WO2018147164A1 - Wire bonding device - Google Patents
Wire bonding device Download PDFInfo
- Publication number
- WO2018147164A1 WO2018147164A1 PCT/JP2018/003450 JP2018003450W WO2018147164A1 WO 2018147164 A1 WO2018147164 A1 WO 2018147164A1 JP 2018003450 W JP2018003450 W JP 2018003450W WO 2018147164 A1 WO2018147164 A1 WO 2018147164A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wire
- piezoelectric element
- load
- electrode
- ultrasonic horn
- Prior art date
Links
- 239000000463 material Substances 0.000 claims description 19
- 239000004065 semiconductor Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 16
- 239000000758 substrate Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 6
- 238000003825 pressing Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
- H01L2224/48465—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
- H01L2224/78—Apparatus for connecting with wire connectors
- H01L2224/7825—Means for applying energy, e.g. heating means
- H01L2224/783—Means for applying energy, e.g. heating means by means of pressure
- H01L2224/78301—Capillary
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/8512—Aligning
- H01L2224/85148—Aligning involving movement of a part of the bonding apparatus
- H01L2224/85169—Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
- H01L2224/8518—Translational movements
- H01L2224/85181—Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
Definitions
- the present invention calculates the power supplied to the piezoelectric element based on the resonance frequency of the ultrasonic horn, the load by which the capillary presses the wire against the electrode, and the power supplied to the piezoelectric element based on the calculated result.
- the present invention relates to a wire bonding apparatus that adjusts a load applied to an electrode.
- a wire bonding apparatus that connects a semiconductor die electrode and a substrate electrode with a wire such as gold, aluminum, or copper is often used.
- the wire bonding apparatus presses a wire against each electrode with a bonding tool such as a capillary and ultrasonically excites the wire to bond the wire to the surface of the electrode.
- Ultrasonic vibration of a wire is achieved by resonating an ultrasonic horn with an ultrasonic vibrator, transmitting the vibration to the wire with a bonding tool such as a capillary, and pressing the wire against the electrode with the bonding tool from the bonding tool to the wire. This is done by transmitting ultrasonic vibrations.
- control parameters such as the pressing load of the wire and the energy input to the ultrasonic transducer.
- JP 2012-74699 A Japanese Patent Laid-Open No. 11-176866
- the control parameter of the wire bonding apparatus depends on the resonance frequency of the ultrasonic horn.
- the resonance frequency of the ultrasonic horn is not taken into account in the adjustment and correction of the control parameter.
- the control parameters cannot be adjusted and corrected appropriately, and a good wire is obtained. In some cases, bonding was difficult.
- an object of the present invention is to provide a wire bonding apparatus capable of suitable wire bonding using ultrasonic horns having different resonance frequencies.
- a wire bonding apparatus is a wire bonding apparatus for bonding a wire to an electrode, and includes a piezoelectric element, an ultrasonic horn that is vibrated by the piezoelectric element and ultrasonically vibrates at a specific resonance frequency, and an ultrasonic horn.
- a capillary that is attached to the tip and presses the wire against the electrode and applies ultrasonic vibration to the wire, and power supplied to the piezoelectric element based on the resonance frequency of the ultrasonic horn, or a load that the capillary presses the wire against the electrode
- a control unit that adjusts the power calculated by the calculation unit, the power supplied to the piezoelectric element based on the load, or the load by which the capillary presses the wire against the electrode.
- the calculation unit calculates the power supplied to the piezoelectric element based on the resonance frequency of the ultrasonic horn and the load by which the capillary presses the wire against the electrode, and the control unit calculates the control unit
- the electric power supplied to the piezoelectric element may be adjusted based on the generated electric power.
- the calculation unit may calculate Power req , which is power supplied to the piezoelectric element, by the following equation (1).
- f r is the resonant frequency of the ultrasonic horn
- F req is load capillary presses the electrode
- A is determined geometry a
- bonding speed c the junction temperature d coefficient
- B are coefficients determined by the material of the wire.
- the calculation unit may calculate A by the following equation (2).
- f is a function of the shape dimension a, the bonding pad material b, the bonding speed c, and the junction temperature d.
- the calculation unit calculates the load by which the capillary presses the wire against the electrode based on the resonance frequency of the ultrasonic horn and the electric power supplied to the piezoelectric element, and the control unit calculates the calculation unit.
- the load by which the capillary presses the wire against the electrode may be adjusted based on the applied load.
- the calculation unit may calculate F req , which is a load by which the capillary presses the wire against the electrode, according to the following equation (3).
- F req is the resonant frequency of the ultrasonic horn
- Power req is power supplied to the piezoelectric element
- A is determined geometry a
- the material of the bonding pad b is determined by the junction temperature d coefficients
- B is a coefficient determined by the material of the wire.
- the present invention can provide a wire bonding apparatus capable of suitable wire bonding using ultrasonic horns having different resonance frequencies.
- a wire bonding apparatus 100 includes a frame 10, an XY table 11 attached on the frame 10, a bonding head 12 attached on the XY table 11, and a bonding head. 12, a bonding arm 13 attached to 12, an ultrasonic horn 14 attached to the tip of the bonding arm 13, a piezoelectric element 16 for ultrasonically vibrating the ultrasonic horn 14, and a capillary attached to the tip of the ultrasonic horn 14. 15, a heat block 17 that heats and adsorbs the substrate 20 to which the semiconductor die 19 is attached, a control unit 50, and a calculation unit 60.
- the XY direction indicates the horizontal direction
- the Z direction indicates the vertical direction.
- the bonding head 12 is moved in the XY direction by the XY table 11.
- a Z-direction motor 30 that drives the bonding arm 13 in the vertical direction (Z direction) is provided inside the bonding head 12.
- the Z-direction motor 30 includes a stator 31 fixed to the bonding head 12 and a mover 32 that rotates around a rotation shaft 35.
- the mover 32 is integrated with the rear part of the bonding arm 13, and when the mover 32 rotates, the tip of the bonding arm 13 moves in the vertical direction.
- the height of the rotation center 33 of the rotation shaft 35 of the mover 32 (indicated by the intersection of the alternate long and short dash line 37 and the alternate long and short dash line 36 in FIG. 1) is substantially the same as the bonding surface.
- the tip of the capillary 15 moves up and down in a substantially vertical direction with respect to the upper surface of the electrode 19a (shown in FIG. 2A) of the semiconductor die 19.
- a flange 14a of the ultrasonic horn 14 is fixed to the tip of the bonding arm 13 with a bolt 14b.
- a recess 13 a for accommodating the piezoelectric element 16 is provided on the lower surface of the tip portion of the bonding arm 13.
- the cross section of the ultrasonic horn 14 is narrowed from the flange 14a toward the tip in order to extend the ultrasonic vibration.
- a capillary 15 is attached to the tip of the ultrasonic horn 14.
- the capillary 15 has a cylindrical shape in which a hole for passing the wire 21 is provided at the center, and the outer diameter decreases toward the tip.
- the heat block 17 is attached on the frame 10.
- a heater 18 for heating the heat block 17 is attached to the heat block 17, and the substrate 20 is adsorbed and fixed on the upper surface thereof.
- the driving power is supplied from the power source 41 to the stator 31 of the Z-direction motor 30 via the motor driver 42.
- driving power is supplied to the piezoelectric element 16 from the power source 43 via the piezoelectric element driver 44.
- the calculation unit 60 is a computer having a CPU for performing calculation processing and a memory for storing programs and the like. As shown in FIG. 1, the calculation unit 60 includes a first calculation block 61 that calculates the power Power req supplied to the piezoelectric element 16 necessary for bonding based on the resonance frequency fr of the ultrasonic horn 14, and the ultrasonic horn 14. A second calculation block 62 for calculating a load F req for pressing the wire 21 against the electrodes 19a and 20a of the semiconductor die 19 or the substrate 20 on the basis of the resonance frequency fr, and an input device (not shown). And an input unit 63 for receiving the data input.
- the control unit 50 is a computer including a CPU 52 that performs arithmetic processing therein, a memory 53 that stores control programs, data, and the like, and a device / sensor interface 51 that performs input / output with devices and sensors.
- the CPU 52, the memory 53, and the device / sensor interface 51 are connected by a data bus 54.
- the control unit 50 receives the power Power req supplied to the piezoelectric element 16 calculated by the calculation unit 60 or the load F req that the capillary 15 presses the wire 21 against the electrodes 19 a and 20 a of the semiconductor die 19 or the substrate 20.
- the power Power supplied to the element 16 or the load F by which the capillary 15 presses the wire 21 against the electrode of the semiconductor die 19 or the substrate 20 is adjusted.
- the control unit 50 adjusts the load F by which the capillary 15 presses the wire 21 against the electrode of the semiconductor die 19 or the substrate 20 by adjusting the power supplied to the Z-direction motor 30.
- the tip of the wire 21 penetrating the capillary 15 is formed in a spherical free air ball 21a.
- a spark is generated between the torch electrode 22 and the tip of the wire 21 extending from the tip of the capillary 15, and the wire 21 is formed into a spherical shape by the heat.
- the substrate 20 on which the semiconductor die 19 is attached is fixed to the heat block 17 by suction and heated to a predetermined temperature by the heater 18.
- the Z-direction motor 30 is driven to rotate the bonding arm 13, and the tip of the capillary 15 is lowered toward the electrode 19 a of the semiconductor die 19. Then, the free air ball 21 a is pressed onto the electrode 19 a of the semiconductor die 19, and at the same time, alternating power is supplied to the piezoelectric element 16. Then, the alternating power is converted into a mechanical motion that expands and contracts in the thickness direction by the inverse piezoelectric effect of the piezoelectric element 16. When the frequency at that time and the natural frequency of the ultrasonic horn 14 are synchronized, the entire ultrasonic horn 14 resonates so as to expand and contract in the axial direction.
- the capillary 15 attached to the tip of the ultrasonic horn 14 resonates ultrasonically in the bending direction with reference to the fastening portion with the ultrasonic horn 14.
