WO2018148920A1 - 回归轨道卫星星座及地面站系统规避同步卫星干扰的方法 - Google Patents

回归轨道卫星星座及地面站系统规避同步卫星干扰的方法 Download PDF

Info

Publication number
WO2018148920A1
WO2018148920A1 PCT/CN2017/073855 CN2017073855W WO2018148920A1 WO 2018148920 A1 WO2018148920 A1 WO 2018148920A1 CN 2017073855 W CN2017073855 W CN 2017073855W WO 2018148920 A1 WO2018148920 A1 WO 2018148920A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
ground station
constellation
satellites
interference
Prior art date
Application number
PCT/CN2017/073855
Other languages
English (en)
French (fr)
Inventor
靳瑾
向蕾
晏坚
匡麟玲
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to CN201780001221.2A priority Critical patent/CN107637113B/zh
Priority to PCT/CN2017/073855 priority patent/WO2018148920A1/zh
Publication of WO2018148920A1 publication Critical patent/WO2018148920A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/19Earth-synchronous stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/20Performing reselection for specific purposes for optimising the interference level

Definitions

  • the present invention relates to the field of satellite communication technologies, and more particularly to a method for evading synchronous satellite interference by a constellation of a return orbit satellite and a ground station system.
  • satellite mobile communications have the advantage of overcoming the terrestrial environment and providing a wider range of coverage for use in aerospace, marine services or other areas where traffic is scarce.
  • medium- and low-orbit satellites must take measures to prevent interference with synchronous satellites when communicating.
  • the medium-low orbit satellite and the synchronous satellite use the same frequency band signal, when the connection between the medium-low orbit satellite and its ground station and the connection between the synchronous satellite and its ground station are less than a certain value, the synchronous satellite may be affected by the low-level. The impact of orbiting satellite ground station signals. If the medium-low orbit satellites are operating in areas that may interfere with the geosynchronous satellites, the method of reducing the transmitter power or stopping the transmission of the signal is usually used to circumvent the possible interference due to the power of the interference signal being lower than the specified power standard.
  • Returning orbiting satellites refer to satellites with regressive orbital characteristics, which are characterized by periodic overlapping of their sub-satellite trajectories. Each time the sub-satellite trajectory returns to its original position, it repeats the previous cycle. motion. This orbit is called the regression orbit and this cycle is called the regression cycle. Since the return orbit requires a specific regression period for a long time, it is necessary to adopt a suitable holding method to resist the perturbation of the satellite orbit and prevent the orbit from drifting. Since the trajectory of the sub-satellite point of the return orbiting satellite exhibits periodic motion, the satellite will re-pass the same area after each regression period, so the return orbit satellite can provide stable regional coverage. By adjusting the orbital parameters, the return orbit satellite can be applied to the regional communication service in the area where it needs to be served at the appropriate time.
  • the regression period and the region through which the satellite passes are periodic, it is possible to more easily determine the inter-day and regional range that may cause interference to the synchronous satellite, in the determined inter-segment and region.
  • Corresponding measures are taken to avoid interference with synchronization.
  • the return period and the sub-satellite point trajectory of each satellite of the constellation are the same, then the number of satellites The distance between the quantity and each satellite satisfies certain conditions, and it can provide multiple coverage for a specific area, that is, it can communicate with multiple satellites in a specific area of the area.
  • an object of the present invention is to provide a method for evading synchronous satellite interference by a constellation of a return orbit satellite and a ground station system, which can circumvent the satellite ground station signal to interfere with the synchronous satellite by switching satellites.
  • a method for returning orbiting satellite constellation and ground station system to avoid synchronous satellite interference comprising the following steps: 1) setting a return orbit satellite constellation and a ground station The system determines the condition; if the judgment condition is satisfied, the process proceeds to the next step; 2) according to the limitation of the interference power of the synchronous satellite and the regression orbit parameter, the predetermined area is divided into the protection zone around the synchronous satellite; 3) the ground station actual calculation station Pointing to the spatial position of the communication satellite, judging whether the connection between the satellite and the ground station enters the protection zone; when entering the protection zone, screening out the satellite that can communicate with the ground station and the connection with the ground station does not pass through the protection zone, constitutes A satellite set; 4) Select one of the satellite sets in the satellite set by the principle of the longest or highest elevation angle of the visible space, adjust the ground station antenna, point the antenna beam to the satellite, and switch to the satellite for communication.
  • the constellation and ground station system conditions are as follows: 1.1) All satellites in the constellation are recurrent orbit satellites and have the same sub-satellite trajectory and regression period; 1.2) in the daytime and in need of providing communication services and avoiding synchronous satellite interference
  • the area which can be covered by at least two satellites, that is, at least two satellites capable of communication; 1.3)
  • the ground station can control the antenna beam to point to a specific satellite and communicate with a specific satellite, and the satellite can control the antenna beam to point to the ground station;
