WO2018149070A1 - 聚能捆绑型筑巢堵漏固壁装置及其在溶洞堵漏中的应用 - Google Patents
聚能捆绑型筑巢堵漏固壁装置及其在溶洞堵漏中的应用 Download PDFInfo
- Publication number
- WO2018149070A1 WO2018149070A1 PCT/CN2017/089096 CN2017089096W WO2018149070A1 WO 2018149070 A1 WO2018149070 A1 WO 2018149070A1 CN 2017089096 W CN2017089096 W CN 2017089096W WO 2018149070 A1 WO2018149070 A1 WO 2018149070A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal pipe
- slit
- spiral
- mandrel
- explosive
- Prior art date
Links
- 230000002265 prevention Effects 0.000 title abstract 2
- 230000003014 reinforcing effect Effects 0.000 title abstract 2
- 239000002184 metal Substances 0.000 claims abstract description 242
- 239000002360 explosive Substances 0.000 claims abstract description 82
- 238000004880 explosion Methods 0.000 claims abstract description 15
- 238000005553 drilling Methods 0.000 claims description 28
- 239000010410 layer Substances 0.000 claims description 28
- 238000007789 sealing Methods 0.000 claims description 23
- 239000002356 single layer Substances 0.000 claims description 18
- 238000005422 blasting Methods 0.000 claims description 12
- 239000002657 fibrous material Substances 0.000 claims description 8
- 238000005520 cutting process Methods 0.000 claims description 7
- 239000003292 glue Substances 0.000 claims description 7
- 239000007769 metal material Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 6
- 102100027340 Slit homolog 2 protein Human genes 0.000 description 4
- 101710133576 Slit homolog 2 protein Proteins 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 3
- 101700004678 SLIT3 Proteins 0.000 description 3
- 102100027339 Slit homolog 3 protein Human genes 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 235000019994 cava Nutrition 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 208000010392 Bone Fractures Diseases 0.000 description 1
- 244000000626 Daucus carota Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010017076 Fracture Diseases 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 229920006221 acetate fiber Polymers 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 235000005770 birds nest Nutrition 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000008398 formation water Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 235000005765 wild carrot Nutrition 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/13—Methods or devices for cementing, for plugging holes, crevices or the like
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B29/00—Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
- E21B29/02—Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground by explosives or by thermal or chemical means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42D—BLASTING
- F42D3/00—Particular applications of blasting techniques
Definitions
- the invention relates to a energy-binding type nesting plugging and sealing solid wall device and the application thereof in plugging a karst hole, and belongs to the technical field of underground construction.
- plugging techniques Mainly divided into pressure plugging technology, drilling while plugging technology, plastic plugging technology, expansion tube plugging technology, gas drilling technology and cement plugging technology.
- the first technique is suitable for plugging deep wells and malignant low-pressure leaking wells;
- the second technique is a method of actively leaking and automatically stopping leaks, which is suitable for strata with low pressure bearing capacity such as complex structural strata and fracture development strata.
- the third technique makes the slurry leakage "weight loss" through the interaction between the preparations, and the driving force disappears, thereby solving the problem of the lost circulation.
- the slurry leakage has the characteristics of plastic creep, density, and durability; the fourth technology expands.
- Pipe plugging technology once the plugging is successful, the effect is obvious, and multiple complex layers of the same open hole segment can be sealed multiple times, but the technology requires reaming the drilled wellbore, and the personnel engaged in on-site construction are all It is known that the reaming is difficult, the speed is slow, the danger is high, and the broken cuttings cannot be brought to the ground due to the leakage. This is also the reason why the expansion tube plugging technology is not widely used; the fifth is gas drilling, to prevent leakage. The effect is obvious, and the drilling speed and well quality can be improved at the same time, and the drilling cost can be saved. However, the gas drilling cannot be carried out in the formation water or collapsed formation; the sixth method is water injection. Closure.
- the present invention provides a novel downhole explosion plugging tool for cavity leakage and a concentrated energy-binding nesting plugging and sealing device and the same in the cave
- the application in plugging solves the problem that the plugging material is not easy to reside in the conventional plugging method to form a bridge, and can effectively improve the success rate of plugging in the cavernous formation.
- the invention provides a energy-binding type nesting plugging and sealing wall fixing device, which comprises an outer slit metal pipe and an internal nesting blasting tool, wherein the pipe wall of the slit metal pipe is cut with a spiral seam or a straight seam,
- the nesting blasting tool is a mandrel (ie, an explosion rod) having a plurality of explosive grooves on the surface, and an explosive is placed in the explosive tank, and the metal pipe of the slit is sleeved on the mandrel and fixed, and the mandrel and the cutter are fixed.
- the seamed metal tube adopts a dynamic fit.
- the invention also provides an application of a energy-binding bundle nesting plugging and sealing device in a cavity plugging, comprising the following steps:
- the length of the metal pipe is required to be 400 mm longer than the longitudinal length of the cavity;
- the outer slit metal pipe is a double-layer structure, two metal pipes of different sizes are selected, and the wall thickness of the metal pipe is different according to different metal materials; the inner diameter of the outer metal pipe is equal to the outer diameter of the inner metal pipe, The outer diameter of the layer metal pipe is smaller than the diameter of the drill bit when the plugged section is drilled by 5mm-10mm, and the lengths of the two metal pipes are equal, which is 400mm longer than the longitudinal length of the karst cave;
- the metal pipe wall is cut into a number of straight or spiral seams on the ground, and the upper and lower ends of the metal pipe are left 30 mm-200 mm without cutting, and a single-layer slit metal pipe is obtained;
- the two metal pipes are respectively cut into spiral spirals of different directions on the ground, the width of the spiral strip is 10mm-50mm, and the upper end and the lower end of the metal pipe are left uncut, 30mm-200mm.
- the distance between the straight seams on the inner metal pipe and the straight seam on the outer metal pipe are different.
- the upper and lower ends of the metal pipe are left 30 mm-200 mm. , obtaining a double-layer slit metal pipe;
- the expansion tube can also be exploded to form a plugging, there are three problems: 1.
- the amount of explosives is large, about 2 kg of explosive per meter; 2.
- the expansion tube is made of alloy material with good toughness, and the strength is high. In the wall, the drill bit is difficult to trim; 3.
- the expansion pipe has no leakage passage. During the explosion deformation process, a huge impact force is applied to the liquid in the annular space. This impact force will cause the well wall to be unstable and hinder the expansion tube. The deformation.
- the present invention develops a poly-energy bundled nesting plugging and sealing device adapted to the small wells in the well (within a length of 8 m) and its application (new technology and new tools), wherein the slotted metal tube explosion After the bridge can be formed (the metal pipe can be impacted into a bird's nest type after detonation), which solves the problem that the plugging material does not easily enter the formation in the conventional plugging method, and can effectively improve the success rate of plugging in the cavernous formation.