- the free air ball 21 a and the electrode 19 a of the semiconductor die 19 are joined by pressing the free air ball 21 a against the electrode 19 a by the capillary 15 and ultrasonic vibration.
- a phonon is defined as a discrete quantum that behaves like a wave propagating through a crystal at the speed of sound. It is generated by irradiating the surface of a certain substance or the surface of a certain crystal with the vibration of the piezo element (piezoelectric element 16). Due to the interaction of phonon generation, heat conduction, thermal expansion, and diffusion transfer occur.
- phonons concentrate only on sites with lattice imperfections such as dislocations and lattice defects, resulting in thermal and mechanical changes.
- the generation of phonons is increased by increasing the vibration frequency of phonons, and in the dislocation movement at the bonding interface between the wire 21 and the electrodes 19a and 20a, the temperature of the movement inhibition minimum due to impurities / defects between metals. Has the effect of promoting the rise. (For example, refer nonpatent literature 1).
- the single amplitude y req ( ⁇ m) of the ultrasonic vibration at the tip of the capillary 15 necessary for obtaining the required shear strength at the bonding interface is It is represented by the following formula (4).
- A is a coefficient determined by the shape dimension “a”, the bonding pad material “b”, the bonding speed “c”, and the junction temperature “d” (see, for example, Non-Patent Document 2). That is, A is expressed as the following equation (2) using the function f.
- B is a coefficient determined by the material of the wire 21.
- fr is the resonance frequency fr of the ultrasonic horn 14, that is, the frequency (Hz) of ultrasonic vibration in wire bonding.
- the electric energy (the amount of power, the unit is mWs) supplied to the piezoelectric element 16 is E
- the necessary power amount (the unit is mWs) for obtaining the required shear strength at the bonding interface is E req . Since the interface bonding is achieved by the mechanical action of the amplitude motion of the capillary 15, if the required vibration speed (unit: m / s) is v req , the required electric energy E req is expressed by the following equation (5). It is shown by the formula.
- T req is the process time (ms) required for bonding
- Power req is the power (mW) supplied to the piezoelectric element 16
- F req is the wire 21 or free air ball 21 a from the capillary 15 to the electrode of the semiconductor die 19.
- a load (N) to be pressed to 19a is shown (hereinafter referred to as a bond load Freq ). Equation (5) is established when it is assumed that apparent power due to modulation and frictional heat from the capillary 15 are not expressed in the wire bonding process.
- vibration velocity v req (m / s) is expressed by the following equation (8).
- Equation (9) Substituting Equation (4) and Equation (2) into Equation (8) yields Equation (9) below.
- a bond load F req (N), which is a load by which the capillary 15 presses the wire 21 against the electrode 19 a of the semiconductor die 19, is expressed by the following equation (3).
- the coefficients A and B in each equation can take various values depending on the material, diameter, etc. of the wire 21.
- a gold wire 21 with a diameter of 30 ( ⁇ m) is used, and a free diameter of 55 ( ⁇ m) is used.
- the coefficient A is 1.85 and the coefficient B is 0.0016.
- calculation examples in the case where the coefficient A and the coefficient B are 1.85 and 0.0016, respectively, are shown.
- the effective power Power req (mW) is calculated as 30 (mW) from the equation (1).
- the resonance frequency fr of the ultrasonic horn 14 is changed from 120 (kHz) to 150 (kHz) and the power Power req supplied to the piezoelectric element 16 is maintained at 30 (mW)
- the necessary bond load F req ( N) is calculated to be 0.19 (N) by Equation (3).
- the power Power req (mW) that is required to be supplied to the piezoelectric element 16 when the bond load F req (N) is defined based on the resonance frequency fr (kHz) of the ultrasonic horn 14 according to the equation (1). ) Can be calculated.
- the required bond load F req (N) when the power Power req (mW) to be supplied to the piezoelectric element 16 is defined based on the resonance frequency fr (kHz) of the ultrasonic horn 14 is calculated by Expression (3). can do.
- the power Power req (mW) that is required to be supplied to the piezoelectric element 16 or the necessary bond load F req (N) is suitably adjusted. It becomes possible to do.
- the input unit 63 of the calculation unit 60 receives the resonance frequency fr (kHz) of the ultrasonic horn 14 and the power supplied to the piezoelectric element 16 from the external input device (not shown) Power req (mW ), Bond load F req (N), shape dimension a, bonding pad material b, bonding speed c, junction temperature d, and coefficient B.
- Power req mW
- Bond load F req N
- shape dimension a bonding pad material
- bonding speed c bonding speed c
- junction temperature d junction temperature
- coefficient B coefficient B
- various values can be considered as the shape dimension a.
- the diameter of the wire 21 or the diameter of the free air ball 21a may be used.
- the input unit 63 adjusts the power req (mW) supplied to the piezoelectric element 16 based on the input data, or adjusts the bond load F req (N). Judge whether to do. Input unit 63, data is input in the bond force F req (N), when the power supply Power req to the piezoelectric element 16 (m) is not input, supplied to the piezoelectric element 16 power Power req It is determined that the (mW) adjustment is to be performed, and the process proceeds to step S103 in FIG. Conversely, power supply Power req to the piezoelectric element 16 (m) is input, when the data of the bond force F req (N) is not input, adjusts the bond force F req (N) The process proceeds to step S105 in FIG.
- the input unit 63 receives the resonance frequency fr (kHz), bond load F req (N), shape dimension a, bonding pad material b, bonding speed c, input in step S103 of FIG.
- the junction temperature d and the coefficient B are output to the first calculation block 61.
- the first calculation block 61 uses the data input from the input unit 63 to calculate the coefficient A according to Equation (2), and calculates the power supply Power req (mW) to the piezoelectric element according to Equation (1). Output to the controller 50.
- step S ⁇ b> 104 of FIG. 3 the control unit 50 uses the supply power Power (mW) to the piezoelectric element 16 as the supply power Power req (mW) to the piezoelectric element 16 input from the first calculation block 61. As described above, the electric power supplied to the piezoelectric element 16 is adjusted by adjusting the piezoelectric element driver 44.
- the input unit 63 receives the resonance frequency fr (kHz) of the ultrasonic horn 14, the power req (mW) supplied to the piezoelectric element 16, the shape dimension a, and the bonding pad input in step S 105 of FIG. 3.
- the material b, the bonding speed c, the junction temperature d, and the coefficient B are output to the second calculation block 62.
- the second calculation block 62 uses the data input from the input unit 63 to calculate the coefficient A according to the equation (2), calculates the bond load F req (N) according to the equation (3), and sends it to the control unit 50. Output.
- Step S ⁇ b> 106 of FIG. 3 the control unit 50 adjusts the motor driver 42 so that the bond load F (N) becomes the bond load F req (N) input from the second calculation block 62.
- the current supplied to the Z direction motor 30 is adjusted.
- the current may be adjusted, for example, by storing a map that defines the relationship between the current value and the bond load F in the memory 53 and adjusting the current value based on this map.
- the wire bonding apparatus 100 needs to be supplied to the piezoelectric element 16 when the bond load F req (N) is defined based on the resonance frequency fr (kHz) of the ultrasonic horn 14.
- the power Power req (mW) is adjusted.
- the required bond load F req (N) when the power Power req (mW) supplied to the piezoelectric element 16 is defined can be adjusted.
- the power Pow (mW) supplied to the piezoelectric element 16 or the bond load F (N) is adjusted, and wire bonding is suitably performed. It becomes possible.
- the first calculation block 61 and the second calculation block 62 have been described as calculating the coefficient A by the input equation (2).
- the present invention is not limited to this, and for example, the shape dimension a
- the coefficient A may be determined using a map or a table that defines the correlation between the bonding pad material b, the bonding speed c, the junction temperature d, and the coefficient A. Further, when the ultrasonic horn 14 having a different resonance frequency fr is exchanged during the wire bonding process, the value of the coefficient A does not change, so that the value of the coefficient A used in the previous calculation is used as it is. You may make it use.
- calculation unit 60 of the wire bonding apparatus 100 of the embodiment has been described as having two calculation blocks, the first calculation block 61 and the second calculation block 62, but the calculation program is changed in one calculation block. Thus, the same calculation may be performed.
- each data is stored in a memory inside the calculation unit 60 and the ultrasonic wave is stored.
- a vibration sensor for detecting the resonance frequency fr of the horn 14 is provided, and the resonance frequency fr of the ultrasonic horn 14 detected by the vibration sensor is input as input data from the input unit 63 to the calculation unit 60, and the data stored in the memory is used.
- the power Power req (mW) or the bond load F req (N) that needs to be supplied to the piezoelectric element 16 is calculated, and the power Power or the bond load F calculated to be supplied to the piezoelectric element 16 by the control unit 50 is calculated.
- the calculated power Power req (mW) or the bond load F req (N) may be adjusted.
- the power Power supplied to the piezoelectric element 16 or the bond load F can be automatically adjusted to a suitable value, which is automatically suitable. Wire bonding can be performed. Since the resonance frequency fr of the ultrasonic horn 14 is the same frequency as the command of the alternating power output from the control unit 50 to the piezoelectric element driver 44, the control signal of the piezoelectric element driver 44 of the control unit 50 is sent to the calculation unit 60. You may make it detect by inputting.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Wire Bonding (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Abstract
This wire bonding device has: a piezoelectric element (16); an ultrasonic horn (14); a capillary (15), which presses a wire (21) to an electrode by being attached to a leading end of the ultrasonic horn (14),and which applies ultrasonic vibration to the wire (21); an arithmetic unit (60) that calculates, on the basis of the resonance frequency fr of the ultrasonic horn (14), power Powerreq or a bond load Freq to be supplied to the piezoelectric element (16); and a control unit (50) that adjusts, on the basis of the power Powerreq or the bond load Freq calculated by the arithmetic unit, power Power or a bond load F to be supplied to the piezoelectric element (16).
