WO2018147213A1 - Cellulose particles and method for manufacturing same - Google Patents

Cellulose particles and method for manufacturing same Download PDF

Info

Publication number
WO2018147213A1
WO2018147213A1 PCT/JP2018/003765 JP2018003765W WO2018147213A1 WO 2018147213 A1 WO2018147213 A1 WO 2018147213A1 JP 2018003765 W JP2018003765 W JP 2018003765W WO 2018147213 A1 WO2018147213 A1 WO 2018147213A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
particles
cellulose particles
porous
less
Prior art date
Application number
PCT/JP2018/003765
Other languages
French (fr)
Japanese (ja)
Inventor
寛子 田中
直樹 今津
寿 御山
竹崎 宏
栄英 安蒜
平原 武彦
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2018508265A priority Critical patent/JPWO2018147213A1/en
Publication of WO2018147213A1 publication Critical patent/WO2018147213A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose

Definitions

  • the present invention relates to porous cellulose particles and a method for producing the same.
  • cellulose particles are attracting attention as a scrub agent used for facial cleansers and toothpastes (see, for example, Patent Document 1).
  • the porous shape makes it easy to wet water and the like, and is expected to show a high cleaning effect while suppressing irritation to the skin.
  • it is expected to impart additional functions such as fragrances, deodorants, bactericides, and antibacterial agents to porous cellulose particles, and its use as various functional additives in cosmetics and paints is attracting attention.
  • porous particles produced by pulverizing cellulose have a problem that sufficient porosity cannot be formed.
  • Patent Documents 1 and 2 disclose porous cellulose particles. However, since the porosity is low and the surface has many irregularities, a sufficient function cannot be imparted. Furthermore, it is a spherical porous particle, and its addition amount is limited and its detergency is not sufficient for use as an additive in a scrub agent or the like.
  • the present invention enables cellulose particles to highly absorb solvents, soften and reduce irritation to the skin, and to carry a high concentration of fragrances, deodorants, bactericides, antibacterial agents and the like.
  • the object is to provide particles.
  • the present invention comprises the following configurations (1) to (8).
  • the salt containing alkali metal and / or alkaline earth metal or the agent for preventing mold generation is 1.0% by mass or less, according to any one of (1) to (4), Cellulose particles.
  • a method for producing cellulose particles comprising pulverizing a cellulose sponge.
  • the cellulose particles of the present invention are porous cellulose particles having a volume average particle diameter of 50 ⁇ m or more and 1000 ⁇ m or less and having an excellent adsorption capacity, and in particular, have a highly porous particle internal structure with a specified amount of linseed oil absorption. Have. For this reason, the ability to fully absorb a solvent is high, the irritation
  • the cellulose particles of the present invention have a smooth particle surface and absorb and swell the solvent when dispersed in the solvent, but exhibit unique rheological properties that do not increase the viscosity, and are excellent in functionality and handling as an additive. Furthermore, since it has an indefinite shape, it is possible to increase the filling rate into the medium, and to maximize the function while keeping the viscosity within the practical range, and when used as a scrub agent, it does not damage the skin. It becomes possible to give a smoother feel and higher cleaning power.
  • the present invention is porous cellulose particles (hereinafter sometimes referred to as “cellulose particles”) made of cellulose, having a volume average particle diameter of 50 ⁇ m or more and 1000 ⁇ m or less, and a linseed oil absorption of 150 mL / 100 g or more. is there.
  • cellulose particles porous cellulose particles
  • the porous cellulose particle in the present invention refers to fine particles made of cellulose.
  • Cellulose as used herein refers to a polymer represented by a repeating unit of the following structural formula, preferably having a ratio of the repeating unit of the following structural formula in the total number of repeating units of 90% or more, More preferably 95% or more, still more preferably 98% or more, particularly preferably 100%. From the viewpoint of chemical resistance, heat resistance, and processability during production, a cellulose derivative in which part or all of the hydroxyl groups are substituted may be included.
  • cellulose derivatives include cellulose ethers such as carboxymethyl cellulose, carboxyethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose, and cellulose esters such as cellulose acetate and cellulose nitrate.
  • a mixed composition of cellulose and other resins may be used, but the mass ratio of cellulose is preferably 90% or more from the viewpoint of mechanical strength, chemical resistance, affinity with water, and the like. More preferably, it is 95% or more, more preferably 98% or more, and most preferably 100%.
  • n is the number of repetitions.
  • the porous cellulose particles in the present invention are made of cellulose, they are plant-derived environmentally low load materials that exhibit excellent chemical resistance and heat resistance.
  • known methods may be used. For example, wood is chemically treated with sodium hydroxide, sulfate, sulfite, etc. to remove impurities such as lignin, and high purity cellulose is obtained. The method of extracting is mentioned.
  • a volume average molecular weight is 10,000 or more, More preferably, it is 50,000 or more, More preferably, it is 100,000 or more. Yes, particularly preferably 500,000 or more, and most preferably 1,000,000 or more.
  • the upper limit of the volume average molecular weight is preferably 50,000,000 or less, more preferably 10,000,000 or less, and further preferably 5,000,000 or less.
  • the molecular weight measurement method of cellulose is not particularly limited, and examples thereof include the following methods.
  • Cellulose is immersed in distilled water for 24 hours, then immersed in acetone for 24 hours, further immersed in dimethylacetamide for 24 hours, and the solvent is completely removed with a vacuum dryer to obtain a solvent-substituted cellulose sample.
  • the obtained powder was dissolved in a solvent in which 8% by mass of lithium chloride was dissolved in 1,3-dimethyl-2-imidazolidinone, and the molecular weight of cellulose was measured by gel permeation chromatography (GPC). Can be measured.
  • GPC gel permeation chromatography
  • the volume average particle diameter of the porous cellulose particles in the present invention is 50 ⁇ m or more as a lower limit, preferably more than 50 ⁇ m, more preferably 70 ⁇ m or more, further preferably 90 ⁇ m or more, and more preferably 100 ⁇ m or more. Remarkably preferably over 100 ⁇ m.
  • the upper limit of the volume average particle diameter is 1000 ⁇ m or less, preferably less than 1000 ⁇ m, more preferably 800 ⁇ m or less, further preferably 600 ⁇ m or less, more preferably 500 ⁇ m or less, and particularly preferably. It is 400 ⁇ m or less, and most preferably 300 ⁇ m or less.
  • the volume average particle diameter of the porous cellulose particles is pulverized by a rotor mill, the size can be adjusted by adjusting the rotation speed and / or the screen opening size, and the rotation speed can be increased. The smaller the screen opening, the smaller the volume average particle size of the cellulose particles.
  • the size can be adjusted by adjusting the rotational speed and / or shearing force and / or the shape and number of rotors, speeding up the rotational speed and strengthening the shearing force. As the number of rotors increases, the volume average particle diameter of the cellulose particles decreases.
  • the volume average particle diameter of the porous cellulose particles in the present invention is a value calculated by measuring the diameter of 100 cellulose particles randomly from a scanning electron micrograph and calculating the volume average according to the following equation. Show. At that time, the observation with a scanning electron microscope is measured at a magnification of at least 100 times, preferably at least 300 times. At this time, when the porous cellulose particles are not true spheres, the major axis is taken as the particle diameter. Ri: particle diameter of each particle, n: number of measurements 100, Dv: volume average particle diameter.
  • the cellulose particles in the present invention are porous particles having pores inside the particles.
  • the pores of the porous cellulose particles of the present invention may be independent from each other, or may form a porous structure in which the pores are continuously connected.
  • the linseed oil absorption amount mentioned later increases and shows the outstanding solvent absorptivity, it is preferable to form the porous structure where the pores continued continuously.
  • the degree to which the porous cellulose particles take in the target is considered to affect the porosity of the fine particles, but it is difficult to directly measure the porosity of the fine particles. Therefore, as an indirect indicator of porosity, the amount of gas adsorbed per unit weight by BET, etc., and the oil absorption of linseed oil, which is a pigment test method stipulated in Japanese Industrial Standards (refined oil oil method: Japanese Industrial Standards ( JIS) K5101-13-1) or the like is used as an index.
  • JIS Japanese Industrial Standards
  • the linseed oil absorption is used as an index as the porosity of the fine particles in the present invention.
  • the oil absorption is large and the porosity is high because many functions can be imparted.
  • the porous cellulose particles of the present invention have a linseed oil absorption of 150 mL / 100 g or more, preferably 160 mL / 100 g or more, more preferably 180 mL / 100 g or more, and further preferably 200 mL / 100 g or more. More preferably, it is 250 mL / 100 g, particularly preferably 300 mL / 100 g or more, and most preferably 350 mL / 100 g or more.
  • the amount of linseed oil absorption can be adjusted by adjusting the porosity of cellulose as a raw material.
  • As a method for adjusting the porosity of cellulose there is a method of adjusting the porosity according to the size of the neutral crystal salt added to the viscose used in the production process when the cellulose sponge described later is used. The larger the neutral crystal mirabilite, the greater the porosity.
  • the magnitude relationship when pulverizing the raw material cellulose with a rotor mill, by adjusting the rotational speed, the magnitude relationship can be adjusted, the lower the rotational speed, the higher the porosity of the cellulose particles, Linseed oil absorption is increased.
  • the magnitude relationship when pulverizing with a turbo mill, the magnitude relationship can be adjusted by adjusting the rotational speed and / or shearing force, and by reducing the rotational speed and / or weakening the shearing force, Linseed oil absorption is increased.
  • porous cellulose particles in the present invention preferably contain 50% or more of particles having a smoothness of 0.6 or more.
  • Smoothness as used herein refers to the degree of unevenness of the outline of the particle. After selecting 30 particles randomly from a scanning electron micrograph, the major axis, minor axis and circumference are measured. The value calculated by the formula is shown.
  • the smoothness is more preferably 0.7 or more, further preferably 0.8 or more, and most preferably 0.9 or more.
  • the ratio of particles having a high smoothness of 0.6 or more is more preferably 60% or more, still more preferably 70% or more, and still more preferably 80% or more.
  • the smoothness of the porous cellulose particles and the ratio of the particles having a smoothness of 0.6 or more can be adjusted by the grinding method when the porous cellulose particles are produced by grinding.
  • the medium By making the shape of the porous cellulose particles in the present invention into an indefinite shape, the medium can be highly filled, and it is possible to impart a remarkably high function while reducing the viscosity.
  • An indefinite shape indicates a case where the sphericity is 50 or less.
  • the sphericity is preferably 50 or less, more preferably 45 or less, still more preferably 40 or less, and particularly preferably 35 or less.
  • the sphericity is calculated according to the following equation by observing cellulose particles with a scanning electron microscope, measuring the short diameter and long diameter of 30 randomly selected particles. At that time, the observation with a scanning electron microscope is carried out at a magnification of at least 100 times, preferably at least 300 times. Note that n is 30 measurements.
  • the porous cellulose particles in the present invention can be used in paints and cosmetics, are particularly useful as a scrub agent, and those having a lower sphericity are preferred because they have better polishing power. Furthermore, when using as various additives, it is preferable that the sphericity is low in that the lower the sphericity is, the higher the filling becomes possible.
  • the sphericity of the porous cellulose particles can be adjusted by adjusting the shearing force applied to the cellulose particles by adjusting the pulverization time and the shearing force applied to the cellulose particles. The stronger the power, the higher the sphericity.
  • the porous cellulose particles according to the present invention have a characteristic of absorbing and swelling a solvent, and are preferably indefinite with a sphericity of 50 or less even after swelling.
  • the sphericity of the porous cellulose particles after swelling can be calculated from an optical micrograph of a dispersion in which 1 part by mass or more of water is added and uniformly dispersed with respect to 1 part by mass of the porous cellulose particles. It is possible to select 30 cellulose particles at random, measure the major axis and minor axis, and calculate according to the following formula. In that case, the observation with an optical microscope is measured at a magnification of at least 100 times, preferably 200 times or more. Note that n is 30 measurements.
  • the bulk density of the cellulose particles in the present invention is low, and it is advantageous in that the use weight can be reduced when an addition amount of the same volume is required as compared with other particle materials.
  • the specific bulk density of the cellulose particles in the present invention is preferably 0.30 g / mL or less, more preferably 0.25 g / mL or less, and further preferably 0.20 g / mL from the viewpoint that the lower one can reduce the weight. Less than mL. If the bulk density is too low, the handleability deteriorates, so the lower limit is preferably 0.01 g / mL.
  • the bulk density of the cellulose particles in the present invention can be adjusted by adjusting the bulk density of cellulose as a raw material.
  • Examples of the raw material having a low bulk density include a cellulose sponge, which will be described later, and the bulk density of the cellulose sponge can be adjusted depending on the size of the neutral crystal salt added to the viscose used in the production process. . The larger the neutral crystal mirabilite, the lower the bulk density.
  • the bulk density in the present invention can be measured by the following method. Gently weigh 1.0 g of porous cellulose particles into a 10 mL graduated cylinder, level the surface by tapping and tapping the graduated cylinder 10 times from a height of 2 cm, and reduce the volume to 1/10 scale. The bulk density (g / mL) of the porous cellulose particles is calculated by reading.
  • the porous cellulose particles in the present invention preferably contain 1% by mass or less of a salt containing alkali metal and / or alkaline earth metal or an agent for preventing mold generation from the point of containing no impurities, and the lower limit is 0. % By mass.
  • the alkali metal is an element belonging to Group 1 of the periodic table excluding hydrogen, and refers to lithium, sodium, potassium, rubidium, cesium, and francium.
  • Alkaline earth metal is an element belonging to Group 2 of the periodic table, and refers to beryllium, magnesium, calcium, strontium, barium, and radium.
  • the salt containing an alkali metal and an alkaline earth metal refers to the above metal and its salt.
  • the agent for preventing mold generation is used as an antifungal agent when the porous cellulose particles are stored in a wet state, and examples thereof include quaternary ammonium salts and orthophenylphenol.
  • the cellulose particles do not contain a salt containing the alkali metal and / or alkaline earth metal or a chemical for preventing mold generation.
  • the alkali metal and alkaline earth metal contained in the cellulose particles can be determined by measuring by atomic absorption, ICP (high frequency inductively coupled plasma) emission spectroscopy, ICP mass spectrometry or the like.
  • the agent for preventing mold generation contained in the porous cellulose particles can be measured using liquid chromatography.
  • the following method of pulverizing the cellulose sponge can be employed.
  • cellulose sponge As a raw material, cellulose particles having higher porosity, high smoothness and low sphericity can be obtained compared to the case of using cellulose as a raw material.
  • the cellulose sponge here is a synthetic sponge made of cellulose, and there is no limitation on the shape thereof, but it is a cuboid from the viewpoint of producing cellulose particles having a desired particle size and surface smoothness by pulverization. Is preferred. Moreover, although there is no restriction
  • Synthetic sponge is a light fibrous bonded structure having the properties of an absorbent.
  • Cellulose sponge has excellent water absorption and water retention ability because cellulose has high hydrophilicity. By pulverizing this cellulose sponge, it becomes possible to make it fine while maintaining the porosity derived from the sponge, and it is possible to obtain cellulose particles having a moderately low sphericity.
  • the cellulose sponge used as a raw material is preferable as the number of bubbles and the specific gravity are lighter, since the cellulose particles obtained are more excellent in linseed oil absorption capacity and the volume change rate due to water increases.
  • the specific gravity during drying of the cellulose sponge is preferably 0.5 g / mL or less, more preferably 0.4 g / mL or less, still more preferably 0.3 g / mL or less, and still more preferably 0.2 g / mL.
  • the lower limit is preferably 0.001 g / mL.
  • geometric measurement can be used among solid density and specific gravity measuring methods (Japanese Industrial Standard (JIS) Z8807-2012) defined in Japanese Industrial Standards.
  • Viscose with reinforcing fibers added is produced from dissolved natural pulp based on cellulose.
  • Neutral crystal mirabilite is added to the viscose and mixed to prepare a mixture.
  • the mixture is pushed into a mold or discharged into a sheet form and heated and solidified to obtain a block-like or sheet-like cellulose sponge.
  • a cellulose sponge can be obtained by washing the block-like or sheet-like cellulose sponge with water, moistening, and freeze-drying.
  • the cellulose sponge preferably uses natural fibers as reinforcing fibers, and preferably includes cotton, flax, ramie, and pulp alone or in combination, and as a sponge by including these as reinforcing fibers. Increases the strength.
  • the method for producing cellulose particles of the present invention is a method of pulverizing cellulose sponge.
  • the pulverization method is not particularly limited, but pulverization by a dry method is preferable.
  • a dry method using a ball mill, a turbo mill, a rotor mill, a cutting mill, a screen mill, a roll press, an impeller mill or the like can be mentioned. You may grind with.
  • pulverization by a dry method it becomes possible to pulverize while maintaining the porosity of the cellulose sponge as a raw material, and cellulose particles having a large linseed oil absorption and a low bulk density can be obtained.
  • a freeze pulverization method in which a cellulose sponge is frozen and then pulverized by a dry method may be used.
  • a refrigerant such as a low-temperature liquefied gas.
  • porous cellulose particles having a volume average particle diameter of 50 ⁇ m or more and 1000 ⁇ m or less and a linseed oil absorption of 150 mL / 100 g or more can be efficiently obtained. be able to.
  • the inside of the particles is porous, and the cellulose particles having a low sphericity are suitable materials for facial cleansers, toothpaste scrub agents, and various functional additives.
  • volume average particle diameter (Ri) of 100 randomly selected particles was measured. ) And the volume average particle diameter (Dv) was calculated according to the following formula. In order to accurately measure the particle diameter, it is measured at a magnification of at least 100 times, preferably 300 times or more. When the particles were not true spheres, the major axis was taken as the particle diameter. Ri: particle diameter of each particle, n: number of measurements 100, Dv: volume average particle diameter.
  • n 30 measurements.
  • Example 1 (Production of porous cellulose particles)
  • Cellulose sponge (specific gravity when dried: 0.04 g / mL, cellulose sponge CA107-4W manufactured by Toray Fine Chemical Co., Ltd., sodium 0.2 mass%, magnesium 0.08 mass%, benzalkonium chloride 0.12 mass %) was cut and dried to obtain a sheet-like cellulose sponge.
  • the obtained sheet-like cellulose sponge was frozen with liquid nitrogen and pulverized using a rotor mill (PULVERISETTE 14 manufactured by Fritsch Japan Co., Ltd.) using a 4 mm sieve ring and a cutter rotation speed of 20000 rpm. Furthermore, after freezing again with liquid nitrogen, it was pulverized with a turbo mill (manufactured by Freund Turbo).
  • the volume average particle size was 100.3 ⁇ m
  • the number of particles having a smoothness of 0.6 or more was 20 out of 30 particles (66.7%)
  • the sphericity was 36. 6.
  • Linseed oil absorption was 380.4 mL / 100 g and bulk density was 0.19 g / mL.
  • Example 2 (Production of porous cellulose particles)
  • Cellulose sponge (specific gravity when dried: 0.04 g / mL, cellulose sponge CA107-4W manufactured by Toray Fine Chemical Co., Ltd., sodium 0.2 mass%, magnesium 0.08 mass%, benzalkonium chloride 0.12 mass %) was cut and dried to obtain a sheet-like cellulose sponge.
  • the obtained sheet-like cellulose sponge was compressed and flaked by a roll press (RP-150, manufactured by Seishin Enterprise Co., Ltd.). Further, pulverization was performed with an impeller mill (manufactured by Seishin Co., Ltd., IMP-250).
  • the volume average particle size was 106.0 ⁇ m
  • the number of particles having a smoothness of 0.6 or more was 28 out of 30 particles (93.3%)
  • the sphericity was 41. 0.
  • Linseed oil absorption was 186.7 mL / 100 g and bulk density was 0.22 g / mL.
  • Example 3 (Production of porous cellulose particles)
  • Cellulose sponge (specific gravity when dried: 0.04 g / mL, cellulose sponge CA107-4W manufactured by Toray Fine Chemical Co., Ltd., sodium 0.2 mass%, magnesium 0.08 mass%, benzalkonium chloride 0.12 mass %) was cut and dried to obtain a sheet-like cellulose sponge.
  • the obtained sheet-like cellulose sponge was compressed and flaked by a roll press (RP-150, manufactured by Seishin Enterprise Co., Ltd.). Furthermore, grinding was performed at 20000 rpm with a high-speed grinder (manufactured by Osaka Chemical Co., Ltd., WC-3).
  • the volume average particle diameter was 96.1 ⁇ m
  • the number of particles having a smoothness of 0.6 or more was 28 out of 30 particles (93.3%)
  • the sphericity was 49. 1
  • the linseed oil absorption was 166.4 mL / 100 g and the bulk density was 0.22 g / mL.
  • Example 4 Evaluation as a scrub agent
  • Example 5 Evaluation as a scrub agent was carried out in the same manner as in Example 4 except that the cellulose particles obtained in Example 2 were used instead of the porous cellulose particles obtained in Example 1. As a result, there was no irritation that hurt the skin, and the feel was moderate as a scrub agent. Furthermore, the stain
  • Example 6 Evaluation as a scrub agent was carried out in the same manner as in Example 4 except that the cellulose particles obtained in Example 3 were used instead of the porous cellulose particles obtained in Example 1. As a result, there was no irritation that hurt the skin, and the feel was moderate as a scrub agent. Furthermore, the stain