  • the ground station can acquire the ephemeris of all the satellites in the return orbit constellation, calculate the spatial position of each satellite in the constellation, and determine whether the position of each satellite can communicate with the ground station.
  • the system is capable of switching satellites for communication.
  • the guard band satisfies the following conditions:
  • the signal of the return orbit satellite ground station will exceed the synchronous satellite pair interference power.
  • the limit is that you need to switch to other satellites that do not cause interference.
  • the present invention adopts the above technical solutions, and has the following advantages: 1.
  • the present invention utilizes the characteristics of a return orbiting satellite to set a range of guard bands that may cause interference, and whether the ground station passes through the space position of the satellite can enter the protection band. Determining whether communication with the satellite is likely to cause interference to the geosynchronous satellite. If interference is likely to occur, use the same method to determine if other satellites capable of communicating will cause interference, and thus avoid interference by switching satellites.
  • the present invention is directed to a constellation and ground station system consisting of returning orbiting satellites of the same sub-satellite point trajectory and regression period, making full use of the characteristics of the return orbit, and circumventing the satellite ground station signals to interfere with the synchronous satellite by switching satellites.
  • the present invention can be widely applied in the field of satellite communication technology.
  • FIG. 1 is a schematic diagram of a returning orbit satellite constellation and a ground station system evading synchronous satellite interference in an embodiment of the present invention. [0010] FIG.
  • the present invention provides a method for reconnaissance orbiting satellite constellation and ground station system to avoid synchronous satellite interference, which includes the following steps:
  • a predetermined area is divided around the synchronous satellite, and the area is a guard band.
  • the protection band satisfies the following conditions: When the connection between the return orbit satellite and the ground station passes through the protection band, the signal of the return orbit satellite ground station will exceed the limit of the interference power of the synchronous satellite, and thus needs to be switched to Other satellites that do not cause interference communicate.
  • the ground station calculates the spatial position of the communication satellite pointed to by the ground station, and determines whether the connection between the satellite and the ground station enters the protection zone.
  • the ground station selects the satellite that can communicate with the ground station and the connection with the ground station does not pass through the protection band by calculating the position of other satellites in the constellation. , constitute a collection of satellites.
  • step 1) the determination conditions of the return orbit satellite constellation and the ground station system are as follows:
  • All satellites of the constellation are return orbit satellites, and have the same sub-satellite point trajectory and return period;
  • the ground station can control the antenna beam to point to a particular satellite and communicate with a particular satellite, and the satellite can control the antenna beam to point to the ground station;
  • the ground station can acquire the ephemeris of all the satellites in the return orbit constellation, calculate the spatial position of each satellite in the constellation, and determine whether the position of each satellite can communicate with the ground station;
  • the system is capable of switching satellites for communication.
  • the characteristics of the regression orbit are used in the present invention by the specific embodiment, and the orbiting satellite constellation and the ground station system satisfying the determination condition may cause interference to the synchronous satellite, and need to be switched to another satellite for further introduction.
  • the small ball in the figure represents the earth
  • the large spherical surface represents the spherical surface of the synchronous satellite orbit with the center of the earth as the center of the sphere.
  • the curve on the spherical surface indicates the line of the returning orbiting satellite N 2 and the ground station M.
  • the trajectory of the spherical surface, and the direction of motion of the satellite causes the line to pass through five points A, B, C, D, and E in sequence, and the two shaded areas ⁇ and ⁇ represent the guard bands.
  • the ground station calculates the spatial position of the communication satellite pointed to by the ground station, and determines whether the connection between the satellite and the ground station is Into the protection band range.
  • the satellite and the ground station M are connected through point A or point D in the figure, the satellite begins to enter the protection zone.
  • the line passes through point B or point E, the satellite leaves the protection band, and the ground station and satellite communication will not interfere with the synchronous satellite.
  • the ground station screens out satellites that can communicate with the ground station and that are connected to the ground station without passing through the guard band by calculating the position of other satellites in the constellation. All the eligible satellites form a set, select one satellite N 2 in the set by the principle of the longest or the maximum elevation angle, adjust the ground station antenna, point the antenna beam to the satellite, and switch to the satellite for communication. The interference avoidance of the synchronous satellite is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明涉及一种回归轨道卫星星座及地面站系统规避同步卫星干扰的方法,其步骤:设定回归轨道卫星星座及地面站系统判定条件;满足判定条件则进入下一步;根据同步卫星对干扰功率的限制以及回归轨道参数,在同步卫星周围划分出预先设定的区域为保护带;地面站实时计算所指向通信卫星的空间位置,判断卫星与地面站的连线是否进入保护带;当进入保护带时,筛选出能够与地面站进行通信且与地面站的连线不穿过保护带的卫星,构成一个卫星集合;在卫星集合中通过可视时间最长或仰角最大原则选取卫星集合中的一颗卫星,调整地面站天线,将天线波束指向该卫星,切换至该卫星进行通信,实现对同步卫星的干扰规避。本发明能广泛在卫星通信技术领域中应用。