Description
本発明は、超音波ホーンの共振周波数に基づいて圧電素子に供給する電力、キャピラリがワイヤを電極に押圧する荷重を算出し、算出した結果に基づいて圧電素子に供給する電力、キャピラリがワイヤを電極に押圧する荷重を調整するワイヤボンディング装置に関する。
The present invention calculates the power supplied to the piezoelectric element based on the resonance frequency of the ultrasonic horn, the load by which the capillary presses the wire against the electrode, and the power supplied to the piezoelectric element based on the calculated result. The present invention relates to a wire bonding apparatus that adjusts a load applied to an electrode.
半導体ダイの電極と基板の電極を金、アルミ、銅等のワイヤで接続するワイヤボンディング装置が多く用いられている。ワイヤボンディング装置は、キャピラリ等のボンディングツールでワイヤを各電極に押圧すると共にワイヤを超音波加振してワイヤを電極の表面に接合する。ワイヤの超音波加振は、超音波振動子によって超音波ホーンを共振させ、その振動をキャピラリ等のボンディングツールによってワイヤに伝達し、ボンディングツールでワイヤを電極に押圧する際にボンディングツールからワイヤに超音波振動を伝達することによって行う。ワイヤボンディング装置において、良好なボンディングを行うためには、ワイヤの押圧荷重、超音波振動子に入力するエネルギ等の制御パラメータを調整することが必要となる。
A wire bonding apparatus that connects a semiconductor die electrode and a substrate electrode with a wire such as gold, aluminum, or copper is often used. The wire bonding apparatus presses a wire against each electrode with a bonding tool such as a capillary and ultrasonically excites the wire to bond the wire to the surface of the electrode. Ultrasonic vibration of a wire is achieved by resonating an ultrasonic horn with an ultrasonic vibrator, transmitting the vibration to the wire with a bonding tool such as a capillary, and pressing the wire against the electrode with the bonding tool from the bonding tool to the wire. This is done by transmitting ultrasonic vibrations. In order to perform good bonding in the wire bonding apparatus, it is necessary to adjust control parameters such as the pressing load of the wire and the energy input to the ultrasonic transducer.
このため、ワイヤボンディングされた圧着ボールの直径、ワイヤボンドのせん断強度に基づいてワイヤの押圧荷重、超音波振動子に入力するエネルギ等の制御パラメータを調整することが提案されている(例えば、特許文献1参照)。
For this reason, it has been proposed to adjust control parameters such as the pressing load of the wire and the energy input to the ultrasonic transducer based on the diameter of the wire bonded crimp ball and the shear strength of the wire bond (for example, patents) Reference 1).
また、半導体ダイの大きさ、半導体ダイを基板に接着している接着材の弾性率、厚さ、ボンディング位置、ボンディング温度に基づいて、ボンディング荷重、超音波振動の出力を補正する方法が提案されている(例えば、特許文献2参照)。
Also proposed is a method for correcting the bonding load and the output of ultrasonic vibration based on the size of the semiconductor die, the elastic modulus of the adhesive bonding the semiconductor die to the substrate, the thickness, the bonding position, and the bonding temperature. (For example, refer to Patent Document 2).
ところで、発明者らの研究により、ワイヤボンディング装置の制御パラメータは、超音波ホーンの共振周波数に依存することがわかってきている。しかし、特許文献1、2に記載された従来技術では、制御パラメータの調整、補正において超音波ホーンの共振周波数を考慮していない。このため、特許文献1、2に記載された従来技術では、異なる共振周波数の超音波ホーンを取り付けてワイヤボンディングを行う際に、制御パラメータを好適に調整、補正することができず、良好なワイヤボンディングを行うことが難しい場合があった。
By the way, research by the inventors has revealed that the control parameter of the wire bonding apparatus depends on the resonance frequency of the ultrasonic horn. However, in the conventional techniques described in Patent Documents 1 and 2, the resonance frequency of the ultrasonic horn is not taken into account in the adjustment and correction of the control parameter. For this reason, in the prior art described in Patent Literatures 1 and 2, when wire bonding is performed by attaching an ultrasonic horn having a different resonance frequency, the control parameters cannot be adjusted and corrected appropriately, and a good wire is obtained. In some cases, bonding was difficult.
そこで、本発明は、異なる共振周波数の超音波ホーンを用いて好適なワイヤボンディングが可能なワイヤボンディング装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a wire bonding apparatus capable of suitable wire bonding using ultrasonic horns having different resonance frequencies.
本発明のワイヤボンディング装置は、ワイヤを電極に接合するワイヤボンディング装置であって、圧電素子と、圧電素子によって加振され、固有の共振周波数で超音波振動する超音波ホーンと、超音波ホーンの先端に取り付けられてワイヤを電極に押圧すると共にワイヤに超音波振動を印加するキャピラリと、超音波ホーンの共振周波数に基づいて圧電素子に供給する電力、または、キャピラリがワイヤを電極に押圧する荷重を算出する演算部と、演算部が算出した電力、または、荷重に基づいて圧電素子に供給する電力、または、キャピラリがワイヤを電極に押圧する荷重を調整する制御部と、を有することを特徴とする。
A wire bonding apparatus according to the present invention is a wire bonding apparatus for bonding a wire to an electrode, and includes a piezoelectric element, an ultrasonic horn that is vibrated by the piezoelectric element and ultrasonically vibrates at a specific resonance frequency, and an ultrasonic horn. A capillary that is attached to the tip and presses the wire against the electrode and applies ultrasonic vibration to the wire, and power supplied to the piezoelectric element based on the resonance frequency of the ultrasonic horn, or a load that the capillary presses the wire against the electrode And a control unit that adjusts the power calculated by the calculation unit, the power supplied to the piezoelectric element based on the load, or the load by which the capillary presses the wire against the electrode. And
本発明のワイヤボンディング装置において、演算部は、超音波ホーンの共振周波数とキャピラリがワイヤを電極に押圧する荷重とに基づいて圧電素子に供給する電力を算出し、制御部は、演算部が算出した電力に基づいて圧電素子に供給する電力を調整することとしてもよい。
In the wire bonding apparatus of the present invention, the calculation unit calculates the power supplied to the piezoelectric element based on the resonance frequency of the ultrasonic horn and the load by which the capillary presses the wire against the electrode, and the control unit calculates the control unit The electric power supplied to the piezoelectric element may be adjusted based on the generated electric power.
本発明のワイヤボンディング装置において、演算部は、圧電素子に供給する電力であるPowerreqを下記の式(1)により算出することとしてもよい。
ここで、frは、超音波ホーンの共振周波数、Freqは、キャピラリが電極を押圧する荷重、Aは、形状寸法a、ボンディングパッドの材質b、ボンディングスピードc、接合部温度dによって定まる係数、Bは、ワイヤの材質によって決まる係数である。
In the wire bonding apparatus of the present invention, the calculation unit may calculate Power req , which is power supplied to the piezoelectric element, by the following equation (1).
Here, f r is the resonant frequency of the ultrasonic horn, F req is load capillary presses the electrode, A is determined geometry a, the material of the bonding pad b, bonding speed c, the junction temperature d coefficient , B are coefficients determined by the material of the wire.
本発明のワイヤボンディング装置において、演算部は、Aを以下の式(2)によって算出することとしてもよい。
ここで、fは、形状寸法a、ボンディングパッドの材質b、ボンディングスピードc、接合部温度dの関数である。
In the wire bonding apparatus of the present invention, the calculation unit may calculate A by the following equation (2).
Here, f is a function of the shape dimension a, the bonding pad material b, the bonding speed c, and the junction temperature d.
本発明のワイヤボンディング装置において、演算部は、超音波ホーンの共振周波数と圧電素子に供給する電力とに基づいてキャピラリがワイヤを電極に押圧する荷重を算出し、制御部は、演算部が算出した荷重に基づいてキャピラリがワイヤを電極に押圧する荷重を調整することとしてもよい。
In the wire bonding apparatus of the present invention, the calculation unit calculates the load by which the capillary presses the wire against the electrode based on the resonance frequency of the ultrasonic horn and the electric power supplied to the piezoelectric element, and the control unit calculates the calculation unit. The load by which the capillary presses the wire against the electrode may be adjusted based on the applied load.
本発明のワイヤボンディング装置において、演算部は、キャピラリがワイヤを電極に押圧する荷重であるFreqを下記の式(3)により算出することとしてもよい。
ここで、frは、超音波ホーンの共振周波数、Powerreqは、圧電素子に供給する電力、Aは、形状寸法a、ボンディングパッドの材質b、ボンディングスピードc、接合部温度dによって定まる係数、Bは、ワイヤの材質によって決まる係数である。
In the wire bonding apparatus of the present invention, the calculation unit may calculate F req , which is a load by which the capillary presses the wire against the electrode, according to the following equation (3).
Here, f r is the resonant frequency of the ultrasonic horn, Power req is power supplied to the piezoelectric element, A is determined geometry a, the material of the bonding pad b, bonding speed c, the junction temperature d coefficients, B is a coefficient determined by the material of the wire.
本発明は、異なる共振周波数の超音波ホーンを用いて好適なワイヤボンディングが可能なワイヤボンディング装置を提供可能である。
The present invention can provide a wire bonding apparatus capable of suitable wire bonding using ultrasonic horns having different resonance frequencies.
