PSE芯片建立管理通道;或者,使受电设备的中央处理器(Central Processing Unit,简称CPU)通过数字用户线路(Digital Subscriber Line,简称DSL)链路与终端设备的CPU建立管理通道。
步骤220,在接受终端设备供电的过程中,检测受电设备消耗功率的状态。
受电设备的消耗功率是终端设备供给受电设备的实际功率。
受电设备的消耗功率的状态与终端设备(供电设备)的输出功率等级相对应。
在ETSI TS 101 548标准中,SR2等级为安全等级,该SR2等级的输出功率不会损坏铜线上的异常接入设备(未知接入设备)。
步骤230,通过管理通道与终端设备交互,使终端设备以所述状态对应的输出功率等级为受电设备供电。
例如:在单端口供电的场景下,受电设备需要终端设备的输出功率大于SR2等级,这时可以与终端设备交互,使终端设备将输出功率等级切换到大于SR2等级的SR3等级。
对于通过管理通道与终端设备交互,可以包括:根据管理通道路径的不同,使所述受电设备的PD芯片通过所述管理通道每隔预设时间段向所述供电设备的PSE芯片发送一次等级切换请求。或者,使所述受电设备的CPU通过所述管理通道每隔预设时间段向所述终端设备的CPU发送一次等级切换请求。该等级切换请求用于请求终端设备使用SR3等级的输出功率供电。
对于检测所述受电设备消耗功率的状态,并通过所述管理通道与所述终端设备交互,使所述终端设备以所述状态对应的输出功率等级为所述受电设备供电,下面提供两种执行方式:
方式一,检测终端设备的最大允许输出功率和受电设备的消耗功率的差值的绝对值是否小于预设的功率阈值。如果所述差值的绝对值小于所述功率阈值,则通过所述管理通道每隔预设时间段向终端设备发送一次等级切换请求,使终端设备根据所述等级切换请求以SR3等级的输出功率为受电设备供电。如果所述差值的绝对值大于等于所述功率阈值,则禁止向终端设备发送所述等级切换请求,使终端设备以SR2等级的输出功率为受电设备供电。
方式二,检测终端设备供给受电设备的电流是否大于预设的电流阈值;其中,在所述电流大于所述电流阈值时,所述终端设备以SR3等级的输出功率为所述受电设备供电,所述终端设备的最大允许输出功率和所述受电设备的消耗 功率的差值的绝对值小于预设的功率阈值。如果所述电流大于所述电流阈值,则通过所述管理通道每隔预设时间段向所述终端设备发送一次等级切换请求,使所述终端设备根据所述等级切换请求以SR3等级的输出功率为所述受电设备供电。如果所述电流小于等于所述电流阈值,则禁止向所述终端设备发送所述等级切换请求,使所述终端设备以SR2等级的输出功率为所述受电设备供电。
本领域技术人员应当知道的是,如果所述差值的绝对值大于等于所述功率阈值,或者如果所述电流小于等于所述电流阈值,也可以通过管理通道向终端设备发送使用SR2等级的输出功率供电的请求。
在为受电设备供电的过程中,可能会在线路中接入其他接入设备,为了保证异常接入设备所获得的功耗不会大于15W,预设的功率阈值可以设置为15W,预设的电流阈值可以设置为0.1A,其中,根据ETSI TS 101 548标准规定最大输出电压为60V,SR2等级和SR3等级的最大允许输出功率分别为15W和21W,可以得到电流阈值=(21W-15W)/60V=0.1A。
本实施例可以在反向供电情况下满足安规要求,受电设备根据功率需求通过管理通道与终端设备交互,使终端设备调整输出功率等级,使终端设备设备的输出功率既能满足受电设备的要求,又能保证任意连接到铜缆上的其他接入设备所获得的功率不会大于功率阈值(15W),从而满足相关标准所要求的安全性问题。
实施例二
本实施例提供一种在终端设备侧执行的反向供电方法。图3A是本申请第二实施例的反向供电方法的流程图。在该终端设备中包括为受电设备供电的供电设备。该方法包括步骤320和步骤330。在一个实施例中,参考图3B,在步骤320之前还可以包括步骤310,与受电设备建立管理通道。
在本实施例中,受电设备可以是分配点单元DPU。终端设备包括用于为DPU供电的供电设备PSE。在一实施例中,使终端设备中的供电设备的PSE芯片和受电设备的PD芯片建立管理通道;或者,使终端设备的CPU和受电设备的CPU通过数字用户线路DSL链路建立管理通道。
步骤320,在为受电设备供电的过程中,通过管理通道与受电设备交互。
步骤330,以受电设备消耗功率的状态对应的输出功率等级为受电设备供电。