- Such high-efficiency and low-cost plugging construction will help increase the proportion of natural gas exploitation in carbonate strata in the Tarim Basin, the Southwest Sichuan Basin, and the Songliao Basin in the Northeast, and smoothly implement the green low-carbon strategy and optimize the energy structure. It is of great significance to ensure energy security and maintain sustainable economic and social development.
- the invention not only has important significance for plugging and sealing of the karst formation, but also has certain reference value for mine plugging and tunneling and plugging.
- FIG. 1 is a schematic structural view of a spiral slit metal pipe of a single layer structure according to the present invention
- FIG. 2 is a schematic structural view of the metal pipe of FIG. 1 after explosion
- FIG. 3 is a schematic structural view of a straight-cut metal pipe of a single-layer structure according to the present invention.
- Figure 4 is a schematic structural view of the metal tube of Figure 3 after explosion
- Figure 5 is a schematic view showing the structure of a spiral slit metal pipe of a double-layer structure according to the present invention.
- Figure 6 is a schematic structural view of the metal tube of Figure 5 after explosion
- Figure 7 is a mandrel in which the explosive charge tank is a straight groove
- Figure 8 is a mandrel of the invention, wherein the explosive tank is a spiral groove
- Figure 9 is a schematic view showing the structure of a double-layer spiral slit metal pipe when the cavity is plugged;
- Figure 10 is a schematic view showing the structure of a straight slit metal pipe of a two-layer structure according to the present invention.
- Example 1 single layer straight slit metal pipe
- the energy-binding type nesting plugging and sealing device includes an external slotted metal pipe 1 and an internal nesting blasting tool.
- the slitted metal pipe 1 is a single-layer structure, and a plurality of straight slits 3 are cut in the pipe wall (as shown in FIG. 3).
- the nesting blasting tool is a mandrel 5 with a plurality of explosive tanks 4 on the surface, the explosive tank 4 is a spiral groove (as shown in FIG. 8), an explosive is placed in the explosive tank 4, and a slit metal pipe 1 is placed on the mandrel 5 Upper, and fixed, the mandrel 5 and the slit metal pipe 1 are mechanically matched.
- the distance H1 from the starting end of the straight slit 3 to the tip end of the slit metal pipe 1 is 30 mm to 200 mm
- the distance H2 from the end of the straight slit 3 to the end of the slit metal pipe 1 is 30 mm to 200 mm.
- the application of the energy-binding bundle nesting plugging and sealing device in the cavity plugging includes the following steps:
- the outer slit metal pipe 1 is a single layer, and the length of the metal pipe is required to be 400 mm longer than the longitudinal length of the cavity 8, and the wall thickness of the metal pipe is different according to different metal materials;
- the metal pipe wall is cut into a plurality of straight seams 3 on the ground, and the upper and lower ends of the metal pipe are left 30 mm-200 mm without cutting, and a single-layer slit metal pipe 1 is obtained;
- a mandrel 5 with a plurality of explosive tanks 4 is connected through the drill pipe joint 9, and the width of the explosive tank 4 is different depending on the amount of explosives to be discharged, and the explosive tank 4 of the mandrel 5 is a spiral groove.
- the slit metal pipe 1 is sleeved on the mandrel 5, and is fixed, and the mandrel 5 and the slit metal pipe 1 are mechanically matched, and the explosive is placed in the explosive tank 4 of the mandrel 5;
- the mandrel 5 is sent to the karst cave 8 with a drilling tool to ignite the explosive.
- the energy generated by the explosion of the explosive is used to plastically deform the slit metal pipe 1 fixed on the mandrel 5 to On the wall of the cavity, the length of the slit metal pipe 1 is shortened.
- the upper end and the lower end of the slit metal pipe 1 are respectively placed on the upper plate and the lower plate of the karst hole 8 to complete the nesting operation, and then to the slit metal pipe 1
- a plurality of straight seams 3 are injected with long fiber material or plugging glue to form an artificial well wall, thereby ensuring safe, efficient and rapid passage of the drilling hole through several meters.
- Example 2 single layer spiral slit metal pipe
- the energy-binding type nesting plugging and sealing solid wall device comprises an external slit metal pipe 1 and an internal nesting blasting tool, and the slit metal pipe 1 is cut with a spiral slit 2 (as shown in Fig. 1), two A spiral strip 10 is formed between two adjacent spiral slits 2, and the nesting blasting tool is a mandrel 5 having a plurality of explosive grooves 4 on the surface, the explosive tank 4 is a straight groove (as shown in FIG. 7), and the inside of the explosive tank 4 An explosive is placed, and a slit metal pipe 1 is placed on the mandrel 5 and fixed, and the mandrel 5 and the slit metal pipe 1 are mechanically matched.
- the distance H3 from the starting end of the spiral slit 2 to the tip end of the slit metal pipe 1 is 30 mm to 200 mm
- the distance H4 from the end of the spiral slit 2 to the end of the slit metal pipe 1 is 30 mm to 200 mm.
- the application of the energy-binding bundle nesting plugging and sealing device in the cavity plugging includes the following steps:
- the outer slit metal pipe 1 is a single layer, and the length of the metal pipe is required to be 400 mm longer than the longitudinal length of the cavity 8, and the wall thickness of the metal pipe is different according to different metal materials;
- the metal pipe wall is cut into a plurality of spiral seams 2 on the ground, and the upper and lower ends of the metal pipe are left 30 mm-200 mm without cutting, and a single-layer slit metal pipe 1 is obtained;
- a mandrel 5 with a plurality of explosive tanks 4 is connected through the drill pipe joint 9, and the width of the explosive tank 4 is different depending on the amount of the explosive to be discharged, and the explosive tank 4 of the mandrel 5 is a straight groove.
- the slit metal pipe 1 is sleeved on the mandrel 5, and is fixed, and the mandrel 5 and the slit metal pipe 1 are mechanically matched, and the explosive is placed in the explosive tank 4 of the mandrel 5;
- the energy-binding bundle nesting plugging and fixing device comprises an external slit metal pipe 1' and an internal nesting blasting tool, and the nesting blasting tool is a mandrel 5 with a plurality of explosive tanks 4 on the surface, the explosive tank 4 It is a spiral groove (as shown in Fig. 8), and explosives are placed in the explosive tank 4.
- the slit metal pipe 1' is fitted over the mandrel 5 and fixed, and the mandrel 5 and the slit metal pipe 1' are mechanically fitted.
- the slit metal pipe 1' is a two-layer structure (as shown in FIG. 10), including an inner slit metal pipe 6 and an outer slit metal pipe 7, the length of the inner slit metal pipe 6 and the outer slit metal
- the length of the tubes 7 is equal and the length of both tubes is 400 mm longer than the longitudinal length of the cavities 8.
