WO2018147472A1 - Blood biomarker - Google Patents

Blood biomarker Download PDF

Info

Publication number
WO2018147472A1
WO2018147472A1 PCT/JP2018/005603 JP2018005603W WO2018147472A1 WO 2018147472 A1 WO2018147472 A1 WO 2018147472A1 JP 2018005603 W JP2018005603 W JP 2018005603W WO 2018147472 A1 WO2018147472 A1 WO 2018147472A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
acid
concentration
group
microorganism
Prior art date
Application number
PCT/JP2018/005603
Other languages
French (fr)
Japanese (ja)
Inventor
賢 石井
宜広 磯貝
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to JP2018567548A priority Critical patent/JPWO2018147472A1/en
Publication of WO2018147472A1 publication Critical patent/WO2018147472A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor

Definitions

  • the present invention relates to a microbial blood biomarker and a method for determining microbial infection using the blood biomarker.
  • infectious diseases is a general term for unwanted reactions (diseases) that occur in a host due to infection with pathogens such as bacteria, fungi, viruses, parasites, and abnormal prions. Many infections do not show symptoms even after infection, and many infections develop symptoms after a certain period of time. Even today, infectious diseases dealing with diagnosis, treatment, and prevention of infectious diseases are developing against the background of advances in microbiology, immunology, pharmacology, internal medicine, external science, public health, etc. Overall, infections still account for the highest proportion of death. Diagnosing infections at an early stage and performing necessary treatment at an early stage is extremely important in terms of preventing the onset and seriousness of infections.
  • Infectious diseases of microorganisms such as bacteria may occur after surgery, for example.
  • the progress of surgical therapy is remarkable in various fields such as the orthopedic field, and it contributes to recovery of functional aspects such as exercise, pain, and viscera of many patients and prolongation of life prognosis.
  • post-operative infection is a complication that greatly reduces the outcome of treatment, and treatment by early detection is very important to minimize the effect.
  • postoperative infections are comprehensive due to worsening of pain at the surgical site, clinical symptoms such as discharge of pus, fever, and imaging findings, as well as inflammation findings of blood tests using leukocytes and C-reactive protein (CRP). Diagnosis is made. However, at present, it takes 1-2 weeks or more after the operation until both clinical symptoms and blood tests become apparent.
  • infections may develop after trauma or in susceptible hosts.
  • infectious diseases may develop in patients with chronic inflammatory diseases such as autoimmune diseases, but early diagnosis thereof is difficult.
  • JP 2011-95052 describes a disease marker for infectious diseases comprising ventraxin 3 and azulogisin, and a method for detecting the presence or absence of an infectious disease using the disease marker. Specifically disclosed is a method for detecting a complex of ventaxine 3 and azulodicin using an anti-ventlaxin 3 antibody, which involves a complicated process depending on the specificity of the antibody. Also, the sensitivity is not good.
  • biomarkers specific for diagnosing microbial infectious diseases have not yet been provided with biomarkers that are practical and capable of identifying infectious diseases at an early stage, despite their great clinical significance.
  • the present inventors As a result of diligent research to solve the above problems, the present inventors, as a result of infecting microorganisms, began to detect five specific substances ( ⁇ -ketoglutaric acid) in the TCA cycle (citric acid cycle) from the early stage of infection. , Succinyl-CoA, succinic acid, fumaric acid, and malic acid) were found to have a reduced blood concentration compared to the case of no infection, resulting in the present invention.
  • TCA cycle citric acid cycle
  • the present invention includes the following aspects.
  • a microbial blood biomarker comprising one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle.
  • the blood concentration of one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood after one day after the operation is The blood biomarker according to any one of aspects 1-3, wherein the blood biomarker according to any one of aspects 1-3 is determined to be infected with a microorganism when the concentration is reduced to 60% or less of the blood concentration of the previous corresponding substance.
  • Aspect 5 The blood concentration of one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood 1-30 days after surgery,
  • the blood biomarker according to any one of aspects 1-3 wherein the blood biomarker according to any one of aspects 1-3 is determined to be infected with a microorganism when the concentration of the corresponding substance before surgery is reduced to 60% or less.
  • the blood concentration of one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in blood 1-14 days after surgery is The blood biomarker according to any one of aspects 1-3, wherein the blood biomarker according to any one of aspects 1-3 is determined to be infected with a microorganism when the concentration of the corresponding substance before surgery is reduced to 60% or less.
  • Aspect 7 The blood concentration of one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood 1-7 days after the operation,
  • the blood biomarker according to any one of aspects 1-3 wherein the blood biomarker according to any one of aspects 1-3 is determined to be infected with a microorganism when the concentration of the corresponding substance before surgery is reduced to 60% or less.
  • the blood concentration of one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood after one day after the operation is The blood biomarker according to any one of aspects 1 to 7, wherein the blood biomarker is determined to be infected with a microorganism when the concentration is reduced to 50% or less of the previous corresponding substance in blood.
  • the blood concentration of one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood after one day after the operation is The blood biomarker according to any one of aspects 1 to 7, wherein the blood biomarker according to any one of aspects 1 to 7 is judged to be infected with a microorganism when the blood concentration of the previous corresponding substance is reduced to 30% or less.
  • the blood concentration of one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood after one day after the operation is The blood biomarker according to any one of aspects 1 to 7, wherein the blood biomarker according to any one of aspects 1 to 7 is judged to be infected with a microorganism when the blood concentration of the corresponding substance is decreased to 10% or less.
  • the blood concentration of one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinic acid, and fumaric acid in the TCA circuit in the blood after one day after surgery is the blood of the corresponding substance before surgery.
  • the blood concentration of one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinic acid, and fumaric acid in the TCA circuit in the blood after one day after surgery is the blood of the corresponding substance before surgery.
  • a method for determining microbial infection in surgery (1) Measure blood concentration of one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid, and malic acid in the TCA circuit in the subject before surgery. , (2) In the subject after surgery, measure the blood concentration of the substance measured in step (1), (3) If the concentration measured in (2) is lower than the concentration measured in (1), it is determined that the organism is infected. The determination method.
  • the blood concentration of the substance measured in the step (1) is measured in the subject after the first day after the operation, and the blood concentration measured in (2) is the blood concentration measured in (1).
  • the blood concentration of the substance measured in the step (1) is measured in a subject 1 to 30 days after the operation, and the blood concentration measured in (2) is the blood concentration measured in (1).
  • the blood concentration of the substance measured in the step (1) is measured in a subject after 1 day after the operation, and the blood concentration measured in (2) is more than the blood concentration measured in (1). 25.
  • a method for determining microbial infection in a subject comprising: Measuring the blood concentration of one or more substances selected from the group consisting of ⁇ -ketoglutarate, succinate and fumaric acid in the TCA cycle; The said determination method of determining that it is infected with microorganisms, when the blood concentration of the said substance is below a detection limit.
  • the present invention is based on the discovery that in the analysis of metabolites, substances of the TCA cycle that have not been focused on until now have changed significantly.
  • the particular substance of the TCA cycle is very effective as a biomarker of microbial infection because of the marked difference that it is significantly reduced or hardly detectable.
  • detection and determination can be performed at an early stage of infection, which is impossible to detect with a conventional marker.
  • the biomarker of the present invention is based on the blood concentration of these substances, the measurement is simple, rapid and inexpensive.
  • FIG. 1A shows an instrument (product name: IVIS-Lumina LT) (manufactured by Summit Pharmaceuticals International Co., Ltd.) that can capture weak light in the living body using the ultra-sensitive CCD camera used in the optical imaging of the example. It is a photograph.
  • FIG. 1B is a photographic diagram showing the degree of bacterial infection by optical imaging in a femur osteomyelitis model mouse infused with luminescent bacteria.
  • the ultra-sensitive CCD camera detects the faint light emitted by the luminescent bacteria from the body surface of the animal, and the site where the bacteria are present is rendered as a light image with a pseudo color.
  • the red part has more bacteria and the part has less bacteria.
  • FIG. 2 is a diagram showing the correlation between the amount of bacteria and the amount of luminescence.
  • the amount of bacteria ⁇ 10 7 CFU
  • the amount of luminescence ⁇ 10 6 photons / second / cm 2
  • FIG. 3 is a schematic diagram showing a process of producing a femur osteomyelitis model mouse in the Example and confirming infection by optical imaging.
  • FIG. 4 is a table in which “infectious group”, “sham group”, and “control group” in the examples are arranged with or without surgery for drilling the femur and with or without injection of luminous bacteria.
  • FIG. 5 is a diagram showing conditions for selecting blood biomarkers for determining the infection of microorganisms based on the results of metabolomic analysis. A substance that is not different between the control group and the sham group and that has a high (or low) value only in the infected group was selected because it is important as a blood biomarker that can determine infection after surgery early.
  • FIG. 6 is a diagram showing the results of metabolomic analysis. Red (+1 to +3) indicates a high value, and green (-1 to -3) indicates a low value.
  • FIG. 7 is a graph showing the relative values of the sham group and the infected group when the control is set to 1.0 for 12 substances having high values in the infected group. For each substance, the results of “control group”, “sham group”, and “infection group” are shown in order from the top of the graph.
  • FIG. 8 is a graph showing the relative values of the sham group and the infected group when the control is 1.0 for 48 substances that have a low value in the infected group.
  • FIG. 9 is a schematic diagram of ⁇ -oxidation.
  • NAD + nicotinamide adenine dinucleotide
  • FIG. 10 is a schematic diagram of a TCA circuit.
  • FIG. 11 shows how the substances in the TCA circuit differ between the “control group”, “sham group”, and “infection group” as a result of the metabolome analysis, and the results of FIGS. 7 and 8 are shown in the TCA circuit diagram. It is displayed. In the graph regarding each substance, blue (left), green (center), and red (right) indicate the results of “control group”, “sham group”, and “infection group”, respectively. It is understood that substances downstream of ⁇ -ketoglutaric acid (2-OG) in the TCA cycle are depleted only in the “infected group”, while being maintained in the “control group” and the “sham group”.
  • FIG. 12 is a schematic diagram for understanding the technical idea of the present invention.
  • Citric acid is a UV absorption measurement kit (F-kit citric acid, manufactured by JK International)
  • succinic acid is a colorimetric measurement kit (Succinate Colorometric Assay Kit), manufactured by BioVision ).
  • the inventors of the present invention were 12 osteomyelitis model mice (infection group) that underwent surgery to inject bacteria into the femur in 12-week-old mice, and 12 mice (sham group) that were subjected to the same operation but did not inject bacteria. ), 12 animals (control group) that did not perform surgery. On the third day after surgery, blood was collected from the abdominal aorta, and metabolomic analysis was performed to detect about 1200 metabolites. As a result, 12 types of substances having specifically high values and 48 types of substances having specifically low values were identified in osteomyelitis model mice.
  • the present invention includes, but is not limited to, the following aspects. 1. TECHNICAL FIELD
  • the present invention relates to a blood biomarker in a microorganism.
  • the blood biomarker of the present invention comprises one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle.
  • TCA cycle is the most important biochemical reaction circuit related to aerobic metabolism, and is found in all living organisms that perform enzyme respiration. Acetyl-CoA produced by glycolysis and ⁇ -oxidation of fatty acids is incorporated into this circuit and oxidized to produce ATP, NADH used in the electron transfer system, and the like, enabling efficient energy production (Fig. 10). It also supplies biosynthetic precursors such as amino acids.
  • a TCA circuit may also be referred to as a TCA cycle, a tricarboxylic acid circuit, a citric acid circuit, a Krebs circuit, and the like.
  • the present inventors have found that ⁇ -ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle are decreased in microbially infected mice compared to uninfected mice.
  • the inventor came up with the present invention.
  • the present invention is a blood biomarker composed of one or more substances selected from the group consisting of ⁇ -ketoglutarate, succinyl-CoA, succinic acid, fumaric acid and malic acid, and one or more of these substances More blood levels are reduced compared to normal values (before infection), or one or more of these substances are depleted, ie blood levels are below the detection limit If so, determine that the person is infected with a microorganism.
  • the blood biomarker of the present invention is one or more, two or more, three or more, four or more among five substances selected from the group consisting of ⁇ -ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid. It consists of the above or five substances.
  • the blood biomarker of the present invention is one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinic acid and fumaric acid.
  • the blood biomarker of the present invention consists of one or more, two or more or three substances among three substances selected from the group consisting of ⁇ -ketoglutaric acid, succinic acid and fumaric acid.
  • the blood biomarker of the present invention is a biomarker capable of determining the infection of a target microorganism.
  • microorganism is a generic term that refers to a microscopic organism having a size that cannot be distinguished with the naked eye and that can be observed with a microscope or the like.
  • bacteria eubacteria
  • archaea fungi
  • eukaryotes such as protists, slime molds and algae
  • small animals such as rotifers
  • the “microorganism” that can be determined using the blood biomarker of the present invention is not limited to a living organism in a narrow sense, and may be a minute substance that can infect an object (living body) and can cause some kind of change. Therefore, a substance capable of infecting a living body such as “virus” is also included in the “microorganism” in the present invention and the present specification.
  • microorganism in the present invention is preferably selected from the group consisting of bacteria, fungi and viruses. More preferably, it is a bacterium. Bacteria are one aspect of microorganisms that are most concerned about infection (to avoid infection) in surgical procedures.
  • Bacteria “Bacteria” is a prokaryote having a cell membrane composed of fatty acid ester of sn-glycerol triphosphate, and is a group of organisms including Escherichia coli, Bacillus subtilis, cyanobacteria, etc. Causes infectious diseases such as animals.
  • Archaea which has a cell membrane composed of an isobrenoid ether of sn-glycerol monophosphate, belong to a different strain from bacteria (eubacteria).
  • Bacteria are classified by Gram staining (difference between cell positive and negative bacteria due to cell wall difference), structural or anatomical properties (direct observation), chemical properties (lipid structure, etc.) The
  • the bacterium is a Gram-positive bacterium.
  • Gram-positive bacteria is a general term for bacteria that are stained dark blue or purple by Gram staining, and generally has a feature that there is a thick peptide glucan layer having no outer membrane. Many Gram-positive bacteria are classified as Firmictes and Radiomycota. The genus of bacteria belonging to Gram-positive bacteria includes Staphylococcus, Propionibacterium (Acne, etc.), Enterococcus (Enterococcus), Listeria (Listeria).
  • Streptococcus Streptococcus, Green Streptococcus, ⁇ -hemolytic Streptococcus, etc.
  • Clostridium Botulinum, Tetanus, etc.
  • Bacillus Bacillus cereus, Bacillus subtilis, etc.
  • the genus Staphylococcus is a Gram-positive cocci with a diameter of about 1 ⁇ m, and is a facultative and anaerobic organic vegetative bacterium with an irregular arrangement of grape tufts.
  • bacteria belonging to the genus Staphylococcus are classified into 35 types, and are roughly divided into three species: “Staphylococcus aureus”, “Staphylococcus epidermidis”, and “Rotogenic staphylococci”.
  • Staphylococcus aureus is a permanent bacterium in the skin and digestive tract of humans and animals, and various epidermic infections such as abscesses and food poisoning, as well as severe and fatal diseases such as pneumonia, meningitis and sepsis It is also the cause of common infections. Infection with Staphylococcus aureus is one of the most susceptible to infections in surgical procedures (to avoid infection), which is often found in sites confined to the epidermis and tissues just below it.
  • Staphylococcus aureus includes drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin Staphylococcus aureus (VRSA) in addition to methicillin-sensitive Staphylococcus aureus (MSSA) that is resistant to the antibiotic methicillin.
  • MRSA methicillin-resistant Staphylococcus aureus
  • VRSA vancomycin Staphylococcus aureus
  • MSSA methicillin-sensitive Staphylococcus aureus
  • Staphylococcus epidermidis is mainly present in the nasal cavity and epidermis. It is usually non-pathogenic and is a barrier that protects the epidermis from other pathogenic bacteria and plays a role in keeping the epidermis healthy, but it may cause pathogenicity when it enters the body.
  • MSSE methicillin-sensitive Staphylococcus epidermidis
  • MRSE methicillin-resistant Staphylococcus epidermidis
  • Propionibacterium genus is an spore-free anaerobic bacterium that is a resident bacterium on the skin and mucous membranes and produces propionic acid from sugar.
  • Representative myomas include acne (Propionibacterium acnes), which is said to be the cause of acne.
  • Enterococci is a general term for about 20 species belonging to the genus Enterococcus rather than a specific bacterial species.
  • Enterococci are a group of resident bacteria mainly present in the intestinal tract of mammals including humans and take the form of cocci. This is a facultative anaerobic and Gram-positive streptococci that is generally detected in the intestines of healthy humans and that breaks down glucose, maltose, lactose, and sucrose and withstands heating at 60 ° C for 30 minutes .
  • VRE vancomycin-resistant enterococci
  • the bacterium is preferably selected from the group consisting of Staphylococcus aureus, Staphylococcus epidermidis, acne and enterococci. More preferably, the bacterium is S. aureus or S. epidermidis. In one embodiment, S. aureus. In one embodiment, methicillin resistant Staphylococcus aureus (MRSA) or methicillin resistant Staphylococcus aureus (MRSE).
  • MRSA methicillin resistant Staphylococcus aureus
  • MRSE methicillin resistant Staphylococcus aureus
  • the bacterium is a “gram-negative bacterium”.
  • Gram-negative bacteria is a general term for bacteria that do not stain purple (crystal violet) in Gram staining and appear red or pink.
  • Gram-negative bacteria have characteristics such as a cytoplasmic membrane and a thin peptidoglycan layer (thicker layer in Gram-positive bacteria). Certain components of the cell wall are involved in the pathogenicity of Gram-negative bacteria.
  • the outer leaf of the membrane of Gram-negative bacteria is composed of complex lipopolysaccharide (LPS) whose lipid site functions as an endotoxin. When endotoxin enters the circulatory system, it causes fever, respiratory prompting and hypotension. Death may occur if endotoxin shock is caused.
  • LPS complex lipopolysaccharide
  • In humans LPS induces innate immune responses through cytokine production and activation of the immune system. Inflammation is a normal reaction due to cytokine production and can be harmful to the host.
  • Proteobacteria are a major group of Gram-negative bacteria, including E. coli, Salmonella, Helicobacter, Enterobacteriaceae, Pseudomonas, Moraxella, Stenotrophomona, Buderobibrio, Acetic acid bacteria, Legionella, and ⁇ -Proteobacteria such as Wolbachia It is.
  • Other representative groups of Gram-negative bacteria include Pseudomonas aeruginosa, Acinetobacter, cyanobacteria, spirochetes, green sulfur bacteria, and Bacteroides.
  • the bacterium is Escherichia coli, Salmonella, Helicobacter, Pseudomonas aeruginosa, or Acinetobacter.
  • Escherichia coli is a Gram-negative bacilli that belongs to facultative anaerobes and is one of the major species of bacteria present in the environment. Many strains of E. coli have been reported, and some have properties that can be harmful to animals. Most healthy adults have strains that cause diarrhea and do not show any symptoms, but those who are debilitated by infants or illness, or taking certain drugs In some people, special strains can cause illness and sometimes death. For example, in the case of a human, it becomes a pathogen when it enters the blood or urinary system (in case of ectopic infection), not in the large intestine. Because of the production of endotoxin (lipopolysaccharide), sepsis from E.
  • endotoxin lipopolysaccharide
  • Escherichia coli causes severe endotoxin shock.
  • Urinary tract infections are the most common cause of sepsis (if it becomes apparent), but Escherichia coli is the most common cause of urinary tract infections.
  • Escherichia coli strains those showing particularly strong pathogenicity are called pathogenic Escherichia coli.
  • pathogenic Escherichia coli Also called pathogenic E. coli in the field of food hygiene.
  • Shigella strains that cause dysentery among pathogenic Escherichia coli are called Shigella and are treated differently due to hygiene management problems.
  • Fungi Fungus
  • fungi is a general term for organisms generally called mushrooms, molds, and yeasts, and refers to organisms belonging to the fungal kingdom. It is a heterotrophic organism that uses external organic matter, secretes degrading enzymes, digests nutrients outside the cell, and ingests it from the cell surface.
  • fungi In the field of medicine and veterinary medicine, fungi are called fungi, and the study is called medical mycology. Infections caused by fungi are generally called mycosis, and superficial mycosis where the affected area stops in the keratin of the skin and does not reach the dermis, deep superficial mycosis that affects the subcutaneous tissue after the dermis, brain, It is roughly classified into deep mycosis (systemic mycosis, visceral mycosis) that extends to internal organs such as lungs and heart.
  • mycosis systemic mycosis, visceral mycosis
  • fections Diseases that infect humans and other animals with fungi (infections) include ringworms caused by ringworms, candidiasis caused by Candida, candidiasis caused by Candida, cryptococcosis caused by Cryptococcus, aspergillosis caused by Aspergillus, pneumocystis ( Pneumocystis pneumonia due to Pneumocystis) is a clinical problem.
  • Virus A “virus” is a microscopic structure that can replicate itself using cells of other organisms. It consists of a protein shell and a nucleic acid contained in the protein shell. Viruses do not have cells as constituent units, but they have genes and have the characteristics of organisms that can be propagated using cells of other organisms. Viruses can affect host homeostasis when infecting, and can act as pathogens. Microorganisms whose infection can be determined by the blood biomarker of the present invention include “viruses” that are minute infectious agents.
  • Viruses are broadly classified into DNA viruses that have DNA as a major component and RNA viruses that have RNA as a component because of the difference in genetic material.
  • the DNA virus includes, but is not limited to, smallpox virus, herpes simplex virus, varicella-zoster virus, adenovirus, papilloma virus, hepatitis B virus, EB virus, parvovirus and the like.
  • RNA viruses include, but are not limited to, influenza virus, norovirus, SARS virus, rubella virus, poliovirus, Ebola virus, yellow fever virus, dengue virus, hepatitis C virus, human immunodeficiency virus, measles virus, mumps virus, etc. Is included.
  • Blood concentration of blood biomarker in the present invention, whether or not a microorganism such as a bacterium has infected a subject is determined based on whether ⁇ -ketoglutarate, succinyl-CoA, succinic acid, fumaric acid or apple in the TCA cycle.
  • One or more substances selected from the group consisting of acids are determined as blood biomarkers (indicators). Infection means that a pathogen such as a microorganism having a smaller volume infests or grows in the body or surface of an organism.
  • the “subject” to which the blood biomarker of the present invention can be used is not particularly limited as long as it is a living organism that can be infected by microorganisms and become a host.
  • mammals such as humans, monkeys, gorillas, orangutans, cows, horses, dogs, cats, mice, rats, rabbits, sheep, goats and pigs. More preferred are primates such as humans and monkeys. Most preferred is a human.
  • the inventors of the TCA circuit have a blood concentration of one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid, and malic acid due to infection by microorganisms.
  • the present invention was conceived by finding that it decreases compared to normal values (before infection), or that one or more of these substances are depleted. Therefore, these substances are reduced compared to normal values (before infection), or one or more of these substances are depleted, that is, the blood concentration is below the detection limit If so, determine that the person is infected with a microorganism.
  • the blood concentration of each of these substances can be measured, for example, as follows. Without limitation, for example, in the case of a human, 3 ml of blood is collected. For example, it can be measured by an enzymatic method, F-kit series (manufactured by Roche Diagnostics). For example, succinic acid can be measured using a succinic acid measurement kit (Succinate Colorimetric Assay Kit, manufactured by BioVision). Alternatively, for example, Anal. Chem. , 2009, 81, 6165-6174, each substance can be measured.
  • each substance that is not infected with microorganisms By measuring the blood concentration of each substance that is not infected with microorganisms in advance, it can be compared with the blood concentration after occurrence of a suspected possibility of infection.
  • the circumstances in which the possibility of infection is suspected include, for example, surgical operation, trauma, contact with an infected person, local redness, swelling, thermal sensation, and the like.
  • three substances, ⁇ -ketoglutaric acid, succinic acid and fumaric acid have blood concentrations below the detection limit due to microbial infection. Therefore, these three substances can be used as blood biomarkers even when normal values are not measured.
  • the blood biomarker of a microorganism of the present invention can be used for determining the presence or absence of a microorganism infection as one aspect.
  • Microbial infection can be caused by surgery (during surgery, after surgery), treatment (injection, etc.), trauma, etc., or when the host is an easily infected host (such as rheumatoid arthritis, autoimmune diseases, liver dysfunction, renal dysfunction, This may occur in the case of immunodeficiency.
  • the blood biomarker of the present invention determines the infection of microorganisms in surgery.
  • the aspect of the present invention will be described as an example of a situation in which “surgical operation” is suspected of the possibility of infection without limitation.
  • ⁇ -ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid, and malic acid in the TCA cycle in blood after 1 day after surgery (example of suspected infection)
  • the blood concentration of one or more substances selected from the group consisting of is compared with the blood concentration of the corresponding substance prior to surgery.
  • it is within 30 days, within 14 days, within 7 days, and within 5 days after surgery.
  • the blood concentration after surgery is below the detection limit.
  • the detection limit or less is 0.05 ⁇ M or less, 0.03 ⁇ M or less, or 0.01 ⁇ M or less.
  • the three substances ⁇ -ketoglutaric acid, succinic acid and fumaric acid are markedly reduced by infection.
  • the blood biomarker of the present invention includes, but is not limited to, for example, the following embodiments.
  • the blood concentration of one or more substances selected from the group consisting of ⁇ -ketoglutarate, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in blood 1-14 days after surgery A blood biomarker that is determined to be infected with a microorganism when the blood concentration of the corresponding substance before surgery is reduced to 60% or less.
  • the blood concentration of one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinic acid and fumaric acid in the TCA cycle in the blood after the first day after the operation, the blood concentration of the corresponding substance before the operation A blood biomarker that is judged to be microbially infected when it is reduced to 10% or less of the blood concentration.
  • the present invention also relates to a method for determining microbial infection in surgery.
  • the determination method of the present invention includes: (1) Measure blood concentration of one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid, and malic acid in the TCA circuit in the subject before surgery. , (2) In the subject after surgery, measure the blood concentration of the substance measured in step (1), (3) If the concentration measured in (2) is lower than the concentration measured in (1), it is determined that the organism is infected. Including the process.
  • microorganism one or more substances selected from the group consisting of ⁇ -ketoglutarate, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle”, “blood concentration”, etc. The explanation is as described in “1. Blood biomarkers in microorganisms”.
  • the concentration measured in (2) is ( The case where the concentration is lower than the concentration measured in 1) is the same as described in “1. Blood biomarker in microorganism”.
  • the determination method of the present invention includes, but is not limited to, for example, the following aspects.
  • the blood concentration of the substance measured in step (1) is measured in the subject after 1 day after the operation, and the blood concentration measured in (2) is the blood concentration measured in (1)
  • the blood concentration of the substance measured in step (1) was measured in the subject 1 day to 30 days after the operation, and the blood concentration measured in (2) was measured in (1) The determination method of determining that it is infected with microorganisms when it has decreased to 60% or less of the blood concentration.
  • the blood concentration of the substance measured in the step (1) is measured in the subject after 1 day after the operation, and the blood concentration measured in (2) is the blood concentration measured in (1).
  • the present invention also relates to a method for determining microbial infection in a subject.
  • the determination method of the present invention includes: Measuring the blood concentration of one or more substances selected from the group consisting of ⁇ -ketoglutarate, succinate and fumaric acid in the TCA cycle; If the blood concentration of the substance is below the detection limit, it is determined that the substance is infected with a microorganism.
  • microorganism “one or more substances selected from the group consisting of ⁇ -ketoglutaric acid, succinic acid, fumaric acid in TCA cycle”, “blood concentration”, “under detection limit”, etc. , “1. Blood biomarkers in microorganisms”.
  • the determination method of the present invention includes, but is not limited to, for example, the following aspects.
  • -The below detection limit is the determination method which is 0.03 micromol or less.
  • Example 1 Search for New Biomarker Using Osteomyelitis Model Mouse a search for a new biomarker using an osteomyelitis model mouse was performed. Specifically, twelve mice with osteomyelitis who underwent surgery to inject bacteria into the femur in 12-week-old mice (infected group), and 12 mice that performed only the same operation but did not inject bacteria (sham group) Twelve animals (control group) that did not perform surgery were used. On the third day after surgery, blood was collected from the abdominal aorta, and metabolomic analysis was performed to detect about 1200 metabolites.
  • Optical Imaging and Luminescent Bacteria In this example, optical imaging (IVIS imaging system) and luminescent bacteria (luciferase-expressing Staphylococcus aureus) were used.
  • Optical imaging is an instrument (product name: IVIS-Lumina LT) (manufactured by Summit Pharmaceuticals International) that can capture weak light in the living body using an ultra-sensitive CCD camera, and the luminescent bacteria are weak as long as they survive.
  • a bacterium that has been gene-transfected so as to emit light, and obtained is obtained by introducing Staphylococcus aureus (Xen-29) manufactured by Caliper LS and Photolabhabdus lumscens luxABCDE using Luria Bertani medium manufactured by Sigma-Aldrich.
  • Staphylococcus aureus Xen-29
  • Photolabhabdus lumscens luxABCDE manufactured by Sigma-Aldrich.
  • FIG. 3 shows a process for producing a femur osteomyelitis model mouse. Surgery was performed to drill a thighbone in a 12-week-old mouse, and luminescent bacteria (1 ⁇ l, concentration 1.0 ⁇ 10 8 CFU) were injected as an infected group.
  • the study uses 12 model mice (infected group), 12 mice that do only surgery and do not inject bacteria (sham group), and 12 mice that do not perform surgery (control group), and compare them. (FIG. 4).
  • the anesthesia for the operation was ether anesthesia that did not affect the blood collection results, and blood was collected from the abdominal aorta 3 days after the operation (each 500 ⁇ l). The sample was centrifuged and 300 ⁇ l of plasma component was collected and used for analysis.
  • Metabolome analysis In addition to nucleic acids (DNA) and proteins, there are many small molecules such as sugars, organic acids, amino acids, lipids, and steroid derivatives in the living body, and there are thousands of types. Many of these are metabolites produced by metabolic activities such as enzymes. A collective catalog of all small molecules in a living body including metabolic intermediates, hormones, signal molecules, secondary metabolites, and the like contained in a single tissue is called a “metabolome”. The metabolome changes every hour. Metabolome analysis is based on bioinformatics methods to study the actual state of metabolism and the total diversity of metabolic pathways that are slightly different in each layer of cells, tissues, organs, individuals, and species. This is a technique that can comprehensively analyze the concentration at once.
  • Results and Discussion (1) The results of metabolome analysis are shown in FIG. A total of 297 substances were identified. Comparing the concentration of each substance within each group, 66 substances were high in the infected group, of which 12 were statistically significant (FIG. 7). In the infected group, there were 195 low-concentration substances and 48 statistically significant substances (FIG. 8). Among them, changes in the values of substances involved in metabolic pathways such as ⁇ -oxidation and TCA cycle were very characteristic.
  • ⁇ -oxidation is a reaction for producing acetyl CoA from fatty acid, and is a method for producing energy from fat in a starved state.
  • Infection is a kind of starvation for the body.
  • NAD + nicotinamide adenine dinucleotide
  • ⁇ -oxidation was enhanced by interpreting infection as a kind of starvation.
  • the depletion of NAD + due to this infection state (starvation state) is caused not only in the femur osteomyelitis model mouse of this example but also in mammals including humans, and not only S. aureus but also other bacteria, various microorganisms. If the living body becomes starved due to the "infection"
  • TCA circuit (FIGS. 10 to 12)
  • the TCA cycle is one of the most important metabolic pathways of living organisms that produce energy in vivo based on acetyl-CoA (FIG. 10).
  • acetyl-CoA As a result of metabolome analysis, it was found that in the infected group, substances from ⁇ -ketoglutarate to malate in the TCA cycle were almost depleted (FIG. 11). This is a result that can be explained if the process of producing ⁇ -ketoglutaric acid from isocitrate is inhibited.
  • NAD + is required in the reaction to produce ⁇ -ketoglutaric acid, and it is considered that this reaction was delayed in the infected group due to depletion of NAD + due to the above-described enhancement of ⁇ -oxidation (FIG. 12). Therefore, substances from ⁇ -ketoglutarate to malate in the TCA cycle are effective as blood biomarkers for early detection of infection.
  • Example 2 Verification of the presence of succinic acid in human blood and the presence or absence of infection
  • the presence of succinic acid in human blood (in the plasma) and the presence or absence of infection were verified.
  • blood was collected from cases (3 cases) suspected of postoperative infection for the purpose of early detection of postoperative infection in orthopedics.
  • Patient 1 45-year-old male Blood was collected on the 9th day after surgery because infection was suspected after surgery for multiple cavernous hemangioma.
  • Patient 2 A 50-year-old woman After the operation for lumbar degenerative spondylolisthesis, slight fever continued.
  • Patient 3 71-year-old man After surgery for schwannomas, slight wound healing was observed, so blood was collected on the 7th postoperative day.
  • succinic acid was detected in patient 1 and below the detection limit (40 ⁇ M), but succinic acid was detected in patients 2 and 3.
  • Citric acid was detected in all patients. As a result, it was found that patient 1 was infected, and treatment for infectious diseases such as administration of antibiotics was performed. Patients 2 and 3 were not infected and treatment of the infection was unnecessary.
  • the present invention is based on the discovery that in the analysis of metabolites, substances of the TCA cycle that have not been focused on until now have changed significantly.
  • the particular substance of the TCA cycle is very effective as a biomarker of microbial infection because of the marked difference that it is significantly reduced or hardly detectable.
  • detection and determination can be performed at an early stage of infection, which is impossible to detect with a conventional marker.
  • the blood biomarker of the present invention is based on the blood concentration of these substances, the measurement is simple, rapid and inexpensive. Therefore, as a blood biomarker and determination method for specifically determining the infection of microorganisms, it is of great clinical significance in terms of early diagnosis and early treatment.
  • the present invention provides innovative results in the field of infectious disease research.