Abstract

The purpose of the present invention is to provide porous cellulose particles comprising cellulose and having outstanding linseed oil absorption capability. These porous cellulose particles are characterized by comprising cellulose, having an average volume-based particle diameter of 50–1000 µm, and having a high oil-absorption quantity, with a linseed oil absorption quantity of at least 150 mL/100 g. These porous cellulose particles have a high capability of sufficiently absorbing a solvent, which causes the particles to be softened, and therefore can reduce irritation of the skin and allow a material to be obtained that is useful as a scrubbing agent. Moreover, these cellulose particles are also useful as various functional additives to cosmetics, paints, and the like because of the ability to carry fragrances, deodorizing agents, microbicides, antimicrobial agents, and the like at high concentrations.

Description

セルロース粒子、およびその製造方法Cellulose particles and method for producing the same
 本発明は、多孔質のセルロース粒子、およびその製造方法に関する。 The present invention relates to porous cellulose particles and a method for producing the same.
 高親水性かつ環境低負荷の観点から、セルロース粒子が洗顔料や歯磨き粉に使用されるスクラブ剤として注目されている(例えば、特許文献1を参照)。特に多孔質な形状とすることで、水などが湿潤し易く、皮膚への刺激を抑えながら高い洗浄効果を示すことが期待される。さらに芳香剤や消臭剤、殺菌剤、抗菌剤などの付加機能を多孔質セルロース粒子に付与させることが期待され、化粧品や塗料などへの各種機能性添加剤としての利用が注目を集めている。しかしながら、セルロースを粉砕することで製造される多孔質粒子では、十分な多孔度を形成することが出来ないという問題があった。 From the viewpoint of high hydrophilicity and low environmental load, cellulose particles are attracting attention as a scrub agent used for facial cleansers and toothpastes (see, for example, Patent Document 1). In particular, the porous shape makes it easy to wet water and the like, and is expected to show a high cleaning effect while suppressing irritation to the skin. In addition, it is expected to impart additional functions such as fragrances, deodorants, bactericides, and antibacterial agents to porous cellulose particles, and its use as various functional additives in cosmetics and paints is attracting attention. . However, porous particles produced by pulverizing cellulose have a problem that sufficient porosity cannot be formed.
 また表面に凹凸が多く滑らかでない粒子をスクラブ剤として使用した場合、摩擦によって皮膚を傷めたり、誤って眼球に混入した際には、角膜に傷を負う危険性があるなど、より平滑な粒子表面であることが望まれる(例えば、特許文献2を参照)。一方、スクラブ剤や各種添加剤として使用する際、より高い機能性を付与するためには、不定形状の粒子であるほうが媒体への高充填化が可能となり好ましく、この際に粒子表面が平滑であれば、増粘も抑制できることから最適である。 In addition, when a particle with many irregularities on the surface and not smooth is used as a scrub agent, there is a risk of damaging the cornea if the skin is damaged by friction or accidentally mixed into the eyeball. (For example, refer to Patent Document 2). On the other hand, when used as a scrubbing agent or various additives, in order to impart higher functionality, it is preferable that the particles are indefinitely shaped so that the medium can be highly filled. In this case, the particle surface is smooth. If so, it is optimal because it can also suppress thickening.
 これら高い多孔度のセルロース粒子やその表面、粒子形状を制御した高多孔度のセルロース粒子が望まれていたが、従来の粉砕法からは実現されていなかった。 These high-porosity cellulose particles and high-porosity cellulose particles whose surface and particle shape are controlled have been desired, but have not been realized by conventional pulverization methods.
日本国特開2001-323095号公報Japanese Unexamined Patent Publication No. 2001-323095 日本国特開2015-187255号公報Japanese Unexamined Patent Publication No. 2015-187255
 特許文献1および2には、多孔質セルロース粒子が開示されているが、多孔度が低く、かつ表面にも凹凸が多数あるため、十分な機能を付与することができなかった。さらに、球状の多孔質粒子であり、スクラブ剤などに添加剤として使用するには、添加量も限られ洗浄力が十分ではなかった。 Patent Documents 1 and 2 disclose porous cellulose particles. However, since the porosity is low and the surface has many irregularities, a sufficient function cannot be imparted. Furthermore, it is a spherical porous particle, and its addition amount is limited and its detergency is not sufficient for use as an additive in a scrub agent or the like.
 本発明は、セルロース粒子が溶媒を高度に吸収し、柔軟化し皮膚への刺激を低減すると共に、芳香剤や消臭剤、殺菌剤、抗菌剤などを高濃度で担持することを可能にするセルロース粒子を提供することを目的とする。 The present invention enables cellulose particles to highly absorb solvents, soften and reduce irritation to the skin, and to carry a high concentration of fragrances, deodorants, bactericides, antibacterial agents and the like. The object is to provide particles.
 上記課題を解決するために、本発明者らが鋭意検討を重ねた結果、下記発明を考案した。すなわち、本発明は、以下の(1)~(8)の構成よりなる。
(1)体積平均粒子径が50μm以上1000μm以下であり、かつアマニ油吸油量が150mL/100g以上であることを特徴とするセルロース粒子。
(2)平滑度が0.6以上である粒子を50%以上含むことを特徴とする(1)記載のセルロース粒子。
(3)真球度が50以下であることを特徴とする(1)または(2)に記載のセルロース粒子。
(4)かさ密度が0.30g/mL以下であることを特徴とする(1)~(3)のいずれかに記載のセルロース粒子。
(5)アルカリ金属および/またはアルカリ土類金属を含む塩またはカビ発生防止のための薬剤が1.0質量%以下であることを特徴とする(1)~(4)のいずれかに記載のセルロース粒子。
(6)セルローススポンジを粉砕することを特徴とするセルロース粒子の製造方法。
(7)セルローススポンジを乾式法で粉砕することを特徴とする(6)に記載のセルロース粒子の製造方法。
(8)セルローススポンジを凍結粉砕することを特徴とするセルロース粒子の(6)または(7)に記載のセルローススポンジの製造方法。
In order to solve the above problems, the present inventors have intensively studied and as a result, devised the following invention. That is, the present invention comprises the following configurations (1) to (8).
(1) Cellulose particles characterized by having a volume average particle diameter of 50 μm or more and 1000 μm or less and a linseed oil absorption amount of 150 mL / 100 g or more.
(2) Cellulose particles according to (1), comprising 50% or more of particles having a smoothness of 0.6 or more.
(3) The cellulose particles according to (1) or (2), wherein the sphericity is 50 or less.
(4) The cellulose particle according to any one of (1) to (3), wherein the bulk density is 0.30 g / mL or less.
(5) The salt containing alkali metal and / or alkaline earth metal or the agent for preventing mold generation is 1.0% by mass or less, according to any one of (1) to (4), Cellulose particles.
(6) A method for producing cellulose particles, comprising pulverizing a cellulose sponge.
(7) The method for producing cellulose particles according to (6), wherein the cellulose sponge is pulverized by a dry method.
(8) The method for producing a cellulose sponge according to (6) or (7), wherein the cellulose sponge is freeze-pulverized.
 本発明のセルロース粒子は、体積平均粒子径が50μm以上1000μm以下であり、優れた吸着能力を有する多孔質セルロース粒子であり、特にアマニ油吸油量が特定された高い多孔質状の粒子内部構造を有する。このため、溶媒を十分に吸収する能力が高く、セルロース粒子の柔軟化によって皮膚への刺激を低減することができ、スクラブ剤として有用な材料を得ることができる。また、芳香剤や消臭剤、殺菌剤、抗菌剤などを高濃度で担持させることができる点で、化粧品や塗料などへの各種機能性添加剤としても有用である。 The cellulose particles of the present invention are porous cellulose particles having a volume average particle diameter of 50 μm or more and 1000 μm or less and having an excellent adsorption capacity, and in particular, have a highly porous particle internal structure with a specified amount of linseed oil absorption. Have. For this reason, the ability to fully absorb a solvent is high, the irritation | stimulation to skin can be reduced by the softening of a cellulose particle, and the material useful as a scrub agent can be obtained. In addition, it is useful as various functional additives for cosmetics, paints and the like because it can carry a fragrance, a deodorant, a bactericide, an antibacterial agent and the like at a high concentration.
 また本発明のセルロース粒子は、粒子表面が平滑であり、溶媒分散時に溶媒を吸収し膨潤するものの、高粘度化しないという特異なレオロジー特性を示し、添加剤としての機能性と取り扱い性に優れる。さらに不定形状であるので、媒体への高充填率化が可能となり、粘度を実用の範囲内に抑えながら機能を最大限に発現することができ、スクラブ剤として使用した場合に、皮膚を傷つけないより滑らかな肌触りと高い洗浄力を付与することが可能となる。 In addition, the cellulose particles of the present invention have a smooth particle surface and absorb and swell the solvent when dispersed in the solvent, but exhibit unique rheological properties that do not increase the viscosity, and are excellent in functionality and handling as an additive. Furthermore, since it has an indefinite shape, it is possible to increase the filling rate into the medium, and to maximize the function while keeping the viscosity within the practical range, and when used as a scrub agent, it does not damage the skin. It becomes possible to give a smoother feel and higher cleaning power.
 以下、本発明につき、詳細に説明する。
 本発明は、セルロースからなり、体積平均粒子径が50μm以上1000μm以下であり、かつアマニ油吸油量が150mL/100g以上である多孔質セルロース粒子(以下、「セルロース粒子」ということがある。)である。
Hereinafter, the present invention will be described in detail.
The present invention is porous cellulose particles (hereinafter sometimes referred to as “cellulose particles”) made of cellulose, having a volume average particle diameter of 50 μm or more and 1000 μm or less, and a linseed oil absorption of 150 mL / 100 g or more. is there.
 本発明における多孔質セルロース粒子とは、セルロースからなる微粒子のことを示す。
 ここでいうセルロースとは、下式の構造式の繰り返し単位で表される高分子のことであり、その全繰り返し単位数に占める下記構造式の繰り返し単位の割合が90%以上のものが好ましく、より好ましくは95%以上、さらに好ましくは98%以上、特に好ましくは100%であるものを指す。耐薬品性、耐熱性、製造時の加工性の観点から、水酸基の一部または全てが置換されたセルロース誘導体を含んでいても良い。セルロース誘導体として、例えばカルボキシメチルセルロースやカルボキシエチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのセルロースエーテル、酢酸セルロースや硝酸セルロースなどのセルロースエステルなどを挙げることができる。また本発明を損なわない範囲であれば、セルロースと他の樹脂との混合組成物でも良いが、機械強度や耐薬品性、水との親和性などからセルロースの質量割合が好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、最も好ましくは100%である。
The porous cellulose particle in the present invention refers to fine particles made of cellulose.
Cellulose as used herein refers to a polymer represented by a repeating unit of the following structural formula, preferably having a ratio of the repeating unit of the following structural formula in the total number of repeating units of 90% or more, More preferably 95% or more, still more preferably 98% or more, particularly preferably 100%. From the viewpoint of chemical resistance, heat resistance, and processability during production, a cellulose derivative in which part or all of the hydroxyl groups are substituted may be included. Examples of cellulose derivatives include cellulose ethers such as carboxymethyl cellulose, carboxyethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose, and cellulose esters such as cellulose acetate and cellulose nitrate. Moreover, as long as the present invention is not impaired, a mixed composition of cellulose and other resins may be used, but the mass ratio of cellulose is preferably 90% or more from the viewpoint of mechanical strength, chemical resistance, affinity with water, and the like. More preferably, it is 95% or more, more preferably 98% or more, and most preferably 100%.
Figure JPOXMLDOC01-appb-C000001
 上記構造式中、nは繰り返し数である。
Figure JPOXMLDOC01-appb-C000001
In the above structural formula, n is the number of repetitions.
