WO2018147148A1 - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
WO2018147148A1
WO2018147148A1 PCT/JP2018/003326 JP2018003326W WO2018147148A1 WO 2018147148 A1 WO2018147148 A1 WO 2018147148A1 JP 2018003326 W JP2018003326 W JP 2018003326W WO 2018147148 A1 WO2018147148 A1 WO 2018147148A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing composition
roll
amine compound
group
Prior art date
Application number
PCT/JP2018/003326
Other languages
French (fr)
Japanese (ja)
Inventor
宏樹 今
恵 谷口
公亮 土屋
貴俊 向井
圭祐 沼田
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63108187&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018147148(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2018567388A priority Critical patent/JP7141339B2/en
Publication of WO2018147148A1 publication Critical patent/WO2018147148A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition.
  • This application claims priority based on Japanese Patent Application No. 2017-21539 filed on Feb. 8, 2017 and Japanese Patent Application No. 2017-68256 filed on Mar. 30, 2017. The entire contents of these applications are hereby incorporated by reference.
  • the surface of a silicon wafer used as a component of a semiconductor product is generally finished to a high-quality mirror surface through a lapping process and a polishing process.
  • the polishing process typically includes a preliminary polishing process and a final polishing process. Examples of technical documents relating to the polishing composition include Patent Documents 1 to 5.
  • Patent Literature 1 describes that the polishing rate of a silicon wafer is improved by adding a compound such as ethylenediamine to a polishing composition used for polishing a silicon wafer.
  • Patent Document 2 describes that by adding a water-soluble polymer to the polishing composition, the water-soluble polymer is adsorbed on the peripheral portion of the silicon wafer and edge roll-off can be suppressed. However, the adsorbed water-soluble polymer protects the silicon wafer, thereby reducing the polishing rate.
  • the present invention has been made in view of the above circumstances, and as a first object, polishing capable of achieving both a high polishing rate and a reduced edge roll-off amount while keeping the content of abrasive grains low. It is an object to provide a composition for use.
  • the present invention has been made in view of the above circumstances, and as a second object, a polishing composition capable of realizing a polished surface with good flatness with little thickness difference between the vicinity of the edge and the central portion.
  • the purpose is to provide.
  • a polishing composition has abrasive grains, water, and the following conditions: (1) a hydrocarbon group having 3 or more carbon atoms between two primary amino groups in the molecule, and an ether bond. And (2) at least one of (1) a primary amino group, at least one of a secondary amino group and a tertiary amino group, and no ether bond; An ether compound containing no ether bond and a content of the abrasive is 2% by weight or less. According to this configuration, in a polishing composition containing a low concentration of abrasive grains, a high polishing rate and a reduced edge roll-off amount can be achieved at a higher level.
  • the content of the amine compound not containing an ether bond is less than 1% by weight.
  • both the polishing rate and the ability to reduce the edge roll-off amount can be realized at a higher level.
  • the content of the abrasive grains is less than 1% by weight.
  • the effect of improving the polishing rate and the effect of reducing the edge roll-off amount are suitably realized at a lower cost.
  • the abrasive grains are silica particles.
  • silica particles By using silica particles as the abrasive grains, the effect of improving the polishing rate and the effect of reducing the edge roll-off amount due to the amine compound not containing an ether bond are more suitably exhibited.
  • the polishing composition comprises abrasive grains, water, a roll-up amine compound A, and a roll-off compound B.
  • the polishing composition comprises abrasive grains, water, a roll-up amine compound A, and a roll-off compound B.
  • the roll-up amine compound A has the following conditions: (1) having a hydrocarbon group having 3 or more carbon atoms between two primary amino groups in the molecule and having no ether bond; and (2) having a primary amino group and at least one of a secondary amino group and a tertiary amino group, and having no ether bond; An ether bond-free amine compound that satisfies at least one of the following. Such an ether bond-free amine compound can effectively contribute to edge flattening.
  • the roll-off compound B includes the following compounds: (B1) at least one basic compound selected from the group consisting of ammonia, ammonium hydroxide, phosphonium hydroxide and metal hydroxide; (B2) an amine compound having at least one of a secondary amino group and a tertiary amino group and not having a primary amino group; (B3) an amine compound containing an ether bond in the molecule; and (B4) an amine compound having a hydrocarbon group having 1 or 2 carbon atoms between two primary amino groups in the molecule; At least one compound selected from the group consisting of: Such a roll-off compound B can effectively contribute to edge flattening.
  • the molar concentration ratio of the roll-up amine compound A and the roll-off compound B is 1: 500 to 200: 1 range.
  • the edge flattening effect can be more suitably exhibited.
  • the abrasive grains are silica particles.
  • silica particles By using silica particles as the abrasive grains, the edge flattening effect can be more suitably exhibited.
  • the polishing composition disclosed herein can be preferably applied to polishing of silicon, for example, polishing of silicon after lapping.
  • silicon preliminary polishing is exemplified.
  • the polishing composition according to the first aspect provided by this specification has the following conditions: (1) having a hydrocarbon group having 3 or more carbon atoms between two primary amino groups in the molecule and having no ether bond; and (2) having a primary amino group and at least one of a secondary amino group and a tertiary amino group, and having no ether bond; And an ether compound containing no ether bond.
  • the edge roll-off amount can be effectively reduced at the end face after polishing while maintaining a high polishing rate.
  • the reason why such an effect is obtained is not particularly limited, but may be considered as follows, for example.
  • the ether bond-free amine compound has a plurality of amino groups exhibiting strong basicity in the polishing composition, so that chemical polishing of the surface of the polishing object is promoted and the surface is efficiently scraped. Further, it has a hydrocarbon group having 3 or more carbon atoms between two primary amino groups in the molecule (or a primary amino group and at least one amino group of a secondary amino group and a tertiary amino group). And a primary amino group with little steric hindrance can exhibit a high adsorption ability to the object to be polished.
  • the amine compound is appropriately adsorbed on the outer peripheral portion of the object to be polished at the time of polishing to protect the outer peripheral portion, so that the outer peripheral portion is less likely to be scraped excessively than the central portion. This is considered to contribute to the reduction of the edge roll-off amount.
  • the ether bond-free amine compound may be an aliphatic polyamine compound, a heterocyclic polyamine compound, or an aromatic polyamine compound having the above structure.
  • one or more hydrogen atoms bonded to carbon atoms constituting the main chain are each independently a substituent other than a hydrogen atom (for example, a hydroxyl group, a halogen group (for example, F, Cl, You may use the amine compound substituted by Br) etc.).
  • the number of amino groups in the amine compound not containing an ether bond is, for example, 2 to 10, preferably 2 to 8, more preferably 2 to 6, more preferably 2 to 5 (eg 2 to 4).
  • the number of primary amino groups in the compound is not particularly limited as long as it is 2 or more per molecule, but it is typically 2 to 10, preferably It is 2 to 8, more preferably 2 to 6, and further preferably 2 to 4 (for example, 2 or 3).
  • the number of carbon atoms of the hydrocarbon group between two primary amino groups in the molecule is not particularly limited as long as it is 3 or more, but typically 3 to 15, preferably 3 to 12, and more preferably 4 To 10, more preferably 4 to 8.
  • the number of primary amino groups in the compound is not particularly limited as long as it is 1 or more per molecule, but typically 1 to 8, The number is preferably 1 to 6, more preferably 1 to 4, and still more preferably 1 to 3 (for example, 1 or 2).
  • the total number of secondary amino groups and tertiary amino groups is not particularly limited as long as it is one or more per molecule, but is, for example, 1 to 8, preferably 1 to 6, more preferably 1 to 4, Preferably it is 1 to 3 (for example, 1 or 2).
  • an ether bond-free amine compound (hereinafter, also referred to as “amine compound a”) represented by the following general formula (a) can be given.
  • R 1 and R 2 are each independently selected from the group consisting of a hydrogen atom, an alkyl group, a hydroxyalkyl group and an aminoalkyl group.
  • R 1 and R 2 are bonded to each other to form a cyclic structure.
  • N is an integer of 1 to 15.
  • — (CH 2 ) n — may have a branched chain, provided that when both R 1 and R 2 are hydrogen atoms, n is It is an integer from 3 to 15.)
  • the substituents R 1 and R 2 on the nitrogen atom constituting the amino group can be a hydrogen atom, an alkyl group, a hydroxyalkyl group, or an aminoalkyl group.
  • the alkyl group, hydroxyalkyl group and aminoalkyl group may be linear, branched or cyclic.
  • the total number of carbon atoms in the alkyl group, hydroxyalkyl group and aminoalkyl group may be 1 to 15 (preferably 1 to 12, more preferably 1 to 10, and even more preferably 2 to 6).
  • R 1 and R 2 may be the same or different.
  • R 1 and R 2 may be bonded to each other to form a cyclic structure.
  • R 1 and R 2 are alkyl groups, examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group.
  • Group, propyl group and butyl group are preferable, and ethyl group is particularly preferable.
  • the term “butyl group” as used herein is a concept including various structural isomers (n-butyl group, isobutyl group, sec-butyl group and tert-butyl group).
  • the hydroxyalkyl group may be a group having a structure in which one or more hydrogen atoms of the alkyl group are substituted with a hydroxyl group.
  • R 1 and R 2 are hydroxyalkyl groups, examples thereof include a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, a hydroxybutyl group, and the like, and particularly preferably a hydroxyethyl group.
  • the aminoalkyl group may be a group having a structure in which one or more hydrogen atoms of the alkyl group are substituted with an amino group.
  • R 1 and R 2 are aminoalkyl groups, for example, aminomethyl group, aminoethyl group, aminopropyl group, aminobutyl group, methylaminoethyl group, dimethylaminoethyl group, 2- (2-aminoethylamino) ethyl A 2- (2-aminoethylamino) ethyl group is particularly preferable.
  • n represents the number of repetitions of (CH 2 ).
  • n is an integer of 1 to 15, preferably 1 to 10, more preferably 1 to 8, and still more preferably 1 to 6 (eg, 1 to 4, typically 2 or 3).
  • R 1 and R 2 are hydrogen atoms
  • n is an integer of 3 to 15, preferably 3 to 10, more preferably 4 to 8, and further preferably 6 to 8.
  • a preferred example of the amine compound a is one in which both R 1 and R 2 are hydrogen atoms.
  • amine compound a1 in which both R 1 and R 2 are hydrogen atoms and (CH 2 ) repeat number n is 3 to 10 is preferable.
  • Specific examples of such an amine compound a1 include trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine; and the like. Of these, tetramethylenediamine, pentamethylenediamine, and hexamethylenediamine are preferable, and hexamethylenediamine is particularly preferable.
  • amine compound a examples include those in which R 1 and R 2 are different from each other.
  • R 1 and R 2 is a hydrogen atom
  • the other is an alkyl group having 1 to 4 carbon atoms (preferably 1 to 3, typically 1 or 2)
  • Specific examples of such amine compound a2 include N-methylethylenediamine, N-ethylethylenediamine, N-propylethylenediamine, N-methyltrimethylenediamine, N-ethyltrimethylenediamine, N-methyltetramethylenediamine, and N-ethyl.
  • Tetramethylenediamine N-methylpentamethylenediamine, N-ethylpentamethylenediamine, N-methylhexamethylenediamine, N-ethylhexamethylenediamine; and the like.
  • N-methylethylenediamine, N-ethylethylenediamine, N-propylethylenediamine, and N-methyltrimethylenediamine are preferable, and N-ethylethylenediamine is particularly preferable.
  • both R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms (preferably 1 to 3, typically 1 or 2), and (CH 2 ) Amine compound a3 having a repeating number n of 2-6.
  • Specific examples of such amine compound a3 include N, N-dimethylethylenediamine, N, N-diethylethylenediamine, N, N-ethylmethylethylenediamine, N, N-dipropylethylenediamine, N, N-dimethyltrimethylenediamine, Examples include N, N-diethyltrimethylenediamine, N, N-dimethyltetramethylenediamine, N, N-diethyltetramethylenediamine; and the like.
  • one of R 1 and R 2 is a hydrogen atom or an alkyl group, and the other is 1 to 4 carbon atoms (preferably 1 to 3, typically 1 or An amine compound a4 that is a hydroxyalkyl group of 2 ) and that has a (CH 2 ) repeat number n of 2 to 6.
  • 2- (aminomethylamino) ethanol, 2- (2-aminoethylamino) ethanol, and 2- [aminomethyl (methyl) amino] ethanol are preferable, and 2- (2-aminoethylamino) ethanol is particularly preferable. preferable.
  • one of R 1 and R 2 is a hydrogen atom or an alkyl group, and the other is an aminoalkyl group having 1 to 6 (preferably 1 to 4) carbon atoms.
  • Specific examples of such amine compound a5 include diethylenetriamine, triethylenetetramine, tetraethylpentamine, heptaethyleneoctamine, nonaethylenedecane, tris (2-aminoethyl) amine, tris (3-aminopropyl) amine; etc. Is exemplified. Of these, triethylenetetramine, tetraethylpentamine, and heptaethyleneoctamine are preferable, and triethylenetetramine is particularly preferable.
  • amine compound a examples include an amine compound a6 in which R 1 and R 2 are bonded to each other to form a cyclic structure, and the (CH 2 ) repeat number n is 2 to 6. Can be mentioned. Specific examples of such amine compound a6 include N-aminomethylpiperazine, N- (2-aminoethyl) piperazine, N- (2-amino-1-methylethyl) piperazine, N-aminopropylpiperazine, N-amino.
  • N- (2-aminoethyl) piperazine is preferable.
  • the content of the amine compound not containing an ether bond in the polishing composition is usually 0.01% by weight or more.
  • the content is preferably 0.05% by weight or more, and more preferably 0.1% by weight or more (for example, 0.15% by weight or more).
  • the content of the amine bond-free amine compound is usually suitably less than 1% by weight and 0.9% by weight or less from the viewpoint of achieving both high polishing rate and reduced edge roll-off. Preferably, it is 0.8% by weight or less (for example, 0.7% by weight or less, or 0.6% by weight or less).
  • the polishing composition according to the second aspect provided by this specification includes a roll-up amine compound A and a roll-off compound B.
  • the roll-up amine compound A refers to a compound having an action of causing an edge roll-up in which the vicinity of the edge of the polished product becomes thicker than the central portion when added to the polishing composition.
  • the roll-off compound B refers to a compound that exhibits an action of causing an edge roll-off in which the vicinity of the edge of the polished product becomes thinner than the center portion when added to the polishing composition.
  • the roll-up amine compound A and the roll-off compound B having such a reciprocal action are used in combination, so that there is little difference in thickness between the vicinity of the edge and the center of the polished product after polishing. A polished surface with good flatness can be realized.
  • the molar ratio of roll-up amine compound A and roll-off compound B (roll-up amine compound A: roll-off compound) B) is preferably in the range of 1: 500 to 200: 1.
  • the edge flattening effect can be more suitably exhibited.
  • the molar ratio of roll-up amine compound A and roll-off compound B is 1: 100 to 100: 1, preferably 1:50 to 50: 1, more preferably 1:30 to 30. : 1, more preferably 1:20 to 20: 1.
  • the roll-up amine compound A is a compound that exhibits an action of causing edge roll-up when added to the polishing composition.
  • the roll-up amine compound A in the present application is a standard polishing in which a silicon wafer is polished under the following conditions using a polishing composition having a silica abrasive grain concentration of 0.5% by mass obtained by dissolving the compound A in water and adjusting the pH to 11.0. After the test, a relatively flat region at a position of 2.0 mm to 4.0 mm from the outer peripheral edge to the center of the silicon wafer is used as a reference point, and the silicon wafer shape displacement amount at the 0.5 mm position from the outer peripheral edge and the reference point described above.
  • the roll-off amount X A is preferably 10nm or more, more preferably 30nm or more, more preferably 50nm or more.
  • Roll off quantity X A are, for example 70nm or more, and typically may be at 100nm or more, more may be 150nm or more.
  • the roll-off amount X A from the viewpoint of blending ratio easily adjusted with the roll-off compound B, for example 500nm or less, and typically may also be 400nm or less, and further may be 300nm or less.
  • Polishing machine Desktop polishing machine manufactured by Nippon Engis Co., Ltd.
  • Model “EJ-380IN” Polishing pad Product name “MH S-15A” manufactured by Nittahs Polishing pressure: 16.8 kPa Surface plate rotation speed: 50 rotations / minute Head rotation speed: 40 rotations / minute Polishing allowance: 8 ⁇ m Polishing liquid supply rate: 100 mL / min Polishing liquid temperature: 25 ° C
  • the roll-up amine compound A is not particularly limited as long as it is an amine compound that can be added to the polishing composition to cause the edge roll-up.
  • the roll-up amine compound A is preferably an amine compound having at least one primary amino group.
  • the number of primary amino groups in the roll-up amine compound A is, for example, 1 to 10, preferably 1 to 8, more preferably 1 to 6, and further preferably 1 to 4.
  • the roll-up amine compound A has the following conditions: (1) having a hydrocarbon group having 3 or more carbon atoms between two primary amino groups in the molecule and having no ether bond; and (2) having a primary amino group and at least one of a secondary amino group and a tertiary amino group and having no ether bond;
  • An ether bond-free amine compound satisfying at least one of the above can be used.
  • the ether bond-free amine compound has a hydrocarbon group having 3 or more carbon atoms between two primary amino groups in the molecule (or a primary amino group, a secondary amino group and a tertiary amino group).
  • the primary amino group having high hydrophobicity and less steric hindrance can exhibit a high adsorption ability to the object to be polished.
  • the amine compound is appropriately adsorbed on the outer peripheral portion of the object to be polished at the time of polishing to protect the outer peripheral portion, so that the outer peripheral portion is less likely to be scraped excessively than the central portion. This is considered to contribute to the roll-up near the edge.
  • the same compound as the ether bond-free amine compound according to the first aspect may be used, and thus detailed description thereof is omitted.
  • the roll-off compound B is a compound that exhibits an effect of causing edge roll-off when added to the polishing composition.
  • the roll-off compound B in the present application is a standard for polishing a silicon wafer under the above-mentioned standard polishing conditions using a polishing composition having a silica abrasive grain concentration of 0.5 mass% prepared by dissolving the compound B in water and adjusting the pH to 11.0.
  • a relatively flat region at a position of 2.0 mm to 4.0 mm from the outer peripheral edge to the center of the silicon wafer is used as a reference point, and the silicon wafer shape displacement amount at the 0.5 mm position from the outer peripheral edge and the above reference roll off quantity X B which is calculated as the difference between the points, showing a negative value (i.e. X B ⁇ 0).
  • the roll off quantity X B is preferably -10nm or less, more preferably -50nm, more preferably not more than -100 nm.
  • the roll-off amount X B may be, for example, ⁇ 1000 nm or more, typically ⁇ 300 nm or more, more preferably ⁇ 200 nm or more, from the viewpoint of ease of adjusting the blending ratio with the roll-up amine compound A. Further, it is preferably ⁇ 150 nm or more, particularly ⁇ 120 nm or more.
  • the roll-off compound B is not particularly limited as long as it is a compound that can cause the edge roll-off when added to the polishing composition.
  • the roll-off compound B may be at least one basic compound B1 selected from the group consisting of ammonia, ammonium hydroxide, phosphonium hydroxide, and metal hydroxide.
  • the basic compound as used herein refers to a basic compound that generates hydroxide ions when dissolved in water, and may have a function of increasing the pH of the composition when added to the polishing composition. .
  • Such a basic compound B1 may be an organic basic compound or an inorganic basic compound.
  • Basic compound B1 can be used individually by 1 type or in combination of 2 or more types.
  • organic basic compounds include quaternary ammonium hydroxides such as tetraalkylammonium hydroxide.
  • quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide can be preferably used.
  • tetramethylammonium hydroxide and tetraethylammonium hydroxide are preferable.
  • Other examples of organic basic compounds include quaternary phosphonium hydroxides.