Description

回归轨道卫星星座及地面站系统规避同步卫星干扰的方 法
技术领域
[0001] 本发明涉及一种卫星通信技术领域, 特别是关于一种回归轨道卫星星座及地面 站系统规避同步卫星干扰的方法。
背景技术
[0002] 卫星移动通信相比于地面移动通信, 其优势是能够克服地型环境, 提供更大范 围的覆盖, 可用于航空、 航海业务或其他业务量稀少的区域。 根据 ITU的规定, 中低轨道卫星在进行通信吋必须采取措施防止对同步卫星产生干扰。 在中低轨 道卫星与同步卫星使用同一频段的信号的场景下, 当中低轨道卫星与其地面站 的连线和同步卫星与其地面站的连线夹角小于一定值吋, 同步卫星可能会受到 中低轨道卫星地面站信号的影响。 如果中低轨道卫星运行到可能对同步卫星产 生干扰的地区吋, 通常采用降低发射机功率或停止发射信号的方法, 使干扰信 号的功率低于规定的功率标准, 来规避可能产生的干扰。
[0003] 回归轨道卫星是指具有回归轨道特性的卫星, 其特点是其星下点轨迹出现周期 性重叠, 每经过一个周期星下点轨迹将回归到原来的位置, 幵始重复上一个周 期的运动。 该轨道被称为回归轨道, 该周期被称为回归周期。 由于回归轨道要 求长期保持特定的回归周期, 因此必须采用合适的保持方法来抵抗卫星轨道的 摄动, 防止轨道发生漂移。 由于回归轨道卫星的星下点轨迹呈现周期性运动, 每经过一个回归周期, 卫星将重新经过相同的区域, 因此回归轨道卫星能够提 供稳定的区域覆盖。 通过调整轨道参数, 回归轨道卫星能够在合适的吋间经过 需要服务的区域, 适用于区域通信服务。
[0004] 对于回归轨道卫星通信系统, 由于回归周期和卫星经过的区域是周期性的, 因 此能够更简单地确定对同步卫星可能产生干扰的吋间和地区范围, 在确定的吋 间段和地区内采取相应的手段规避对同步的干扰。 对于一个由回归轨道卫星构 成的星座, 该星座的每颗卫星的回归周期和星下点轨迹是相同的, 则当卫星数 量和各个卫星之间的距离满足一定条件吋, 能够提供对特定区域的多重覆盖, 即在该区域的特定吋间段, 能够与多颗卫星进行通信。 则当其中一颗卫星对同 步卫星可能产生干扰吋, 使用另一颗覆盖到该区域的卫星进行通信, 利用通信 卫星的切换实现对同步卫星干扰的规避。 因此, 如何通过切换卫星来规避卫星 地面站信号对同步卫星产生干扰成为目前亟需解决的技术问题。
技术问题
[0005] 针对上述问题, 本发明的目的是提供一种回归轨道卫星星座及地面站系统规避 同步卫星干扰的方法, 其可以实现通过切换卫星来规避卫星地面站信号对同步 卫星产生干扰。
问题的解决方案
技术解决方案