Abstract

The present invention relates to a blood biomarker of microorganisms, and a method for determining infection with microorganisms using the blood biomarker. This blood biomarker is characterized by comprising one or more substances in the TCA cycle selected from α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid.

Description

血中バイオマーカーBlood biomarker
 本発明は、微生物の血中バイオマーカー及び当該血中バイオマーカーを利用した微生物の感染を判定するための方法に関する。 The present invention relates to a microbial blood biomarker and a method for determining microbial infection using the blood biomarker.
 感染症は、細菌、真菌、ウイルス、寄生虫、異常プリオン等の病原体の感染より、宿主に生じる望まざる反応(病気)の総称である。感染症には、感染しても症状を呈さないもの、感染しても一定期間経過後に症状がでるものも多い。微生物学、免疫学、薬理学、内科学、外科学、公衆衛生学等の進歩を背景として、感染症の診断、治療、予防を扱う感染症学が発展しつつある今日であっても、世界全体では未だに死因の最も高い割合を感染症が占めている。感染症を早期に診断し、早期に必要な治療を行うことは感染症の発症、重篤化を防ぐ意味で、極めて重要である。 “Infectious diseases” is a general term for unwanted reactions (diseases) that occur in a host due to infection with pathogens such as bacteria, fungi, viruses, parasites, and abnormal prions. Many infections do not show symptoms even after infection, and many infections develop symptoms after a certain period of time. Even today, infectious diseases dealing with diagnosis, treatment, and prevention of infectious diseases are developing against the background of advances in microbiology, immunology, pharmacology, internal medicine, external science, public health, etc. Overall, infections still account for the highest proportion of death. Diagnosing infections at an early stage and performing necessary treatment at an early stage is extremely important in terms of preventing the onset and seriousness of infections.
 細菌等の微生物の感染症は、例えば、手術後に発症する場合がある。整形外科領域など種々の領域において手術療法の進歩はめざましく、多くの患者の運動・疼痛・内臓などの機能面での回復や生命予後の延長などに寄与している。しかし手術後の感染症はその治療成績を大幅に低下させる合併症であり、早期発見による対処はその影響を最低限にとどめるために非常に重要である。通常術後感染は手術部位の疼痛の悪化や、膿の排出、発熱などの臨床症状や画像所見に加えて、白血球やC−反応性タンパク質(CRP)等による血液検査の炎症所見などで総合的に診断が下される。しかしながら、臨床症状・血液検査ともに顕在化するまでに術後1−2週間以上かかるのが現状である。その理由として既存の血液検査では手術の侵襲による影響が数日から1週間程度残存してしまい、感染との区別がつかないからである。即ち、術後感染症は手術自体の侵襲により血中炎症性サイトカインが上昇するため、術後炎症の遷延化は手術侵襲によるものか、術後感染症の発症によるものかの鑑別が困難である。 Infectious diseases of microorganisms such as bacteria may occur after surgery, for example. The progress of surgical therapy is remarkable in various fields such as the orthopedic field, and it contributes to recovery of functional aspects such as exercise, pain, and viscera of many patients and prolongation of life prognosis. However, post-operative infection is a complication that greatly reduces the outcome of treatment, and treatment by early detection is very important to minimize the effect. In general, postoperative infections are comprehensive due to worsening of pain at the surgical site, clinical symptoms such as discharge of pus, fever, and imaging findings, as well as inflammation findings of blood tests using leukocytes and C-reactive protein (CRP). Diagnosis is made. However, at present, it takes 1-2 weeks or more after the operation until both clinical symptoms and blood tests become apparent. The reason is that in existing blood tests, the effects of surgical invasion remain for several days to a week, and cannot be distinguished from infection. In other words, since postoperative infections increase blood inflammatory cytokines due to the invasion of surgery itself, it is difficult to distinguish whether postoperative inflammation is due to surgical invasion or the onset of postoperative infection .
 手術後以外に、外傷後または易感染宿主に感染症が発症することがある。例えば、自己免疫疾患などの慢性炎症性疾患患者において感染症が発症することがあるが、その早期の診断は困難である。 In addition to after surgery, infections may develop after trauma or in susceptible hosts. For example, infectious diseases may develop in patients with chronic inflammatory diseases such as autoimmune diseases, but early diagnosis thereof is difficult.
 Pierrakos C,Vincent JL.Sepsis biomarkers: a review.Crit Care.2010;14(1):R15.によると感染症全般のバイオマーカーとして、178もの物質を報告している。しかしながら、そのいずれも感染症において高い特異性は報告されていない。感染症のバイオマーカーとして高い感度特異度が報告されているプロカルシトニンも、Shen CJ,Wu MS,Lin KH,Lin WL,Chen HC,Wu JY,et al.The use of procalcitonin in the diagnosis of bone and joint infection: a systemic review and meta−analysis.Eur J Clin Microbiol Infect Dis.2013 Jun;32(6):807−14(例えば、p.813、18−22行)によるとすべての感染症においてはその有用性は確立されていない。 Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care. 2010; 14 (1): R15. Reports 178 substances as biomarkers for all infectious diseases. However, none of them has been reported with high specificity in infectious diseases. Procalcitonin, which has been reported with high sensitivity specificity as a biomarker for infectious diseases, is also available from Shen CJ, Wu MS, Lin KH, Lin WL, Chen HC, Wu JY, et al. The use of procalcinin in the diagnosis of bone and joint effect: a systemic review and meta-analysis. Eur J Clin Microbiol Infect Dis. 2013 Jun; 32 (6): 807-14 (for example, p.813, lines 18-22), its usefulness has not been established in all infectious diseases.
 特開2011−95052は、ベントラキシン3及びアズロジシンを含んでなる、感染症の疾患マーカー、及び、当該疾患マーカーを利用した感染症の罹患の有無の検出方法を記載している。具体的に開示されているのは、ベントラキシン3及びアズロジシンの複合体を、抗ベントラキシン3抗体を用いて検出する方法であり、抗体の特異性に依存する、複雑な工程を含む方法であり、また感度も良いとは言えない。 JP 2011-95052 describes a disease marker for infectious diseases comprising ventraxin 3 and azulogisin, and a method for detecting the presence or absence of an infectious disease using the disease marker. Specifically disclosed is a method for detecting a complex of ventaxine 3 and azulodicin using an anti-ventlaxin 3 antibody, which involves a complicated process depending on the specificity of the antibody. Also, the sensitivity is not good.
 上記のように微生物の感染症の診断に特異的なバイオマーカーは、臨床的意義が大きいにも関わらず、実用的で感染症を早期に同定できるバイオマーカーは未だ提供されていない。 As described above, biomarkers specific for diagnosing microbial infectious diseases have not yet been provided with biomarkers that are practical and capable of identifying infectious diseases at an early stage, despite their great clinical significance.
特願2011−95052Japanese Patent Application No. 2011-95052
 本発明者らは、上記問題解決のために鋭意研究に努めた結果、微生物に感染した場合、感染初期の段階より、TCA回路(クエン酸回路)中の特定の5つの物質(α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸)が、感染していない場合と比較してその血中濃度が減少していることを見出し、本発明を想到した。 As a result of diligent research to solve the above problems, the present inventors, as a result of infecting microorganisms, began to detect five specific substances (α-ketoglutaric acid) in the TCA cycle (citric acid cycle) from the early stage of infection. , Succinyl-CoA, succinic acid, fumaric acid, and malic acid) were found to have a reduced blood concentration compared to the case of no infection, resulting in the present invention.
 限定されるわけではないが、本発明は以下の態様を含む。 Although not necessarily limited, the present invention includes the following aspects.
 [態様1]
 TCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質からなる、微生物の血中バイオマーカー。
[Aspect 1]
A microbial blood biomarker comprising one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle.
 [態様2]
 微生物による感染の有無を判定する態様1に記載の血中バイオマーカー。
[Aspect 2]
The blood biomarker according to aspect 1, wherein the presence or absence of infection by microorganisms is determined.
 [態様3]
 手術における微生物の感染を判定するための態様1又は2に記載の血中バイオマーカー。
[Aspect 3]
3. The blood biomarker according to aspect 1 or 2 for determining microbial infection in surgery.
 [態様4]
 手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の60%以下に減少している場合、微生物に感染していると判断される、態様1−3のいずれか1項に記載の血中バイオマーカー。
[Aspect 4]
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood after one day after the operation is The blood biomarker according to any one of aspects 1-3, wherein the blood biomarker according to any one of aspects 1-3 is determined to be infected with a microorganism when the concentration is reduced to 60% or less of the blood concentration of the previous corresponding substance.
 [態様5]
 手術後1−30日の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の60%以下に減少している場合、微生物に感染していると判断される、態様1−3のいずれか1項に記載の血中バイオマーカー。
[Aspect 5]
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood 1-30 days after surgery, The blood biomarker according to any one of aspects 1-3, wherein the blood biomarker according to any one of aspects 1-3 is determined to be infected with a microorganism when the concentration of the corresponding substance before surgery is reduced to 60% or less.
 [態様6]
 手術後1−14日の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の60%以下に減少している場合、微生物に感染していると判断される、態様1−3のいずれか1項に記載の血中バイオマーカー。
[Aspect 6]
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in blood 1-14 days after surgery is The blood biomarker according to any one of aspects 1-3, wherein the blood biomarker according to any one of aspects 1-3 is determined to be infected with a microorganism when the concentration of the corresponding substance before surgery is reduced to 60% or less.
 [態様7]
 手術後1−7日の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の60%以下に減少している場合、微生物に感染していると判断される、態様1−3のいずれか1項に記載の血中バイオマーカー。
[Aspect 7]
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood 1-7 days after the operation, The blood biomarker according to any one of aspects 1-3, wherein the blood biomarker according to any one of aspects 1-3 is determined to be infected with a microorganism when the concentration of the corresponding substance before surgery is reduced to 60% or less.
 [態様8]
 手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の50%以下に減少している場合、微生物に感染していると判断される、態様1−7のいずれか1項に記載の血中バイオマーカー。
[Aspect 8]
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood after one day after the operation is The blood biomarker according to any one of aspects 1 to 7, wherein the blood biomarker is determined to be infected with a microorganism when the concentration is reduced to 50% or less of the previous corresponding substance in blood.
 [態様9]
 手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の30%以下に減少している場合、微生物に感染していると判断される、態様1−7のいずれか1項に記載の血中バイオマーカー。
[Aspect 9]
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood after one day after the operation is The blood biomarker according to any one of aspects 1 to 7, wherein the blood biomarker according to any one of aspects 1 to 7 is judged to be infected with a microorganism when the blood concentration of the previous corresponding substance is reduced to 30% or less.
 [態様10]
 手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の10%以下に減少している場合、微生物に感染していると判断される、態様1−7のいずれか1項に記載の血中バイオマーカー。
[Aspect 10]
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood after one day after the operation is The blood biomarker according to any one of aspects 1 to 7, wherein the blood biomarker according to any one of aspects 1 to 7 is judged to be infected with a microorganism when the blood concentration of the corresponding substance is decreased to 10% or less.
 [態様11]
 TCA回路中の物質が、α−ケトグルタル酸、コハク酸及びフマル酸からなる群から選択される、1以上の物質である、態様1−10のいずれか1項に記載の血中バイオマーカー。
[Aspect 11]
The blood biomarker according to any one of aspects 1 to 10, wherein the substance in the TCA cycle is one or more substances selected from the group consisting of α-ketoglutaric acid, succinic acid, and fumaric acid.
 [態様12]
 手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、コハク酸及びフマル酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の30%以下に減少している場合、微生物感染していると判断される、態様1又は11に記載の血中バイオマーカー。
[Aspect 12]
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinic acid, and fumaric acid in the TCA circuit in the blood after one day after surgery is the blood of the corresponding substance before surgery. The blood biomarker according to the aspect 1 or 11, which is judged to be infected with a microorganism when it is reduced to 30% or less of the medium concentration.
 [態様13]
 手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、コハク酸及びフマル酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の10%以下に減少している場合、微生物感染していると判断される、態様1又は11に記載の血中バイオマーカー。
[Aspect 13]
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinic acid, and fumaric acid in the TCA circuit in the blood after one day after surgery is the blood of the corresponding substance before surgery. The blood biomarker according to the aspect 1 or 11, which is judged to be microbially infected when it is reduced to 10% or less of the medium concentration.
 [態様14]
 微生物が、細菌、真菌及びウイルスからなる群から選択される、態様1−13のいずれか1項に記載の血中バイオマーカー。
[Aspect 14]
The blood biomarker according to any one of aspects 1 to 13, wherein the microorganism is selected from the group consisting of bacteria, fungi and viruses.
 [態様15]
 微生物が細菌である、態様1−14のいずれか1項に記載の血中バイオマーカー。
[Aspect 15]
The blood biomarker according to any one of aspects 1-14, wherein the microorganism is a bacterium.
 [態様16]
 細菌が、グラム陽性菌である態様15に記載の血中バイオマーカー。
[Aspect 16]
The blood biomarker according to aspect 15, wherein the bacterium is a Gram-positive bacterium.
 [態様17]
 細菌が、黄色ブドウ球菌、表皮ブドウ球菌、アクネ菌及び腸球菌からなる群から選択される、態様15又は16に記載の血中バイオマーカー。
[Aspect 17]
The blood biomarker according to aspect 15 or 16, wherein the bacterium is selected from the group consisting of Staphylococcus aureus, Staphylococcus epidermidis, Acne and Enterococcus.
 [態様18]
 細菌が、黄色ブドウ球菌又は表皮ブドウ球菌である、態様15−17のいずれか1項に記載の血中バイオマーカー。
[Aspect 18]
The blood biomarker according to any one of aspects 15 to 17, wherein the bacterium is Staphylococcus aureus or Staphylococcus epidermidis.
 [態様19]
 細菌が、黄色ブドウ球菌である、態様15−18のいずれか1項に記載の血中バイオマーカー。
[Aspect 19]
The blood biomarker according to any one of aspects 15 to 18, wherein the bacterium is Staphylococcus aureus.
 [態様20]
 細菌が、グラム陰性菌である態様15に記載の血中バイオマーカー。
[Aspect 20]
The blood biomarker according to aspect 15, wherein the bacterium is a gram-negative bacterium.
 [態様21]
 手術における微生物の感染を判定するための方法であって、
(1)手術前の対象において、TCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度を測定し、
(2)手術後の対象において、工程(1)で測定した物質の血中濃度を測定し、
(3)(2)で測定した濃度が(1)で測定した濃度よりも減少している場合、微生物に感染していると判断する、
前記判定方法。
[Aspect 21]
A method for determining microbial infection in surgery,
(1) Measure blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid, and malic acid in the TCA circuit in the subject before surgery. ,
(2) In the subject after surgery, measure the blood concentration of the substance measured in step (1),
(3) If the concentration measured in (2) is lower than the concentration measured in (1), it is determined that the organism is infected.
The determination method.
 [態様22]
 工程(2)において、工程(1)で測定した物質の血中濃度を手術後1日以降の対象において測定し、(2)で測定した血中濃度が(1)で測定した血中濃度の60%以下に減少している場合、微生物に感染していると判断する、態様21に記載の判定方法。
[Aspect 22]
In the step (2), the blood concentration of the substance measured in the step (1) is measured in the subject after the first day after the operation, and the blood concentration measured in (2) is the blood concentration measured in (1). The determination method according to aspect 21, wherein it is determined that the microorganism is infected when it is reduced to 60% or less.
 [態様23]
 工程(2)において、工程(1)で測定した物質の血中濃度を手術後1日−30日の対象において測定し、(2)で測定した血中濃度が(1)で測定した血中濃度の60%以下に減少している場合、微生物に感染していると判断する、態様21又は22に記載の判定方法。
[Aspect 23]
In the step (2), the blood concentration of the substance measured in the step (1) is measured in a subject 1 to 30 days after the operation, and the blood concentration measured in (2) is the blood concentration measured in (1). The determination method according to aspect 21 or 22, wherein when the concentration is reduced to 60% or less, it is determined that the microorganism is infected.
 [態様24]
 TCA回路中の物質が、α−ケトグルタル酸、コハク酸及びフマル酸からなる群から選択される、1以上の物質である、態様21−23のいずれか1項に記載の判定方法。
[Aspect 24]
The determination method according to any one of aspects 21 to 23, wherein the substance in the TCA circuit is one or more substances selected from the group consisting of α-ketoglutaric acid, succinic acid, and fumaric acid.
 [態様25]
 工程(2)において、工程(1)で測定した物質の血中濃度を手術後1日以降の対象において測定し、(2)で測定した血中濃度が(1)で測定した血中濃度よりも30%以下に減少している場合、微生物に感染していると判断する、態様24に記載の判定方法。
[Aspect 25]
