WO2018147151A1 - Work vehicle antenna unit and work vehicle - Google Patents

Work vehicle antenna unit and work vehicle Download PDF

Info

Publication number
WO2018147151A1
WO2018147151A1 PCT/JP2018/003338 JP2018003338W WO2018147151A1 WO 2018147151 A1 WO2018147151 A1 WO 2018147151A1 JP 2018003338 W JP2018003338 W JP 2018003338W WO 2018147151 A1 WO2018147151 A1 WO 2018147151A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
unit
work vehicle
wireless communication
measurement device
Prior art date
Application number
PCT/JP2018/003338
Other languages
French (fr)
Japanese (ja)
Inventor
洋輔 花田
文雄 石橋
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017021051A external-priority patent/JP6640767B2/en
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to KR1020207012487A priority Critical patent/KR102420670B1/en
Priority to KR1020187034967A priority patent/KR102108672B1/en
Priority to CN201880003847.1A priority patent/CN110235304B/en
Priority to KR1020227023648A priority patent/KR20220101772A/en
Publication of WO2018147151A1 publication Critical patent/WO2018147151A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/36Constructional details or hardware or software details of the signal processing chain relating to the receiver frond end
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Definitions

  • the present invention provides an autonomous travel system that autonomously travels a work vehicle (including automatic travel) along a target travel route while acquiring position information of the work vehicle such as a tractor using a satellite positioning system (GNSS).
  • GNSS satellite positioning system
  • the present invention relates to a work vehicle antenna unit to be used.
  • the present invention also relates to a work vehicle equipped with a cabin, and more particularly, a work vehicle equipped with an antenna unit for the work vehicle. It is related with the work vehicle suitable for making it drive autonomously along.
  • a GPS antenna for acquiring satellite positioning information from a positioning satellite is provided on the upper side surface portion of the cabin roof.
  • the upper surface of the cabin roof is located at a portion where the front-rear direction line of the substantially center position of the vehicle body tread width intersects with the lateral line of the substantially center position of the wheel base.
  • a mounting stay having a substantially horizontal mounting seat at a higher position is formed, and a GPS antenna is attached to the mounting seat of the mounting stay.
  • a GPS antenna having a gyro sensor is used as the GPS antenna, the inclination angle of the cabin roof can also be detected.
  • the above-described prior art discloses a technique for improving the detection accuracy of the GPS antenna or the detection accuracy of the GPS antenna and the gyro sensor by devising the mounting position of the GPS antenna on the upper side surface portion of the cabin roof.
  • various external devices are provided separately from the work vehicle, such as a wireless communication terminal that gives various instructions to the work vehicle and a base station for acquiring position information of the work vehicle. It has been. Therefore, when actually performing autonomous traveling of the work vehicle and the like, it is necessary to efficiently mount not only the GPS antenna but also various antenna devices for communication between the work vehicle and the external device on the work vehicle. In this respect, there is room for improvement in the above-described conventional technology.
  • the upper side surface portion of the cabin roof provided at the upper part of the cabin frame has many curves and is less rigid than the cabin frame. It is necessary to reinforce in an unaffected state, and there is room for improvement in this aspect as well.
  • a main object of the present invention is to provide an antenna unit for a work vehicle that can efficiently mount various antenna devices effective for autonomous traveling of the work vehicle on the work vehicle.
  • Another object of the present invention is to provide a work vehicle that can efficiently mount various antenna devices effective for autonomous traveling of the work vehicle and can firmly support the various antenna devices.
  • a GNSS antenna and an inertial measurement device are disposed at a longitudinal center of a unit base that can be attached to a work vehicle, and a wireless communication unit is disposed at one longitudinal end of the unit base.
  • the wireless communication antenna of the wireless communication unit is arranged on the side opposite to the inertial measurement device and on one end side in the longitudinal direction of the unit base.
  • the GNSS antenna and the inertial measurement device are arranged at the center in the longitudinal direction of the unit base that can be attached to the work vehicle, for example, the unit is provided at the center in the front-rear direction or the lateral width direction of the work vehicle.
  • the GNSS antenna and the inertial measurement device can be arranged in the center of the work vehicle in the front-rear direction or the width direction, and the detection accuracy of the current position information of the work vehicle acquired from the received signal of the GNSS antenna In addition, it is possible to improve both the detection accuracy of the attitude change information of the airframe acquired from the inertial measurement device.
  • various signals can be wirelessly communicated with an external device such as a wireless communication terminal, for example, by the wireless communication unit arranged on one end side in the longitudinal direction of the unit base.
  • the wireless communication antenna of the wireless communication unit is disposed on the opposite side of the inertial measurement device and on one end side in the longitudinal direction of the unit base, the wireless communication antenna of the wireless communication unit is connected to the inertial measurement device. A sufficient distance to the center can be secured. Thereby, the radio wave interference between the wireless communication unit and the inertial measurement device can be suppressed, and the communication failure between the wireless communication unit and the wireless communication terminal or the like can be suppressed.
  • a work vehicle antenna unit (hereinafter, simply referred to as an antenna unit may be abbreviated as follows).
  • the detection accuracy of the inertial measurement device and the GNSS antenna can be improved together, and the wireless communication unit can be efficiently mounted on the work vehicle while maintaining a good communication state.
  • a second characteristic configuration according to the present invention is that the GNSS antenna is disposed at an upper portion of the inertial measurement device.
  • the inertial measurement device does not become a reception obstacle of the GNSS antenna as in the case where the inertial measurement device is arranged above the GNSS antenna, and satellite positioning information from the positioning satellite is reliably obtained. Can be received. Moreover, downsizing of the antenna unit in the width direction can be promoted by arranging the inertial measurement device and the GNSS antenna vertically.
  • a third characteristic configuration according to the present invention lies in that a predetermined distance between a central portion of the inertial measurement device and a wireless communication antenna of the wireless communication unit is set to 250 mm or more.
  • radio wave interference between the wireless communication unit and the inertial measurement device is further suppressed, and communication failure between the wireless communication unit and an external device such as a wireless communication terminal is more effectively suppressed. be able to.
  • a fourth characteristic configuration according to the present invention is that a base station antenna for receiving information from a reference station is arranged on the other end side in the longitudinal direction of the unit base.
  • the separation distance between the base station antenna and the radio communication antenna of the radio communication unit is increased, and radio wave interference between the base station antenna and the radio communication antenna of the radio communication unit is suppressed. be able to.
  • a reference station antenna is provided in addition to the GNSS antenna, the inertial measurement device, and the wireless communication unit, they can be efficiently and compactly accommodated in the antenna unit.
  • the base station antenna projects outward from a through hole of a unit cover that covers the unit base, and the unit cover has an anti-vibration elastic body in contact with the base station antenna. It is in the point provided.
  • the base station antenna when there is no vibration isolating elastic body, an annular gap is generated between the opening peripheral edge of the through hole of the unit cover and the outer peripheral surface of the through part of the base station antenna.
  • traveling vibration or the like of the work vehicle acts on the base station antenna, the base station antenna swings in the range of the annular gap, and the base station antenna may be broken at the base side.
  • the base station antenna support structure as a whole is a two-point support structure. Thus, breakage of the base station antenna caused by traveling vibration or the like can be suppressed.
  • the base station antenna is attached to the unit base by a magnetic force, and a movement restricting member for restricting movement of a base portion of the base station antenna is attached to the unit base. is there.
  • the base station antenna can be easily attached to the unit base by magnetic force. Nevertheless, positional displacement of the base station antenna due to vibration or the like can be reliably prevented with a simple movement restricting member attached to the base plate.
  • the simplification and miniaturization of the base station antenna mounting structure can facilitate the miniaturization of the antenna unit.
  • a seventh characteristic configuration according to the present invention is that a mounting space for another unit is formed at the other longitudinal end of the unit base.
  • another unit such as a retrofit controller that controls a part of autonomous traveling control can be easily mounted using the mounting space secured on the other end side in the longitudinal direction of the unit base. it can.
  • other retrofit units can be efficiently and compactly stored in the antenna unit.
  • a work vehicle including a cabin, wherein a support frame extending in a left-right width direction is fixed to the cabin frame at an upper position outside the cabin, and an inertial measurement device is mounted on the support frame.
  • the work vehicle antenna unit in which the GNSS antenna and the wireless communication device are assembled is attached in a state where the inertial measurement device and the GNSS antenna are arranged at a substantially central position in the left-right width direction of the aircraft.
  • the inertial measurement device and the GNSS antenna assembled in the antenna unit are arranged at the substantially center position in the left-right width direction of the airframe, the current position of the work vehicle acquired from the received signal of the GNSS antenna Both the detection accuracy of information and the detection accuracy of the attitude change information of the airframe acquired from the inertial measurement device can be improved. Further, for example, various signals can be wirelessly communicated with an external device such as a wireless communication terminal by the wireless communication device assembled in the antenna unit. Moreover, since the support frame to which the antenna unit is attached is fixed to the highly rigid cabin frame in a posture along the left-right width direction at the upper position outside the cabin, the support frame can be configured to have a strong support structure. .
  • the cabin frame has a height that extends close to the cabin roof, setting the mounting position of the support frame on the upper side of the cabin frame makes it possible for the inertial measurement device, the GNSS antenna, and the wireless communication device to function properly.
  • the antenna unit can be easily arranged at this position.
  • a ninth characteristic configuration according to the present invention is that the support frame is connected across mirror mounting portions provided on the left and right of the cabin frame.
  • the left and right mirror mounting portions protrude from the highly rigid cabin frame and are disposed at a height position close to the cabin roof. Therefore, it is possible to firmly and easily attach the support frame of the antenna unit to an appropriate height position by using both mirror attachment portions that are sturdy and have a high ground.
  • a tenth characteristic configuration according to the present invention is that the work vehicle antenna unit is attached to the support frame so as to be displaceable from a normal use position to a low use position.
  • the antenna unit and the antenna mounted on the antenna unit may be arranged to protrude above the upper surface of the cabin roof. Therefore, the vehicle height when transporting the work vehicle by a transport vehicle such as a truck is increased, which may cause problems such as being restricted in height when traveling on a road. Therefore, in the present invention, the antenna unit is displaced from the normal use position to the non-use position on the lower side with respect to the support frame, so that it is possible to easily cope with problems such as height restrictions when driving on the road. it can.
  • a control unit that autonomously controls the airframe based on information acquired by the inertial measurement device and the GNSS antenna, and detects that the work vehicle antenna unit is located at a regular use position. If not, an autonomous traveling check unit that prohibits the start of autonomous traveling control by the control unit is provided.
  • the autonomous traveling check unit when it is detected that the antenna unit is located at the normal use position, the autonomous traveling check unit does not work, and the control unit is based on the information acquired by the inertial measurement device and the GNSS antenna. Autonomous driving control is started. When it is not detected that the antenna unit is located at the regular use position, the check by the autonomous running check unit functions, and the start of the autonomous running control by the control unit is prohibited. As a result, while adopting the position displacement structure of the antenna unit corresponding to the height restriction when traveling on the road, etc., the aircraft can be accurately adjusted along the target travel route based on accurate information acquired by the inertial measurement device and the GNSS antenna. Good and safe autonomous driving.
  • a control unit that autonomously controls the aircraft based on information acquired by the inertial measurement device and the GNSS antenna is provided in the cabin, and is derived from the work vehicle antenna unit.
  • the harness that is provided is disposed to the control unit in the cabin via an internal / external communication path provided in the cabin frame.
  • the antenna unit arranged at the upper position outside the cabin and the control unit provided in the cabin are connected by a reasonable routing of the harness via the internal / external communication path provided in the cabin frame. can do.
  • the harness derived from the work vehicle antenna unit is a side edge in the left-right width direction on the outer surface of the cabin windshield, and the front post glass of the cabin. It exists in the point arrange
  • the belt-like portion that is overlapped with the glass receiving portion of the front column on one side edge in the left-right width direction on the outer surface of the windshield is a glass pasting portion for attaching the windshield to the front portion of the cabin. It is also a position that does not interfere with vision. Therefore, by arranging the harness led out from the antenna unit in the above-described band-shaped portion, it is possible to arrange the harness with good appearance while maintaining the visibility of the driver seated on the driver's seat in a good state.
  • the autonomous traveling system shown in FIGS. 1 and 2 is configured to generate a target traveling route, and to autonomously travel the tractor 1 as a work vehicle along the generated target traveling route.
  • a wireless communication terminal 30 that gives various instructions to the tractor 1 and a base station 40 for acquiring position information of the tractor 1 are provided. ing.
  • the tractor 1 includes a body part 2 to which a ground work machine (not shown) can be mounted on the rear side, the front part of the body part 2 is supported by a pair of left and right front wheels 3, and the rear part of the body part 2 is a pair of left and right It is supported by the rear wheel 4.
  • a bonnet 5 is disposed in the front part of the body part 2, and an engine 6 as a drive source is accommodated in the bonnet 5.
  • a cabin 7 for a driver to board is provided on the rear side of the bonnet 5, and a steering handle 8 for a driver to steer and a driver's driving seat 9 are provided in the cabin 7. It has been.
  • the engine 6 can be composed of, for example, a diesel engine, but is not limited thereto, and may be composed of, for example, a gasoline engine. Further, an electric motor may be employed as a drive source in addition to the engine 6 or instead of the engine 6.
  • the tractor 1 is described as an example of the work vehicle.
  • the work vehicle includes a tractor, a rice transplanter, a combiner, a civil engineering / architecture work device, a snowplow, and a riding work vehicle. .
  • a three-point link mechanism including a pair of left and right lower links 10 and an upper link 11 is provided on the rear side of the body part 2, and a ground work machine can be mounted on the three-point link mechanism.
  • a lifting device having a hydraulic device such as a lifting cylinder is provided on the rear side of the airframe unit 2, and this lifting device lifts and lowers the ground work machine by lifting and lowering the three-point link mechanism.
  • Examples of the ground working machine include a tillage device, a plow, and a fertilizer application device.
  • the tractor 1 includes a governor device 21 that can adjust the rotational speed of the engine 6, a transmission device 22 that shifts the rotational driving force from the engine 6 and transmits it to the drive wheels, the governor device 21, A control unit 23 and the like that can control the device 22 are provided.
  • the transmission 22 is configured by combining, for example, a main transmission composed of a hydraulic continuously variable transmission and an auxiliary transmission composed of a gear type multi-stage transmission.
  • the tractor 1 not only allows the driver to travel in the cabin 7, but also allows the tractor 1 to autonomously travel based on instructions from the wireless communication terminal 30 even if the driver does not board the cabin 7. It is configured as possible.
  • the tractor 1 transmits from a steering device 24, an inertial measurement device (IMU) 25 for obtaining attitude change information of the fuselage, and a positioning satellite (navigation satellite) 45 constituting a satellite positioning system (GNSS).
  • Wireless communication unit that transmits and receives various signals via a wireless communication network constructed between the GNSS antenna 26 that receives the received radio signal, the wireless communication terminal 30, and the like (wireless that is assembled to the antenna unit 50 for a work vehicle).
  • a base station antenna that receives a radio signal (for example, a radio signal having a frequency band of 920 MHz) from the reference station radio communication device 41 of the reference station 40 (an example of a radio communication device assembled to the antenna unit 50) 29 Etc., and can autonomously travel while acquiring its current position information (position information of the airframe unit 2) It has been made.
  • a radio signal for example, a radio signal having a frequency band of 920 MHz
  • the reference station radio communication device 41 of the reference station 40 an example of a radio communication device assembled to the antenna unit 50
  • the inertial measurement device 25, the GNSS antenna 26, the wireless communication unit 27, and the base station antenna 29 are housed in an antenna unit 50 having a unit cover 51 as shown in FIGS.
  • the antenna unit 50 is attached to a support frame 100 along the left-right width direction fixed to the cabin frame 200 of the cabin 7 at an upper position on the front side outside the cabin 7. Yes.
  • the specific internal arrangement structure and mounting structure of the antenna unit 50 will be described in detail after the description of the autonomous traveling system.
  • the steering device 24 is provided, for example, in the middle of the rotation shaft of the steering handle 8 and is configured to be able to adjust the rotation angle (steering angle) of the steering handle 8.
  • the control unit 23 controls the steering device 24, not only the straight traveling but also the turning angle of the steering handle 8 can be adjusted to a desired turning angle, and the turning turning with the desired turning radius can be performed.
  • the inertial measurement device 25 is required to obtain a three-dimensional angular velocity and acceleration by a three-axis gyro and a three-direction accelerometer.
  • the detected value of the inertial measurement device 25 is input to the control unit 23, and the control unit 23 calculates the posture information of the tractor 1 (the azimuth angle (yaw angle) of the aircraft, the left / right inclination of the aircraft).
  • the angle (roll angle) and the front / rear tilt angle (pitch angle) in the traveling direction of the aircraft are obtained.
  • GNSS satellite positioning system
  • a satellite positioning system such as a quasi-zenith satellite (Japan) and a Glonus satellite ( Russia) can be used as a positioning satellite in addition to GPS (United States).
  • the wireless communication unit 27 is composed of a WiFi unit having a frequency band of 2.4 GHz, but the wireless communication unit 27 may be Bluetooth (registered trademark) other than WiFi.
  • the signal received by the wireless communication antenna 28 of the wireless communication unit 27 can be input to the control unit 23, and the signal from the control unit 23 is wirelessly transmitted by the wireless communication antenna 28.
  • the communication terminal 30 is configured to be able to transmit to the wireless communication device 31 and the like.
  • a reference station 40 installed at a predetermined reference point is provided, and the satellite positioning information of the tractor 1 (mobile station) is corrected by correction information from the reference station 40.
  • a positioning method for obtaining the current position of the tractor 1 can be applied.
  • various positioning methods such as DGPS (differential GPS positioning) and RTK positioning (real-time kinematic positioning) can be applied.
  • RTK positioning is applied.
  • the reference station positioning antenna 42 is provided in addition to the GNSS antenna 26 being provided in the tractor 1 on the mobile station side.
  • a reference station 40 is provided.
  • the reference station 40 is disposed at a position (reference point) that does not interfere with the traveling of the tractor 1, for example, around the field.
  • the position information of the reference point that is the installation position of the reference station 40 is grasped in advance.
  • the reference station 40 includes a reference station wireless communication device 41 that can transmit and receive various signals to and from the base station antenna 29 of the tractor 1, and between the reference station 40 and the tractor 1 and between the reference station 40 and the wireless communication terminal 30.
  • Various types of information can be transmitted and received between them.
  • the carrier phase from the positioning satellite 45 (satellite) is received by both the reference station positioning antenna 42 of the reference station 40 installed at the reference point and the GNSS antenna 26 of the tractor 1 on the mobile station side for which position information is to be obtained. Positioning information) is being measured.
  • the reference station 40 generates correction information including the measured satellite positioning information and the reference point position information every time the satellite positioning information is measured from the positioning satellite 45 or every time the set period elapses, and the reference station wireless communication device
  • the correction information is transmitted from 41 to the base station antenna 29 of the tractor 1.
  • the control unit 23 of the tractor 1 obtains the current position information of the tractor 1 by correcting the satellite positioning information measured by the GNSS antenna 26 using the correction information transmitted from the reference station 40.
  • the control unit 23 obtains, for example, latitude information / longitude information as the current position information of the tractor 1.
  • a wireless communication terminal 30 capable of instructing the autonomous traveling of the tractor 1 to the control unit 23 of the tractor 1 is provided.
  • the wireless communication terminal 30 is composed of, for example, a tablet personal computer having a touch panel, and can display various information on the touch panel. Various information can also be input by operating the touch panel.
  • the wireless communication terminal 30 includes a wireless communication device 31 and a route generation unit 32 that generates a target travel route.
  • the route generation unit 32 controls the tractor 1 based on various types of information input on the touch panel.
  • a target travel route for autonomous travel is generated.
  • the control unit 23 provided in the tractor 1 is configured to be able to transmit and receive various types of information to and from the wireless communication terminal 30 via a wireless communication network including the wireless communication device 31 and the like.
  • the wireless communication terminal 30 is configured to be able to instruct autonomous traveling of the tractor 1 by transmitting various information for autonomously traveling the tractor 1 such as a target traveling route to the control unit 23 of the tractor 1.
  • the control unit 23 of the tractor 1 obtains the current position information of the tractor 1 acquired from the received signal of the GNSS antenna 26 so that the tractor 1 autonomously travels along the target travel route generated by the route generation unit 32.
  • the vehicle body displacement information and direction information are obtained from the inertial measurement device 25, and the transmission 22 and the steering device 24 can be controlled based on the current position information, displacement information, and direction information.