 本発明における多孔質セルロース粒子は、セルロースからなることから、優れた耐薬品性および耐熱性を示す植物由来の環境低負荷素材である。セルロースを得る方法としては公知の方法でよく、例示するならば、木材を水酸化ナトリウムや硫酸塩、亜硫酸塩などで化学的に処理をし、リグニンなどの不純物を除去し、高純度のセルロースを抽出する方法が挙げられる。 Since the porous cellulose particles in the present invention are made of cellulose, they are plant-derived environmentally low load materials that exhibit excellent chemical resistance and heat resistance. As a method for obtaining cellulose, known methods may be used. For example, wood is chemically treated with sodium hydroxide, sulfate, sulfite, etc. to remove impurities such as lignin, and high purity cellulose is obtained. The method of extracting is mentioned.
 本発明におけるセルロースの分子量に特に制限はないが、その下限としては、好ましくは、体積平均分子量が10,000以上であり、より好ましくは50,000以上であり、さらに好ましくは100,000以上であり、特に好ましくは500,000以上であり、最も好ましくは1,000,000以上である。体積平均分子量の上限としては、好ましくは50,000,000以下であり、より好ましくは10,000,000以下であり、さらに好ましくは5,000,000以下である。 Although there is no restriction | limiting in particular in the molecular weight of the cellulose in this invention, Preferably, a volume average molecular weight is 10,000 or more, More preferably, it is 50,000 or more, More preferably, it is 100,000 or more. Yes, particularly preferably 500,000 or more, and most preferably 1,000,000 or more. The upper limit of the volume average molecular weight is preferably 50,000,000 or less, more preferably 10,000,000 or less, and further preferably 5,000,000 or less.
 また、セルロースの分子量測定方法に特に制限はないが、例えば以下の方法が挙げられる。セルロースを蒸留水に24時間浸漬させた後、アセトンに24時間浸漬し、さらにジメチルアセトアミドに24時間浸漬させ、真空乾燥機にて溶媒を完全に除去することで、溶媒置換されたセルロース試料を得る。得られた粉末を、1,3-ジメチル-2-イミダゾリジノンに8質量%の塩化リチウムを溶解させた溶媒に溶解させ、ゲルパーミエーションクロマトグラフィ(GPC)にて測定する方法により、セルロースの分子量を測定することができる。 Further, the molecular weight measurement method of cellulose is not particularly limited, and examples thereof include the following methods. Cellulose is immersed in distilled water for 24 hours, then immersed in acetone for 24 hours, further immersed in dimethylacetamide for 24 hours, and the solvent is completely removed with a vacuum dryer to obtain a solvent-substituted cellulose sample. . The obtained powder was dissolved in a solvent in which 8% by mass of lithium chloride was dissolved in 1,3-dimethyl-2-imidazolidinone, and the molecular weight of cellulose was measured by gel permeation chromatography (GPC). Can be measured.
 本発明における多孔質セルロース粒子の体積平均粒子径は、その下限として50μm以上であり、好ましくは50μm超であり、より好ましくは70μm以上であり、さらに好ましくは90μm以上であり、一層好ましくは100μm以上であり、著しく好ましくは100μm超である。また、体積平均粒子径の上限としては、1000μm以下であり、好ましくは1000μm未満であり、より好ましくは800μm以下であり、さらに好ましくは600μm以下であり、一層好ましくは500μm以下であり、特に好ましくは400μm以下であり、最も好ましくは300μm以下である。体積平均粒子径が50μm未満であるときは、洗顔料や歯磨き粉のスクラブ剤として使用する際に、スクラブ剤としての使用感が少なく、好ましくない。また1000μmよりも大きい場合は、洗顔料や歯磨き粉のスクラブ剤として使用するとごつごつした違和感が残るため、好ましくない。多孔質セルロース粒子の体積平均粒子径は、例えば、ローターミルで粉砕する場合は、回転数および/またはスクリーン目開きサイズを調整することにより、その大小を調節することができ、回転数を高速化し、スクリーン目開きを小さくするほど、セルロース粒子の体積平均粒子径は小さくなる。また、ターボミルで粉砕する場合は、回転数および/または剪断力および/またはローターの形状、枚数を調整することにより、その大小を調節することができ、回転数を高速化し、剪断力を強化し、ローターの枚数を多くするほど、セルロース粒子の体積平均粒子径は小さくなる。 The volume average particle diameter of the porous cellulose particles in the present invention is 50 μm or more as a lower limit, preferably more than 50 μm, more preferably 70 μm or more, further preferably 90 μm or more, and more preferably 100 μm or more. Remarkably preferably over 100 μm. Further, the upper limit of the volume average particle diameter is 1000 μm or less, preferably less than 1000 μm, more preferably 800 μm or less, further preferably 600 μm or less, more preferably 500 μm or less, and particularly preferably. It is 400 μm or less, and most preferably 300 μm or less. When the volume average particle diameter is less than 50 μm, when used as a scrub agent for a face wash or a toothpaste, the feeling of use as a scrub agent is small, which is not preferable. On the other hand, if it is larger than 1000 μm, it is not preferable to use it as a scrub agent for facial cleansers or toothpastes because it leaves a feeling of strangeness. For example, when the volume average particle diameter of the porous cellulose particles is pulverized by a rotor mill, the size can be adjusted by adjusting the rotation speed and / or the screen opening size, and the rotation speed can be increased. The smaller the screen opening, the smaller the volume average particle size of the cellulose particles. In addition, when pulverizing with a turbo mill, the size can be adjusted by adjusting the rotational speed and / or shearing force and / or the shape and number of rotors, speeding up the rotational speed and strengthening the shearing force. As the number of rotors increases, the volume average particle diameter of the cellulose particles decreases.
 なお、本発明における多孔質セルロース粒子の体積平均粒子径は、走査型電子顕微鏡写真から無作為に100個のセルロース粒子の直径を測定し、その体積平均を下式に従って求めることにより算出した値を示す。その際、走査型電子顕微鏡での観察は、少なくとも100倍以上、好ましくは300倍以上の倍率で測定する。このとき、多孔質セルロース粒子が真球でない場合は、長径をその粒子径とする。
Figure JPOXMLDOC01-appb-M000002
 なお、Ri:粒子個々の粒子径、n:測定数100、Dv:体積平均粒子径とする。
The volume average particle diameter of the porous cellulose particles in the present invention is a value calculated by measuring the diameter of 100 cellulose particles randomly from a scanning electron micrograph and calculating the volume average according to the following equation. Show. At that time, the observation with a scanning electron microscope is measured at a magnification of at least 100 times, preferably at least 300 times. At this time, when the porous cellulose particles are not true spheres, the major axis is taken as the particle diameter.
Figure JPOXMLDOC01-appb-M000002
Ri: particle diameter of each particle, n: number of measurements 100, Dv: volume average particle diameter.
 本発明におけるセルロース粒子は、粒子内部に空孔を有する多孔質粒子である。本発明の多孔質セルロース粒子が持つ孔は、各孔が独立していても良いし、孔同士が連続的に連なった多孔構造を形成していても良い。ただし後述するアマニ油吸油量が増大し、優れた溶媒吸収能を示すことから、孔同士が連続的に連なった多孔構造を形成していることが好ましい。 The cellulose particles in the present invention are porous particles having pores inside the particles. The pores of the porous cellulose particles of the present invention may be independent from each other, or may form a porous structure in which the pores are continuously connected. However, since the linseed oil absorption amount mentioned later increases and shows the outstanding solvent absorptivity, it is preferable to form the porous structure where the pores continued continuously.
 多孔質セルロース粒子が目的物を取り込む程度は、微粒子の多孔度に影響すると考えられるが、微粒子の多孔度を直接的に測定することは難しい。そこで、多孔度の間接的指標として、BET等による単位重量あたりの気体吸着量や、日本工業規格に定められている顔料試験方法であるアマニ油吸油量(精製あまに油法:日本工業規格(JIS)K5101-13-1)等が指標として用いられる。 The degree to which the porous cellulose particles take in the target is considered to affect the porosity of the fine particles, but it is difficult to directly measure the porosity of the fine particles. Therefore, as an indirect indicator of porosity, the amount of gas adsorbed per unit weight by BET, etc., and the oil absorption of linseed oil, which is a pigment test method stipulated in Japanese Industrial Standards (refined oil oil method: Japanese Industrial Standards ( JIS) K5101-13-1) or the like is used as an index.
 BETによる比表面積法は、平均粒子径に強く依存するため、本発明では、微粒子の多孔度として、アマニ油吸油量を指標とする。特に、化粧品、塗料への添加剤や消臭剤、除菌剤などの用途では、多くの機能性を付与できるため、吸油量が大きく多孔度が高い方がより好ましい。 Since the specific surface area method by BET strongly depends on the average particle diameter, the linseed oil absorption is used as an index as the porosity of the fine particles in the present invention. In particular, in applications such as cosmetics, paint additives, deodorants, and disinfectants, it is more preferable that the oil absorption is large and the porosity is high because many functions can be imparted.
 本発明の多孔質セルロース粒子は、150mL/100g以上のアマニ油吸油量を有し、好ましくは160mL/100g以上であり、より好ましくは180mL/100g以上であり、さらに好ましくは200mL/100g以上であり、一層好ましくは250mL/100gであり、特に好ましくは300mL/100g以上であり、最も好ましくは350mL/100g以上である。上限については特に制限はないが、好ましくは1000mL/100g以下であるとよい。 The porous cellulose particles of the present invention have a linseed oil absorption of 150 mL / 100 g or more, preferably 160 mL / 100 g or more, more preferably 180 mL / 100 g or more, and further preferably 200 mL / 100 g or more. More preferably, it is 250 mL / 100 g, particularly preferably 300 mL / 100 g or more, and most preferably 350 mL / 100 g or more. Although there is no restriction | limiting in particular about an upper limit, Preferably it is good in it being 1000 mL / 100g or less.
 アマニ油吸油量が大きいほど、多孔度が高く、水の吸水量も大きく、水媒体中への添加剤として利用する際においても、アマニ油吸油量は大きい方が、優れた吸水性を示すため好ましい。アマニ油吸油量は、原料となるセルロースの多孔度を調整することにより、その増減を調節することができる。セルロースの多孔度を調整する方法としては、後述のセルローススポンジを使用する際は、その製造過程で使用するビスコースに添加する中性結晶茫硝の大きさにより多孔度を調整する方法が挙げられ、中性結晶芒硝が大きいほど多孔度は大きくなる。また、例えば、ローターミルで原料のセルロースを粉砕する場合は、回転数を調整することにより、その大小関係を調節することができ、回転数を低速にするほどセルロース粒子の多孔度が高くなり、アマニ油吸油量は大きくなる。また、ターボミルで粉砕する場合は、回転数および/または剪断力を調整することにより、その大小関係を調節することができ、回転数を低速にする、および/または剪断力を弱くすることにより、アマニ油吸油量は大きくなる。 The larger the linseed oil absorption, the higher the porosity, the greater the water absorption, and the greater the linseed oil absorption, the better the water absorption when used as an additive in an aqueous medium. preferable. The amount of linseed oil absorption can be adjusted by adjusting the porosity of cellulose as a raw material. As a method for adjusting the porosity of cellulose, there is a method of adjusting the porosity according to the size of the neutral crystal salt added to the viscose used in the production process when the cellulose sponge described later is used. The larger the neutral crystal mirabilite, the greater the porosity. Also, for example, when pulverizing the raw material cellulose with a rotor mill, by adjusting the rotational speed, the magnitude relationship can be adjusted, the lower the rotational speed, the higher the porosity of the cellulose particles, Linseed oil absorption is increased. In addition, when pulverizing with a turbo mill, the magnitude relationship can be adjusted by adjusting the rotational speed and / or shearing force, and by reducing the rotational speed and / or weakening the shearing force, Linseed oil absorption is increased.
 さらに、本発明における多孔質セルロース粒子は、好ましくは平滑度が0.6以上である粒子を50%以上含むとよい。ここでいう平滑度とは、粒子の輪郭の凹凸度合いを示すもので、走査型電子顕微鏡写真から、無作為に30個の粒子を選択後、その長径、短径および周長を測定し、下式により算出した値を示す。
Figure JPOXMLDOC01-appb-M000003
Furthermore, the porous cellulose particles in the present invention preferably contain 50% or more of particles having a smoothness of 0.6 or more. Smoothness as used herein refers to the degree of unevenness of the outline of the particle. After selecting 30 particles randomly from a scanning electron micrograph, the major axis, minor axis and circumference are measured. The value calculated by the formula is shown.