In the step (2), the blood concentration of the substance measured in the step (1) is measured in a subject after 1 day after the operation, and the blood concentration measured in (2) is more than the blood concentration measured in (1). 25. The determination method according to aspect 24, in which it is determined that the microorganism is infected when the value is also reduced to 30% or less.
 [態様26]
 微生物が、細菌、真菌及びウイルスからなる群から選択される、態様21−25のいずれか1項に記載の判定方法。
[Aspect 26]
The determination method according to any one of aspects 21 to 25, wherein the microorganism is selected from the group consisting of bacteria, fungi and viruses.
 [態様27]
 微生物が細菌である、態様21−26のいずれか1項に記載の判定方法。
[Aspect 27]
27. The determination method according to any one of aspects 21 to 26, wherein the microorganism is a bacterium.
 [態様28]
 細菌が、黄色ブドウ球菌、表皮ブドウ球菌、アクネ菌及び腸球菌からなる群から選択される、態様26又は27に記載の判定方法。
[Aspect 28]
The determination method according to aspect 26 or 27, wherein the bacterium is selected from the group consisting of Staphylococcus aureus, Staphylococcus epidermidis, Acne and enterococci.
 [態様29]
 細菌が、黄色ブドウ球菌又は表皮ブドウ球菌である、態様26−28のいずれか1項に記載の判定方法。
[Aspect 29]
The determination method according to any one of aspects 26 to 28, wherein the bacterium is Staphylococcus aureus or Staphylococcus epidermidis.
 [態様30]
 細菌が、黄色ブドウ球菌である、態様26−29のいずれか1項に記載の判定方法。
[Aspect 30]
30. The determination method according to any one of aspects 26 to 29, wherein the bacterium is Staphylococcus aureus.
 [態様31]
 対象における微生物の感染を判定するための方法であって、
 TCA回路中のα−ケトグルタル酸、コハク酸及びフマル酸からなる群から選択される1以上の物質の血中濃度を測定し、
 上記物質の血中濃度が検出限界以下の場合、微生物に感染していると判断する、前記判定方法。
[Aspect 31]
A method for determining microbial infection in a subject comprising:
Measuring the blood concentration of one or more substances selected from the group consisting of α-ketoglutarate, succinate and fumaric acid in the TCA cycle;
The said determination method of determining that it is infected with microorganisms, when the blood concentration of the said substance is below a detection limit.
 [態様32]
 微生物が、細菌、真菌及びウイルスからなる群から選択される、態様31に記載の判定方法。
[Aspect 32]
32. The determination method according to aspect 31, wherein the microorganism is selected from the group consisting of bacteria, fungi and viruses.
 [態様33]
 微生物が細菌である、態様31又は32に記載の判定方法。
[Aspect 33]
The determination method according to aspect 31 or 32, wherein the microorganism is a bacterium.
 [態様34]
 細菌が、黄色ブドウ球菌、表皮ブドウ球菌、アクネ菌及び腸球菌からなる群から選択される、態様32又は33に記載の判定方法。
[Aspect 34]
34. The determination method according to aspect 32 or 33, wherein the bacterium is selected from the group consisting of S. aureus, S. epidermidis, acne and enterococci.
 [態様35]
 細菌が、黄色ブドウ球菌又は表皮ブドウ球菌である、態様32−34のいずれか1項に記載の判定方法。
[Aspect 35]
The determination method according to any one of aspects 32-34, wherein the bacterium is Staphylococcus aureus or Staphylococcus epidermidis.
 [態様36]
 細菌が、黄色ブドウ球菌である、態様32−35のいずれか1項に記載の判定方法。
[Aspect 36]
36. The determination method according to any one of aspects 32-35, wherein the bacterium is Staphylococcus aureus.
 [態様37]
 検出限界以下とは、0.03μM以下である、態様29−33のいずれか1項に記載の判定方法。
[Aspect 37]
34. The determination method according to any one of aspects 29 to 33, wherein “below the detection limit” is 0.03 μM or less.
 [態様38]
 対象が、手術後1日以降の哺乳動物である、態様31−37のいずれか1項に記載の判定方法。
[Aspect 38]
The determination method according to any one of aspects 31 to 37, wherein the subject is a mammal from one day after surgery.
 [態様39]
 対象が、手術後1日−30日の哺乳動物である、態様31−38のいずれか1項に記載の判定方法。
[Aspect 39]
The determination method according to any one of aspects 31 to 38, wherein the subject is a mammal from 1 to 30 days after surgery.
 本発明は、代謝産物の解析において、特に、これまで全く着目されていなかったTCA回路の物質が顕著に変化していたことを発見したことによる。TCA回路の特定の物質が、著しく減少する、あるいは、ほとんど検出できないという顕著な差であるので、微生物の感染のバイオマーカーとして非常に有効である。また、感染のごく初期の、従来のマーカーでは検出不可能であった早期における検出・判定が可能である。さらに、本発明のバイオマーカーはこれらの物質の血中濃度に基づくので、測定も簡便で、迅速、かつ、安価である。 The present invention is based on the discovery that in the analysis of metabolites, substances of the TCA cycle that have not been focused on until now have changed significantly. The particular substance of the TCA cycle is very effective as a biomarker of microbial infection because of the marked difference that it is significantly reduced or hardly detectable. In addition, detection and determination can be performed at an early stage of infection, which is impossible to detect with a conventional marker. Furthermore, since the biomarker of the present invention is based on the blood concentration of these substances, the measurement is simple, rapid and inexpensive.
図1Aは、実施例の光イメージングに用いた超高感度CCDカメラを使用して生体内の微弱な光を捉えることができる器具(製品名:IVIS−Lumina LT)(Summit Pharmaceuticals International 社製)の写真である。FIG. 1A shows an instrument (product name: IVIS-Lumina LT) (manufactured by Summit Pharmaceuticals International Co., Ltd.) that can capture weak light in the living body using the ultra-sensitive CCD camera used in the optical imaging of the example. It is a photograph. 図1Bは、発光細菌を注入した大腿骨骨髄炎モデルマウスについて、光イメージングにより細菌の感染度合いを示した写真図である。発光細菌が発する微弱な光を動物の体表から超高感度CCDカメラが検出し、細菌の存在する部位が疑似カラーによる光イメージとして描出される。赤い部分ほど細菌量が多く、部分ほど細菌量が少ない。また、酸素とATPの存在下でのみ発光するため、生きた細菌のみが発光し、細菌が死滅した場合は発光しない。FIG. 1B is a photographic diagram showing the degree of bacterial infection by optical imaging in a femur osteomyelitis model mouse infused with luminescent bacteria. The ultra-sensitive CCD camera detects the faint light emitted by the luminescent bacteria from the body surface of the animal, and the site where the bacteria are present is rendered as a light image with a pseudo color. The red part has more bacteria and the part has less bacteria. Moreover, since it emits light only in the presence of oxygen and ATP, only living bacteria emit light, and no light is emitted when the bacteria die. 図2は、細菌量と発光量の相関関係を示した図である。細菌量(×10CFU)と発光量(×10光子/秒/cm)とは強い正の相関関係を示す。すなわち、発光量から細菌量が算出できる。FIG. 2 is a diagram showing the correlation between the amount of bacteria and the amount of luminescence. The amount of bacteria (× 10 7 CFU) and the amount of luminescence (× 10 6 photons / second / cm 2 ) show a strong positive correlation. That is, the amount of bacteria can be calculated from the amount of luminescence. 図3は、実施例において大腿骨骨髄炎モデルマウスを作製し、光イメージングで感染を確認した工程を示した模式図である。FIG. 3 is a schematic diagram showing a process of producing a femur osteomyelitis model mouse in the Example and confirming infection by optical imaging. 図4は、実施例における「感染群」、「シャム群」、「コントロール群」について、大腿骨にドリルで穴をあける手術の有無、及び、発光細菌の注入の有無、を整理した表である。FIG. 4 is a table in which “infectious group”, “sham group”, and “control group” in the examples are arranged with or without surgery for drilling the femur and with or without injection of luminous bacteria. . 図5は、メタボローム解析の結果に基づき、微生物の感染を判定する血中バイオマーカーを選定するための条件を示した図である。コントロール群とシャム群で差がなく、かつ、感染群でのみ高値(または低値)をとる物質が、手術後の感染を早期に判定できる血中バイオマーカーとして重要であると考えて、選定した。FIG. 5 is a diagram showing conditions for selecting blood biomarkers for determining the infection of microorganisms based on the results of metabolomic analysis. A substance that is not different between the control group and the sham group and that has a high (or low) value only in the infected group was selected because it is important as a blood biomarker that can determine infection after surgery early. . 図6は、メタボローム解析の結果を示す図である。赤色(+1~+3)が高値、緑色(−1~−3)が低値を示す。全部で297の物質が同定され、感染群で高濃度な物質は66種類、そのうち統計学的に有意な物質は12種類であった。感染群で低濃度な物質は195種類、統計学的に有意な物質は48種類であった。FIG. 6 is a diagram showing the results of metabolomic analysis. Red (+1 to +3) indicates a high value, and green (-1 to -3) indicates a low value. In total, 297 substances were identified, and 66 kinds of substances having a high concentration in the infected group, of which 12 kinds were statistically significant. There were 195 low-concentration substances and 48 statistically significant substances in the infected group. 図7は、感染群で高値をとる12物質について、コントロールを1.0としたときの、シャム群及び感染群の相対値を示したグラフである。各物質について、グラフの上から順に、「コントロール群」、「シャム群」、「感染群」の結果を示す。FIG. 7 is a graph showing the relative values of the sham group and the infected group when the control is set to 1.0 for 12 substances having high values in the infected group. For each substance, the results of “control group”, “sham group”, and “infection group” are shown in order from the top of the graph. 図8は、感染群で低値をとる48物質について、コントロールを1.0としたときの、シャム群及び感染群の相対値を示したグラフである。各物質について、グラフの上から順に、「コントロール群」、「シャム群」、「感染群」の結果を示す。コハク酸、α−ケトグルタル酸(2−オキソグルタル酸、2−OG)、フマル酸の3物質は、「感染群」では、検出限界以下まで減少した。FIG. 8 is a graph showing the relative values of the sham group and the infected group when the control is 1.0 for 48 substances that have a low value in the infected group. For each substance, the results of “control group”, “sham group”, and “infection group” are shown in order from the top of the graph. Three substances of succinic acid, α-ketoglutaric acid (2-oxoglutaric acid, 2-OG), and fumaric acid decreased to below the detection limit in the “infection group”. 図9は、β酸化の模式図である。実施例では、NAD+(ニコチンアミドアデニンジヌクレオチド)が、「感染群」においてのみ検出不能であった(枯渇)。これは、感染を一種の飢餓状態と解し、β酸化が亢進したためと考えられた。FIG. 9 is a schematic diagram of β-oxidation. In the examples, NAD + (nicotinamide adenine dinucleotide) was not detectable only in the “infected group” (depletion). This was thought to be because β-oxidation was enhanced by interpreting infection as a kind of starvation. 図10は、TCA回路の模式図である。FIG. 10 is a schematic diagram of a TCA circuit. 図11は、メタボローム解析の結果、TCA回路の各物質が「コントロール群」、「シャム群」、「感染群」でどのように相違するか、図7及び図8の結果をTCA回路図中の表示したものである。各物質に関するグラフは青色(左)、緑色(中央)、赤色(右)が各々、「コントロール群」、「シャム群」、「感染群」の結果を示す。TCA回路の、α−ケトグルタル酸(2−OG)より下流の物質が、「感染群」においてのみ枯渇し、一方、「コントロール群」、「シャム群」では維持されていることが理解される。FIG. 11 shows how the substances in the TCA circuit differ between the “control group”, “sham group”, and “infection group” as a result of the metabolome analysis, and the results of FIGS. 7 and 8 are shown in the TCA circuit diagram. It is displayed. In the graph regarding each substance, blue (left), green (center), and red (right) indicate the results of “control group”, “sham group”, and “infection group”, respectively. It is understood that substances downstream of α-ketoglutaric acid (2-OG) in the TCA cycle are depleted only in the “infected group”, while being maintained in the “control group” and the “sham group”. 図12は、本発明の技術的思想を理解するための模式図である。実施例において、TCA回路のうちα−ケトグルタル酸からリンゴ酸までの5つの物質が、感染群でのみほぼ枯渇していた。これはイソクエン酸からα−ケトグルタル酸が生成される反応においては必要なNAD+が感染群ではβ酸化の亢進により枯渇したことにより、α−ケトグルタル酸以降の物質が産生されなかったためと考えられる。本発明は、TCA回路のα−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸の5つの物質を、感染を早期に発見する血中バイオマーカーとして利用する。FIG. 12 is a schematic diagram for understanding the technical idea of the present invention. In the examples, five substances from α-ketoglutarate to malate in the TCA cycle were almost depleted only in the infected group. This is probably because NAD + necessary in the reaction in which α-ketoglutarate is generated from isocitrate was depleted due to the enhancement of β-oxidation in the infected group, so that no substance after α-ketoglutarate was produced. In the present invention, five substances of α-ketoglutarate, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle are used as blood biomarkers for early detection of infection. 図13は、整形外科における術後感染を疑われる3名の患者について、血中(血漿中)のクエン酸及びコハク酸の存在を調べた結果を示す。クエン酸は、UV吸収性測定キット(F−キットクエン酸・J.K.International社製)、コハク酸は、比色法による測定キット(コハク酸測定キット(Succinate Colorimetric Assay Kit)、BioVision社製)を用いて測定した。FIG. 13 shows the results of examining the presence of citric acid and succinic acid in blood (plasma) for three patients suspected of postoperative infection in orthopedics. Citric acid is a UV absorption measurement kit (F-kit citric acid, manufactured by JK International), and succinic acid is a colorimetric measurement kit (Succinate Colorometric Assay Kit), manufactured by BioVision ).
 本発明者らは、週齢12週のマウスで大腿骨に細菌を注入する手術を施行した骨髄炎モデルマウス12匹(感染群)、同様の手術のみおこない細菌を注入しないマウス12匹(シャム群)、手術をおこなわない12匹(コントロール群)を使用した。術後3日目に腹部大動脈から採血をおこない、約1200の代謝産物を検出できるメタボローム解析を実施し、3群間で比較した。その結果、骨髄炎モデルマウスで特異的に高値となる物質が12種類、特異的に低値となる物質が48種類同定された。その中でもTCA回路に関与する物質について、イソクエン酸から先の物質が感染群でのみほぼ枯渇しており、α−ケトグルタル酸(2−オキソグルタル酸、2−OG)、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸の5つの物質にその影響がみとめられた。本発明は、この5つの物質を微生物感染の血中バイオマーカーとして利用するものである。 The inventors of the present invention were 12 osteomyelitis model mice (infection group) that underwent surgery to inject bacteria into the femur in 12-week-old mice, and 12 mice (sham group) that were subjected to the same operation but did not inject bacteria. ), 12 animals (control group) that did not perform surgery. On the third day after surgery, blood was collected from the abdominal aorta, and metabolomic analysis was performed to detect about 1200 metabolites. As a result, 12 types of substances having specifically high values and 48 types of substances having specifically low values were identified in osteomyelitis model mice. Among them, substances involved in the TCA cycle are almost depleted only in the infected group from isocitrate, and α-ketoglutarate (2-oxoglutarate, 2-OG), succinyl-CoA, succinate, fumar The effects were found on five substances, acid and malic acid. The present invention utilizes these five substances as blood biomarkers of microbial infection.
 本発明は非限定的に以下の態様を含む。
1.微生物中の血中バイオマーカー
 本発明は、微生物中の血中バイオマーカーに関する。
The present invention includes, but is not limited to, the following aspects.
1. TECHNICAL FIELD The present invention relates to a blood biomarker in a microorganism.
 本発明の血中バイオマーカーは、TCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質からなる。 The blood biomarker of the present invention comprises one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle.
 (1)TCA回路中の物質
 「TCA回路」とは、好気的代謝に関する最も重要な生化学反応回路であり、酵素呼吸を行う生物全般に見られる。解糖や脂肪酸のβ酸化によって生成するアセチルCoAがこの回路に組み込まれ、酸化されることによって、ATPや電子伝達系で用いられるNADHなどが生じ、効率の良いエネルギー生産を可能にしている(図10)。また、アミノ酸などの生合成の前駆体も供給する。TCA回路は、TCAサイクル、トリカルボン酸回路、クエン酸回路、クレブス回路、などと呼ばれる場合もある。
(1) Substances in the TCA cycle The “TCA cycle” is the most important biochemical reaction circuit related to aerobic metabolism, and is found in all living organisms that perform enzyme respiration. Acetyl-CoA produced by glycolysis and β-oxidation of fatty acids is incorporated into this circuit and oxidized to produce ATP, NADH used in the electron transfer system, and the like, enabling efficient energy production (Fig. 10). It also supplies biosynthetic precursors such as amino acids. A TCA circuit may also be referred to as a TCA cycle, a tricarboxylic acid circuit, a citric acid circuit, a Krebs circuit, and the like.
 本発明者らは、微生物感染したマウスでは、感染していないマウスと比較して、TCA回路中のα−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸が減少していることを見出し、本発明を想到した。本発明は、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質からなる血中バイオマーカーであり、これらの物質のうち1またはそれより多くの血中濃度が正常値(感染前)と比較して減少している、あるいは、これらの物質のうち1またはそれより多くが枯渇している、即ち、血中濃度が検出限界以下の場合に、微生物に感染していると判断する。 The present inventors have found that α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle are decreased in microbially infected mice compared to uninfected mice. The inventor came up with the present invention. The present invention is a blood biomarker composed of one or more substances selected from the group consisting of α-ketoglutarate, succinyl-CoA, succinic acid, fumaric acid and malic acid, and one or more of these substances More blood levels are reduced compared to normal values (before infection), or one or more of these substances are depleted, ie blood levels are below the detection limit If so, determine that the person is infected with a microorganism.