  • tetramethylphosphonium hydroxide, tetraethylphosphonium hydroxide, tetrapropylphosphonium hydroxide, tetrabutylphosphonium hydroxide can be preferably used.
  • inorganic basic compounds include ammonia; ammonia, alkali metal or alkaline earth metal hydroxides.
  • hydroxide include potassium hydroxide and sodium hydroxide.
  • Preferred examples of the basic compound B1 include potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide, and tetraethylammonium hydroxide. Of these, potassium hydroxide, tetramethylammonium hydroxide and tetraethylammonium hydroxide are preferred. More preferred are potassium hydroxide and tetramethylammonium hydroxide.
  • amine compound B2 Other suitable examples of the roll-off compound B disclosed herein include an amine compound B2 having a secondary amino group and / or a tertiary amino group and having no primary amino group.
  • the amine compound B2 is preferably an amine compound having at least one tertiary amino group.
  • the total number of secondary amino groups and tertiary amino groups in the amine compound B2 is, for example, 1 to 12, preferably 1 to 10, more preferably 1 to 8, and further preferably 1 to 4.
  • Examples of the amine compound B2 that is particularly preferable in the technology disclosed herein include an amine compound b2 represented by the following general formula (b2).
  • R 3 —NR 4 —R 5 (b2) (Wherein R 3 , R 4 and R 5 are each independently selected from a hydrogen atom, an alkyl group having 1 to 15 carbon atoms and an aminoalkyl group having no primary amino group, provided that at least two of R 3, R 4, R 5 are, .R 3, R 4, R 5 is a group other than a hydrogen atom, have a double bond between C-C or between C-N R 3 and R 5 may be bonded to each other to form a cyclic structure.)
  • the substituents R 3 , R 4 , and R 5 on the nitrogen atom constituting the amino group can be a hydrogen atom, an alkyl group, and an aminoalkyl group that does not have a primary amino group.
  • the alkyl group and aminoalkyl group may be linear, branched or cyclic.
  • the total number of carbon atoms in the alkyl group and aminoalkyl group may be 1 to 15 (preferably 1 to 12, more preferably 1 to 10, and even more preferably 2 to 6).
  • R 3 , R 4 and R 5 may be the same or different.
  • R 3 , R 4 or R 5 is an alkyl group
  • examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group.
  • a methyl group, an ethyl group, a propyl group, and a butyl group are preferable, and an ethyl group is particularly preferable.
  • the alkyl group may have a double bond between C—C.
  • R 3 , R 4 , and R 5 are aminoalkyl groups, examples thereof include a methylaminomethyl group, a dimethylaminomethyl group, a methylaminoethyl group, a dimethylaminoethyl group, an ethylaminomethyl group, and a diethylaminomethyl group.
  • the aminoalkyl group may have a double bond between C—N or C—C.
  • a preferred example of the amine compound b2 is one in which all of R 3 , R 4 and R 5 are alkyl groups.
  • R 3 , R 4 and R 5 are alkyl groups having 1 to 8 carbon atoms (preferably 1 to 3, typically 1 or 2).
  • amine compound b2 examples include trimethylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine, tricyclohexylamine, N, N-dimethylethylamine, N , N-diethylmethylamine, N, N-dimethylbutylamine, N, N-diethylbutylamine, N, N-dimethylpentylamine, N, N-diethylpentylamine, N, N-dimethylhexylamine, N, N-di Examples include ethylhexylamine, N, N-dimethylcyclohexylamine, N, N-diethylcyclohexylamine, N, N-diisopropylethylamine; and the like. Of these, trimethylamine, triethylamine, and tripropylamine are preferable,
  • R 3 and R 5 are alkyl groups having 1 to 8 carbon atoms (preferably 1 to 3, typically 1 or 2), and R 4 is hydrogen. What is an atom is mentioned.
  • Specific examples of such amine compound b2 include dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, dicyclohexylamine, N-ethylmethylamine, N-methylpropylamine, N -Ethylpropylamine, N-butylmethylamine, N-butylethylamine, N-methylpentylamine, N-ethylpentylamine, N-hexylmethylamine, N-ethylhexylamine;
  • R 3 is an alkyl group having 1 to 8 carbon atoms (preferably 1 to 3, typically 1 or 2), and R 4 is a hydrogen atom or a carbon atom number.
  • 1 to 8 (preferably 1 to 3, typically 1 or 2) alkyl group
  • R 5 has 1 to 6 carbon atoms (preferably 1 to 3, typically 1 or 2). And those having an aminoalkyl group.
  • amine compound b2 examples include N, N′-dimethylethylenediamine, trimethylethylenediamine, tetramethylethylenediamine, N, N′-diethylethylenediamine, triethylethylenediamine, tetraethylethylenediamine, N-ethyl-N′-methylethylenediamine, N, N-dimethyl-N'-ethylethylenediamine, N, N-diethyl-N'-methylethylenediamine, N, N-diethyl-N'N'-dimethylethylenediamine, N, N'-dimethyltrimethylenediamine, trimethyltri Methylenediamine, tetramethyltrimethylenediamine, N, N′-diethyltrimethylenediamine, triethyltrimethylenediamine, tetraethyltrimethylenediamine, N-ethyl-N′-methyltrimethylenediamine; Etc. are exemplified.
  • R 3 and R 5 are an alkyl group or an aminoalkyl group having 1 to 6 carbon atoms (preferably 1 to 3, typically 1 or 2), and Examples thereof include nitrogen-containing heterocyclic compounds in which R 3 and R 5 are bonded to each other to form a cyclic structure.
  • amine compound b2 examples include imidazole, 1-methylimidazole, 4-methylimidazole, 1,2-dimethylimidazole, 2,4-dimethylimidazole, 1-ethylimidazole, 4-ethylimidazole, 1,2 -Diethylimidazole, 2-ethyl-4-methylimidazole, 1-propylimidazole, 4-propylimidazole, 1-butylimidazole, 4-butylimidazole, pyrazole, imidazoline, piperazine, 1-methylpiperazine, 2-methylpiperazine, 1 -Ethylpiperazine, 2-ethylpiperazine, 1-ethyl-4-methylpiperazine, 1- (2-dimethylaminoethyl) piperazine, 1- (2-dimethylaminoethyl) -4-methylpiperazine, 1-propylpiperazine, 2 - B pills piperazine, 1-butyl piperazine, 1-
  • the series of amino groups in the amine compound B3 is not particularly limited, but preferably has at least one primary amino group.
  • the total number of amino groups in the amine compound B3 can be, for example, 1 to 12, typically 1 to 10.
  • the total number of amino groups in the amine compound B3 may be, for example, 1 to 8, and typically 1 to 4.
  • the number of ether bonds in the amine compound B3 is, for example, 1 to 10, and typically 1 to 8.
  • the number of ether bonds in the amine compound B3 may be, for example, 1 to 6, and typically 1 to 4.
  • amine compound B3 that is particularly preferable in the technology disclosed herein is an amine compound b3 represented by the following general formula (b3).
  • N may be an integer of 1 to 15.
  • R 8 is an alkyl group, an alkyl group having an ether bond, an aminoalkyl Selected from the group consisting of a group, an aminoalkyl group having an ether bond, and an amino group.
  • the substituents R 6 and R 7 on the nitrogen atom constituting the amino group can be a hydrogen atom, an alkyl group, an alkyl group having an ether bond, or an aminoalkyl group.
  • the alkyl group, the alkyl group having an ether bond, and the aminoalkyl group may be linear, branched, or cyclic.
  • the total number of carbon atoms in the alkyl group, the alkyl group having an ether bond, and the aminoalkyl group may be 1 to 15 (preferably 1 to 12, more preferably 1 to 10, more preferably 2 to 6).
  • R 6 and R 7 may be the same or different.
  • R 6 and R 7 may be bonded to each other to form a cyclic structure.
  • R 6 and R 7 are alkyl groups, examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group.
  • An alkyl group having an ether bond refers to an alkyl group having at least one ether bond.
  • examples thereof include a methoxymethyl group, a methoxyethyl group, and a 2-methoxyethoxymethyl group.
  • R 6 and R 7 are aminoalkyl groups, for example, aminomethyl group, aminoethyl group, aminopropyl group, aminobutyl group, methylaminoethyl group, dimethylaminoethyl group, 2- (2-aminoethylamino) ethyl Groups and the like.
  • n represents the number of repetitions of (CH 2 ).
  • n is an integer of 1 to 15, preferably 1 to 10, more preferably 1 to 8, and still more preferably 1 to 6 (eg, 1 to 4, typically 2 or 3).
  • (CH 2 ) n may have a branched chain.
  • R 8 may be an alkyl group, an alkyl group having an ether bond, an aminoalkyl group, an aminoalkyl group having an ether bond, or an amino group.
  • the alkyl group, the alkyl group having an ether bond, the aminoalkyl group, and the aminoalkyl group having an ether bond may be linear, branched, or cyclic.
  • the total number of carbon atoms in the alkyl group, the alkyl group having an ether bond, the aminoalkyl group and the aminoalkyl group having an ether bond is 1 to 10 (preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 3). ).
  • An aminoalkyl group having an ether bond refers to an aminoalkyl group having at least one ether bond.
  • R 8 is an aminoalkyl group having an ether bond
  • examples thereof include a 2-aminoethoxyethyl group, a 2-aminopropoxyethyl group, a 3-aminoethoxypropyl group, a 3-aminopropoxypropyl group, and the like.
  • a preferred example of the amine compound b3 is one in which both R 6 and R 7 are hydrogen atoms.
  • both R 6 and R 7 are hydrogen atoms
  • the number of repetitions (CH 2 ) n is 1 to 6 (preferably 1 to 4, typically 1 to 3)
  • R 8 is Those which are aminoalkyl groups or aminoalkyl groups having an ether bond are preferred.
  • Specific examples of such amine compound b3 include bis (aminomethyl) ether, bis (2-aminoethyl) ether, bis (3-aminopropyl) ether, ethylene glycol bis (2-aminoethyl) ether, and ethylene glycol bis.
  • both R 6 and R 7 are alkyl groups having 1 to 4 carbon atoms, and the number n of (CH 2 ) repeats is 1 to 6 (preferably 1 to 4). , Typically 1 to 3), and R 8 is preferably an aminoalkyl group or an aminoalkyl group having an ether bond.
  • Specific examples of such amine compound b3 include bis (dimethylaminomethyl) ether, bis (2-dimethylaminoethyl) ether, bis (3-dimethylaminopropyl) ether, ethylene glycol bis (2-dimethylaminoethyl) ether.
  • Examples thereof include diol bis (2-dimethylaminoethyl) ether, 1,4-butanediol bis (3-dimethylaminopropyl) ether, bis (diethylaminomethyl) ether, bis (2-diethylaminoethyl) ether;
  • both of R 6 and R 7 are hydrogen atoms, and the number of repetitions (CH 2 ) n is 1 to 6 (preferably 1 to 4, typically 1 to 3).
  • R 8 is an alkyl group having 1 to 6 (preferably 1 to 4, typically 1 to 3) carbon atoms.
  • Specific examples of such amine compound b3 include 2-methoxyethylamine, 2-ethoxyethylamine, 2-propoxyethylamine, 2-butoxyethylamine, 2-pentyloxyethylamine, 3-methoxypropylamine, 3-ethoxypropylamine, 3 -Propoxypropylamine, 3-butoxypropylamine, 3-pentyloxypropylamine; and the like.
  • amine compound b3 examples include those in which R 6 and R 7 are different from each other.
  • R 6 and R 7 is a hydrogen atom
  • the other is an alkyl group having 1 to 4 carbon atoms
  • R 8 is an aminoalkyl group or an aminoalkyl group having an ether bond.
  • Specific examples of such amine compound b3 include bis (methylaminomethyl) ether, bis (2-methylaminoethyl) ether, bis (3-methylaminopropyl) ether, ethylene glycol bis (2-methylaminoethyl) ether.
  • Examples include diol bis (2-methylaminoethyl) ether, 1,4-butanediol bis (3-methylaminopropyl) ether, bis (ethylaminomethyl) ether, bis (2-ethylaminoethyl) ether; .
  • one of R 6 and R 7 is a hydrogen atom
  • the other is an alkyl group having 1 to 4 carbon atoms
  • the repeating number n of (CH 2 ) is 1 to 1 6 (preferably 1 to 4, typically 1 to 3)
  • R 8 is an alkyl group having 1 to 6 carbon atoms (preferably 1 to 4, typically 1 to 3). Things.
  • Specific examples of such amine compound b3 include N-methyl-2-methoxyethylamine, N-methyl-2-ethoxyethylamine, N-methyl-2-propoxyethylamine, N-methyl-2-butoxyethylamine, and N-methyl.
  • amine compound B4 Another preferred example of the roll-off compound B disclosed herein is an amine compound B4 having a hydrocarbon group having 1 or 2 carbon atoms between two primary amino groups in the molecule.
  • Specific examples of such amine compound B4 include methylenediamine, ethylenediamine, 1-methylethylenediamine, 1-ethylethylenediamine, 1-propylethylenediamine, 1,1-dimethylethylenediamine, 1,1-diethylethylenediamine, 1,2-dimethyl.
  • Examples include ethylenediamine, 1-ethyl-1-methylethylenediamine, 1-ethyl-2-methylethylenediamine; and the like. Of these, ethylenediamine is preferred.
  • a suitable ratio of the molar concentration of the roll-up amine compound A and the roll-off compound B may vary depending on the type of the roll-up amine compound A, the type of the roll-off compound B, a combination thereof, and the like.
  • the concentration ratios listed below are examples and are not limited to these concentration ratios.
  • the molar concentration ratio of the amine compound a2 and the roll-off compound B (amine compound a2: roll-off compound B) is 1:10 to 100: 1. preferable.
  • the molar concentration ratio is more preferably 1: 5 to 50: 1, and further preferably 1: 1 to 10: 1.
  • the molar concentration ratio of the amine compound a4 and the roll-off compound B is 1:10 to 200: 1. preferable.
  • the molar concentration value is more preferably 1: 5 to 100: 1, and further preferably 1: 1 to 50: 1.
  • the molar concentration ratio of the amine compound a5 and the roll-off compound B is 1: 500 to 5: 1. preferable.
  • the molar concentration ratio is more preferably 1:50 to 2: 1, and further preferably 1:25 to 1: 2.
  • the molar concentration ratio of the amine compound a6 and the roll-off compound B is 1:10 to 100: 1. preferable.
  • the molar concentration ratio is more preferably 1: 5 to 50: 1, still more preferably 1: 2 to 25: 1.
  • the polishing composition disclosed herein typically contains water in addition to the ether bond-free amine compound.
  • water ion exchange water (deionized water), pure water, ultrapure water, distilled water and the like can be preferably used.
  • the water to be used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid as much as possible the action of other components contained in the polishing composition.
  • the purity of water can be increased by operations such as removal of impurity ions with an ion exchange resin, removal of foreign matter with a filter, distillation, and the like.
  • the polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary.
  • an organic solvent lower alcohol, lower ketone, etc.
  • 90% by volume or more of the solvent contained in the polishing composition is preferably water, and 95% by volume or more (typically 99 to 100% by volume) is more preferably water.
  • the polishing composition disclosed herein contains abrasive grains in addition to an ether bond-free amine compound and water.
  • the material and properties of the abrasive grains are not particularly limited, and can be appropriately selected according to the purpose of use or the mode of use of the polishing composition.
  • the abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles.
  • the inorganic particles include silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, oxide particles such as bengara particles; Examples thereof include nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate.
  • Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles and poly (meth) acrylic acid particles (here, (meth) acrylic acid is a generic term for acrylic acid and methacrylic acid). And polyacrylonitrile particles.
  • PMMA polymethyl methacrylate
  • acrylic acid is a generic term for acrylic acid and methacrylic acid
  • polyacrylonitrile particles Such abrasive grains can be used singly or in combination of two or more.
  • abrasive inorganic particles are preferable, and particles made of metal or metalloid oxide are particularly preferable.
  • silica particles can be mentioned.
  • silica particles when the technique disclosed herein is applied to a polishing composition that can be used for polishing a silicon wafer, it is particularly preferable to use silica particles as abrasive grains. The reason is that when the object to be polished is a silicon wafer, if silica particles consisting of the same elements and oxygen atoms as the object to be polished are used as abrasive grains, a metal or metalloid residue different from silicon is generated after polishing.
  • a polishing composition containing only silica particles as an abrasive is exemplified as a preferred embodiment of the polishing composition from this viewpoint.
  • Silica has a property that it can be easily obtained in high purity. This is also cited as the reason why silica particles are preferable as the abrasive grains. Specific examples of the silica particles include colloidal silica, fumed silica, precipitated silica and the like.
  • colloidal silica and fumed silica are preferable as silica particles from the viewpoint that scratches are hardly generated on the surface of the object to be polished and a surface having a lower haze can be realized.
  • colloidal silica is preferred.
  • colloidal silica can be preferably employed as abrasive grains of a polishing composition used for polishing a silicon wafer (at least one of preliminary polishing and final polishing, preferably preliminary polishing).
  • the true specific gravity of silica constituting the silica particles is preferably 1.5 or more, more preferably 1.6 or more, and even more preferably 1.7 or more.
  • the polishing rate (amount for removing the surface of the object to be polished per unit time) can be improved when polishing a silicon wafer.
  • silica particles having a true specific gravity of 2.2 or less are preferable.
  • a measured value by a liquid substitution method using ethanol as a substitution liquid can be adopted.
  • the abrasive grains contained in the polishing composition may be in the form of primary particles or may be in the form of secondary particles in which a plurality of primary particles are associated. Further, abrasive grains in the form of primary particles and abrasive grains in the form of secondary particles may be mixed. In a preferred embodiment, at least a part of the abrasive grains is contained in the polishing composition in the form of secondary particles.
  • the average primary particle diameter D P1 of the abrasive grains is not particular average primary particle diameter D P1 of the abrasive grains limited, from the viewpoint of polishing rate, preferably 5nm or more, more preferably 10nm or more, particularly preferably 20nm or more. From the viewpoint of obtaining a higher polishing effect, the average primary particle diameter D P1 is preferably at least 25 nm, further preferably not less than 30 nm. Abrasive grains having an average primary particle diameter DP1 of 40 nm or more may be used. Further, from the viewpoint of storage stability (for example, dispersion stability), the average primary particle diameter of the abrasive grains is preferably 100 nm or less, more preferably 80 nm or less, still more preferably 70 nm or less, for example 60 nm or less.
  • D P1 (nm) 6000 / (true density (g / Cm 3 ) ⁇ BET value (m 2 / g)).
  • D P1 (nm) 2727 / BET value (nm).
  • the specific surface area can be measured using, for example, a surface area measuring device manufactured by Micromeritex Corporation, a trade name “Flow Sorb II 2300”.
  • abrasive grains having an average secondary particle diameter D P2 in particular from the viewpoint of polishing rate is preferably 15nm or more, and more preferably 25nm or more.
  • the average secondary particle diameter DP2 is preferably 40 nm or more, and more preferably 50 nm or more.
  • average secondary particle diameter D P2 of the abrasive grains is appropriately 200nm or less, preferably 150nm or less, more preferably 100nm or less.
  • Average abrasive grain of the secondary particle diameter D P2 for example, can be measured by a dynamic light scattering method using a Nikkiso Co. Model "UPA-UT151".
  • the average secondary particle diameter D P2 of the abrasive grains is generally equal to or greater than the average primary particle diameter D P1 of the abrasive grains (D P2 / D P1 ⁇ 1) and is typically larger than D P1 (D P2 / D P1 > 1).
  • the D P2 / D P1 of the abrasive grains is usually suitably in the range of 1.05 to 3, and The range of 1 to 2.5 is preferable, and the range of 1.2 to 2.3 (for example, more than 1.3 and 2.2 or less) is more preferable.
  • the shape (outer shape) of the abrasive grains may be spherical or non-spherical.