  • the unit cover 51 of the antenna unit 50 includes a lower cover body 52 made of a resin having a substantially rectangular shape in plan view that opens upward, and a plane that opens downward. And an upper cover body 53 made of a resin having a substantially rectangular shape.
  • FIG. 5 shows a longitudinal sectional view when the antenna unit 50 is viewed from the rear side, and the left-right direction in the airframe unit 2 is opposite to FIGS. 3, 7 and 11. Yes.
  • the opening joint portion of the upper cover body 53 is externally fitted and joined to the opening joint portion of the lower cover body 52 in a watertight state so as to be detachable.
  • the opening joint portion of the upper cover body 53 and the opening joint portion of the lower cover body 52 are fixedly connected by screws 54 at a plurality of positions in the left-right direction on the front side and the rear side.
  • a metal base plate 55 which is an example of a unit base that can be attached to the tractor 1, is attached to the bottom plate portion 52 ⁇ / b> A of the lower cover body 52.
  • a plurality (four in this embodiment) of cylindrical shapes that keep the distance between the two at a set interval.
  • the first boss 56 is disposed, and the base plate 55 and the bottom plate portion 52 ⁇ / b> A of the lower cover body 52 are fixedly connected by a first bolt 57 inserted through each first boss 56.
  • the GNSS antenna 26 is disposed above the inertial measurement device 25.
  • the housing 25 ⁇ / b> A of the inertial measurement device 25, as shown in FIGS. 5 and 8 is fixed to the base plate 55 with the second bolt 58 in a state where the center position in the left-right direction is located at the center position in the longitudinal direction of the base plate 55. It is fixedly connected.
  • the housing 26A of the GNSS antenna 26 is interposed via a metal hat-shaped bracket 60 in a state where the center position in the left-right direction is located at the center position in the longitudinal direction of the base plate 55, as shown in FIGS.
  • the base plate 55 is attached.
  • the bracket 60 is formed in a hat shape that bypasses the upper side of the housing 25 ⁇ / b> A of the inertial measurement device 25 along the longitudinal direction of the base plate 55.
  • Both leg portions 60a of the hat-shaped bracket 60 are fixedly connected to the base plate 55 by third bolts 61, and the width of the hat-shaped bracket 60 in the front-rear direction (also the front-rear direction of the fuselage) is measured by inertia.
  • the device 25 has a size slightly smaller than the width in the front-rear direction of the housing 25A, and a part of the bracket 60 is formed as a shielding wall portion that shields the wireless communication unit 27 described later.
  • the inertial measurement device 25 and the GNSS antenna 26 are both in the center position in the left-right width direction or substantially in the attached state to the tractor 1. Since it is arranged vertically at the center position, both the detection accuracy of the current position information of the tractor 1 acquired from the received signal of the GNSS antenna 26 and the detection accuracy of the displacement information and direction information of the aircraft acquired from the inertial measurement device 25 are improved. can do. Moreover, the width of the unit cover 51 in the front-rear direction is reduced, and the antenna unit 50 can be made compact. Furthermore, due to the above arrangement, as shown in FIGS.
  • the inertial measurement device 25 does not become a reception obstacle of the GNSS antenna 26, and the carrier wave phase (satellite positioning information) from the positioning satellite 45 can be reliably received.
  • the housing 27 ⁇ / b> A of a wireless communication unit 27 (an example of a wireless communication device assembled to the antenna unit 50) 27 having a pair of wireless communication antennas 28 in the front-rear direction is fixedly connected by a fourth bolt 62.
  • the wireless communication antenna 28 of the wireless communication unit 27 is disposed on the opposite side to the inertial measurement device 25 and the GNSS antenna 26 and on one end side in the longitudinal direction of the base plate 55.
  • the first predetermined distance L ⁇ b> 1 between the wireless communication antenna 28 of the wireless communication unit 27 and the center of the inertial measurement device 25 is set to 250 mm or more.
  • the center of the inertial measurement device 25 is arranged from the radio communication antenna 28 of the radio communication unit 27 while reducing the size of the antenna unit 50 in the longitudinal direction by devising the arrangement position and orientation of the radio communication unit 27 described above.
  • the first predetermined distance L1 to the part can be sufficiently secured. Thereby, radio wave interference between the wireless communication unit 27 and the inertial measurement device 25 is suppressed, and a communication failure between the wireless communication unit 27 and the wireless communication device 31 of the wireless communication terminal 30 is suppressed. it can.
  • the wireless communication unit 27 And the inertial measurement device 25 can more effectively suppress radio wave interference.
  • the outer circumference of the inertial measurement device 25 is shielded by a metal housing 25A except for a connector and the like, and is a metal hat-like shape positioned between the wireless communication unit 27 and the inertial measurement device 25. Since a part of the bracket 60 functions as a shielding wall portion, radio wave interference between the wireless communication unit 27 and the inertial measurement device 25 can be further suppressed.
  • FIGS. 8 The other end in the longitudinal direction of the base plate 55 (the left end in the left-right direction of the machine body 2 with respect to the forward direction, the left end in FIG. 5, the right end in FIGS. 7 and 8) is shown in FIGS.
  • the radio communication unit 27, the GNSS antenna 26 (inertial measurement device 25), and the base station antenna 29 are arranged in this order from the right side in the left-right direction of the airframe unit 2 with respect to the forward direction. They are arranged side by side in the left-right direction.
  • the base station antenna 29 includes a base portion 29A having a magnet 65 and a round bar-like antenna bar 29B extending upward from the base portion 29A. Furthermore, the base portion 29A includes a columnar lower base body 29a containing the magnet 65, and a frustoconical upper base body 29b integrally formed at the center of the upper surface of the lower base body 29a. Therefore, the base station antenna 29 is attached to the metal base plate 55 by the magnetic force of the magnet 65.
  • the base plate 55 is in contact with or close to the upper and lower intermediate positions of the conical outer peripheral surface of the upper base body 29 b in the base portion 29 ⁇ / b> A of the base station antenna 29,
  • a sheet metal movement restricting member 66 for restricting movement of the base portion 29 ⁇ / b> A of the base station antenna 29 is fixedly connected by a fifth bolt 67.
  • the upper restriction plate piece 66a formed by bending on the movement restriction member 66 includes a circular movement restriction hole 66b fitted on the upper base body 29b of the base portion 29A, and an antenna.
  • a detachable notch 66c having a width dimension allowing passage of the bar 29B is formed in communication.
  • the separation distance between the antenna bar 29B of the base station antenna 29 and the radio communication antenna 28 of the radio communication unit 27 is increased, and the antenna bar 29B of the base station antenna 29 and the radio communication unit are increased. Radio wave interference with the 27 radio communication antennas 28 can be suppressed.
  • the base station antenna 29 can be easily attached to the metal base plate 55 by the magnetic force of the magnet 65 provided on the base 29A. Nevertheless, displacement of the base station antenna 29 due to vibration or the like can be reliably prevented by the movement regulating member 66 having a simple shape that is bolted to the base plate 55.
  • a first bulge portion 53 ⁇ / b> A that protrudes upward from the upper surface position of the wireless communication unit 27 and the upper end position of the wireless communication antenna 28 of the wireless communication unit 27 is formed.
  • the second predetermined distance L2 between the inner surface 53a of the first bulging portion 53A and the upper end of the radio communication antenna 28 is set to 30 mm or more.
  • a wireless communication device 31 of the wireless communication unit 27 and the wireless communication terminal 30 is formed by a second predetermined distance L2 formed between the upper end of the wireless communication antenna 28 and the inner surface 53a of the first bulging portion 53A of the upper cover body 53. Communication accuracy can be improved.
  • the relationship between the first predetermined distance L1 and the second predetermined distance L2 is The first predetermined distance L1> the second predetermined distance L2.
  • one end in the longitudinal direction is provided on the other end side in the longitudinal direction of the upper cover body 53 of the unit cover 51 (left side in the left-right direction of the body part 2 with respect to the forward direction).
  • the second bulging portion 53B having the same shape as the first bulging portion 53A formed on the side (the right side in the left-right direction of the body portion 2 with respect to the forward direction) is formed, and the unit cover 51 is configured to be bilaterally symmetric.
  • This is in consideration of the design when the antenna unit 50 is attached to the upper position on the front side of the cabin 7 of the tractor 1, but the formation of the second bulging portion 53B has a new technical value. appear.
  • the second bulging portion 53B of the upper cover body 53 is formed at a portion corresponding to the base station antenna 29 as shown in FIGS. Is sufficiently larger than the height from the upper surface of the base plate 55 to the upper surface of the second bulging portion 53B. Therefore, on the upper surface of the second bulging portion 53B, as shown in FIGS. 7 and 9, a through hole 70 is formed through which the antenna bar 29B of the base station antenna 29 penetrates and protrudes upward outside.
  • An antivibration elastic body 71 such as a cylindrical rubber that is in contact with the outer peripheral surface of the through portion of the antenna bar 29B of the base station antenna 29 is attached to the opening periphery of the through hole 70.
  • a grommet that is in contact with the entire circumference of the antenna bar 29B and also exhibits watertightness is used.
  • the upper and lower intermediate portions of the antenna bar 29B are supported by the vibration isolating elastic body 71 provided at the opening peripheral edge of the through hole 70 of the second bulging portion 53B, and the base station antenna 29 Since the support structure becomes a two-point support structure as a whole, breakage of the antenna bar 29B due to traveling vibration or the like can be suppressed.
  • the support of the antenna bar 29B supported by the vibration isolating elastic body 71 is increased by the height from the upper surface of the base plate 55 to the upper surface of the second bulge portion 53B due to the presence of the second bulge portion 53B. The position is increased, and the breakage of the antenna bar 29B can be further suppressed.
  • the vibration isolating elastic body 71 is attached to the opening periphery of the through hole 70 of the second bulging portion 53B.
  • the vibration isolating elastic body 71 is attached to the upper surface of the second bulging portion 53B or You may attach to an inner surface and may also attach to the bracket etc. which were provided in the baseplate 55 further.
  • another unit 72 is attached on the other end in the longitudinal direction of the base plate 55 and between the inertial measurement device 25 and the GNSS antenna 26 and the base station antenna 29.
  • a space 73 is formed. 7 and 8 show a state in which the other space 72 is not attached to the mounting space 73 and the mounting space 73 is a hollow space. FIG. The state where is attached is shown.
  • a controller for a liquid crystal monitor attached later that controls a part of the autonomous traveling control can be cited.
  • a liquid crystal monitor 47 (see FIG. 14) is provided in the cabin 7, and the liquid crystal monitor 47 is equipped with a controller that controls a part of autonomous traveling control.
  • a controller for controlling the autonomous running is required for a liquid crystal monitor to be retrofitted. In this case, the controller can be easily mounted using the mounting space 73 in which the base plate 55 is secured.
  • the both sides in the longitudinal direction on the lower surface side of the bottom plate portion 52 ⁇ / b> A of the lower cover body 52 are folded in an inverted “L” shape (see FIG. 5) when viewed from the front of the body.
  • a stay 75 that is formed and formed in a substantially semicircular arc shape (see FIG. 6) in a side view of the body is disposed.
  • Each of the pair of left and right stays 75 is fixedly connected to the base plate 55 with a sixth bolt 77 through a second boss 76 that penetrates the bottom plate portion 52A of the lower cover body 52.
  • a camera 78 for photographing the front of the machine body is attached at the longitudinal center position on the lower surface of the bottom plate portion 52A of the lower cover body 52, and an image photographed by the camera 78 is as follows.
  • the wireless communication unit 27 of the tractor 1 and the wireless communication device 31 of the wireless communication terminal 30 can be displayed on the touch panel of the wireless communication terminal 30 via wireless communication.
  • FIG. 7 shows a part of one harness 80 formed by collecting electric wires in the unit cover 51. As shown in FIG. 7, the harness 80 is led out through a harness lead-out hole (not shown) formed at one end in the longitudinal direction of the lower cover body 52. A grommet 81 is attached to the harness outlet hole.
  • both end portions of the support frame 100 of the antenna unit 50 are fixedly connected across mirror mounting portions 150 provided on the left and right front struts 201 constituting the cabin frame 200.
  • each of the left and right mirror mounting portions 150 is configured in a substantially “U” shape (planar view “U” shape) in a plan view on the upper portion of the front column 201.
  • the attached mounting base 151 is fixed by welding or the like, and a plate-like mirror mounting member 153 having a hinge portion 152 that rotatably supports the support arm 111 of the rearview mirror 110 is attached to the mounting base 151 by bolts or the like. It is fixedly connected with.
  • attachment pieces 153A having an attachment upper surface along a horizontal plane are formed by bending.
  • the support frame 100 includes a pipe-shaped support member 101 having a circular cross section that is bent into a substantially gate shape in which both ends in the left-right width direction are bent downward when viewed from the front of the body.
  • Attachment plates 102 having attachment lower surfaces along the horizontal plane are fixed to both ends of the pipe-shaped support member 101.
  • Both mounting plates 102 of the support frame 100 are fixedly connected to the upper mounting surfaces of the mounting pieces 153A of the left and right mirror mounting members 153 with bolts 103 or the like.
  • the left and right mirror attaching portions 150 are attached to the upper portion of the front column 201 of the robust cabin frame 200 and are disposed at a height position close to the roof 190 of the cabin 7. Therefore, it is possible to firmly attach the support frame 100 of the antenna unit 50 to an appropriate height position by using both mirror attachment portions 150 that are sturdy and have a ground clearance.
  • the mounting upper surface of the mounting piece 153A in the left and right mirror mounting members 153 and the mounting lower surfaces of both mounting plates 102 of the support frame 100 are both formed in a horizontal plane, the intermediate portion of the pipe-shaped support member 101 is horizontally oriented. It becomes easy to arrange along, and the attachment error of the antenna unit 50 attached to the horizontal intermediate part of the said pipe-shaped support material 101 can be suppressed.
  • the horizontal intermediate portion of the pipe-shaped support member 101 of the support frame 100 is the roof 190 of the cabin frame 200.
  • the front end vicinity position is horizontally arranged along the left-right width direction of the airframe.
  • a pair of left and right brackets 120 that support the pair of left and right stays 75 of the antenna unit 50 are fixed to the horizontal intermediate portion of the pipe-shaped support member 101 as shown in FIGS. 3, 4, and 6.
  • the two sets of stays 75 on the antenna unit 50 side and the bracket 120 on the support frame 100 side that face each other closely in the left-right width direction of the airframe serve as horizontal pivots along the left-right width direction of the airframe.
  • the seventh bolt 121 is pivotally connected. Therefore, in the antenna unit 50, the base station antenna 29 protrudes upward in the vertical direction as shown in FIGS. 3 and 4 due to the rotation of the seventh bolt 121 with respect to the support frame 100 around the pivot axis.
  • the position can be changed between a normal use position (normal use posture) and a front non-use position (non-use posture) on the lower side as shown in FIG.
  • the non-use position of the antenna unit 50 is a position rotated 90 degrees forward from the normal use position. At this non-use position, the base station antenna 29 protrudes forward in the horizontal direction. It is in.
  • the position changing operation between the normal use position and the non-use position of the antenna unit 50 is performed manually.
  • the position changing operation of the antenna unit 50 is performed by a drive unit such as an actuator. May be.
  • the two sets of the antenna unit 50 side stay 75 and the support frame 100 side bracket 120 are provided at positions offset from the seventh bolt 121 in the rotational radial direction.
  • the antenna unit 50 can be alternatively fixed to a normal use position and a non-use position.
  • the bracket 120 on the support frame 100 side is formed with one bolt insertion hole 123 through which the eighth bolt 122 is inserted, and the stay 75 on the antenna unit 50 side is properly used.
  • Bolt insertion holes 124 are formed at two locations that coincide with the bolt insertion holes 123 on the bracket 120 side when in the position and the non-use position.
  • the base station antenna 29 in a state where the antenna unit 50 is in the normal use position, the base station antenna 29 is in a posture facing upward in the vertical direction, and the upper end of the base station antenna 29 is connected to the cabin as shown in FIG. 7 projects upward from the roof 190.
  • the antenna unit 50 is not used from the normal use position. Change to position. In the non-use position, the base station antenna 29 protrudes forward in the horizontal direction, and the upward protrusion height of the antenna unit 50 including the unit cover 51 is made lower than the highest part of the roof 190 of the cabin 7. Can do.
  • the antenna unit 50 is located at the normal use position can be detected based on displacement information acquired from the inertial measurement device 25. Therefore, as shown in FIG. 2, if the control unit 23 does not detect that the antenna unit 50 is located at the normal use position, the autonomous traveling control based on the information acquired by the inertial measurement device 25 and the GNSS antenna 26 is performed.
  • An autonomous traveling check unit 46 that prohibits the start of is provided. The autonomous traveling check unit 46 allows autonomous traveling control to be started only when the antenna unit 50 is in the normal use position, and targets the aircraft based on accurate information acquired by the inertial measurement device 25 and the GNSS antenna 26. It is possible to autonomously travel safely and accurately along the travel route.
  • the antenna unit 50 is located at the normal use position based on the displacement information acquired from the inertial measurement device 25, but the signal of the automatic switch that detects the position displacement of the antenna unit 50 or It may be determined whether or not the antenna unit 50 is positioned at the normal use position based on a signal of a hard switch that is manually operated.
  • the autonomous running check part 46 can also be abbreviate
  • the cabin frame 200 to which the harness 80 is wired includes a pair of left and right front struts 201 positioned in front of the driver seat 9 and a pair of left and right rear struts positioned behind the driver seat 9. 202, a front beam member 203 that connects the upper ends of the front struts 201, a rear beam member 204 that connects the upper ends of the rear struts 202, and the upper ends of the front strut 201 and the rear strut 202 arranged in the front-rear direction. It is comprised by the substantially box frame shape provided with the left and right side beam member 205 which connects between parts.
  • a rear end upper portion of a fender frame 207 that is curved so as to swell forward and upward in a side view along the shape of the rear fender 206 is connected to the lower end portion of each rear column 202.
  • the lower part of the front end of each fender frame 207 is connected to the rear end part of the side frame 208 protruding rearward from the lower part of the corresponding front support 201.
  • the fender frame 207 is made of a cylindrical frame material.
  • the lower part of the front end of the fender frame 207 located on the right side of the cabin 7 is opened below the outside of the cabin 7, and the internal space of the fender frame 207 located on the right side is an inside and outside that communicates the inside and outside of the cabin 7.
  • the communication path 210 is configured.
  • a drain hose (not shown) for discharging condensed water in the air conditioner to the outside of the cabin 7 is disposed in the inner / outer communication passage 210 of the fender frame 207.
  • a windshield 212 is disposed in a region surrounded by the left and right front struts 201, the front beam members 203, and the front lower plate plate 211 extending inwardly from the lower end of each front strut 201 in the left and right directions.
  • the harness 80 led out from the antenna unit 50 is a right edge (an example of one side edge in the left-right width direction) on the outer surface of the windshield 212 of the cabin 7, and
  • the right front support column 201 is disposed so as to extend downward along a belt-shaped portion overlapping with the glass receiving portion 201a.
  • the harness 80 that reaches the lower front plate 211 on the lower end side of the windshield 212 extends to the rear side along the lower surface of the floor plate support plate 213 continuous with the side frame 208, and then is positioned on the right side.
  • 207 is led into the cabin 7 from the opening at the lower front end through the inner / outer communication passage 210 and connected to the control unit 23 disposed in the right operation panel unit 214.
  • the belt-like portion that overlaps with the glass receiving portion 201a of the front strut 201 on the right side on the right edge of the outer surface of the windshield 212 is a glass pasting portion for attaching the windshield 212 to the front surface portion of the cabin 7. It is also a position that does not get in the way. Therefore, by arranging the harness 80 led out from the antenna unit 50 in the above-described band-shaped portion, it is possible to arrange the harness 80 in a good manner while maintaining the visibility of the driver seated on the driver's seat 9 in a good state. it can.
  • a protective resin harness cover 250 through which the harness 80 is inserted is attached to the belt-like portion of the right edge portion on the outer surface of the windshield 212 (see FIG. 13) with an adhesive or the like.
  • the harness cover 250 is integrated with a base portion 253 having a harness receiving surface 252 for receiving the attachment surface 251 to the windshield 212 and the harness 80, and one end in the width direction of the base portion 253.
  • a flexible band portion 254 that is formed and curved in an arc along the outer peripheral surface of the base portion 253 disposed on the harness receiving surface 252 of the base portion 253.
  • An engagement claw 255 is formed at the distal end of the band portion 254, and an engagement recess 256, in which the engagement claw 255 can be engaged and disengaged, is formed at the other end portion in the width direction of the harness receiving surface 252 of the base portion 253.
  • a semicircular ridge 257 is formed in contact with the back surface of the engaging claw 255 engaged with the engaging recess 256 to restrict engagement / disengagement of the engaging claw 255 in a contact state.
  • the harness 80 can be inserted and the harness 80 can be installed so that a part of the outer periphery of the harness 80 is received by the harness receiving surface 252. And as shown in FIG.15 (b), by engaging the engagement nail
  • the harness 80 can be attached to the harness cover 250 while being received by the harness receiving surface 252.
  • the wireless communication antenna 28 of the wireless communication unit 27 is housed in the unit cover 51 of the antenna unit 50.
  • the wireless communication antenna 28 is attached to the upper cover body 53 as necessary. You may make it protrude outside from the through-hole formed.
  • the first predetermined distance L1 between the wireless communication antenna 28 of the wireless communication unit 27 and the central portion of the inertial measurement device 25 is set to 250 mm or more, but this first predetermined distance L1. Can be arbitrarily set according to the radio wave interference condition between the wireless communication unit 27 and the inertial measurement device 25.
  • the second predetermined distance L2 between the inner surface 53a of the first bulging portion 53A and the upper end of the wireless communication antenna 28 is set to 30 mm or more.
  • the second predetermined distance L2 is It can be arbitrarily set according to the communication state between the wireless communication unit 27 and the wireless communication device 31 of the wireless communication terminal 30.
  • the pair of left and right stays 75 are attached to the lower surface side of the unit cover 51.
  • the present invention is not limited to this attachment structure, and any attachment structure can be used according to the attachment conditions on the work vehicle side. Can be adopted.
  • the inertial measurement device 25 and the GNSS antenna 26 are configured separately, but the inertial measurement device 25 and the GNSS antenna 26 may be configured integrally.
  • the present invention can be applied to various antenna units and various work vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Guiding Agricultural Machines (AREA)
  • Support Of Aerials (AREA)