- the outer diameter of the inner slit metal pipe 6 is equal to the inner diameter of the outer slit metal pipe 7, and the outer diameter of the outer slit metal pipe 7 is smaller than the diameter of the well wall of the blocked well by 5 mm to 10 mm.
- the pipe wall of the inner slit metal pipe 6 and the pipe wall of the outer slit metal pipe 7 are cut with a plurality of straight seams 3, and the straight seam spacing on the inner slit metal pipe 6 and the outer slit metal pipe 7
- the straight seam spacing is not equal; the starting end of the straight seam 3 is 30 mm-200 mm from the top end of the corresponding slit metal pipe (that is, the inner slit metal pipe 6 or the outer slit metal pipe 7), straight
- the distance H6 from the end of the slit 3 to the end of the corresponding slit metal pipe (that is, the inner slit metal pipe 6 or the outer slit metal pipe 7) is 30 mm to 200 mm.
- the application of the energy-binding type nesting plugging and sealing device in the cavity plugging includes the following steps:
- the wall thickness of the metal pipe varies according to different metal materials;
- the inner diameter of the outer slit metal pipe 7 is equal to the outer diameter of the inner slit metal pipe 6, and the outer slit metal
- the outer diameter of the pipe 7 is 5 mm to 10 mm smaller than the diameter of the drill bit when the blocked well section is drilled, and the lengths of the two metal pipes (that is, the inner slit metal pipe 6 and the outer slit metal pipe 7) are equal.
- the longitudinal length of the cave 8 is 400 mm long;
- a mandrel 5 with a plurality of explosive tanks 4 is connected through the drill pipe joint 9, and the width of the explosive tank 4 is different depending on the amount of explosives to be discharged, and the explosive tank 4 of the mandrel 5 is a spiral groove. Then, the slit metal pipe 1' is sleeved on the mandrel 5 and fixed, and the mandrel 5 and the slit metal pipe 1' are mechanically matched, and the explosive is placed in the explosive tank 4 of the mandrel 5;
- the mandrel 5 is sent to the karst cave 8 with a drilling tool to ignite the explosive, and the energy generated by the explosion of the explosive is used to cause the plastic pipe 1' fixed to the mandrel 5 to be plastically deformed and attached to the wall of the karst.
- the length of the slit metal pipe 1' is shortened.
- the upper end and the lower end of the slit metal pipe 1' are respectively placed on the upper plate and the lower plate of the karst hole 8 to complete the nesting operation, and then to the plurality of slit metal pipes 1'.
- long fiber material or plugging glue is injected to form an artificial well wall, thereby ensuring safe, efficient and rapid passage of the drilling hole through several meters.
- the energy-binding type nesting plugging and sealing wall fixing device comprises an outer slit metal pipe 1 and an internal nesting blasting tool, and the pipe wall of the slit metal pipe 1' is cut with a spiral slit 2; as shown in Fig. 7,
- the nesting blasting tool is a mandrel 5 having a plurality of explosive tanks 4 on the surface, the explosive tank 4 is a straight groove, an explosive is placed in the explosive tank 4, and the slit metal pipe 1' is sleeved on the mandrel 5 and fixed.
- the mandrel 5 and the slit metal pipe 1' are mechanically coupled.
- the slit metal pipe 1' is a two-layer structure including an inner slit metal pipe 6 and an outer slit metal pipe 7, the length of the inner slit metal pipe 6, and the outer slit metal pipe.
- the lengths of 7 are equal, and the lengths of both are longer than the longitudinal length of the cave 8 by 400 mm.
- the outer diameter of the inner slit metal pipe 6 is equal to the inner diameter of the outer slit metal pipe 7, and the outer diameter of the outer slit metal pipe 7 is 5 mm to 10 mm smaller than the diameter of the drill bit when the blocked well portion is drilled.
- the wall of the inner slit metal pipe 6 is cut with a plurality of first spiral slits 61, the first spiral slit 61 is a left spiral slit or a right spiral slit, and the wall of the outer slit slit metal pipe 7 is cut with a plurality of second spirals.
- the slit 71 has a rotation direction opposite to that of the first spiral slit 61 of the inner slit metal pipe 6; adjacent two of the inner slit metal pipe 6 or the outer slit metal pipe 7
- the distance between the spiral slits (that is, the adjacent two first spiral slits 61 or the adjacent two second spiral slits 71) is 10 mm to 50 mm, and the distance from the start end of the spiral slit to the corresponding tip end of the slit metal pipe H7 is 30 mm-200 mm (that is, the starting end of the first spiral slit 61 of the inner slit metal pipe 6 is 30 mm-200 mm from the top end of the inner slit metal pipe 6, and the outer slit metal pipe 7 is The distance from the beginning end of the second spiral slit 71 to the top end of the outer slit metal pipe 7 is 30 mm to 200 mm).
- the distance H8 of the end of the spiral slit from the end of the corresponding slit metal pipe is 30 mm to 200 mm (that is, inside)
- the distance of the end of the first spiral slit 61 of the layer slit metal pipe 6 from the end of the inner slit metal pipe 6 is 30 mm to 200 mm
- the second spiral of the outer slit metal pipe 7 The end of the slit 71 is from the outer slit metal
- the distance from the end of the tube 7 is 30 mm to 200 mm).
- the application of the energy-binding bundle nesting plugging and sealing device in the cavity plugging includes the following steps:
- the wall thickness of the metal tube varies according to different metal materials; the inner diameter of the outer metal tube is equal to the outer diameter of the inner metal tube, and the outer diameter of the outer metal tube is larger than the blocked well When the section is drilled, the diameter of the drill bit is 5mm-10mm, and the lengths of the two metal pipes are equal, both of which are longer than the longitudinal length of the cave 8 by 400mm;
- a mandrel 5 with a plurality of explosive tanks 4 is connected through the drill pipe joint 9, and the width of the explosive tank 4 is different depending on the amount of the explosive to be discharged, and the explosive tank 4 of the mandrel 5 is a straight groove.
- the slit metal pipe 1' is sleeved on the mandrel 5 and fixed, and the mandrel 5 and the slit metal pipe 1' are mechanically matched, and the explosive is placed in the explosive tank 4 of the mandrel 5;
- the upper end and the lower end of the slit metal pipe 1' are respectively placed on the upper plate and the lower plate of the cavity 8, completing the nesting operation, and then the metal to the slit
- the plurality of spiral slits of the tube 1' ie, the first spiral slit 61 and the second spiral slit 71
- the mandrel 5 is in a dynamic fit with the slit metal pipe 1 or the slit metal pipe 1', which is a clearance fit as is conventional in the field of mechanical design.