  • specific examples of non-spherical abrasive grains include a peanut shape (that is, a peanut shell shape), a bowl shape, a confetti shape, and a rugby ball shape.
  • the average value (average aspect ratio) of the major axis / minor axis ratio of the primary particles of the abrasive grains is preferably 1.05 or more, more preferably 1.1 or more. Higher polishing rates can be achieved by increasing the average aspect ratio of the abrasive grains.
  • the average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, and still more preferably 1.5 or less, from the viewpoint of reducing scratches.
  • the shape (outer shape) and average aspect ratio of the abrasive grains can be grasped by, for example, observation with an electron microscope.
  • a predetermined number for example, 200
  • SEM scanning electron microscope
  • the value obtained by dividing the length of the long side (major axis value) by the length of the short side (minor axis value) is the major axis / minor axis ratio (aspect ratio).
  • An average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
  • the content of abrasive grains in the polishing composition is typically 0.01 wt% or more, preferably 0.05 wt% or more, more preferably 0.1 wt% or more, More preferably, it is 0.15 weight% or more. Higher polishing rates can be achieved by increasing the abrasive content. Further, from the viewpoint of dispersion stability of the polishing composition, cost reduction, etc., the content is usually suitably 2% by weight or less, preferably 1.5% by weight or less, more preferably 1% by weight. Hereinafter, it is more preferably less than 1% by weight, particularly preferably 0.5% by weight or less.
  • the polishing composition disclosed herein is a water-soluble polymer, surfactant, buffering agent, chelating agent, organic acid, organic acid salt, inorganic acid, inorganic acid as long as the effects of the present invention are not significantly hindered. Further containing known additives as needed, which can be used for polishing compositions (typically, polishing compositions used in the polishing process of silicon wafers) such as salts, preservatives, and fungicides. May be.
  • the chelating agent functions to suppress contamination of an object to be polished by metal impurities by forming and capturing complex ions with metal impurities that can be contained in the polishing composition.
  • a chelating agent can be used individually by 1 type or in combination of 2 or more types. Examples of chelating agents include aminocarboxylic acid chelating agents and organic phosphonic acid chelating agents.
  • aminocarboxylic acid chelating agents include ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid sodium, nitrilotriacetic acid, nitrilotriacetic acid sodium, nitrilotriacetic acid ammonium, hydroxyethylethylenediaminetriacetic acid, hydroxyethylethylenediamine sodium triacetate, diethylenetriaminepentaacetic acid Diethylenetriamine sodium pentaacetate, triethylenetetramine hexaacetic acid and sodium triethylenetetramine hexaacetate.
  • organic phosphonic acid chelating agents examples include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic).
  • organic phosphonic acid-based chelating agents are more preferable, and aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), and diethylenetriaminepenta (methylenephosphonic acid) are particularly preferable.
  • water-soluble polymers examples include cellulose derivatives, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, vinyl alcohol polymers, and the like. Specific examples include hydroxyethyl cellulose, pullulan, random copolymer or block copolymer of ethylene oxide and propylene oxide, polyvinyl alcohol, polyisoprene sulfonic acid, polyvinyl sulfonic acid, polyallyl sulfonic acid, polyisoamylene sulfonic acid.
  • a water-soluble polymer can be used singly or in combination of two or more.
  • the polishing composition disclosed herein may be a composition that does not substantially contain the water-soluble polymer.
  • organic acids include fatty acids such as formic acid, acetic acid and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, citric acid, oxalic acid, tartaric acid, malic acid, maleic acid, fumaric acid, succinic acid, organic Examples include sulfonic acid and organic phosphonic acid.
  • organic acid salts include alkali metal salts (sodium salts, potassium salts, etc.) and ammonium salts of organic acids.
  • inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, carbonic acid and the like.
  • inorganic acid salts include alkali metal salts (sodium salts, potassium salts, etc.) and ammonium salts of inorganic acids.
  • An organic acid and its salt, and an inorganic acid and its salt can be used individually by 1 type or in combination of 2 or more types.
  • antiseptics and fungicides include isothiazoline compounds, paraoxybenzoates, phenoxyethanol and the like.
  • the polishing composition disclosed here contains substantially no oxidizing agent.
  • an oxidizing agent is contained in the polishing composition, the composition is supplied to an object to be polished (for example, a silicon wafer), whereby the surface of the object to be polished is oxidized to produce an oxide film. This is because the required polishing time becomes long.
  • the oxidizing agent include hydrogen peroxide (H 2 O 2 ), sodium persulfate, ammonium persulfate, sodium dichloroisocyanurate, and the like.
  • polishing composition does not contain an oxidizing agent substantially means not containing an oxidizing agent at least intentionally.
  • a trace amount for example, the molar concentration of the oxidant in the polishing composition is 0.0005 mol / L or less, preferably 0.0001 mol or less, more preferably 0.00001 mol /
  • the pH of the polishing composition is preferably 8.0 or more (for example, 8.5 or more), more preferably 9.0 or more, and further preferably 9.5 or more (for example, 10.0 or more).
  • the upper limit of the pH of the polishing composition is not particularly limited, but is preferably 12.0 or less (for example, 11.8 or less), and more preferably 11.5 or less. As a result, the object to be polished can be better polished.
  • the pH can be preferably applied to a polishing composition used for polishing a silicon wafer.
  • each component contained in the polishing composition may be mixed using a well-known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer.
  • a well-known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer.
  • the aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably.
  • the polishing composition disclosed herein may be a one-part type or a multi-part type including a two-part type.
  • the liquid A containing a part of the constituents of the polishing composition typically, components other than the aqueous solvent
  • the liquid B containing the remaining components are mixed to form a polishing object. You may be comprised so that it may be used for grinding
  • the polishing composition disclosed herein is supplied to a polishing object typically held in a processing carrier made of epoxy glass resin in the form of a polishing liquid containing the polishing composition, and the polishing object Used for polishing.
  • the polishing liquid may be prepared, for example, by diluting (typically diluting with water) any of the polishing compositions disclosed herein. Or you may use this polishing composition as polishing liquid as it is. That is, the concept of the polishing composition in the technology disclosed herein is used as a polishing liquid diluted with a polishing liquid (working slurry) that is supplied to a polishing object and used for polishing the polishing object. Both concentrated liquid (polishing liquid stock solution) are included.
  • Another example of the polishing liquid containing the polishing composition disclosed herein is a polishing liquid obtained by adjusting the pH of the composition.
  • the molar concentration of the roll-up amine compound A in the polishing liquid disclosed herein is not particularly limited, but is typically 0.00005 mol / L or more, preferably 0.0001 mol / L or more, and 0 More preferably, it is 0.00000 mol / L or more, and further more preferably 0.0002 mol / L or more.
  • the molar concentration is suitably 1 mol / L or less, preferably 0.5 mol / L or less, more preferably 0.3 mol / L or less, and still more preferably 0.1 mol / L.
  • it is 0.05 mol / L or less.
  • the molar concentration of the roll-off compound B in the polishing liquid disclosed herein is not particularly limited, but is typically 0.00005 mol / L or more, preferably 0.0001 mol / L or more, and It is more preferably 001 mol / L or more, and further preferably 0.002 mol / L or more.
  • the molar concentration is suitably 1 mol / L or less, preferably 0.5 mol / L or less, more preferably 0.3 mol / L or less, and still more preferably 0.1 mol / L.
  • it is 0.05 mol / L or less.
  • the content of abrasive grains in the polishing liquid disclosed herein is not particularly limited, but is typically 0.01% by weight or more, preferably 0.03% by weight or more, and 0.05% by weight or more. It is more preferable that it is 0.1% by weight or more. Higher polishing rates can be achieved by increasing the abrasive content. From the viewpoint of dispersion stability of the polishing composition, the content is usually suitably 15% by weight or less, preferably 10% by weight or less, more preferably 5% by weight or less, and still more preferably. 3% by weight or less, for example 1.2% by weight or less.
  • the pH of the polishing liquid is preferably 8.0 or more (for example, 8.5 or more), more preferably 9.0 or more, still more preferably 9.5 or more, and particularly preferably 10.0 or more (for example, 10. 5 or more).
  • the upper limit of the pH of the polishing liquid is not particularly limited, but is preferably 12.0 or less (for example, 11.8 or less), and more preferably 11.5 or less. As a result, the object to be polished can be better polished.
  • the pH can be preferably applied to a polishing liquid used for polishing a silicon wafer.
  • the polishing composition disclosed herein may be in a concentrated form (that is, in the form of a polishing liquid concentrate) before being supplied to the object to be polished.
  • the polishing composition in such a concentrated form is advantageous from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage and the like.
  • the concentration rate can be, for example, about 2 to 60 times in terms of volume.
  • the polishing composition in the form of a concentrated liquid can be used in such a manner that a polishing liquid is prepared by diluting at a desired timing and the polishing liquid is supplied to an object to be polished.
  • the dilution can be typically performed by adding and mixing the above-mentioned aqueous solvent to the concentrated solution.
  • the aqueous solvent is a mixed solvent, only a part of the components of the aqueous solvent may be added for dilution, and a mixture containing these components in a different ratio from the aqueous solvent.
  • a solvent may be added for dilution.
  • a part of them may be diluted and then mixed with another agent to prepare a polishing liquid, or a plurality of agents may be mixed. Later, the mixture may be diluted to prepare a polishing liquid.
  • the content of abrasive grains in the concentrated liquid can be, for example, 50% by weight or less.
  • the content is usually preferably 45% by weight or less, more preferably 40% by weight or less.
  • the abrasive content may be 30% by weight or less, or 20% by weight or less (eg, 15% by weight or less). From the viewpoint of convenience, cost reduction, etc.
  • the content of the abrasive grains can be, for example, 1.0% by weight or more, preferably 3.0% by weight or more, More preferably, it is 5.0 weight% or more, More preferably, it is 7.0 weight% or more.
  • the polishing composition disclosed herein can be applied to polishing a polishing object having various materials and shapes.
  • the material of the object to be polished is, for example, a metal or semimetal such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, stainless steel, germanium, or an alloy thereof; quartz glass, aluminosilicate glass, glassy carbon, etc.
  • a polishing object composed of a plurality of materials may be used. Especially, it is suitable for grinding
  • the technique disclosed here is, for example, a polishing composition containing silica particles as abrasive grains (typically, a polishing composition containing only silica particles as abrasive grains), and the object to be polished is silicon. It can be particularly preferably applied to a certain polishing composition.
  • the shape of the object to be polished is not particularly limited.
  • the polishing composition disclosed herein can be preferably applied to, for example, a polishing object having a flat surface such as a plate shape or a polyhedron shape, or polishing of an end portion of the polishing object (for example, polishing of a wafer edge).
  • the polishing composition disclosed herein can be preferably used as a polishing composition for polishing silicon (for example, a single crystal or polycrystalline silicon wafer).
  • a polishing liquid (slurry) containing any of the polishing compositions disclosed herein is prepared.
  • Preparing the polishing liquid may include preparing a polishing liquid by adding operations such as concentration adjustment (for example, dilution) to the polishing composition. Or you may use the said polishing composition as polishing liquid as it is.
  • concentration adjustment for example, dilution
  • the polishing liquid is supplied to the object to be polished and polished by a conventional method.
  • a primary polishing process typically a double-side polishing process
  • the object to be polished that has undergone the lapping process is set in a general polishing apparatus, and the above-mentioned is passed through a polishing pad of the polishing apparatus
  • a polishing liquid is supplied to the surface of the object to be polished (surface to be polished).
  • the polishing pad is pressed against the surface of the object to be polished, and both are relatively moved (for example, rotated).
  • polishing pad used in the polishing process using the polishing composition disclosed herein is not particularly limited.
  • any of non-woven fabric type, suede type, polyurethane type, those containing abrasive grains, and those not containing abrasive grains may be used.
  • a method for producing a polished article comprising a step of polishing an object to be polished using the polishing composition disclosed herein.
  • the method for producing a polished product disclosed herein may further include a step of subjecting a polishing object that has undergone a polishing step using the polishing composition to a final polishing.
  • final polishing refers to the final polishing step in the manufacturing process of the object (that is, a step in which no further polishing is performed after that step).
  • the final polishing step may be performed using the polishing composition disclosed herein, or may be performed using another polishing composition.
  • the polishing step using the polishing composition is a polishing step upstream of final polishing.
  • the polishing composition disclosed herein is suitable as a polishing composition used for polishing a polishing object in at least one (preferably both) of the double-side polishing step and the first single-side polishing step.
  • the polishing composition may be used in a disposable form (so-called “running”) once used for polishing, or may be repeatedly used after circulation.
  • a method of circulating and using the polishing composition there is a method of collecting a used polishing composition discharged from the polishing apparatus in a tank and supplying the recovered polishing composition to the polishing apparatus again.
  • the environmental load can be reduced by reducing the amount of the used polishing composition to be treated as a waste liquid, as compared with the case where the polishing composition is used by pouring.
  • cost can be suppressed by reducing the usage-amount of polishing composition.
  • a new component, a component reduced by use, or a component desired to increase may be added to the polishing composition in use at any timing. Good.
  • Example 1A A polishing composition was prepared by mixing abrasive grains, an amine bond-free amine compound and deionized water. Silica particles (average primary particle size 50 nm) were used as the abrasive grains. Triethylenetetramine (hereinafter referred to as “TETA”) was used as the amine compound not containing an ether bond. The abrasive grain content in the polishing composition was 0.5%, and the TETA content was such that the polishing composition had a pH of 11.2 (less than 1%).
  • TETA Triethylenetetramine
  • Example 2A N-ethylethylenediamine (hereinafter referred to as “NEDA”) was used.
  • the NEDA content in the polishing composition was such that the pH of the polishing composition was 11.2 (less than 1%).
  • the other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  • Example 3A N- (2-aminoethyl) piperazine (hereinafter referred to as “AEP”) was used.
  • AEP N- (2-aminoethyl) piperazine
  • the content of AEP in the polishing composition was such that the pH of the polishing composition was 11.2 (less than 1%).
  • the other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  • Example 4A instead of TETA, 1,6-diaminohexane (hereinafter referred to as “DAH”) was used.
  • DAH 1,6-diaminohexane
  • the content of DAH in the polishing composition was such that the pH of the polishing composition was 11.2 (less than 1%).
  • the other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  • Example 5A instead of TETA, 2- (2-aminoethylamino) ethanol (hereinafter referred to as “AEAE”) was used.
  • the content of AEAE in the polishing composition was such that the pH of the polishing composition was 11.2 (less than 1%).
  • the other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  • KOH potassium hydroxide
  • the content of KOH in the polishing composition was such an amount that the pH of the polishing composition was 11.2.
  • the other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  • TEAH Tetraethylammonium hydroxide
  • the content of TEAH in the polishing composition was such that the polishing composition had a pH of 11.2.
  • the other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  • TEA triethylamine
  • the TEA content in the polishing composition was such that the polishing composition had a pH of 11.2.
  • the other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  • en ethylenediamine (hereinafter referred to as “en”) was used.
  • the en content in the polishing composition was such that the pH of the polishing composition was 11.2.
  • the other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  • BBAE 1,4-butanediol bis (3-aminopropyl) ether
  • polishing rate of silicon The polishing composition according to each example was directly used as a polishing liquid, and a silicon wafer was subjected to a polishing test to evaluate the silicon polishing rate and the edge roll-off amount.
  • a 6 cm ⁇ 6 cm silicon wafer As a test piece, a 6 cm ⁇ 6 cm silicon wafer (conduction type: P type, crystal orientation: ⁇ 100>) was used. This specimen was polished under the following conditions.
  • the polishing rate was calculated according to the following calculation formulas (a) and (b). The results are shown in the corresponding column of Table 1.
  • Polishing rate [nm / min] polishing allowance [ ⁇ m] ⁇ 10 3 / polishing time [min] [Polishing conditions] Polishing machine: Desktop polishing machine manufactured by Nippon Engis Co., Ltd.
  • Model “EJ-380IN” Polishing pad Product name “MH S-15A” manufactured by Nittahs Polishing pressure: 16.8 kPa Surface plate rotation speed: 50 rotations / minute Head rotation speed: 40 rotations / minute Polishing allowance: 8 ⁇ m Polishing liquid supply rate: 100 mL / min Polishing liquid temperature: 25 ° C
  • ⁇ Edge roll-off amount evaluation> The edge roll-off amount at the outer peripheral portion of the polished silicon wafer was evaluated.
  • the evaluation of the edge roll-off amount was performed by measuring the shape displacement amount of the silicon wafer surface by using “New View 5032” manufactured by Zygo (USA). Specifically, a straight line (reference straight line) that approximates the amount of shape displacement in this area is defined as a relatively flat area at a position of 2.0 mm to 4.0 mm from the outer peripheral edge of the silicon wafer toward the center. Is subtracted using the method of least squares.
  • the difference between the silicon wafer shape displacement amount at the outer peripheral end position and the reference point was measured, and this was used as the roll-off value of the silicon wafer. If the outer peripheral edge of the silicon wafer has a sag shape, the roll-off value is negative. On the other hand, if the silicon wafer is bounced up, the roll-off value is positive. The obtained results are shown in the “roll-off value (nm)” column of Table 1.
  • the roll-off amount X B of the roll-off amount X A and roll-off compound B rollup amine compound A was evaluated as follows. First, the compounds described in Table 2 and Table 3 were each dissolved in water and adjusted to pH 11.0. Then, polishing composition was prepared so that it might become a silica abrasive grain density
  • the reference point is a relatively flat area from 2.0 mm to 4.0 mm from the outer peripheral edge to the center of the silicon wafer, and the difference between the silicon wafer shape displacement at the 0.5 mm position from the outer peripheral edge and the reference point It was calculated as a roll-off amount X A and roll off quantity X B.
  • the results are shown in Tables 2 and 3.
  • “NEDA” is N-ethylethylenediamine
  • “AEAE” is 2- (2-aminoethylamino) ethanol
  • TETA is triethylenetetramine
  • AEP is N- (2-aminoethyl) piperazine and “DETA” is diethylenetriamine.
  • KOH potassium hydroxide
  • TMAH tetramethylammonium hydroxide
  • en is ethylenediamine
  • TEA triethylamine
  • DEA diethylamine
  • M-DACy 1,2-diaminocyclohexane
  • EPA 3-ethoxypropylamine
  • AMB 2-amino-1-methoxybutane
  • BBAE 1,4- Butanediol bis (3-aminopropyl) ether.
  • Model “EJ-380IN” Polishing pad Product name “MH S-15A” manufactured by Nittahs Polishing pressure: 16.8 kPa Surface plate rotation speed: 50 rotations / minute Head rotation speed: 40 rotations / minute Polishing allowance: 8 ⁇ m Polishing liquid supply rate: 100 mL / min Polishing liquid temperature: 25 ° C
  • Example 1B Abrasive grains, a roll-up amine compound A, a roll-off compound B, and deionized water were mixed to prepare a polishing composition. Silica particles (average primary particle size 50 nm) were used as the abrasive grains.
  • NEDA N-ethylethylenediamine
  • KOH potassium hydroxide
  • the abrasive content in the polishing composition was 0.5%, the molar concentration of NEDA was 0.01 mol / L, and the molar concentration of KOH was 0.002 mol / L.
  • the pH of the polishing composition was adjusted to 11.0.
  • Example 2B instead of NEDA, 2- (2-aminoethylamino) ethanol (hereinafter referred to as “AEAE”) was used.
  • the molar concentration of AEAE in the polishing composition was 0.02 mol / L. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  • Example 3B instead of NEDA, triethylenetetramine (hereinafter referred to as “TETA”) was used.
  • TETA triethylenetetramine
  • the molar concentration of TETA in the polishing composition was 0.0003 mol / L, and the molar concentration of KOH was 0.004 mol / L. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  • Example 4B N- (2-aminoethyl) piperazine (hereinafter referred to as “AEP”) was used. Instead of KOH, tetramethylammonium hydroxide (hereinafter referred to as “TMAH”) was used.