Abstract

Provided are a work vehicle antenna unit with which various antenna devices can be efficiently mounted on a work vehicle, and a work vehicle on which various antenna devices can be efficiently mounted and which can robustly support the various antenna devices. The work vehicle antenna unit 50 comprises: a GNSS antenna 26 and an inertial measurement device 25 arranged at the center in a longitudinal direction of a unit base 55; a wireless communication unit 27 arranged on one end in the longitudinal direction of the unit base 55; and a wireless communication antenna 28 of the wireless communication unit 27 arranged on the opposite side from the inertial measurement device 25 and on one end in the longitudinal direction of the unit base 55. The work vehicle 1 includes a cabin frame 200 to which a support frame 100 is fixed extending in a left-right width direction at an upper position outside a cabin 7. The work vehicle antenna unit 50 is mounted to the support frame 100 in a state in which the inertial measurement device and the GNSS antenna are arranged at substantially the center in the left-right width direction of the apparatus body.

Description

作業車両用アンテナユニット、及び、作業車両Work vehicle antenna unit and work vehicle
 本発明は、衛星測位システム(GNSS)を利用してトラクタ等の作業車両の位置情報を取得しながら、作業車両を目標走行経路に沿って自律走行(自動走行を含む)させる自律走行システム等に用いられる作業車両用アンテナユニットに関する。また、本発明は、キャビンを備えた作業車両で、特に、作業車両用アンテナユニットを備え、衛星測位システムを利用してトラクタ等の作業車両の位置情報を取得しながら、作業車両を目標走行経路に沿って自律走行させるのに適した作業車両に関する。 The present invention provides an autonomous travel system that autonomously travels a work vehicle (including automatic travel) along a target travel route while acquiring position information of the work vehicle such as a tractor using a satellite positioning system (GNSS). The present invention relates to a work vehicle antenna unit to be used. The present invention also relates to a work vehicle equipped with a cabin, and more particularly, a work vehicle equipped with an antenna unit for the work vehicle. It is related with the work vehicle suitable for making it drive autonomously along.
 例えば、自律走行システムを採用した作業車両として、特許文献1に示すトラクタでは、測位衛星からの衛星測位情報を取得するGPSアンテナ(GNSSアンテナ)が、キャビンルーフの上側面部に設けられている。
 具体的には、キャビンルーフの上側面部のうち、車体のトレッド幅の略中心部位置の前後方向線と、ホイルベースの略中心部位置の横方向線との交差する部位に、キャビンルーフの上面よりも高位置で略水平面状の取付け座を有する取付けステーが形成され、この取付けステーの取付け座にGPSアンテナが取付けられている。
 また、GPSアンテナとして、ジャイロセンサを有するGPSアンテナを使用した場合には、キャビンルーフの傾斜角度をも検出することができる。
For example, as a work vehicle adopting an autonomous traveling system, in the tractor shown in Patent Document 1, a GPS antenna (GNSS antenna) for acquiring satellite positioning information from a positioning satellite is provided on the upper side surface portion of the cabin roof.
Specifically, in the upper side surface portion of the cabin roof, the upper surface of the cabin roof is located at a portion where the front-rear direction line of the substantially center position of the vehicle body tread width intersects with the lateral line of the substantially center position of the wheel base. A mounting stay having a substantially horizontal mounting seat at a higher position is formed, and a GPS antenna is attached to the mounting seat of the mounting stay.
Further, when a GPS antenna having a gyro sensor is used as the GPS antenna, the inclination angle of the cabin roof can also be detected.
特開2016-2874号公報JP 2016-2874 A
 上述の従来技術には、キャビンルーフの上側面部におけるGPSアンテナの取付け位置を工夫することにより、GPSアンテナの検出精度、又はGPSアンテナとジャイロセンサの検出精度の向上を図る技術が開示されている。
 しかしながら、上述の自律走行システムでは、例えば、作業車両に対して各種の指示を行う無線通信端末や作業車両の位置情報を取得するための基地局等、作業車両とは別に各種の外部装置が備えられている。
 そのため、作業車両の自律走行等を実際に行うにあたっては、GPSアンテナだけでなく、作業車両と外部装置との間で通信するための各種のアンテナ機器を作業車両に効率良く搭載する必要があり、この面において上述の従来技術には改善の余地がある。
The above-described prior art discloses a technique for improving the detection accuracy of the GPS antenna or the detection accuracy of the GPS antenna and the gyro sensor by devising the mounting position of the GPS antenna on the upper side surface portion of the cabin roof. .
However, in the above-described autonomous traveling system, for example, various external devices are provided separately from the work vehicle, such as a wireless communication terminal that gives various instructions to the work vehicle and a base station for acquiring position information of the work vehicle. It has been.
Therefore, when actually performing autonomous traveling of the work vehicle and the like, it is necessary to efficiently mount not only the GPS antenna but also various antenna devices for communication between the work vehicle and the external device on the work vehicle. In this respect, there is room for improvement in the above-described conventional technology.
 しかも、上述の従来技術では、キャビンフレームの上部に設けられるキャビンルーフの上側面部は曲線が多く、しかも、キャビンフレームよりも剛性に劣るため、GPSアンテナを取付ける取付けステーを、キャビンルーフの外観を損なわない状態で補強する必要があり、この面においても改善の余地がある。 In addition, in the above-described prior art, the upper side surface portion of the cabin roof provided at the upper part of the cabin frame has many curves and is less rigid than the cabin frame. It is necessary to reinforce in an unaffected state, and there is room for improvement in this aspect as well.
 この実情に鑑み、本発明の主たる課題は、作業車両の自律走行等に有効な各種のアンテナ機器を作業車両に効率良く搭載することのできる作業車両用アンテナユニットを提供する点にある。また、作業車両の自律走行等に有効な各種のアンテナ機器を効率良く搭載することができ、且つ、各種のアンテナ機器を頑丈に支持することのできる作業車両を提供する点にある。 In view of this situation, a main object of the present invention is to provide an antenna unit for a work vehicle that can efficiently mount various antenna devices effective for autonomous traveling of the work vehicle on the work vehicle. Another object of the present invention is to provide a work vehicle that can efficiently mount various antenna devices effective for autonomous traveling of the work vehicle and can firmly support the various antenna devices.
 本発明による第1の特徴構成は、作業車両に取付け可能なユニットベースの長手方向中央部に、GNSSアンテナと慣性計測装置とを配置し、前記ユニットベースの長手方向一端側に無線通信ユニットを配置するとともに、無線通信ユニットの無線通信用アンテナを、前記慣性計測装置とは反対側で、且つ、前記ユニットベースの長手方向一端側に配置してある点にある。 According to a first characteristic configuration of the present invention, a GNSS antenna and an inertial measurement device are disposed at a longitudinal center of a unit base that can be attached to a work vehicle, and a wireless communication unit is disposed at one longitudinal end of the unit base. In addition, the wireless communication antenna of the wireless communication unit is arranged on the side opposite to the inertial measurement device and on one end side in the longitudinal direction of the unit base.
 上記構成によれば、作業車両に取付け可能なユニットベースの長手方向中央部に、GNSSアンテナと慣性計測装置とを配置してあるので、例えば、作業車両の前後方向又は横幅方向の中央側にユニットベースを配置することで、GNSSアンテナと慣性計測装置とを作業車両の前後方向又は横幅方向の中央部に配置させることができ、GNSSアンテナの受信信号から取得する作業車両の現在位置情報の検出精度と、慣性計測装置から取得する機体の姿勢変化情報の検出精度を共に向上することができる。
 また、ユニットベースの長手方向一端側に配置した無線通信ユニットにより、例えば、無線通信端末等の外部装置との間で各種の信号を無線通信することが可能となる。
 しかも、無線通信ユニットの無線通信用アンテナを、慣性計測装置とは反対側で、且つ、ユニットベースの長手方向一端側に配置してあるので、無線通信ユニットの無線通信用アンテナから慣性計測装置の中心部までの距離を十分確保することができる。これにより、無線通信ユニットと慣性計測装置との間での電波干渉を抑制して、無線通信ユニットと無線通信端末等との間での通信障害を抑制することができる。
According to the above configuration, since the GNSS antenna and the inertial measurement device are arranged at the center in the longitudinal direction of the unit base that can be attached to the work vehicle, for example, the unit is provided at the center in the front-rear direction or the lateral width direction of the work vehicle. By arranging the base, the GNSS antenna and the inertial measurement device can be arranged in the center of the work vehicle in the front-rear direction or the width direction, and the detection accuracy of the current position information of the work vehicle acquired from the received signal of the GNSS antenna In addition, it is possible to improve both the detection accuracy of the attitude change information of the airframe acquired from the inertial measurement device.
Also, various signals can be wirelessly communicated with an external device such as a wireless communication terminal, for example, by the wireless communication unit arranged on one end side in the longitudinal direction of the unit base.
In addition, since the wireless communication antenna of the wireless communication unit is disposed on the opposite side of the inertial measurement device and on one end side in the longitudinal direction of the unit base, the wireless communication antenna of the wireless communication unit is connected to the inertial measurement device. A sufficient distance to the center can be secured. Thereby, the radio wave interference between the wireless communication unit and the inertial measurement device can be suppressed, and the communication failure between the wireless communication unit and the wireless communication terminal or the like can be suppressed.
 したがって、ユニットベースに対するGNSSアンテナ、慣性計測装置、無線通信ユニットの配設位置及び向き姿勢を上述の如く合理的に工夫することにより、作業車両用アンテナユニット(以下、単にアンテナユニットと略称する場合がある)のコンパクト化を図りながら、慣性計測装置及びGNSSアンテナの検出精度を共に向上し、且つ、無線通信ユニットの通信状態を良好に維持した状態で作業車両に効率良く搭載することができる。 Accordingly, by rationally devising the arrangement position and orientation of the GNSS antenna, the inertial measurement device, and the wireless communication unit with respect to the unit base as described above, a work vehicle antenna unit (hereinafter, simply referred to as an antenna unit may be abbreviated as follows). In addition, the detection accuracy of the inertial measurement device and the GNSS antenna can be improved together, and the wireless communication unit can be efficiently mounted on the work vehicle while maintaining a good communication state.
 本発明による第2の特徴構成は、前記GNSSアンテナは前記慣性計測装置の上部に配置されている点にある。 A second characteristic configuration according to the present invention is that the GNSS antenna is disposed at an upper portion of the inertial measurement device.
 上記構成によれば、例えば、GNSSアンテナの上方に慣性計測装置を配置する場合のように、慣性計測装置がGNSSアンテナの受信障害物になることがなく、測位衛星からの衛星測位情報を確実に受信することができる。しかも、慣性計測装置とGNSSアンテナとの上下配置によってアンテナユニットの幅方向でのコンパクト化を促進することができる。 According to the above configuration, for example, the inertial measurement device does not become a reception obstacle of the GNSS antenna as in the case where the inertial measurement device is arranged above the GNSS antenna, and satellite positioning information from the positioning satellite is reliably obtained. Can be received. Moreover, downsizing of the antenna unit in the width direction can be promoted by arranging the inertial measurement device and the GNSS antenna vertically.
 本発明による第3の特徴構成は、前記慣性計測装置の中心部と前記無線通信ユニットの無線通信用アンテナとの間の所定距離が250mm以上に設定されている点にある。 A third characteristic configuration according to the present invention lies in that a predetermined distance between a central portion of the inertial measurement device and a wireless communication antenna of the wireless communication unit is set to 250 mm or more.
 上記構成によれば、無線通信ユニットと慣性計測装置との間での電波干渉を一層抑制して、無線通信ユニットと無線通信端末等の外部装置との間での通信障害をより良好に抑制することができる。 According to the above configuration, radio wave interference between the wireless communication unit and the inertial measurement device is further suppressed, and communication failure between the wireless communication unit and an external device such as a wireless communication terminal is more effectively suppressed. be able to.
 本発明による第4の特徴構成は、前記ユニットベースの長手方向他端側には、基準局からの情報を受信する基地局アンテナが配置されている点にある。 A fourth characteristic configuration according to the present invention is that a base station antenna for receiving information from a reference station is arranged on the other end side in the longitudinal direction of the unit base.
 上記構成によれば、基地局アンテナと無線通信ユニットの無線通信用アンテナとの間の離間距離が大きくなり、基地局アンテナと無線通信ユニットの無線通信用アンテナとの間での電波干渉を抑制することができる。しかも、GNSSアンテナ、慣性計測装置、無線通信ユニットに加えて、基準局アンテナを備える場合でも、それらをアンテナユニットに効率よくコンパクトに収納させることができる。 According to the above configuration, the separation distance between the base station antenna and the radio communication antenna of the radio communication unit is increased, and radio wave interference between the base station antenna and the radio communication antenna of the radio communication unit is suppressed. be able to. Moreover, even when a reference station antenna is provided in addition to the GNSS antenna, the inertial measurement device, and the wireless communication unit, they can be efficiently and compactly accommodated in the antenna unit.
 本発明による第5の特徴構成は、前記基地局アンテナは、前記ユニットベースを覆うユニットカバーの貫通孔から外部に突出し、前記ユニットカバーには、前記基地局アンテナと接触する防振用弾性体が設けられている点にある。 According to a fifth characteristic configuration of the present invention, the base station antenna projects outward from a through hole of a unit cover that covers the unit base, and the unit cover has an anti-vibration elastic body in contact with the base station antenna. It is in the point provided.
 上記構成によれば、防振用弾性体が存在しない場合には、ユニットカバーの貫通孔の開口周縁と基地局アンテナの貫通部位の外周面との間に環状の空隙が発生する。作業車両の走行振動等が基地局アンテナに作用すると、基地局アンテナが環状の空隙の範囲で揺れ動くことになり、基地局アンテナが根元側で折損する可能性がある。しかし、本発明では、上述のように、ユニットカバーに設けられた防振用弾性体で基地局アンテナの上下中間部が支持されているので、基地局アンテナの支持構造が全体で二点支持構造となり、走行振動等に起因する基地局アンテナの折損を抑制することができる。 According to the above configuration, when there is no vibration isolating elastic body, an annular gap is generated between the opening peripheral edge of the through hole of the unit cover and the outer peripheral surface of the through part of the base station antenna. When traveling vibration or the like of the work vehicle acts on the base station antenna, the base station antenna swings in the range of the annular gap, and the base station antenna may be broken at the base side. However, in the present invention, as described above, since the upper and lower intermediate portions of the base station antenna are supported by the anti-vibration elastic body provided on the unit cover, the base station antenna support structure as a whole is a two-point support structure. Thus, breakage of the base station antenna caused by traveling vibration or the like can be suppressed.
 本発明による第6の特徴構成は、前記基地局アンテナは、前記ユニットベースに磁力で取付けられ、前記基地局アンテナの基部の移動を規制する移動規制部材が前記ユニットベースに取付けられている点にある。 According to a sixth characteristic configuration of the present invention, the base station antenna is attached to the unit base by a magnetic force, and a movement restricting member for restricting movement of a base portion of the base station antenna is attached to the unit base. is there.
 上記構成によれば、基地局アンテナを磁力でユニットベースに簡単に取付けることができる。それでいて、振動等による基地局アンテナの位置ずれは、ベースプレートに取付けられる簡素な移動規制部材で確実に防止することができる。この基地局アンテナの取付け構造の簡素化、小型化により、アンテナユニットのコンパクト化を促進することができる。 According to the above configuration, the base station antenna can be easily attached to the unit base by magnetic force. Nevertheless, positional displacement of the base station antenna due to vibration or the like can be reliably prevented with a simple movement restricting member attached to the base plate. The simplification and miniaturization of the base station antenna mounting structure can facilitate the miniaturization of the antenna unit.
 本発明による第7の特徴構成は、前記ユニットベースの長手方向他端側には、他のユニットの取付けスペースが形成されている点にある。 A seventh characteristic configuration according to the present invention is that a mounting space for another unit is formed at the other longitudinal end of the unit base.
 上記構成によれば、例えば、自律走行制御の一部を司る後付けのコントローラ等の他のユニットを、ユニットベースの長手方向他端側に確保されている取付けスペースを使用して容易に取付けることができる。しかも、このような後付けの他のユニットについても、アンテナユニットに効率よくコンパクトに収納させることができる。 According to the above configuration, for example, another unit such as a retrofit controller that controls a part of autonomous traveling control can be easily mounted using the mounting space secured on the other end side in the longitudinal direction of the unit base. it can. In addition, other retrofit units can be efficiently and compactly stored in the antenna unit.
 本発明による第8の特徴構成は、キャビンを備えた作業車両であって、前記キャビンの外部の上部位置において左右幅方向に沿う支持フレームをキャビンフレームに固定し、前記支持フレームに、慣性計測装置とGNSSアンテナと無線通信装置が組付けられた作業車両用アンテナユニットを、前記慣性計測装置及び前記GNSSアンテナが機体の左右幅方向の略中心位置に配置する状態で取付けてある点にある。 According to an eighth aspect of the present invention, there is provided a work vehicle including a cabin, wherein a support frame extending in a left-right width direction is fixed to the cabin frame at an upper position outside the cabin, and an inertial measurement device is mounted on the support frame. The work vehicle antenna unit in which the GNSS antenna and the wireless communication device are assembled is attached in a state where the inertial measurement device and the GNSS antenna are arranged at a substantially central position in the left-right width direction of the aircraft.
 上記構成によれば、アンテナユニットに組付けられている慣性計測装置及びGNSSアンテナが機体の左右幅方向の略中心位置に配置されているので、GNSSアンテナの受信信号から取得する作業車両の現在位置情報の検出精度と、慣性計測装置から取得する機体の姿勢変化情報の検出精度を共に向上することができる。
 また、アンテナユニットに組付けられている無線通信装置により、例えば、無線通信端末等の外部装置との間で各種の信号を無線通信することが可能となる。
 しかも、アンテナユニットが取付けられる支持フレームは、キャビンの外部の上部位置において左右幅方向に沿う姿勢で剛性の高いキャビンフレームに固定されているので、支持フレームを強固な支持構造に構成することができる。さらに、キャビンフレームはキャビンルーフ近くに及ぶ高さを有するため、支持フレームの取付け位置をキャビンフレームの上部側に設定することにより、慣性計測装置とGNSSアンテナと無線通信装置がそれぞれ適切に機能する高さ位置にアンテナユニットを容易に配置することができる。
According to the above configuration, since the inertial measurement device and the GNSS antenna assembled in the antenna unit are arranged at the substantially center position in the left-right width direction of the airframe, the current position of the work vehicle acquired from the received signal of the GNSS antenna Both the detection accuracy of information and the detection accuracy of the attitude change information of the airframe acquired from the inertial measurement device can be improved.
Further, for example, various signals can be wirelessly communicated with an external device such as a wireless communication terminal by the wireless communication device assembled in the antenna unit.
Moreover, since the support frame to which the antenna unit is attached is fixed to the highly rigid cabin frame in a posture along the left-right width direction at the upper position outside the cabin, the support frame can be configured to have a strong support structure. . Furthermore, since the cabin frame has a height that extends close to the cabin roof, setting the mounting position of the support frame on the upper side of the cabin frame makes it possible for the inertial measurement device, the GNSS antenna, and the wireless communication device to function properly. The antenna unit can be easily arranged at this position.
 したがって、慣性計測装置とGNSSアンテナと無線通信装置が組付けられたアンテナユニットの採用と、機体に対する慣性計測装置及びGNSSアンテナの配設位置、及びアンテナユニットの支持構造における上述の合理的な工夫とにより、慣性計測装置及びGNSSアンテナの検出精度を共に向上し、且つ、無線通信装置の通信状態を良好に維持した状態で作業車両に効率良く搭載することができる。しかも、搭載されたアンテナユニットの支持構造を強固に構成することができる。 Therefore, adoption of an antenna unit in which an inertial measurement device, a GNSS antenna, and a wireless communication device are assembled, and the above-described rational device in the arrangement of the inertial measurement device and the GNSS antenna with respect to the airframe and the support structure of the antenna unit Thus, both the inertial measurement device and the detection accuracy of the GNSS antenna can be improved, and the wireless communication device can be efficiently mounted on the work vehicle in a state in which the communication state of the wireless communication device is well maintained. Moreover, the support structure for the mounted antenna unit can be firmly configured.
 本発明による第9の特徴構成は、前記支持フレームは、前記キャビンフレームの左右に設けられたミラー取付け部に亘って連結されている点にある。 A ninth characteristic configuration according to the present invention is that the support frame is connected across mirror mounting portions provided on the left and right of the cabin frame.
 上記構成によれば、左右のミラー取付け部は、剛性の高いキャビンフレームから突設され、且つ、キャビンルーフに近い高さ位置に配置されている。そのため、頑丈で且つ地上高もある両ミラー取付け部を利用して、アンテナユニットの支持フレームを適切な高さ位置に強固に且つ容易に取付けることができる。 According to the above configuration, the left and right mirror mounting portions protrude from the highly rigid cabin frame and are disposed at a height position close to the cabin roof. Therefore, it is possible to firmly and easily attach the support frame of the antenna unit to an appropriate height position by using both mirror attachment portions that are sturdy and have a high ground.
 本発明による第10の特徴構成は、前記作業車両用アンテナユニットは、前記支持フレームに対して正規使用位置から低位側の非使用位置に位置変位可能に取付けられている点にある。 A tenth characteristic configuration according to the present invention is that the work vehicle antenna unit is attached to the support frame so as to be displaceable from a normal use position to a low use position.
 上記構成によれば、アンテナユニットが正規使用位置に位置する場合に、例えば、アンテナユニットやアンテナユニットに装備されるアンテナが、キャビンルーフの上面よりも上方に突出配置されることがある。よって、トラック等の輸送車両にて作業車両を輸送する際の車高が高くなり、道路走行時等の高さ制限を受ける等の問題を生じることがある。そこで、本発明では、アンテナユニットを支持フレームに対して正規使用位置から低位側の非使用位置に位置変位させることにより、道路走行時等の高さ制限等の問題にも容易に対応することができる。 According to the above configuration, when the antenna unit is located at the normal use position, for example, the antenna unit and the antenna mounted on the antenna unit may be arranged to protrude above the upper surface of the cabin roof. Therefore, the vehicle height when transporting the work vehicle by a transport vehicle such as a truck is increased, which may cause problems such as being restricted in height when traveling on a road. Therefore, in the present invention, the antenna unit is displaced from the normal use position to the non-use position on the lower side with respect to the support frame, so that it is possible to easily cope with problems such as height restrictions when driving on the road. it can.
 本発明による第11の特徴構成は、前記慣性計測装置及びGNSSアンテナで取得した情報に基づいて機体を自律走行制御する制御部と、前記作業車両用アンテナユニットが正規使用位置に位置することを検出していなければ、前記制御部による自律走行制御の開始を禁止する自律走行牽制部が設けられている点にある。 According to an eleventh characteristic configuration of the present invention, a control unit that autonomously controls the airframe based on information acquired by the inertial measurement device and the GNSS antenna, and detects that the work vehicle antenna unit is located at a regular use position. If not, an autonomous traveling check unit that prohibits the start of autonomous traveling control by the control unit is provided.