- the mandrel 5 is connected to the slit metal pipe 1 or the slit metal pipe 1' by a screw connection.
- the long fiber material may be, for example, acetate fiber, wood fiber, cotton fiber, bamboo fiber, plant straw or cotton seed shell with cotton fiber; in addition, the plugging glue may be, for example, A polymer gel.
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
- Earth Drilling (AREA)
Abstract
一种聚能捆绑型筑巢堵漏固壁装置及其在溶洞堵漏中的应用,包括外部的割缝金属管(1)和内部的筑巢爆破工具,所述割缝金属管(1)管壁上割有螺旋缝(2)或直缝(3),所述筑巢爆破工具为表面带有若干炸药槽(4)的芯轴(5),该槽(4)内安放有炸药,所述割缝金属管(1)套在芯轴(5)上,并予以固定,芯轴(5)与割缝金属管(1)采用动配合。其可以解决堵漏材料不易驻留形成桥架的问题,也可以提高堵漏成功率。
Description
本发明涉及一种聚能捆绑型筑巢堵漏固壁装置及其在溶洞堵漏中的应用,属于井下施工技术领域。
碳酸盐岩地层油气井钻完井施工过程中经常发生井漏,轻微的漏失会使钻井工作中断,严重的漏失要耽误大量的生产时间,耗费大量的人力和物力。如果井漏得不到及时处理,还会引起井塌、井喷和卡钻事故,导致部分井段甚至全井的报废,严重井喷还有可能造成人身伤亡事故,所以及时处理井漏恢复正常钻进是非常重要的。目前,针对渗透型和裂缝型漏失,国内已有成熟的堵漏工艺及技术,但溶洞型漏失属于国际级难题,工业界一直未能找到有效的解决方式。
对于裂缝性漏失,目前常用的堵漏技术多达十几种。主要分为承压堵漏技术、随钻堵漏技术、塑性堵漏技术、膨胀管堵漏技术、气体钻井技术和注水泥堵漏技术。第一种技术适用于封堵深井、恶性低压漏失井;第二种技术是一种主动致漏并自动止漏的方法,其适用于复杂构造地层、裂缝发育地层等承压能力较低的地层;第三种技术通过制剂间的相互作用使堵漏浆“失重”,驱动力消失,进而解决井漏问题,堵漏浆具有塑性蠕变、密度可调、耐久等特性;第四种技术膨胀管堵漏技术,一旦封堵成功,效果明显,且能对同一裸眼段的多个复杂层进行多次封固,但该技术要求对已钻的井眼进行扩孔,从事现场施工的人员都知道,扩眼难度大,速度慢,危险性高,而且由于漏失使破碎的岩屑无法带到地面,这也是膨胀管堵漏技术没有广泛应用的原因;第五种是气体钻井,对于防止漏失效果明显,同时可以提高机械钻速和井身质量,节约钻井成本,但气体钻井在地层出水或易坍塌的地层无法进行;第六种方法是注水泥封堵。
以上六种常规堵漏技术(传统物理堵漏技术与化学堵漏技术)对于溶洞性漏失几乎毫无效果,只有通过向井内填充大量固体物及长纤维材料架桥后再堵方能奏效,但这样施工需要反复进行,效果差,耗时长、成功率低、成本高、处理过程中造成井喷的危险性较大,即使勉强堵住,在后续的钻进中易再次发生漏失。
发明内容
在分析了井下工况及各种工具的基础上,本发明提供了一种针对溶洞性漏失的新型井下爆炸堵漏工具及其应用的聚能捆绑型筑巢堵漏固壁装置及其在溶洞堵漏中的应用,解决了常规堵漏方法中堵漏材料不易驻留形成桥架的难题,能有效提高溶洞性地层的堵漏成功率。
本发明的目的是通过以下技术方案实现的:
本发明提供一种聚能捆绑型筑巢堵漏固壁装置,包括外部的割缝金属管和内部的筑巢爆破工具,所述割缝金属管的管壁上割有螺旋缝或直缝,所述筑巢爆破工具为表面带有若干炸药槽的芯轴(即爆炸杆),该炸药槽内安放有炸药,所述割缝金属管套在芯轴上,并予以固定,芯轴与割缝金属管采用动配合。
本发明还提供一种聚能捆绑型筑巢堵漏固壁装置在溶洞堵漏中的应用,包括以下步骤:
1)若外部的割缝金属管为单层,要求该金属管的长度比溶洞纵向长度长400mm;
若外部的割缝金属管为双层结构,选择两根尺寸不同的金属管,金属管的壁厚依据不同的金属材料而不同;外层金属管的内径等于内层金属管的外径,外层金属管的外径小于所堵井段钻进时钻头直径5mm-10mm,两根金属管的长度相等,比溶洞纵向长度长400mm;
2)对于单层结构的割缝金属管,在地面将金属管管壁割成若干直缝或螺旋缝,金属管上端、下端各留30mm-200mm不割,得到单层割缝金属管;
对于双层结构的割缝金属管,在地面将两根金属管分别割成左右不同旋向的螺旋条,螺旋条的宽度为10mm-50mm,金属管上端、下端各留30mm-200mm不割,得到双层割缝金属管;
或在两根金属管管壁上割若干直缝,内层金属管上的直缝间距与外层金属管上的直缝间距不等,同样,金属管上端、下端各留30mm-200mm不割,得到双层割缝金属管;
3)在下井的钻具下面连接一根带若干炸药槽的芯轴,炸药槽的宽度依安放炸药量的不同而不同;若金属管割的是直缝,则芯轴的炸药槽是螺旋槽,若金属管割的是螺旋缝,则芯轴的炸药槽是直槽;再把割缝金属管套在芯轴上,予以固定,芯轴与金属管采用动配合,在芯轴的炸药槽内安放炸药;
4)用钻具将芯轴送到溶洞处,点燃炸药,利用炸药爆炸产生的能量,让固定在芯轴上的割缝金属管产生塑性变形贴附到溶洞壁上,割缝金属管的上端、下端分别顶在溶洞的上板、下板上,完成筑巢作业,之后注入长纤维材料或堵漏胶液,形成人工井壁,
从而保证钻井安全、高效、快速穿过数米溶洞。
虽然膨胀管也可以爆炸成形堵漏,但存在3个问题:1、炸药用量大,每米约需2kg炸药;2、膨胀管采用的是韧性较好的合金材料,强度较高,在突出井壁的地方,钻头很难修整;3、膨胀管没有泄流通道,爆炸变形过程中对环形空间的液体会施加一个巨大的冲击力,这个冲击力会造成井壁失稳,同时阻碍了膨胀管的变形。
综上所述,本发明研发出的适应井下小型溶洞(段长8m以内)漏失的聚能捆绑型筑巢堵漏固壁装置及其应用(新技术与新工具),其中割缝金属管爆炸后能形成桥架(引爆后可将割缝金属管冲击成鸟巢型),这就解决了常规堵漏方法中堵漏材料不易进入地层的难题,能有效提高溶洞性地层的堵漏成功率。如此高效低成本的堵漏施工,将有利于增加塔里木盆地、西南四川盆地、东北松辽盆地等地区碳酸盐岩地层天然气的开采比重,并对国家顺利实施绿色低碳战略、优化能源结构、保障能源安全、维持经济社会可持续发展产生重大意义。
本发明不光对于溶洞地层钻井堵漏具有重要的意义,而且对于矿井堵漏及隧道掘进堵漏也有一定的参考价值。
图1为本发明中单层结构的螺旋割缝金属管的结构示意图;
图2为图1中金属管爆炸后的结构示意图;
图3为本发明中单层结构的直割缝金属管的结构示意图;