通过管理通道接收受电设备发送的等级切换请求。如果接收到所述受电设备发送的等级切换请求,则受电设备消耗功率的状态对应SR3等级的输出功率,这时以SR3等级的输出功率为所述受电设备供电。如果在预设时间长度内没有接收到所述受电设备发送的等级切换请求,则受电设备消耗功率的状态对应SR2等级的输出功率,这时以SR2等级的输出功率为所述受电设备供电。
例如:自上一次接收到等级切换请求开始,没有接收到下一个等级切换请求的时间达到预设时间长度,这时将输出功率的等级从SR3等级切换为SR2等级。
在一实施例中,使终端设备中的供电设备的PSE芯片通过管理通道接收受电设备的PD芯片发送的等级切换请求,或者,使终端设备的CPU通过管理通道接收受电设备的CPU发送的等级切换请求。
本申请实施例可以在反向供电情况下满足安规要求,受电设备根据功率需求通过管理通道与终端设备交互,使终端设备调整输出功率等级,使终端设备设备的输出功率既能满足受电设备的要求,又能保证任意连接到铜缆上的其他接入设备所获得的功率不会大于功率阈值(15W),从而满足相关标准所要求的安全性问题。
下面以分配点单元DPU,和包括xDSL用户终端设备(Customer Premise Equipment,简称CPE)以及供电设备PSE的终端设备为例,对本申请实施例的反向供电方法进行描述。其中,xDSL为多种类型的DSL的总称。PSE和CPE可以为分体形式或者合体形式。
实施例三
本实施例提供一种反向供电方法。在本实施例中,PSE和CPE为分体形式。图4是本申请第三实施例的反向供电方法的流程图,图5是本申请第三实施例 的反向供电方法的示意图,图6是本申请第三实施例的反向供电方法的逻辑示意图,图6中Vss表示公共接地端电压,RTN表示回路。
步骤410,PSE按照DPU初始上电时所需的SR2等级的输出功率为DPU供电。
位于DPU每个局端端口的PD芯片预先编程为SR2等级。多个PD芯片都作为PD控制器并分别连接不同的终端设备,多个PD芯片执行的操作相同,在本实施例中,仅对其中一个PD芯片的操作进行描述。
PSE根据握手协议与DPU进行交互,经过交互PSE可以知道DPU初始上电时所需的输出功率等级,并按照DPU所需的输出功率等级输出电能,为DPU进行供电。
在本实施例中,由于SR2等级的输出功率为安全等级的输出功率,所以在DPU初始上电时先使用SR2等级的输出功率为DPU供电。
步骤420,DPU接受PSE以SR2等级的功率供电。
步骤430,DPU仅启动CPU最小系统,并且DPU的PD芯片与PSE的PSE芯片建立管理通道。
在该管理通道的路径中顺次包括:DPU的PD芯片、DPU侧的电源分离器、铜线、PSE侧的电源分离器、PSE的PSE芯片。该管理通道为交流耦合通路。
步骤440,PD芯片检测PSE供给DPU的电流是否大于电流阈值;在大于电流阈值时,则执行步骤S50;在小于等于电流阈值时,则执行步骤480。
PSE供给DPU的电流大于该电流阈值Iswitch可以确保PSE以SR3等级为DPU供电的情况下,PSE的最大允许输出功率和供给DPU的实际功率的差值的绝对值小于15W。
PSE供给DPU的电流大于电流阈值时,PD芯片中的功率检测单元产生SWITCH TO SR3 ENABLE信号(功率动态切换使能信号)。
步骤450,PD芯片通过管理通道向PSE芯片定时发送等级切换请求。
等级切换请求可以为脉冲信号。脉冲信号可以称为SWITCH TO SR3请求脉冲(功率动态切换请求脉冲)。如果SWITCH TO SR3 ENABLE信号有效,则PD芯片中的等级切换请求发送器定时通过管理通道向PSE芯片输出SWITCH  TO SR3请求脉冲。定时发送的时间间隔可以根据实际需求进行设置,如每隔2s发送一次。
该脉冲信号可以是单频脉冲,也可以是由两个频点组成的频移键控(Frequency-shift keying,简称FSK)脉冲信号。脉冲信号的频率范围应不能影响DSL等模拟宽带信号。例如:脉冲信号在25KHz频点以下。
步骤460,PSE芯片接收到等级切换请求后,以SR3等级的输出功率为PDU供电,并通过管理通道向PD芯片返回应答消息。
PSE芯片中的等级切换请求接收器在接收到PD的等级切换请求后,将PSE芯片中的功率等级寄存器中的输出限流点设置为SR3等级,以便以SR3等级的输出功率为PDU供电,之后,可以由等级切换请求接收器通过管理通道向PD芯片侧返回应答消息。