 上記構成によれば、アンテナユニットが正規使用位置に位置することを検出している場合には、自律走行牽制部は働かず、制御部は、慣性計測装置及びGNSSアンテナで取得した情報に基づいて自律走行制御を開始する。アンテナユニットが正規使用位置に位置することを検出していない場合には、自律走行牽制部による牽制が機能し、制御部による自律走行制御の開始が禁止される。これにより、道路走行時等の高さ制限に対応するアンテナユニットの位置変位構造を採用しながらも、慣性計測装置及びGNSSアンテナで取得した正確な情報に基づいて機体を目標走行経路に沿って精度良く、且つ、安全に自律走行させることができる。 According to the above configuration, when it is detected that the antenna unit is located at the normal use position, the autonomous traveling check unit does not work, and the control unit is based on the information acquired by the inertial measurement device and the GNSS antenna. Autonomous driving control is started. When it is not detected that the antenna unit is located at the regular use position, the check by the autonomous running check unit functions, and the start of the autonomous running control by the control unit is prohibited. As a result, while adopting the position displacement structure of the antenna unit corresponding to the height restriction when traveling on the road, etc., the aircraft can be accurately adjusted along the target travel route based on accurate information acquired by the inertial measurement device and the GNSS antenna. Good and safe autonomous driving.
 本発明による第12の特徴構成は、前記キャビン内には、前記慣性計測装置及びGNSSアンテナで取得した情報に基づいて機体を自律走行制御する制御部が設けられ、前記作業車両用アンテナユニットから導出されたハーネスは、前記キャビンフレームに設けた内外連通路を経由して前記キャビン内の前記制御部まで配設されている点にある。 According to a twelfth characteristic configuration of the present invention, a control unit that autonomously controls the aircraft based on information acquired by the inertial measurement device and the GNSS antenna is provided in the cabin, and is derived from the work vehicle antenna unit. The harness that is provided is disposed to the control unit in the cabin via an internal / external communication path provided in the cabin frame.
 上記構成によれば、キャビン外の上部位置に配置されるアンテナユニットとキャビン内に設けられた制御部とを、キャビンフレームに設けられている内外連通路を経由するハーネスの合理的な取り回しにより接続することができる。 According to the above configuration, the antenna unit arranged at the upper position outside the cabin and the control unit provided in the cabin are connected by a reasonable routing of the harness via the internal / external communication path provided in the cabin frame. can do.
 本発明による第13の特徴構成は、前記作業車両用アンテナユニットから導出されたハーネスは、前記キャビンのフロントガラスの外面における左右幅方向の一側縁部で、且つ、前記キャビンの前支柱のガラス受け部と重合する帯状部位に沿って配置されている点にある。 According to a thirteenth feature of the present invention, the harness derived from the work vehicle antenna unit is a side edge in the left-right width direction on the outer surface of the cabin windshield, and the front post glass of the cabin. It exists in the point arrange | positioned along the strip | belt-shaped site | part superposed | polymerized with a receiving part.
 上記構成によれば、フロントガラスの外面における左右幅方向の一側縁部で、且つ、前支柱のガラス受け部と重合する帯状部位は、フロントガラスをキャビンの前面部に取付けるためのガラス貼付け部であり、視覚の邪魔にならない位置でもある。そのため、アンテナユニットから導出されたハーネスを上述の帯状部位に配置することにより、運転座席に着座した操縦者の視界を良好な状態に維持したままハーネスを体裁良く配設することができる。 According to the above-described configuration, the belt-like portion that is overlapped with the glass receiving portion of the front column on one side edge in the left-right width direction on the outer surface of the windshield is a glass pasting portion for attaching the windshield to the front portion of the cabin. It is also a position that does not interfere with vision. Therefore, by arranging the harness led out from the antenna unit in the above-described band-shaped portion, it is possible to arrange the harness with good appearance while maintaining the visibility of the driver seated on the driver's seat in a good state.
トラクタの全体側面図Overall side view of tractor トラクタ、基準局、及び、無線通信端末の制御ブロック図Control block diagram of tractor, reference station, and wireless communication terminal トラクタのアンテナユニット取付け部の正面図Front view of the antenna unit mounting part of the tractor トラクタのアンテナユニット取付け部の側面図Side view of tractor antenna unit mounting part アンテナユニットの縦断面図Vertical section of the antenna unit アンテナユニットの横断面図Cross section of antenna unit アンテナユニットの分解斜視図Exploded perspective view of antenna unit アンテナユニットのベースプレートの平面図Plan view of the base plate of the antenna unit アンテナユニットの基地局アンテナ側の拡大断面図Expanded sectional view of the antenna unit on the base station antenna side 別実施形態のアンテナユニットの分解斜視図The exploded perspective view of the antenna unit of another embodiment アンテナユニット取付け部の仰角斜視図Elevation angle perspective view of antenna unit mounting part アンテナユニットを非使用位置に変更したときの側面図Side view when the antenna unit is changed to the non-use position キャビンの仰角斜視図Elevation perspective view of cabin キャビンの要部の斜視図A perspective view of the main part of the cabin ハーネスカバーの拡大端面図Enlarged end view of harness cover
 本発明の実施形態を図面に基づいて説明する。
 図1、図2に示す自律走行システムは、目標走行経路を生成し、その生成された目標走行経路に沿って作業車両としてのトラクタ1を自律走行可能に構成されている。この自律走行システムでは、自律走行可能なトラクタ1に加えて、トラクタ1に対して各種の指示等を行う無線通信端末30と、トラクタ1の位置情報を取得するための基地局40とが備えられている。
Embodiments of the present invention will be described with reference to the drawings.
The autonomous traveling system shown in FIGS. 1 and 2 is configured to generate a target traveling route, and to autonomously travel the tractor 1 as a work vehicle along the generated target traveling route. In this autonomous traveling system, in addition to the tractor 1 capable of autonomous traveling, a wireless communication terminal 30 that gives various instructions to the tractor 1 and a base station 40 for acquiring position information of the tractor 1 are provided. ing.
 まず、図1に基づいてトラクタ1について説明する。
 このトラクタ1は、後方側に対地作業機(図示省略)を装着可能な機体部2を備え、機体部2の前部が左右一対の前輪3で支持され、機体部2の後部が左右一対の後輪4で支持されている。機体部2の前部にはボンネット5が配置され、そのボンネット5内に駆動源としてのエンジン6が収容されている。ボンネット5の後方側には、運転者が搭乗するためのキャビン7が備えられ、そのキャビン7内には、運転者が操向操作するためのステアリングハンドル8、運転者の運転座席9等が備えられている。
First, the tractor 1 will be described with reference to FIG.
The tractor 1 includes a body part 2 to which a ground work machine (not shown) can be mounted on the rear side, the front part of the body part 2 is supported by a pair of left and right front wheels 3, and the rear part of the body part 2 is a pair of left and right It is supported by the rear wheel 4. A bonnet 5 is disposed in the front part of the body part 2, and an engine 6 as a drive source is accommodated in the bonnet 5. A cabin 7 for a driver to board is provided on the rear side of the bonnet 5, and a steering handle 8 for a driver to steer and a driver's driving seat 9 are provided in the cabin 7. It has been.
 エンジン6は、例えばディーゼルエンジンにより構成することができるが、これに限るものではなく、例えばガソリンエンジンにより構成してもよい。また、駆動源としてエンジン6に加えて、或いはエンジン6に代えて、電気モータを採用してもよい。 The engine 6 can be composed of, for example, a diesel engine, but is not limited thereto, and may be composed of, for example, a gasoline engine. Further, an electric motor may be employed as a drive source in addition to the engine 6 or instead of the engine 6.
 また、本実施形態では作業車両としてトラクタ1を例に説明するが、作業車両としては、トラクタの他、田植機、コンバイン、土木・建築作業装置、除雪車等、乗用型作業車両等が含まれる。 In the present embodiment, the tractor 1 is described as an example of the work vehicle. However, the work vehicle includes a tractor, a rice transplanter, a combiner, a civil engineering / architecture work device, a snowplow, and a riding work vehicle. .
 機体部2の後方側には、左右一対のロアリンク10とアッパリンク11とからなる3点リンク機構が備えられ、その3点リンク機構に対地作業機が装着可能に構成されている。
機体部2の後方側には、図示は省略するが、昇降シリンダ等の油圧装置を有する昇降装置が備えられ、この昇降装置が、3点リンク機構を昇降させることで、対地作業機を昇降させている。
 対地作業機としては、耕耘装置、プラウ、施肥装置等が含まれる。
A three-point link mechanism including a pair of left and right lower links 10 and an upper link 11 is provided on the rear side of the body part 2, and a ground work machine can be mounted on the three-point link mechanism.
Although not shown, a lifting device having a hydraulic device such as a lifting cylinder is provided on the rear side of the airframe unit 2, and this lifting device lifts and lowers the ground work machine by lifting and lowering the three-point link mechanism. ing.
Examples of the ground working machine include a tillage device, a plow, and a fertilizer application device.
 トラクタ1には、図2に示すように、エンジン6の回転速度を調整可能なガバナ装置21、エンジン6からの回転駆動力を変速して駆動輪に伝達する変速装置22、ガバナ装置21及び変速装置22を制御可能な制御部23等が備えられている。変速装置22は、例えば、油圧式無段変速装置からなる主変速装置とギヤ式多段変速装置からなる副変速装置とを組み合わせて構成されている。 As shown in FIG. 2, the tractor 1 includes a governor device 21 that can adjust the rotational speed of the engine 6, a transmission device 22 that shifts the rotational driving force from the engine 6 and transmits it to the drive wheels, the governor device 21, A control unit 23 and the like that can control the device 22 are provided. The transmission 22 is configured by combining, for example, a main transmission composed of a hydraulic continuously variable transmission and an auxiliary transmission composed of a gear type multi-stage transmission.
 このトラクタ1は、運転者がキャビン7内に搭乗して走行できるだけでなく、キャビン7内に運転者が搭乗しなくても、無線通信端末30からの指示等に基づいて、トラクタ1を自律走行可能に構成している。 The tractor 1 not only allows the driver to travel in the cabin 7, but also allows the tractor 1 to autonomously travel based on instructions from the wireless communication terminal 30 even if the driver does not board the cabin 7. It is configured as possible.
 トラクタ1は、図2に示すように、操舵装置24、機体の姿勢変化情報を得るための慣性計測装置(IMU)25、衛星測位システム(GNSS)を構成する測位衛星(航法衛星)45から送信される電波信号を受信するGNSSアンテナ26、無線通信端末30等との間で構築される無線通信ネットワークを介して各種の信号を送受信する無線通信ユニット(作業車両用のアンテナユニット50に組み付けられる無線通信装置の一例)27、基準局40の基準局無線通信装置41からの無線信号(例えば、周波数帯域が920MHzの無線信号)を受信する基地局アンテナ(アンテナユニット50に組み付けられる無線通信装置の一例)29等を備えており、自己の現在位置情報(機体部2の位置情報)を取得しながら、自律走行可能に構成されている。 As shown in FIG. 2, the tractor 1 transmits from a steering device 24, an inertial measurement device (IMU) 25 for obtaining attitude change information of the fuselage, and a positioning satellite (navigation satellite) 45 constituting a satellite positioning system (GNSS). Wireless communication unit that transmits and receives various signals via a wireless communication network constructed between the GNSS antenna 26 that receives the received radio signal, the wireless communication terminal 30, and the like (wireless that is assembled to the antenna unit 50 for a work vehicle). 27), a base station antenna that receives a radio signal (for example, a radio signal having a frequency band of 920 MHz) from the reference station radio communication device 41 of the reference station 40 (an example of a radio communication device assembled to the antenna unit 50) 29 Etc., and can autonomously travel while acquiring its current position information (position information of the airframe unit 2) It has been made.
 慣性計測装置25、GNSSアンテナ26、無線通信ユニット27、基地局アンテナ29は、図5~図7に示すように、ユニットカバー51を備えたアンテナユニット50に収納されている。このアンテナユニット50は、図3、図4に示すように、キャビン7の外部の前面側の上部位置において、キャビン7のキャビンフレーム200に固定された左右幅方向に沿う支持フレーム100に取付けられている。
 尚、アンテナユニット50の具体的な内部配置構造及び取付け構造については、自律走行システムの説明後において詳述する。
The inertial measurement device 25, the GNSS antenna 26, the wireless communication unit 27, and the base station antenna 29 are housed in an antenna unit 50 having a unit cover 51 as shown in FIGS. As shown in FIGS. 3 and 4, the antenna unit 50 is attached to a support frame 100 along the left-right width direction fixed to the cabin frame 200 of the cabin 7 at an upper position on the front side outside the cabin 7. Yes.
The specific internal arrangement structure and mounting structure of the antenna unit 50 will be described in detail after the description of the autonomous traveling system.
 操舵装置24は、例えば、ステアリングハンドル8の回転軸の途中部に備えられ、ステアリングハンドル8の回転角度(操舵角)を調整可能に構成されている。制御部23が操舵装置24を制御することで、直進走行だけでなく、ステアリングハンドル8の回転角度を所望の回転角度に調整して、所望の旋回半径での旋回走行も行える。 The steering device 24 is provided, for example, in the middle of the rotation shaft of the steering handle 8 and is configured to be able to adjust the rotation angle (steering angle) of the steering handle 8. When the control unit 23 controls the steering device 24, not only the straight traveling but also the turning angle of the steering handle 8 can be adjusted to a desired turning angle, and the turning turning with the desired turning radius can be performed.
 慣性計測装置25は、3軸のジャイロと3方向の加速度計によって、3次元の角速度と加速度が求められる。当該慣性計測装置25の検出値が制御部23に入力され、制御部23は、姿勢・方位演算手段により演算し、トラクタ1の姿勢情報(機体の方位角(ヨー角)、機体の左右の傾き角(ロール角)、機体の進行方向での前後の傾き角(ピッチ角))を求める。 The inertial measurement device 25 is required to obtain a three-dimensional angular velocity and acceleration by a three-axis gyro and a three-direction accelerometer. The detected value of the inertial measurement device 25 is input to the control unit 23, and the control unit 23 calculates the posture information of the tractor 1 (the azimuth angle (yaw angle) of the aircraft, the left / right inclination of the aircraft). The angle (roll angle) and the front / rear tilt angle (pitch angle) in the traveling direction of the aircraft are obtained.
 衛星測位システム(GNSS)では、測位衛星として、GPS(米国)に加えて準天頂衛星(日本)やグロナス衛星(ロシア)等の衛星測位システムを利用することができる。 In the satellite positioning system (GNSS), a satellite positioning system such as a quasi-zenith satellite (Japan) and a Glonus satellite (Russia) can be used as a positioning satellite in addition to GPS (United States).
 無線通信ユニット27は、本実施形態においては周波数帯域が2.4GHzのワイファイ(Wifi)ユニットから構成されているが、無線通信ユニット27はWifi以外のブルートゥース(登録商標)等にすることができる。この無線通信ユニット27の無線通信用アンテナ28にて受信した信号は、図2に示すように、制御部23に入力可能であり、制御部23からの信号は、無線通信用アンテナ28にて無線通信端末30の無線通信装置31等に送信可能に構成されている。 In the present embodiment, the wireless communication unit 27 is composed of a WiFi unit having a frequency band of 2.4 GHz, but the wireless communication unit 27 may be Bluetooth (registered trademark) other than WiFi. As shown in FIG. 2, the signal received by the wireless communication antenna 28 of the wireless communication unit 27 can be input to the control unit 23, and the signal from the control unit 23 is wirelessly transmitted by the wireless communication antenna 28. The communication terminal 30 is configured to be able to transmit to the wireless communication device 31 and the like.
 ここで、衛星測位システムを用いた測位方法として、予め定められた基準点に設置された基準局40を備え、その基準局40からの補正情報によりトラクタ1(移動局)の衛星測位情報を補正して、トラクタ1の現在位置を求める測位方法を適用可能としている。例えば、DGPS(ディファレンシャルGPS測位)、RTK測位(リアルタイムキネマティック測位)等の各種の測位方法を適用することができる。 Here, as a positioning method using the satellite positioning system, a reference station 40 installed at a predetermined reference point is provided, and the satellite positioning information of the tractor 1 (mobile station) is corrected by correction information from the reference station 40. A positioning method for obtaining the current position of the tractor 1 can be applied. For example, various positioning methods such as DGPS (differential GPS positioning) and RTK positioning (real-time kinematic positioning) can be applied.
 この実施形態では、例えば、RTK測位を適用しており、図1及び図2に示すように、移動局側となるトラクタ1にGNSSアンテナ26を備えるのに加えて、基準局測位用アンテナ42を備えた基準局40が設けられている。基準局40は、例えば、圃場の周囲等、トラクタ1の走行の邪魔にならない位置(基準点)に配置されている。基準局40の設置位置となる基準点の位置情報は予め把握されている。基準局40には、トラクタ1の基地局アンテナ29との間で各種の信号を送受信可能な基準局無線通信装置41が備えられ、基準局40とトラクタ1との間や基準局40と無線通信端末30との間で各種の情報が送受信可能に構成されている。 In this embodiment, for example, RTK positioning is applied. As shown in FIGS. 1 and 2, in addition to the GNSS antenna 26 being provided in the tractor 1 on the mobile station side, the reference station positioning antenna 42 is provided. A reference station 40 is provided. The reference station 40 is disposed at a position (reference point) that does not interfere with the traveling of the tractor 1, for example, around the field. The position information of the reference point that is the installation position of the reference station 40 is grasped in advance. The reference station 40 includes a reference station wireless communication device 41 that can transmit and receive various signals to and from the base station antenna 29 of the tractor 1, and between the reference station 40 and the tractor 1 and between the reference station 40 and the wireless communication terminal 30. Various types of information can be transmitted and received between them.
 RTK測位では、基準点に設置された基準局40の基準局測位用アンテナ42と、位置情報を求める対象の移動局側となるトラクタ1のGNSSアンテナ26との両方で測位衛星45からの搬送波位相(衛星測位情報)を測定している。基準局40では、測位衛星45から衛星測位情報を測定する毎に又は設定周期が経過する毎に、測定した衛星測位情報と基準点の位置情報等を含む補正情報を生成して、基準局無線通信装置41からトラクタ1の基地局アンテナ29に補正情報を送信している。トラクタ1の制御部23は、GNSSアンテナ26にて測定した衛星測位情報を、基準局40から送信される補正情報を用いて補正して、トラクタ1の現在位置情報を求めている。制御部23は、トラクタ1の現在位置情報として、例えば、緯度情報・経度情報を求めている。 In the RTK positioning, the carrier phase from the positioning satellite 45 (satellite) is received by both the reference station positioning antenna 42 of the reference station 40 installed at the reference point and the GNSS antenna 26 of the tractor 1 on the mobile station side for which position information is to be obtained. Positioning information) is being measured. The reference station 40 generates correction information including the measured satellite positioning information and the reference point position information every time the satellite positioning information is measured from the positioning satellite 45 or every time the set period elapses, and the reference station wireless communication device The correction information is transmitted from 41 to the base station antenna 29 of the tractor 1. The control unit 23 of the tractor 1 obtains the current position information of the tractor 1 by correcting the satellite positioning information measured by the GNSS antenna 26 using the correction information transmitted from the reference station 40. The control unit 23 obtains, for example, latitude information / longitude information as the current position information of the tractor 1.
 自律走行システムでは、トラクタ1及び基準局40に加えて、トラクタ1の制御部23にトラクタ1の自律走行を指示可能な無線通信端末30が備えられている。無線通信端末30は、例えば、タッチパネルを有するタブレット型のパーソナルコンピュータ等から構成され、各種情報をタッチパネルに表示可能であり、タッチパネルを操作することで、各種の情報も入力可能となっている。無線通信端末30には、無線通信装置31と、目標走行経路を生成する経路生成部32とが備えられ、経路生成部32が、タッチパネルにて入力される各種の情報に基づいて、トラクタ1を自律走行させる目標走行経路を生成している。 In the autonomous traveling system, in addition to the tractor 1 and the reference station 40, a wireless communication terminal 30 capable of instructing the autonomous traveling of the tractor 1 to the control unit 23 of the tractor 1 is provided. The wireless communication terminal 30 is composed of, for example, a tablet personal computer having a touch panel, and can display various information on the touch panel. Various information can also be input by operating the touch panel. The wireless communication terminal 30 includes a wireless communication device 31 and a route generation unit 32 that generates a target travel route. The route generation unit 32 controls the tractor 1 based on various types of information input on the touch panel. A target travel route for autonomous travel is generated.
 トラクタ1に備えられた制御部23は、無線通信装置31等による無線通信ネットワークを介して、無線通信端末30との間で各種の情報を送受信可能に構成されている。無線通信端末30は、目標走行経路等、トラクタ1を自律走行させるための各種の情報をトラクタ1の制御部23に送信することで、トラクタ1の自律走行を指示可能に構成されている。トラクタ1の制御部23は、経路生成部32にて生成された目標走行経路に沿ってトラクタ1が自律走行するように、GNSSアンテナ26の受信信号から取得するトラクタ1の現在位置情報を求め、慣性計測装置25から機体の変位情報及び方位情報を求め、これらの現在位置情報と変位情報と方位情報に基づいて変速装置22や操舵装置24等を制御可能に構成されている。 The control unit 23 provided in the tractor 1 is configured to be able to transmit and receive various types of information to and from the wireless communication terminal 30 via a wireless communication network including the wireless communication device 31 and the like. The wireless communication terminal 30 is configured to be able to instruct autonomous traveling of the tractor 1 by transmitting various information for autonomously traveling the tractor 1 such as a target traveling route to the control unit 23 of the tractor 1. The control unit 23 of the tractor 1 obtains the current position information of the tractor 1 acquired from the received signal of the GNSS antenna 26 so that the tractor 1 autonomously travels along the target travel route generated by the route generation unit 32. The vehicle body displacement information and direction information are obtained from the inertial measurement device 25, and the transmission 22 and the steering device 24 can be controlled based on the current position information, displacement information, and direction information.
 次に、アンテナユニット50の内部配置構造について説明する。
 アンテナユニット50のユニットカバー51は、図5~図7、図10、図11に示すように、上方に開口する平面視略長方形状の樹脂製の下側カバー体52と、下方に開口する平面視略長方形状の樹脂製の上側カバー体53とを有する。ここで、図5は、アンテナユニット50を後方側から見たときの縦断面図を示しており、図3、図7、図11に対して、機体部2における左右方向が逆方向となっている。上側カバー体53の開口接合部は、下側カバー体52の開口接合部に対して脱着自在に水密状態で外嵌接合されている。上側カバー体53の開口接合部と下側カバー体52の開口接合部とは、前面側及び後面側における左右方向の複数個所でネジ54にて固定連結されている。
Next, the internal arrangement structure of the antenna unit 50 will be described.
As shown in FIGS. 5 to 7, 10, and 11, the unit cover 51 of the antenna unit 50 includes a lower cover body 52 made of a resin having a substantially rectangular shape in plan view that opens upward, and a plane that opens downward. And an upper cover body 53 made of a resin having a substantially rectangular shape. Here, FIG. 5 shows a longitudinal sectional view when the antenna unit 50 is viewed from the rear side, and the left-right direction in the airframe unit 2 is opposite to FIGS. 3, 7 and 11. Yes. The opening joint portion of the upper cover body 53 is externally fitted and joined to the opening joint portion of the lower cover body 52 in a watertight state so as to be detachable. The opening joint portion of the upper cover body 53 and the opening joint portion of the lower cover body 52 are fixedly connected by screws 54 at a plurality of positions in the left-right direction on the front side and the rear side.
 下側カバー体52の底板部52Aには、図5~図7に示すように、トラクタ1に取付け可能なユニットベースの一例である金属製のベースプレート55が取付けられている。このベースプレート55と下側カバー体52の底板部52Aとの間には、図5に示すように、両者間の間隔を設定間隔に保持する複数個(本実施形態では4個)の円筒状の第1ボス56が配置され、各第1ボス56に挿通される第1ボルト57により、ベースプレート55と下側カバー体52の底板部52Aとが固定連結されている。 As shown in FIGS. 5 to 7, a metal base plate 55, which is an example of a unit base that can be attached to the tractor 1, is attached to the bottom plate portion 52 </ b> A of the lower cover body 52. Between the base plate 55 and the bottom plate portion 52A of the lower cover body 52, as shown in FIG. 5, a plurality (four in this embodiment) of cylindrical shapes that keep the distance between the two at a set interval. The first boss 56 is disposed, and the base plate 55 and the bottom plate portion 52 </ b> A of the lower cover body 52 are fixedly connected by a first bolt 57 inserted through each first boss 56.