<ワイヤボンディング装置の構成>
以下、図面を参照しながら実施形態のワイヤボンディング装置100について説明する。図1に示すように、本実施形態のワイヤボンディング装置100は、フレーム10と、フレーム10の上に取り付けられたXYテーブル11と、XYテーブル11の上に取り付けられたボンディングヘッド12と、ボンディングヘッド12に取り付けられたボンディングアーム13と、ボンディングアーム13の先端に取り付けられた超音波ホーン14と、超音波ホーン14を超音波振動させる圧電素子16と、超音波ホーン14の先端に取り付けられたキャピラリ15と、半導体ダイ19が取り付けられた基板20を加熱吸着するヒートブロック17と、制御部50と、演算部60とを備えている。なお、図1において、XY方向は水平方向、Z方向は上下方向を示す。 <Configuration of wire bonding equipment>
Hereinafter, an embodiment of awire bonding apparatus 100 will be described with reference to the drawings. As shown in FIG. 1, a wire bonding apparatus 100 according to the present embodiment includes a frame 10, an XY table 11 attached on the frame 10, a bonding head 12 attached on the XY table 11, and a bonding head. 12, a bonding arm 13 attached to 12, an ultrasonic horn 14 attached to the tip of the bonding arm 13, a piezoelectric element 16 for ultrasonically vibrating the ultrasonic horn 14, and a capillary attached to the tip of the ultrasonic horn 14. 15, a heat block 17 that heats and adsorbs the substrate 20 to which the semiconductor die 19 is attached, a control unit 50, and a calculation unit 60. In FIG. 1, the XY direction indicates the horizontal direction, and the Z direction indicates the vertical direction.
以下、図面を参照しながら実施形態のワイヤボンディング装置100について説明する。図1に示すように、本実施形態のワイヤボンディング装置100は、フレーム10と、フレーム10の上に取り付けられたXYテーブル11と、XYテーブル11の上に取り付けられたボンディングヘッド12と、ボンディングヘッド12に取り付けられたボンディングアーム13と、ボンディングアーム13の先端に取り付けられた超音波ホーン14と、超音波ホーン14を超音波振動させる圧電素子16と、超音波ホーン14の先端に取り付けられたキャピラリ15と、半導体ダイ19が取り付けられた基板20を加熱吸着するヒートブロック17と、制御部50と、演算部60とを備えている。なお、図1において、XY方向は水平方向、Z方向は上下方向を示す。 <Configuration of wire bonding equipment>
Hereinafter, an embodiment of a
ボンディングヘッド12は、XYテーブル11によってXY方向に移動する。ボンディングヘッド12の内部には、ボンディングアーム13を上下方向(Z方向)に駆動するZ方向モータ30が設けられている。Z方向モータ30は、ボンディングヘッド12に固定された固定子31と、回転軸35の周りに回転する可動子32とで構成されている。可動子32は、ボンディングアーム13の後部と一体になっており、可動子32が回転移動するとボンディングアーム13の先端が上下方向に移動する。可動子32の回転軸35の回転中心33(図1中で一点鎖線37と一点鎖線36の交点で示す)の高さはボンディング面と略同一の高さとなっている。したがって、可動子32が回転移動すると、キャピラリ15の先端は、半導体ダイ19の電極19a(図2Aに示す)の上面に対して略垂直方向に上下に移動する。ボンディングアーム13の先端には、超音波ホーン14のフランジ14aがボルト14bで固定されている。また、ボンディングアーム13の先端部分の下側の面には、圧電素子16を収容する凹部13aが設けられている。
The bonding head 12 is moved in the XY direction by the XY table 11. A Z-direction motor 30 that drives the bonding arm 13 in the vertical direction (Z direction) is provided inside the bonding head 12. The Z-direction motor 30 includes a stator 31 fixed to the bonding head 12 and a mover 32 that rotates around a rotation shaft 35. The mover 32 is integrated with the rear part of the bonding arm 13, and when the mover 32 rotates, the tip of the bonding arm 13 moves in the vertical direction. The height of the rotation center 33 of the rotation shaft 35 of the mover 32 (indicated by the intersection of the alternate long and short dash line 37 and the alternate long and short dash line 36 in FIG. 1) is substantially the same as the bonding surface. Therefore, when the mover 32 rotates, the tip of the capillary 15 moves up and down in a substantially vertical direction with respect to the upper surface of the electrode 19a (shown in FIG. 2A) of the semiconductor die 19. A flange 14a of the ultrasonic horn 14 is fixed to the tip of the bonding arm 13 with a bolt 14b. Further, a recess 13 a for accommodating the piezoelectric element 16 is provided on the lower surface of the tip portion of the bonding arm 13.
超音波ホーン14は、超音波振動を伸長させるためにフランジ14aから先端に向かって断面が細くなっている。超音波ホーン14の先端にはキャピラリ15が取り付けられている。キャピラリ15は、中心にワイヤ21を通す為の孔が設けられている円筒形で、先端に向かうにつれて外径が小さくなっている。ヒートブロック17は、フレーム10の上に取り付けられている。ヒートブロック17には、ヒートブロック17を加熱するヒータ18が取り付けられており、その上面に基板20を吸着固定する。
The cross section of the ultrasonic horn 14 is narrowed from the flange 14a toward the tip in order to extend the ultrasonic vibration. A capillary 15 is attached to the tip of the ultrasonic horn 14. The capillary 15 has a cylindrical shape in which a hole for passing the wire 21 is provided at the center, and the outer diameter decreases toward the tip. The heat block 17 is attached on the frame 10. A heater 18 for heating the heat block 17 is attached to the heat block 17, and the substrate 20 is adsorbed and fixed on the upper surface thereof.
Z方向モータ30の固定子31には、モータドライバ42を介して電源41から駆動電力が供給されている。また、圧電素子16には、圧電素子ドライバ44を介して電源43から駆動電力が供給されている。
The driving power is supplied from the power source 41 to the stator 31 of the Z-direction motor 30 via the motor driver 42. In addition, driving power is supplied to the piezoelectric element 16 from the power source 43 via the piezoelectric element driver 44.
演算部60は、内部に演算処理を行うCPUとプログラム等を格納するメモリとを有するコンピュータである。図1に示すように、演算部60は、超音波ホーン14の共振周波数frに基づいてボンディングに必要な圧電素子16に供給する電力Powerreqを算出する第1演算ブロック61と、超音波ホーン14の共振周波数frに基づいてボンディングに必要なキャピラリ15がワイヤ21を半導体ダイ19または基板20の電極19a,20aに押圧する荷重Freqとを算出する第2演算ブロック62と、図示しない入力装置からのデータ入力を受ける入力部63とを備えている。
The calculation unit 60 is a computer having a CPU for performing calculation processing and a memory for storing programs and the like. As shown in FIG. 1, the calculation unit 60 includes a first calculation block 61 that calculates the power Power req supplied to the piezoelectric element 16 necessary for bonding based on the resonance frequency fr of the ultrasonic horn 14, and the ultrasonic horn 14. A second calculation block 62 for calculating a load F req for pressing the wire 21 against the electrodes 19a and 20a of the semiconductor die 19 or the substrate 20 on the basis of the resonance frequency fr, and an input device (not shown). And an input unit 63 for receiving the data input.
制御部50は、内部に演算処理を行うCPU52と、制御プログラム、データ等を格納するメモリ53と、機器、センサとの入出力を行う機器・センサインターフェース51とを備えるコンピュータである。CPU52とメモリ53と機器・センサインターフェース51とはデータバス54で接続されている。
The control unit 50 is a computer including a CPU 52 that performs arithmetic processing therein, a memory 53 that stores control programs, data, and the like, and a device / sensor interface 51 that performs input / output with devices and sensors. The CPU 52, the memory 53, and the device / sensor interface 51 are connected by a data bus 54.
制御部50は、演算部60が算出した圧電素子16に供給する電力Powerreqまたは、キャピラリ15がワイヤ21を半導体ダイ19または基板20の電極19a、20aに押圧する荷重Freqが入力され、圧電素子16に供給する電力Power、または、キャピラリ15がワイヤ21を半導体ダイ19または基板20の電極に押圧する荷重Fを調整する。ここで、制御部50は、Z方向モータ30への供給電力を調整することにより、キャピラリ15がワイヤ21を半導体ダイ19または基板20の電極に押圧する荷重Fを調整する。
The control unit 50 receives the power Power req supplied to the piezoelectric element 16 calculated by the calculation unit 60 or the load F req that the capillary 15 presses the wire 21 against the electrodes 19 a and 20 a of the semiconductor die 19 or the substrate 20. The power Power supplied to the element 16 or the load F by which the capillary 15 presses the wire 21 against the electrode of the semiconductor die 19 or the substrate 20 is adjusted. Here, the control unit 50 adjusts the load F by which the capillary 15 presses the wire 21 against the electrode of the semiconductor die 19 or the substrate 20 by adjusting the power supplied to the Z-direction motor 30.
以下、図2Aから図2Dを参照しながら、図1に示すワイヤボンディング装置100によって半導体ダイ19の電極19aと基板20の電極20aとの間をワイヤ21によって接続するワイヤボンディングの工程について簡単に説明する。
Hereinafter, the wire bonding process for connecting the electrode 19a of the semiconductor die 19 and the electrode 20a of the substrate 20 by the wire 21 by the wire bonding apparatus 100 shown in FIG. 1 will be briefly described with reference to FIGS. 2A to 2D. To do.
図2Aに示すように、キャピラリ15に貫通させたワイヤ21の先端を球状のフリーエアボール21aに形成する。フリーエアボール21aの形成は、トーチ電極22とキャピラリ15の先端から延出したワイヤ21の先端との間にスパークを発生させ、その熱によりワイヤ21を球状に形成する。また、半導体ダイ19が取り付けられた基板20はヒートブロック17に吸着固定されると共にヒータ18によって所定の温度に加熱されている。
As shown in FIG. 2A, the tip of the wire 21 penetrating the capillary 15 is formed in a spherical free air ball 21a. In forming the free air ball 21a, a spark is generated between the torch electrode 22 and the tip of the wire 21 extending from the tip of the capillary 15, and the wire 21 is formed into a spherical shape by the heat. The substrate 20 on which the semiconductor die 19 is attached is fixed to the heat block 17 by suction and heated to a predetermined temperature by the heater 18.