步骤470,PD芯片在接收到PSE的PSE芯片返回的应答消息后,DPU启动其他模块。
当然,PSE芯片可以不向PD芯片返回应答消息,DP芯片在向PSE芯片发送等级切换请求之后,等待预定时长,再启动其他模块,使DPU开始正常工作。该预定时长的时间长度可以保证PSE完成功率等级切换。DPU启动的其他模块包括:业务交换和上联业务等模块。
步骤480,DPU的PD芯片禁止向PSE发送等级切换请求。
步骤490,PSE芯片在预设的时间长度内如果没有接收到PD芯片发送的等级切换请求,则以SR2等级的输出功率为DPU供电。
PD芯片在向PSE芯片定时发送等级切换请求的过程中,如果检测到PSE供给DPU的电流小于等于电流阈值Iswitch,则停止向PSE芯片发出等级切换请求,PSE芯片距离上一次接收到等级切换请求达到预设的时间长度,将输出限流点恢复为SR2等级,以便以SR2等级的输出功率为PDU供电,由此保证了异常接入设备所获得的功耗不会大于15W。
当有多个终端设备同时给DPU供电的情况下,每个终端设备连接一个PD芯片,每个PD芯片和每个终端设备建立一条管理通道,每个PD芯片可以通过对应的管理通道与对应的终端设备交互,调节输出功率等级。
本领域技术人员应当知道的是,本实施例适用于反向供电情况下的任何供电设备和受电设备之间的动态功率调整,而不仅仅受限于受电设备是DPU设备的情况。
实施例四
本实施例提供另一种反向供电方法。在本实施例中,PSE和CPE为合体形式。当然,合体形式的PSE和CPE也可以按照实施例四的方式进行反向供电。图7是本申请第四实施例的反向供电方法的流程图,图8是本申请第四实施例的反向供电方法的示意图,图9是本申请第四实施例的反向供电方法的逻辑示意图。
步骤710,PSE按照DPU初始上电时所需的SR2等级的输出功率为DPU供电。
位于DPU每个局端端口的PD芯片预先编程为SR2等级。每个局端端口可以连接一个终端设备的供电设备,图8示出了两个供电设备。
PSE根据握手协议与DPU进行交互,经过交互PSE可以知道DPU初始上电时所需的功率输出等级,并按照DPU所需的功率输出等级输出电能。
在本实施例中,DPU每个局端端口在铜线上除了传输国际电信联盟电信标准分局G系列快速接入用户终端(G fast access to subscriber terminals,G.FAST)宽带信号外,终端设备侧的PSE同时给DPU提供反向供电,每个局端端口的反向电源通过均流和DC/DC转换,产生DPU所需的直流电源。
步骤720,DPU接受PSE以SR2等级的功率供电。
步骤730,DPU仅启动CPU最小系统,并且DPU的CPU和CPE的CPU建立管理通道。
在该管理通道的路径中顺次包括:DPU侧的CPU、DSL局端芯片(XTU-O module)、U-O接口、铜线、U-R接口、DSL用户端芯片(XTU-R)、CPE侧的CPU。该管理通道是DSL链路。CPE侧的CPU可以控制PSE。
步骤740,DPU的CPU检测PSE供给DPU的电流是否大于电流阈值;大于电流阈值,则执行步骤750;小于等于电流阈值,则执行步骤780。
步骤750,DPU的CPU通过管理通道向CPE的CPU定时发送等级切换请求。
步骤760,CPE的CPU接收到等级切换请求后,控制PSE以SR3等级的输出功率为DPU供电,并通过管理通道向DPU的CPU返回应答消息。
CPE的CPU配置PSE芯片对应的功率分类寄存器(CLASS MODE寄存器),将输出功率限流点设置为SR3等级,使PSE以SR3等级的功率为DPU供电。
步骤770,DPU的CPU在接收到CPE的CPU返回的应答消息后,DPU启动其他模块。
DPU设备中的CPU检测PSE给DPU的供电状况,在只有单端口供电等需要PSE输出功率大于SR2等级的场景,使能对应局端端口的DSL链路在建链之后,CPU通过XTU-0发送等级切换请求,CPE的CPU在提取到该等级切换请求后,配置PSE芯片对应的功率分类寄存器,将输出功率限流点设置为SR3等级,并向DPU发出应答消息,DPU设备的CPU在接收到CPE发出的应答消息后,启动业务交换和上联业务等模块,设备开始正常工作。
步骤780,DPU的CPU禁止向CPE的CPU发送等级切换请求。
当有多个终端设备同时给DPU供电的情况下,输出功率等级可以使用SR2等级,这时DPU可以通过管理通道,请求CPE将PSE的输出功率等级恢复到SR2等级,如CPE的CPU配置PSE芯片对应的功率分类寄存器,将输出功率限流点设置为SR2等级。