 ベースプレート55の長手方向中央部には、図5~図8に示すように、機体の左右幅方向の中心位置又は略中心位置に共に配置される慣性計測装置25とGNSSアンテナ26とが上下に重合する状態で設けられている。そのうち、GNSSアンテナ26は慣性計測装置25の上方位置に配置されている。
 詳しくは、慣性計測装置25のハウジング25Aは、図5、図8に示すように、それの左右方向中心位置がベースプレート55の長手方向中央位置に位置する状態でベースプレート55に第2ボルト58にて固定連結されている。
 他方、GNSSアンテナ26のハウジング26Aは、図5~図7に示すように、それの左右方向中心位置がベースプレート55の長手方向中央位置に位置する状態で、金属製のハット形のブラケット60を介してベースプレート55に取付けられている。ブラケット60は、慣性計測装置25のハウジング25Aの上方をベースプレート55の長手方向に沿って迂回するハット形に形成されている。このハット形のブラケット60の両脚部60aは、ベースプレート55に第3ボルト61にて固定連結されているとともに、ハット形のブラケット60の前後方向(機体の前後方向でもある)の幅は、慣性計測装置25のハウジング25Aの前後方向幅よりも少し小なる寸法に構成され、ブラケット60の一部が後述する無線通信ユニット27との間を遮蔽する遮蔽壁部に構成されている。
As shown in FIGS. 5 to 8, an inertial measurement device 25 and a GNSS antenna 26, which are arranged at the center position or the substantially center position in the left-right width direction of the airframe, are superposed vertically at the center in the longitudinal direction of the base plate 55. It is provided in the state to do. Among them, the GNSS antenna 26 is disposed above the inertial measurement device 25.
Specifically, the housing 25 </ b> A of the inertial measurement device 25, as shown in FIGS. 5 and 8, is fixed to the base plate 55 with the second bolt 58 in a state where the center position in the left-right direction is located at the center position in the longitudinal direction of the base plate 55. It is fixedly connected.
On the other hand, the housing 26A of the GNSS antenna 26 is interposed via a metal hat-shaped bracket 60 in a state where the center position in the left-right direction is located at the center position in the longitudinal direction of the base plate 55, as shown in FIGS. The base plate 55 is attached. The bracket 60 is formed in a hat shape that bypasses the upper side of the housing 25 </ b> A of the inertial measurement device 25 along the longitudinal direction of the base plate 55. Both leg portions 60a of the hat-shaped bracket 60 are fixedly connected to the base plate 55 by third bolts 61, and the width of the hat-shaped bracket 60 in the front-rear direction (also the front-rear direction of the fuselage) is measured by inertia. The device 25 has a size slightly smaller than the width in the front-rear direction of the housing 25A, and a part of the bracket 60 is formed as a shielding wall portion that shields the wireless communication unit 27 described later.
 上述の慣性計測装置25及びGNSSアンテナ26の配置構成により、トラクタ1への取付け状態では、図3に示すように、慣性計測装置25及びGNSSアンテナ26が共に機体の左右幅方向の中心位置又は略中心位置において上下に配置されるため、GNSSアンテナ26の受信信号から取得するトラクタ1の現在位置情報の検出精度と、慣性計測装置25から取得する機体の変位情報及び方位情報の検出精度を共に向上することができる。しかも、ユニットカバー51の前後方向での幅が小さくなり、アンテナユニット50のコンパクト化を図ることができる。
 さらに、上述の配置構成により、図5、図6に示すように、GNSSアンテナ26の上方には樹脂製の上側カバー体53のみが存在するだけであるため、例えば、GNSSアンテナ26の上方に慣性計測装置25を配置する場合のように、慣性計測装置25がGNSSアンテナ26の受信障害物になることがなく、測位衛星45からの搬送波位相(衛星測位情報)を確実に受信することができる。
Due to the arrangement configuration of the inertial measurement device 25 and the GNSS antenna 26 described above, as shown in FIG. 3, the inertial measurement device 25 and the GNSS antenna 26 are both in the center position in the left-right width direction or substantially in the attached state to the tractor 1. Since it is arranged vertically at the center position, both the detection accuracy of the current position information of the tractor 1 acquired from the received signal of the GNSS antenna 26 and the detection accuracy of the displacement information and direction information of the aircraft acquired from the inertial measurement device 25 are improved. can do. Moreover, the width of the unit cover 51 in the front-rear direction is reduced, and the antenna unit 50 can be made compact.
Furthermore, due to the above arrangement, as shown in FIGS. 5 and 6, only the upper cover body 53 made of resin exists above the GNSS antenna 26. As in the case where the measurement device 25 is arranged, the inertial measurement device 25 does not become a reception obstacle of the GNSS antenna 26, and the carrier wave phase (satellite positioning information) from the positioning satellite 45 can be reliably received.
 ベースプレート55の長手方向一端部(前進方向に対して機体部2の左右方向の右側端部、図5中右側端部、図7及び図8中左側端部)には、図5、図7、図8に示すように、前後方向で一対の無線通信用アンテナ28を備えた無線通信ユニット(アンテナユニット50に組み付けられる無線通信装置の一例)27のハウジング27Aが第4ボルト62にて固定連結されている。この無線通信ユニット27の無線通信用アンテナ28は、慣性計測装置25及びGNSSアンテナ26とは反対側で、且つ、ベースプレート55の長手方向一端側に配置されている。
 図5に示すように、無線通信ユニット27の無線通信用アンテナ28と慣性計測装置25の中心部との間の第1所定距離L1は250mm以上に設定されている。
One end of the base plate 55 in the longitudinal direction (the right end in the left-right direction of the airframe unit 2 with respect to the forward direction, the right end in FIG. 5 and the left end in FIGS. 7 and 8) is shown in FIGS. As shown in FIG. 8, the housing 27 </ b> A of a wireless communication unit 27 (an example of a wireless communication device assembled to the antenna unit 50) 27 having a pair of wireless communication antennas 28 in the front-rear direction is fixedly connected by a fourth bolt 62. ing. The wireless communication antenna 28 of the wireless communication unit 27 is disposed on the opposite side to the inertial measurement device 25 and the GNSS antenna 26 and on one end side in the longitudinal direction of the base plate 55.
As shown in FIG. 5, the first predetermined distance L <b> 1 between the wireless communication antenna 28 of the wireless communication unit 27 and the center of the inertial measurement device 25 is set to 250 mm or more.
 そして、上述の無線通信ユニット27の配設位置及び向き姿勢の工夫により、アンテナユニット50の長手方向でのコンパクト化を図りながら、無線通信ユニット27の無線通信用アンテナ28から慣性計測装置25の中心部までの第1所定距離L1を十分確保することができる。これにより、無線通信ユニット27と慣性計測装置25との間での電波干渉を抑制して、無線通信ユニット27と無線通信端末30の無線通信装置31との間での通信障害を抑制することができる。
 特に、上述したように、無線通信ユニット27の無線通信用アンテナ28と慣性計測装置25の中心部との間の第1所定距離L1が250mm以上に設定されている場合には、無線通信ユニット27と慣性計測装置25との間での電波干渉をより効果的に抑制することができる。
 さらに、慣性計測装置25の外周は、コネクタ等を除く多くの部分が金属製のハウジング25Aで遮蔽され、且つ、無線通信ユニット27と慣性計測装置25との間に位置する金属製のハット形のブラケット60の一部が遮蔽壁部として機能するから、無線通信ユニット27と慣性計測装置25との間での電波干渉をより一層抑制することができる。
The center of the inertial measurement device 25 is arranged from the radio communication antenna 28 of the radio communication unit 27 while reducing the size of the antenna unit 50 in the longitudinal direction by devising the arrangement position and orientation of the radio communication unit 27 described above. The first predetermined distance L1 to the part can be sufficiently secured. Thereby, radio wave interference between the wireless communication unit 27 and the inertial measurement device 25 is suppressed, and a communication failure between the wireless communication unit 27 and the wireless communication device 31 of the wireless communication terminal 30 is suppressed. it can.
In particular, as described above, when the first predetermined distance L1 between the wireless communication antenna 28 of the wireless communication unit 27 and the central portion of the inertial measurement device 25 is set to 250 mm or more, the wireless communication unit 27 And the inertial measurement device 25 can more effectively suppress radio wave interference.
Further, the outer circumference of the inertial measurement device 25 is shielded by a metal housing 25A except for a connector and the like, and is a metal hat-like shape positioned between the wireless communication unit 27 and the inertial measurement device 25. Since a part of the bracket 60 functions as a shielding wall portion, radio wave interference between the wireless communication unit 27 and the inertial measurement device 25 can be further suppressed.
 ベースプレート55の長手方向他端部(前進方向に対して機体部2の左右方向の左側端部、図5中左側端部、図7及び図8中右側端部)には、図5、図7、図8に示すように、基準局40からの情報を受信する基地局アンテナ(アンテナユニット50に組み付けられる無線通信装置の一例)29が配置されている。このようにして、ベースプレート55には、前進方向に対して機体部2の左右方向の右側から、無線通信ユニット27、GNSSアンテナ26(慣性計測装置25)、基地局アンテナ29の順に機体部2の左右方向に並ぶ状態で配置されている。この基地局アンテナ29は、図5、図9に示すように、マグネット65を備えた基部29Aと、当該基部29Aから上方に延伸する丸棒状のアンテナバー29Bから構成されている。さらに、基部29Aは、マグネット65を内蔵する円柱状の下側基体29aと、当該下側基体29aの上面中央部に一体形成される截頭円錐台形状の上側基体29bとからなる。そのため、基地局アンテナ29は、マグネット65の磁力で金属製のベースプレート55に取付けられている。 The other end in the longitudinal direction of the base plate 55 (the left end in the left-right direction of the machine body 2 with respect to the forward direction, the left end in FIG. 5, the right end in FIGS. 7 and 8) is shown in FIGS. As shown in FIG. 8, a base station antenna (an example of a wireless communication device assembled to the antenna unit 50) 29 that receives information from the reference station 40 is disposed. In this way, on the base plate 55, the radio communication unit 27, the GNSS antenna 26 (inertial measurement device 25), and the base station antenna 29 are arranged in this order from the right side in the left-right direction of the airframe unit 2 with respect to the forward direction. They are arranged side by side in the left-right direction. As shown in FIGS. 5 and 9, the base station antenna 29 includes a base portion 29A having a magnet 65 and a round bar-like antenna bar 29B extending upward from the base portion 29A. Furthermore, the base portion 29A includes a columnar lower base body 29a containing the magnet 65, and a frustoconical upper base body 29b integrally formed at the center of the upper surface of the lower base body 29a. Therefore, the base station antenna 29 is attached to the metal base plate 55 by the magnetic force of the magnet 65.
 また、ベースプレート55には、図5、図7、図9に示すように、基地局アンテナ29の基部29Aにおける上側基体29bの円錐状外周面の上下中間位置に上方から当接又は近接して、当該基地局アンテナ29の基部29Aの移動を規制する板金製の移動規制部材66が第5ボルト67で固定連結されている。この移動規制部材66に折り曲げ形成されている上側の規制板片66aには、図7、図8に示すように、基部29Aの上側基体29bに外嵌される円形の移動規制孔66bと、アンテナバー29Bの通過を許す幅寸法の脱着用切欠き66cとが連通形成されている。 Further, as shown in FIGS. 5, 7, and 9, the base plate 55 is in contact with or close to the upper and lower intermediate positions of the conical outer peripheral surface of the upper base body 29 b in the base portion 29 </ b> A of the base station antenna 29, A sheet metal movement restricting member 66 for restricting movement of the base portion 29 </ b> A of the base station antenna 29 is fixedly connected by a fifth bolt 67. As shown in FIGS. 7 and 8, the upper restriction plate piece 66a formed by bending on the movement restriction member 66 includes a circular movement restriction hole 66b fitted on the upper base body 29b of the base portion 29A, and an antenna. A detachable notch 66c having a width dimension allowing passage of the bar 29B is formed in communication.
 上述の基地局アンテナ29の配置構成により、基地局アンテナ29のアンテナバー29Bと無線通信ユニット27の無線通信用アンテナ28との離間距離が大きくなり、基地局アンテナ29のアンテナバー29Bと無線通信ユニット27の無線通信用アンテナ28との間での電波干渉を抑制することができる。
 しかも、基地局アンテナ29は、基部29Aに設けたマグネット65の磁力で金属製のベースプレート55に簡単に取付けることができる。それでいて、振動等による基地局アンテナ29の位置ずれは、ベースプレート55にボルト固定される簡素な形状の移動規制部材66で確実に防止することができる。この基地局アンテナ29の取付け構造の簡素化、小型化により、アンテナユニット50のコンパクト化を図ることができる。
With the arrangement configuration of the base station antenna 29 described above, the separation distance between the antenna bar 29B of the base station antenna 29 and the radio communication antenna 28 of the radio communication unit 27 is increased, and the antenna bar 29B of the base station antenna 29 and the radio communication unit are increased. Radio wave interference with the 27 radio communication antennas 28 can be suppressed.
Moreover, the base station antenna 29 can be easily attached to the metal base plate 55 by the magnetic force of the magnet 65 provided on the base 29A. Nevertheless, displacement of the base station antenna 29 due to vibration or the like can be reliably prevented by the movement regulating member 66 having a simple shape that is bolted to the base plate 55. By simplifying and miniaturizing the mounting structure of the base station antenna 29, the antenna unit 50 can be made compact.
 次に、アンテナユニット50のユニットカバー51について説明する。
 図5~図7に示すように、ユニットカバー51の上側カバー体53の長手方向一端側(前進方向に対して機体部2の左右方向の右側)には、当該上側カバー体53の長手方向中央部の上面位置及び無線通信ユニット27の無線通信用アンテナ28の上端位置よりも上方に突出する第1膨出部53Aが形成されている。そして、図5に示すように、第1膨出部53Aの内面53aと無線通信用アンテナ28の上端との間の第2所定距離L2は30mm以上に設定されている。
 無線通信用アンテナ28の上端と上側カバー体53の第1膨出部53Aの内面53aとの間に形成される第2所定距離L2により、無線通信ユニット27と無線通信端末30の無線通信装置31との間での通信精度の向上を図ることができる。
 尚、第1所定距離L1と第2所定距離L2との関係は、
 第1所定距離L1>第2所定距離L2に設定してある。
Next, the unit cover 51 of the antenna unit 50 will be described.
As shown in FIGS. 5 to 7, on the one end side in the longitudinal direction of the upper cover body 53 of the unit cover 51 (on the right side in the left-right direction of the body part 2 with respect to the forward direction), A first bulge portion 53 </ b> A that protrudes upward from the upper surface position of the wireless communication unit 27 and the upper end position of the wireless communication antenna 28 of the wireless communication unit 27 is formed. As shown in FIG. 5, the second predetermined distance L2 between the inner surface 53a of the first bulging portion 53A and the upper end of the radio communication antenna 28 is set to 30 mm or more.
A wireless communication device 31 of the wireless communication unit 27 and the wireless communication terminal 30 is formed by a second predetermined distance L2 formed between the upper end of the wireless communication antenna 28 and the inner surface 53a of the first bulging portion 53A of the upper cover body 53. Communication accuracy can be improved.
The relationship between the first predetermined distance L1 and the second predetermined distance L2 is
The first predetermined distance L1> the second predetermined distance L2.
 また、図5、図7、図11に示すように、ユニットカバー51の上側カバー体53の長手方向他端側(前進方向に対して機体部2の左右方向の左側)には、長手方向一端側(前進方向に対して機体部2の左右方向の右側)に形成されている第1膨出部53Aと同一形状の第2膨出部53Bが形成され、ユニットカバー51が左右対称形に構成されている。これは、トラクタ1のキャビン7の前面側の上部位置にアンテナユニット50を取付けたときのデザイン性を考慮したものであるが、この第2膨出部53Bの形成によって新たな技術的な価値が発生する。
 つまり、上側カバー体53の第2膨出部53Bは、図5、図7、図9に示すように、基地局アンテナ29に対応した部位に形成されることになり、基地局アンテナ29の全高は、ベースプレート55の上面から第2膨出部53Bの上面までの高さよりも十分大きい。そのため、第2膨出部53Bの上面には、図7、図9に示すように、基地局アンテナ29のアンテナバー29Bが貫通して外部の上方に突出する貫通孔70が形成されている。この貫通孔70の開口周縁には、基地局アンテナ29のアンテナバー29Bの貫通部位の外周面に接触する筒状ゴム等の防振用弾性体71が装着されている。防振用弾性体71としては、アンテナバー29Bの全周に接触して水密性をも発揮するグロメットが用いられている。
Further, as shown in FIGS. 5, 7, and 11, one end in the longitudinal direction is provided on the other end side in the longitudinal direction of the upper cover body 53 of the unit cover 51 (left side in the left-right direction of the body part 2 with respect to the forward direction). The second bulging portion 53B having the same shape as the first bulging portion 53A formed on the side (the right side in the left-right direction of the body portion 2 with respect to the forward direction) is formed, and the unit cover 51 is configured to be bilaterally symmetric. Has been. This is in consideration of the design when the antenna unit 50 is attached to the upper position on the front side of the cabin 7 of the tractor 1, but the formation of the second bulging portion 53B has a new technical value. appear.
That is, the second bulging portion 53B of the upper cover body 53 is formed at a portion corresponding to the base station antenna 29 as shown in FIGS. Is sufficiently larger than the height from the upper surface of the base plate 55 to the upper surface of the second bulging portion 53B. Therefore, on the upper surface of the second bulging portion 53B, as shown in FIGS. 7 and 9, a through hole 70 is formed through which the antenna bar 29B of the base station antenna 29 penetrates and protrudes upward outside. An antivibration elastic body 71 such as a cylindrical rubber that is in contact with the outer peripheral surface of the through portion of the antenna bar 29B of the base station antenna 29 is attached to the opening periphery of the through hole 70. As the vibration isolating elastic body 71, a grommet that is in contact with the entire circumference of the antenna bar 29B and also exhibits watertightness is used.
 そして、防振用弾性体71が存在しない場合には、第2膨出部53Bの貫通孔70の開口周縁とアンテナバー29Bの貫通部位の外周面との間に環状の空隙が発生する。トラクタ1の走行振動等が基地局アンテナ29に作用すると、アンテナバー29Bが環状の空隙の範囲で揺れ動くことになり、アンテナバー29Bが根元で折損する可能性がある。しかし、本実施形態では、上述のように、第2膨出部53Bの貫通孔70の開口周縁に設けた防振用弾性体71でアンテナバー29Bの上下中間部を支持し、基地局アンテナ29の支持構造が全体で二点支持構造となるため、走行振動等に起因するアンテナバー29Bの折損を抑制することができる。
 特に、第2膨出部53Bの存在によって、ベースプレート55の上面から第2膨出部53Bの上面までの高さが高くなる分だけ、防振用弾性体71で支持されるアンテナバー29Bの支持位置が高くなり、アンテナバー29Bの折損をより一層抑制することができる。
When the vibration isolating elastic body 71 does not exist, an annular gap is generated between the opening peripheral edge of the through hole 70 of the second bulging portion 53B and the outer peripheral surface of the through portion of the antenna bar 29B. When traveling vibration or the like of the tractor 1 acts on the base station antenna 29, the antenna bar 29B swings in the range of the annular gap, and the antenna bar 29B may be broken at the base. However, in the present embodiment, as described above, the upper and lower intermediate portions of the antenna bar 29B are supported by the vibration isolating elastic body 71 provided at the opening peripheral edge of the through hole 70 of the second bulging portion 53B, and the base station antenna 29 Since the support structure becomes a two-point support structure as a whole, breakage of the antenna bar 29B due to traveling vibration or the like can be suppressed.
In particular, the support of the antenna bar 29B supported by the vibration isolating elastic body 71 is increased by the height from the upper surface of the base plate 55 to the upper surface of the second bulge portion 53B due to the presence of the second bulge portion 53B. The position is increased, and the breakage of the antenna bar 29B can be further suppressed.
 尚、当該実施形態では、第2膨出部53Bの貫通孔70の開口周縁に防振用弾性体71を装着したが、この防振用弾性体71は、第2膨出部53Bの上面又は内面に取付けてもよく、さらに、ベースプレート55に設けたブラケット等に取付けてもよい。 In this embodiment, the vibration isolating elastic body 71 is attached to the opening periphery of the through hole 70 of the second bulging portion 53B. The vibration isolating elastic body 71 is attached to the upper surface of the second bulging portion 53B or You may attach to an inner surface and may also attach to the bracket etc. which were provided in the baseplate 55 further.
 ベースプレート55の長手方向他端側で、且つ、慣性計測装置25及びGNSSアンテナ26と基地局アンテナ29との間には、図7、図8、図10に示すように、他のユニット72の取付けスペース73が形成されている。ここで、図7、図8は、取付けスペース73に他のユニット72を取り付けず、取付けスペース73が中空空間となっている状態を示しており、図10は、取付けスペース73に他のユニット72を取り付けた状態を示している。 As shown in FIGS. 7, 8, and 10, another unit 72 is attached on the other end in the longitudinal direction of the base plate 55 and between the inertial measurement device 25 and the GNSS antenna 26 and the base station antenna 29. A space 73 is formed. 7 and 8 show a state in which the other space 72 is not attached to the mounting space 73 and the mounting space 73 is a hollow space. FIG. The state where is attached is shown.
 他のユニット72としては、例えば、自律走行制御の一部を司る後付けの液晶モニタ用のコントローラ等を挙げることができる。本実施形態の自律走行仕様のトラクタ1では、キャビン7内に液晶モニタ47(図14参照)が設けられ、この液晶モニタ47には、自律走行制御の一部を司るコントローラが装備されている。しかし、普通仕様の田植機等の他の作業車両を自律走行仕様に変更する場合には、後付けされる液晶モニタ用として自律走行制御を司るコントローラが必要になる。この場合に、ベースプレート55の確保されている取付けスペース73を使用してコントローラを容易に取付けることができる。 As the other unit 72, for example, a controller for a liquid crystal monitor attached later that controls a part of the autonomous traveling control can be cited. In the autonomous traveling specification tractor 1 of the present embodiment, a liquid crystal monitor 47 (see FIG. 14) is provided in the cabin 7, and the liquid crystal monitor 47 is equipped with a controller that controls a part of autonomous traveling control. However, when changing other work vehicles such as a normal rice transplanter to the autonomous running specification, a controller for controlling the autonomous running is required for a liquid crystal monitor to be retrofitted. In this case, the controller can be easily mounted using the mounting space 73 in which the base plate 55 is secured.
 また、図5、図6に示すように、下側カバー体52の底板部52Aの下面側における長手方向の両側部位には、機体前面視では逆「L」字状(図5参照)に折り曲げ形成され、且つ、機体側面視では略半円弧状(図6参照)に形成されたステー75が配設されている。この左右一対のステー75の各々は、下側カバー体52の底板部52Aを貫通する第2ボス76を介してベースプレート55に第6ボルト77で固定連結されている。 Further, as shown in FIGS. 5 and 6, the both sides in the longitudinal direction on the lower surface side of the bottom plate portion 52 </ b> A of the lower cover body 52 are folded in an inverted “L” shape (see FIG. 5) when viewed from the front of the body. A stay 75 that is formed and formed in a substantially semicircular arc shape (see FIG. 6) in a side view of the body is disposed. Each of the pair of left and right stays 75 is fixedly connected to the base plate 55 with a sixth bolt 77 through a second boss 76 that penetrates the bottom plate portion 52A of the lower cover body 52.
 さらに、図5~図7に示すように、下側カバー体52の底板部52Aの下面における長手方向中央位置には、機体前方を撮影するカメラ78が取付けられ、カメラ78で撮影された映像は、トラクタ1の無線通信ユニット27と無線通信端末30の無線通信装置31との無線通信を介して、無線通信端末30のタッチパネルに表示可能に構成されている。 Further, as shown in FIGS. 5 to 7, a camera 78 for photographing the front of the machine body is attached at the longitudinal center position on the lower surface of the bottom plate portion 52A of the lower cover body 52, and an image photographed by the camera 78 is as follows. The wireless communication unit 27 of the tractor 1 and the wireless communication device 31 of the wireless communication terminal 30 can be displayed on the touch panel of the wireless communication terminal 30 via wireless communication.