图4为图3中金属管爆炸后的结构示意图;
图5为本发明中双层结构的螺旋割缝金属管的结构示意图;
图6为图5中金属管爆炸后的结构示意图;
图7为本发明中炸药槽为直槽的芯轴;
图8为本发明中炸药槽为螺旋槽的芯轴;
图9为双层螺旋割缝金属管在溶洞堵漏应用时的结构示意图;
图10为本发明中双层结构的直割缝金属管的结构示意图。
实施例1(单层直割缝金属管)
聚能捆绑型筑巢堵漏固壁装置,包括外部的割缝金属管1和内部的筑巢爆破工具,
割缝金属管1为单层结构,管壁上割有若干直缝3(如图3所示)。筑巢爆破工具为表面带有若干炸药槽4的芯轴5,该炸药槽4为螺旋槽(如图8所示),炸药槽4内安放有炸药,割缝金属管1套在芯轴5上,并予以固定,芯轴5与割缝金属管1采用动配合。直缝3的起始端距离割缝金属管1顶端的距离H1为30mm-200mm,直缝3的末端距离割缝金属管1末端的距离H2为30mm-200mm。
聚能捆绑型筑巢堵漏固壁装置在溶洞堵漏中的应用,包括以下步骤:
1)外部的割缝金属管1为单层,要求该金属管的长度比溶洞8纵向长度长400mm,金属管的壁厚依据不同的金属材料而不同;
2)对于单层结构的割缝金属管1,在地面将金属管管壁割成若干直缝3,金属管上端、下端各留30mm-200mm不割,得到单层的割缝金属管1;
3)在下井的钻具下面通过钻杆接头9连接一根带若干炸药槽4的芯轴5,炸药槽4的宽度依安放炸药量的不同而不同,芯轴5的炸药槽4是螺旋槽;再把割缝金属管1套在芯轴5上,予以固定,芯轴5与割缝金属管1采用动配合,在芯轴5的炸药槽4内安放炸药;
4)用钻具将芯轴5送到溶洞8处,点燃炸药,如图4所示,利用炸药爆炸产生的能量,让固定在芯轴5上的割缝金属管1产生塑性变形贴附到溶洞壁上,割缝金属管1的长度缩短,此时割缝金属管1的上端、下端分别顶在溶洞8的上板、下板上,完成筑巢作业,之后向割缝金属管1的多个直缝3内注入长纤维材料或堵漏胶液,形成人工井壁,从而保证钻井安全、高效、快速穿过数米溶洞。
实施例2(单层螺旋割缝金属管)
聚能捆绑型筑巢堵漏固壁装置,包括外部的割缝金属管1和内部的筑巢爆破工具,割缝金属管1管壁上割有螺旋缝2(如图1所示),两两相邻的螺旋缝2间形成有螺旋条10,筑巢爆破工具为表面带有若干炸药槽4的芯轴5,该炸药槽4为直槽(如图7所示),炸药槽4内安放有炸药,割缝金属管1套在芯轴5上,并予以固定,芯轴5与割缝金属管1采用动配合。螺旋缝2的起始端距离割缝金属管1顶端的距离H3为30mm-200mm,螺旋缝2的末端距离割缝金属管1末端的距离H4为30mm-200mm。
聚能捆绑型筑巢堵漏固壁装置在溶洞堵漏中的应用,包括以下步骤:
1)外部的割缝金属管1为单层,要求该金属管的长度比溶洞8纵向长度长400mm,金属管的壁厚依据不同的金属材料而不同;
2)对于单层结构的割缝金属管1,在地面将金属管管壁割成若干螺旋缝2,金属管上端、下端各留30mm-200mm不割,得到单层的割缝金属管1;
3)在下井的钻具下面通过钻杆接头9连接一根带若干炸药槽4的芯轴5,炸药槽4的宽度依安放炸药量的不同而不同,芯轴5的炸药槽4是直槽;再把割缝金属管1套在芯轴5上,予以固定,芯轴5与割缝金属管1采用动配合,在芯轴5的炸药槽4内安放炸药;
4)用钻具将芯轴5送到溶洞8处,点燃炸药,如图2所示,利用炸药爆炸产生的能量,让固定在芯轴5上的割缝金属管1产生塑性变形贴附到溶洞壁上,割缝金属管1的长度缩短,此时割缝金属管1的上端、下端分别顶在溶洞8的上板、下板上,完成筑巢作业,之后向割缝金属管1的多个螺旋缝2内注入长纤维材料或堵漏胶液,形成人工井壁,从而保证钻井安全、高效、快速穿过数米溶洞。
实施例3(双层直割缝金属管)
聚能捆绑型筑巢堵漏固壁装置,包括外部的割缝金属管1’和内部的筑巢爆破工具,筑巢爆破工具为表面带有若干炸药槽4的芯轴5,该炸药槽4是螺旋槽(如图8所示),炸药槽4内安放有炸药。割缝金属管1’套在芯轴5上,并予以固定,芯轴5与割缝金属管1’采用动配合。
割缝金属管1’为双层结构(如图10所示),包括内层割缝金属管6和外层割缝金属管7,内层割缝金属管6的长度和外层割缝金属管7的长度相等,二者的长度均比溶洞8纵向长度长400mm。
内层割缝金属管6的外径等于外层割缝金属管7的内径,外层割缝金属管7的外径比所堵井段的井壁直径小5mm-10mm。
内层割缝金属管6的管壁、外层割缝金属管7的管壁均割有若干直缝3,内层割缝金属管6上的直缝间距与外层割缝金属管7上的直缝间距不等;直缝3的起始端距离对应的割缝金属管(也即,内层割缝金属管6或外层割缝金属管7)顶端的距离H5为30mm-200mm,直缝3的末端距离对应的割缝金属管(也即,内层割缝金属管6或外层割缝金属管7)末端的距离H6为30mm-200mm。
如图9所示,聚能捆绑型筑巢堵漏固壁装置在溶洞堵漏中的应用,包括以下步骤:
1)选择两根尺寸不同的金属管,金属管的壁厚依据不同的金属材料而不同;外层割缝金属管7的内径等于内层割缝金属管6的外径,外层割缝金属管7的外径比所堵井段钻进时钻头直径小5mm-10mm,两根金属管(也即,内层割缝金属管6、外层割缝金属管7)的长度相等,均比溶洞8纵向长度长400mm;
2)在两根金属管(也即,内层割缝金属管6、外层割缝金属管7)的管壁上割若干直缝3,内层割缝金属管6上的直缝间距与外层割缝金属管7上的直缝间距不等,同样,
金属管(也即,内层割缝金属管6、外层割缝金属管7)的上端、下端各留30mm-200mm不割,得到双层的割缝金属管1’;
3)在下井的钻具下面通过钻杆接头9连接一根带若干炸药槽4的芯轴5,炸药槽4的宽度依安放炸药量的不同而不同,芯轴5的炸药槽4是螺旋槽;再把割缝金属管1’套在芯轴5上,予以固定,芯轴5与割缝金属管1’采用动配合,在芯轴5的炸药槽4内安放炸药;
4)用钻具将芯轴5送到溶洞8处,点燃炸药,利用炸药爆炸产生的能量,让固定在芯轴5上的割缝金属管1’产生塑性变形贴附到溶洞壁上,割缝金属管1’的长度缩短,此时割缝金属管1’的上端、下端分别顶在溶洞8的上板、下板上,完成筑巢作业,之后向割缝金属管1’的多个直缝3内注入长纤维材料或堵漏胶液,形成人工井壁,从而保证钻井安全、高效、快速穿过数米溶洞。
实施例4(双层螺旋割缝金属管)
聚能捆绑型筑巢堵漏固壁装置,包括外部的割缝金属管1和内部的筑巢爆破工具,割缝金属管1’的管壁上割有螺旋缝2;如图7所示,筑巢爆破工具为表面带有若干炸药槽4的芯轴5,该炸药槽4为直槽,炸药槽4内安放有炸药,割缝金属管1’套在芯轴5上,并予以固定,芯轴5与割缝金属管1’采用动配合。
如图5所示,割缝金属管1’为双层结构,包括内层割缝金属管6和外层割缝金属管7,内层割缝金属管6的长度和外层割缝金属管7的长度相等,二者的长度均比溶洞8纵向长度长400mm。内层割缝金属管6的外径等于外层割缝金属管7的内径,外层割缝金属管7的外径比所堵井段钻进时钻头直径小5mm-10mm。