 本発明の血中バイオマーカーは、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、5つの物質のうち、1以上、2以上、3以上、4以上又は5つの物質からなる。本発明において、5つの物質のうち、特に、α−ケトグルタル酸、コハク酸及びフマル酸の3つの物質は、微生物の感染群では枯渇している(血中濃度が検出限界以下)ことが明らかになった。よって、好ましくは、本発明の血中バイオマーカーは、α−ケトグルタル酸、コハク酸及びフマル酸からなる群から選択される、1以上の物質である。好ましくは、本発明の血中バイオマーカーは、α−ケトグルタル酸、コハク酸及びフマル酸からなる群から選択される、3つの物質のうち、1以上、2以上又は3つの物質からなる。 The blood biomarker of the present invention is one or more, two or more, three or more, four or more among five substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid. It consists of the above or five substances. In the present invention, among the five substances, in particular, three substances of α-ketoglutaric acid, succinic acid and fumaric acid are clearly depleted in the microbial infection group (blood concentration is below detection limit). became. Therefore, preferably, the blood biomarker of the present invention is one or more substances selected from the group consisting of α-ketoglutaric acid, succinic acid and fumaric acid. Preferably, the blood biomarker of the present invention consists of one or more, two or more or three substances among three substances selected from the group consisting of α-ketoglutaric acid, succinic acid and fumaric acid.
 (2)本発明の血中バイオマーカーの判定対象
微生物
 本発明の血中バイオマーカーは、対象への微生物の感染を判定することが可能なバイオマーカーである。「微生物」とは、人の肉眼でその存在が判別できず、顕微鏡などによって観察できる程度以下の大きさの微小な生物を指す総称である。細菌(真正細菌)、古細菌に加え、真菌(菌類)、原生生物、粘菌、藻類などの真核生物、ワムシのような小型の動物も含まれる。本発明の血中バイオマーカーを用いて判定可能な「微生物」は、狭義の生物に限定されず、対象(生体)に対し、感染可能で何らかの変化を起こしうる微小な物質であればよい。よって、「ウイルス」等の生体に感染可能な物質も、本発明、本明細書においては「微生物」に含む。
(2) Determination target microorganism of blood biomarker of the present invention The blood biomarker of the present invention is a biomarker capable of determining the infection of a target microorganism. The term “microorganism” is a generic term that refers to a microscopic organism having a size that cannot be distinguished with the naked eye and that can be observed with a microscope or the like. In addition to bacteria (eubacteria) and archaea, fungi (fungi), eukaryotes such as protists, slime molds and algae, and small animals such as rotifers are also included. The “microorganism” that can be determined using the blood biomarker of the present invention is not limited to a living organism in a narrow sense, and may be a minute substance that can infect an object (living body) and can cause some kind of change. Therefore, a substance capable of infecting a living body such as “virus” is also included in the “microorganism” in the present invention and the present specification.
 本発明における「微生物」は、好ましくは、細菌、真菌及びウイルスからなる群から選択される。より好ましくは、細菌である。細菌は、外科的手術において、最も感染が懸念される(感染を避けるべき)微生物の一態様である。 The “microorganism” in the present invention is preferably selected from the group consisting of bacteria, fungi and viruses. More preferably, it is a bacterium. Bacteria are one aspect of microorganisms that are most concerned about infection (to avoid infection) in surgical procedures.
 細菌
 「細菌」(真正細菌)は、sn−グリセロール3リン酸の脂肪酸エステルより構成される細胞膜を有する原核生物で、大腸菌、枯草菌、シアノバクテリアなどを含む生物群で、病原細菌として、ヒトや動物などの態様の感染症の原因となる。sn−グリセロール1リン酸のイソブレノイドエーテルより構成される細胞膜を有する、古細菌は、細菌(真正細菌)とは異なる系統に属する。
Bacteria “Bacteria” (Eubacteria) is a prokaryote having a cell membrane composed of fatty acid ester of sn-glycerol triphosphate, and is a group of organisms including Escherichia coli, Bacillus subtilis, cyanobacteria, etc. Causes infectious diseases such as animals. Archaea, which has a cell membrane composed of an isobrenoid ether of sn-glycerol monophosphate, belong to a different strain from bacteria (eubacteria).
 細菌は、グラム染色(細胞壁の相違で、染色に陽性の菌と陰性の菌に分かれる)、構造的または解剖学的性質(直接観察)、化学的性質(脂質の構造等)などによって、分類される。 Bacteria are classified by Gram staining (difference between cell positive and negative bacteria due to cell wall difference), structural or anatomical properties (direct observation), chemical properties (lipid structure, etc.) The
 本発明の一態様において、細菌はグラム陽性菌である。「グラム陽性菌」とは、グラム染色により紺青色あるいは紫色に染色される細菌の総称で、一般に、外膜を持たない、厚いペプチドグルカン層が存在するという特徴を有する。グラム陽性菌の多くがフィルミクテス門と放射菌門に分類される。グラム陽性菌に属する細菌の属には、ブドウ球菌属(Staphylococcus)、プロピオニバクテリウム属(Propionibacterium)(アクネ菌等)、エンテロコッカス属(Enterococcus)(腸球菌)、リステリア属(Listeria)(リステリア・モノサイトゲネス等)、レンサ球菌属(Streptococcus)(肺炎球菌、緑色レンサ球菌、β溶血性レンサ球菌等)、クロストリジウム属(Clostridium)(ボツリヌス菌、破傷風菌等)、バシラス属(Bacilllus)(炭疽菌、セレウス菌、枯草菌等)などが含まれる。 In one embodiment of the present invention, the bacterium is a Gram-positive bacterium. “Gram-positive bacteria” is a general term for bacteria that are stained dark blue or purple by Gram staining, and generally has a feature that there is a thick peptide glucan layer having no outer membrane. Many Gram-positive bacteria are classified as Firmictes and Radiomycota. The genus of bacteria belonging to Gram-positive bacteria includes Staphylococcus, Propionibacterium (Acne, etc.), Enterococcus (Enterococcus), Listeria (Listeria). Monocytogenes, etc.), Streptococcus (Streptococcus, Green Streptococcus, β-hemolytic Streptococcus, etc.), Clostridium (Botulinum, Tetanus, etc.), Bacillus (Bacillus) (Anthrax) , Bacillus cereus, Bacillus subtilis, etc.).
 ブドウ球菌属は、直径1μm程度のグラム陽性球菌で、ブドウの房状の不規則な配列を通性嫌気性の有機栄養菌である。2016年の現在、ブドウ球菌属の細菌は35種類に分類されており、「黄色ブドウ球菌」「表皮ブドウ球菌」、「腐性ブドウ球菌」の3菌種に大別される。「黄色ブドウ球菌(Staphylococcus aureus)」は、ヒトや動物の皮膚、消化管の常在菌で、膿瘍等の様々な表皮感染症や食中毒、また肺炎、髄膜炎、敗血症等の重篤・致死的な感染症の起因菌でもある。黄色ブドウ球菌による感染は、表皮およびその直下の組織に限局した部位に見られることが多い、外科的手術において、最も感染が懸念される(感染を避けるべき)細菌の一種である。黄色ブドウ球菌は、抗生物質メチシリンに耐性を示すメチシリン感受性黄色ブドウ球菌(MSSA)の他、メチシリン耐性黄色ブドウ球菌(MRSA)、バンコマイシン黄色ブドウ球菌(VRSA)などの薬剤耐性菌も含む。「表皮ブドウ球菌(Staphylococcus epidermidis)」は、主として鼻腔や表皮に常在する。通常は非病原性であり、他の病原菌から表皮を守るバリアーや、表皮を健康に保つ役目を果たしている菌であるが、体内に侵入すると病原性を発することがある。プラスチック表面などに対する付着性が強くまた表皮の常在菌であるため、手術の際にカテーテルや心臓弁などの医療用器具に付着して体内に侵入することがある。特に体内に留置するタイプの医療器具に付着して、そこで増殖することによって深在性の化膿症の原因になることがある。抗生物質メチシリンに耐性を示すメチシリン感受性表皮ブドウ球菌(MSSE)の他、メチシリン耐性表皮ブドウ球菌(MRSE)などの薬剤耐性菌も含む。 The genus Staphylococcus is a Gram-positive cocci with a diameter of about 1 μm, and is a facultative and anaerobic organic vegetative bacterium with an irregular arrangement of grape tufts. As of 2016, bacteria belonging to the genus Staphylococcus are classified into 35 types, and are roughly divided into three species: “Staphylococcus aureus”, “Staphylococcus epidermidis”, and “Rotogenic staphylococci”. “Staphylococcus aureus” is a permanent bacterium in the skin and digestive tract of humans and animals, and various epidermic infections such as abscesses and food poisoning, as well as severe and fatal diseases such as pneumonia, meningitis and sepsis It is also the cause of common infections. Infection with Staphylococcus aureus is one of the most susceptible to infections in surgical procedures (to avoid infection), which is often found in sites confined to the epidermis and tissues just below it. Staphylococcus aureus includes drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin Staphylococcus aureus (VRSA) in addition to methicillin-sensitive Staphylococcus aureus (MSSA) that is resistant to the antibiotic methicillin. “Staphylococcus epidermidis” is mainly present in the nasal cavity and epidermis. It is usually non-pathogenic and is a barrier that protects the epidermis from other pathogenic bacteria and plays a role in keeping the epidermis healthy, but it may cause pathogenicity when it enters the body. Because of its strong adherence to plastic surfaces and the like, and because it is a resident microorganism of the epidermis, it may adhere to medical instruments such as catheters and heart valves during surgery and may enter the body. In particular, it may cause deep suppuration by adhering to and growing on medical devices of the type that are placed in the body. In addition to methicillin-sensitive Staphylococcus epidermidis (MSSE) that is resistant to the antibiotic methicillin, drug-resistant bacteria such as methicillin-resistant Staphylococcus epidermidis (MRSE) are also included.
 プロピオニバクテリウム属は、無芽胞嫌気桿菌で皮膚や粘膜の常在細菌で、糖からプロピオン酸を産生する。代表的な筋腫として、ニキビの原因と言われているアクネ菌(Propionibacterium acnes)を含む。 Propionibacterium genus is an spore-free anaerobic bacterium that is a resident bacterium on the skin and mucous membranes and produces propionic acid from sugar. Representative myomas include acne (Propionibacterium acnes), which is said to be the cause of acne.
 「腸球菌」は、特定の細菌種ではなくエンテロコッカス属(Enterococcus)に属する約20種の総称である。腸球菌は、主にヒトを含む哺乳類の腸管内に存在する一群の常在菌で、球菌の形態をとる。健康な人間の腸内から一般的に検出され、通性嫌気性でグラム陽性の連鎖球菌であって、グルコース、マルトース、ラクトース、スクロースを分解し、60℃の加熱に30分間耐える菌が該当する。主な種としてEnterococcus属のE.faecalis、E.faecium、E.avium、E.casseliflavus、E.gallinarum、E.flavescensなどがある。病原性は弱く、通常であれば害はないが、手術後、免疫不全など細菌感染に対する抵抗力が低下した患者に対する日和見感染の例が知られ、場合によっては敗血症などを引き起こすおそれがある。特に、バンコマイシン耐性腸球菌(VRE)が問題となる。 “Enterococcus” is a general term for about 20 species belonging to the genus Enterococcus rather than a specific bacterial species. Enterococci are a group of resident bacteria mainly present in the intestinal tract of mammals including humans and take the form of cocci. This is a facultative anaerobic and Gram-positive streptococci that is generally detected in the intestines of healthy humans and that breaks down glucose, maltose, lactose, and sucrose and withstands heating at 60 ° C for 30 minutes . As the main species, E. coli of the genus Enterococcus. faecalis, E .; faecium, E.M. avium, E.I. caseliflavus, E.I. gallinarum, E.M. flavescens. The pathogenicity is weak and usually harmless, but there are known examples of opportunistic infections for patients who have decreased resistance to bacterial infection such as immunodeficiency after surgery, and may cause sepsis in some cases. In particular, vancomycin-resistant enterococci (VRE) are a problem.
 細菌は、好ましくは黄色ブドウ球菌、表皮ブドウ球菌、アクネ菌及び腸球菌からなる群から選択される。より好ましくは、細菌は、黄色ブドウ球菌又は表皮ブドウ球菌である。一態様において、黄色ブドウ球菌である。一態様において、メチシリン耐性黄色ブドウ球菌(MRSA)、又は、メチシリン耐性黄色ブドウ球菌(MRSE)である。 The bacterium is preferably selected from the group consisting of Staphylococcus aureus, Staphylococcus epidermidis, acne and enterococci. More preferably, the bacterium is S. aureus or S. epidermidis. In one embodiment, S. aureus. In one embodiment, methicillin resistant Staphylococcus aureus (MRSA) or methicillin resistant Staphylococcus aureus (MRSE).
 本発明の一態様において、細菌は「グラム陰性菌」である。「グラム陰性菌」は、グラム染色において紫色(クリスタルバイオレット)に染まらず、赤色又は桃色に見える細菌の総称である。グラム陰性菌は、細胞質性の膜、薄いペプチドグリカン層(グラム陽性菌ではより厚い層である)などの特徴を有する。グラム陰性菌の病原性には、細胞壁のある種の成分が関与している。グラム陰性菌の膜の外葉は脂質部位が内毒素として機能する複雑なリポ多糖類(LPS)により構成されている。 循環系に内毒素が侵入した場合、発熱、呼吸促拍、低血圧を引き起こす。エンドトキシンショックを引き起こすと死亡することがある。ヒトではLPSはサイトカイン産生、免疫系の活性化による先天性免疫反応を引き起こす。炎症はサイトカイン産生による通常の反応であり、宿主にとって害となり得る。 In one embodiment of the present invention, the bacterium is a “gram-negative bacterium”. “Gram-negative bacteria” is a general term for bacteria that do not stain purple (crystal violet) in Gram staining and appear red or pink. Gram-negative bacteria have characteristics such as a cytoplasmic membrane and a thin peptidoglycan layer (thicker layer in Gram-positive bacteria). Certain components of the cell wall are involved in the pathogenicity of Gram-negative bacteria. The outer leaf of the membrane of Gram-negative bacteria is composed of complex lipopolysaccharide (LPS) whose lipid site functions as an endotoxin. When endotoxin enters the circulatory system, it causes fever, respiratory prompting and hypotension. Death may occur if endotoxin shock is caused. In humans, LPS induces innate immune responses through cytokine production and activation of the immune system. Inflammation is a normal reaction due to cytokine production and can be harmful to the host.
 プロテオバクテリアはグラム陰性菌の主要なグループであり、大腸菌、サルモネラ、ヘリコバクター、腸内細菌科、シュードモナス、モラクセラ、ステノトロフォモナ、ブデロビブリオ、酢酸菌、レジオネラ、そしてWolbachiaなどのα−プロテオバクテリアが含まれる。他の代表的なグラム陰性菌のグループとして緑膿菌、アシネトバクター、シアノバクテリア、スピロヘータ、緑色硫黄細菌、バクテロイデスが含まれる。 Proteobacteria are a major group of Gram-negative bacteria, including E. coli, Salmonella, Helicobacter, Enterobacteriaceae, Pseudomonas, Moraxella, Stenotrophomona, Buderobibrio, Acetic acid bacteria, Legionella, and α-Proteobacteria such as Wolbachia It is. Other representative groups of Gram-negative bacteria include Pseudomonas aeruginosa, Acinetobacter, cyanobacteria, spirochetes, green sulfur bacteria, and Bacteroides.
 本発明の一態様において、細菌は、大腸菌、サルモネラ、ヘリコバクター、緑膿菌又はアシネトバクターである。 In one embodiment of the present invention, the bacterium is Escherichia coli, Salmonella, Helicobacter, Pseudomonas aeruginosa, or Acinetobacter.
 大腸菌(Escherichia coli)は、グラム陰性の桿菌で通性嫌気性菌に属し、環境中に存在するバクテリアの主要な種の一つである。大腸菌の株は多数報告されており、一部では動物に害となりうる性質を持つものもある。大部分の健康な成人の持っている株では下痢を起こす程度で何の症状も示さないものがほとんどであるが、幼児や病気などによって衰弱している者、あるいはある種の薬物を服用している者などでは、特殊な株が病気を引き起こすことがあり、時として死亡に至ることもある。例えば、ヒトの場合、大腸内ではなく、血液中や尿路系に侵入した場合(異所感染した場合)に病原体となる。内毒素(リポ多糖)を産生するため、大腸菌による敗血症は重篤なエンドトキシンショックを引き起こす。敗血症の原因(明らかになる場合)として最も多いのは尿路感染症であるが、大腸菌は尿路感染症の原因菌として最も多いものである。大腸菌の株の中でも特に強い病原性を示すものは病原性大腸菌とよばれる。食品衛生学分野では病原大腸菌ともよぶ。ただし、病原性大腸菌の中でも赤痢を起こす株については特に赤痢菌とよび、衛生管理上の問題から別種扱いされる。 Escherichia coli is a Gram-negative bacilli that belongs to facultative anaerobes and is one of the major species of bacteria present in the environment. Many strains of E. coli have been reported, and some have properties that can be harmful to animals. Most healthy adults have strains that cause diarrhea and do not show any symptoms, but those who are debilitated by infants or illness, or taking certain drugs In some people, special strains can cause illness and sometimes death. For example, in the case of a human, it becomes a pathogen when it enters the blood or urinary system (in case of ectopic infection), not in the large intestine. Because of the production of endotoxin (lipopolysaccharide), sepsis from E. coli causes severe endotoxin shock. Urinary tract infections are the most common cause of sepsis (if it becomes apparent), but Escherichia coli is the most common cause of urinary tract infections. Among Escherichia coli strains, those showing particularly strong pathogenicity are called pathogenic Escherichia coli. Also called pathogenic E. coli in the field of food hygiene. However, strains that cause dysentery among pathogenic Escherichia coli are called Shigella and are treated differently due to hygiene management problems.
 真菌
 「真菌」(菌類)とは、一般にキノコ・カビ・酵母と呼ばれる生物の総称であり、菌界に属する生物を指す。外部の有機物を利用する従属栄養生物であり、分解酵素を分泌して細胞外で養分を消化し、細胞表面から摂取する。
Fungi “Fungus” (fungi) is a general term for organisms generally called mushrooms, molds, and yeasts, and refers to organisms belonging to the fungal kingdom. It is a heterotrophic organism that uses external organic matter, secretes degrading enzymes, digests nutrients outside the cell, and ingests it from the cell surface.
 医学及び獣医学領域においては菌類を真菌と呼び、その学問を医真菌学と称する。真菌による感染症は一般に真菌症と呼ばれ、患部が皮膚の角質などに止まり真皮に及ばない表在性真菌症と、患部が真皮以降の皮下組織におよぶ深部表在性真菌症や、脳、肺、心臓などの内部臓器まで及ぶ深在性真菌症(全身性真菌症、内臓真菌症)に大別される。菌類によってヒトやその他の動物が感染する病気(感染症)として、白癬菌による白癬(水虫、たむし、およびしらくも)やカンジダによるカンジダ症、クリプトコックスによるクリプトコックス症、アスペルギルスによるアスペルギルス症、プネウモキスチス(ニューモシスチス)によるニューモシスチス肺炎などがあり、臨床的に問題となっている。 In the field of medicine and veterinary medicine, fungi are called fungi, and the study is called medical mycology. Infections caused by fungi are generally called mycosis, and superficial mycosis where the affected area stops in the keratin of the skin and does not reach the dermis, deep superficial mycosis that affects the subcutaneous tissue after the dermis, brain, It is roughly classified into deep mycosis (systemic mycosis, visceral mycosis) that extends to internal organs such as lungs and heart. Diseases that infect humans and other animals with fungi (infections) include ringworms caused by ringworms, candidiasis caused by Candida, candidiasis caused by Candida, cryptococcosis caused by Cryptococcus, aspergillosis caused by Aspergillus, pneumocystis ( Pneumocystis pneumonia due to Pneumocystis) is a clinical problem.
 ウイルス
 「ウイルス」は、他の生物の細胞を利用して、自己を複製させることのできる微小な構造体で、タンパク質の殻とその内部に入っている核酸からなる。ウイルスは細胞を構成単位としないが、遺伝子を有し、他の生物の細胞を利用して増殖できるという、生物の特徴を持っている。ウイルスは、感染することで宿主の恒常性に影響を及ぼし、病原体としてふるまうことがある。本発明の血中バイオマーカーによって感染が判定されうる微生物には、微小の感染性因子である「ウイルス」も含む。
Virus A “virus” is a microscopic structure that can replicate itself using cells of other organisms. It consists of a protein shell and a nucleic acid contained in the protein shell. Viruses do not have cells as constituent units, but they have genes and have the characteristics of organisms that can be propagated using cells of other organisms. Viruses can affect host homeostasis when infecting, and can act as pathogens. Microorganisms whose infection can be determined by the blood biomarker of the present invention include “viruses” that are minute infectious agents.