 尚、図5~図10においては、ベースプレート55に組付けられた慣性計測装置25、GNSSアンテナ26、無線通信ユニット27、基地局アンテナ29の各々に接続された電線は省略されており、それらの電線をユニットカバー51内で集合して構成した1本のハーネス80の一部が図7に記載されている。このハーネス80は、図7に示すように、下側カバー体52の長手方向一端に形成されたハーネス導出孔(図示省略)から外部に導出される。ハーネス導出孔にはグロメット81が装着されている。 5 to 10, the electric wires connected to each of the inertial measurement device 25, the GNSS antenna 26, the wireless communication unit 27, and the base station antenna 29 assembled to the base plate 55 are omitted. FIG. 7 shows a part of one harness 80 formed by collecting electric wires in the unit cover 51. As shown in FIG. 7, the harness 80 is led out through a harness lead-out hole (not shown) formed at one end in the longitudinal direction of the lower cover body 52. A grommet 81 is attached to the harness outlet hole.
 次に、アンテナユニット50の取付け構造について説明する。
 図3、図4に示すように、アンテナユニット50の支持フレーム100の両端部は、キャビンフレーム200を構成する左右の前支柱201に設けられたミラー取付け部150に亘って固定連結されている。
 左右のミラー取付け部150の各々は、図3、図4に示すように、前支柱201の上側部に、平面視略「コ」の字状(平面視略「U」の字状)に構成された取付け基材151が溶接等で固着され、この取付け基材151に、バックミラー110の支持アーム111を回動自在に支持するヒンジ部152を備えた板状のミラー取付け部材153がボルト等で固定連結されている。左右のミラー取付け部材153の上端部の各々には、水平面に沿う取付け上面を備えた取付け片153Aが折り曲げ形成されている。
Next, the mounting structure of the antenna unit 50 will be described.
As shown in FIGS. 3 and 4, both end portions of the support frame 100 of the antenna unit 50 are fixedly connected across mirror mounting portions 150 provided on the left and right front struts 201 constituting the cabin frame 200.
As shown in FIGS. 3 and 4, each of the left and right mirror mounting portions 150 is configured in a substantially “U” shape (planar view “U” shape) in a plan view on the upper portion of the front column 201. The attached mounting base 151 is fixed by welding or the like, and a plate-like mirror mounting member 153 having a hinge portion 152 that rotatably supports the support arm 111 of the rearview mirror 110 is attached to the mounting base 151 by bolts or the like. It is fixedly connected with. At each of the upper ends of the left and right mirror attachment members 153, attachment pieces 153A having an attachment upper surface along a horizontal plane are formed by bending.
 支持フレーム100は、図3、図4に示すように、機体前面視において左右幅方向の両端部が下方に屈曲する略門の字に折り曲げ形成された断面円形のパイプ状支持材101を備え、パイプ状支持材101の両端部には、水平面に沿う取付け下面を有する取付け板102が固着されている。支持フレーム100の両取付け板102は、左右のミラー取付け部材153の取付け片153Aの取付け上面にボルト103等で固定連結されている。 As shown in FIGS. 3 and 4, the support frame 100 includes a pipe-shaped support member 101 having a circular cross section that is bent into a substantially gate shape in which both ends in the left-right width direction are bent downward when viewed from the front of the body. Attachment plates 102 having attachment lower surfaces along the horizontal plane are fixed to both ends of the pipe-shaped support member 101. Both mounting plates 102 of the support frame 100 are fixedly connected to the upper mounting surfaces of the mounting pieces 153A of the left and right mirror mounting members 153 with bolts 103 or the like.
 上述のように、左右のミラー取付け部150は、堅牢なキャビンフレーム200の前支柱201の上部に取付けられ、且つ、キャビン7のルーフ190に近い高さ位置に配置されている。そのため、頑丈で且つ地上高もある両ミラー取付け部150を利用して、アンテナユニット50の支持フレーム100を適切な高さ位置に強固に取付けることができる。
 しかも、左右のミラー取付け部材153における取付け片153Aの取付け上面と、支持フレーム100の両取付け板102の取付け下面が共に水平面に形成されているため、パイプ状支持材101の中間部を水平方向に沿って配置することが容易となり、当該パイプ状支持材101の水平中間部に取付けられるアンテナユニット50の取付け誤差を抑制することができる。
As described above, the left and right mirror attaching portions 150 are attached to the upper portion of the front column 201 of the robust cabin frame 200 and are disposed at a height position close to the roof 190 of the cabin 7. Therefore, it is possible to firmly attach the support frame 100 of the antenna unit 50 to an appropriate height position by using both mirror attachment portions 150 that are sturdy and have a ground clearance.
In addition, since the mounting upper surface of the mounting piece 153A in the left and right mirror mounting members 153 and the mounting lower surfaces of both mounting plates 102 of the support frame 100 are both formed in a horizontal plane, the intermediate portion of the pipe-shaped support member 101 is horizontally oriented. It becomes easy to arrange along, and the attachment error of the antenna unit 50 attached to the horizontal intermediate part of the said pipe-shaped support material 101 can be suppressed.
 図3、図4に示すように、支持フレーム100が左右のミラー取付け部150に亘って架設された状態では、支持フレーム100のパイプ状支持材101の水平中間部は、キャビンフレーム200のルーフ190の前端近傍位置を機体の左右幅方向に沿って水平に配置される。
 パイプ状支持材101の水平中間部には、図3、図4、図6に示すように、アンテナユニット50の左右一対のステー75を支持する左右一対のブラケット120が固着されている。そのうち、機体の左右幅方向で近接して対面する二組のアンテナユニット50側のステー75と支持フレーム100側のブラケット120とは、機体の左右幅方向に沿う水平な回動枢支軸となる第7ボルト121で枢支連結されている。
 そのため、アンテナユニット50は、支持フレーム100に対する第7ボルト121の回動枢支軸芯周りでの回動により、図3、図4に示すように、基地局アンテナ29が鉛直方向の上方に突出する正規使用位置(正規使用姿勢)と、図12に示すように、前方の低位側の非使用位置(非使用姿勢)とに位置変更可能に構成されている。
 本実施形態においては、アンテナユニット50の非使用位置は、正規使用位置から90度前方側に回動した位置であり、この非使用位置では、基地局アンテナ29が水平方向の前方に突出する姿勢にある。
As shown in FIGS. 3 and 4, when the support frame 100 is installed across the left and right mirror mounting portions 150, the horizontal intermediate portion of the pipe-shaped support member 101 of the support frame 100 is the roof 190 of the cabin frame 200. The front end vicinity position is horizontally arranged along the left-right width direction of the airframe.
A pair of left and right brackets 120 that support the pair of left and right stays 75 of the antenna unit 50 are fixed to the horizontal intermediate portion of the pipe-shaped support member 101 as shown in FIGS. 3, 4, and 6. Of these, the two sets of stays 75 on the antenna unit 50 side and the bracket 120 on the support frame 100 side that face each other closely in the left-right width direction of the airframe serve as horizontal pivots along the left-right width direction of the airframe. The seventh bolt 121 is pivotally connected.
Therefore, in the antenna unit 50, the base station antenna 29 protrudes upward in the vertical direction as shown in FIGS. 3 and 4 due to the rotation of the seventh bolt 121 with respect to the support frame 100 around the pivot axis. The position can be changed between a normal use position (normal use posture) and a front non-use position (non-use posture) on the lower side as shown in FIG.
In the present embodiment, the non-use position of the antenna unit 50 is a position rotated 90 degrees forward from the normal use position. At this non-use position, the base station antenna 29 protrudes forward in the horizontal direction. It is in.
 また、本実施形態においては、アンテナユニット50の正規使用位置と非使用位置との位置変更操作を人為操作で行っているが、このアンテナユニット50の位置変更操作をアクチュエータ等の駆動部で実施してもよい。 Further, in the present embodiment, the position changing operation between the normal use position and the non-use position of the antenna unit 50 is performed manually. However, the position changing operation of the antenna unit 50 is performed by a drive unit such as an actuator. May be.
 二組のアンテナユニット50側のステー75と支持フレーム100側のブラケット120とは、図4、図6に示すように、第7ボルト121から回動半径方向に偏倚した位置に設けられた第8ボルト122の差し替えにより、アンテナユニット50を正規使用位置と非使用位置とに択一的に固定可能に構成されている。
 詳しくは、図6に示すように、支持フレーム100側のブラケット120には、第8ボルト122が挿通される一つのボルト挿入孔123が形成され、アンテナユニット50側のステー75には、正規使用位置及び非使用位置にあるときにブラケット120側のボルト挿入孔123と合致する二箇所にボルト挿入孔124が形成されている。
As shown in FIGS. 4 and 6, the two sets of the antenna unit 50 side stay 75 and the support frame 100 side bracket 120 are provided at positions offset from the seventh bolt 121 in the rotational radial direction. By replacing the bolt 122, the antenna unit 50 can be alternatively fixed to a normal use position and a non-use position.
Specifically, as shown in FIG. 6, the bracket 120 on the support frame 100 side is formed with one bolt insertion hole 123 through which the eighth bolt 122 is inserted, and the stay 75 on the antenna unit 50 side is properly used. Bolt insertion holes 124 are formed at two locations that coincide with the bolt insertion holes 123 on the bracket 120 side when in the position and the non-use position.
 図4に示すように、アンテナユニット50が正規使用位置にある状態では、基地局アンテナ29が鉛直方向の上方に向く姿勢にあり、基地局アンテナ29の上端は、図1に示すように、キャビン7のルーフ190よりも上方に突出する。しかし、トラクタ1の輸送時等において、キャビン7のルーフ190よりも上方に突出する基地局アンテナ29が邪魔になる場合には、図12に示すように、アンテナユニット50を正規使用位置から非使用位置に変更する。非使用位置では、基地局アンテナ29が水平方向の前方に突出する姿勢となり、ユニットカバー51を含むアンテナユニット50の上方への突出高さを、キャビン7のルーフ190の最高部位よりも低くすることができる。 As shown in FIG. 4, in a state where the antenna unit 50 is in the normal use position, the base station antenna 29 is in a posture facing upward in the vertical direction, and the upper end of the base station antenna 29 is connected to the cabin as shown in FIG. 7 projects upward from the roof 190. However, when the base station antenna 29 protruding above the roof 190 of the cabin 7 becomes an obstacle during transportation of the tractor 1, as shown in FIG. 12, the antenna unit 50 is not used from the normal use position. Change to position. In the non-use position, the base station antenna 29 protrudes forward in the horizontal direction, and the upward protrusion height of the antenna unit 50 including the unit cover 51 is made lower than the highest part of the roof 190 of the cabin 7. Can do.
 アンテナユニット50が正規使用位置に位置するか否かは、慣性計測装置25から取得する変位情報に基づいて検出することができる。そのため、制御部23には、図2に示すように、アンテナユニット50が正規使用位置に位置することを検出していなければ、慣性計測装置25及びGNSSアンテナ26で取得した情報に基づく自律走行制御の開始を禁止する自律走行牽制部46が設けられている。
 上述の自律走行牽制部46により、アンテナユニット50が正規使用位置あるときにのみ、自律走行制御の開始が可能となり、慣性計測装置25及びGNSSアンテナ26で取得した正確な情報に基づいて機体を目標走行経路に沿って精度良く、且つ、安全に自律走行させることができる。
Whether or not the antenna unit 50 is located at the normal use position can be detected based on displacement information acquired from the inertial measurement device 25. Therefore, as shown in FIG. 2, if the control unit 23 does not detect that the antenna unit 50 is located at the normal use position, the autonomous traveling control based on the information acquired by the inertial measurement device 25 and the GNSS antenna 26 is performed. An autonomous traveling check unit 46 that prohibits the start of is provided.
The autonomous traveling check unit 46 allows autonomous traveling control to be started only when the antenna unit 50 is in the normal use position, and targets the aircraft based on accurate information acquired by the inertial measurement device 25 and the GNSS antenna 26. It is possible to autonomously travel safely and accurately along the travel route.
 本実施形態においては、慣性計測装置25から取得する変位情報に基づいてアンテナユニット50が正規使用位置に位置するか否かを検出したが、アンテナユニット50の位置変位を検出する自動スイッチの信号又は人為操作されるハードスイッチの信号により、アンテナユニット50が正規使用位置に位置するか否かを判別してもよい。尚、自律走行牽制部46は省略することも可能である。 In the present embodiment, whether or not the antenna unit 50 is located at the normal use position is detected based on the displacement information acquired from the inertial measurement device 25, but the signal of the automatic switch that detects the position displacement of the antenna unit 50 or It may be determined whether or not the antenna unit 50 is positioned at the normal use position based on a signal of a hard switch that is manually operated. In addition, the autonomous running check part 46 can also be abbreviate | omitted.
 次に、アンテナユニット50から導出されたハーネス80の配線構造について説明する。
 ハーネス80が配線されるキャビンフレーム200は、図13、図14に示すように、運転座席9の前方に位置する左右一対の前支柱201と、運転座席9の後方に位置する左右一対の後支柱202と、前支柱201同士の上端部間を連結する前梁部材203と、後支柱202同士の上端部間を連結する後梁部材204と、前後に並ぶ前支柱201と後支柱202との上端部間を連結する左右の側梁部材205とを備えた略箱枠状に構成されている。
Next, the wiring structure of the harness 80 led out from the antenna unit 50 will be described.
As shown in FIGS. 13 and 14, the cabin frame 200 to which the harness 80 is wired includes a pair of left and right front struts 201 positioned in front of the driver seat 9 and a pair of left and right rear struts positioned behind the driver seat 9. 202, a front beam member 203 that connects the upper ends of the front struts 201, a rear beam member 204 that connects the upper ends of the rear struts 202, and the upper ends of the front strut 201 and the rear strut 202 arranged in the front-rear direction. It is comprised by the substantially box frame shape provided with the left and right side beam member 205 which connects between parts.
 各後支柱202の下端部には、図13、図14に示すように、リヤフェンダー206の形状に沿わせて側面視で前方上方に膨らむように湾曲したフェンダフレーム207の後端上部が連結され、各フェンダフレーム207の前端下部は、対応する前支柱201の下部から後向きに突出したサイドフレーム208の後端部に連結している。
 図13に示すように、フェンダフレーム207は筒状のフレーム材から構成されている。そのうち、キャビン7の右側に位置するフェンダフレーム207の前端下部は、キャビン7の外部の下方に開口し、右側に位置するフェンダフレーム207の内部空間は、キャビン7の内部と外部とを連通する内外連通路210に構成されている。このフェンダフレーム207の内外連通路210には、エアコン内の結露水をキャビン7の外部に放出するドレンホース(図示せず)が配設されている。
As shown in FIGS. 13 and 14, a rear end upper portion of a fender frame 207 that is curved so as to swell forward and upward in a side view along the shape of the rear fender 206 is connected to the lower end portion of each rear column 202. The lower part of the front end of each fender frame 207 is connected to the rear end part of the side frame 208 protruding rearward from the lower part of the corresponding front support 201.
As shown in FIG. 13, the fender frame 207 is made of a cylindrical frame material. Among them, the lower part of the front end of the fender frame 207 located on the right side of the cabin 7 is opened below the outside of the cabin 7, and the internal space of the fender frame 207 located on the right side is an inside and outside that communicates the inside and outside of the cabin 7. The communication path 210 is configured. A drain hose (not shown) for discharging condensed water in the air conditioner to the outside of the cabin 7 is disposed in the inner / outer communication passage 210 of the fender frame 207.
 また、左右の前支柱201、前梁部材203及び各前支柱201の下端部から左右内向きに延びる前下部プレート板211で囲まれる領域には、フロントガラス212が配置されている。 Further, a windshield 212 is disposed in a region surrounded by the left and right front struts 201, the front beam members 203, and the front lower plate plate 211 extending inwardly from the lower end of each front strut 201 in the left and right directions.
 そして、図13、図14に示すように、アンテナユニット50から導出されたハーネス80は、キャビン7のフロントガラス212の外面における右側縁部(左右幅方向の一側縁部の一例)で、且つ、右側の前支柱201のガラス受け部201aと重合する帯状部位に沿って下方側に延出配置されている。フロントガラス212の下端側の前下部プレート板211にまで至ったハーネス80は、サイドフレーム208に連続する床板支持プレート213の下面に沿って後方側に延出されたのち、右側に位置するフェンダフレーム207の前端下部の開口から内外連通路210を通してキャビン7内に導かれ、右側の操作パネル部214内に配置された制御部23に接続されている。 As shown in FIGS. 13 and 14, the harness 80 led out from the antenna unit 50 is a right edge (an example of one side edge in the left-right width direction) on the outer surface of the windshield 212 of the cabin 7, and The right front support column 201 is disposed so as to extend downward along a belt-shaped portion overlapping with the glass receiving portion 201a. The harness 80 that reaches the lower front plate 211 on the lower end side of the windshield 212 extends to the rear side along the lower surface of the floor plate support plate 213 continuous with the side frame 208, and then is positioned on the right side. 207 is led into the cabin 7 from the opening at the lower front end through the inner / outer communication passage 210 and connected to the control unit 23 disposed in the right operation panel unit 214.
 フロントガラス212の外面における右側縁部で、且つ、右側の前支柱201のガラス受け部201aと重合する帯状部位は、フロントガラス212をキャビン7の前面部に取付けるためのガラス貼付け部であり、視覚の邪魔にならない位置でもある。そのため、アンテナユニット50から導出されたハーネス80を上述の帯状部位に配置することにより、運転座席9に着座した操縦者の視界を良好な状態に維持したままハーネス80を体裁良く配設することができる。 The belt-like portion that overlaps with the glass receiving portion 201a of the front strut 201 on the right side on the right edge of the outer surface of the windshield 212 is a glass pasting portion for attaching the windshield 212 to the front surface portion of the cabin 7. It is also a position that does not get in the way. Therefore, by arranging the harness 80 led out from the antenna unit 50 in the above-described band-shaped portion, it is possible to arrange the harness 80 in a good manner while maintaining the visibility of the driver seated on the driver's seat 9 in a good state. it can.
 また、図14に示すように、フロントガラス212(図13参照)の外面における右側縁部の帯状部位には、ハーネス80を挿通する保護用の樹脂製のハーネスカバー250が接着剤等で貼着されている。このハーネスカバー250は、図15に示すように、フロントガラス212への貼着面251及びハーネス80を受け止めるハーネス受け面252を備えたベース部253と、当該ベース部253の幅方向一端部に一体形成され、且つ、ベース部253のハーネス受け面252に配置されたベース部253の外周面に沿って弧状に湾曲する可撓性のあるバンド部254とからなる。
 バンド部254の先端部には係合爪255が形成され、ベース部253のハーネス受け面252の幅方向他端側部位には、係合爪255が係脱自在な係合凹部256と、当該係合凹部256に係合された係合爪255の背面に当接して、当該係合爪255の係合離脱を当接状態で規制する半円状の突条257が形成されている。
 これにより、図15(a)に示すように、係合爪255と係合凹部256との係合を解除することで、ベース部253とバンド部254との間からハーネスカバー250の内部にハーネス80を挿入させて、ハーネス受け面252にてハーネス80の外周部の一部を受けるようにハーネス80を設置することができる。そして、図15(b)に示すように、係合爪255と係合凹部256とを係合させることで、ベース部253とバンド部254を連結させて、ハーネス80の外周部の全周に亘ってハーネス受け面252にて受ける状態でハーネス80をハーネスカバー250に装着することができる。
Further, as shown in FIG. 14, a protective resin harness cover 250 through which the harness 80 is inserted is attached to the belt-like portion of the right edge portion on the outer surface of the windshield 212 (see FIG. 13) with an adhesive or the like. Has been. As shown in FIG. 15, the harness cover 250 is integrated with a base portion 253 having a harness receiving surface 252 for receiving the attachment surface 251 to the windshield 212 and the harness 80, and one end in the width direction of the base portion 253. A flexible band portion 254 that is formed and curved in an arc along the outer peripheral surface of the base portion 253 disposed on the harness receiving surface 252 of the base portion 253.
An engagement claw 255 is formed at the distal end of the band portion 254, and an engagement recess 256, in which the engagement claw 255 can be engaged and disengaged, is formed at the other end portion in the width direction of the harness receiving surface 252 of the base portion 253. A semicircular ridge 257 is formed in contact with the back surface of the engaging claw 255 engaged with the engaging recess 256 to restrict engagement / disengagement of the engaging claw 255 in a contact state.
As a result, as shown in FIG. 15A, by releasing the engagement between the engagement claw 255 and the engagement recess 256, the harness is inserted into the harness cover 250 from between the base portion 253 and the band portion 254. 80 can be inserted and the harness 80 can be installed so that a part of the outer periphery of the harness 80 is received by the harness receiving surface 252. And as shown in FIG.15 (b), by engaging the engagement nail | claw 255 and the engagement recessed part 256, the base part 253 and the band part 254 are connected, and the outer peripheral part of the harness 80 is made to the perimeter. The harness 80 can be attached to the harness cover 250 while being received by the harness receiving surface 252.
 〔その他の実施形態〕
 (1)上述の実施形態では、無線通信ユニット27の無線通信用アンテナ28をアンテナユニット50のユニットカバー51内に収めたが、必要に応じて、無線通信用アンテナ28を、上側カバー体53に形成される貫通孔から外部の上方に突出させてもよい。
[Other Embodiments]
(1) In the above-described embodiment, the wireless communication antenna 28 of the wireless communication unit 27 is housed in the unit cover 51 of the antenna unit 50. However, the wireless communication antenna 28 is attached to the upper cover body 53 as necessary. You may make it protrude outside from the through-hole formed.
 (2)上述の実施形態では、無線通信ユニット27の無線通信用アンテナ28と慣性計測装置25の中心部との間の第1所定距離L1を250mm以上に設定したが、この第1所定距離L1は、無線通信ユニット27と慣性計測装置25との間での電波干渉条件に応じて任意に設定することができる。 (2) In the above-described embodiment, the first predetermined distance L1 between the wireless communication antenna 28 of the wireless communication unit 27 and the central portion of the inertial measurement device 25 is set to 250 mm or more, but this first predetermined distance L1. Can be arbitrarily set according to the radio wave interference condition between the wireless communication unit 27 and the inertial measurement device 25.
 (3)上述の実施形態では、第1膨出部53Aの内面53aと無線通信用アンテナ28の上端との間の第2所定距離L2を30mm以上に設定したが、この第2所定距離L2は、無線通信ユニット27と無線通信端末30の無線通信装置31との間での通信状態に応じて任意に設定することができる。 (3) In the above-described embodiment, the second predetermined distance L2 between the inner surface 53a of the first bulging portion 53A and the upper end of the wireless communication antenna 28 is set to 30 mm or more. However, the second predetermined distance L2 is It can be arbitrarily set according to the communication state between the wireless communication unit 27 and the wireless communication device 31 of the wireless communication terminal 30.
 (4)上述の実施形態では、ユニットカバー51の下面側に左右一対のステー75を取付けたが、この取付け構造に限定されるものではなく、作業車両側の取付け条件に応じて任意の取付け構造を採用することができる。 (4) In the above-described embodiment, the pair of left and right stays 75 are attached to the lower surface side of the unit cover 51. However, the present invention is not limited to this attachment structure, and any attachment structure can be used according to the attachment conditions on the work vehicle side. Can be adopted.
 (5)上述の実施形態では、慣性計測装置25とGNSSアンテナ26とを各別に構成したが、慣性計測装置25とGNSSアンテナ26とを一体的に構成してもよい。 (5) In the above-described embodiment, the inertial measurement device 25 and the GNSS antenna 26 are configured separately, but the inertial measurement device 25 and the GNSS antenna 26 may be configured integrally.
 本発明は、各種のアンテナユニットや各種の作業車両に適用できる。 The present invention can be applied to various antenna units and various work vehicles.
 1     作業車両(トラクタ)
 7     キャビン
 23    制御部
 25    慣性計測装置
 26    GNSSアンテナ
 27    無線通信装置(無線通信ユニット)
 28    無線通信用アンテナ
 29    無線通信装置(基地局アンテナ)
 29A   基部
 40    基準局
 46    自律走行牽制部
 50    アンテナユニット
 51    ユニットカバー
 55    ユニットベース(ベースプレート)
 66    移動規制部材
 70    貫通孔
 71    防振用弾性体
 72    他のユニット
 73    取付けスペース
 80    ハーネス
 100   支持フレーム
 150   ミラー取付け部
 200   キャビンフレーム
 201   前支柱
 201a  ガラス受け部
 210   内外連通路
 L1    所定距離(第1所定距離)
1 Work vehicle (tractor)
7 Cabin 23 Control unit 25 Inertial measurement device 26 GNSS antenna 27 Wireless communication device (wireless communication unit)
28 Radio Communication Antenna 29 Radio Communication Device (Base Station Antenna)
29A Base 40 Reference station 46 Autonomous traveling restraint 50 Antenna unit 51 Unit cover 55 Unit base (base plate)
66 Movement restricting member 70 Through hole 71 Anti-vibration elastic body 72 Other unit 73 Mounting space 80 Harness 100 Support frame 150 Mirror mounting part 200 Cabin frame 201 Front strut 201a Glass receiving part 210 Internal / external communication path L1 predetermined distance (first predetermined distance) distance)