步骤790,DPU的CPU在预设的时间长度内如果没有接收到CPE的CPU发送的等级切换请求,则以SR2等级的输出功率为DPU供电。
如果DPU的CPU停止向CPE的CPU发送等级切换请求,或者DSL出现断链,或者在预设的时间间隔内XTU-0和XTU-R之间无法初始化交互,则CPE的CPU立即配置PSE的输出限流点恢复到SR2等级,由此保证了异常接入设备所获得的功耗不会大于15W。
在本实施例中,DPU设备的CPU发送等级切换请求给对应xDSL用户接口,通过铜线和CPE通讯,由CPE来配置PSE的最大功率限制点。
本申请通过在DPU设备和用户终端设备之间建立一条管理通道,根据DPU设备所处的不同阶段、激活的端口数等不同功耗状态,协调PSE输出的最大功率限制点,保证PSE最大允许输出功率和DPU设备消耗的功率差小于15W,一旦铜线上出现异常接入设备的功耗超过了15W,此时PSE的总功率输出超过了最大功率限制,符合LPS特点的PSE就会进行限流或关断输出,从而保证异常接入设备所获得的功耗不会大于15W。
实施例五
本实施例提供一种设置在受电设备侧的反向供电装置。图10是本申请第五实施例的反向供电装置的结构图。
该设置在受电设备侧的反向供电装置,包括:
检测模块1020,设置为在接受所述终端设备供电的过程中,检测所述受电设备消耗功率的状态。
第一交互模块1030(即设置在PD侧的交互模块),设置为通过管理通道与所述终端设备交互,使所述终端设备以所述状态对应的输出功率等级为所述受电设备供电。
上述反向供电装置还可以包括,第一建立模块1010(即设置在PD侧的建立模块),设置为与终端设备建立管理通道。
在一个实施例中,所述检测模块1020,是设置为检测所述终端设备的最大允许输出功率和所述受电设备的消耗功率的差值的绝对值是否小于预设的功率阈值。所述第一交互模块1030,是设置为如果所述差值的绝对值小于所述功率阈值,则通过所述管理通道每隔预设时间段向所述终端设备发送一次等级切换请求,使所述终端设备根据所述等级切换请求以SR3等级的输出功率为所述受电设备供电;如果所述差值的绝对值大于等于所述功率阈值,则禁止向所述终端设备发送所述等级切换请求,使所述终端设备以SR2等级的输出功率为所述受电设备供电。
在一个实施例中,所述检测模块1020,是设置为检测所述终端设备供给所述受电设备的电流是否大于预设的电流阈值;其中,在所述电流大于所述电流 阈值时,所述终端设备以SR3等级的输出功率为所述受电设备供电,所述终端设备的最大允许输出功率和所述受电设备的消耗功率的差值的绝对值小于预设的功率阈值。所述第一交互模块1030,是设置为如果所述电流大于所述电流阈值,则通过所述管理通道每隔预设时间段向所述终端设备发送一次等级切换请求,使所述终端设备根据所述等级切换请求以SR3等级的输出功率为所述受电设备供电;如果所述电流小于等于所述电流阈值,则禁止向所述终端设备发送所述等级切换请求,使所述终端设备以SR2等级的输出功率为所述受电设备供电。
在一个实施例中,所述第一建立模块1010,设置为使所述受电设备的PD芯片与位于所述终端设备中的供电设备的PSE芯片建立管理通道;或者,使所述受电设备的中央处理器CPU通过数字用户线路DSL链路与所述终端设备的CPU建立管理通道。
在一个实施例中,所述第一交互模块1020,设置为使所述受电设备的PD芯片通过所述管理通道每隔预设时间段向所述供电设备的PSE芯片发送一次等级切换请求;或者,使所述受电设备的CPU通过所述管理通道每隔预设时间段向所述终端设备的CPU发送一次等级切换请求。
本实施例所述的装置的功能已经在上述方法实施例中进行了描述,故本实施例的描述中未详尽之处,可以参见前述实施例中的相关说明,在此不做赘述。
实施例六
本实施例提供一种设置在终端设备侧的反向供电装置。图11是本申请第六实施例的反向供电装置的结构图。
该设置在终端设备侧的反向供电装置,包括:
第二交互模块1120(即设置在终端设备侧的交互模块),设置为在为所述受电设备供电的过程中,通过所述管理通道与所述受电设备交互。
供电模块1130,设置为以所述受电设备消耗功率的状态对应的输出功率等级为所述受电设备供电。
上述反向供电装置还可以包括:第二建立模块1110(即设置在终端设备侧 的建立模块),设置为与受电设备建立管理通道。