  • the molar concentration of AEP in the polishing composition was 0.0021 mol / L, and the molar concentration of TMAH was 0.006 mol / L.
  • the content of abrasive grains in the polishing composition was 1.1%.
  • 0.035% potassium carbonate (K 2 CO 3 ) and 0.0025% ethylenediaminetetrakis (methylenephosphonic acid) hydrate were added. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  • Example 5B AEAE was used instead of NEDA.
  • TMAH was used instead of KOH.
  • the molar concentration of AEAE in the polishing composition was 0.0026 mol / L, and the molar concentration of TMAH was 0.006 mol / L.
  • the content of abrasive grains in the polishing composition was 1.1%. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  • Example 6B TETA was used instead of NEDA. Instead of KOH, ethylenediamine (hereinafter referred to as “en”) was used.
  • en ethylenediamine
  • the molar concentration of TETA in the polishing composition was 0.0013 mol / L, and the molar concentration of en was 0.013 mol / L. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  • Example 7B TETA was used instead of NEDA. Instead of KOH, triethylamine (hereinafter referred to as “TEA”) was used.
  • TEA triethylamine
  • the molar concentration of TETA in the polishing composition was 0.003 mol / L, and the molar concentration of TEA was 0.003 mol / L. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  • TETA was used instead of NEDA, which did not use KOH.
  • the molar concentration of TETA in the polishing composition was 0.025 mol / L. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  • NEDA was not used.
  • TMAH was used.
  • the molar concentration of KOH in the polishing composition was 0.0007 mol / L, and the molar concentration of TMAH was 0.006 mol / L.
  • the content of abrasive grains in the polishing composition was 1.1%.
  • 0.035% potassium carbonate (K 2 CO 3 ) and 0.0025% ethylenediaminetetrakis (methylenephosphonic acid) hydrate were added. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  • NEDA was not used. Instead of KOH, TMAH and imidazole (hereinafter referred to as “imd”) were used.
  • the molar concentration of TMAH was 0.006 mol / L
  • the molar concentration of imd was 0.004 mol / L.
  • the content of abrasive grains in the polishing composition was 1.1%. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  • NEDA was not used. Instead of KOH, en and TEA were used. The molar concentration of en in the polishing composition was 0.0084 mol / L, and the molar concentration of TEA was 0.0014 mol / L. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  • Table 4 summarizes the types and molar concentrations of the roll-up amine compound A and the types and molar concentrations of the roll-off compound B used for the polishing composition according to each example.
  • polishing rate of silicon The polishing composition according to each example was directly used as a polishing liquid, and a silicon wafer was subjected to a polishing test to evaluate the silicon polishing rate and the edge roll-off amount.
  • a 6 cm ⁇ 6 cm silicon wafer As a test piece, a 6 cm ⁇ 6 cm silicon wafer (conduction type: P type, crystal orientation: ⁇ 100>) was used. This specimen was polished under the following conditions.
  • the polishing rate was calculated according to the following calculation formulas (a) and (b). The results are shown in the corresponding column of Table 4.
  • Polishing rate [nm / min] polishing allowance [ ⁇ m] ⁇ 103 / polishing time [min] [Polishing conditions] Polishing machine: Desktop polishing machine manufactured by Nippon Engis Co., Ltd.
  • Model “EJ-380IN” Polishing pad Product name “MH S-15A” manufactured by Nittahs Polishing pressure: 16.8 kPa Surface plate rotation speed: 50 rotations / minute Head rotation speed: 50 rotations / minute Polishing allowance: 8 ⁇ m Polishing liquid supply rate: 100 mL / min Polishing liquid temperature: 25 ° C
  • ⁇ Edge roll-off amount evaluation> The edge roll-off amount at the outer peripheral portion of the polished silicon wafer was evaluated.
  • the evaluation of the edge roll-off amount was performed by measuring the shape displacement amount of the silicon wafer surface by using “New View 5032” manufactured by Zygo (USA). Specifically, a straight line (reference straight line) that approximates the amount of shape displacement in this area is defined as a relatively flat area at a position of 2.0 mm to 4.0 mm from the outer peripheral edge of the silicon wafer toward the center. Is subtracted using the method of least squares.
  • each of the polishing compositions of Examples 1B to 7B using a combination of roll-up amine compound A and roll-off compound B had a roll-off amount within ⁇ 70 nm, and Comparative Example 1B, Compared to Reference Examples 2B to 4B and Comparative Examples 5B to 7B, the flatness of the surface after polishing was good. From this result, it can be confirmed that by using a combination of the roll-up amine compound A and the roll-off compound B, it is possible to realize a polished surface with good flatness with little thickness difference between the edge and the center. It was.

Abstract

Provided are: a polishing composition which can achieve both of a high polishing rate and a reduced edge roll-off amount while reducing an abrasive grain content; and a polishing composition which can produce a polished surface having good flatness and having a small difference in thickness between a near-edge part of a polished object and the center part of the polished object. Each of the polishing compositions provided herein comprises abrasive grains, water and an amine compound containing no ether bond, wherein the amine compound satisfies at least one of requirements (1) and (2) as mentioned below and the abrasive grain content in the polishing composition is 2% by weight or less: (1) the compound has a hydrocarbon group having at least three carbon atoms between two primary amino groups in the molecule and has no ether bond; and (2) the compound has a primary amino group and at least one of a secondary amino group and a tertiary amino group and has no ether bond. Alternatively, the polishing composition provided herein comprises abrasive grains, water, a roll-up amine compound A and a roll-off compound B.

Description

研磨用組成物Polishing composition
 本発明は、研磨用組成物に関する。本出願は、2017年2月8日に出願された日本国特許出願2017-21539号および2017年3月30日に出願された日本国特許出願2017-68256号に基づく優先権を主張しており、それらの出願の全内容は本明細書中に参照として組み入れられている。 The present invention relates to a polishing composition. This application claims priority based on Japanese Patent Application No. 2017-21539 filed on Feb. 8, 2017 and Japanese Patent Application No. 2017-68256 filed on Mar. 30, 2017. The entire contents of these applications are hereby incorporated by reference.
 半導体製品の構成要素等として用いられるシリコンウェーハの表面は、一般に、ラッピング工程とポリシング工程とを経て高品位の鏡面に仕上げられる。上記ポリシング工程は、典型的には、予備ポリシング工程とファイナルポリシング工程とを含む。研磨用組成物に関する技術文献として、例えば特許文献1~5が挙げられる。 The surface of a silicon wafer used as a component of a semiconductor product is generally finished to a high-quality mirror surface through a lapping process and a polishing process. The polishing process typically includes a preliminary polishing process and a final polishing process. Examples of technical documents relating to the polishing composition include Patent Documents 1 to 5.
日本国特許出願公開2007-53298号公報Japanese Patent Application Publication No. 2007-53298 日本国特許出願公開2016-124943号公報Japanese Patent Application Publication No. 2016-124943 国際公開第2011/135949号International Publication No. 2011/135949 国際公開第2012/005289号International Publication No. 2012/005289 日本国特許出願公開2014-216464号公報Japanese Patent Application Publication No. 2014-216464
 近年、シリコンウェーハ等の半導体製品その他の製品のポリシングに用いられる研磨用組成物について、コスト削減等の観点から砥粒の使用量を減らしたいという要望がある。しかし、砥粒の使用量を減らすと、研磨レートが大幅に低下するという欠点がある。この点について、特許文献1には、シリコンウェーハの研磨に使用される研磨用組成物にエチレンジアミン等の化合物を含有させることで、シリコンウェーハの研磨速度を改善することが記載されている。しかし、エチレンジアミン等の化合物を含有させると、研磨速度は改善し得るものの、シリコンウェーハの外周部であるエッジ近傍が中央部に比べて過剰に研磨されることで、研磨後に外周部の厚さが不所望に減少する事象(エッジロールオフ)が生じる虞がある。このような事象は、一般的な塩基性化合物を含有する研磨用組成物で研磨する際にも認められる。一般的な塩基性化合物としては、例えば水酸化カリウムが挙げられる。特許文献2には、研磨用組成物に水溶性高分子を添加することにより、シリコンウェーハの周縁部に水溶性高分子が吸着し、エッジロールオフを抑制できることが記載されている。しかし、吸着した水溶性高分子がシリコンウェーハを保護する事により、研磨レートが低減してしまう。 In recent years, there is a demand for reducing the amount of abrasive grains used in polishing compositions used for polishing semiconductor products such as silicon wafers and other products from the viewpoint of cost reduction. However, when the amount of abrasive grains used is reduced, there is a drawback that the polishing rate is greatly reduced. In this regard, Patent Literature 1 describes that the polishing rate of a silicon wafer is improved by adding a compound such as ethylenediamine to a polishing composition used for polishing a silicon wafer. However, if a compound such as ethylenediamine is included, the polishing rate can be improved, but the periphery of the edge of the silicon wafer is excessively polished compared to the center, so that the thickness of the outer periphery after polishing is reduced. An undesirably decreasing event (edge roll-off) may occur. Such an event is also observed when polishing with a polishing composition containing a general basic compound. Examples of common basic compounds include potassium hydroxide. Patent Document 2 describes that by adding a water-soluble polymer to the polishing composition, the water-soluble polymer is adsorbed on the peripheral portion of the silicon wafer and edge roll-off can be suppressed. However, the adsorbed water-soluble polymer protects the silicon wafer, thereby reducing the polishing rate.
 本発明は、上記の事情に鑑みてなされたものであり、第1の目的として、砥粒の含有量を低く抑えつつ、高い研磨レートとエッジロールオフ量の低減とを両立することができる研磨用組成物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and as a first object, polishing capable of achieving both a high polishing rate and a reduced edge roll-off amount while keeping the content of abrasive grains low. It is an object to provide a composition for use.
 また一方で、シリコンウェーハの面積を最大限に活用するために、エッジ近傍と中央部とで厚み差が少ない平坦性のよい研磨後表面を実現し得る研磨用組成物が求められている。 On the other hand, in order to make maximum use of the area of the silicon wafer, there is a demand for a polishing composition that can realize a polished surface with good flatness with little difference in thickness between the vicinity of the edge and the center.
 本発明は、上記の事情にも鑑みてなされたものであり、第2の目的として、エッジ近傍と中央部とで厚み差が少ない平坦性のよい研磨後表面を実現し得る研磨用組成物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and as a second object, a polishing composition capable of realizing a polished surface with good flatness with little thickness difference between the vicinity of the edge and the central portion. The purpose is to provide.
 本明細書によると、研磨用組成物が提供される。この研磨用組成物は、砥粒と、水と、以下の条件:(1)分子内の2つの1級アミノ基間に炭素原子数3以上の炭化水素基を有し、かつ、エーテル結合を有していない;および、(2)1級アミノ基と、2級アミノ基および3級アミノ基の少なくとも一方のアミノ基とを有し、かつ、エーテル結合を有していない;の少なくとも一方を満たすエーテル結合非含有アミン化合物とを含み、前記砥粒の含有量が2重量%以下である。かかる構成によると、低濃度の砥粒を含む研磨用組成物において、高い研磨レートとエッジロールオフ量の低減とがより高いレベルで両立され得る。 According to the present specification, a polishing composition is provided. This polishing composition has abrasive grains, water, and the following conditions: (1) a hydrocarbon group having 3 or more carbon atoms between two primary amino groups in the molecule, and an ether bond. And (2) at least one of (1) a primary amino group, at least one of a secondary amino group and a tertiary amino group, and no ether bond; An ether compound containing no ether bond and a content of the abrasive is 2% by weight or less. According to this configuration, in a polishing composition containing a low concentration of abrasive grains, a high polishing rate and a reduced edge roll-off amount can be achieved at a higher level.
 ここに開示される研磨用組成物の好ましい一態様では、前記エーテル結合非含有アミン化合物の含有量が1重量%未満である。このようなエーテル結合非含有アミン化合物の含有量の範囲内であると、研磨レートとエッジロールオフ量を低減する性能との両立がより高いレベルで実現され得る。 In a preferred embodiment of the polishing composition disclosed herein, the content of the amine compound not containing an ether bond is less than 1% by weight. Within the range of the content of such an amine bond-free amine compound, both the polishing rate and the ability to reduce the edge roll-off amount can be realized at a higher level.
 ここに開示される研磨用組成物の好ましい一態様では、前記砥粒の含有量が1重量%未満である。このような低濃度の砥粒を含む研磨用組成物において、研磨レート向上効果とエッジロールオフ量低減効果とがより低コストで好適に実現される。 In a preferred embodiment of the polishing composition disclosed herein, the content of the abrasive grains is less than 1% by weight. In the polishing composition containing such low-concentration abrasive grains, the effect of improving the polishing rate and the effect of reducing the edge roll-off amount are suitably realized at a lower cost.
 ここに開示される研磨用組成物の好ましい一態様では、前記砥粒はシリカ粒子である。砥粒としてシリカ粒子を用いることにより、前記エーテル結合非含有アミン化合物による研磨レート向上効果とエッジロールオフ量低減効果とがより好適に発揮される。 In a preferred embodiment of the polishing composition disclosed herein, the abrasive grains are silica particles. By using silica particles as the abrasive grains, the effect of improving the polishing rate and the effect of reducing the edge roll-off amount due to the amine compound not containing an ether bond are more suitably exhibited.
 あるいは、ここに開示される研磨用組成物の他の好ましい一態様では、この研磨用組成物は、砥粒と水とロールアップアミン化合物Aとロールオフ化合物Bとを含む。このようにロールアップアミン化合物Aとロールオフ化合物Bとを組み合わせて用いることにより、エッジ近傍と中央部とで厚み差が少ない平坦性のよい研磨後表面を実現することができる。 Alternatively, in another preferred embodiment of the polishing composition disclosed herein, the polishing composition comprises abrasive grains, water, a roll-up amine compound A, and a roll-off compound B. Thus, by using the roll-up amine compound A and the roll-off compound B in combination, it is possible to realize a polished surface having good flatness with little difference in thickness between the vicinity of the edge and the central portion.
 ここに開示される研磨用組成物の好ましい一態様では、前記ロールアップアミン化合物Aとして、以下の条件:
(1)分子内の2つの1級アミノ基間に炭素原子数3以上の炭化水素基を有し、かつ、エーテル結合を有していない;および、
(2)1級アミノ基と、2級アミノ基および3級アミノ基の少なくとも一方のアミノ基とを有し、かつ、エーテル結合を有していない;
の少なくとも一方を満たすエーテル結合非含有アミン化合物を含む。かかるエーテル結合非含有アミン化合物は、エッジの平坦化に効果的に寄与し得る。
In a preferred embodiment of the polishing composition disclosed herein, the roll-up amine compound A has the following conditions:
(1) having a hydrocarbon group having 3 or more carbon atoms between two primary amino groups in the molecule and having no ether bond; and
(2) having a primary amino group and at least one of a secondary amino group and a tertiary amino group, and having no ether bond;
An ether bond-free amine compound that satisfies at least one of the following. Such an ether bond-free amine compound can effectively contribute to edge flattening.
ここに開示される研磨用組成物の好ましい一態様では、前記ロールオフ化合物Bとして、以下の化合物:
(B1)アンモニア、アンモニウム水酸化物、ホスホニウム水酸化物および金属水酸化物からなる群から選択された少なくとも1種の塩基性化合物;
(B2)2級アミノ基および3級アミノ基の少なくとも一方のアミノ基を有し、かつ、1級アミノ基を有していないアミン化合物;
(B3)分子内にエーテル結合を含むアミン化合物;および
(B4)分子内の2つの1級アミノ基間に炭素原子数1または2の炭化水素基を有するアミン化合物;
からなる群から選択された少なくとも1種の化合物を含む。かかるロールオフ化合物Bは、エッジの平坦化に効果的に寄与し得る。
In a preferred embodiment of the polishing composition disclosed herein, the roll-off compound B includes the following compounds:
(B1) at least one basic compound selected from the group consisting of ammonia, ammonium hydroxide, phosphonium hydroxide and metal hydroxide;
(B2) an amine compound having at least one of a secondary amino group and a tertiary amino group and not having a primary amino group;
(B3) an amine compound containing an ether bond in the molecule; and (B4) an amine compound having a hydrocarbon group having 1 or 2 carbon atoms between two primary amino groups in the molecule;
At least one compound selected from the group consisting of: Such a roll-off compound B can effectively contribute to edge flattening.
 ここに開示される研磨用組成物の好ましい一態様では、前記ロールアップアミン化合物Aおよびロールオフ化合物Bのモル濃度の比(ロールアップアミン化合物A:ロールオフ化合物B)が1:500~200:1の範囲である。このようなロールアップアミン化合物Aおよびロールオフ化合物Bのモル濃度の比の範囲内であると、エッジの平坦化効果がより好適に発揮され得る。 In a preferred embodiment of the polishing composition disclosed herein, the molar concentration ratio of the roll-up amine compound A and the roll-off compound B (roll-up amine compound A: roll-off compound B) is 1: 500 to 200: 1 range. When it is within the range of the molar concentration ratio of the roll-up amine compound A and the roll-off compound B, the edge flattening effect can be more suitably exhibited.
 ここに開示される研磨用組成物の好ましい一態様では、前記砥粒はシリカ粒子である。砥粒としてシリカ粒子を用いることにより、エッジの平坦化効果がより好適に発揮され得る。 In a preferred embodiment of the polishing composition disclosed herein, the abrasive grains are silica particles. By using silica particles as the abrasive grains, the edge flattening effect can be more suitably exhibited.
 ここに開示される研磨用組成物は、シリコンの研磨、例えばラッピングを経たシリコンのポリシングに好ましく適用することができる。特に好ましい適用対象として、シリコンの予備ポリシングが例示される。 The polishing composition disclosed herein can be preferably applied to polishing of silicon, for example, polishing of silicon after lapping. As a particularly preferable application object, silicon preliminary polishing is exemplified.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
<エーテル結合非含有アミン化合物>
 この明細書により提供される第一の態様(aspect)に係る研磨用組成物は、以下の条件:
(1)分子内の2つの1級アミノ基間に炭素原子数3以上の炭化水素基を有し、かつ、エーテル結合を有していない;および、
(2)1級アミノ基と、2級アミノ基および3級アミノ基の少なくとも一方のアミノ基とを有し、かつ、エーテル結合を有していない;
の少なくとも一方を満たすエーテル結合非含有アミン化合物を含んでいる。このことにより、低濃度の砥粒を含む研磨用組成物において、高い研磨レートを保ちつつ、研磨後の端面においてエッジロールオフ量を効果的に低減することができる。このような効果が得られる理由としては、特に限定的に解釈されるものではないが、例えば以下のように考えられる。すなわち、上記エーテル結合非含有アミン化合物は、研磨用組成物中において強い塩基性を示すアミノ基を複数有するため、研磨対象物表面の化学的研磨が促進され、該表面が効率的に削られる。また、分子内の2つの1級アミノ基間に炭素原子数3以上の炭化水素基を有し(もしくは1級アミノ基と、2級アミノ基および3級アミノ基の少なくとも一方のアミノ基とを有し)、かつエーテル結合を有しないことにより、立体障害の少ない1級アミノ基が研磨対象物への高い吸着能を発揮し得る。そのため、研磨時に該アミン化合物が研磨対象物の外周部に適度に吸着して該外周部の保護が図られることで、中央部に比べて外周部が過剰に削られにくい。このことがエッジロールオフ量の低減に寄与するものと考えられる。
<Amine compound containing no ether bond>
The polishing composition according to the first aspect provided by this specification has the following conditions:
(1) having a hydrocarbon group having 3 or more carbon atoms between two primary amino groups in the molecule and having no ether bond; and
(2) having a primary amino group and at least one of a secondary amino group and a tertiary amino group, and having no ether bond;
And an ether compound containing no ether bond. Thereby, in the polishing composition containing a low concentration of abrasive grains, the edge roll-off amount can be effectively reduced at the end face after polishing while maintaining a high polishing rate. The reason why such an effect is obtained is not particularly limited, but may be considered as follows, for example. That is, the ether bond-free amine compound has a plurality of amino groups exhibiting strong basicity in the polishing composition, so that chemical polishing of the surface of the polishing object is promoted and the surface is efficiently scraped. Further, it has a hydrocarbon group having 3 or more carbon atoms between two primary amino groups in the molecule (or a primary amino group and at least one amino group of a secondary amino group and a tertiary amino group). And a primary amino group with little steric hindrance can exhibit a high adsorption ability to the object to be polished. For this reason, the amine compound is appropriately adsorbed on the outer peripheral portion of the object to be polished at the time of polishing to protect the outer peripheral portion, so that the outer peripheral portion is less likely to be scraped excessively than the central portion. This is considered to contribute to the reduction of the edge roll-off amount.