次に、図2Bに示すように、Z方向モータ30を駆動してボンディングアーム13を回転させ、キャピラリ15の先端を半導体ダイ19の電極19aに向かって下降させる。そして、半導体ダイ19の電極19aの上にフリーエアボール21aを押圧すると同時に圧電素子16に交番方向の電力を供給する。すると、交番電力は、圧電素子16の逆圧電効果により厚み方向に伸長・収縮の機械運動に変換される。そのときの周波数と超音波ホーン14の固有周波数が同調すると超音波ホーン14全体が軸方向に伸縮するように共振する。超音波ホーン14の先端に取り付けられたキャピラリ15は超音波ホーン14との締結部を基準として曲げ方向に連成的に超音波共振する。キャピラリ15によるフリーエアボール21aの電極19aへの押圧と超音波振動によってフリーエアボール21aと半導体ダイ19の電極19aとが接合する。
Next, as shown in FIG. 2B, the Z-direction motor 30 is driven to rotate the bonding arm 13, and the tip of the capillary 15 is lowered toward the electrode 19 a of the semiconductor die 19. Then, the free air ball 21 a is pressed onto the electrode 19 a of the semiconductor die 19, and at the same time, alternating power is supplied to the piezoelectric element 16. Then, the alternating power is converted into a mechanical motion that expands and contracts in the thickness direction by the inverse piezoelectric effect of the piezoelectric element 16. When the frequency at that time and the natural frequency of the ultrasonic horn 14 are synchronized, the entire ultrasonic horn 14 resonates so as to expand and contract in the axial direction. The capillary 15 attached to the tip of the ultrasonic horn 14 resonates ultrasonically in the bending direction with reference to the fastening portion with the ultrasonic horn 14. The free air ball 21 a and the electrode 19 a of the semiconductor die 19 are joined by pressing the free air ball 21 a against the electrode 19 a by the capillary 15 and ultrasonic vibration.
図2Cに示すように、フリーエアボール21aを半導体ダイ19の電極19aの上に接合したら、ワイヤ21を繰り出しながらワイヤ21をルーピングして基板20の電極20aの上にキャピラリ15を移動させる。そして、図2Dに示すように、キャピラリ15を下降させてワイヤ21を基板20の電極20aに押圧して接合する。
As shown in FIG. 2C, when the free air ball 21a is joined onto the electrode 19a of the semiconductor die 19, the wire 21 is looped while the wire 21 is fed out, and the capillary 15 is moved onto the electrode 20a of the substrate 20. Then, as shown in FIG. 2D, the capillary 15 is lowered and the wire 21 is pressed and bonded to the electrode 20 a of the substrate 20.
<フォノン伝導効果と、超音波ホーンの共振周波数に基づいて圧電素子に供給する電力とキャピラリがワイヤを電極に押圧する荷重の計算式の導入>
本実施形態のワイヤボンディング装置100の動作について説明する前に、フォノン伝導効果について説明する。フォノンは結晶内を音速で伝播する波動の振る舞いをするとびとびの量子と定義されている。ピエゾ素子(圧電素子16)の振動をある物質の表面に、または、ある水晶の表面に照射することにより生成される。フォノン生成の相互作用によって、熱伝導、熱膨張、拡散移動が発現する。熱エネルギがある物質の全体のバルクで吸収されるのと異なり、フォノンは転位や格子欠陥などの格子の不完全性を有する部位のみに集中し、熱的変化と機械的変化をもたらす。ワイヤボンディングにおいては、フォノンの振動周波数を高めることによって、フォノンの生成を増やし、ワイヤ21と電極19a,20aとの接合界面での転位移動において、金属間の不純物・欠陥による移動阻害極小部の温度上昇を促進させる効果がある。(例えば、非特許文献1参照)。
<Introduction of calculation formulas for the phonon conduction effect, the power supplied to the piezoelectric element based on the resonance frequency of the ultrasonic horn, and the load by which the capillary presses the wire against the electrode>
Before describing the operation of thewire bonding apparatus 100 of the present embodiment, the phonon conduction effect will be described. A phonon is defined as a discrete quantum that behaves like a wave propagating through a crystal at the speed of sound. It is generated by irradiating the surface of a certain substance or the surface of a certain crystal with the vibration of the piezo element (piezoelectric element 16). Due to the interaction of phonon generation, heat conduction, thermal expansion, and diffusion transfer occur. Unlike thermal energy being absorbed in the entire bulk of a material, phonons concentrate only on sites with lattice imperfections such as dislocations and lattice defects, resulting in thermal and mechanical changes. In wire bonding, the generation of phonons is increased by increasing the vibration frequency of phonons, and in the dislocation movement at the bonding interface between the wire 21 and the electrodes 19a and 20a, the temperature of the movement inhibition minimum due to impurities / defects between metals. Has the effect of promoting the rise. (For example, refer nonpatent literature 1).
本実施形態のワイヤボンディング装置100の動作について説明する前に、フォノン伝導効果について説明する。フォノンは結晶内を音速で伝播する波動の振る舞いをするとびとびの量子と定義されている。ピエゾ素子(圧電素子16)の振動をある物質の表面に、または、ある水晶の表面に照射することにより生成される。フォノン生成の相互作用によって、熱伝導、熱膨張、拡散移動が発現する。熱エネルギがある物質の全体のバルクで吸収されるのと異なり、フォノンは転位や格子欠陥などの格子の不完全性を有する部位のみに集中し、熱的変化と機械的変化をもたらす。ワイヤボンディングにおいては、フォノンの振動周波数を高めることによって、フォノンの生成を増やし、ワイヤ21と電極19a,20aとの接合界面での転位移動において、金属間の不純物・欠陥による移動阻害極小部の温度上昇を促進させる効果がある。(例えば、非特許文献1参照)。
<Introduction of calculation formulas for the phonon conduction effect, the power supplied to the piezoelectric element based on the resonance frequency of the ultrasonic horn, and the load by which the capillary presses the wire against the electrode>
Before describing the operation of the
フォノン伝導効果によれば、超音波振動を応用したワイヤボンディング装置100において、要求される接合界面におけるせん断強度を得るために必要なキャピラリ15の先端における超音波振動の片振幅yreq(μm)は、以下の式(4)で表される。
ここで、Aは形状寸法a、ボンディングパッドの材質b、ボンディングスピードc、接合部温度dによって定まる係数である(例えば、非特許文献2参照)。すなわち、Aは関数fを用いて下記の式(2)のように表される。
Bは、ワイヤ21の材質によって決まる係数である。
frは、超音波ホーン14の共振周波数fr、すなわち、ワイヤボンディングにおける超音波振動の周波数(Hz)である。 According to the phonon conduction effect, in thewire bonding apparatus 100 to which ultrasonic vibration is applied, the single amplitude y req (μm) of the ultrasonic vibration at the tip of the capillary 15 necessary for obtaining the required shear strength at the bonding interface is It is represented by the following formula (4).
Here, A is a coefficient determined by the shape dimension “a”, the bonding pad material “b”, the bonding speed “c”, and the junction temperature “d” (see, for example, Non-Patent Document 2). That is, A is expressed as the following equation (2) using the function f.
B is a coefficient determined by the material of the wire 21.
fr is the resonance frequency fr of theultrasonic horn 14, that is, the frequency (Hz) of ultrasonic vibration in wire bonding.
frは、超音波ホーン14の共振周波数fr、すなわち、ワイヤボンディングにおける超音波振動の周波数(Hz)である。 According to the phonon conduction effect, in the
fr is the resonance frequency fr of the
圧電素子16に供給する電気エネルギ(電力量、単位はmWs)をE、接合界面において必要せん断強度を得るための必要電力量(単位はmWs)をEreqとする。界面の接合はキャピラリ15の振幅運動の力学的作用によって達成されるので、そのときの必要振動速度(単位はm/s)をvreqとすると、必要電力量Ereqは以下の式(5)式で示される。
ここで、Treqは接合に要するプロセス時間(ms)、Powerreqは、圧電素子16に供給する電力(mW)、Freqは、キャピラリ15がワイヤ21またはフリーエアボール21aを半導体ダイ19の電極19aに押圧する荷重(N)を示す(以下、ボンド荷重Freqという)。式(5)は、ワイヤボンディングプロセスにおいて、変調による皮相電力やキャピラリ15による摩擦熱が発現していないと仮定した場合に成立つ。
It is assumed that the electric energy (the amount of power, the unit is mWs) supplied to the piezoelectric element 16 is E, and the necessary power amount (the unit is mWs) for obtaining the required shear strength at the bonding interface is E req . Since the interface bonding is achieved by the mechanical action of the amplitude motion of the capillary 15, if the required vibration speed (unit: m / s) is v req , the required electric energy E req is expressed by the following equation (5). It is shown by the formula.
Here, T req is the process time (ms) required for bonding, Power req is the power (mW) supplied to the piezoelectric element 16, and F req is the wire 21 or free air ball 21 a from the capillary 15 to the electrode of the semiconductor die 19. A load (N) to be pressed to 19a is shown (hereinafter referred to as a bond load Freq ). Equation (5) is established when it is assumed that apparent power due to modulation and frictional heat from the capillary 15 are not expressed in the wire bonding process.
ここで、必要電力量Ereq(mWs)とワイヤボンディングプロセスとの関係性を調べる。式(5)において、プロセス時間を0に極限まで近づけて、Treq→0としたとき、エネルギは“0”であるから、以下の式(6)が成り立つ。
Here, the relationship between the required electric energy E req (mWs) and the wire bonding process is examined. In equation (5), when the process time is brought close to 0 to the limit and T req → 0, the energy is “0”, and therefore the following equation (6) is established.
式(6)を時間Tで微分すると、圧電素子16に供給する電力Powerreq(mW)は、以下の式(7)で表される。
When Expression (6) is differentiated with respect to time T, the power Power req (mW) supplied to the piezoelectric element 16 is expressed by the following Expression (7).
ここで、振動速度vreq(m/s)は、以下の式(8)で表される。
Here, the vibration velocity v req (m / s) is expressed by the following equation (8).
式(8)に式(4)、式(2)を代入すると、以下の式(9)となる。
Substituting Equation (4) and Equation (2) into Equation (8) yields Equation (9) below.