 ウイルスは遺伝物質の違いから、DNAを主要な構成要素とするDNAウイルスとRNAを構成要素とするRNAウイルスに大別される。DNAウイルスには、非限定的に、天然痘ウイルス、単純ヘルペスウイルス、水痘・帯状疱疹ウイルス、アデノウイルス、パピローマウイルス、B型肝炎ウイルス、EBウイルス、パルボウイルス等が含まれる。RNAウイルスには、非限定的に、インフルエンザウイルス、ノロウイルス、SARSウイルス、風疹ウイルス、ポリオウイルス、エボラウイルス、黄熱病ウイルス、デング熱ウイルス、C型肝炎ウイルス、ヒト免疫不全ウイルス、麻疹ウイルス、ムンプスウイルス等が含まれる。 Viruses are broadly classified into DNA viruses that have DNA as a major component and RNA viruses that have RNA as a component because of the difference in genetic material. The DNA virus includes, but is not limited to, smallpox virus, herpes simplex virus, varicella-zoster virus, adenovirus, papilloma virus, hepatitis B virus, EB virus, parvovirus and the like. Examples of RNA viruses include, but are not limited to, influenza virus, norovirus, SARS virus, rubella virus, poliovirus, Ebola virus, yellow fever virus, dengue virus, hepatitis C virus, human immunodeficiency virus, measles virus, mumps virus, etc. Is included.
 (3)血中バイオマーカーの血中濃度
 本発明は、細菌等の微生物が対象に感染したか否かを、TCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質を血中バイオマーカー(指標)として判定する、というものである。感染とは、生物の体内もしくは表面に、より体積の小さい微生物等の病原体が寄生し、増殖するようになることである。
(3) Blood concentration of blood biomarker In the present invention, whether or not a microorganism such as a bacterium has infected a subject is determined based on whether α-ketoglutarate, succinyl-CoA, succinic acid, fumaric acid or apple in the TCA cycle. One or more substances selected from the group consisting of acids are determined as blood biomarkers (indicators). Infection means that a pathogen such as a microorganism having a smaller volume infests or grows in the body or surface of an organism.
 本発明の血中バイオマーカーを使用できる「対象」は、微生物が感染し宿主となる可能性がある生体であれば特に限定されない。好ましくは、ヒト、サル、ゴリラ、オラウータン、ウシ、ウマ、イヌ、ネコ、マウス、ラット、ウサギ、ヒツジ、ヤギ、ブタ等の哺乳動物である。より好ましくは、ヒト、サル等の霊長類である。最も好ましくはヒトである。 The “subject” to which the blood biomarker of the present invention can be used is not particularly limited as long as it is a living organism that can be infected by microorganisms and become a host. Preferred are mammals such as humans, monkeys, gorillas, orangutans, cows, horses, dogs, cats, mice, rats, rabbits, sheep, goats and pigs. More preferred are primates such as humans and monkeys. Most preferred is a human.
 本発明者らは、TCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、微生物の感染により、正常値(感染前)と比較して減少する、あるいは、これらの物質のうち1またはそれより多くが枯渇する、ことを見出し、本発明を想到した。よって、これらの物質が、正常値(感染前)と比較して減少している、あるいは、これらの物質のうち1またはそれより多くが枯渇している、即ち、血中濃度が検出限界以下の場合に、微生物に感染していると判断する。 The inventors of the TCA circuit have a blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid, and malic acid due to infection by microorganisms. The present invention was conceived by finding that it decreases compared to normal values (before infection), or that one or more of these substances are depleted. Therefore, these substances are reduced compared to normal values (before infection), or one or more of these substances are depleted, that is, the blood concentration is below the detection limit If so, determine that the person is infected with a microorganism.
 これらの各物質の血中濃度は、例えば、以下のようにして測定可能である。非限定的に、例えば、ヒトの場合、3mlの血液を採取する。例えば、酵素法、F−キットシリーズ(ロシュ・ダイアグノスティックス社製)により測定することができる。例えば、コハク酸は、コハク酸測定キット(Succinate Colorimetric Assay Kit)、BioVision社製)を用いて測定することができる。あるいは、例えば、Anal.Chem.,2009,81,6165−6174に記載の方法によって、各物質を測定することも可能である。 The blood concentration of each of these substances can be measured, for example, as follows. Without limitation, for example, in the case of a human, 3 ml of blood is collected. For example, it can be measured by an enzymatic method, F-kit series (manufactured by Roche Diagnostics). For example, succinic acid can be measured using a succinic acid measurement kit (Succinate Colorimetric Assay Kit, manufactured by BioVision). Alternatively, for example, Anal. Chem. , 2009, 81, 6165-6174, each substance can be measured.
 微生物に感染していない状態の各物質の血中濃度を予め測定しておくことにより、感染の可能性が疑われる事情が生じた後の血中濃度と比較することが可能である。感染の可能性が疑われる事情とは、例えば、外科的な手術、外傷、感染者との接触、局所の発赤・腫脹・熱感等である。なお、α−ケトグルタル酸、コハク酸及びフマル酸の3つの物質については、微生物の感染により、血中濃度が検出限界以下になることが本発明において見出された。よって、これらの3物質については、正常値が測定されていない場合でも、血中バイオマーカーとして利用可能である。 By measuring the blood concentration of each substance that is not infected with microorganisms in advance, it can be compared with the blood concentration after occurrence of a suspected possibility of infection. The circumstances in which the possibility of infection is suspected include, for example, surgical operation, trauma, contact with an infected person, local redness, swelling, thermal sensation, and the like. It has been found in the present invention that three substances, α-ketoglutaric acid, succinic acid and fumaric acid, have blood concentrations below the detection limit due to microbial infection. Therefore, these three substances can be used as blood biomarkers even when normal values are not measured.
 本発明の微生物の血中バイオマーカーは、一態様として、微生物の感染の有無を判定するために使用することができる。微生物の感染は、手術(手術中、手術後)、治療(注射等)、外傷などによって、あるいは、宿主が易感染宿主の場合(関節リウマチなどの自己免疫疾患、肝機能障害、腎機能障害、免疫不全等)の場合などに生じうる。 The blood biomarker of a microorganism of the present invention can be used for determining the presence or absence of a microorganism infection as one aspect. Microbial infection can be caused by surgery (during surgery, after surgery), treatment (injection, etc.), trauma, etc., or when the host is an easily infected host (such as rheumatoid arthritis, autoimmune diseases, liver dysfunction, renal dysfunction, This may occur in the case of immunodeficiency.
 一態様において、本発明の血中バイオマーカーは、手術における微生物の感染を判定する。以下、非限定的に、「手術」を感染の可能性が疑われる事情の一例として、本発明の態様を説明する。 In one aspect, the blood biomarker of the present invention determines the infection of microorganisms in surgery. Hereinafter, the aspect of the present invention will be described as an example of a situation in which “surgical operation” is suspected of the possibility of infection without limitation.
 本発明の一態様において、手術(感染の可能性が疑われる事情の例)後1日以降の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度を、手術前の対応する物質の血中濃度と比較する。好ましくは、手術後2日以降、3日以降である。好ましくは、手術後30日以内、14日以内、7日以内、5日以内である。好ましくは、手術後1−30日、手術後1−14日、手術後1−7日である。より好ましくは、1−6日、2−5日、3−4日である。 In one embodiment of the present invention, α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid, and malic acid in the TCA cycle in blood after 1 day after surgery (example of suspected infection) The blood concentration of one or more substances selected from the group consisting of is compared with the blood concentration of the corresponding substance prior to surgery. Preferably, after 2 days after surgery, after 3 days. Preferably, it is within 30 days, within 14 days, within 7 days, and within 5 days after surgery. Preferably, 1-30 days after surgery, 1-14 days after surgery, and 1-7 days after surgery. More preferably, it is 1-6 days, 2-5 days, 3-4 days.
 手術後の血中濃度と手術前の上記物質の濃度を比較した結果、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度と比較して減少している場合、微生物に感染していると判断される。「減少している場合」とは、非限定的に、例えば、手術後の血中濃度と手術前の上記物質の濃度を比較した結果、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度と比較して60%以下に減少している場合、より好ましくは、50%以下、40%以下、30%以下、20%以下、10%以下、5%以下である。一態様において、手術後の血中濃度は検出限界以下である。検出限界以下とは、例えば、0.05μM以下、0.03μM以下、0.01μM以下である。特に、α−ケトグルタル酸、コハク酸及びフマル酸の3つの物質は、感染による減少の度合いが著しい。 As a result of comparing the blood concentration after surgery with the concentration of the above-mentioned substance before surgery, if the blood concentration of one or more substances is reduced compared to the blood concentration of the corresponding substance before surgery, microorganisms It is determined to be infected. “When it is decreased” means, for example, but not limited to, as a result of comparing the blood concentration after surgery with the concentration of the above-mentioned substance before surgery, the blood concentration of one or more substances corresponds to that before surgery. When it is reduced to 60% or less compared to the blood concentration of the substance to be treated, it is more preferably 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, 5% or less. In one embodiment, the blood concentration after surgery is below the detection limit. For example, the detection limit or less is 0.05 μM or less, 0.03 μM or less, or 0.01 μM or less. In particular, the three substances α-ketoglutaric acid, succinic acid and fumaric acid are markedly reduced by infection.
 本発明の血中バイオマーカーは、非限定的に、例えば以下の態様を含む。
 −手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の60%以下に減少している場合、微生物に感染していると判断される、血中バイオマーカー。
 −手術後1−30日の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の60%以下に減少している場合、微生物に感染していると判断される、血中バイオマーカー。
 −手術後1−14日の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の60%以下に減少している場合、微生物に感染していると判断される、血中バイオマーカー。
 −手術後1−7日の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の60%以下に減少している場合、微生物に感染していると判断される、血中バイオマーカー。
 −手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の50%以下に減少している場合、微生物に感染していると判断される、血中バイオマーカー。
 −手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の30%以下に減少している場合、微生物に感染していると判断される、血中バイオマーカー。
 −手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の10%以下に減少している場合、微生物に感染していると判断される、血中バイオマーカー。
 −手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、コハク酸及びフマル酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の30%以下に減少している場合、微生物感染していると判断される、血中バイオマーカー。
 −手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、コハク酸及びフマル酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の10%以下に減少している場合、微生物感染していると判断される、血中バイオマーカー。
The blood biomarker of the present invention includes, but is not limited to, for example, the following embodiments.
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood after 1 day after surgery, A blood biomarker that is judged to be infected with a microorganism when it is reduced to 60% or less of the blood concentration of the corresponding substance before surgery.
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in blood 1-30 days after surgery; A blood biomarker that is determined to be infected with a microorganism when the blood concentration of the corresponding substance before surgery is reduced to 60% or less.
The blood concentration of one or more substances selected from the group consisting of α-ketoglutarate, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in blood 1-14 days after surgery A blood biomarker that is determined to be infected with a microorganism when the blood concentration of the corresponding substance before surgery is reduced to 60% or less.
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in blood 1-7 days after surgery; A blood biomarker that is determined to be infected with a microorganism when the blood concentration of the corresponding substance before surgery is reduced to 60% or less.
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood after 1 day after surgery, A blood biomarker that is judged to be infected with a microorganism when it is reduced to 50% or less of the blood concentration of the corresponding substance before surgery.
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood after 1 day after surgery, A blood biomarker that is judged to be infected with a microorganism when it is reduced to 30% or less of the blood concentration of the corresponding substance before surgery.
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood after 1 day after surgery, A blood biomarker that is judged to be infected with a microorganism when it is reduced to 10% or less of the blood concentration of the corresponding substance before surgery.
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinic acid and fumaric acid in the TCA cycle in the blood after the first day after the operation, the blood concentration of the corresponding substance before the operation A blood biomarker that is judged to be microbially infected when it is reduced to 30% or less of the blood concentration.
The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinic acid and fumaric acid in the TCA cycle in the blood after the first day after the operation, the blood concentration of the corresponding substance before the operation A blood biomarker that is judged to be microbially infected when it is reduced to 10% or less of the blood concentration.
 2.手術における微生物の感染を判定するための方法
 本発明はまた、手術における微生物の感染を判定するための方法に関する。
2. The present invention also relates to a method for determining microbial infection in surgery.
 本発明の判定方法は、
(1)手術前の対象において、TCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度を測定し、
(2)手術後の対象において、工程(1)で測定した物質の血中濃度を測定し、
(3)(2)で測定した濃度が(1)で測定した濃度よりも減少している場合、微生物に感染していると判断する、
という工程を含む。
The determination method of the present invention includes:
(1) Measure blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid, and malic acid in the TCA circuit in the subject before surgery. ,
(2) In the subject after surgery, measure the blood concentration of the substance measured in step (1),
(3) If the concentration measured in (2) is lower than the concentration measured in (1), it is determined that the organism is infected.
Including the process.
 「微生物」、「TCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質」、「血中濃度」等の定義、説明は、「1.微生物中の血中バイオマーカー」において記載した通りである。 Definitions of “microorganism”, “one or more substances selected from the group consisting of α-ketoglutarate, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle”, “blood concentration”, etc. The explanation is as described in “1. Blood biomarkers in microorganisms”.
 「(2)手術後の対象において、工程(1)で測定した物質の血中濃度を測定」に関し、手術後から何日目に測定をするのかについて、「(2)で測定した濃度が(1)で測定した濃度よりも減少している場合」については、「1.微生物中の血中バイオマーカー」において記載した内容と同様である。 Regarding “(2) Measuring blood concentration of substance measured in step (1) in the subject after surgery”, the concentration measured in (2) is ( The case where the concentration is lower than the concentration measured in 1) is the same as described in “1. Blood biomarker in microorganism”.
 本発明の判定方法、非限定的に、例えば以下の態様を含む。
 −上記工程(2)において、工程(1)で測定した物質の血中濃度を手術後1日以降の対象において測定し、(2)で測定した血中濃度が(1)で測定した血中濃度の60%以下に減少している場合、微生物に感染していると判断する、判定方法。
 −上記工程(2)において、工程(1)で測定した物質の血中濃度を手術後1日−30日の対象において測定し、(2)で測定した血中濃度が(1)で測定した血中濃度の60%以下に減少している場合、微生物に感染していると判断する、判定方法。
 −工程(2)において、工程(1)で測定した物質の血中濃度を手術後1日以降の対象において測定し、(2)で測定した血中濃度が(1)で測定した血中濃度よりも30%以下に減少している場合、微生物に感染していると判断する、判定方法。
The determination method of the present invention includes, but is not limited to, for example, the following aspects.
-In the above step (2), the blood concentration of the substance measured in step (1) is measured in the subject after 1 day after the operation, and the blood concentration measured in (2) is the blood concentration measured in (1) The determination method of determining that it is infected with microorganisms when it has decreased to 60% or less of the concentration.
-In the above step (2), the blood concentration of the substance measured in step (1) was measured in the subject 1 day to 30 days after the operation, and the blood concentration measured in (2) was measured in (1) The determination method of determining that it is infected with microorganisms when it has decreased to 60% or less of the blood concentration.
-In the step (2), the blood concentration of the substance measured in the step (1) is measured in the subject after 1 day after the operation, and the blood concentration measured in (2) is the blood concentration measured in (1). The determination method of determining that it is infected with microorganisms when it has decreased to 30% or less.
 3.対象における微生物の感染を判定するための方法
 本発明また、対象における微生物の感染を判定するための方法に関する。
3. The present invention also relates to a method for determining microbial infection in a subject.
 本発明の判定方法は、
 TCA回路中のα−ケトグルタル酸、コハク酸及びフマル酸からなる群から選択される1以上の物質の血中濃度を測定し、
 上記物質の血中濃度が検出限界以下の場合、微生物に感染していると判断する、という工程を含む。
The determination method of the present invention includes:
Measuring the blood concentration of one or more substances selected from the group consisting of α-ketoglutarate, succinate and fumaric acid in the TCA cycle;
If the blood concentration of the substance is below the detection limit, it is determined that the substance is infected with a microorganism.