 ここに開示される第一の態様に係るエーテル結合非含有アミン化合物としては、前記構造を有する各種の材料を、単独で、あるいは適宜組み合わせて用いることができる。例えば、上記エーテル結合非含有アミン化合物は、前記構造を有する脂肪族ポリアミン化合物、複素環式ポリアミン化合物、芳香族ポリアミン化合物のいずれであってもよい。これらのポリアミン化合物において、主鎖を構成する炭素原子に結合した水素原子の1または2以上が、それぞれ独立して、水素原子以外の置換基(例えば、水酸基、ハロゲン基(例えば、F,Cl,Br)等)で置換されたアミン化合物を用いてもよい。エーテル結合非含有アミン化合物におけるアミノ基の数(すなわち1級アミノ基、2級アミノ基および3級アミノ基の総数)は、例えば2~10であり、好ましくは2~8、より好ましくは2~6、さらに好ましくは2~5(例えば2~4)であり得る。前記(1)の条件を満たすアミン化合物の場合、該化合物における1級アミノ基の数は1分子中に2つ以上であれば特に限定されないが、典型的には2~10であり、好ましくは2~8、より好ましくは2~6、さらに好ましくは2~4(例えば2または3)である。また、分子内の2つの1級アミノ基間における炭化水素基の炭素原子数は3つ以上であれば特に限定されないが、典型的には3~15、好ましくは3~12、より好ましくは4~10、さらに好ましくは4~8である。また、前記(2)の条件を満たすアミン化合物の場合、該化合物における1級アミノ基の数は1分子中に1つ以上であれば特に限定されないが、典型的には1~8であり、好ましくは1~6、より好ましくは1~4、さらに好ましくは1~3(例えば1または2)である。また、2級アミノ基および3級アミノ基の総数は1分子中に1つ以上であれば特に限定されないが、例えば1~8であり、好ましくは1~6、より好ましくは1~4、さらに好ましくは1~3(例えば1または2)である。 As the ether bond-free amine compound according to the first aspect disclosed herein, various materials having the above structure can be used alone or in appropriate combination. For example, the ether bond-free amine compound may be an aliphatic polyamine compound, a heterocyclic polyamine compound, or an aromatic polyamine compound having the above structure. In these polyamine compounds, one or more hydrogen atoms bonded to carbon atoms constituting the main chain are each independently a substituent other than a hydrogen atom (for example, a hydroxyl group, a halogen group (for example, F, Cl, You may use the amine compound substituted by Br) etc.). The number of amino groups in the amine compound not containing an ether bond (that is, the total number of primary amino groups, secondary amino groups, and tertiary amino groups) is, for example, 2 to 10, preferably 2 to 8, more preferably 2 to 6, more preferably 2 to 5 (eg 2 to 4). In the case of an amine compound that satisfies the above condition (1), the number of primary amino groups in the compound is not particularly limited as long as it is 2 or more per molecule, but it is typically 2 to 10, preferably It is 2 to 8, more preferably 2 to 6, and further preferably 2 to 4 (for example, 2 or 3). The number of carbon atoms of the hydrocarbon group between two primary amino groups in the molecule is not particularly limited as long as it is 3 or more, but typically 3 to 15, preferably 3 to 12, and more preferably 4 To 10, more preferably 4 to 8. In the case of an amine compound that satisfies the above condition (2), the number of primary amino groups in the compound is not particularly limited as long as it is 1 or more per molecule, but typically 1 to 8, The number is preferably 1 to 6, more preferably 1 to 4, and still more preferably 1 to 3 (for example, 1 or 2). The total number of secondary amino groups and tertiary amino groups is not particularly limited as long as it is one or more per molecule, but is, for example, 1 to 8, preferably 1 to 6, more preferably 1 to 4, Preferably it is 1 to 3 (for example, 1 or 2).
 ここに開示される技術において特に好ましい例として、下記一般式(a)で表されるエーテル結合非含有アミン化合物(以下、「アミン化合物a」とも表記する。)が挙げられる。
 R-N(R)-(CH-NH     (a)
(式中、R、Rは、それぞれ独立に、水素原子、アルキル基、ヒドロキシアルキル基およびアミノアルキル基からなる群から選択される。R、Rは互いに結合して環状構造を形成していてもよい。nは1~15の整数である。-(CH-は分岐鎖を有してもよい。ただし、R、Rの両方が水素原子の場合、nは3~15の整数である。)
As a particularly preferable example in the technique disclosed herein, an ether bond-free amine compound (hereinafter, also referred to as “amine compound a”) represented by the following general formula (a) can be given.
R 1 —N (R 2 ) — (CH 2 ) n —NH 2 (a)
(Wherein R 1 and R 2 are each independently selected from the group consisting of a hydrogen atom, an alkyl group, a hydroxyalkyl group and an aminoalkyl group. R 1 and R 2 are bonded to each other to form a cyclic structure. N is an integer of 1 to 15. — (CH 2 ) n — may have a branched chain, provided that when both R 1 and R 2 are hydrogen atoms, n is It is an integer from 3 to 15.)
 上記アミン化合物aにおいて、アミノ基を構成する窒素原子上の置換基R,Rは、水素原子、アルキル基、ヒドロキシアルキル基、またはアミノアルキル基であり得る。アルキル基、ヒドロキシアルキル基およびアミノアルキル基は、直鎖状、分岐状、環状のいずれであってもよい。アルキル基、ヒドロキシアルキル基およびアミノアルキル基における炭素原子の総数は1~15(好ましくは1~12、より好ましくは1~10、さらに好ましくは2~6)であり得る。R,Rは同じであってもよく異なっていてもよい。また、R、Rは互いに結合して環状構造を形成していてもよい。R、Rがアルキル基の場合、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基、デシル基等が挙げられ、中でもエチル基、プロピル基、ブチル基が好ましく、特にエチル基が好ましい。なお、ここでいうブチル基とは、その各種構造異性体(n‐ブチル基、イソブチル基、sec‐ブチル基およびtert‐ブチル基)を包含する概念である。他のアルキル基、ヒドロキシアルキル基およびアミノアルキル基についても同様である。ヒドロキシアルキル基としては、アルキル基の水素原子の1または2以上が水酸基で置換された構造の基であり得る。R、Rがヒドロキシアルキル基の場合、例えば、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基等が挙げられ、特にヒドロキシエチル基であることが好ましい。アミノアルキル基としては、アルキル基の水素原子の1または2以上がアミノ基で置換された構造の基であり得る。R、Rがアミノアルキル基の場合、例えば、アミノメチル基、アミノエチル基、アミノプロピル基、アミノブチル基、メチルアミノエチル基、ジメチルアミノエチル基、2‐(2‐アミノエチルアミノ)エチル基等が挙げられ、特に2‐(2‐アミノエチルアミノ)エチル基であることが好ましい。また、上記アミン化合物aにおいて、nは(CH)の繰り返し数を表す。nは1~15の整数であり、好ましくは1~10、より好ましくは1~8、さらに好ましくは1~6(例えば1~4、典型的には2または3)である。ただし、R、Rの両方が水素原子の場合、nは3~15の整数であり、好ましくは3~10、より好ましくは4~8、さらに好ましくは6~8である。 In the amine compound a, the substituents R 1 and R 2 on the nitrogen atom constituting the amino group can be a hydrogen atom, an alkyl group, a hydroxyalkyl group, or an aminoalkyl group. The alkyl group, hydroxyalkyl group and aminoalkyl group may be linear, branched or cyclic. The total number of carbon atoms in the alkyl group, hydroxyalkyl group and aminoalkyl group may be 1 to 15 (preferably 1 to 12, more preferably 1 to 10, and even more preferably 2 to 6). R 1 and R 2 may be the same or different. R 1 and R 2 may be bonded to each other to form a cyclic structure. When R 1 and R 2 are alkyl groups, examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group. Group, propyl group and butyl group are preferable, and ethyl group is particularly preferable. The term “butyl group” as used herein is a concept including various structural isomers (n-butyl group, isobutyl group, sec-butyl group and tert-butyl group). The same applies to other alkyl groups, hydroxyalkyl groups and aminoalkyl groups. The hydroxyalkyl group may be a group having a structure in which one or more hydrogen atoms of the alkyl group are substituted with a hydroxyl group. When R 1 and R 2 are hydroxyalkyl groups, examples thereof include a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, a hydroxybutyl group, and the like, and particularly preferably a hydroxyethyl group. The aminoalkyl group may be a group having a structure in which one or more hydrogen atoms of the alkyl group are substituted with an amino group. When R 1 and R 2 are aminoalkyl groups, for example, aminomethyl group, aminoethyl group, aminopropyl group, aminobutyl group, methylaminoethyl group, dimethylaminoethyl group, 2- (2-aminoethylamino) ethyl A 2- (2-aminoethylamino) ethyl group is particularly preferable. In the amine compound a, n represents the number of repetitions of (CH 2 ). n is an integer of 1 to 15, preferably 1 to 10, more preferably 1 to 8, and still more preferably 1 to 6 (eg, 1 to 4, typically 2 or 3). However, when both R 1 and R 2 are hydrogen atoms, n is an integer of 3 to 15, preferably 3 to 10, more preferably 4 to 8, and further preferably 6 to 8.
 上記アミン化合物aの一好適例としては、R,Rの両方が水素原子であるものが挙げられる。例えば、R,Rの両方が水素原子であり、かつ、(CH)の繰り返し数nが3~10であるアミン化合物a1が好ましい。そのようなアミン化合物a1の具体例として、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン;等が挙げられる。なかでも、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミンが好ましく、特にはヘキサメチレンジアミンが好ましい。 A preferred example of the amine compound a is one in which both R 1 and R 2 are hydrogen atoms. For example, amine compound a1 in which both R 1 and R 2 are hydrogen atoms and (CH 2 ) repeat number n is 3 to 10 is preferable. Specific examples of such an amine compound a1 include trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine; and the like. Of these, tetramethylenediamine, pentamethylenediamine, and hexamethylenediamine are preferable, and hexamethylenediamine is particularly preferable.
 上記アミン化合物aの他の好適例としては、R,Rが互いに異なるものが挙げられる。例えば、R,Rのうち一方が水素原子であり、他方が炭素原子数1~4(好ましくは1~3、典型的には1または2)のアルキル基であり、かつ、(CH)の繰り返し数nが2~6であるアミン化合物a2が好ましい。そのようなアミン化合物a2の具体例として、N‐メチルエチレンジアミン、N‐エチルエチレンジアミン、N‐プロピルエチレンジアミン、N‐メチルトリメチレンジアミン、N‐エチルトリメチレンジアミン、N‐メチルテトラメチレンジアミン、N‐エチルテトラメチレンジアミン、N‐メチルペンタメチレンジアミン、N‐エチルペンタメチレンジアミン、N‐メチルヘキサメチレンジアミン、N‐エチルヘキサメチレンジアミン;等が挙げられる。なかでも、N‐メチルエチレンジアミン、N‐エチルエチレンジアミン、N‐プロピルエチレンジアミン、N‐メチルトリメチレンジアミンが好ましく、特にはN‐エチルエチレンジアミンが好ましい。 Other preferred examples of the amine compound a include those in which R 1 and R 2 are different from each other. For example, one of R 1 and R 2 is a hydrogen atom, the other is an alkyl group having 1 to 4 carbon atoms (preferably 1 to 3, typically 1 or 2), and (CH 2 ) Is preferably an amine compound a2 having a repeating number n of 2-6. Specific examples of such amine compound a2 include N-methylethylenediamine, N-ethylethylenediamine, N-propylethylenediamine, N-methyltrimethylenediamine, N-ethyltrimethylenediamine, N-methyltetramethylenediamine, and N-ethyl. Tetramethylenediamine, N-methylpentamethylenediamine, N-ethylpentamethylenediamine, N-methylhexamethylenediamine, N-ethylhexamethylenediamine; and the like. Of these, N-methylethylenediamine, N-ethylethylenediamine, N-propylethylenediamine, and N-methyltrimethylenediamine are preferable, and N-ethylethylenediamine is particularly preferable.
 上記アミン化合物aの他の例としては、R,Rの両方が炭素原子数1~4(好ましくは1~3、典型的には1または2)のアルキル基であり、かつ、(CH)の繰り返し数nが2~6であるアミン化合物a3が挙げられる。そのようなアミン化合物a3の具体例として、N,N‐ジメチルエチレンジアミン、N,N‐ジエチルエチレンジアミン、N,N‐エチルメチルエチレンジアミン、N,N‐ジプロピルエチレンジアミン、N,N‐ジメチルトリメチレンジアミン、N,N‐ジエチルトリメチレンジアミン、N,N‐ジメチルテトラメチレンジアミン、N,N‐ジエチルテトラメチレンジアミン;等が例示される。 As another example of the amine compound a, both R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms (preferably 1 to 3, typically 1 or 2), and (CH 2 ) Amine compound a3 having a repeating number n of 2-6. Specific examples of such amine compound a3 include N, N-dimethylethylenediamine, N, N-diethylethylenediamine, N, N-ethylmethylethylenediamine, N, N-dipropylethylenediamine, N, N-dimethyltrimethylenediamine, Examples include N, N-diethyltrimethylenediamine, N, N-dimethyltetramethylenediamine, N, N-diethyltetramethylenediamine; and the like.
 上記アミン化合物aの他の好適例としては、R,Rのうち一方が水素原子またはアルキル基であり、他方が炭素原子数1~4(好ましくは1~3、典型的には1または2)のヒドロキシアルキル基であり、かつ、(CH)の繰り返し数nが2~6であるアミン化合物a4が挙げられる。そのようなアミン化合物a4の具体例として、2‐(アミノメチルアミノ)エタノール、2‐(2‐アミノエチルアミノ)エタノール、2‐[アミノメチル(メチル)アミノ]エタノール、2‐(アミノメチルアミノ)プロパノール、2‐(2‐アミノエチルアミノ)プロパノール、2‐[アミノメチル(メチル)アミノ]プロパノール、2‐(アミノメチルアミノ)ブタノール、2‐(2‐アミノエチルアミノ)ブタノール、2‐[アミノメチル(メチル)アミノ]ブタノール;等が例示される。なかでも、2‐(アミノメチルアミノ)エタノール、2‐(2‐アミノエチルアミノ)エタノール、2‐[アミノメチル(メチル)アミノ]エタノールが好ましく、特には2‐(2‐アミノエチルアミノ)エタノールが好ましい。 As another preferred example of the amine compound a, one of R 1 and R 2 is a hydrogen atom or an alkyl group, and the other is 1 to 4 carbon atoms (preferably 1 to 3, typically 1 or An amine compound a4 that is a hydroxyalkyl group of 2 ) and that has a (CH 2 ) repeat number n of 2 to 6. As specific examples of such amine compound a4, 2- (aminomethylamino) ethanol, 2- (2-aminoethylamino) ethanol, 2- [aminomethyl (methyl) amino] ethanol, 2- (aminomethylamino) Propanol, 2- (2-aminoethylamino) propanol, 2- [aminomethyl (methyl) amino] propanol, 2- (aminomethylamino) butanol, 2- (2-aminoethylamino) butanol, 2- [aminomethyl (Methyl) amino] butanol; Of these, 2- (aminomethylamino) ethanol, 2- (2-aminoethylamino) ethanol, and 2- [aminomethyl (methyl) amino] ethanol are preferable, and 2- (2-aminoethylamino) ethanol is particularly preferable. preferable.
 上記アミン化合物aの他の好適例としては、R,Rのうち一方が水素原子もしくはアルキル基であり、他方が炭素原子数1~6(好ましくは1~4)のアミノアルキル基であり、かつ、(CH)の繰り返し数nが2~6であるアミン化合物a5が挙げられる。そのようなアミン化合物a5の具体例として、ジエチレントリアミン、トリエチレンテトラミン、テトラエチルペンタミン、ヘプタエチレンオクタミン、ノナエチレンデカミン、トリス(2-アミノエチル)アミン、トリス(3-アミノプロピル)アミン;等が例示される。なかでも、トリエチレンテトラミン、テトラエチルペンタミン、ヘプタエチレンオクタミンが好ましく、特にはトリエチレンテトラミンが好ましい。 As another preferred example of the amine compound a, one of R 1 and R 2 is a hydrogen atom or an alkyl group, and the other is an aminoalkyl group having 1 to 6 (preferably 1 to 4) carbon atoms. And an amine compound a5 in which the number n of (CH 2 ) repeats is 2 to 6. Specific examples of such amine compound a5 include diethylenetriamine, triethylenetetramine, tetraethylpentamine, heptaethyleneoctamine, nonaethylenedecane, tris (2-aminoethyl) amine, tris (3-aminopropyl) amine; etc. Is exemplified. Of these, triethylenetetramine, tetraethylpentamine, and heptaethyleneoctamine are preferable, and triethylenetetramine is particularly preferable.
 上記アミン化合物aの他の好適例としては、R、Rが互いに結合して環状構造を形成しており、かつ、(CH)の繰り返し数nが2~6であるアミン化合物a6が挙げられる。そのようなアミン化合物a6の具体例として、N‐アミノメチルピペラジン、N‐(2‐アミノエチル)ピペラジン、N‐(2‐アミノ‐1‐メチルエチル)ピペラジン、N‐アミノプロピルピペラジン、N‐アミノブチルピペラジン、N‐アミノヘキシルピペラジン、N‐アミノオクチルピペラジン、N‐(4‐アミノ‐2,2‐ジメチルブチル)ピペラジン、1,4-ビス(2-アミノエチル)ピペラジン、1,4-ビス(3-アミノプロピル)ピペラジン、N‐(2‐アミノエチル)ピペラジン;等が例示される。なかでも、N‐(2‐アミノエチル)ピペラジンが好ましい。 Other preferred examples of the amine compound a include an amine compound a6 in which R 1 and R 2 are bonded to each other to form a cyclic structure, and the (CH 2 ) repeat number n is 2 to 6. Can be mentioned. Specific examples of such amine compound a6 include N-aminomethylpiperazine, N- (2-aminoethyl) piperazine, N- (2-amino-1-methylethyl) piperazine, N-aminopropylpiperazine, N-amino. Butylpiperazine, N-aminohexylpiperazine, N-aminooctylpiperazine, N- (4-amino-2,2-dimethylbutyl) piperazine, 1,4-bis (2-aminoethyl) piperazine, 1,4-bis ( 3-aminopropyl) piperazine, N- (2-aminoethyl) piperazine; and the like. Of these, N- (2-aminoethyl) piperazine is preferable.
 研磨用組成物におけるエーテル結合非含有アミン化合物の含有量は、通常は0.01重量%以上とすることが適当である。研磨レートの観点から、上記含有量は0.05重量%以上が好ましく、0.1重量%以上(例えば0.15重量%以上)がより好ましい。また、上記エーテル結合非含有アミン化合物の含有量は、研磨レートとエッジロールオフ低減とを高度に両立する観点から、通常は1重量%未満とすることが適当であり、0.9重量%以下とすることが好ましく、0.8重量%以下(例えば0.7重量%以下、あるいは0.6重量%以下)とすることがより好ましい。 It is appropriate that the content of the amine compound not containing an ether bond in the polishing composition is usually 0.01% by weight or more. From the viewpoint of the polishing rate, the content is preferably 0.05% by weight or more, and more preferably 0.1% by weight or more (for example, 0.15% by weight or more). In addition, the content of the amine bond-free amine compound is usually suitably less than 1% by weight and 0.9% by weight or less from the viewpoint of achieving both high polishing rate and reduced edge roll-off. Preferably, it is 0.8% by weight or less (for example, 0.7% by weight or less, or 0.6% by weight or less).