内层割缝金属管6的管壁割有若干第一螺旋缝61,该第一螺旋缝61为左螺旋缝或右螺旋缝,外层割缝金属管7的管壁割有若干第二螺旋缝71,该第二螺旋缝71的旋向与内层割缝金属管6的第一螺旋缝61的旋向相反;内层割缝金属管6或外层割缝金属管7的相邻两条螺旋缝(也即相邻两条第一螺旋缝61或相邻两条第二螺旋缝71)之间的距离为10mm-50mm,螺旋缝的起始端距离对应的割缝金属管顶端的距离H7为30mm-200mm(也即,内层割缝金属管6的第一螺旋缝61的起始端距离内层割缝金属管6顶端的距离为30mm-200mm,外层割缝金属管7的第二螺旋缝71的起始端距离外层割缝金属管7顶端的距离为30mm-200mm),同样,螺旋缝的末端距离对应的割缝金属管末端的距离H8为30mm-200mm(也即,内层割缝金属管6的第一螺旋缝61的末端距离内层割缝金属管6末端的距离为30mm-200mm,外层割缝金属管7的第二螺旋缝71的末端距离外层割缝金属
管7末端的距离为30mm-200mm)。
聚能捆绑型筑巢堵漏固壁装置在溶洞堵漏中的应用,包括以下步骤:
1)选择两根尺寸不同的金属管,金属管的壁厚依据不同的金属材料而不同;外层金属管的内径等于内层金属管的外径,外层金属管的外径比所堵井段钻进时钻头直径小5mm-10mm,两根金属管的长度相等,二者均比溶洞8纵向长度长400mm;
2)在地面将两根金属管分别割成左右不同旋向的螺旋条10,螺旋条10的宽度为10mm-50mm,金属管上端、下端各留30mm-200mm不割,得到双层的割缝金属管1’;
3)在下井的钻具下面通过钻杆接头9连接一根带若干炸药槽4的芯轴5,炸药槽4的宽度依安放炸药量的不同而不同,芯轴5的炸药槽4是直槽;再把割缝金属管1’套在芯轴5上,予以固定,芯轴5与割缝金属管1’采用动配合,在芯轴5的炸药槽4内安放炸药;
4)用钻具将芯轴5送到溶洞8处,点燃炸药,如图6所示,利用炸药爆炸产生的能量,让固定在芯轴5上的割缝金属管1’产生塑性变形贴附到溶洞壁上,割缝金属管1’的长度缩短,此时割缝金属管1’的上端、下端分别顶在溶洞8的上板、下板上,完成筑巢作业,之后向割缝金属管1’的多个螺旋缝(也即,第一螺旋缝61、第二螺旋缝71)内注入长纤维材料或堵漏胶液,形成人工井壁,从而保证钻井安全、高效、快速穿过数米溶洞。
在本发明的上述各实施例中,芯轴5与割缝金属管1或割缝金属管1’采用动配合,该动配合即为机械设计领域中常述的间隙配合。在本发明中,该芯轴5与割缝金属管1或割缝金属管1’之间可采用螺纹连接的方式相连。
在本发明的上述各实施例中,该长纤维材料例如可为醋酸纤维,木纤维,棉纤维、竹纤维、植物秸秆或带棉纤维的棉籽壳;另外,该堵漏胶液例如可为交联聚合物凝胶。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。
Claims (10)
- 一种聚能捆绑型筑巢堵漏固壁装置,其中,包括外部的割缝金属管和内部的筑巢爆破工具,所述割缝金属管的管壁上割有螺旋缝或直缝,所述筑巢爆破工具为表面带有若干炸药槽的芯轴,所述炸药槽内安放有炸药,所述割缝金属管套在所述芯轴上,并予以固定,所述芯轴与所述割缝金属管采用动配合。
- 根据权利要求1所述的聚能捆绑型筑巢堵漏固壁装置,其中,所述割缝金属管为双层结构,包括内层割缝金属管和外层割缝金属管,所述内层割缝金属管的长度与所述外层割缝金属管的长度相等,其长度均比溶洞纵向长度长400mm。
- 根据权利要求2所述的聚能捆绑型筑巢堵漏固壁装置,其中,所述内层割缝金属管的外径等于所述外层割缝金属管的内径,所述外层割缝金属管的外径比所堵井段钻进时钻头直径小5mm-10mm。
- 根据权利要求2或3所述的聚能捆绑型筑巢堵漏固壁装置,其中,所述内层割缝金属管的管壁割有若干第一螺旋缝,所述第一螺旋缝为左螺旋缝或右螺旋缝;所述外层割缝金属管的管壁割有若干第二螺旋缝,所述第二螺旋缝的旋向与所述第一螺旋缝的旋向相反;所述内层割缝金属管的相邻两条第一螺旋缝之间的距离为10mm-50mm;所述外层割缝金属管的相邻两条第二螺旋缝之间的距离为10mm-50mm;所述第一螺旋缝的起始端距离所述内层割缝金属管顶端的距离为30mm-200mm,所述第二螺旋缝的起始端距离所述外层割缝金属管顶端的距离为30mm-200mm;所述第一螺旋缝的末端距离所述内层割缝金属管末端的距离为30mm-200mm,所述第二螺旋缝的末端距离所述外层割缝金属管末端的距离为30mm-200mm。
- 根据权利要求4所述的聚能捆绑型筑巢堵漏固壁装置,其中,所述芯轴的炸药槽为直槽。
- 根据权利要求2或3所述的聚能捆绑型筑巢堵漏固壁装置,其中,所述内层割缝金属管的管壁、所述外层割缝金属管的管壁均割有若干直缝,所述内层割缝金属管上的直缝间距与所述外层割缝金属管上的直缝间距不等;所述内层割缝金属管的直缝的起始端距离所述内层割缝金属管顶端的距离为30mm-200mm,所述外层割缝金属管的直缝的起始端距离所述外层割缝金属管顶端的距离为30mm-200mm;所述内层割缝金属管的直缝的末端距离所述内层割缝金属管末端的 距离为30mm-200mm,所述外层割缝金属管的直缝的末端距离所述外层割缝金属管末端的距离为30mm-200mm。
- 根据权利要求6所述的聚能捆绑型筑巢堵漏固壁装置,其中,所述芯轴的炸药槽是螺旋槽。
- 根据权利要求1所述的聚能捆绑型筑巢堵漏固壁装置,其中,所述割缝金属管为单层结构,所述螺旋缝或直缝的起始端距离所述割缝金属管顶端的距离为30mm-200mm,所述螺旋缝或直缝的末端距离所述割缝金属管末端的距离为30mm-200mm。
- 根据权利要求8所述的聚能捆绑型筑巢堵漏固壁装置,其中,所述割缝金属管割有螺旋缝,所述芯轴的炸药槽为直槽;或者,所述割缝金属管割有直缝,所述芯轴的炸药槽为螺旋槽。
- 一种聚能捆绑型筑巢堵漏固壁装置在溶洞堵漏中的应用,其中,包括以下步骤:1)若外部的割缝金属管为单层,要求该金属管的长度比溶洞纵向长度长400mm;若外部的割缝金属管为双层结构,选择两根尺寸不同的金属管,金属管的壁厚依据不同的金属材料而不同;外层金属管的内径等于内层金属管的外径,外层金属管的外径小于所堵井段钻进时钻头直径5mm-10mm,两根金属管的长度相等,其长度均比溶洞纵向长度长400mm;2)对于单层结构的割缝金属管,在地面将金属管管壁割成若干直缝或螺旋缝,金属管上端、下端各留30mm-200mm不割,得到单层割缝金属管;对于双层结构的割缝金属管,在地面将两根金属管分别割成左右不同旋向的螺旋条,螺旋条的宽度为10mm-50mm,金属管上端、下端各留30mm-200mm不割,得到双层割缝金属管;或在两根金属管管壁上割若干直缝,内层金属管上的直缝间距与外层金属管上的直缝间距不等,同样,金属管上端、下端各留30mm-200mm不割,得到双层割缝金属管;3)在下井的钻具下面连接一根带若干炸药槽的芯轴,炸药槽的宽度依安放炸药量的不同而不同;若金属管割的是直缝,则芯轴的炸药槽是螺旋槽,若金属管割的是螺旋缝,则芯轴的炸药槽是直槽;再把割缝金属管套在芯轴上,予以固定,芯轴与金属管采用动配合,在芯轴的炸药槽内安放炸药;4)用钻具将芯轴送到溶洞处,点燃炸药,利用炸药爆炸产生的能量,让固定在芯轴上的割缝金属管产生塑性变形贴附到溶洞壁上,割缝金属管的上端、下端分别顶在溶 洞的上板、下板上,完成筑巢作业,之后注入长纤维材料或堵漏胶液,形成人工井壁,从而保证钻井安全、高效、快速穿过数米溶洞。