Figure JPOXMLDOC01-appb-M000003
 平滑度が高い、すなわち粒子表面が平滑であれば、溶媒に分散させた際に比表面積が小さいため高粘度化せず、添加剤として使用する際に好ましい。またスクラブ剤として使用する際には、ごつごつした違和感がなく皮膚への刺激を和らげ、強すぎる刺激を与えないため好ましい。具体的には、平滑度は0.7以上がより好ましく、0.8以上がさらに好ましく、0.9以上が最も好ましい。また平滑度0.6以上の高い平滑度を有する粒子の割合は、より好ましくは60%以上、さらに好ましくは70%以上、一層好ましくは80%以上である。多孔質セルロース粒子の平滑度および平滑度0.6以上の粒子の割合は、多孔質セルロース粒子を粉砕により製造する際は、その粉砕方法により調節することができる。 If the smoothness is high, that is, the particle surface is smooth, the specific surface area is small when dispersed in a solvent, so that the viscosity is not increased and it is preferable when used as an additive. Further, when used as a scrub agent, it is preferable because it does not cause a sense of incongruity, relieves irritation to the skin, and does not give excessive irritation. Specifically, the smoothness is more preferably 0.7 or more, further preferably 0.8 or more, and most preferably 0.9 or more. The ratio of particles having a high smoothness of 0.6 or more is more preferably 60% or more, still more preferably 70% or more, and still more preferably 80% or more. The smoothness of the porous cellulose particles and the ratio of the particles having a smoothness of 0.6 or more can be adjusted by the grinding method when the porous cellulose particles are produced by grinding.
 本発明における多孔質セルロース粒子は、さらにその形状を不定形状にすることで、媒体への高充填化が可能となり、粘度を低減したまま著しく高い機能を付与することが可能になる。不定形状とは、真球度が50以下の場合を示す。真球度は、好ましくは50以下であり、より好ましくは45以下、さらに好ましくは40以下、特に好ましくは35以下である。真球度は走査型電子顕微鏡にてセルロース粒子を観察し、無作為に選択した粒子30個の短径と長径を測定し、下式に従い算出する。その際、走査型電子顕微鏡での観察は少なくとも100倍以上、好ましくは300倍以上の倍率で測定する。
Figure JPOXMLDOC01-appb-M000004
 なお、n:測定数30とする。
By making the shape of the porous cellulose particles in the present invention into an indefinite shape, the medium can be highly filled, and it is possible to impart a remarkably high function while reducing the viscosity. An indefinite shape indicates a case where the sphericity is 50 or less. The sphericity is preferably 50 or less, more preferably 45 or less, still more preferably 40 or less, and particularly preferably 35 or less. The sphericity is calculated according to the following equation by observing cellulose particles with a scanning electron microscope, measuring the short diameter and long diameter of 30 randomly selected particles. At that time, the observation with a scanning electron microscope is carried out at a magnification of at least 100 times, preferably at least 300 times.
Figure JPOXMLDOC01-appb-M000004
Note that n is 30 measurements.
 本発明における多孔質セルロース粒子は、塗料や化粧品に使用することが可能で、特にスクラブ剤として有用であり、真球度が低い方が研磨力に優れるため好ましい。さらに、各種添加剤として使用する際には、真球度が低いほど高充填が可能となる点においても、真球度は低いほうが好ましい。多孔質セルロース粒子の真球度は、後述する粉砕方法により製造する際は、粉砕時間、セルロース粒子にかかる剪断力を調整することによりその高低を調節することができ、粉砕時間を長くし、剪断力を強化するほど、真球度は高くなる。 The porous cellulose particles in the present invention can be used in paints and cosmetics, are particularly useful as a scrub agent, and those having a lower sphericity are preferred because they have better polishing power. Furthermore, when using as various additives, it is preferable that the sphericity is low in that the lower the sphericity is, the higher the filling becomes possible. The sphericity of the porous cellulose particles can be adjusted by adjusting the shearing force applied to the cellulose particles by adjusting the pulverization time and the shearing force applied to the cellulose particles. The stronger the power, the higher the sphericity.
 本発明における多孔質セルロース粒子は、溶媒を吸収し、膨潤する特徴を有しており、膨潤後においても、真球度が50以下の不定形であることが好ましい。 The porous cellulose particles according to the present invention have a characteristic of absorbing and swelling a solvent, and are preferably indefinite with a sphericity of 50 or less even after swelling.
 膨潤後の多孔質セルロース粒子の真球度は、多孔質セルロース粒子1質量部に対して、1質量部以上の水を添加し、均一に分散させた分散体の光学顕微鏡写真から算出することができ、無作為に30個のセルロース粒子を選択後、その長径と短径を測長し、下式に従い算出する。その際、光学顕微鏡での観察は、少なくとも100倍以上、好ましくは200倍以上の倍率で測定する。
Figure JPOXMLDOC01-appb-M000005
 なお、n:測定数30とする。
The sphericity of the porous cellulose particles after swelling can be calculated from an optical micrograph of a dispersion in which 1 part by mass or more of water is added and uniformly dispersed with respect to 1 part by mass of the porous cellulose particles. It is possible to select 30 cellulose particles at random, measure the major axis and minor axis, and calculate according to the following formula. In that case, the observation with an optical microscope is measured at a magnification of at least 100 times, preferably 200 times or more.
Figure JPOXMLDOC01-appb-M000005
Note that n is 30 measurements.
 また、本発明におけるセルロース粒子は多孔質であることから、かさ密度が低く、他の粒子材に比べ、同体積の添加量を必要とする際、使用重量が少なくて済む点で有利である。本発明におけるセルロース粒子の具体的なかさ密度としては、好ましくは0.30g/mL以下であり、低い方が軽量化できる点から、より好ましくは0.25g/mL以下、さらに好ましくは0.20g/mL以下である。かさ密度が低すぎると取り扱い性が悪化することから、下限は、好ましくは0.01g/mLである。本発明におけるセルロース粒子のかさ密度は、原料となるセルロースのかさ密度を調整することにより、その高低を調節することができる。かさ密度の低い原料としては、後述するセルローススポンジが挙げられ、その製造過程で使用するビスコースに添加する中性結晶茫硝の大きさにより、セルローススポンジのかさ密度の高低を調節することができる。中性結晶芒硝が大きいほど、かさ密度は低くなる。 Further, since the cellulose particles in the present invention are porous, the bulk density is low, and it is advantageous in that the use weight can be reduced when an addition amount of the same volume is required as compared with other particle materials. The specific bulk density of the cellulose particles in the present invention is preferably 0.30 g / mL or less, more preferably 0.25 g / mL or less, and further preferably 0.20 g / mL from the viewpoint that the lower one can reduce the weight. Less than mL. If the bulk density is too low, the handleability deteriorates, so the lower limit is preferably 0.01 g / mL. The bulk density of the cellulose particles in the present invention can be adjusted by adjusting the bulk density of cellulose as a raw material. Examples of the raw material having a low bulk density include a cellulose sponge, which will be described later, and the bulk density of the cellulose sponge can be adjusted depending on the size of the neutral crystal salt added to the viscose used in the production process. . The larger the neutral crystal mirabilite, the lower the bulk density.
 本発明におけるかさ密度は、以下の方法で測定することができる。10mLメスシリンダーに1.0gの多孔質セルロース粒子を静かに秤量し、2cmの高さからメスシリンダーを10回自由落下させタップすることで表面をならし、その際の体積を1/10目盛りまで読み取ることにより多孔質セルロース粒子のかさ密度(g/mL)を算出する。 The bulk density in the present invention can be measured by the following method. Gently weigh 1.0 g of porous cellulose particles into a 10 mL graduated cylinder, level the surface by tapping and tapping the graduated cylinder 10 times from a height of 2 cm, and reduce the volume to 1/10 scale. The bulk density (g / mL) of the porous cellulose particles is calculated by reading.
 本発明における多孔質セルロース粒子は、アルカリ金属および/またはアルカリ土類金属を含む塩またはカビ発生防止のための薬剤が1質量%以下であることが、不純物を含まない点から好ましく、下限は0質量%である。 The porous cellulose particles in the present invention preferably contain 1% by mass or less of a salt containing alkali metal and / or alkaline earth metal or an agent for preventing mold generation from the point of containing no impurities, and the lower limit is 0. % By mass.
 ここでいうアルカリ金属は、水素を除く周期表第1族に属する元素であり、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムを指す。 Here, the alkali metal is an element belonging to Group 1 of the periodic table excluding hydrogen, and refers to lithium, sodium, potassium, rubidium, cesium, and francium.
 また、アルカリ土類金属は、周期表第2族に属する元素であり、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウムを指す。 Alkaline earth metal is an element belonging to Group 2 of the periodic table, and refers to beryllium, magnesium, calcium, strontium, barium, and radium.
 アルカリ金属およびアルカリ土類金属を含む塩とは、上記金属とその塩を示し、具体的には、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、臭化リチウム、臭化ナトリウム、臭化カリウム、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸カルシウム、酢酸マグネシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸マグネシウム、硫酸ナトリウム、硫酸マグネシウム、硫酸カルシウムなどが挙げられる。 The salt containing an alkali metal and an alkaline earth metal refers to the above metal and its salt. Specifically, lithium chloride, sodium chloride, potassium chloride, calcium chloride, magnesium chloride, lithium bromide, sodium bromide, odor Potassium fluoride, lithium fluoride, sodium fluoride, potassium fluoride, lithium acetate, sodium acetate, potassium acetate, calcium acetate, magnesium acetate, lithium carbonate, sodium carbonate, potassium carbonate, calcium carbonate, magnesium carbonate, sodium sulfate, magnesium sulfate And calcium sulfate.
 また、カビ発生防止のための薬剤とは、多孔質セルロース粒子が湿潤状態で保存される際に防カビ剤として使用されるものであり、第4級アンモニウム塩やオルトフェニルフェノールが挙げられる。 Further, the agent for preventing mold generation is used as an antifungal agent when the porous cellulose particles are stored in a wet state, and examples thereof include quaternary ammonium salts and orthophenylphenol.
 医療材用途や電気情報材用途において、セルロース粒子は、上記アルカリ金属および/またはアルカリ土類金属を含む塩、あるいはカビ発生防止のための薬剤を含有しないことが好ましい。 In medical materials and electrical information materials, it is preferable that the cellulose particles do not contain a salt containing the alkali metal and / or alkaline earth metal or a chemical for preventing mold generation.
 セルロース粒子中に含まれる上記アルカリ金属およびアルカリ土類金属は、原子吸光法、ICP(高周波誘導結合プラズマ)発光分光分析法、ICP質量分析法などで測定して求めることができる。また多孔質セルロース粒子中に含まれる上記カビ発生防止のための薬剤は、液体クロマトグラフィを用いて測定することができる。 The alkali metal and alkaline earth metal contained in the cellulose particles can be determined by measuring by atomic absorption, ICP (high frequency inductively coupled plasma) emission spectroscopy, ICP mass spectrometry or the like. The agent for preventing mold generation contained in the porous cellulose particles can be measured using liquid chromatography.
 上記のような多孔質セルロース粒子を製造するには、以下に示すセルローススポンジを粉砕する方法を採用することができる。セルローススポンジを原料にすることにより、セルロースを原料にした場合と比べ、より高い多孔度を有し、平滑度が高く真球度が低いセルロース粒子を得ることができる。 In order to produce the porous cellulose particles as described above, the following method of pulverizing the cellulose sponge can be employed. By using cellulose sponge as a raw material, cellulose particles having higher porosity, high smoothness and low sphericity can be obtained compared to the case of using cellulose as a raw material.