[0006] 为实现上述目的, 本发明采取以下技术方案: 一种回归轨道卫星星座及地面站 系统规避同步卫星干扰的方法, 其特征在于包括以下步骤: 1) 设定回归轨道卫 星星座及地面站系统判定条件; 满足判定条件则进入下一步; 2) 根据同步卫星 对干扰功率的限制以及回归轨道参数, 在同步卫星周围划分出预先设定的区域 为保护带; 3) 地面站实吋计算所指向通信卫星的空间位置, 判断卫星与地面站 的连线是否进入保护带; 当进入保护带吋, 筛选出能够与地面站进行通信且与 地面站的连线不穿过保护带的卫星, 构成一个卫星集合; 4) 在卫星集合中通过 可视吋间最长或仰角最大原则选取卫星集合中的一颗卫星, 调整地面站天线, 将天线波束指向该卫星, 切换至该卫星进行通信, 实现对同步卫星的干扰规避 优选地, 所述步骤 1) 中, 所述回归轨道卫星星座及地面站系统判定条件如下 : 1.1) 该星座的所有卫星均为回归轨道卫星, 并且具有相同的星下点轨迹以及 回归周期; 1.2) 在需要提供通信服务并规避同步卫星干扰的吋间和地区, 能够 被至少两颗卫星所覆盖, 即能够进行通信的卫星至少有两颗; 1.3) 地面站能够 控制天线波束指向特定卫星并与特定卫星进行通信, 卫星能够控制天线波束指 向地面站; 1.4) 地面站能够获取回归轨道星座中所有卫星的星历, 实吋计算出 星座中各卫星的空间位置, 并判断各卫星所处位置是否能够与地面站进行通信 ; 1.5) 该系统能够切换进行通信的卫星。
[0008] 优选地, 所述步骤 2) 中, 保护带满足以下条件: 当回归轨道卫星与地面站的 连线穿过保护带吋, 回归轨道卫星地面站的信号将会超过同步卫星对干扰功率 的限制, 此吋需要切换至其他不会造成干扰的卫星进行通信。
发明的有益效果
有益效果
[0009] 本发明由于采取以上技术方案, 其具有以下优点: 1、 本发明利用回归轨道卫 星的特性, 设定可能造成干扰的保护带范围, 地面站通过卫星的空间位置是否 进入保护带即可判断与卫星进行通信是否可能对同步卫星造成干扰。 如果可能 造成干扰, 则用同样的方法判断其他能够进行通信的卫星是否会造成干扰, 从 而通过切换卫星来规避干扰。 2、 本发明针对由同样星下点轨迹和回归周期的回 归轨道卫星构成的星座及地面站系统, 充分利用了回归轨道的特性, 通过切换 卫星来规避卫星地面站信号对同步卫星产生干扰。 综上所述, 本发明能广泛在 卫星通信技术领域中应用。
对附图的简要说明
附图说明
[0010] 图 1是本发明实施例中回归轨道卫星星座及地面站系统规避同步卫星干扰示意 图。
本发明的实施方式
[0011] 下面结合附图和实施例对本发明进行详细的描述。
[0012] 本发明提供一种回归轨道卫星星座及地面站系统规避同步卫星干扰的方法, 其 包括以下步骤:
[0013] 1) 设定回归轨道卫星星座及地面站系统判定条件; 满足判定条件则进入下一 步;
[0014] 2) 根据同步卫星对干扰功率的限制以及回归轨道参数, 在同步卫星周围划分 出预先设定的区域, 该区域即为保护带。 [0015] 其中, 保护带满足以下条件: 当回归轨道卫星与地面站的连线穿过保护带吋, 回归轨道卫星地面站的信号将会超过同步卫星对干扰功率的限制, 此吋需要切 换至其他不会造成干扰的卫星进行通信。