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/242,099 US10822913B2 (en) | 2017-02-15 | 2019-01-08 | Energy-gathered bundle type nesting plugging and wall reinforcing device and application thereof in karst cave plugging |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710081098.1A CN106930723B (zh) | 2017-02-15 | 2017-02-15 | 聚能捆绑型筑巢堵漏固壁装置及其在溶洞堵漏中的应用 |
CN201710081098.1 | 2017-02-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/242,099 Continuation US10822913B2 (en) | 2017-02-15 | 2019-01-08 | Energy-gathered bundle type nesting plugging and wall reinforcing device and application thereof in karst cave plugging |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018149070A1 true WO2018149070A1 (zh) | 2018-08-23 |
Family
ID=59424194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/089096 WO2018149070A1 (zh) | 2017-02-15 | 2017-06-20 | 聚能捆绑型筑巢堵漏固壁装置及其在溶洞堵漏中的应用 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10822913B2 (zh) |
CN (1) | CN106930723B (zh) |
WO (1) | WO2018149070A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108931166A (zh) * | 2018-07-24 | 2018-12-04 | 铜陵学院 | 一种s形切缝药包及其生产方法 |
CN112832707B (zh) * | 2019-11-22 | 2023-03-17 | 中国石油化工股份有限公司 | 水力扩张式堵漏工具及其堵漏方法 |
CN112855067B (zh) * | 2019-11-28 | 2022-11-25 | 中国石油化工股份有限公司 | 机械扩张式堵漏工具及其堵漏方法 |
CN112983342B (zh) * | 2019-12-13 | 2022-12-02 | 中国石油天然气股份有限公司 | 防治破碎地层垮塌的加固装置及加固方法 |
WO2021217332A1 (zh) * | 2020-04-27 | 2021-11-04 | 四川维泰科创石油设备制造有限公司 | 一种用于井下工具的锚定组件及井下工具 |
CN112031704B (zh) * | 2020-09-03 | 2022-07-15 | 中石化石油工程技术服务有限公司 | 溶洞漏失井段的爆炸筑巢堵漏方法 |
CN112031703B (zh) * | 2020-09-03 | 2022-07-15 | 中石化石油工程技术服务有限公司 | 针对溶洞型漏失的综合堵漏方法 |
CN114517653B (zh) * | 2020-11-20 | 2024-09-17 | 中国石油化工股份有限公司 | 一种割缝管悬挂装置及复合堵漏方法 |
CN118209017B (zh) * | 2024-05-21 | 2024-09-10 | 中国矿业大学(北京) | 一种基于液氮相变膨胀的爆破切顶卸压装置及其使用方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86105631A (zh) * | 1985-07-29 | 1987-02-04 | C-E维特柯英国有限公司 | 隔离井口装置 |
US5564499A (en) * | 1995-04-07 | 1996-10-15 | Willis; Roger B. | Method and device for slotting well casing and scoring surrounding rock to facilitate hydraulic fractures |
CN1241711A (zh) * | 1998-07-15 | 2000-01-19 | 重庆建筑大学 | 螺旋切槽孔爆破方法 |
KR20100137678A (ko) * | 2009-06-23 | 2010-12-31 | 김태성 | 콘크리트 및 암반의 절리 또는 균열 제작 공법 |
CN202630821U (zh) * | 2012-05-08 | 2012-12-26 | 中交第一公路工程局有限公司 | 切缝管定向聚能断裂爆破装置 |
CN105043180A (zh) * | 2015-06-25 | 2015-11-11 | 中国科学技术大学 | 一种爆炸法快速堵孔装置 |
US20150361759A1 (en) * | 2013-01-31 | 2015-12-17 | Statoil Petroleum As | A method of plugging a well |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5613557A (en) * | 1994-07-29 | 1997-03-25 | Atlantic Richfield Company | Apparatus and method for sealing perforated well casing |