 α−ケトグルタル酸、コハク酸及びフマル酸の3つの物質については、微生物の感染により、血中濃度が検出限界以下になることが本発明において見出された。よって、これらの3物質については、正常値が測定されていない場合でも、血中濃度が検出限度以下の場合に、微生物が感染していると判定することができる。 It has been found in the present invention that three substances, α-ketoglutaric acid, succinic acid and fumaric acid, have a blood concentration below the detection limit due to microbial infection. Therefore, even if normal values are not measured for these three substances, it can be determined that the microorganism is infected when the blood concentration is below the detection limit.
 「微生物」、「TCA回路中の、α−ケトグルタル酸、コハク酸、フマル酸からなる群から選択される、1以上の物質」、「血中濃度」「検出限度以下」等の定義、説明は、「1.微生物中の血中バイオマーカー」において記載した通りである。 Definition and explanation of “microorganism”, “one or more substances selected from the group consisting of α-ketoglutaric acid, succinic acid, fumaric acid in TCA cycle”, “blood concentration”, “under detection limit”, etc. , “1. Blood biomarkers in microorganisms”.
 本発明の判定方法、非限定的に、例えば以下の態様を含む。
 −検出限界以下とは、0.03μM以下である、判定方法。
 −対象が、手術後1日以降の哺乳動物である、判定方法。
 −対象が、手術後1日−30日の哺乳動物である、判定方法。
The determination method of the present invention includes, but is not limited to, for example, the following aspects.
-The below detection limit is the determination method which is 0.03 micromol or less.
-Determination method in which the subject is a mammal from 1 day after surgery.
-A determination method, wherein the subject is a mammal 1-30 days after surgery.
 以下、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。当業者は本明細書の記載に基づいて容易に本発明に修飾・変更を加えることができ、それらは本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples. Those skilled in the art can easily modify and change the present invention based on the description of the present specification, and these are included in the technical scope of the present invention.
 実施例1 骨髄炎モデルマウスを用いた新規バイオマーカーの探索
 本実施例では、骨髄炎モデルマウスを用いた新規バイオマーカーの探索を行った。具体的には、週齢12週のマウスで大腿骨に細菌を注入する手術を施行した骨髄炎モデルマウス12匹(感染群)、同様の手術のみおこない細菌を注入しないマウス12匹(シャム群)、手術をおこなわない12匹(コントロール群)を使用した。術後3日目に腹部大動脈から採血をおこない、約1200の代謝産物を検出できるメタボローム解析を実施し、3群間で比較した。
Example 1 Search for New Biomarker Using Osteomyelitis Model Mouse In this example, a search for a new biomarker using an osteomyelitis model mouse was performed. Specifically, twelve mice with osteomyelitis who underwent surgery to inject bacteria into the femur in 12-week-old mice (infected group), and 12 mice that performed only the same operation but did not inject bacteria (sham group) Twelve animals (control group) that did not perform surgery were used. On the third day after surgery, blood was collected from the abdominal aorta, and metabolomic analysis was performed to detect about 1200 metabolites.
 材料及び方法
(1)光イメージングと発光細菌
 本実施例には光イメージング(IVIS imaging system)と発光細菌(ルシフェラーゼ発現黄色ブドウ球菌)を使用した。光イメージングは超高感度CCDカメラを使用して生体内の微弱な光を捉えることができる器具(製品名:IVIS−Lumina LT)(Summit Pharmaceuticals International社製)であり、発光細菌は生存する限り微弱な蛍光を発光するように遺伝子導入された細菌で、Caliper LS社製 Staphylococcus aureus(Xen−29)をSigma−Aldrich社製Luria Bertani培地にて Photorhabdus lumenscens luxABCDEを導入することにより入手した。
Materials and Methods (1) Optical Imaging and Luminescent Bacteria In this example, optical imaging (IVIS imaging system) and luminescent bacteria (luciferase-expressing Staphylococcus aureus) were used. Optical imaging is an instrument (product name: IVIS-Lumina LT) (manufactured by Summit Pharmaceuticals International) that can capture weak light in the living body using an ultra-sensitive CCD camera, and the luminescent bacteria are weak as long as they survive. A bacterium that has been gene-transfected so as to emit light, and obtained is obtained by introducing Staphylococcus aureus (Xen-29) manufactured by Caliper LS and Photolabhabdus lumscens luxABCDE using Luria Bertani medium manufactured by Sigma-Aldrich.
 これらを利用すれば、生体内で発光細菌が生存しているかどうかを光イメージングで確認することが可能である(図1A、図1B)。この検出できる発光の強さと細菌の量は正の相関関係にあることが認められている(図2)。 If these are used, it is possible to confirm whether or not the luminescent bacteria are alive in the living body by optical imaging (FIGS. 1A and 1B). It has been observed that this detectable intensity of luminescence and the amount of bacteria are positively correlated (FIG. 2).
 (2)大腿骨骨髄炎モデルマウス
 図3に、大腿骨骨髄炎モデルマウスの作製工程を示す。12週齢のマウスの大腿骨にドリルで穴をあける手術をおこない、ここに、感染群として発光細菌(1μl、濃度1.0×10CFU)を注入した。
(2) Femur osteomyelitis model mouse FIG. 3 shows a process for producing a femur osteomyelitis model mouse. Surgery was performed to drill a thighbone in a 12-week-old mouse, and luminescent bacteria (1 μl, concentration 1.0 × 10 8 CFU) were injected as an infected group.
 これは非常に安定して大腿骨骨髄炎(感染状態)を作成できるモデルである。本実施例では研究ではモデルマウス12体(感染群)、手術のみおこない細菌を注入しないマウス12体(シャム群)、手術をおこなわないマウス12体(コントロール群)を使用し、それぞれを比較することとした(図4)。手術の麻酔は採血結果に影響を及ぼさないエーテル麻酔を用い、術後3日目に腹部大動脈から採血をおこなった(各500μl)。検体は遠心分離にかけて、血漿成分を300μl採取して解析に使用した。 This is a model that can create femur osteomyelitis (infection state) very stably. In this example, the study uses 12 model mice (infected group), 12 mice that do only surgery and do not inject bacteria (sham group), and 12 mice that do not perform surgery (control group), and compare them. (FIG. 4). The anesthesia for the operation was ether anesthesia that did not affect the blood collection results, and blood was collected from the abdominal aorta 3 days after the operation (each 500 μl). The sample was centrifuged and 300 μl of plasma component was collected and used for analysis.
 (3)メタボローム解析
 生体内には、核酸(DNA)やタンパク質の他に、糖、有機酸、アミノ酸、脂質、ステロイド誘導体など多くの低分子が存在し、その種類は数千種類に及ぶ。これらの多くは、酵素などの代謝活動によって作り出された代謝産物である。ある1つの組織に含まれる、代謝中間体、ホルモン、シグナル分子、二次代謝産物などを含む生体中の全ての小分子を集め、カタログ化したもの総称を「メタボローム」と呼称する。メタボロームは、時間ごとに刻々と変化する。メタボローム解析は、新陳代謝の実態および細胞、組織、器官、個体、種の各階層でそれぞれ微妙に異なる代謝経路の多様性の総体をバイオインフォマティクス的手法を基に研究するもので、微小な物質の種類、濃度を網羅的に一度に解析できる手法である。
(3) Metabolome analysis In addition to nucleic acids (DNA) and proteins, there are many small molecules such as sugars, organic acids, amino acids, lipids, and steroid derivatives in the living body, and there are thousands of types. Many of these are metabolites produced by metabolic activities such as enzymes. A collective catalog of all small molecules in a living body including metabolic intermediates, hormones, signal molecules, secondary metabolites, and the like contained in a single tissue is called a “metabolome”. The metabolome changes every hour. Metabolome analysis is based on bioinformatics methods to study the actual state of metabolism and the total diversity of metabolic pathways that are slightly different in each layer of cells, tissues, organs, individuals, and species. This is a technique that can comprehensively analyze the concentration at once.
 (2)「大腿骨骨髄炎モデルマウス」において採取した血液に対し、糖、アミノ酸、脂質、ステロイド誘導体などの約1200種類の分子のデータを網羅的に測定し、メタボローム解析をおこなった。本実施例のメタボローム解析には、HumanMetabolome社のDual Scan(CE−TOFMSおよびLC−TOFMS)を用いた。 (2) About 1,200 kinds of molecular data such as sugars, amino acids, lipids, steroid derivatives, etc. were comprehensively measured from the blood collected in the “femur osteomyelitis model mouse” and subjected to metabolomic analysis. For the metabolomic analysis of this example, Dual Scan (CE-TOFMS and LC-TOFMS) manufactured by HumanMetabolome was used.
 感染群とシャム群の比較では細菌の感染の有無による違いを、シャム群とコントロール群の比較では手術の有無による違いを判定した。本解析ではコントロール群とシャム群で差がなく、かつ、感染群でのみ高値(または低値)をとる物質が、手術に影響されない早期に感染を同定できる血中バイオマーカーとして重要であると考えて、選定した(図5)。 In the comparison between the infected group and the sham group, the difference due to the presence or absence of bacterial infection was determined, and in the comparison between the sham group and the control group, the difference due to the presence or absence of surgery was determined. In this analysis, a substance that has no difference between the control group and the sham group and that has a high value (or low value) only in the infected group is considered to be important as a blood biomarker that can identify infection at an early stage without being affected by surgery. (Figure 5).
 結果と考察
(1)メタボローム解析の結果を図6に示す。全部で297の物質が同定された。それぞれの物質の各群内での濃度を比較すると、感染群で高濃度な物質は66種類、そのうち統計学的に有意な物質は12種類であった(図7)。感染群で低濃度な物質は195種類、統計学的に有意な物質は48種類であった(図8)。その中でもβ酸化とTCA回路という代謝経路に関与する物質の値の変化が非常に特徴的であった。
Results and Discussion (1) The results of metabolome analysis are shown in FIG. A total of 297 substances were identified. Comparing the concentration of each substance within each group, 66 substances were high in the infected group, of which 12 were statistically significant (FIG. 7). In the infected group, there were 195 low-concentration substances and 48 statistically significant substances (FIG. 8). Among them, changes in the values of substances involved in metabolic pathways such as β-oxidation and TCA cycle were very characteristic.
 図8に示したように、α−ケトグルタル酸、コハク酸及びフマル酸の3つの物質は検出限界以下(検出されず)であった。リンゴ酸は、コントロール群と比較して約30%にまで減少していた(70%低下)。 As shown in FIG. 8, the three substances α-ketoglutaric acid, succinic acid and fumaric acid were below the detection limit (not detected). Malic acid was reduced to about 30% compared to the control group (70% decrease).
 (2)β酸化(図9)
 β酸化とは脂肪酸からアセチルCoAを産生する反応で、飢餓状態で脂肪からエネルギーを産生する方法である。感染は生体にとっては一種の飢餓状態である。本実施例ではこのβ酸化の反応に必要なNAD+(ニコチンアミドアデニンジヌクレオチド)が、感染群でのみ検出不能で、特異的に枯渇していた。これは、感染を一種の飢餓状態と解し、β酸化が亢進したためと考えられた。この感染状態(飢餓状態)によるNAD+の枯渇は、本実施例の大腿骨骨髄炎モデルマウスのみでなく、ヒトを含む哺乳動物において、そして、黄色ブドウ球菌のみでなく、その他の細菌、種々の微生物の「感染」により、生体が飢餓状態になれば、同様に生じると考えられる。
(2) β-oxidation (Figure 9)
β-oxidation is a reaction for producing acetyl CoA from fatty acid, and is a method for producing energy from fat in a starved state. Infection is a kind of starvation for the body. In this example, NAD + (nicotinamide adenine dinucleotide) necessary for this β-oxidation reaction was not detectable only in the infected group and was specifically depleted. This was thought to be because β-oxidation was enhanced by interpreting infection as a kind of starvation. The depletion of NAD + due to this infection state (starvation state) is caused not only in the femur osteomyelitis model mouse of this example but also in mammals including humans, and not only S. aureus but also other bacteria, various microorganisms. If the living body becomes starved due to the "infection"
 (3)TCA回路(図10−図12)
 TCA回路はアセチルCoAをもとに生体内でエネルギーを産生する、生物の最も重要な代謝経路の一つである(図10)。メタボローム解析の結果、感染群では、TCA回路のうち、α−ケトグルタル酸からリンゴ酸までの物質が、ほぼ枯渇していることが判明した(図11)。これはイソクエン酸からα−ケトグルタル酸が生成される工程が阻害されれば説明がつく結果である。α−ケトグルタル酸を生成する反応においてはNAD+が必要であり、感染群では先述のβ酸化の亢進によりNAD+が枯渇したことにより、この反応が滞ったと考えられる(図12)。このためTCA回路のα−ケトグルタル酸からリンゴ酸までの物質は、感染を早期に発見する血中バイオマーカーとして有効である。
(3) TCA circuit (FIGS. 10 to 12)
The TCA cycle is one of the most important metabolic pathways of living organisms that produce energy in vivo based on acetyl-CoA (FIG. 10). As a result of metabolome analysis, it was found that in the infected group, substances from α-ketoglutarate to malate in the TCA cycle were almost depleted (FIG. 11). This is a result that can be explained if the process of producing α-ketoglutaric acid from isocitrate is inhibited. NAD + is required in the reaction to produce α-ketoglutaric acid, and it is considered that this reaction was delayed in the infected group due to depletion of NAD + due to the above-described enhancement of β-oxidation (FIG. 12). Therefore, substances from α-ketoglutarate to malate in the TCA cycle are effective as blood biomarkers for early detection of infection.
 実施例2 ヒト血中のコハク酸の存在と感染の有無を検証
 本実施例では、ヒト血中(血漿中)のコハク酸の存在と感染の有無を検証した。具体的には、整形外科における術後感染の早期発見を目的として、術後感染を疑われる症例(3例)の採血行った。
 患者1:45歳男性 多発海綿状血管腫の手術後、感染が疑われたため、術後9日目に採血。
 患者2:50歳女性 腰椎変性すべり症の手術後、微熱継続していたため、術後7日目に採血。
 患者3:71歳男性 神経鞘腫の手術後、軽度の創癒合不全が観察されたため、術後7日目に採血。
Example 2 Verification of the presence of succinic acid in human blood and the presence or absence of infection In this example, the presence of succinic acid in human blood (in the plasma) and the presence or absence of infection were verified. Specifically, blood was collected from cases (3 cases) suspected of postoperative infection for the purpose of early detection of postoperative infection in orthopedics.
Patient 1: 45-year-old male Blood was collected on the 9th day after surgery because infection was suspected after surgery for multiple cavernous hemangioma.
Patient 2: A 50-year-old woman After the operation for lumbar degenerative spondylolisthesis, slight fever continued.
Patient 3: 71-year-old man After surgery for schwannomas, slight wound healing was observed, so blood was collected on the 7th postoperative day.
 いずれの患者も、術後1週間程度で、微熱の継続や創部の腫脹などがあり、術後感染が否定できない状態であった。採血は1ml真空採血管(EDTA2K含・TERUMO社製)を使用し、4℃ 1200回転/分x10分で直ちに遠心分離をおこない、−80℃で冷凍保存した。同検体を常温で自然解凍した上で、クエン酸を酵素法によるUV吸収性測定キット(F−キットクエン酸・J.K.International社製)で、コハク酸を比色法による測定キット(コハク酸測定キット(Succinate Colorimetric Assay Kit)、BioVision社製)でそれぞれ測定した。 All patients had continuation of slight fever and swelling of the wound in about one week after the operation, and postoperative infection could not be ruled out. For blood collection, a 1 ml vacuum blood collection tube (including EDTA2K / manufactured by TERUMO) was used, immediately centrifuged at 4 ° C., 1200 rpm / min × 10 minutes, and stored frozen at −80 ° C. The sample was naturally thawed at room temperature, and citric acid was measured using an enzymatic UV absorption measurement kit (F-kit citric acid, manufactured by JK International Co.), and succinic acid was measured using a colorimetric method (succinic acid). Each measurement was performed with an acid measurement kit (Succinate Colorimetric Assay Kit, manufactured by BioVision).
 図13に示すように、患者1はコハク酸が検出限界(40μM)以下であったが、患者2、3はコハク酸が検出された。クエン酸は、いずれの患者にも検出された。結果として、患者1は感染をしていたことが判明したため、抗生剤の投与など感染症の治療を行った。患者2、3は、感染をしておらず、感染症の治療は不要であった。 As shown in FIG. 13, succinic acid was detected in patient 1 and below the detection limit (40 μM), but succinic acid was detected in patients 2 and 3. Citric acid was detected in all patients. As a result, it was found that patient 1 was infected, and treatment for infectious diseases such as administration of antibiotics was performed. Patients 2 and 3 were not infected and treatment of the infection was unnecessary.
 本実施例より、ヒト血中(血漿中)のコハク酸の非存在(非検出)が、感染と関連していることが示され、コハク酸は感染のバイオマーカーとして有用ことが裏付けられた。 From this example, it was shown that the absence (non-detection) of succinic acid in human blood (plasma) is associated with infection, which proved that succinic acid is useful as a biomarker for infection.
 本発明は、代謝産物の解析において、特に、これまで全く着目されていなかったTCA回路の物質が顕著に変化していたことを発見したことによる。TCA回路の特定の物質が、著しく減少する、あるいは、ほとんど検出できないという顕著な差であるので、微生物の感染のバイオマーカーとして非常に有効である。また、感染のごく初期の、従来のマーカーでは検出不可能であった早期における検出・判定が可能である。さらに、本発明の血中バイオマーカーはこれらの物質の血中濃度に基づくので、測定も簡便で、迅速、かつ、安価である。そのため微生物の感染を特異的に判定する血中バイオマーカー、判定方法として、早期診断と早期治療の上で、臨床上極めて意義が大きい。さらに、微生物の感染の血中バイオマーカーとして有用なだけでなく、生体内での微生物、特に細菌感染症に対する反応のメカニズムそのものの解明にも寄与する。本発明は感染症の研究分野において革新的な成果をあげられるものである。 The present invention is based on the discovery that in the analysis of metabolites, substances of the TCA cycle that have not been focused on until now have changed significantly. The particular substance of the TCA cycle is very effective as a biomarker of microbial infection because of the marked difference that it is significantly reduced or hardly detectable. In addition, detection and determination can be performed at an early stage of infection, which is impossible to detect with a conventional marker. Furthermore, since the blood biomarker of the present invention is based on the blood concentration of these substances, the measurement is simple, rapid and inexpensive. Therefore, as a blood biomarker and determination method for specifically determining the infection of microorganisms, it is of great clinical significance in terms of early diagnosis and early treatment. Furthermore, it is not only useful as a blood biomarker for infection of microorganisms, but also contributes to the elucidation of the reaction mechanism itself against microorganisms in vivo, particularly bacterial infections. The present invention provides innovative results in the field of infectious disease research.