 ここでいうセルローススポンジとは、セルロースからなる合成スポンジのことであり、その形状に制限はないが、粉砕で所望の粒径、表面平滑性を有するセルロース粒子を製造する観点から、直方体であることが好ましい。また、この直方体のサイズに特に制限はないが、得られる多孔質セルロース粒子の粒子径を制御しやすい点から、原料となるセルローススポンジは小さい方が好ましい。具体的には、直方体の各辺の長さを、短い方から、それぞれ厚さ、幅、長さとすると、厚さは1cm以下であることが好ましく、より好ましくは5mm以下であり、幅および長さは共に、好ましくは5cm以下であり、より好ましくは3cm以下であり、さらに好ましくは1cm以下である。 The cellulose sponge here is a synthetic sponge made of cellulose, and there is no limitation on the shape thereof, but it is a cuboid from the viewpoint of producing cellulose particles having a desired particle size and surface smoothness by pulverization. Is preferred. Moreover, although there is no restriction | limiting in particular in the size of this rectangular parallelepiped, From the point which is easy to control the particle diameter of the porous cellulose particle obtained, the one where the cellulose sponge used as a raw material is small is preferable. Specifically, when the length of each side of the rectangular parallelepiped is defined as the thickness, width, and length from the shortest side, the thickness is preferably 1 cm or less, more preferably 5 mm or less, and the width and length. Both are preferably 5 cm or less, more preferably 3 cm or less, and even more preferably 1 cm or less.
 合成スポンジとは吸収剤の性質を有する軽い繊維質の接合構造体であり、セルローススポンジは、セルロースが高い親水性を有することから、優れた吸水性、保水能力を持つ。このセルローススポンジを粉砕することにより、スポンジ由来の多孔性を維持しつつ、微細化することが可能となり、さらに適度に真球度の低いセルロース粒子を得ることができる。 Synthetic sponge is a light fibrous bonded structure having the properties of an absorbent. Cellulose sponge has excellent water absorption and water retention ability because cellulose has high hydrophilicity. By pulverizing this cellulose sponge, it becomes possible to make it fine while maintaining the porosity derived from the sponge, and it is possible to obtain cellulose particles having a moderately low sphericity.
 原料となるセルローススポンジは、気泡が多く、比重が軽いほど、得られるセルロース粒子はアマニ油吸油能力に優れ、水による体積変化率が大きくなるため好ましい。セルローススポンジの比重に特に制限はないが、軽いほどセルロース粒子のかさ密度が軽くなり、材料の軽量化に繋がる。セルローススポンジの乾燥時の比重は0.5g/mL以下であることが好ましく、より好ましくは0.4g/mL以下であり、さらに好ましくは0.3g/mL以下であり、一層好ましくは0.2g/mLであり、特に好ましくは0.1g/mL以下であり、最も好ましくは0.05g/mL以下である。セルローススポンジの乾燥時の比重が低すぎると取り扱い性が悪化することから、下限は好ましくは0.001g/mLである。比重の測定方法は日本工業規格に定められている固体の密度及び比重の測定方法(日本工業規格(JIS)Z8807-2012)のうち、幾何学的測定を用いることができる。 The cellulose sponge used as a raw material is preferable as the number of bubbles and the specific gravity are lighter, since the cellulose particles obtained are more excellent in linseed oil absorption capacity and the volume change rate due to water increases. Although there is no restriction | limiting in particular in the specific gravity of a cellulose sponge, the bulk density of a cellulose particle becomes light and it leads to the weight reduction of material, so that it is light. The specific gravity during drying of the cellulose sponge is preferably 0.5 g / mL or less, more preferably 0.4 g / mL or less, still more preferably 0.3 g / mL or less, and still more preferably 0.2 g / mL. / ML, particularly preferably 0.1 g / mL or less, and most preferably 0.05 g / mL or less. Since the handleability deteriorates when the specific gravity at the time of drying the cellulose sponge is too low, the lower limit is preferably 0.001 g / mL. As a method for measuring the specific gravity, geometric measurement can be used among solid density and specific gravity measuring methods (Japanese Industrial Standard (JIS) Z8807-2012) defined in Japanese Industrial Standards.
 セルローススポンジの製造方法に特に制限はないが、例えば以下の方法が挙げられる。セルロースを主成分とした溶解天然パルプから補強繊維を加えたビスコースを作製する。前記ビスコースに中性結晶茫硝を加えて混合し、混合物を作製する。前記混合物を成型型内に押し込み、または、シート状に排出し、加熱凝固させて、ブロック状、または、シート状セルローススポンジを得る。前記ブロック状、または、シート状セルローススポンジを水洗し、湿潤とした後、フリーズドライすることでセルローススポンジを得ることができる。また、セルローススポンジには、補強繊維として天然繊維を用いることが好ましく、綿(コットン)、亜麻、ラミー、パルプを単独またはそれらを組み合わせて含むことも好ましく、これらを補強繊維として含むことによりスポンジとしての強度が増す。 Although there is no restriction | limiting in particular in the manufacturing method of a cellulose sponge, For example, the following method is mentioned. Viscose with reinforcing fibers added is produced from dissolved natural pulp based on cellulose. Neutral crystal mirabilite is added to the viscose and mixed to prepare a mixture. The mixture is pushed into a mold or discharged into a sheet form and heated and solidified to obtain a block-like or sheet-like cellulose sponge. A cellulose sponge can be obtained by washing the block-like or sheet-like cellulose sponge with water, moistening, and freeze-drying. The cellulose sponge preferably uses natural fibers as reinforcing fibers, and preferably includes cotton, flax, ramie, and pulp alone or in combination, and as a sponge by including these as reinforcing fibers. Increases the strength.
 本発明のセルロース粒子の製造方法は、セルローススポンジを粉砕する方法である。粉砕方法には特に制限はないが、乾式法による粉砕が好ましい。例えば、ボールミル、ターボミル、ローターミル、カッティングミル、スクリーンミル、ロールプレス、インペラーミル等を用いた乾式法が挙げられ、これらの手法を単独で使用しても、2種以上を使用し、多段階で粉砕しても良い。乾式法による粉砕により、原料となるセルローススポンジの多孔性を維持したまま粉砕することが可能となり、アマニ油吸油量が大きく、かさ密度の低いセルロース粒子を得ることができる。 The method for producing cellulose particles of the present invention is a method of pulverizing cellulose sponge. The pulverization method is not particularly limited, but pulverization by a dry method is preferable. For example, a dry method using a ball mill, a turbo mill, a rotor mill, a cutting mill, a screen mill, a roll press, an impeller mill or the like can be mentioned. You may grind with. By pulverization by a dry method, it becomes possible to pulverize while maintaining the porosity of the cellulose sponge as a raw material, and cellulose particles having a large linseed oil absorption and a low bulk density can be obtained.
 本発明のセルロース粒子の製造方法において、セルローススポンジを凍結させた後に乾式法で粉砕させる凍結粉砕法を用いてもよい。凍結粉砕の方法に特に制限はないが、低温液化ガス等の冷媒を用いて凍結させることが好ましい。凍結させることにより、原料となるセルローススポンジの多孔性を維持したまま粉砕することが可能となり、アマニ油吸油量が大きく、かさ密度の低いセルロース粒子を得ることができる。 In the method for producing cellulose particles of the present invention, a freeze pulverization method in which a cellulose sponge is frozen and then pulverized by a dry method may be used. There is no particular limitation on the freeze pulverization method, but it is preferable to freeze using a refrigerant such as a low-temperature liquefied gas. By freezing, it becomes possible to pulverize while maintaining the porosity of the cellulose sponge as a raw material, and cellulose particles having a large linseed oil absorption and a low bulk density can be obtained.
 このようにセルローススポンジを粉砕する方法にてセルロース粒子を製造することで、体積平均粒子径が50μm以上1000μm以下であり、かつアマニ油吸油量が150mL/100g以上の多孔質セルロース粒子を効率よく得ることができる。さらに、粒子内部が多孔質であり、真球度の低いセルロース粒子は、洗顔料や歯磨き粉のスクラブ剤や、各種機能性添加剤に好適な材料となる。 Thus, by producing cellulose particles by a method of pulverizing cellulose sponge, porous cellulose particles having a volume average particle diameter of 50 μm or more and 1000 μm or less and a linseed oil absorption of 150 mL / 100 g or more can be efficiently obtained. be able to. Furthermore, the inside of the particles is porous, and the cellulose particles having a low sphericity are suitable materials for facial cleansers, toothpaste scrub agents, and various functional additives.
 次に、本発明を実施例に基づき、更に詳細に説明する。本発明は、これら実施例に限定されるものではない。実施例中に用いる測定は以下のとおりである。 Next, the present invention will be described in more detail based on examples. The present invention is not limited to these examples. The measurements used in the examples are as follows.
(1)体積平均粒子径の算出法
 走査型電子顕微鏡(日本電子株式会社製走査型電子顕微鏡JSM-6301NF)にて、セルロース粒子を観察し、無作為に選択した粒子100個の粒子径(Ri)を測長し、下式に従い体積平均粒子径(Dv)を算出した。粒子径を正確に測定するには、少なくとも100倍以上、好ましくは300倍以上の倍率で測定する。なお、粒子が真球でない場合は、長径をその粒子径とした。
Figure JPOXMLDOC01-appb-M000006
 なお、Ri:粒子個々の粒子径、n:測定数100、Dv:体積平均粒子径とする。
(1) Calculation method of volume average particle diameter Cellulose particles were observed with a scanning electron microscope (JEM-6301NF, manufactured by JEOL Ltd.), and the particle diameter (Ri) of 100 randomly selected particles was measured. ) And the volume average particle diameter (Dv) was calculated according to the following formula. In order to accurately measure the particle diameter, it is measured at a magnification of at least 100 times, preferably 300 times or more. When the particles were not true spheres, the major axis was taken as the particle diameter.
Figure JPOXMLDOC01-appb-M000006
Ri: particle diameter of each particle, n: number of measurements 100, Dv: volume average particle diameter.
(2)アマニ油吸油量の測定方法
 本発明におけるセルロース粒子のアマニ油吸油量は、日本工業規格(JIS)K5101-13-1に記載の方法に準拠して測定した。
(2) Method of measuring linseed oil absorption The linseed oil absorption of cellulose particles in the present invention was measured in accordance with the method described in Japanese Industrial Standard (JIS) K5101-13-1.
(3)平滑度の算出方法
 走査型電子顕微鏡(日本電子株式会社製走査型電子顕微鏡JSM-6301NF)にて、セルロース粒子を観察し、無作為に選択した粒子30個の長径、短径、および周長を測長し、下式に従い個々の粒子の平滑度を算出した。粒子径を正確に測定するには、少なくとも100倍以上、好ましくは300倍以上の倍率で測定する。また、平滑度が0.6以上となる粒子の個数を求め、平滑度が0.6以上となる粒子の数の百分率(%)を算出した。
Figure JPOXMLDOC01-appb-M000007
(3) Method for calculating smoothness The cellulose particles were observed with a scanning electron microscope (scanning electron microscope JSM-6301NF manufactured by JEOL Ltd.), and the major axis and minor axis of 30 randomly selected particles, and The circumference was measured, and the smoothness of each particle was calculated according to the following formula. In order to accurately measure the particle diameter, it is measured at a magnification of at least 100 times, preferably 300 times or more. Further, the number of particles having a smoothness of 0.6 or more was determined, and the percentage (%) of the number of particles having a smoothness of 0.6 or more was calculated.
Figure JPOXMLDOC01-appb-M000007
(4)真球度の算出方法
 走査型電子顕微鏡(日本電子株式会社製走査型電子顕微鏡JSM-6301NF)にて、セルロース粒子を観察し、無作為に選択した粒子30個の短径と長径を測定し、その平均を下式に従い算出し、真球度とした。
(4) Method of calculating sphericity Observe cellulose particles with a scanning electron microscope (JSM-6301NF, manufactured by JEOL Ltd.), and calculate the short diameter and long diameter of 30 randomly selected particles. Measured, and the average was calculated according to the following formula to obtain the sphericity.
Figure JPOXMLDOC01-appb-M000008
 なお、n:測定数30とする。
Figure JPOXMLDOC01-appb-M000008
Note that n is 30 measurements.
(5)かさ密度の測定方法
 10mLのメスシリンダーに、セルロース粒子1.0gを秤量し、2cmの高さからメスシリンダーを10回自由落下させ、その体積を1/10目盛りまで読み取り、かさ密度(g/mL)を算出した。
(5) Bulk density measurement method Weighing 1.0 g of cellulose particles into a 10 mL graduated cylinder, allowing the graduated cylinder to fall 10 times from a height of 2 cm, reading the volume to 1/10 scale, and measuring the bulk density ( g / mL).
[実施例1](多孔質セルロース粒子の製造)