 この明細書により提供される第二の態様(aspect)に係る研磨用組成物は、ロールアップアミン化合物Aとロールオフ化合物Bとを含む。ここでロールアップアミン化合物Aとは、研磨用組成物に添加されることによって、研磨物のエッジ近傍が中央部に比べて厚くなるエッジロールアップを生じさせる作用を示す化合物をいう。また、ロールオフ化合物Bとは、研磨用組成物に添加されることによって、研磨物のエッジ近傍が中央部に比べて薄くなるエッジロールオフを生じさせる作用を示す化合物をいう。ここに開示される技術では、このような相反作用を有するロールアップアミン化合物Aとロールオフ化合物Bとを組み合わせて用いることにより、研磨後において研磨物のエッジ近傍と中央部とで厚み差が少ない平坦性のよい研磨後表面を実現することができる。 The polishing composition according to the second aspect provided by this specification includes a roll-up amine compound A and a roll-off compound B. Here, the roll-up amine compound A refers to a compound having an action of causing an edge roll-up in which the vicinity of the edge of the polished product becomes thicker than the central portion when added to the polishing composition. In addition, the roll-off compound B refers to a compound that exhibits an action of causing an edge roll-off in which the vicinity of the edge of the polished product becomes thinner than the center portion when added to the polishing composition. In the technique disclosed here, the roll-up amine compound A and the roll-off compound B having such a reciprocal action are used in combination, so that there is little difference in thickness between the vicinity of the edge and the center of the polished product after polishing. A polished surface with good flatness can be realized.
 ロールアップアミン化合物Aとロールオフ化合物Bとを併用することによる効果をより良く発揮させる観点から、ロールアップアミン化合物Aおよびロールオフ化合物Bのモル濃度の比(ロールアップアミン化合物A:ロールオフ化合物B)は、1:500~200:1の範囲であることが好ましい。ロールアップアミン化合物Aとロールオフ化合物Bとを特定のモル濃度比となるように組み合わせて用いることにより、エッジの平坦化効果がより好適に発揮され得る。ここに開示される技術は、ロールアップアミン化合物Aおよびロールオフ化合物Bのモル濃度の比が1:100~100:1、好ましくは1:50~50:1、より好ましくは1:30~30:1、さらに好ましくは1:20~20:1である態様で好ましく実施され得る。 From the viewpoint of better exerting the effect of using roll-up amine compound A and roll-off compound B in combination, the molar ratio of roll-up amine compound A and roll-off compound B (roll-up amine compound A: roll-off compound) B) is preferably in the range of 1: 500 to 200: 1. By using the roll-up amine compound A and the roll-off compound B in combination at a specific molar concentration ratio, the edge flattening effect can be more suitably exhibited. In the technique disclosed herein, the molar ratio of roll-up amine compound A and roll-off compound B is 1: 100 to 100: 1, preferably 1:50 to 50: 1, more preferably 1:30 to 30. : 1, more preferably 1:20 to 20: 1.
<ロールアップアミン化合物A>
 ロールアップアミン化合物Aは、前述したように、研磨用組成物に添加されることによってエッジロールアップを生じさせる作用を示す化合物である。本願におけるロールアップアミン化合物Aは、該化合物Aを水に溶かしてpH11.0に調整したシリカ砥粒濃度0.5質量%の研磨用組成物を用いて下記条件でシリコンウェーハを研磨する標準研磨試験後において、シリコンウェーハの外周端から中心に向かって2.0mm~4.0mm位置の比較的平坦な領域を基準点とし、外周端から0.5mm位置におけるシリコンウェーハ形状変位量と上記基準点との差として算出されるロールオフ量Xが、プラスの値(すなわちX>0)を示すものである。上記ロールオフ量Xは、好ましくは10nm以上、より好ましくは30nm以上、さらに好ましくは50nm以上である。ロールオフ量Xは、例えば70nm以上、典型的には100nm以上であってもよく、さらには150nm以上でもよい。また、ロールオフ量Xは、ロールオフ化合物Bとの配合比調節容易性等の観点から、例えば500nm以下、典型的には400nm以下であってもよく、さらには300nm以下でもよい。
  [標準研磨試験条件]
 研磨装置:日本エンギス社製卓上研磨機、型式「EJ-380IN」
 研磨パッド :ニッタハース社製、商品名「MH S-15A」
 研磨圧力:16.8kPa
 定盤回転数:50回転/分
 ヘッド回転数:40回転/分
 研磨取り代:8μm
 研磨液の供給レート:100mL/分(掛け流し使用)
 研磨液の温度:25℃
<Roll-up amine compound A>
As described above, the roll-up amine compound A is a compound that exhibits an action of causing edge roll-up when added to the polishing composition. The roll-up amine compound A in the present application is a standard polishing in which a silicon wafer is polished under the following conditions using a polishing composition having a silica abrasive grain concentration of 0.5% by mass obtained by dissolving the compound A in water and adjusting the pH to 11.0. After the test, a relatively flat region at a position of 2.0 mm to 4.0 mm from the outer peripheral edge to the center of the silicon wafer is used as a reference point, and the silicon wafer shape displacement amount at the 0.5 mm position from the outer peripheral edge and the reference point described above. roll-off amount X a calculated as the difference between the, shows the positive value (i.e. X a> 0). The roll-off amount X A is preferably 10nm or more, more preferably 30nm or more, more preferably 50nm or more. Roll off quantity X A are, for example 70nm or more, and typically may be at 100nm or more, more may be 150nm or more. Further, the roll-off amount X A, from the viewpoint of blending ratio easily adjusted with the roll-off compound B, for example 500nm or less, and typically may also be 400nm or less, and further may be 300nm or less.
[Standard polishing test conditions]
Polishing machine: Desktop polishing machine manufactured by Nippon Engis Co., Ltd. Model “EJ-380IN”
Polishing pad: Product name “MH S-15A” manufactured by Nittahs
Polishing pressure: 16.8 kPa
Surface plate rotation speed: 50 rotations / minute Head rotation speed: 40 rotations / minute Polishing allowance: 8 μm
Polishing liquid supply rate: 100 mL / min
Polishing liquid temperature: 25 ° C
 ロールアップアミン化合物Aとしては、研磨用組成物に添加されることによって上記エッジロールアップを生じさせ得るアミン化合物であれば特に限定されない。例えば、ロールアップアミン化合物Aは、少なくとも1つ以上の1級アミノ基を有するアミン化合物であることが好ましい。ロールアップアミン化合物Aにおける1級アミノ基の数は、例えば1~10であり、好ましくは1~8、より好ましくは1~6、さらに好ましくは1~4である。 The roll-up amine compound A is not particularly limited as long as it is an amine compound that can be added to the polishing composition to cause the edge roll-up. For example, the roll-up amine compound A is preferably an amine compound having at least one primary amino group. The number of primary amino groups in the roll-up amine compound A is, for example, 1 to 10, preferably 1 to 8, more preferably 1 to 6, and further preferably 1 to 4.
 例えば、ロールアップアミン化合物Aは、以下の条件:
(1)分子内の2つの1級アミノ基間に炭素原子数3以上の炭化水素基を有し、かつ、エーテル結合を有していない;および、
(2)1級アミノ基と、2級アミノ基および3級アミノ基の少なくとも一方とを有し、かつ、エーテル結合を有していない;
の少なくとも一方を満たすエーテル結合非含有アミン化合物であり得る。上記エーテル結合非含有アミン化合物は、分子内の2つの1級アミノ基間に炭素原子数3以上の炭化水素基を有し(もしくは1級アミノ基と、2級アミノ基および3級アミノ基の少なくとも一方とを有し)、かつエーテル結合を有しないことにより疎水性が高く、加えて立体障害の少ない1級アミノ基が研磨対象物への高い吸着能を発揮し得る。そのため、研磨時に該アミン化合物が研磨対象物の外周部に適度に吸着して該外周部の保護が図られることで、中央部に比べて外周部が過剰に削られにくい。このことがエッジ近傍のロールアップに寄与するものと考えられる。
For example, the roll-up amine compound A has the following conditions:
(1) having a hydrocarbon group having 3 or more carbon atoms between two primary amino groups in the molecule and having no ether bond; and
(2) having a primary amino group and at least one of a secondary amino group and a tertiary amino group and having no ether bond;
An ether bond-free amine compound satisfying at least one of the above can be used. The ether bond-free amine compound has a hydrocarbon group having 3 or more carbon atoms between two primary amino groups in the molecule (or a primary amino group, a secondary amino group and a tertiary amino group). The primary amino group having high hydrophobicity and less steric hindrance can exhibit a high adsorption ability to the object to be polished. For this reason, the amine compound is appropriately adsorbed on the outer peripheral portion of the object to be polished at the time of polishing to protect the outer peripheral portion, so that the outer peripheral portion is less likely to be scraped excessively than the central portion. This is considered to contribute to the roll-up near the edge.
 ここに開示される第二の態様に係るエーテル結合非含有アミン化合物としては、第一の態様に係るエーテル結合非含有アミン化合物と同様のものが用いられ得るので、詳細な説明は省略する。 As the ether bond-free amine compound according to the second aspect disclosed herein, the same compound as the ether bond-free amine compound according to the first aspect may be used, and thus detailed description thereof is omitted.
<ロールオフ化合物B>
 ロールオフ化合物Bは、前述したように、研磨用組成物に添加されることによってエッジロールオフを生じさせる作用を示す化合物である。本願におけるロールオフ化合物Bは、該化合物Bを水に溶かしてpH11.0に調整したシリカ砥粒濃度0.5質量%の研磨用組成物を用いて前記標準研磨条件でシリコンウェーハを研磨する標準研磨試験後において、シリコンウェーハの外周端から中心に向かって2.0mm~4.0mm位置の比較的平坦な領域を基準点とし、外周端から0.5mm位置におけるシリコンウェーハ形状変位量と上記基準点との差として算出されるロールオフ量Xが、マイナスの値(すなわちX<0)を示すものである。上記ロールオフ量Xは、好ましくは-10nm以下、より好ましくは-50nm以下、さらに好ましくは-100nm以下である。また、ロールオフ量Xは、ロールアップアミン化合物Aとの配合比調節容易性等の観点から、例えば-1000nm以上、典型的には-300nm以上であってもよく、さらには-200nm以上、また-150nm以上、特に-120nm以上がよい。
<Roll-off compound B>
As described above, the roll-off compound B is a compound that exhibits an effect of causing edge roll-off when added to the polishing composition. The roll-off compound B in the present application is a standard for polishing a silicon wafer under the above-mentioned standard polishing conditions using a polishing composition having a silica abrasive grain concentration of 0.5 mass% prepared by dissolving the compound B in water and adjusting the pH to 11.0. After the polishing test, a relatively flat region at a position of 2.0 mm to 4.0 mm from the outer peripheral edge to the center of the silicon wafer is used as a reference point, and the silicon wafer shape displacement amount at the 0.5 mm position from the outer peripheral edge and the above reference roll off quantity X B which is calculated as the difference between the points, showing a negative value (i.e. X B <0). The roll off quantity X B is preferably -10nm or less, more preferably -50nm, more preferably not more than -100 nm. Further, the roll-off amount X B may be, for example, −1000 nm or more, typically −300 nm or more, more preferably −200 nm or more, from the viewpoint of ease of adjusting the blending ratio with the roll-up amine compound A. Further, it is preferably −150 nm or more, particularly −120 nm or more.
(塩基性化合物B1)
 ロールオフ化合物Bとしては、研磨用組成物に添加されることによって上記エッジロールオフを生じさせ得る化合物であれば特に限定されない。
 例えば、ロールオフ化合物Bは、アンモニア、アンモニウム水酸化物、ホスホニウム水酸化物および金属水酸化物からなる群から選択された少なくとも1種の塩基性化合物B1であり得る。ここでいう塩基性化合物とは、水に溶解した際に水酸化物イオンを生じる塩基性化合物を指し、研磨用組成物に添加されることによって該組成物のpHを上昇させる機能を有し得る。このような塩基性化合物B1は、有機塩基性化合物であってもよく、無機塩基性化合物であってもよい。塩基性化合物B1は、1種を単独でまたは2種以上を組み合わせて用いることができる。
(Basic compound B1)
The roll-off compound B is not particularly limited as long as it is a compound that can cause the edge roll-off when added to the polishing composition.
For example, the roll-off compound B may be at least one basic compound B1 selected from the group consisting of ammonia, ammonium hydroxide, phosphonium hydroxide, and metal hydroxide. The basic compound as used herein refers to a basic compound that generates hydroxide ions when dissolved in water, and may have a function of increasing the pH of the composition when added to the polishing composition. . Such a basic compound B1 may be an organic basic compound or an inorganic basic compound. Basic compound B1 can be used individually by 1 type or in combination of 2 or more types.
 有機塩基性化合物の例としては、水酸化テトラアルキルアンモニウム等の水酸化第四級アンモニウムが挙げられる。例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム等の第四級アンモニウムヒドロキシドを好ましく使用し得る。なかでも水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウムが好ましい。
 有機塩基性化合物の他の例としては、第4級ホスホニウムの水酸化物が挙げられる。例えば、水酸化テトラメチルホスホニウム、水酸化テトラエチルホスホニウム、水酸化テトラプロピルホスホニウム、水酸化テトラブチルホスホニウムを好ましく使用し得る。
Examples of organic basic compounds include quaternary ammonium hydroxides such as tetraalkylammonium hydroxide. For example, quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide can be preferably used. Of these, tetramethylammonium hydroxide and tetraethylammonium hydroxide are preferable.
Other examples of organic basic compounds include quaternary phosphonium hydroxides. For example, tetramethylphosphonium hydroxide, tetraethylphosphonium hydroxide, tetrapropylphosphonium hydroxide, tetrabutylphosphonium hydroxide can be preferably used.
 無機塩基性化合物の例としては、アンモニア;アンモニア、アルカリ金属またはアルカリ土類金属の水酸化物が挙げられる。上記水酸化物の具体例としては、水酸化カリウム、水酸化ナトリウム等が挙げられる。 Examples of inorganic basic compounds include ammonia; ammonia, alkali metal or alkaline earth metal hydroxides. Specific examples of the hydroxide include potassium hydroxide and sodium hydroxide.
 好ましい塩基性化合物B1として、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウムが挙げられる。なかでも好ましいものとして、水酸化カリウム、水酸化テトラメチルアンモニウムおよび水酸化テトラエチルアンモニウムが例示される。より好ましいものとして水酸化カリウムおよび水酸化テトラメチルアンモニウムが挙げられる。 Preferred examples of the basic compound B1 include potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide, and tetraethylammonium hydroxide. Of these, potassium hydroxide, tetramethylammonium hydroxide and tetraethylammonium hydroxide are preferred. More preferred are potassium hydroxide and tetramethylammonium hydroxide.
(アミン化合物B2)
 ここに開示されるロールオフ化合物Bの他の好適例として、2級アミノ基および/または3級アミノ基を有し、かつ、1級アミノ基を有していないアミン化合物B2が挙げられる。アミン化合物B2は、少なくとも1つの3級アミノ基を有するアミン化合物であることが好ましい。アミン化合物B2における2級アミノ基および3級アミノ基の総数は、例えば1~12であり、好ましくは1~10、より好ましくは1~8、さらに好ましくは1~4である。
(Amine compound B2)
Other suitable examples of the roll-off compound B disclosed herein include an amine compound B2 having a secondary amino group and / or a tertiary amino group and having no primary amino group. The amine compound B2 is preferably an amine compound having at least one tertiary amino group. The total number of secondary amino groups and tertiary amino groups in the amine compound B2 is, for example, 1 to 12, preferably 1 to 10, more preferably 1 to 8, and further preferably 1 to 4.
 ここに開示される技術において特に好ましいアミン化合物B2の例として、下記一般式(b2)で表されるアミン化合物b2が挙げられる。
 R-NR-R       (b2)
(式中、R、R、Rは、それぞれ独立に、水素原子、炭素原子数1~15のアルキル基および1級アミノ基を有していないアミノアルキル基から選択される。ただし、R、R、Rのうち少なくとも2つは、水素原子以外の基である。R、R、Rは、C-C間もしくはC-N間に二重結合を有していてもよい。また、R、Rは互いに結合して環状構造を形成していてもよい。)
Examples of the amine compound B2 that is particularly preferable in the technology disclosed herein include an amine compound b2 represented by the following general formula (b2).
R 3 —NR 4 —R 5 (b2)
(Wherein R 3 , R 4 and R 5 are each independently selected from a hydrogen atom, an alkyl group having 1 to 15 carbon atoms and an aminoalkyl group having no primary amino group, provided that at least two of R 3, R 4, R 5 are, .R 3, R 4, R 5 is a group other than a hydrogen atom, have a double bond between C-C or between C-N R 3 and R 5 may be bonded to each other to form a cyclic structure.)
 上記アミン化合物b2において、アミノ基を構成する窒素原子上の置換基R、R、Rは、水素原子、アルキル基および1級アミノ基を有していないアミノアルキル基であり得る。アルキル基およびアミノアルキル基は、直鎖状、分岐状、環状のいずれであってもよい。アルキル基およびアミノアルキル基における炭素原子の総数は1~15(好ましくは1~12、より好ましくは1~10、さらに好ましくは2~6)であり得る。R、R、Rは同じであってもよく異なっていてもよい。R、R、Rがアルキル基の場合、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基、デシル基等が挙げられ、中でもメチル基、エチル基、プロピル基、ブチル基が好ましく、特にエチル基が好ましい。上記アルキル基は、C-C間に二重結合を有していてもよい。R、R、Rがアミノアルキル基の場合、例えば、メチルアミノメチル基、ジメチルアミノメチル基、メチルアミノエチル基、ジメチルアミノエチル基、エチルアミノメチル基、ジエチルアミノメチル基等が挙げられる。上記アミノアルキル基は、C-N間もしくはC-C間に二重結合を有していてもよい。 In the amine compound b2, the substituents R 3 , R 4 , and R 5 on the nitrogen atom constituting the amino group can be a hydrogen atom, an alkyl group, and an aminoalkyl group that does not have a primary amino group. The alkyl group and aminoalkyl group may be linear, branched or cyclic. The total number of carbon atoms in the alkyl group and aminoalkyl group may be 1 to 15 (preferably 1 to 12, more preferably 1 to 10, and even more preferably 2 to 6). R 3 , R 4 and R 5 may be the same or different. When R 3 , R 4 or R 5 is an alkyl group, examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group. Of these, a methyl group, an ethyl group, a propyl group, and a butyl group are preferable, and an ethyl group is particularly preferable. The alkyl group may have a double bond between C—C. When R 3 , R 4 , and R 5 are aminoalkyl groups, examples thereof include a methylaminomethyl group, a dimethylaminomethyl group, a methylaminoethyl group, a dimethylaminoethyl group, an ethylaminomethyl group, and a diethylaminomethyl group. The aminoalkyl group may have a double bond between C—N or C—C.