Claims (39)

  1.  TCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質からなる、微生物の血中バイオマーカー。 A microbial blood biomarker comprising one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA circuit.
  2.  微生物による感染の有無を判定する請求項1に記載の血中バイオマーカー。 The blood biomarker according to claim 1, wherein the presence or absence of infection by microorganisms is determined.
  3.  手術における微生物の感染を判定するための請求項1又は2に記載の血中バイオマーカー。 The blood biomarker according to claim 1 or 2, which is used to determine infection of microorganisms in surgery.
  4.  手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の60%以下に減少している場合、微生物に感染していると判断される、請求項1−3のいずれか1項に記載の血中バイオマーカー。 The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood after one day after the operation is The blood biomarker according to any one of claims 1 to 3, wherein the blood biomarker according to any one of claims 1 to 3 is judged to be infected with a microorganism when the blood concentration of the corresponding substance is decreased to 60% or less.
  5.  手術後1−30日の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の60%以下に減少している場合、微生物に感染していると判断される、請求項1−3のいずれか1項に記載の血中バイオマーカー。 The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood 1-30 days after surgery, The blood biomarker according to any one of claims 1 to 3, wherein the blood biomarker according to any one of claims 1 to 3 is determined to be infected with a microorganism when the concentration of the corresponding substance before surgery is reduced to 60% or less.
  6.  手術後1−14日の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の60%以下に減少している場合、微生物に感染していると判断される、請求項1−3のいずれか1項に記載の血中バイオマーカー。 The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in blood 1-14 days after surgery is The blood biomarker according to any one of claims 1 to 3, wherein the blood biomarker according to any one of claims 1 to 3 is determined to be infected with a microorganism when the concentration of the corresponding substance before surgery is reduced to 60% or less.
  7.  手術後1−7日の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の60%以下に減少している場合、微生物に感染していると判断される、請求項1−3のいずれか1項に記載の血中バイオマーカー。 The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood 1-7 days after the operation, The blood biomarker according to any one of claims 1 to 3, wherein the blood biomarker according to any one of claims 1 to 3 is determined to be infected with a microorganism when the concentration of the corresponding substance before surgery is reduced to 60% or less.
  8.  手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の50%以下に減少している場合、微生物に感染していると判断される、請求項1−7のいずれか1項に記載の血中バイオマーカー。 The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood after one day after the operation is The blood biomarker according to any one of claims 1 to 7, wherein the blood biomarker according to any one of claims 1 to 7 is judged to be infected with a microorganism when the blood concentration of the previous corresponding substance is reduced to 50% or less.
  9.  手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の30%以下に減少している場合、微生物に感染していると判断される、請求項1−7のいずれか1項に記載の血中バイオマーカー。 The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood after one day after the operation is The blood biomarker according to any one of claims 1 to 7, wherein the blood biomarker according to any one of claims 1 to 7 is judged to be infected with a microorganism when the blood concentration of the corresponding substance is reduced to 30% or less.
  10.  手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の10%以下に減少している場合、微生物に感染していると判断される、請求項1−7のいずれか1項に記載の血中バイオマーカー。 The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid and malic acid in the TCA cycle in the blood after one day after the operation is The blood biomarker according to any one of claims 1 to 7, wherein the blood biomarker according to any one of claims 1 to 7 is judged to be infected with a microorganism when the blood concentration of the corresponding substance is decreased to 10% or less.
  11.  TCA回路中の物質が、α−ケトグルタル酸、コハク酸及びフマル酸からなる群から選択される、1以上の物質である、請求項1−10のいずれか1項に記載の血中バイオマーカー。 The blood biomarker according to any one of claims 1 to 10, wherein the substance in the TCA circuit is one or more substances selected from the group consisting of α-ketoglutaric acid, succinic acid, and fumaric acid.
  12.  手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、コハク酸及びフマル酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の30%以下に減少している場合、微生物感染していると判断される、請求項1又は11に記載の血中バイオマーカー。 The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinic acid, and fumaric acid in the TCA circuit in the blood after one day after surgery is the blood of the corresponding substance before surgery. The blood biomarker according to claim 1 or 11, wherein the blood biomarker is determined to be infected with a microorganism when the concentration is reduced to 30% or less of the medium concentration.
  13.  手術後1日以降の血中のTCA回路中の、α−ケトグルタル酸、コハク酸及びフマル酸からなる群から選択される、1以上の物質の血中濃度が、手術前の対応する物質の血中濃度の10%以下に減少している場合、微生物感染していると判断される、請求項1又は11に記載の血中バイオマーカー。 The blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinic acid, and fumaric acid in the TCA circuit in the blood after one day after surgery is the blood of the corresponding substance before surgery. The blood biomarker according to claim 1 or 11, wherein the blood biomarker is determined to be infected with a microorganism when the concentration is reduced to 10% or less of the medium concentration.
  14.  微生物が、細菌、真菌及びウイルスからなる群から選択される、請求項1−13のいずれか1項に記載の血中バイオマーカー。 The blood biomarker according to any one of claims 1 to 13, wherein the microorganism is selected from the group consisting of bacteria, fungi and viruses.
  15.  微生物が細菌である、請求項1−14のいずれか1項に記載の血中バイオマーカー。 The blood biomarker according to any one of claims 1 to 14, wherein the microorganism is a bacterium.
  16.  細菌が、グラム陽性菌である請求項15に記載の血中バイオマーカー。 The blood biomarker according to claim 15, wherein the bacterium is a Gram-positive bacterium.
  17.  細菌が、黄色ブドウ球菌、表皮ブドウ球菌、アクネ菌及び腸球菌からなる群から選択される、請求項15又は16に記載の血中バイオマーカー。 The blood biomarker according to claim 15 or 16, wherein the bacterium is selected from the group consisting of Staphylococcus aureus, Staphylococcus epidermidis, Acne and enterococci.
  18.  細菌が、黄色ブドウ球菌又は表皮ブドウ球菌である、請求項15−17のいずれか1項に記載の血中バイオマーカー。 The blood biomarker according to any one of claims 15 to 17, wherein the bacterium is Staphylococcus aureus or Staphylococcus epidermidis.
  19.  細菌が、黄色ブドウ球菌である、請求項15−18のいずれか1項に記載の血中バイオマーカー。 The blood biomarker according to any one of claims 15 to 18, wherein the bacterium is Staphylococcus aureus.
  20.  細菌が、グラム陰性菌である請求項15に記載の血中バイオマーカー。 The blood biomarker according to claim 15, wherein the bacterium is a Gram-negative bacterium.
  21.  手術における微生物の感染を判定するための方法であって、
     (1)手術前の対象において、TCA回路中の、α−ケトグルタル酸、スクシニル−CoA、コハク酸、フマル酸及びリンゴ酸からなる群から選択される、1以上の物質の血中濃度を測定し、
     (2)手術後の対象において、工程(1)で測定した物質の血中濃度を測定し、
     (3)(2)で測定した濃度が(1)で測定した濃度よりも減少している場合、微生物に感染していると判断する、
    前記判定方法。
    A method for determining microbial infection in surgery,
    (1) Measure blood concentration of one or more substances selected from the group consisting of α-ketoglutaric acid, succinyl-CoA, succinic acid, fumaric acid, and malic acid in the TCA circuit in the subject before surgery. ,
    (2) In the subject after surgery, measure the blood concentration of the substance measured in step (1),
    (3) If the concentration measured in (2) is lower than the concentration measured in (1), it is determined that the organism is infected.
    The determination method.
  22.  工程(2)において、工程(1)で測定した物質の血中濃度を手術後1日以降の対象において測定し、(2)で測定した血中濃度が(1)で測定した血中濃度の60%以下に減少している場合、微生物に感染していると判断する、請求項21に記載の判定方法。 In the step (2), the blood concentration of the substance measured in the step (1) is measured in the subject after the first day after the operation, and the blood concentration measured in (2) is the blood concentration measured in (1). The determination method according to claim 21, wherein it is determined that the microorganism is infected when it is reduced to 60% or less.
  23.  工程(2)において、工程(1)で測定した物質の血中濃度を手術後1日−30日の対象において測定し、(2)で測定した血中濃度が(1)で測定した血中濃度の60%以下に減少している場合、微生物に感染していると判断する、請求項21又は22に記載の判定方法。 In the step (2), the blood concentration of the substance measured in the step (1) is measured in a subject 1 to 30 days after the operation, and the blood concentration measured in (2) is the blood concentration measured in (1). The determination method according to claim 21 or 22, wherein when the concentration is reduced to 60% or less, it is determined that the microorganism is infected.
  24.  TCA回路中の物質が、α−ケトグルタル酸、コハク酸及びフマル酸からなる群から選択される、1以上の物質である、請求項21−23のいずれか1項に記載の判定方法。 The determination method according to any one of claims 21 to 23, wherein the substance in the TCA circuit is one or more substances selected from the group consisting of α-ketoglutaric acid, succinic acid, and fumaric acid.
  25.  工程(2)において、工程(1)で測定した物質の血中濃度を手術後1日以降の対象において測定し、(2)で測定した血中濃度が(1)で測定した血中濃度よりも30%以下に減少している場合、微生物に感染していると判断する、請求項24に記載の判定方法。 In the step (2), the blood concentration of the substance measured in the step (1) is measured in a subject after 1 day after the operation, and the blood concentration measured in (2) is more than the blood concentration measured in (1). 25. The determination method according to claim 24, wherein it is determined that the microorganism is infected when the value is also reduced to 30% or less.
  26.  微生物が、細菌、真菌及びウイルスからなる群から選択される、請求項21−25のいずれか1項に記載の判定方法。 The determination method according to any one of claims 21 to 25, wherein the microorganism is selected from the group consisting of bacteria, fungi and viruses.
  27.  微生物が細菌である、請求項21−26のいずれか1項に記載の判定方法。 The determination method according to any one of claims 21 to 26, wherein the microorganism is a bacterium.
  28.  細菌が、黄色ブドウ球菌、表皮ブドウ球菌、アクネ菌及び腸球菌からなる群から選択される、請求項26又は27に記載の判定方法。 The determination method according to claim 26 or 27, wherein the bacterium is selected from the group consisting of Staphylococcus aureus, Staphylococcus epidermidis, Acne and enterococci.
  29.  細菌が、黄色ブドウ球菌又は表皮ブドウ球菌である、請求項26−28のいずれか1項に記載の判定方法。 The determination method according to any one of claims 26 to 28, wherein the bacterium is Staphylococcus aureus or Staphylococcus epidermidis.
  30.  細菌が、黄色ブドウ球菌である、請求項26−29のいずれか1項に記載の判定方法。 The determination method according to any one of claims 26 to 29, wherein the bacterium is Staphylococcus aureus.
  31.  対象における微生物の感染を判定するための方法であって、
     TCA回路中のα−ケトグルタル酸、コハク酸及びフマル酸からなる群から選択される1以上の物質の血中濃度を測定し、
     上記物質の血中濃度が検出限界以下の場合、微生物に感染していると判断する、前記判定方法。
    A method for determining microbial infection in a subject comprising:
    Measuring the blood concentration of one or more substances selected from the group consisting of α-ketoglutarate, succinate and fumaric acid in the TCA cycle;
    The said determination method of determining that it is infected with microorganisms, when the blood concentration of the said substance is below a detection limit.
  32.  微生物が、細菌、真菌及びウイルスからなる群から選択される、請求項31に記載の判定方法。 32. The determination method according to claim 31, wherein the microorganism is selected from the group consisting of bacteria, fungi and viruses.
  33.  微生物が細菌である、請求項31又は32に記載の判定方法。 The determination method according to claim 31 or 32, wherein the microorganism is a bacterium.
  34.  細菌が、黄色ブドウ球菌、表皮ブドウ球菌、アクネ菌及び腸球菌からなる群から選択される、請求項32又は33に記載の判定方法。 The determination method according to claim 32 or 33, wherein the bacterium is selected from the group consisting of Staphylococcus aureus, Staphylococcus epidermidis, Acne and enterococci.
  35.  細菌が、黄色ブドウ球菌又は表皮ブドウ球菌である、請求項32−34のいずれか1項に記載の判定方法。 35. The determination method according to any one of claims 32-34, wherein the bacterium is Staphylococcus aureus or Staphylococcus epidermidis.
  36.  細菌が、黄色ブドウ球菌である、請求項32−35のいずれか1項に記載の判定方法。 The determination method according to any one of claims 32-35, wherein the bacterium is Staphylococcus aureus.
  37.  検出限界以下とは、0.03μM以下である、請求項29−33のいずれか1項に記載の判定方法。 The determination method according to any one of claims 29 to 33, wherein "below the detection limit" is 0.03 µM or less.
  38.  対象が、手術後1日以降の哺乳動物である、請求項31−37のいずれか1項に記載の判定方法。 The determination method according to any one of claims 31 to 37, wherein the subject is a mammal from one day after surgery.
  39.  対象が、手術後1日−30日の哺乳動物である、請求項31−38のいずれか1項に記載の判定方法。 The determination method according to any one of claims 31 to 38, wherein the subject is a mammal 1 to 30 days after surgery.
PCT/JP2018/005603 2017-02-09 2018-02-09 Blood biomarker WO2018147472A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018567548A JPWO2018147472A1 (en) 2017-02-09 2018-02-09 Blood biomarkers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017022018 2017-02-09
JP2017-022018 2017-02-09