在一个实施例中,所述第二交互模块1120如果接收到所述受电设备发送的等级切换请求,则所述供电模块1130以SR3等级的输出功率为所述受电设备供电;所述第二交互模块1120如果在预设时间长度内没有接收到所述受电设备发送的等级切换请求,则所述供电模块1130以SR2等级的输出功率为所述受电设备供电。
在一个实施例中,所述第二建立模块1110,是设置为使所述终端设备中的供电设备的PSE芯片和所述受电设备的PD芯片建立管理通道;或者,使所述终端设备的中央处理器CPU和所述受电设备的CPU通过数字用户线路DSL链路建立管理通道。
在一个实施例中,所述第二交互模块1120,是设置为使所述终端设备中的供电设备的PSE芯片通过所述管理通道接收所述受电设备中的PD芯片发送的等级切换请求;或者,使所述终端设备的CPU通过所述管理通道接收所述受电设备的CPU发送的等级切换请求。
本实施例所述的装置的功能已经在上述方法实施例中进行了描述,故本实施例的描述中未详尽之处,可以参见前述实施例中的相关说明,在此不做赘述。
工业实用性
本公开提供的反向供电方法和装置,可以使终端设备侧的供电设备调整输出功率等级,使其输出功率能满足受电设备的要求。

Claims (19)

  1. 一种反向供电方法,应用于受电设备PD侧,所述方法包括:
    在接受所述终端设备供电的过程中,检测所述受电设备消耗功率的状态;
    通过与所述终端设备之间的管理通道与所述终端设备交互,使所述终端设备以所述状态对应的输出功率等级为所述受电设备供电。
  2. 如权利要求1所述的方法,其中,
    所述检测所述受电设备消耗功率的状态,包括:
    检测所述终端设备的最大允许输出功率和所述受电设备的消耗功率的差值的绝对值是否小于预设的功率阈值;
    所述通过管理通道与所述终端设备交互,使所述终端设备以所述状态对应的输出功率等级为所述受电设备供电,包括:
    当所述差值的绝对值小于所述功率阈值时,则通过所述管理通道每隔预设时间段向所述终端设备发送一次等级切换请求,使所述终端设备根据所述等级切换请求以短距离SR3等级的输出功率为所述受电设备供电;
    当所述差值的绝对值大于等于所述功率阈值时,则禁止向所述终端设备发送所述等级切换请求,使所述终端设备以SR2等级的输出功率为所述受电设备供电。
  3. 如权利要求1所述的方法,其中,
    所述检测所述受电设备消耗功率的状态,包括:
    检测所述终端设备供给所述受电设备的电流是否大于预设的电流阈值;其中,在所述电流大于所述电流阈值时,所述终端设备以SR3等级的输出功率为所述受电设备供电,所述终端设备的最大允许输出功率和所述受电设备的消耗功率的差值的绝对值小于预设的功率阈值;
    所述通过管理通道与所述终端设备交互,使所述终端设备以所述状态对应的输出功率等级为所述受电设备供电,包括:
    当所述电流大于所述电流阈值时,则通过所述管理通道每隔预设时间段向所述终端设备发送一次等级切换请求,使所述终端设备根据所述等级切换请求以SR3等级的输出功率为所述受电设备供电;
    当所述电流小于等于所述电流阈值时,则禁止向所述终端设备发送所述等级切换请求,使所述终端设备以SR2等级的输出功率为所述受电设备供电。
  4. 如权利要求1所述的方法,其中,在接受所述终端设备供电的过程中,检测所述受电设备消耗功率的状态之前还包括:与所述终端设备建立管理通道。
  5. 如权利要求4所述的方法,其中,所述与所述终端设备建立管理通道包括:
    所述受电设备的PD芯片与位于所述终端设备中的供电设备PSE的PSE芯片之间建立所述管理通道;或者,
    所述受电设备的中央处理器CPU通过数字用户线路DSL链路与所述终端设备的CPU之间建立所述管理通道。
  6. 如权利要求5所述的方法,其中,所述通过所述管理通道与所述终端设备交互,包括:
    使所述受电设备的PD芯片通过所述管理通道每隔预设时间段向所述供电设备的PSE芯片发送一次等级切换请求;或者,
    使所述受电设备的CPU通过所述管理通道每隔预设时间段向所述终端设备的CPU发送一次等级切换请求。
  7. 一种反向供电方法,应用于终端设备侧,所述方法包括:
    在为所述受电设备供电的过程中,通过与所述受电设备之间的管理通道与所述受电设备交互,并以所述受电设备消耗功率的状态对应的输出功率等级为所述受电设备供电。