[0016] 3) 地面站实吋计算所指向通信卫星的空间位置, 判断卫星与地面站的连线是 否进入保护带。 当指向的通信卫星与地面站的连线进入保护带吋, 地面站通过 对星座中其他卫星位置的计算, 筛选出能够与地面站进行通信且与地面站的连 线不穿过保护带的卫星, 构成一个卫星集合。
[0017] 4) 在卫星集合中通过可视吋间最长或仰角最大等原则选取卫星集合中的一颗 卫星, 调整地面站天线, 将天线波束指向该卫星, 切换至该卫星进行通信, 实 现了对同步卫星的干扰规避。
[0018] 上述步骤 1) 中, 回归轨道卫星星座及地面站系统判定条件如下:
[0019] 1.1) 该星座的所有卫星均为回归轨道卫星, 并且具有相同的星下点轨迹以及回 归周期;
[0020] 1.2) 在需要提供通信服务并规避同步卫星干扰的吋间和地区, 能够被至少两颗 卫星所覆盖, 即能够进行通信的卫星至少有两颗;
[0021] 1.3) 地面站能够控制天线波束指向特定卫星并与特定卫星进行通信, 卫星能够 控制天线波束指向地面站;
[0022] 1.4) 地面站能够获取回归轨道星座中所有卫星的星历, 实吋计算出星座中各卫 星的空间位置, 并判断各卫星所处位置是否能够与地面站进行通信;
[0023] 1.5) 该系统能够切换进行通信的卫星。
[0024] 下面通过具体实施例对本发明利用回归轨道的特点, 对于满足判定条件的述回 归轨道卫星星座及地面站系统, 对同步卫星可能产生干扰, 需要切换到另一颗 卫星作进一步介绍。
[0025] 如图 1所示, 图中小球代表地球, 大球面表示以地心 0为球心的同步卫星轨道所 在球面, 球面上的曲线表示回归轨道卫星 N 2与地面站 M的连线穿过球面的 轨迹, 且卫星运动方向使得连线依次经过 A、 B、 C、 D和 E五点, 两个阴影区 α 和 β表示保护带。
[0026] 地面站实吋计算所指向通信卫星的空间位置, 判断卫星与地面站的连线是否进 入保护带范围。 当通信卫星与地面站 M的连线穿过图中 A点或 D点, 卫星幵始进 入保护带。 当连线穿过 B点或 E点, 卫星则离幵保护带, 地面站与卫星通信将不 会对同步卫星造成干扰。
[0027] 当通信卫星 幵始进入保护带吋, 地面站通过对星座中其他卫星位置的计算 , 筛选出其中能够与地面站进行通信且与地面站的连线不穿过保护带的卫星。 符合条件的所有卫星构成一个集合, 通过可视吋间最长或仰角最大等原则选取 集合中的一颗卫星 N 2, 调整地面站天线, 将天线波束指向该卫星, 切换至该卫 星进行通信, 实现了对同步卫星的干扰规避。
[0028] 上述各实施例仅用于说明本发明, 各个步骤都是可以有所变化的, 在本发明技 术方案的基础上, 凡根据本发明原理对个别步骤进行的改进和等同变换, 均不 应排除在本发明的保护范围之外。
[0029]