Publications (1)

Publication Number Publication Date
WO2018147472A1 true WO2018147472A1 (en) 2018-08-16

Family

ID=63107669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005603 WO2018147472A1 (en) 2017-02-09 2018-02-09 Blood biomarker

Country Status (2)

Country Link
JP (1) JPWO2018147472A1 (en)
WO (1) WO2018147472A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009523435A (en) * 2006-01-19 2009-06-25 エントレス アーベー Diagnostic and therapeutic methods
US20100136600A1 (en) * 2007-04-12 2010-06-03 Carolyn Slupsky Urine based detection of a disease state caused by a pneumococcal infection
JP2010538968A (en) * 2007-06-01 2010-12-16 ザ トラスティーズ オブ プリンストン ユニバーシティ Treatment of viral infections by regulating host cell metabolic pathways
JP2012024555A (en) * 2010-06-24 2012-02-09 Institute Of Physical & Chemical Research Biomarker for fatigue, and use thereof
US20120197539A1 (en) * 2009-10-09 2012-08-02 Carolyn Slupsky Methods for diagnosis, treatment and monitoring of patient health using metabolomics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009523435A (en) * 2006-01-19 2009-06-25 エントレス アーベー Diagnostic and therapeutic methods
US20100136600A1 (en) * 2007-04-12 2010-06-03 Carolyn Slupsky Urine based detection of a disease state caused by a pneumococcal infection
JP2010538968A (en) * 2007-06-01 2010-12-16 ザ トラスティーズ オブ プリンストン ユニバーシティ Treatment of viral infections by regulating host cell metabolic pathways
US20120197539A1 (en) * 2009-10-09 2012-08-02 Carolyn Slupsky Methods for diagnosis, treatment and monitoring of patient health using metabolomics
JP2012024555A (en) * 2010-06-24 2012-02-09 Institute Of Physical & Chemical Research Biomarker for fatigue, and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEWTON, P. B. ET AL.: "Some biochemical effects of the microsporidian nosema whitei on the blood components of tribolium castaneum using disc electrophoresis", COMP. BIOCHEM. PHYSIOL. B, vol. 74, no. 3, 1983, pages 553 - 558, XP025755763 *

Also Published As

Publication number Publication date
JPWO2018147472A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
Dickson et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome
Das et al. Microbial metabolite signaling is required for systemic iron homeostasis
Rocchetta et al. Validation of a noninvasive, real-time imaging technology using bioluminescent Escherichia coli in the neutropenic mouse thigh model of infection
Lueschow et al. Loss of murine Paneth cell function alters the immature intestinal microbiome and mimics changes seen in neonatal necrotizing enterocolitis
JP6940417B2 (en) Bacterial identification and antimicrobial susceptibility testing
Hayase et al. Mucus-degrading Bacteroides link carbapenems to aggravated graft-versus-host disease
Ulu-Kilic et al. Tularemia in central Anatolia
Lockhart et al. Use of urinary gram stain for detection of urinary tract infection in infants
Heitkamp et al. Association of Enterococcus spp. with severe combat extremity injury, intensive care, and polymicrobial wound infection
Zhou et al. Mice with inflammatory bowel disease are susceptible to Clostridium difficile infection with severe disease outcomes
Rashid et al. Development of antimicrobial resistance in the normal anaerobic microbiota during one year after administration of clindamycin or ciprofloxacin
HJElMEVOll et al. Appropriate time for test-of-cure when diagnosing gonorrhoea with a nucleic acid amplification test
Kalule et al. Proteomic comparison of three clinical diarrhoeagenic drug-resistant Escherichia coli isolates grown on CHROMagar™ STEC media
Mamani et al. Antibacterial susceptibility of Escherichia coli among outpatients with community-acquired urinary tract infection in Hamadan, Iran
Zhu et al. Metagenomic next-generation sequencing can clinch diagnosis of non-tuberculous mycobacterial infections: a case report
Re et al. Diagnostic value of procalcitonin in ventilator-associated pneumonia
Kao et al. Enterococcus faecalis suppresses Staphylococcus aureus-induced NETosis and promotes bacterial survival in polymicrobial infections
WO2018147472A1 (en) Blood biomarker
Huang et al. Metagenomic next-generation sequencing versus traditional laboratory methods for the diagnosis and treatment of infection in liver transplantation
JP2005130768A (en) Medium for detecting enterococcus
Lubell et al. Urinary tract infections in children: Testing a novel, noninvasive, point‐of‐care diagnostic marker
Ali The Isolation and Identification of H. pylori among Iraq patients with chronic gastric inflammation
Wei et al. The Diagnostic Value of High-Resolution Computed Tomography Features Combined with Mycoplasma Pneumoniae Ribonucleic Acid Load Detection for Refractory Mycoplasma Pneumonia
Li et al. Identification of Enterocytozoon bieneusi in an HIV-negative bronchiectasis patient with respiratory infection based on metagenomic next-generation sequencing: A case report
Gupta et al. Isolation, identification, speciation, and antibiogram of enterococcus species by conventional methods and assessment of the prevalence of vana genotype among VRE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018567548

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751444

Country of ref document: EP

Kind code of ref document: A1