CN1601051A (zh) * | 2004-07-15 | 2005-03-30 | 石油大学(华东) | 双层预充填可膨胀防砂筛管 |
CN101270634B (zh) * | 2008-04-25 | 2012-09-05 | 刘亚 | 一种井下固壁方法 |
CN201502356U (zh) * | 2009-09-17 | 2010-06-09 | 新疆石油管理局试油公司 | 爆炸投灰筒 |
CN102121361B (zh) * | 2011-01-10 | 2013-05-08 | 刘甘露 | 多相位井下注射器 |
WO2013170294A1 (en) * | 2012-05-17 | 2013-11-21 | Rise Mining Developments Pty Ltd | Stemming plugs |
CN203785563U (zh) * | 2014-01-20 | 2014-08-20 | 中交一公局厦门工程有限公司 | 一种双套管蓄势聚能爆破装置 |
CN205605162U (zh) * | 2016-05-14 | 2016-09-28 | 南京飞龙特种消防设备制造有限公司 | 一种石油井管堵漏弹 |
-
2017
- 2017-02-15 CN CN201710081098.1A patent/CN106930723B/zh active Active
- 2017-06-20 WO PCT/CN2017/089096 patent/WO2018149070A1/zh active Application Filing
-
2019
- 2019-01-08 US US16/242,099 patent/US10822913B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86105631A (zh) * | 1985-07-29 | 1987-02-04 | C-E维特柯英国有限公司 | 隔离井口装置 |
US5564499A (en) * | 1995-04-07 | 1996-10-15 | Willis; Roger B. | Method and device for slotting well casing and scoring surrounding rock to facilitate hydraulic fractures |
CN1241711A (zh) * | 1998-07-15 | 2000-01-19 | 重庆建筑大学 | 螺旋切槽孔爆破方法 |
KR20100137678A (ko) * | 2009-06-23 | 2010-12-31 | 김태성 | 콘크리트 및 암반의 절리 또는 균열 제작 공법 |
CN202630821U (zh) * | 2012-05-08 | 2012-12-26 | 中交第一公路工程局有限公司 | 切缝管定向聚能断裂爆破装置 |
US20150361759A1 (en) * | 2013-01-31 | 2015-12-17 | Statoil Petroleum As | A method of plugging a well |
CN105043180A (zh) * | 2015-06-25 | 2015-11-11 | 中国科学技术大学 | 一种爆炸法快速堵孔装置 |
Also Published As
Publication number | Publication date |
---|---|
US20190153809A1 (en) | 2019-05-23 |
US10822913B2 (en) | 2020-11-03 |
CN106930723A (zh) | 2017-07-07 |
CN106930723B (zh) | 2019-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018149070A1 (zh) | 聚能捆绑型筑巢堵漏固壁装置及其在溶洞堵漏中的应用 | |
CN201757686U (zh) | 一种水压致裂测量地应力装置 | |
CN105317396B (zh) | 一种地面注浆钻孔内浆液混合装置及其使用方法 | |
CN104389559B (zh) | 一种防治厚煤层开采过程中瓦斯超限的方法及装置 | |
CN101532600A (zh) | 一种实体膨胀管堵漏方法 | |
CN110725661B (zh) | 一种分节螺旋橡胶囊封孔装置 | |
CN103939075B (zh) | 一种提高煤矿瓦斯抽采效果的压裂方法及装置 | |
CN105507867B (zh) | 一种用于生成井眼裂缝的装置和方法 | |
CN108661585A (zh) | 一种基于记忆合金的膨胀管套损补贴修复方法 | |
CN110410053A (zh) | 基于孔眼支护的煤矿顶板卸压方法 | |
CN206571462U (zh) | 一种井下多功能阀 | |
CN111456638A (zh) | 一种用于双层地基旋扩圆台桩施工的切削钻头及施工方法 | |
CN106801589A (zh) | 耐高温大通径液压增力膨胀悬挂工具及方法 | |
CN207111019U (zh) | 用于不同井径的组合式磨鞋 | |
CN112031704B (zh) | 溶洞漏失井段的爆炸筑巢堵漏方法 | |
CN201241646Y (zh) | 实体膨胀套管与波纹管组合的井壁修复管柱 | |
CN205078246U (zh) | 盐穴储气库注气排卤工艺管柱 | |
CN2854069Y (zh) | 欠平衡完井用的完井装置 | |
CN205243458U (zh) | 耐高温大通径液压增力膨胀悬挂工具 | |
CN209385108U (zh) | 一种直井结构 | |
CN208089260U (zh) | 一种钻孔滑动止水装置 | |
CN205013042U (zh) | 一种自降解高强度充填管 | |
CN206888925U (zh) | 一种新型钻井套管装置 | |
CN203925379U (zh) | 气体欠平衡套管钻完井膨胀管 | |
CN206458331U (zh) | 防止页岩气井压裂时套管变形的组合套管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17896439 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17896439 Country of ref document: EP Kind code of ref document: A1 |