  8. 如权利要求7所述的方法,其中,所述通过管理通道与所述受电设备交互,并以所述受电设备消耗功率的状态对应的输出功率等级为所述受电设备供电,包括:
    当接收到所述受电设备发送的等级切换请求时,则以短距离SR3等级的输出功率为所述受电设备供电;
    当在预设时间长度内没有接收到所述受电设备发送的等级切换请求时,则以SR2等级的输出功率为所述受电设备供电。
  9. 如权利要求7所述的方法,其中,在为所述受电设备供电的过程中,通过与所述受电设备之间的管理通道与所述受电设备交互之前,还包括:
    所述终端设备中的供电设备的PSE芯片和所述受电设备的PD芯片之间建立所述管理通道;或者,
    所述终端设备的中央处理器CPU和所述受电设备的CPU之间通过数字用户线路DSL链路建立所述管理通道。
  10. 如权利要求9所述的方法,其中,所述通过所述管理通道与所述受电设备交互,包括:
    使所述终端设备中的供电设备的PSE芯片通过所述管理通道接收所述受电设备中的PD芯片发送的等级切换请求;或者,
    使所述终端设备的CPU通过所述管理通道接收所述受电设备的CPU发送的等级切换请求。
  11. 一种反向供电装置,设置在受电设备PD侧,包括:
    检测模块,设置为在接受所述终端设备供电的过程中,检测所述受电设备消耗功率的状态;
    交互模块,设置为通过管理通道与所述终端设备交互,使所述终端设备以所述状态对应的输出功率等级为所述受电设备供电。
  12. 如权利要求11所述的装置,其中,
    所述检测模块,是设置为检测所述终端设备的最大允许输出功率和所述受电设备的消耗功率的差值的绝对值是否小于预设的功率阈值;
    所述交互模块,是设置为:
    如果所述差值的绝对值小于所述功率阈值,则通过所述管理通道每隔预设时间段向所述终端设备发送一次等级切换请求,使所述终端设备根据所述等级切换请求以短距离SR3等级的输出功率为所述受电设备供电;
    如果所述差值的绝对值大于等于所述功率阈值,则禁止向所述终端设备发送所述等级切换请求,使所述终端设备以SR2等级的输出功率为所述受电设备供电。
  13. 如权利要求11所述的装置,其中,
    所述检测模块,是设置为检测所述终端设备供给所述受电设备的电流是否大于预设的电流阈值;其中,在所述电流大于所述电流阈值时,所述终端设备以SR3等级的输出功率为所述受电设备供电,所述终端设备的最大允许输出功率和所述受电设备的消耗功率的差值的绝对值小于预设的功率阈值;
    所述交互模块,是设置为:
    如果所述电流大于所述电流阈值,则通过所述管理通道每隔预设时间段向所述终端设备发送一次等级切换请求,使所述终端设备根据所述等级切换请求以SR3等级的输出功率为所述受电设备供电;
    如果所述电流小于等于所述电流阈值,则禁止向所述终端设备发送所述等级切换请求,使所述终端设备以SR2等级的输出功率为所述受电设备供电。
  14. 如权利要求11所述的装置,还包括建立模块,所述建立模块,设置为:
    使所述受电设备的PD芯片与位于所述终端设备中的供电设备PSE的PSE芯片建立管理通道;或者,
    使所述受电设备的中央处理器CPU通过数字用户线路DSL链路与所述终端设备的CPU建立管理通道。
  15. 如权利要求14所述的装置,其中,所述交互模块,还设置为:
    使所述受电设备的PD芯片通过所述管理通道每隔预设时间段向所述供电设备的PSE芯片发送一次等级切换请求;或者,
    使所述受电设备的CPU通过所述管理通道每隔预设时间段向所述终端设备的CPU发送一次等级切换请求。
  16. 一种反向供电装置,设置在终端设备侧,包括:
    交互模块,设置为在为所述受电设备供电的过程中,通过管理通道与所述受电设备交互;
    供电模块,设置为以所述受电设备消耗功率的状态对应的输出功率等级为所述受电设备供电。
  17. 如权利要求16所述的装置,其中,
    所述交互模块如果接收到所述受电设备发送的等级切换请求,则所述供电模块以短距离SR3等级的输出功率为所述受电设备供电;
    所述交互模块如果在预设时间长度内没有接收到所述受电设备发送的等级切换请求,则所述供电模块以SR2等级的输出功率为所述受电设备供电。
  18. 如权利要求16所述的装置,还包括建立模块,所述建立模块,设置为:
    使所述终端设备中的供电设备的PSE芯片和所述受电设备的PD芯片建立管理通道;或者,