Claims (13)

  1.  作業車両に取付け可能なユニットベースの長手方向中央部に、GNSSアンテナと慣性計測装置とを配置し、前記ユニットベースの長手方向一端側に無線通信ユニットを配置するとともに、無線通信ユニットの無線通信用アンテナを、前記慣性計測装置とは反対側で、且つ、前記ユニットベースの長手方向一端側に配置してある作業車両用アンテナユニット。 A GNSS antenna and an inertial measurement device are arranged at the longitudinal center of the unit base that can be attached to the work vehicle, a wireless communication unit is arranged at one end of the unit base in the longitudinal direction, and the wireless communication unit is used for wireless communication. An antenna unit for a work vehicle, wherein an antenna is disposed on the side opposite to the inertial measurement device and on one end side in the longitudinal direction of the unit base.
  2.  前記GNSSアンテナは前記慣性計測装置の上部に配置されている請求項1記載の作業車両用アンテナユニット。 The work vehicle antenna unit according to claim 1, wherein the GNSS antenna is arranged on an upper part of the inertial measurement device.
  3.  前記慣性計測装置の中心部と前記無線通信ユニットの無線通信用アンテナとの間の所定距離が250mm以上に設定されている請求項1又は2記載の作業車両用アンテナユニット。 The work vehicle antenna unit according to claim 1 or 2, wherein a predetermined distance between a central portion of the inertial measurement device and a radio communication antenna of the radio communication unit is set to 250 mm or more.
  4.  前記ユニットベースの長手方向他端側には、基準局からの情報を受信する基地局アンテナが配置されている請求項1~3のいずれか1項に記載の作業車両用アンテナユニット。 The work vehicle antenna unit according to any one of claims 1 to 3, wherein a base station antenna that receives information from a reference station is disposed at the other longitudinal end of the unit base.
  5.  前記基地局アンテナは、前記ユニットベースを覆うユニットカバーの貫通孔から外部に突出し、前記ユニットカバーには、前記基地局アンテナと接触する防振用弾性体が設けられている請求項4記載の作業車両用アンテナユニット。 5. The operation according to claim 4, wherein the base station antenna projects outward from a through hole of a unit cover that covers the unit base, and the unit cover is provided with a vibration-proof elastic body that contacts the base station antenna. Vehicle antenna unit.
  6.  前記基地局アンテナは、前記ユニットベースに磁力で取付けられ、前記基地局アンテナの基部の移動を規制する移動規制部材が前記ユニットベースに取付けられている請求項4又は5記載の作業車両用アンテナユニット。 6. The work vehicle antenna unit according to claim 4, wherein the base station antenna is attached to the unit base by a magnetic force, and a movement restricting member for restricting movement of a base portion of the base station antenna is attached to the unit base. .
  7.  前記ユニットベースの長手方向他端側には、他のユニットの取付けスペースが形成されている請求項1~6のいずれか1項に記載の作業車両用アンテナユニット。 The work vehicle antenna unit according to any one of claims 1 to 6, wherein a mounting space for another unit is formed on the other longitudinal end of the unit base.
  8.  キャビンを備えた作業車両であって、前記キャビンの外部の上部位置において左右幅方向に沿う支持フレームをキャビンフレームに固定し、前記支持フレームに、慣性計測装置とGNSSアンテナと無線通信装置が組付けられた作業車両用アンテナユニットを、前記慣性計測装置及びGNSSアンテナが機体の左右幅方向の略中心位置に配置する状態で取付けてある作業車両。 A work vehicle having a cabin, wherein a support frame extending in a lateral width direction is fixed to the cabin frame at an upper position outside the cabin, and an inertial measurement device, a GNSS antenna, and a wireless communication device are assembled to the support frame. A work vehicle to which the work vehicle antenna unit is mounted in a state where the inertial measurement device and the GNSS antenna are arranged at a substantially central position in the left-right width direction of the airframe.
  9.  前記支持フレームは、前記キャビンフレームの左右に設けられたミラー取付け部に亘って連結されている請求項8記載の作業車両。 The work vehicle according to claim 8, wherein the support frame is connected across mirror mounting portions provided on the left and right of the cabin frame.
  10.  前記作業車両用アンテナユニットは、前記支持フレームに対して正規使用位置から低位側の非使用位置に位置変位可能に取付けられている請求項8又は9記載の作業車両。 10. The work vehicle according to claim 8 or 9, wherein the work vehicle antenna unit is attached to the support frame so as to be displaceable from a normal use position to a low use position.
  11.  前記慣性計測装置及びGNSSアンテナで取得した情報に基づいて機体を自律走行制御する制御部と、前記作業車両用アンテナユニットが正規使用位置に位置することを検出していなければ、前記制御部による自律走行制御の開始を禁止する自律走行牽制部が設けられている請求項10記載の作業車両。 If the control unit that autonomously controls the aircraft based on the information acquired by the inertial measurement device and the GNSS antenna and the work vehicle antenna unit is not detected to be located at the regular use position, the control unit The work vehicle according to claim 10, wherein an autonomous traveling check unit that prohibits the start of traveling control is provided.
  12.  前記キャビン内には、前記慣性計測装置及びGNSSアンテナで取得した情報に基づいて機体を自律走行制御する制御部が設けられ、前記作業車両用アンテナユニットから導出されたハーネスは、前記キャビンフレームに設けた内外連通路を経由して前記キャビン内の前記制御部まで配設されている請求項8~11のいずれか1項に記載の作業車両。 A control unit that autonomously controls the aircraft based on information acquired by the inertial measurement device and the GNSS antenna is provided in the cabin, and a harness derived from the work vehicle antenna unit is provided in the cabin frame. The work vehicle according to any one of claims 8 to 11, wherein the work vehicle is disposed up to the control unit in the cabin via an internal / external communication path.
  13.  前記作業車両用アンテナユニットから導出されたハーネスは、前記キャビンのフロントガラスの外面における左右幅方向の一側縁部で、且つ、前記キャビンの前支柱のガラス受け部と重合する帯状部位に沿って配置されている請求項12記載の作業車両。