 セルローススポンジ(乾燥時の比重が0.04g/mL、東レファインケミカル株式会社製 セルローススポンジCA107―4W、ナトリウムが0.2質量%、マグネシウムが0.08質量%、塩化ベンザルコニウムが0.12質量%のもの)をカットし、乾燥することでシート状のセルローススポンジを得た。得られたシート状セルローススポンジを液体窒素にて凍結させ、ローターミル(フリッチュ・ジャパン株式会社製 PULVERISETTE14)を用いて、4mmふるいリングを使用し、カッター回転速度を20000rpmにして粉砕した。さらに液体窒素にて再度凍結後、ターボミル(フロイント・ターボ株式会社製)にて粉砕を実施した。得られたセルロース粒子を走査型電子顕微鏡で観察したところ、体積平均粒子径は100.3μm、平滑度0.6以上の粒子は30個中20個(66.7%)、真球度36.6であった。またアマニ油吸油量は380.4mL/100g、かさ密度は0.19g/mLであった。
[Example 1] (Production of porous cellulose particles)
Cellulose sponge (specific gravity when dried: 0.04 g / mL, cellulose sponge CA107-4W manufactured by Toray Fine Chemical Co., Ltd., sodium 0.2 mass%, magnesium 0.08 mass%, benzalkonium chloride 0.12 mass %) Was cut and dried to obtain a sheet-like cellulose sponge. The obtained sheet-like cellulose sponge was frozen with liquid nitrogen and pulverized using a rotor mill (PULVERISETTE 14 manufactured by Fritsch Japan Co., Ltd.) using a 4 mm sieve ring and a cutter rotation speed of 20000 rpm. Furthermore, after freezing again with liquid nitrogen, it was pulverized with a turbo mill (manufactured by Freund Turbo). When the obtained cellulose particles were observed with a scanning electron microscope, the volume average particle size was 100.3 μm, the number of particles having a smoothness of 0.6 or more was 20 out of 30 particles (66.7%), and the sphericity was 36. 6. Linseed oil absorption was 380.4 mL / 100 g and bulk density was 0.19 g / mL.
[実施例2](多孔質セルロース粒子の製造)
 セルローススポンジ(乾燥時の比重が0.04g/mL、東レファインケミカル株式会社製 セルローススポンジCA107―4W、ナトリウムが0.2質量%、マグネシウムが0.08質量%、塩化ベンザルコニウムが0.12質量%のもの)をカットし、乾燥することでシート状のセルローススポンジを得た。得られたシート状セルローススポンジをロールプレス(株式会社セイシン企業製 RP-150)にて圧縮しフレーク化した。さらにインペラーミル(株式会社セイシン企業製、IMP-250)にて粉砕を実施した。得られたセルロース粒子を走査型電子顕微鏡で観察したところ、体積平均粒子径は106.0μm、平滑度0.6以上の粒子は30個中28個(93.3%)、真球度41.0であった。またアマニ油吸油量は186.7mL/100g、かさ密度は0.22g/mLであった。
[Example 2] (Production of porous cellulose particles)
Cellulose sponge (specific gravity when dried: 0.04 g / mL, cellulose sponge CA107-4W manufactured by Toray Fine Chemical Co., Ltd., sodium 0.2 mass%, magnesium 0.08 mass%, benzalkonium chloride 0.12 mass %) Was cut and dried to obtain a sheet-like cellulose sponge. The obtained sheet-like cellulose sponge was compressed and flaked by a roll press (RP-150, manufactured by Seishin Enterprise Co., Ltd.). Further, pulverization was performed with an impeller mill (manufactured by Seishin Co., Ltd., IMP-250). When the obtained cellulose particles were observed with a scanning electron microscope, the volume average particle size was 106.0 μm, the number of particles having a smoothness of 0.6 or more was 28 out of 30 particles (93.3%), and the sphericity was 41. 0. Linseed oil absorption was 186.7 mL / 100 g and bulk density was 0.22 g / mL.
[実施例3](多孔質セルロース粒子の製造)
 セルローススポンジ(乾燥時の比重が0.04g/mL、東レファインケミカル株式会社製 セルローススポンジCA107―4W、ナトリウムが0.2質量%、マグネシウムが0.08質量%、塩化ベンザルコニウムが0.12質量%のもの)をカットし、乾燥することでシート状のセルローススポンジを得た。得られたシート状セルローススポンジをロールプレス(株式会社セイシン企業製 RP-150)にて圧縮しフレーク化した。さらに高速粉砕機(大阪ケミカル株式会社製、WC-3)にて20000rpmで粉砕を実施した。得られたセルロース粒子を走査型電子顕微鏡で観察したところ、体積平均粒子径は96.1μm、平滑度0.6以上の粒子は30個中28個(93.3%)、真球度49.1であった。またアマニ油吸油量は166.4mL/100g、かさ密度は0.22g/mLであった。
[Example 3] (Production of porous cellulose particles)
Cellulose sponge (specific gravity when dried: 0.04 g / mL, cellulose sponge CA107-4W manufactured by Toray Fine Chemical Co., Ltd., sodium 0.2 mass%, magnesium 0.08 mass%, benzalkonium chloride 0.12 mass %) Was cut and dried to obtain a sheet-like cellulose sponge. The obtained sheet-like cellulose sponge was compressed and flaked by a roll press (RP-150, manufactured by Seishin Enterprise Co., Ltd.). Furthermore, grinding was performed at 20000 rpm with a high-speed grinder (manufactured by Osaka Chemical Co., Ltd., WC-3). When the obtained cellulose particles were observed with a scanning electron microscope, the volume average particle diameter was 96.1 μm, the number of particles having a smoothness of 0.6 or more was 28 out of 30 particles (93.3%), and the sphericity was 49. 1 Moreover, the linseed oil absorption was 166.4 mL / 100 g and the bulk density was 0.22 g / mL.
[実施例4](スクラブ剤としての評価)
 実施例1で得た多孔質セルロース粒子0.1gに水3.0g、ポリオキシエチレンクミルフェニルエーテル(ノナール912、東邦化学工業株式会社製)1mgを添加し、多孔質セルロース粒子の水分散液を得た。手の甲に油性ペンによる汚れを付着させ、得られた多孔質セルロース粒子の水分散液を垂らし、指により摩擦洗浄を行った。その結果、皮膚を痛めるような刺激がなく、スクラブ剤として適度な感触であった。さらに、皮膚に付着した汚れは消え、スクラブ剤として洗浄力が十分に付与されていることが確認できた。
[Example 4] (Evaluation as a scrub agent)
To 0.1 g of the porous cellulose particles obtained in Example 1, 3.0 g of water and 1 mg of polyoxyethylene cumylphenyl ether (Nonal 912, manufactured by Toho Chemical Industry Co., Ltd.) were added, and an aqueous dispersion of porous cellulose particles. Got. Dirt with an oil-based pen was attached to the back of the hand, and the resulting aqueous dispersion of porous cellulose particles was suspended and washed with a finger. As a result, there was no irritation that hurt the skin, and the feel was moderate as a scrub agent. Furthermore, the stain | pollution | contamination adhering to skin disappeared, and it has confirmed that cleaning power was fully provided as a scrub agent.
[実施例5](スクラブ剤としての評価)
 実施例1で得られた多孔質セルロース粒子の代わりに、実施例2で得られたセルロース粒子を使用したこと以外は、実施例4と同様にして、スクラブ剤としての評価を実施した。その結果、皮膚を痛めるような刺激がなく、スクラブ剤として適度な感触であった。さらに、皮膚に付着した汚れは消え、スクラブ剤として洗浄力が十分に付与されていることが確認できた。
[Example 5] (Evaluation as a scrub agent)
Evaluation as a scrub agent was carried out in the same manner as in Example 4 except that the cellulose particles obtained in Example 2 were used instead of the porous cellulose particles obtained in Example 1. As a result, there was no irritation that hurt the skin, and the feel was moderate as a scrub agent. Furthermore, the stain | pollution | contamination adhering to skin disappeared, and it has confirmed that cleaning power was fully provided as a scrub agent.
[実施例6](スクラブ剤としての評価)
 実施例1で得られた多孔質セルロース粒子の代わりに、実施例3で得られたセルロース粒子を使用したこと以外は、実施例4と同様にして、スクラブ剤としての評価を実施した。その結果、皮膚を痛めるような刺激がなく、スクラブ剤として適度な感触であった。さらに、皮膚に付着した汚れは消え、スクラブ剤として洗浄力が十分に付与されていることが確認できた。
[Example 6] (Evaluation as a scrub agent)
Evaluation as a scrub agent was carried out in the same manner as in Example 4 except that the cellulose particles obtained in Example 3 were used instead of the porous cellulose particles obtained in Example 1. As a result, there was no irritation that hurt the skin, and the feel was moderate as a scrub agent. Furthermore, the stain | pollution | contamination adhering to skin disappeared, and it has confirmed that cleaning power was fully provided as a scrub agent.
[比較例1](セルロース粒子の製造)
 市販品セルロース粒子(和光純薬工業株式会社製 セルロース粉末,38μm(400mesh)通過) を走査型電子顕微鏡で観察したところ、体積平均粒子径は、60.1μm、平滑度0.6以上の粒子は30個中27個(90.0%)、真球度54.4であった。また、アマニ油吸油量は142.3mL/100g、かさ密度は0.29g/mLであった。
[Comparative Example 1] (Production of cellulose particles)
When a commercially available cellulose particle (cellulose powder manufactured by Wako Pure Chemical Industries, Ltd., 38 μm (400 mesh) passed) was observed with a scanning electron microscope, the volume average particle diameter was 60.1 μm, and the particles having a smoothness of 0.6 or more were 27 out of 30 (90.0%), and the sphericity was 54.4. Moreover, the linseed oil absorption amount was 142.3 mL / 100 g and the bulk density was 0.29 g / mL.
[比較例2](セルロース粒子の製造)
 市販品セルロース粒子(旭化成株式会社製 “セオラス”ST―02) を走査型電子顕微鏡で観察したところ、体積平均粒子径は、89.9μm、平滑度0.6以上の粒子は30個中27個(90.0%)、真球度42.9であった。また、アマニ油吸油量は、135.74mL/100g、かさ密度は0.23g/mLであった。
[Comparative Example 2] (Production of cellulose particles)
When commercially available cellulose particles (“Theorus” ST-02 manufactured by Asahi Kasei Co., Ltd.) were observed with a scanning electron microscope, the volume average particle diameter was 89.9 μm, and 27 particles out of 30 had a smoothness of 0.6 or more. (90.0%), and the sphericity was 42.9. Moreover, the linseed oil absorption was 135.74 mL / 100 g and the bulk density was 0.23 g / mL.
[比較例3](セルロース粒子の製造)
 市販品セルロース粒子(旭化成株式会社製 “セオラス”PH―200) を走査型電子顕微鏡で観察したところ、体積平均粒子径は、205.3μm、平滑度0.6以上の粒子は30個中27個(90.0%)、真球度51.8であった。また、アマニ油吸油量は、145.4mL/100g、かさ密度は0.36g/mLであった。
[Comparative Example 3] (Production of cellulose particles)
When commercially available cellulose particles (“Theorus” PH-200 manufactured by Asahi Kasei Co., Ltd.) were observed with a scanning electron microscope, the volume average particle size was 205.3 μm, and 27 particles out of 30 had a smoothness of 0.6 or more. (90.0%), and the sphericity was 51.8. Moreover, the linseed oil absorption was 145.4 mL / 100 g and the bulk density was 0.36 g / mL.
[比較例4](スクラブ剤としての評価)
 実施例1で得られた多孔質セルロース粒子の代わりに、比較例1で得られたセルロース粒子を使用したこと以外は、実施例4と同様にして、スクラブ剤としての評価を実施した。その結果、皮膚への刺激が全くなく、スクラブ剤としての使用感に欠け、手の甲の汚れの程度は変化せず、スクラブ剤としての洗浄効果が見られなかった。
[Comparative Example 4] (Evaluation as a scrub agent)
Evaluation as a scrub agent was carried out in the same manner as in Example 4 except that the cellulose particles obtained in Comparative Example 1 were used instead of the porous cellulose particles obtained in Example 1. As a result, there was no irritation to the skin, the feeling of use as a scrub agent was lacking, the degree of dirt on the back of the hand did not change, and no cleaning effect as a scrub agent was observed.
[比較例5](スクラブ剤としての評価)
 実施例1で得られた多孔質セルロース粒子の代わりに、比較例2で得られたセルロース粒子を使用したこと以外は、実施例4と同様にして、スクラブ剤としての評価を実施した。その結果、手の甲の汚れは薄くなり、ある程度洗浄されたものの、皮膚への刺激が全くなく、スクラブ剤としての使用感に欠けるものであった。
[Comparative Example 5] (Evaluation as a scrub agent)
Evaluation as a scrub agent was performed in the same manner as in Example 4 except that the cellulose particles obtained in Comparative Example 2 were used instead of the porous cellulose particles obtained in Example 1. As a result, the dirt on the back of the hand became thin and washed to some extent, but there was no irritation to the skin and the feeling of use as a scrub agent was lacking.
[比較例6](スクラブ剤としての評価)
 実施例1で得られた多孔質セルロース粒子の代わりに、比較例3で得られたセルロース粒子を使用したこと以外は、実施例4と同様にして、スクラブ剤としての評価を実施した。その結果、手の甲の汚れは若干薄くなり、ある程度洗浄されたものの、皮膚への刺激が全くなく、スクラブ剤としての使用感に欠けるものであった。
[Comparative Example 6] (Evaluation as a scrub agent)
Evaluation as a scrub agent was carried out in the same manner as in Example 4 except that the cellulose particles obtained in Comparative Example 3 were used instead of the porous cellulose particles obtained in Example 1. As a result, the stain on the back of the hand was slightly thinner and washed to some extent, but there was no irritation to the skin and the feeling of use as a scrub agent was lacking.