    使所述终端设备的中央处理器CPU和所述受电设备的CPU通过数字用户线路DSL链路建立管理通道。
  19. 如权利要求18所述的装置,其中,所述交互模块,是设置为:
    在为所述受电设备供电的过程中,使所述终端设备中的供电设备的PSE芯片通过所述管理通道接收所述受电设备中的PD芯片发送的等级切换请求;或者,
    使所述终端设备的CPU通过所述管理通道接收所述受电设备的CPU发送的等级切换请求。
PCT/CN2018/075399 2017-02-14 2018-02-06 反向供电方法和装置 WO2018149325A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710077874.0A CN108429622B (zh) 2017-02-14 2017-02-14 一种反向供电方法和装置
CN201710077874.0 2017-02-14

Publications (1)

Publication Number Publication Date
WO2018149325A1 true WO2018149325A1 (zh) 2018-08-23

Family

ID=63155150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075399 WO2018149325A1 (zh) 2017-02-14 2018-02-06 反向供电方法和装置

Country Status (2)

Country Link
CN (1) CN108429622B (zh)
WO (1) WO2018149325A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070110360A1 (en) * 2005-11-15 2007-05-17 Linear Technology Corporation Dynamic power allocation in system for providing power over communication link
CN105049216A (zh) * 2015-08-25 2015-11-11 上海斐讯数据通信技术有限公司 一种以太网供电方法及供电系统
CN105991294A (zh) * 2015-02-09 2016-10-05 华为技术有限公司 PoE功率补偿的方法和供电设备
CN106130742A (zh) * 2016-08-30 2016-11-16 杭州华三通信技术有限公司 基于poe系统的设备供电方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150042243A1 (en) * 2013-08-09 2015-02-12 Texas Instruments Incorporated POWER-OVER-ETHERNET (PoE) CONTROL SYSTEM
KR20160042539A (ko) * 2014-10-10 2016-04-20 삼성전기주식회사 전원 공급 장치, 스위치 모드 전원 제어 장치 및 방법
CN106209388B (zh) * 2015-04-30 2019-03-19 华为技术有限公司 一种以太网供电的功率管理方法、供电设备及受电设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070110360A1 (en) * 2005-11-15 2007-05-17 Linear Technology Corporation Dynamic power allocation in system for providing power over communication link
CN105991294A (zh) * 2015-02-09 2016-10-05 华为技术有限公司 PoE功率补偿的方法和供电设备
CN105049216A (zh) * 2015-08-25 2015-11-11 上海斐讯数据通信技术有限公司 一种以太网供电方法及供电系统
CN106130742A (zh) * 2016-08-30 2016-11-16 杭州华三通信技术有限公司 基于poe系统的设备供电方法及装置