 上記アミン化合物b2の一好適例としては、R、R、Rの全部がアルキル基であるものが挙げられる。例えば、R、R、Rの全部が炭素原子数1~8(好ましくは1~3、典型的には1または2)のアルキル基であるものが好ましい。そのようなアミン化合物b2の具体例として、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプシルアミン、トリオクチルアミン、トリシクロヘキシルアミン、N,N‐ジメチルエチルアミン、N,N‐ジエチルメチルアミン、N,N‐ジメチルブチルアミン、N,N‐ジエチルブチルアミン、N,N‐ジメチルペンチルアミン、N,N‐ジエチルペンチルアミン、N,N‐ジメチルヘキシルアミン、N,N‐ジエチルヘキシルアミン、N,N‐ジメチルシクロヘキシルアミン、N,N‐ジエチルシクロヘキシルアミン、N,N-ジイソプロピルエチルアミン;等が例示される。なかでも、トリメチルアミン、トリエチルアミン、トリプロピルアミンが好ましく、特にはトリエチルアミンが好ましい。 A preferred example of the amine compound b2 is one in which all of R 3 , R 4 and R 5 are alkyl groups. For example, it is preferred that all of R 3 , R 4 and R 5 are alkyl groups having 1 to 8 carbon atoms (preferably 1 to 3, typically 1 or 2). Specific examples of such amine compound b2 include trimethylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine, tricyclohexylamine, N, N-dimethylethylamine, N , N-diethylmethylamine, N, N-dimethylbutylamine, N, N-diethylbutylamine, N, N-dimethylpentylamine, N, N-diethylpentylamine, N, N-dimethylhexylamine, N, N-di Examples include ethylhexylamine, N, N-dimethylcyclohexylamine, N, N-diethylcyclohexylamine, N, N-diisopropylethylamine; and the like. Of these, trimethylamine, triethylamine, and tripropylamine are preferable, and triethylamine is particularly preferable.
 上記アミン化合物b2の他の例としては、R、Rが炭素原子数1~8(好ましくは1~3、典型的には1または2)のアルキル基であり、かつ、Rが水素原子であるものが挙げられる。そのようなアミン化合物b2の具体例として、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジヘプシルアミン、ジオクチルアミン、ジシクロヘキシルアミン、N‐エチルメチルアミン、N‐メチルプロピルアミン、N‐エチルプロピルアミン、N‐ブチルメチルアミン、N‐ブチルエチルアミン、N‐メチルペンチルアミン、N‐エチルペンチルアミン、N‐ヘキシルメチルアミン、N‐エチルヘキシルアミン;等が例示される。 As another example of the amine compound b2, R 3 and R 5 are alkyl groups having 1 to 8 carbon atoms (preferably 1 to 3, typically 1 or 2), and R 4 is hydrogen. What is an atom is mentioned. Specific examples of such amine compound b2 include dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, dicyclohexylamine, N-ethylmethylamine, N-methylpropylamine, N -Ethylpropylamine, N-butylmethylamine, N-butylethylamine, N-methylpentylamine, N-ethylpentylamine, N-hexylmethylamine, N-ethylhexylamine;
 上記アミン化合物b2の他の例としては、Rが炭素原子数1~8(好ましくは1~3、典型的には1または2)のアルキル基であり、Rが水素原子または炭素原子数1~8(好ましくは1~3、典型的には1または2)のアルキル基であり、かつ、Rが炭素原子数1~6(好ましくは1~3、典型的には1または2)のアミノアルキル基であるものが挙げられる。そのようなアミン化合物b2の具体例として、N,N’‐ジメチルエチレンジアミン、トリメチルエチレンジアミン、テトラメチルエチレンジアミン、N,N’‐ジエチルエチレンジアミン、トリエチルエチレンジアミン、テトラエチルエチレンジアミン、N‐エチル‐N’‐メチルエチレンジアミン、N,N‐ジメチル‐N’‐エチルエチレンジアミン、N,N‐ジエチル‐N’‐メチルエチレンジアミン、N,N‐ジエチル‐N’N’‐ジメチルエチレンジアミン、N,N’‐ジメチルトリメチレンジアミン、トリメチルトリメチレンジアミン、テトラメチルトリメチレンジアミン、N,N’‐ジエチルトリメチレンジアミン、トリエチルトリメチレンジアミン、テトラエチルトリメチレンジアミン、N‐エチル‐N’‐メチルトリメチレンジアミン;等が例示される。 As another example of the amine compound b2, R 3 is an alkyl group having 1 to 8 carbon atoms (preferably 1 to 3, typically 1 or 2), and R 4 is a hydrogen atom or a carbon atom number. 1 to 8 (preferably 1 to 3, typically 1 or 2) alkyl group, and R 5 has 1 to 6 carbon atoms (preferably 1 to 3, typically 1 or 2). And those having an aminoalkyl group. Specific examples of such amine compound b2 include N, N′-dimethylethylenediamine, trimethylethylenediamine, tetramethylethylenediamine, N, N′-diethylethylenediamine, triethylethylenediamine, tetraethylethylenediamine, N-ethyl-N′-methylethylenediamine, N, N-dimethyl-N'-ethylethylenediamine, N, N-diethyl-N'-methylethylenediamine, N, N-diethyl-N'N'-dimethylethylenediamine, N, N'-dimethyltrimethylenediamine, trimethyltri Methylenediamine, tetramethyltrimethylenediamine, N, N′-diethyltrimethylenediamine, triethyltrimethylenediamine, tetraethyltrimethylenediamine, N-ethyl-N′-methyltrimethylenediamine; Etc. are exemplified.
 上記アミン化合物b2の他の例としては、R、Rが炭素原子数1~6(好ましくは1~3、典型的には1または2)のアルキル基またはアミノアルキル基であり、かつ、R、Rが互いに結合して環状構造を形成している含窒素複素環化合物が挙げられる。そのようなアミン化合物b2の具体例として、イミダゾール、1‐メチルイミダゾール、4‐メチルイミダゾール、1,2‐ジメチルイミダゾール、2,4‐ジメチルイミダゾール、1‐エチルイミダゾール、4‐エチルイミダゾール、1,2‐ジエチルイミダゾール、2‐エチル‐4‐メチルイミダゾール、1‐プロピルイミダゾール、4‐プロピルイミダゾール、1‐ブチルイミダゾール、4‐ブチルイミダゾール、ピラゾール、イミダゾリン、ピペラジン、1‐メチルピペラジン、2‐メチルピペラジン、1‐エチルピペラジン、2‐エチルピペラジン、1‐エチル‐4‐メチルピペラジン、1‐(2‐ジメチルアミノエチル)ピペラジン、1‐(2‐ジメチルアミノエチル)‐4‐メチルピペラジン、1‐プロピルピペラジン、2‐プロピルピペラジン、1‐ブチルピペラジン、4‐ブチルピペラジン;等が例示される。なかでも、イミダゾール、1‐メチルイミダゾール、4‐メチルイミダゾール、1‐エチルイミダゾール、4‐エチルイミダゾールが好ましく、特にはイミダゾールが好ましい。 As another example of the amine compound b2, R 3 and R 5 are an alkyl group or an aminoalkyl group having 1 to 6 carbon atoms (preferably 1 to 3, typically 1 or 2), and Examples thereof include nitrogen-containing heterocyclic compounds in which R 3 and R 5 are bonded to each other to form a cyclic structure. Specific examples of such amine compound b2 include imidazole, 1-methylimidazole, 4-methylimidazole, 1,2-dimethylimidazole, 2,4-dimethylimidazole, 1-ethylimidazole, 4-ethylimidazole, 1,2 -Diethylimidazole, 2-ethyl-4-methylimidazole, 1-propylimidazole, 4-propylimidazole, 1-butylimidazole, 4-butylimidazole, pyrazole, imidazoline, piperazine, 1-methylpiperazine, 2-methylpiperazine, 1 -Ethylpiperazine, 2-ethylpiperazine, 1-ethyl-4-methylpiperazine, 1- (2-dimethylaminoethyl) piperazine, 1- (2-dimethylaminoethyl) -4-methylpiperazine, 1-propylpiperazine, 2 - B pills piperazine, 1-butyl piperazine, 4-butyl piperazine; and the like. Of these, imidazole, 1-methylimidazole, 4-methylimidazole, 1-ethylimidazole, 4-ethylimidazole are preferable, and imidazole is particularly preferable.
(アミン化合物B3)
 ここに開示されるロールオフ化合物Bの他の好適例として、分子内にエーテル結合を含むアミン化合物B3が挙げられる。アミン化合物B3におけるアミノ基の級数は特に限定されないが、少なくとも1つの1級アミノ基を有するものであることが好ましい。アミン化合物B3におけるアミノ基の総数は、例えば1~12、典型的には1~10であり得る。アミン化合物B3におけるアミノ基の総数は、例えば1~8であってもよく、典型的には1~4であってもよい。アミン化合物B3におけるエーテル結合の数は、例えば1~10であり、典型的には1~8である。アミン化合物B3におけるエーテル結合の数は、例えば1~6であってもよく、典型的には1~4であってもよい。
(Amine compound B3)
Another preferred example of the roll-off compound B disclosed herein is an amine compound B3 containing an ether bond in the molecule. The series of amino groups in the amine compound B3 is not particularly limited, but preferably has at least one primary amino group. The total number of amino groups in the amine compound B3 can be, for example, 1 to 12, typically 1 to 10. The total number of amino groups in the amine compound B3 may be, for example, 1 to 8, and typically 1 to 4. The number of ether bonds in the amine compound B3 is, for example, 1 to 10, and typically 1 to 8. The number of ether bonds in the amine compound B3 may be, for example, 1 to 6, and typically 1 to 4.
 ここに開示される技術において特に好ましいアミン化合物B3の例として、下記一般式(b3)で表されるアミン化合物b3が挙げられる。
 R-N(R)-(CH-O-R     (b3)
(式中、R、Rは、それぞれ独立に、水素原子、アルキル基、エーテル結合を有するアルキル基、アミノアルキル基からなる群から選択される。R、Rは互いに結合して環状構造を形成していてもよい。nは1~15の整数である。(CHは分岐鎖を有していてもよい。Rはアルキル基、エーテル結合を有するアルキル基、アミノアルキル基、エーテル結合を有するアミノアルキル基、アミノ基からなる群から選択される。
An example of the amine compound B3 that is particularly preferable in the technology disclosed herein is an amine compound b3 represented by the following general formula (b3).
R 6 —N (R 7 ) — (CH 2 ) n —O—R 8 (b3)
(Wherein R 6 and R 7 are each independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkyl group having an ether bond, and an aminoalkyl group. R 6 and R 7 are bonded to each other to form a ring. N may be an integer of 1 to 15. (CH 2 ) n may have a branched chain, R 8 is an alkyl group, an alkyl group having an ether bond, an aminoalkyl Selected from the group consisting of a group, an aminoalkyl group having an ether bond, and an amino group.
 上記アミン化合物b3において、アミノ基を構成する窒素原子上の置換基R、Rは、水素原子、アルキル基、エーテル結合を有するアルキル基またはアミノアルキル基であり得る。アルキル基、エーテル結合を有するアルキル基およびアミノアルキル基は、直鎖状、分岐状、環状のいずれであってもよい。アルキル基、エーテル結合を有するアルキル基およびアミノアルキル基における炭素原子の総数は1~15(好ましくは1~12、より好ましくは1~10、さらに好ましくは2~6)であり得る。R、Rは同じであってもよく異なっていてもよい。また、R、Rは互いに結合して環状構造を形成していてもよい。R、Rがアルキル基の場合、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基、デシル基等が挙げられる。エーテル結合を有するアルキル基は、少なくとも1つのエーテル結合を有するアルキル基をいう。R、Rがエーテル結合を有するアルキル基の場合、例えば、メトキシメチル基、メトキシエチル基、2‐メトキシエトキシメチル基等が挙げられる。R、Rがアミノアルキル基の場合、例えば、アミノメチル基、アミノエチル基、アミノプロピル基、アミノブチル基、メチルアミノエチル基、ジメチルアミノエチル基、2‐(2‐アミノエチルアミノ)エチル基等が挙げられる。また、上記アミン化合物b3において、nは(CH)の繰り返し数を表す。nは1~15の整数であり、好ましくは1~10、より好ましくは1~8、さらに好ましくは1~6(例えば1~4、典型的には2または3)である。(CHは分岐鎖を有してもよい。Rは、アルキル基、エーテル結合を有するアルキル基、アミノアルキル基、エーテル結合を有するアミノアルキル基、またはアミノ基であり得る。アルキル基、エーテル結合を有するアルキル基、アミノアルキル基およびエーテル結合を有するアミノアルキル基は、直鎖状、分岐状、環状のいずれであってもよい。アルキル基、エーテル結合を有するアルキル基、アミノアルキル基およびエーテル結合を有するアミノアルキル基における炭素原子の総数は1~10(好ましくは1~6、より好ましくは1~4、さらに好ましくは1~3)であり得る。エーテル結合を有するアミノアルキル基は、少なくとも1つのエーテル結合を有するアミノアルキル基をいう。Rがエーテル結合を有するアミノアルキル基の場合、例えば、2‐アミノエトキシエチル基、2‐アミノプロポキシエチル基、3‐アミノエトキシプロピル基、3‐アミノプロポキシプロピル基等が挙げられる。 In the amine compound b3, the substituents R 6 and R 7 on the nitrogen atom constituting the amino group can be a hydrogen atom, an alkyl group, an alkyl group having an ether bond, or an aminoalkyl group. The alkyl group, the alkyl group having an ether bond, and the aminoalkyl group may be linear, branched, or cyclic. The total number of carbon atoms in the alkyl group, the alkyl group having an ether bond, and the aminoalkyl group may be 1 to 15 (preferably 1 to 12, more preferably 1 to 10, more preferably 2 to 6). R 6 and R 7 may be the same or different. R 6 and R 7 may be bonded to each other to form a cyclic structure. When R 6 and R 7 are alkyl groups, examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group. An alkyl group having an ether bond refers to an alkyl group having at least one ether bond. When R 6 and R 7 are alkyl groups having an ether bond, examples thereof include a methoxymethyl group, a methoxyethyl group, and a 2-methoxyethoxymethyl group. When R 6 and R 7 are aminoalkyl groups, for example, aminomethyl group, aminoethyl group, aminopropyl group, aminobutyl group, methylaminoethyl group, dimethylaminoethyl group, 2- (2-aminoethylamino) ethyl Groups and the like. In the amine compound b3, n represents the number of repetitions of (CH 2 ). n is an integer of 1 to 15, preferably 1 to 10, more preferably 1 to 8, and still more preferably 1 to 6 (eg, 1 to 4, typically 2 or 3). (CH 2 ) n may have a branched chain. R 8 may be an alkyl group, an alkyl group having an ether bond, an aminoalkyl group, an aminoalkyl group having an ether bond, or an amino group. The alkyl group, the alkyl group having an ether bond, the aminoalkyl group, and the aminoalkyl group having an ether bond may be linear, branched, or cyclic. The total number of carbon atoms in the alkyl group, the alkyl group having an ether bond, the aminoalkyl group and the aminoalkyl group having an ether bond is 1 to 10 (preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 3). ). An aminoalkyl group having an ether bond refers to an aminoalkyl group having at least one ether bond. When R 8 is an aminoalkyl group having an ether bond, examples thereof include a 2-aminoethoxyethyl group, a 2-aminopropoxyethyl group, a 3-aminoethoxypropyl group, a 3-aminopropoxypropyl group, and the like.
 上記アミン化合物b3の一好適例としては、R、Rの両方が水素原子であるものが挙げられる。例えば、R、Rの両方が水素原子であり、(CH)の繰り返し数nが1~6(好ましくは1~4、典型的には1~3)であり、かつ、Rがアミノアルキル基またはエーテル結合を有するアミノアルキル基であるものが好ましい。そのようなアミン化合物b3の具体例として、ビス(アミノメチル)エーテル、ビス(2‐アミノエチル)エーテル、ビス(3‐アミノプロピル)エーテル、エチレングリコールビス(2‐アミノエチル)エーテル、エチレングリコールビス(3‐アミノプロピル)エーテル、1,3‐プロパンジオールビス(2‐アミノエチル)エーテル、1,3‐プロパンジオールビス(3‐アミノプロピル)エーテル、1,4‐ブタンジオールビス(2‐アミノエチル)エーテル、1,4‐ブタンジオールビス(3‐アミノプロピル)エーテル、1,5‐ペンタンジオールビス(2‐アミノエチル)エーテル、1,5‐ペンタンジオールビス(3‐アミノプロピル)エーテル、ジエチレングリコールビス(3‐アミノプロピル)エーテル、1,11‐ジアミノ‐3,6,9‐トリオキサウンデカン;等が例示される。なかでも、1,4‐ブタンジオールビス(3‐アミノプロピル)エーテルが好ましい。 A preferred example of the amine compound b3 is one in which both R 6 and R 7 are hydrogen atoms. For example, both R 6 and R 7 are hydrogen atoms, the number of repetitions (CH 2 ) n is 1 to 6 (preferably 1 to 4, typically 1 to 3), and R 8 is Those which are aminoalkyl groups or aminoalkyl groups having an ether bond are preferred. Specific examples of such amine compound b3 include bis (aminomethyl) ether, bis (2-aminoethyl) ether, bis (3-aminopropyl) ether, ethylene glycol bis (2-aminoethyl) ether, and ethylene glycol bis. (3-aminopropyl) ether, 1,3-propanediol bis (2-aminoethyl) ether, 1,3-propanediol bis (3-aminopropyl) ether, 1,4-butanediol bis (2-aminoethyl) ) Ether, 1,4-butanediol bis (3-aminopropyl) ether, 1,5-pentanediol bis (2-aminoethyl) ether, 1,5-pentanediol bis (3-aminopropyl) ether, diethylene glycol bis (3-Aminopropyl) ether, 1,11-di Mino 3,6,9 trio key sound decane and the like. Of these, 1,4-butanediol bis (3-aminopropyl) ether is preferable.
 上記アミン化合物b3の他の例として、例えば、R、Rの両方が炭素原子数1~4のアルキル基であり、(CH)の繰り返し数nが1~6(好ましくは1~4、典型的には1~3)であり、かつ、Rがアミノアルキル基またはエーテル結合を有するアミノアルキル基であるものが好ましい。そのようなアミン化合物b3の具体例として、ビス(ジメチルアミノメチル)エーテル、ビス(2‐ジメチルアミノエチル)エーテル、ビス(3‐ジメチルアミノプロピル)エーテル、エチレングリコールビス(2‐ジメチルアミノエチル)エーテル、エチレングリコールビス(3‐ジメチルアミノプロピル)エーテル、1,3‐プロパンジオールビス(2‐ジメチルアミノエチル)エーテル、1,3‐プロパンジオールビス(3‐ジメチルアミノプロピル)エーテル、1,4‐ブタンジオールビス(2‐ジメチルアミノエチル)エーテル、1,4‐ブタンジオールビス(3‐ジメチルアミノプロピル)エーテル、ビス(ジエチルアミノメチル)エーテル、ビス(2‐ジエチルアミノエチル)エーテル;等が例示される。 As another example of the amine compound b3, for example, both R 6 and R 7 are alkyl groups having 1 to 4 carbon atoms, and the number n of (CH 2 ) repeats is 1 to 6 (preferably 1 to 4). , Typically 1 to 3), and R 8 is preferably an aminoalkyl group or an aminoalkyl group having an ether bond. Specific examples of such amine compound b3 include bis (dimethylaminomethyl) ether, bis (2-dimethylaminoethyl) ether, bis (3-dimethylaminopropyl) ether, ethylene glycol bis (2-dimethylaminoethyl) ether. , Ethylene glycol bis (3-dimethylaminopropyl) ether, 1,3-propanediol bis (2-dimethylaminoethyl) ether, 1,3-propanediol bis (3-dimethylaminopropyl) ether, 1,4-butane Examples thereof include diol bis (2-dimethylaminoethyl) ether, 1,4-butanediol bis (3-dimethylaminopropyl) ether, bis (diethylaminomethyl) ether, bis (2-diethylaminoethyl) ether;
 上記アミン化合物b3の他の例として、R、Rの両方が水素原子であり、(CH)の繰り返し数nが1~6(好ましくは1~4、典型的には1~3)であり、かつ、Rが炭素原子数1~6(好ましくは1~4、典型的には1~3)のアルキル基であるものが挙げられる。そのようなアミン化合物b3の具体例として、2‐メトキシエチルアミン、2‐エトキシエチルアミン、2‐プロポキシエチルアミン、2‐ブトキシエチルアミン、2‐ペンチルオキシエチルアミン、3‐メトキシプロピルアミン、3‐エトキシプロピルアミン、3‐プロポキシプロピルアミン、3‐ブトキシプロピルアミン、3‐ペンチルオキシプロピルアミン;等が例示される。 As another example of the amine compound b3, both of R 6 and R 7 are hydrogen atoms, and the number of repetitions (CH 2 ) n is 1 to 6 (preferably 1 to 4, typically 1 to 3). And R 8 is an alkyl group having 1 to 6 (preferably 1 to 4, typically 1 to 3) carbon atoms. Specific examples of such amine compound b3 include 2-methoxyethylamine, 2-ethoxyethylamine, 2-propoxyethylamine, 2-butoxyethylamine, 2-pentyloxyethylamine, 3-methoxypropylamine, 3-ethoxypropylamine, 3 -Propoxypropylamine, 3-butoxypropylamine, 3-pentyloxypropylamine; and the like.