Claims (8)

  1.  体積平均粒子径が50μm以上1000μm以下、かつアマニ油吸油量が150mL/100g以上であることを特徴とするセルロース粒子。 Cellulose particles characterized by having a volume average particle diameter of 50 μm or more and 1000 μm or less and a linseed oil absorption of 150 mL / 100 g or more.
  2.  平滑度が0.6以上である粒子を50%以上含むことを特徴とする請求項1記載のセルロース粒子。 2. The cellulose particles according to claim 1, comprising 50% or more of particles having a smoothness of 0.6 or more.
  3.  真球度が50以下であることを特徴とする請求項1または2に記載のセルロース粒子。 The cellulose particles according to claim 1 or 2, wherein the sphericity is 50 or less.
  4.  かさ密度が0.30g/mL以下であることを特徴とする請求項1~3のいずれかに記載のセルロース粒子。 The cellulose particles according to any one of claims 1 to 3, wherein the bulk density is 0.30 g / mL or less.
  5.  アルカリ金属および/またはアルカリ土類金属を含む塩またはカビ発生防止のための薬剤が1.0質量%以下であることを特徴とする請求項1~4のいずれかに記載のセルロース粒子。 The cellulose particles according to any one of claims 1 to 4, wherein the salt containing alkali metal and / or alkaline earth metal or the agent for preventing mold generation is 1.0 mass% or less.
  6.  セルローススポンジを粉砕することを特徴とするセルロース粒子の製造方法。 A method for producing cellulose particles, comprising pulverizing a cellulose sponge.
  7.  セルローススポンジを乾式法で粉砕することを特徴とする請求項6に記載のセルロース粒子の製造方法。 The method for producing cellulose particles according to claim 6, wherein the cellulose sponge is pulverized by a dry method.
  8.  セルローススポンジを凍結粉砕することを特徴とする請求項6または7に記載のセルロース粒子の製造方法。 The method for producing cellulose particles according to claim 6 or 7, wherein the cellulose sponge is freeze-pulverized.
PCT/JP2018/003765 2017-02-08 2018-02-05 Cellulose particles and method for manufacturing same WO2018147213A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018508265A JPWO2018147213A1 (en) 2017-02-08 2018-02-05 Cellulose particles and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017021209 2017-02-08
JP2017-021209 2017-09-27