式(7)に式(9)、式(2)を代入すると、圧電素子16に供給する電力Powerreq(mW)は、以下の式(1)で表される。
When Expression (9) and Expression (2) are substituted into Expression (7), the power Power req (mW) supplied to the piezoelectric element 16 is expressed by the following Expression (1).
また、キャピラリ15がワイヤ21を半導体ダイ19の電極19aに押圧する荷重であるボンド荷重Freq(N)は、下記の式(3)により表される。
A bond load F req (N), which is a load by which the capillary 15 presses the wire 21 against the electrode 19 a of the semiconductor die 19, is expressed by the following equation (3).
<超音波ホーンの共振周波数に基づいて圧電素子に供給する電力とキャピラリがワイヤを電極に押圧する荷重の計算例>
以下に、先に導入した式を用いて超音波ホーン14の共振周波数frに基づいて圧電素子16に供給する電力Powerとキャピラリ15がワイヤ21を電極19aに押圧する荷重Fの計算例を示す。 <Calculation example of the electric power supplied to the piezoelectric element based on the resonance frequency of the ultrasonic horn and the load by which the capillary presses the wire against the electrode>
In the following, a calculation example of the electric power Power supplied to thepiezoelectric element 16 and the load F by which the capillary 15 presses the wire 21 against the electrode 19a based on the resonance frequency fr of the ultrasonic horn 14 using the previously introduced equation will be shown.
以下に、先に導入した式を用いて超音波ホーン14の共振周波数frに基づいて圧電素子16に供給する電力Powerとキャピラリ15がワイヤ21を電極19aに押圧する荷重Fの計算例を示す。 <Calculation example of the electric power supplied to the piezoelectric element based on the resonance frequency of the ultrasonic horn and the load by which the capillary presses the wire against the electrode>
In the following, a calculation example of the electric power Power supplied to the
各式中の係数A、Bはワイヤ21の材質、直径等により様々な数値を取りうるが、一例を示すと、直径30(μm)の金のワイヤ21を用い、直径55(μm)のフリーエアボール21aを0.8(μm)のアルミ蒸着した半導体ダイ19の電極の上にボンディングする場合、係数Aは1.85、係数Bは、0.0016となる。以下の例では、係数A、係数Bをそれぞれ1.85、0.0016とした場合の計算例を示す。
The coefficients A and B in each equation can take various values depending on the material, diameter, etc. of the wire 21. For example, a gold wire 21 with a diameter of 30 (μm) is used, and a free diameter of 55 (μm) is used. When the air ball 21a is bonded onto the electrode of the semiconductor die 19 deposited with 0.8 (μm) aluminum, the coefficient A is 1.85 and the coefficient B is 0.0016. In the following example, calculation examples in the case where the coefficient A and the coefficient B are 1.85 and 0.0016, respectively, are shown.
係数A、係数Bをそれぞれ1.85、0.0016、超音波ホーン14の共振周波数frが120(kHz)、ボンド荷重Freq=0.147(N)の場合、圧電素子16に供給が必要な電力Powerreq(mW)は、式(1)から、30(mW)と計算される。また、超音波ホーン14の共振周波数frを120(kHz)から150(kHz)に変更し、圧電素子16に供給する電力Powerreqを30(mW)に保った場合、必要なボンド荷重Freq(N)は、式(3)により、0.19(N)と計算される。
When the coefficient A and the coefficient B are 1.85 and 0.0016, the resonance frequency fr of the ultrasonic horn 14 is 120 (kHz), and the bond load F req = 0.147 (N), the piezoelectric element 16 needs to be supplied. The effective power Power req (mW) is calculated as 30 (mW) from the equation (1). Further, when the resonance frequency fr of the ultrasonic horn 14 is changed from 120 (kHz) to 150 (kHz) and the power Power req supplied to the piezoelectric element 16 is maintained at 30 (mW), the necessary bond load F req ( N) is calculated to be 0.19 (N) by Equation (3).
このように、式(1)により、超音波ホーン14の共振周波数fr(kHz)に基づいて、ボンド荷重Freq(N)を規定した場合に圧電素子16に供給が必要な電力Powerreq(mW)を計算することができる。また、式(3)により、超音波ホーン14の共振周波数fr(kHz)に基づいて、圧電素子16に供給する電力Powerreq(mW)を規定した場合の必要ボンド荷重Freq(N)を計算することができる。従って、共振周波数fr(kHz)の異なる超音波ホーン14を用いた場合でも、圧電素子16に供給が必要な電力Powerreq(mW)、あるいは、必要なボンド荷重Freq(N)を好適に調整することが可能となる。
Thus, the power Power req (mW) that is required to be supplied to the piezoelectric element 16 when the bond load F req (N) is defined based on the resonance frequency fr (kHz) of the ultrasonic horn 14 according to the equation (1). ) Can be calculated. Further, the required bond load F req (N) when the power Power req (mW) to be supplied to the piezoelectric element 16 is defined based on the resonance frequency fr (kHz) of the ultrasonic horn 14 is calculated by Expression (3). can do. Therefore, even when the ultrasonic horn 14 having a different resonance frequency fr (kHz) is used, the power Power req (mW) that is required to be supplied to the piezoelectric element 16 or the necessary bond load F req (N) is suitably adjusted. It becomes possible to do.
<ワイヤボンディング装置の動作>
以下、図3を参照しながら、本実施形態のワイヤボンディング装置100の動作について説明する。 <Operation of wire bonding equipment>
Hereinafter, the operation of thewire bonding apparatus 100 of the present embodiment will be described with reference to FIG.
以下、図3を参照しながら、本実施形態のワイヤボンディング装置100の動作について説明する。 <Operation of wire bonding equipment>
Hereinafter, the operation of the
図3のステップS101に示すように、演算部60の入力部63は、図示しない外部の入力装置から、超音波ホーン14の共振周波数fr(kHz)、圧電素子16への供給電力Powerreq(mW)、ボンド荷重Freq(N)、形状寸法a、ボンディングパッドの材質b、ボンディングスピードc、接合部温度d、係数Bを取得する。ここで、形状寸法aとしては、いろいろな値を考慮することが可能であるが、例えば、ワイヤ21の直径、フリーエアボール21aの直径等としてもよい。
As shown in step S101 of FIG. 3, the input unit 63 of the calculation unit 60 receives the resonance frequency fr (kHz) of the ultrasonic horn 14 and the power supplied to the piezoelectric element 16 from the external input device (not shown) Power req (mW ), Bond load F req (N), shape dimension a, bonding pad material b, bonding speed c, junction temperature d, and coefficient B. Here, various values can be considered as the shape dimension a. For example, the diameter of the wire 21 or the diameter of the free air ball 21a may be used.
入力部63は、図3のステップS102に示すように、入力されたデータに基づいて、圧電素子16への供給電力Powerreq(mW)の調整を行うのか、ボンド荷重Freq(N)の調整を行うのかを判断する。入力部63は、ボンド荷重Freq(N)のデータが入力されており、圧電素子16への供給電力Powerreq(m)が入力されていない場合には、圧電素子16への供給電力Powerreq(mW)の調整を行うと判断して図3のステップS103に進む。逆に、圧電素子16への供給電力Powerreq(m)が入力されており、ボンド荷重Freq(N)のデータが入力されていない場合には、ボンド荷重Freq(N)の調整を行うと判断して図3のステップS105に進む。
As shown in step S102 of FIG. 3, the input unit 63 adjusts the power req (mW) supplied to the piezoelectric element 16 based on the input data, or adjusts the bond load F req (N). Judge whether to do. Input unit 63, data is input in the bond force F req (N), when the power supply Power req to the piezoelectric element 16 (m) is not input, supplied to the piezoelectric element 16 power Power req It is determined that the (mW) adjustment is to be performed, and the process proceeds to step S103 in FIG. Conversely, power supply Power req to the piezoelectric element 16 (m) is input, when the data of the bond force F req (N) is not input, adjusts the bond force F req (N) The process proceeds to step S105 in FIG.
入力部63は、図3のステップS103において、入力された、超音波ホーン14の共振周波数fr(kHz)、ボンド荷重Freq(N)、形状寸法a、ボンディングパッドの材質b、ボンディングスピードc、接合部温度d、係数Bを第1演算ブロック61に出力する。第1演算ブロック61は、入力部63から入力されたデータを用いて、式(2)により係数Aを計算し、式(1)により圧電素子への供給電力Powerreq(mW)を算出して制御部50に出力する。
The input unit 63 receives the resonance frequency fr (kHz), bond load F req (N), shape dimension a, bonding pad material b, bonding speed c, input in step S103 of FIG. The junction temperature d and the coefficient B are output to the first calculation block 61. The first calculation block 61 uses the data input from the input unit 63 to calculate the coefficient A according to Equation (2), and calculates the power supply Power req (mW) to the piezoelectric element according to Equation (1). Output to the controller 50.
図3のステップS104に示すように、制御部50は、圧電素子16への供給電力Power(mW)が第1演算ブロック61から入力された圧電素子16への供給電力Powerreq(mW)となるように、圧電素子ドライバ44を調整して圧電素子16に供給する電力を調整する。
As shown in step S <b> 104 of FIG. 3, the control unit 50 uses the supply power Power (mW) to the piezoelectric element 16 as the supply power Power req (mW) to the piezoelectric element 16 input from the first calculation block 61. As described above, the electric power supplied to the piezoelectric element 16 is adjusted by adjusting the piezoelectric element driver 44.
また、入力部63は、図3のステップS105において、入力された、超音波ホーン14の共振周波数fr(kHz)、圧電素子16への供給電力Powerreq(mW)、形状寸法a、ボンディングパッドの材質b、ボンディングスピードc、接合部温度d、係数Bを第2演算ブロック62に出力する。第2演算ブロック62は、入力部63から入力されたデータを用いて、式(2)により係数Aを計算し、式(3)によりボンド荷重Freq(N)を算出して制御部50に出力する。
Further, the input unit 63 receives the resonance frequency fr (kHz) of the ultrasonic horn 14, the power req (mW) supplied to the piezoelectric element 16, the shape dimension a, and the bonding pad input in step S 105 of FIG. 3. The material b, the bonding speed c, the junction temperature d, and the coefficient B are output to the second calculation block 62. The second calculation block 62 uses the data input from the input unit 63 to calculate the coefficient A according to the equation (2), calculates the bond load F req (N) according to the equation (3), and sends it to the control unit 50. Output.