     
    The harness led out from the work vehicle antenna unit is located on one side edge in the left-right width direction on the outer surface of the front windshield of the cabin, and along a belt-shaped portion that overlaps with the glass receiving portion of the front column of the cabin. The work vehicle according to claim 12, which is arranged.

PCT/JP2018/003338 2017-02-08 2018-02-01 Work vehicle antenna unit and work vehicle WO2018147151A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207012487A KR102420670B1 (en) 2017-02-08 2018-02-01 Work vehicle antenna unit and work vehicle
KR1020187034967A KR102108672B1 (en) 2017-02-08 2018-02-01 Antenna unit for work vehicles, and work vehicles
CN201880003847.1A CN110235304B (en) 2017-02-08 2018-02-01 Work vehicle antenna unit and work vehicle
KR1020227023648A KR20220101772A (en) 2017-02-08 2018-02-01 Work vehicle antenna unit and work vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017021051A JP6640767B2 (en) 2017-02-08 2017-02-08 Work vehicle
JP2017-021051 2017-02-08
JP2017021052 2017-02-08
JP2017-021052 2017-02-08

Publications (1)

Publication Number Publication Date
WO2018147151A1 true WO2018147151A1 (en) 2018-08-16

Family

ID=63107474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003338 WO2018147151A1 (en) 2017-02-08 2018-02-01 Work vehicle antenna unit and work vehicle

Country Status (3)

Country Link
KR (3) KR102108672B1 (en)
CN (2) CN112993537A (en)
WO (1) WO2018147151A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112677887A (en) * 2020-12-10 2021-04-20 武汉朗维科技有限公司 Vehicle body posture testing device and testing method
US11383655B2 (en) 2018-12-20 2022-07-12 Kubota Corporation Work vehicle
US11529920B2 (en) 2018-12-20 2022-12-20 Kubota Corporation Work vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242005A (en) * 1990-02-20 1991-10-29 Nec Corp Storage method for parabolic antenna
JPH1172336A (en) * 1997-08-29 1999-03-16 Hitachi Ltd Position-measuring device of traveling machine
US5923270A (en) * 1994-05-13 1999-07-13 Modulaire Oy Automatic steering system for an unmanned vehicle
JP2002135026A (en) * 2000-10-27 2002-05-10 Japan Radio Co Ltd Ade unit for ais
JP2014197821A (en) * 2013-03-29 2014-10-16 アンテナテクノロジー株式会社 Antenna device and antenna attaching device
JP2016002874A (en) * 2014-06-17 2016-01-12 井関農機株式会社 Cabin of tractor
JP2016094093A (en) * 2014-11-13 2016-05-26 ヤンマー株式会社 Antenna for satellite navigation system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234838A (en) * 1985-08-08 1987-02-14 Nissan Motor Co Ltd Antenna hausing device for car
JPH09123841A (en) * 1995-11-02 1997-05-13 Ishikawajima Shibaura Mach Co Ltd Antenna installing structure of tractor cabin
JPH11168314A (en) * 1997-12-03 1999-06-22 Nec Corp Attaching structure for on-board antenna
US9002565B2 (en) * 2003-03-20 2015-04-07 Agjunction Llc GNSS and optical guidance and machine control
JP4825107B2 (en) * 2006-10-20 2011-11-30 キャタピラー エス エー アール エル Antenna storage device for work machine
US8302550B1 (en) * 2010-07-07 2012-11-06 Woods Michael R Antenna cover and topper device
KR101778226B1 (en) * 2011-04-22 2017-09-14 볼보 컨스트럭션 이큅먼트 에이비 Device for fixing a satellite antenna for construction equipment
CN202064386U (en) * 2011-05-11 2011-12-07 卡特彼勒公司 Supporting component for accessories in cab and relevant machine
US20140252803A1 (en) * 2013-03-08 2014-09-11 Komatsu Ltd. Work vehicle
CN103377561B (en) * 2013-07-30 2015-06-17 甘永伦 System, method and device for vehicle positioning
JP2016095660A (en) * 2014-11-13 2016-05-26 ヤンマー株式会社 Unmanned operation system
JP6469526B2 (en) * 2015-05-29 2019-02-13 株式会社トプコン Measuring device and system for creating 3D model
DE102015210324A1 (en) * 2015-06-03 2016-12-08 Continental Automotive Gmbh antenna module
KR101699532B1 (en) * 2015-06-10 2017-01-25 한밭대학교 산학협력단 An antenna assembly for a vehicle
WO2016043344A1 (en) * 2015-09-30 2016-03-24 株式会社小松製作所 Hydraulic shovel
CN205429142U (en) * 2016-03-10 2016-08-03 金益星 Fastening seal structure of top antenna
CN205722556U (en) * 2016-03-21 2016-11-23 西安科技大学 A kind of cross-country probe vehicles experiment porch

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03242005A (en) * 1990-02-20 1991-10-29 Nec Corp Storage method for parabolic antenna
US5923270A (en) * 1994-05-13 1999-07-13 Modulaire Oy Automatic steering system for an unmanned vehicle
JPH1172336A (en) * 1997-08-29 1999-03-16 Hitachi Ltd Position-measuring device of traveling machine
JP2002135026A (en) * 2000-10-27 2002-05-10 Japan Radio Co Ltd Ade unit for ais
JP2014197821A (en) * 2013-03-29 2014-10-16 アンテナテクノロジー株式会社 Antenna device and antenna attaching device
JP2016002874A (en) * 2014-06-17 2016-01-12 井関農機株式会社 Cabin of tractor
JP2016094093A (en) * 2014-11-13 2016-05-26 ヤンマー株式会社 Antenna for satellite navigation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11383655B2 (en) 2018-12-20 2022-07-12 Kubota Corporation Work vehicle
US11529920B2 (en) 2018-12-20 2022-12-20 Kubota Corporation Work vehicle
US11535172B2 (en) 2018-12-20 2022-12-27 Kubota Corporation Work vehicle
CN112677887A (en) * 2020-12-10 2021-04-20 武汉朗维科技有限公司 Vehicle body posture testing device and testing method
CN112677887B (en) * 2020-12-10 2024-02-27 武汉朗维科技有限公司 Vehicle body posture testing equipment and testing method

Also Published As

Publication number Publication date
KR20190002664A (en) 2019-01-08
CN110235304A (en) 2019-09-13
KR102108672B1 (en) 2020-05-07
KR20220101772A (en) 2022-07-19
KR102420670B1 (en) 2022-07-13
CN112993537A (en) 2021-06-18
KR20200047799A (en) 2020-05-07
CN110235304B (en) 2021-03-16

Similar Documents

Publication Publication Date Title
JP7232286B2 (en) tractor
JP7492058B2 (en) Work vehicles
US11569569B2 (en) Antenna unit for work vehicle and work vehicle
JP7339408B2 (en) tractor
WO2018147151A1 (en) Work vehicle antenna unit and work vehicle
JP6640767B2 (en) Work vehicle
CN111886555A (en) Automatic traveling device for working vehicle
JP7144397B2 (en) tractor
JP7294990B2 (en) work vehicle
JP7311684B2 (en) work vehicle

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187034967

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18750964

Country of ref document: EP

Kind code of ref document: A1