Claims

权利要求书
[权利要求 1] 一种回归轨道卫星星座及地面站系统规避同步卫星干扰的方法, 其特 征在于包括以下步骤:
1) 设定回归轨道卫星星座及地面站系统判定条件; 满足判定条件则 进入下一步;
2) 根据同步卫星对干扰功率的限制以及回归轨道参数, 在同步卫星 周围划分出预先设定的区域为保护带;
3) 地面站实吋计算所指向通信卫星的空间位置, 判断卫星与地面站 的连线是否进入保护带; 当进入保护带吋, 筛选出能够与地面站进行 通信且与地面站的连线不穿过保护带的卫星, 构成一个卫星集合;
4) 在卫星集合中通过可视吋间最长或仰角最大原则选取卫星集合中 的一颗卫星, 调整地面站天线, 将天线波束指向该卫星, 切换至该卫 星进行通信, 实现对同步卫星的干扰规避。
[权利要求 2] 如权利要求 1所述的回归轨道卫星星座及地面站系统规避同步卫星干 扰的方法, 其特征在于: 所述步骤 1) 中, 所述回归轨道卫星星座及 地面站系统判定条件如下:
1.1) 该星座的所有卫星均为回归轨道卫星, 并且具有相同的星下点 轨迹以及回归周期;
1.2) 在需要提供通信服务并规避同步卫星干扰的吋间和地区, 能够 被至少两颗卫星所覆盖, 即能够进行通信的卫星至少有两颗;
1.3) 地面站能够控制天线波束指向特定卫星并与特定卫星进行通信 , 卫星能够控制天线波束指向地面站;
1.4) 地面站能够获取回归轨道星座中所有卫星的星历, 实吋计算出 星座中各卫星的空间位置, 并判断各卫星所处位置是否能够与地面站 进行通信;
1.5) 该系统能够切换进行通信的卫星。
[权利要求 3] 如权利要求 1所述的回归轨道卫星星座及地面站系统规避同步卫星干 扰的方法, 其特征在于: 所述步骤 2) 中, 保护带满足以下条件: 当 回归轨道卫星与地面站的连线穿过保护带吋, 回归轨道卫星地面站的 信号将会超过同步卫星对干扰功率的限制, 此吋需要切换至其他不会 造成干扰的卫星进行通信。
PCT/CN2017/073855 2017-02-17 2017-02-17 回归轨道卫星星座及地面站系统规避同步卫星干扰的方法 WO2018148920A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780001221.2A CN107637113B (zh) 2017-02-17 2017-02-17 回归轨道卫星星座及地面站系统规避同步卫星干扰的方法
PCT/CN2017/073855 WO2018148920A1 (zh) 2017-02-17 2017-02-17 回归轨道卫星星座及地面站系统规避同步卫星干扰的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/073855 WO2018148920A1 (zh) 2017-02-17 2017-02-17 回归轨道卫星星座及地面站系统规避同步卫星干扰的方法

Publications (1)

Publication Number Publication Date
WO2018148920A1 true WO2018148920A1 (zh) 2018-08-23

Family

ID=61108006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073855 WO2018148920A1 (zh) 2017-02-17 2017-02-17 回归轨道卫星星座及地面站系统规避同步卫星干扰的方法

Country Status (2)

Country Link
CN (1) CN107637113B (zh)
WO (1) WO2018148920A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3793102A1 (en) * 2019-08-23 2021-03-17 Elliot Eichen Dynamic geographical spectrum sharing
US11800422B2 (en) 2021-01-12 2023-10-24 Cisco Technology, Inc. Optimization of communications in a low earth orbit (LEO) satellite network