Publications (1)

Publication Number Publication Date
WO2018147213A1 true WO2018147213A1 (en) 2018-08-16

Family

ID=63108231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003765 WO2018147213A1 (en) 2017-02-08 2018-02-05 Cellulose particles and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2018147213A1 (en)
WO (1) WO2018147213A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113993940A (en) * 2019-06-20 2022-01-28 斯道拉恩索公司 Dried microfibrillated cellulose particles and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711007A (en) * 1993-06-22 1995-01-13 Toray Fine Chem Co Ltd Porous bead and its production
JP2001323095A (en) * 2000-05-12 2001-11-20 Rengo Co Ltd Porous cellulose particles
JP2010539302A (en) * 2007-09-21 2010-12-16 レンツィング アクチェンゲゼルシャフト Cellulose powder and method for producing the same
JP2013538297A (en) * 2010-07-07 2013-10-10 スリーエム イノベイティブ プロパティズ カンパニー Patterned airlaid nonwoven fibrous webs and methods for making and using them
WO2016024493A1 (en) * 2014-08-12 2016-02-18 旭化成ケミカルズ株式会社 Cellulose micropowder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711007A (en) * 1993-06-22 1995-01-13 Toray Fine Chem Co Ltd Porous bead and its production
JP2001323095A (en) * 2000-05-12 2001-11-20 Rengo Co Ltd Porous cellulose particles
JP2010539302A (en) * 2007-09-21 2010-12-16 レンツィング アクチェンゲゼルシャフト Cellulose powder and method for producing the same
JP2013538297A (en) * 2010-07-07 2013-10-10 スリーエム イノベイティブ プロパティズ カンパニー Patterned airlaid nonwoven fibrous webs and methods for making and using them
WO2016024493A1 (en) * 2014-08-12 2016-02-18 旭化成ケミカルズ株式会社 Cellulose micropowder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113993940A (en) * 2019-06-20 2022-01-28 斯道拉恩索公司 Dried microfibrillated cellulose particles and use thereof

Also Published As

Publication number Publication date
JPWO2018147213A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
Song et al. Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs)
WO2017047768A1 (en) Product containing microfibrous cellulose
JP5502712B2 (en) Viscous aqueous composition
Wang et al. A pH-, salt-and solvent-responsive carboxymethylcellulose-g-poly (sodium acrylate)/medical stone superabsorbent composite with enhanced swelling and responsive properties.
CN1108274C (en) Amorphous silicas and oral compositions
JP7163964B2 (en) Cellulose composition, cellulose molded article, method for producing cellulose composition, and method for improving toughness of cellulose molded article
JP5795094B2 (en) Thickener composition
Rajkhowa et al. Ultrafine wool powders and their bulk properties
Bahadoran Baghbadorani et al. Modelling of water absorption kinetics and biocompatibility study of synthesized cellulose nanofiber-assisted starch-graft-poly (acrylic acid) hydrogel nanocomposites
EP3254706A1 (en) Deodorant and method for manufacturing same
JP2012087256A (en) Viscous aqueous composition, and method for producing the same
US10143636B2 (en) Porous silica particle and cleansing cosmetic
JP2019206662A (en) Cellulose particle, and method for producing the same
WO2018147213A1 (en) Cellulose particles and method for manufacturing same
JP5628018B2 (en) Aqueous gel composition
JP7269239B2 (en) POROUS CELLULOSE PARTICLES, MANUFACTURING METHOD THEREOF, AND COSMETIC
CN113924336A (en) Natural composition comprising alginate derived from brown seaweed and cellulose nanofibers
EP3260433A1 (en) Novel synthetic clay composition containing hollow sphere, and method for preparing same
JP7199871B2 (en) POROUS CELLULOSE PARTICLES, MANUFACTURING METHOD THEREOF, AND CLEANING COSMETIC
JP5951158B1 (en) Porous silica-based particles and cleaning cosmetics containing the porous silica-based particles
JP2023079480A (en) Cellulose particles and cellulose particle dispersion
JP2020172461A (en) Powdery liquid
JP2008266847A (en) Iodine-containing fine fiber
JP6902655B2 (en) Porous silica particles and cleaning cosmetics
JP2020139089A (en) Water-absorbing composition and production method therefor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508265

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18750746

Country of ref document: EP

Kind code of ref document: A1