図3のステップS106に示すように、制御部50は、ボンド荷重F(N)が第2演算ブロック62から入力されたボンド荷重Freq(N)となるように、モータドライバ42を調整してZ方向モータ30に供給する電流を調整する。電流の調整は、例えば、電流値とボンド荷重Fとの関係を規定したマップをメモリ53の内部に格納しておき、このマップに基づいて電流値を調整するようにしてもよい。
As shown in Step S <b> 106 of FIG. 3, the control unit 50 adjusts the motor driver 42 so that the bond load F (N) becomes the bond load F req (N) input from the second calculation block 62. The current supplied to the Z direction motor 30 is adjusted. The current may be adjusted, for example, by storing a map that defines the relationship between the current value and the bond load F in the memory 53 and adjusting the current value based on this map.
<本実施形態のワイヤボンディング装置の効果>
以上説明したように、本実施形態のワイヤボンディング装置100は、超音波ホーン14の共振周波数fr(kHz)に基づいて、ボンド荷重Freq(N)を規定した場合に圧電素子16に供給が必要な電力Powerreq(mW)を調整する。また、超音波ホーン14の共振周波数fr(kHz)に基づいて、圧電素子16に供給する電力Powerreq(mW)を規定した場合の必要ボンド荷重Freq(N)を調整することができる。従って、共振周波数fr(kHz)の異なる超音波ホーン14を用いた場合でも、圧電素子16に供給する電力Powe(mW)、あるいは、ボンド荷重F(N)を調整し、好適にワイヤボンディングを行うことが可能となる。 <Effect of the wire bonding apparatus of this embodiment>
As described above, thewire bonding apparatus 100 according to the present embodiment needs to be supplied to the piezoelectric element 16 when the bond load F req (N) is defined based on the resonance frequency fr (kHz) of the ultrasonic horn 14. The power Power req (mW) is adjusted. Further, based on the resonance frequency fr (kHz) of the ultrasonic horn 14, the required bond load F req (N) when the power Power req (mW) supplied to the piezoelectric element 16 is defined can be adjusted. Therefore, even when the ultrasonic horn 14 having a different resonance frequency fr (kHz) is used, the power Pow (mW) supplied to the piezoelectric element 16 or the bond load F (N) is adjusted, and wire bonding is suitably performed. It becomes possible.
以上説明したように、本実施形態のワイヤボンディング装置100は、超音波ホーン14の共振周波数fr(kHz)に基づいて、ボンド荷重Freq(N)を規定した場合に圧電素子16に供給が必要な電力Powerreq(mW)を調整する。また、超音波ホーン14の共振周波数fr(kHz)に基づいて、圧電素子16に供給する電力Powerreq(mW)を規定した場合の必要ボンド荷重Freq(N)を調整することができる。従って、共振周波数fr(kHz)の異なる超音波ホーン14を用いた場合でも、圧電素子16に供給する電力Powe(mW)、あるいは、ボンド荷重F(N)を調整し、好適にワイヤボンディングを行うことが可能となる。 <Effect of the wire bonding apparatus of this embodiment>
As described above, the
<変形例>
以上、説明した実施形態では、第1演算ブロック61、第2演算ブロック62は、入力された式(2)により係数Aを計算することとして説明したが、これに限らず、例えば、形状寸法a、ボンディングパッドの材質b、ボンディングスピードc、接合部温度dと係数Aとの相関関係を規定したマップ、あるいは、表等を用いて係数Aを決定するようにしてもよい。また、ワイヤボンディング工程の途中で共振周波数frの異なる超音波ホーン14に交換したような場合には、係数Aの数値に変化がないので、それ以前の計算で用いていた係数Aの値をそのまま用いるようにしてもよい。 <Modification>
In the embodiment described above, thefirst calculation block 61 and the second calculation block 62 have been described as calculating the coefficient A by the input equation (2). However, the present invention is not limited to this, and for example, the shape dimension a The coefficient A may be determined using a map or a table that defines the correlation between the bonding pad material b, the bonding speed c, the junction temperature d, and the coefficient A. Further, when the ultrasonic horn 14 having a different resonance frequency fr is exchanged during the wire bonding process, the value of the coefficient A does not change, so that the value of the coefficient A used in the previous calculation is used as it is. You may make it use.
以上、説明した実施形態では、第1演算ブロック61、第2演算ブロック62は、入力された式(2)により係数Aを計算することとして説明したが、これに限らず、例えば、形状寸法a、ボンディングパッドの材質b、ボンディングスピードc、接合部温度dと係数Aとの相関関係を規定したマップ、あるいは、表等を用いて係数Aを決定するようにしてもよい。また、ワイヤボンディング工程の途中で共振周波数frの異なる超音波ホーン14に交換したような場合には、係数Aの数値に変化がないので、それ以前の計算で用いていた係数Aの値をそのまま用いるようにしてもよい。 <Modification>
In the embodiment described above, the
また、実施形態のワイヤボンディング装置100の演算部60は、第1演算ブロック61、第2演算ブロック62の2つの演算ブロックを有することとして説明したが、1つの演算ブロックにおいて、演算プログラムを変更することにより、同様の演算を行うように構成してもよい。
In addition, the calculation unit 60 of the wire bonding apparatus 100 of the embodiment has been described as having two calculation blocks, the first calculation block 61 and the second calculation block 62, but the calculation program is changed in one calculation block. Thus, the same calculation may be performed.
また、実施形態では、演算に用いるデータは外部の入力装置から入力されることとして説明したが、これに限らず、例えば、各データを演算部60の内部のメモリに格納しておき、超音波ホーン14の共振周波数frを検出する振動センサを備え、振動センサによって検出した超音波ホーン14の共振周波数frを入力データとして入力部63から演算部60に入力し、メモリに格納したデータを用いて圧電素子16に供給が必要な電力Powerreq(mW)、あるいは、ボンド荷重Freq(N)を算出し、制御部50によって圧電素子16に供給する電力Power、あるいは、ボンド荷重F算出した電力を計算した電力Powerreq(mW)、あるいは、ボンド荷重Freq(N)に調整するようにしてもよい。この場合、超音波ホーン14を共振周波数frが異なるものに変更した場合でも、自動的に圧電素子16に供給する電力Power、あるいは、ボンド荷重Fを好適な値に調整でき、自動的に好適なワイヤボンディングを実行することが可能となる。なお、超音波ホーン14の共振周波数frは、制御部50が圧電素子ドライバ44に出力する交番電力の指令と同じ周波数であるから、制御部50の圧電素子ドライバ44の制御信号を演算部60に入力することにより検出するようにしてもよい。
In the embodiment, the data used for the calculation is described as being input from an external input device. However, the present invention is not limited to this. For example, each data is stored in a memory inside the calculation unit 60 and the ultrasonic wave is stored. A vibration sensor for detecting the resonance frequency fr of the horn 14 is provided, and the resonance frequency fr of the ultrasonic horn 14 detected by the vibration sensor is input as input data from the input unit 63 to the calculation unit 60, and the data stored in the memory is used. The power Power req (mW) or the bond load F req (N) that needs to be supplied to the piezoelectric element 16 is calculated, and the power Power or the bond load F calculated to be supplied to the piezoelectric element 16 by the control unit 50 is calculated. The calculated power Power req (mW) or the bond load F req (N) may be adjusted. In this case, even when the ultrasonic horn 14 is changed to one having a different resonance frequency fr, the power Power supplied to the piezoelectric element 16 or the bond load F can be automatically adjusted to a suitable value, which is automatically suitable. Wire bonding can be performed. Since the resonance frequency fr of the ultrasonic horn 14 is the same frequency as the command of the alternating power output from the control unit 50 to the piezoelectric element driver 44, the control signal of the piezoelectric element driver 44 of the control unit 50 is sent to the calculation unit 60. You may make it detect by inputting.
10 フレーム、11 XYテーブル、12 ボンディングヘッド、13 ボンディングアーム、13a 凹部、14 超音波ホーン、14a フランジ、14b ボルト、15 キャピラリ、16 圧電素子、17 ヒートブロック、18 ヒータ、19 半導体ダイ、19a、20a 電極、20 基板、21 ワイヤ、21a フリーエアボール、22 トーチ電極、30 Z方向モータ、31 固定子、32 可動子、33 回転中心、35 回転軸、41、43 電源、42 モータドライバ、44 圧電素子ドライバ、50 制御部、51 機器・センサインターフェース、52 CPU、53 メモリ、54 データバス、60 演算部、61 第1演算ブロック、62 第2演算ブロック、63 入力部。
10 frame, 11 XY table, 12 bonding head, 13 bonding arm, 13a recess, 14 ultrasonic horn, 14a flange, 14b bolt, 15 capillary, 16 piezoelectric element, 17 heat block, 18 heater, 19 semiconductor die, 19a, 20a Electrode, 20 substrate, 21 wire, 21a free air ball, 22 torch electrode, 30 Z direction motor, 31 stator, 32 mover, 33 rotation center, 35 rotation axis, 41, 43 power supply, 42 motor driver, 44 piezoelectric element Driver, 50 control unit, 51 device / sensor interface, 52 CPU, 53 memory, 54 data bus, 60 calculation unit, 61 first calculation block, 62 second calculation block, 63 input unit.