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108521662B (zh) * 2018-04-09 2020-04-28 中国科学院信息工程研究所 一种卫星安全过顶切换的方法及系统
CN110519695B (zh) * 2019-05-31 2020-12-11 中国人民解放军国防科技大学 一种数据库辅助的卫星系统与地面蜂窝网络频谱共享方法
CN110417453B (zh) * 2019-07-12 2021-12-07 中国空间技术研究院 波束常值偏置可共享无线电频谱方法及低轨通信卫星系统
CN110429974B (zh) * 2019-08-07 2020-05-12 清华大学 基于回归轨道星座的快速对准方法和装置
CN110708110B (zh) * 2019-10-09 2022-08-09 北京中科晶上科技股份有限公司 一种非同步轨道卫星对同步轨道卫星上行干扰规避方法
CN110838866B (zh) * 2019-10-09 2022-03-04 中国空间技术研究院 一种ngso卫星系统与gso卫星系统同频共用的方法
CN111314981A (zh) * 2020-02-20 2020-06-19 北京华力创通科技股份有限公司 用于馈电链路切换的终端重选方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104219718A (zh) * 2014-08-27 2014-12-17 深圳市邦彦信息技术有限公司 一种卫星通信系统内的切换方法和装置
CN106027138A (zh) * 2016-05-05 2016-10-12 清华大学 规避与同步卫星共线干扰的地面站系统及方法
CN106209205A (zh) * 2016-07-05 2016-12-07 清华大学 一种重点区域按需覆盖的全球通信星座设计方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8665777B2 (en) * 2007-01-12 2014-03-04 Dna Global Solutions Dynamic routing from space
CN102413590B (zh) * 2011-08-25 2014-05-28 西安空间无线电技术研究所 一种全球卫星通信系统及方法
CN105335541B (zh) * 2014-08-12 2018-09-21 中国人民解放军战略支援部队航天工程大学 导航卫星星座的工程设计方法
CN106209207B (zh) * 2016-07-22 2018-08-28 清华大学 一种分析各卫星通信系统之间相互干扰的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104219718A (zh) * 2014-08-27 2014-12-17 深圳市邦彦信息技术有限公司 一种卫星通信系统内的切换方法和装置
CN106027138A (zh) * 2016-05-05 2016-10-12 清华大学 规避与同步卫星共线干扰的地面站系统及方法
CN106209205A (zh) * 2016-07-05 2016-12-07 清华大学 一种重点区域按需覆盖的全球通信星座设计方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3793102A1 (en) * 2019-08-23 2021-03-17 Elliot Eichen Dynamic geographical spectrum sharing
US11095361B2 (en) 2019-08-23 2021-08-17 Elliot Eichen Dynamic geographical spectrum sharing
US11522603B2 (en) 2019-08-23 2022-12-06 Elliot Eichen Dynamic geographical spectrum sharing
US11777593B2 (en) 2019-08-23 2023-10-03 Elliot Eichen Dynamic geographical spectrum sharing
US11800422B2 (en) 2021-01-12 2023-10-24 Cisco Technology, Inc. Optimization of communications in a low earth orbit (LEO) satellite network

Also Published As

Publication number Publication date
CN107637113A (zh) 2018-01-26
CN107637113B (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2018148920A1 (zh) 回归轨道卫星星座及地面站系统规避同步卫星干扰的方法
CN110582094B (zh) 一种基于星历和用户位置计算的定时触发切换方法
CA2968639C (en) Communication-satellite system that causes reduced interference
RU2727185C2 (ru) Группировка спутников с гибкой пропускной способностью
KR102165365B1 (ko) 정지궤도 위성 스펙트럼이 재사용되는 통신용 저궤도 위성 성단 시스템
US11101881B2 (en) Satellite constellation realization method for implementing communication by utilizing a recursive orbit
JP7183258B2 (ja) 降雨フェードに対処する衛星システムおよび方法
CN107689828B (zh) 以无人机复原飞行器内通信传输功能的方法
AU2018250395A1 (en) Architecture for simultaneous spectrum usage by air-to-ground and terrestrial networks
US9461733B2 (en) Device and method for optimizing the ground coverage of a hybrid space system
JP4407901B2 (ja) 干渉する移動端末を識別するための送信シーケンシャルロービングを使用する方法およびシステム
JPH09121184A (ja) 静止通信衛星を経て無線信号を伝送するシステム
US6556809B1 (en) Method and apparatus for controlling communication beams within a cellular communication system
JP2015184276A5 (zh)
CN112152695A (zh) 低轨卫星星座的测运控系统及其方法
EP3114777B1 (en) Combined satellite and terrestrial communication system for terminals located on a vehicle such as an aircraft using a common set of frequencies.
US9648568B2 (en) Hybrid dual-band satellite communication system
RU2214054C2 (ru) Устройство и способ повторного использования полосы частот спутникового вещания для сигналов наземного вещания
RU2366086C1 (ru) Способ построения космической системы ретрансляции с использованием геосинхронных спутников-ретрансляторов
TWI672014B (zh) 以無人機作為電磁波傳輸中繼站以強化電波或啟動飛行器內電子設備達到自我復原通訊傳輸功能之方法
CN116865807B (zh) 一种可切换式遥测天馈系统设计方法及遥测天馈系统
CN115604851A (zh) 一种基于固定截距的大规模卫星星座频率干扰规避方法
JP2013187867A (ja) 近距離2地球局を使用した時間遅延ダイバーシティ/サテライトダイバーティ/サイトダイバーティ(TDD/Sat.D/SD)方式
Ackroyd The Arabsat communications system
JPS62285531A (ja) 衛星通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896643

Country of ref document: EP

Kind code of ref document: A1