Also Published As

Publication number Publication date
CN108429622A (zh) 2018-08-21
CN108429622B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
US6909943B2 (en) System for power delivery over data communication cabling infrastructure
US8411575B2 (en) Multi-station physical layer communication over TP cable
US9069539B2 (en) Method and system for furnishing power and data from power sourcing equipment to powered device
US20110026525A1 (en) Ethernet Switch and System
EP2805214B1 (en) Device and method for powering ethernet midspan device and endspan device
US20110077793A1 (en) Long-distance poe system, power sourcing equipment and power sourcing method
US9306755B2 (en) Data transmission device
US11281282B2 (en) Intermediary device for extracting power supplied over a data connection
CN105049216A (zh) 一种以太网供电方法及供电系统
US11232922B2 (en) Power supply circuit, relay device and power over ethernet system
US9007228B2 (en) Transmission system using dying gasp
US7770035B1 (en) Method and apparatus for providing power to a computerized device
US9094218B2 (en) Method and system for furnishing backup power and data from power sourcing equipment to powered device
US11467643B2 (en) Power over ethernet system
CN107135082A (zh) 一种利用两个供电端设备共同供电的系统及方法
WO2018149325A1 (zh) 反向供电方法和装置
EP3495913B1 (en) Power supply control for a communication network
US10778453B2 (en) System and apparatus for preventing faulty connection between PoC and PoE
JP3616559B2 (ja) 通信装置
KR20030066498A (ko) 네트워크 카메라 시스템의 전원 공급 방법 및 장치
JP6147936B2 (ja) リバース電力供給式送信装置
EP2805215B1 (en) Method and system for furnishing power and data from power sourcing equipment to powered device
KR200326673Y1 (ko) 네트워크 카메라 시스템의 전원 공급 장치
KR200326671Y1 (ko) 네트워크 카메라
KR101254414B1 (ko) 홈 네트워크에서의 전원 전달 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18753618

Country of ref document: EP

Kind code of ref document: A1