Claims (7)
- ワイヤを電極に接合するワイヤボンディング装置であって、
圧電素子と、
前記圧電素子によって加振され、固有の共振周波数で超音波振動する超音波ホーンと、
前記超音波ホーンの先端に取り付けられて前記ワイヤを前記電極に押圧すると共に前記ワイヤに超音波振動を印加するキャピラリと、
前記超音波ホーンの共振周波数に基づいて前記圧電素子に供給する電力、または、前記キャピラリが前記ワイヤを前記電極に押圧する荷重を算出する演算部と、
前記演算部が算出した前記電力、または、前記荷重に基づいて前記圧電素子に供給する電力、または、前記キャピラリが前記ワイヤを前記電極に押圧する荷重を調整する制御部と、を有するワイヤボンディング装置。 A wire bonding apparatus for bonding a wire to an electrode,
A piezoelectric element;
An ultrasonic horn that is vibrated by the piezoelectric element and vibrates ultrasonically at a specific resonance frequency;
A capillary that is attached to the tip of the ultrasonic horn and presses the wire against the electrode and applies ultrasonic vibration to the wire;
An arithmetic unit that calculates the power supplied to the piezoelectric element based on the resonance frequency of the ultrasonic horn, or the load by which the capillary presses the wire against the electrode;
A control unit that adjusts the electric power calculated by the arithmetic unit or the electric power supplied to the piezoelectric element based on the load, or the load by which the capillary presses the wire against the electrode. . - 請求項1に記載のワイヤボンディング装置であって、
前記演算部は、前記超音波ホーンの共振周波数と前記キャピラリが前記ワイヤを前記電極に押圧する荷重とに基づいて前記圧電素子に供給する電力を算出し、
前記制御部は、前記演算部が算出した前記電力に基づいて前記圧電素子に供給する電力を調整するワイヤボンディング装置。 The wire bonding apparatus according to claim 1,
The calculation unit calculates power supplied to the piezoelectric element based on a resonance frequency of the ultrasonic horn and a load by which the capillary presses the wire against the electrode,
The said control part is a wire bonding apparatus which adjusts the electric power supplied to the said piezoelectric element based on the said electric power which the said calculating part calculated. - 請求項2に記載のワイヤボンディング装置であって、
前記演算部は、前記圧電素子に供給する電力であるPowerreqを下記の式(1)により算出するワイヤボンディング装置。
frは、超音波ホーンの共振周波数である。
Freqは、前記キャピラリが前記電極を押圧する荷重である。
Aは、形状寸法a、ボンディングパッドの材質b、ボンディングスピードc、接合部温度dによって定まる係数である。
Bは、前記ワイヤの材質によって決まる係数である。 The wire bonding apparatus according to claim 2,
The said calculating part is a wire bonding apparatus which calculates Power req which is the electric power supplied to the said piezoelectric element by following formula (1).
fr is the resonance frequency of the ultrasonic horn.
F req is a load with which the capillary presses the electrode.
A is a coefficient determined by the shape dimension a, the bonding pad material b, the bonding speed c, and the junction temperature d.
B is a coefficient determined by the material of the wire. - 請求項3に記載のワイヤボンディング装置であって、
前記演算部は、前記Aを以下の式(2)によって算出するワイヤボンディング装置。
The said calculating part is a wire bonding apparatus which calculates said A by the following formula | equation (2).
- 請求項1に記載のワイヤボンディング装置であって、
前記演算部は、前記超音波ホーンの共振周波数と前記圧電素子に供給する電力とに基づいて前記キャピラリが前記ワイヤを前記電極に押圧する荷重を算出し、
前記制御部は、前記演算部が算出した前記荷重に基づいて前記キャピラリが前記ワイヤを前記電極に押圧する荷重を調整するワイヤボンディング装置。 The wire bonding apparatus according to claim 1,
The calculation unit calculates a load by which the capillary presses the wire against the electrode based on a resonance frequency of the ultrasonic horn and electric power supplied to the piezoelectric element,
The said control part is a wire bonding apparatus which adjusts the load which the said capillary presses the said wire against the said electrode based on the said load which the said calculating part calculated. - 請求項5に記載のワイヤボンディング装置であって、
前記演算部は、前記キャピラリが前記ワイヤを前記電極に押圧する荷重であるFreqを下記の式(3)により算出するワイヤボンディング装置。
frは、超音波ホーンの共振周波数である。
Powerreqは、前記圧電素子に供給する電力である。
Aは、形状寸法a、ボンディングパッドの材質b、ボンディングスピードc、接合部温度dによって定まる係数である。
Bは、前記ワイヤの材質によって決まる係数である。 The wire bonding apparatus according to claim 5,
The said calculating part is a wire bonding apparatus which calculates Freq which is the load which the said capillary presses the said wire against the said electrode by following formula (3).
fr is the resonance frequency of the ultrasonic horn.
Power req is power supplied to the piezoelectric element.
A is a coefficient determined by the shape dimension a, the bonding pad material b, the bonding speed c, and the junction temperature d.
B is a coefficient determined by the material of the wire. - 請求項6に記載のワイヤボンディング装置であって、
前記演算部は、前記Aを以下の式(2)によって算出するワイヤボンディング装置。
The wire bonding apparatus according to claim 6,
The said calculating part is a wire bonding apparatus which calculates said A by the following formula | equation (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018567395A JP6637623B2 (en) | 2017-02-09 | 2018-02-01 | Wire bonding equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-022116 | 2017-02-09 | ||
JP2017022116 | 2017-02-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018147164A1 true WO2018147164A1 (en) | 2018-08-16 |
Family
ID=63108342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/003450 WO2018147164A1 (en) | 2017-02-09 | 2018-02-01 | Wire bonding device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6637623B2 (en) |
TW (1) | TWI692043B (en) |
WO (1) | WO2018147164A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112640068B (en) * | 2019-03-08 | 2024-06-25 | 株式会社新川 | Wire bonding device |
JP2024135120A (en) * | 2023-03-22 | 2024-10-04 | 株式会社新川 | Wire bonding apparatus and method for calibrating same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06204300A (en) * | 1991-09-30 | 1994-07-22 | Texas Instr Inc <Ti> | Formation of microelectronic bonding and microelectronic device |
JP2001077156A (en) * | 1999-09-06 | 2001-03-23 | Matsushita Electric Ind Co Ltd | Ultrasonic bonding system and bonding method |
WO2014077232A1 (en) * | 2012-11-16 | 2014-05-22 | 株式会社新川 | Wire bonding device and wire bonding method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2725117B2 (en) * | 1992-07-21 | 1998-03-09 | 株式会社カイジョー | Wire bonding apparatus and method |
US5660319A (en) * | 1995-01-17 | 1997-08-26 | Texas Instruments Incorporated | Ultrasonic bonding process |
US8151266B2 (en) * | 2008-03-31 | 2012-04-03 | Qualcomm Incorporated | Operating system fast run command |
TWM369265U (en) * | 2009-06-18 | 2009-11-21 | Tong Yah Electronic Technology Co Ltd | Signal box for virtual vehicular oxygen-content sensor |
TWI506710B (en) * | 2009-09-09 | 2015-11-01 | Renesas Electronics Corp | Method of manufacturing semiconductor device |
-
2018
- 2018-02-01 JP JP2018567395A patent/JP6637623B2/en active Active
- 2018-02-01 WO PCT/JP2018/003450 patent/WO2018147164A1/en active Application Filing
- 2018-02-06 TW TW107104139A patent/TWI692043B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06204300A (en) * | 1991-09-30 | 1994-07-22 | Texas Instr Inc <Ti> | Formation of microelectronic bonding and microelectronic device |
JP2001077156A (en) * | 1999-09-06 | 2001-03-23 | Matsushita Electric Ind Co Ltd | Ultrasonic bonding system and bonding method |
WO2014077232A1 (en) * | 2012-11-16 | 2014-05-22 | 株式会社新川 | Wire bonding device and wire bonding method |
Also Published As
Publication number | Publication date |
---|---|
JP6637623B2 (en) | 2020-01-29 |
JPWO2018147164A1 (en) | 2019-07-04 |
TW201834092A (en) | 2018-09-16 |
TWI692043B (en) | 2020-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7819158B2 (en) | Ultrasonic press using servo motor with integrated linear actuator | |
CN105263695B (en) | The device for ultrasonic welding of instrument is matched including vibration uncoupling | |
CN103028835B (en) | The welding system of ACTIVE CONTROL vibration and method | |
JPH0945736A (en) | Ultrasonic bonding method and apparatus | |
JP5542361B2 (en) | Ultrasonic press using servo motor and delayed motion technique | |
JP2012505083A5 (en) | ||
JP6637623B2 (en) | Wire bonding equipment | |
JPH07221141A (en) | Ultrasonic wire bonding device | |
TWI226853B (en) | Method for determining optimum bonding parameters for bonding with a wire bonder | |
JP4595020B2 (en) | Bonding apparatus, bonding tool amplitude measurement method, and bonding tool amplitude calibration method | |
JP6534772B2 (en) | Ultrasonic bonding apparatus and ultrasonic bonding method | |
JP3487162B2 (en) | Bonding tools and bonding equipment | |
JP7191421B2 (en) | wire bonding equipment | |
JP4408046B2 (en) | Ultrasonic bonding method and apparatus and ultrasonic amplitude control method | |
JP3409689B2 (en) | Bonding tool and bonding device for electronic components | |
JP4002170B2 (en) | Ultrasonic horn for bonding and bonding apparatus provided with the same | |
JP5675213B2 (en) | Electronic component mounting equipment | |
JP2003258021A (en) | Wire bonding device | |
JP2005230845A (en) | Ultrasonic joining apparatus, and method for producing electronic device | |
JP4646862B2 (en) | Semiconductor chip ultrasonic bonding method and ultrasonic bonding apparatus therefor | |
JP2000021924A (en) | Wire bonding method and device thereof | |
JP2006239749A (en) | Ultrasonic joining method and apparatus | |
JP2561169B2 (en) | Ultrasonic horn | |
JP2004158583A (en) | Method and apparatus for forming metal electrode | |
JP2024139019A (en) | Ultrasonic joining method, ultrasonic joining device, and ultrasonic joining system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18751783 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2018567395 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18751783 Country of ref document: EP Kind code of ref document: A1 |