 上記アミン化合物b3の他の例としては、R、Rが互いに異なるものが挙げられる。例えば、R、Rのうち一方が水素原子であり、他方が炭素原子数1~4のアルキル基であり、かつ、Rがアミノアルキル基またはエーテル結合を有するアミノアルキル基であるものが好ましい。そのようなアミン化合物b3の具体例として、ビス(メチルアミノメチル)エーテル、ビス(2‐メチルアミノエチル)エーテル、ビス(3‐メチルアミノプロピル)エーテル、エチレングリコールビス(2‐メチルアミノエチル)エーテル、エチレングリコールビス(3‐メチルアミノプロピル)エーテル、1,3‐プロパンジオールビス(2‐メチルアミノエチル)エーテル、1,3‐プロパンジオールビス(3‐メチルアミノプロピル)エーテル、1,4‐ブタンジオールビス(2‐メチルアミノエチル)エーテル、1,4‐ブタンジオールビス(3‐メチルアミノプロピル)エーテル、ビス(エチルアミノメチル)エーテル、ビス(2‐エチルアミノエチル)エーテル;等が例示される。 Other examples of the amine compound b3 include those in which R 6 and R 7 are different from each other. For example, one of R 6 and R 7 is a hydrogen atom, the other is an alkyl group having 1 to 4 carbon atoms, and R 8 is an aminoalkyl group or an aminoalkyl group having an ether bond. preferable. Specific examples of such amine compound b3 include bis (methylaminomethyl) ether, bis (2-methylaminoethyl) ether, bis (3-methylaminopropyl) ether, ethylene glycol bis (2-methylaminoethyl) ether. , Ethylene glycol bis (3-methylaminopropyl) ether, 1,3-propanediol bis (2-methylaminoethyl) ether, 1,3-propanediol bis (3-methylaminopropyl) ether, 1,4-butane Examples include diol bis (2-methylaminoethyl) ether, 1,4-butanediol bis (3-methylaminopropyl) ether, bis (ethylaminomethyl) ether, bis (2-ethylaminoethyl) ether; .
 上記アミン化合物b3の他の例としては、R、Rのうち一方が水素原子であり、他方が炭素原子数1~4のアルキル基であり、(CH)の繰り返し数nが1~6(好ましくは1~4、典型的には1~3)であり、かつ、Rが炭素原子数1~6(好ましくは1~4、典型的には1~3)のアルキル基であるものが挙げられる。そのようなアミン化合物b3の具体例として、N‐メチル‐2‐メトキシエチルアミン、N‐メチル‐2‐エトキシエチルアミン、N‐メチル‐2‐プロポキシエチルアミン、N‐メチル‐2‐ブトキシエチルアミン、N‐メチル‐2‐ペンチルオキシエチルアミン、N‐メチル‐2‐へキシロキシエチルアミン、N‐メチル‐2‐ヘプチルオキシエチルアミン、N‐メチル‐2‐オクチルオキシエチルアミン、N‐メチル‐3‐エトキシプロピルアミン、N‐メチル‐3‐プロポキシプロピルアミン、N‐メチル‐3‐ブトキシプロピルアミン、N‐メチル‐3‐ペンチルオキシプロピルアミン、N‐メチル‐3‐ヘキシルオキシプロピルアミン、N‐メチル‐3‐へプチルオキシプロピルアミン;等が例示される。 As another example of the amine compound b3, one of R 6 and R 7 is a hydrogen atom, the other is an alkyl group having 1 to 4 carbon atoms, and the repeating number n of (CH 2 ) is 1 to 1 6 (preferably 1 to 4, typically 1 to 3), and R 8 is an alkyl group having 1 to 6 carbon atoms (preferably 1 to 4, typically 1 to 3). Things. Specific examples of such amine compound b3 include N-methyl-2-methoxyethylamine, N-methyl-2-ethoxyethylamine, N-methyl-2-propoxyethylamine, N-methyl-2-butoxyethylamine, and N-methyl. -2-pentyloxyethylamine, N-methyl-2-hexyloxyethylamine, N-methyl-2-heptyloxyethylamine, N-methyl-2-octyloxyethylamine, N-methyl-3-ethoxypropylamine, N- Methyl-3-propoxypropylamine, N-methyl-3-butoxypropylamine, N-methyl-3-pentyloxypropylamine, N-methyl-3-hexyloxypropylamine, N-methyl-3-heptyloxypropyl And the like;
(アミン化合物B4)
 ここに開示されるロールオフ化合物Bの他の好適例として、分子内の2つの1級アミノ基間に炭素原子数1または2の炭化水素基を有するアミン化合物B4が挙げられる。そのようなアミン化合物B4の具体例として、メチレンジアミン、エチレンジアミン、1‐メチルエチレンジアミン、1‐エチルエチレンジアミン、1‐プロピルエチレンジアミン、1,1-ジメチルエチレンジアミン、1,1-ジエチルエチレンジアミン、1,2‐ジメチルエチレンジアミン、1‐エチル‐1‐メチルエチレンジアミン、1‐エチル‐2‐メチルエチレンジアミン;等が例示される。なかでも、エチレンジアミンが好ましい。
(Amine compound B4)
Another preferred example of the roll-off compound B disclosed herein is an amine compound B4 having a hydrocarbon group having 1 or 2 carbon atoms between two primary amino groups in the molecule. Specific examples of such amine compound B4 include methylenediamine, ethylenediamine, 1-methylethylenediamine, 1-ethylethylenediamine, 1-propylethylenediamine, 1,1-dimethylethylenediamine, 1,1-diethylethylenediamine, 1,2-dimethyl. Examples include ethylenediamine, 1-ethyl-1-methylethylenediamine, 1-ethyl-2-methylethylenediamine; and the like. Of these, ethylenediamine is preferred.
ロールアップアミン化合物Aとロールオフ化合物Bとのモル濃度の好適な比は、ロールアップアミン化合物Aの種類、ロールオフ化合物Bの種類、それらの組合せ等によって異なり得る。以下に挙げる濃度比は例示であって、これらの濃度比に限定されるものではない。ロールアップアミン化合物Aとしてアミン化合物a2を用いる場合、アミン化合物a2とロールオフ化合物Bとのモル濃度の比(アミン化合物a2:ロールオフ化合物B)は、1:10~100:1であることが好ましい。上記モル濃度比は、より好ましくは1:5~50:1、さらに好ましくは1:1~10:1である。ロールアップアミン化合物Aとしてアミン化合物a4を用いる場合、アミン化合物a4とロールオフ化合物Bとのモル濃度の比(アミン化合物a4:ロールオフ化合物B)は、1:10~200:1であることが好ましい。上記モル濃度値は、より好ましくは1:5~100:1、さらに好ましくは1:1~50:1である。ロールアップアミン化合物Aとしてアミン化合物a5を用いる場合、アミン化合物a5とロールオフ化合物Bとのモル濃度の比(アミン化合物a5:ロールオフ化合物B)は、1:500~5:1であることが好ましい。上記モル濃度比は、より好ましくは1:50~2:1、さらに好ましくは1:25~1:2である。ロールアップアミン化合物Aとしてアミン化合物a6を用いる場合、アミン化合物a6とロールオフ化合物Bとのモル濃度の比(アミン化合物a6:ロールオフ化合物B)は、1:10~100:1であることが好ましい。上記モル濃度比は、より好ましくは1:5~50:1、さらに好ましくは1:2~25:1である。 A suitable ratio of the molar concentration of the roll-up amine compound A and the roll-off compound B may vary depending on the type of the roll-up amine compound A, the type of the roll-off compound B, a combination thereof, and the like. The concentration ratios listed below are examples and are not limited to these concentration ratios. When the amine compound a2 is used as the roll-up amine compound A, the molar concentration ratio of the amine compound a2 and the roll-off compound B (amine compound a2: roll-off compound B) is 1:10 to 100: 1. preferable. The molar concentration ratio is more preferably 1: 5 to 50: 1, and further preferably 1: 1 to 10: 1. When the amine compound a4 is used as the roll-up amine compound A, the molar concentration ratio of the amine compound a4 and the roll-off compound B (amine compound a4: roll-off compound B) is 1:10 to 200: 1. preferable. The molar concentration value is more preferably 1: 5 to 100: 1, and further preferably 1: 1 to 50: 1. When the amine compound a5 is used as the roll-up amine compound A, the molar concentration ratio of the amine compound a5 and the roll-off compound B (amine compound a5: roll-off compound B) is 1: 500 to 5: 1. preferable. The molar concentration ratio is more preferably 1:50 to 2: 1, and further preferably 1:25 to 1: 2. When the amine compound a6 is used as the roll-up amine compound A, the molar concentration ratio of the amine compound a6 and the roll-off compound B (amine compound a6: roll-off compound B) is 1:10 to 100: 1. preferable. The molar concentration ratio is more preferably 1: 5 to 50: 1, still more preferably 1: 2 to 25: 1.
 <水>
 ここに開示される研磨用組成物は、典型的には、上記エーテル結合非含有アミン化合物のほかに水を含む。水としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。使用する水は、研磨用組成物に含有される他の成分の働きが阻害されることを極力回避するため、例えば遷移金属イオンの合計含有量が100ppb以下であることが好ましい。例えば、イオン交換樹脂による不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって水の純度を高めることができる。
 ここに開示される研磨用組成物は、必要に応じて、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)をさらに含有してもよい。通常は、研磨用組成物に含まれる溶媒の90体積%以上が水であることが好ましく、95体積%以上(典型的には99~100体積%)が水であることがより好ましい。
<Water>
The polishing composition disclosed herein typically contains water in addition to the ether bond-free amine compound. As water, ion exchange water (deionized water), pure water, ultrapure water, distilled water and the like can be preferably used. The water to be used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid as much as possible the action of other components contained in the polishing composition. For example, the purity of water can be increased by operations such as removal of impurity ions with an ion exchange resin, removal of foreign matter with a filter, distillation, and the like.
The polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary. Usually, 90% by volume or more of the solvent contained in the polishing composition is preferably water, and 95% by volume or more (typically 99 to 100% by volume) is more preferably water.
 <砥粒>
 ここに開示される研磨用組成物は、エーテル結合非含有アミン化合物および水のほかに砥粒を含有する。ここに開示される技術において、砥粒の材質や性状は特に制限されず、研磨用組成物の使用目的や使用態様等に応じて適宜選択することができる。砥粒の例としては、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、ベンガラ粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子やポリ(メタ)アクリル酸粒子(ここで(メタ)アクリル酸とは、アクリル酸およびメタクリル酸を包括的に指す意味である。)、ポリアクリロニトリル粒子等が挙げられる。このような砥粒は、1種を単独でまたは2種以上を組み合わせて用いることができる。
<Abrasive>
The polishing composition disclosed herein contains abrasive grains in addition to an ether bond-free amine compound and water. In the technology disclosed herein, the material and properties of the abrasive grains are not particularly limited, and can be appropriately selected according to the purpose of use or the mode of use of the polishing composition. Examples of the abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles. Specific examples of the inorganic particles include silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, oxide particles such as bengara particles; Examples thereof include nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate. Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles and poly (meth) acrylic acid particles (here, (meth) acrylic acid is a generic term for acrylic acid and methacrylic acid). And polyacrylonitrile particles. Such abrasive grains can be used singly or in combination of two or more.
 上記砥粒としては、無機粒子が好ましく、なかでも金属または半金属の酸化物からなる粒子が好ましい。ここに開示される技術において使用し得る砥粒の好適例としてシリカ粒子が挙げられる。例えば、ここに開示される技術をシリコンウェーハの研磨に使用され得る研磨用組成物に適用する場合、砥粒としてシリカ粒子を用いることが特に好ましい。その理由は、研磨対象物がシリコンウェーハである場合、研磨対象物と同じ元素と酸素原子とからなるシリカ粒子を砥粒として使用すれば研磨後にシリコンとは異なる金属または半金属の残留物が発生せず、シリコンウェーハ表面の汚染や研磨対象物内部にシリコンとは異なる金属または半金属が拡散することによるシリコンウェーハとしての電気特性の劣化などの虞がなくなるからである。さらに、シリコンとシリカの硬度が近いため、シリコンウェーハ表面に過度なダメージを与えることなく研磨加工を行うことができる。かかる観点から好ましい研磨用組成物の一形態として、砥粒としてシリカ粒子のみを含有する研磨用組成物が例示される。また、シリカは高純度のものが得られやすいという性質を有する。このことも砥粒としてシリカ粒子が好ましい理由として挙げられる。シリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ、沈降シリカ等が挙げられる。研磨対象物表面にスクラッチを生じにくく、よりヘイズの低い表面を実現し得るという観点から、好ましいシリカ粒子としてコロイダルシリカおよびフュームドシリカが挙げられる。なかでもコロイダルシリカが好ましい。例えば、シリコンウェーハのポリシング(予備ポリシングおよびファイナルポリシングの少なくとも一方、好ましくは予備ポリシング)に用いられる研磨用組成物の砥粒として、コロイダルシリカを好ましく採用し得る。 As the abrasive, inorganic particles are preferable, and particles made of metal or metalloid oxide are particularly preferable. As a suitable example of abrasive grains that can be used in the technique disclosed herein, silica particles can be mentioned. For example, when the technique disclosed herein is applied to a polishing composition that can be used for polishing a silicon wafer, it is particularly preferable to use silica particles as abrasive grains. The reason is that when the object to be polished is a silicon wafer, if silica particles consisting of the same elements and oxygen atoms as the object to be polished are used as abrasive grains, a metal or metalloid residue different from silicon is generated after polishing. This is because there is no possibility of contamination of the silicon wafer surface or deterioration of electrical characteristics as a silicon wafer due to diffusion of a metal or semimetal different from silicon into the object to be polished. Furthermore, since the hardness of silicon and silica is close, polishing can be performed without undue damage to the silicon wafer surface. A polishing composition containing only silica particles as an abrasive is exemplified as a preferred embodiment of the polishing composition from this viewpoint. Silica has a property that it can be easily obtained in high purity. This is also cited as the reason why silica particles are preferable as the abrasive grains. Specific examples of the silica particles include colloidal silica, fumed silica, precipitated silica and the like. Colloidal silica and fumed silica are preferable as silica particles from the viewpoint that scratches are hardly generated on the surface of the object to be polished and a surface having a lower haze can be realized. Of these, colloidal silica is preferred. For example, colloidal silica can be preferably employed as abrasive grains of a polishing composition used for polishing a silicon wafer (at least one of preliminary polishing and final polishing, preferably preliminary polishing).
 シリカ粒子を構成するシリカの真比重は、1.5以上であることが好ましく、より好ましくは1.6以上、さらに好ましくは1.7以上である。シリカの真比重の増大によって、シリコンウェーハを研磨する際に、研磨レート(単位時間当たりに研磨対象物の表面を除去する量)が向上し得る。研磨対象物の表面(研磨対象面)に生じるスクラッチを低減する観点からは、真比重が2.2以下のシリカ粒子が好ましい。シリカの真比重としては、置換液としてエタノールを用いた液体置換法による測定値を採用し得る。 The true specific gravity of silica constituting the silica particles is preferably 1.5 or more, more preferably 1.6 or more, and even more preferably 1.7 or more. By increasing the true specific gravity of silica, the polishing rate (amount for removing the surface of the object to be polished per unit time) can be improved when polishing a silicon wafer. From the viewpoint of reducing scratches generated on the surface of the object to be polished (surface to be polished), silica particles having a true specific gravity of 2.2 or less are preferable. As the true specific gravity of silica, a measured value by a liquid substitution method using ethanol as a substitution liquid can be adopted.
 ここに開示される技術において、研磨用組成物中に含まれる砥粒は、一次粒子の形態であってもよく、複数の一次粒子が会合した二次粒子の形態であってもよい。また、一次粒子の形態の砥粒と二次粒子の形態の砥粒とが混在していてもよい。好ましい一態様では、少なくとも一部の砥粒が二次粒子の形態で研磨用組成物中に含まれている。 In the technique disclosed herein, the abrasive grains contained in the polishing composition may be in the form of primary particles or may be in the form of secondary particles in which a plurality of primary particles are associated. Further, abrasive grains in the form of primary particles and abrasive grains in the form of secondary particles may be mixed. In a preferred embodiment, at least a part of the abrasive grains is contained in the polishing composition in the form of secondary particles.
 砥粒の平均一次粒子径DP1は特に制限されないが、研磨速度等の観点から、好ましくは5nm以上、より好ましくは10nm以上、特に好ましくは20nm以上である。より高い研磨効果を得る観点から、平均一次粒子径DP1は、25nm以上が好ましく、30nm以上がさらに好ましい。平均一次粒子径DP1が40nm以上の砥粒を用いてもよい。また、保存安定性(例えば分散安定性)の観点から、砥粒の平均一次粒子径は、好ましくは100nm以下、より好ましくは80nm以下、さらに好ましくは70nm以下、例えば60nm以下である。
 なお、ここに開示される技術において、砥粒の平均一次粒子径DP1は、例えば、BET法により測定される比表面積(BET値)から、DP1(nm)=6000/(真密度(g/cm)×BET値(m/g))の式により算出され得る。例えばシリカ粒子の場合、DP1(nm)=2727/BET値(nm)の式により算出することができる。比表面積の測定は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて行うことができる。
There is no particular average primary particle diameter D P1 of the abrasive grains limited, from the viewpoint of polishing rate, preferably 5nm or more, more preferably 10nm or more, particularly preferably 20nm or more. From the viewpoint of obtaining a higher polishing effect, the average primary particle diameter D P1 is preferably at least 25 nm, further preferably not less than 30 nm. Abrasive grains having an average primary particle diameter DP1 of 40 nm or more may be used. Further, from the viewpoint of storage stability (for example, dispersion stability), the average primary particle diameter of the abrasive grains is preferably 100 nm or less, more preferably 80 nm or less, still more preferably 70 nm or less, for example 60 nm or less.
In the technology disclosed herein, the average primary particle diameter D P1 of the abrasive grains is, for example, from the specific surface area (BET value) measured by the BET method, D P1 (nm) = 6000 / (true density (g / Cm 3 ) × BET value (m 2 / g)). For example, in the case of silica particles, it can be calculated by the formula of D P1 (nm) = 2727 / BET value (nm). The specific surface area can be measured using, for example, a surface area measuring device manufactured by Micromeritex Corporation, a trade name “Flow Sorb II 2300”.
 砥粒の平均二次粒子径DP2は特に限定されないが、研磨速度等の観点から、好ましくは15nm以上、より好ましくは25nm以上である。より高い研磨効果を得る観点から、平均二次粒子径DP2は、40nm以上であることが好ましく、50nm以上であることがより好ましい。また、保存安定性(例えば分散安定性)の観点から、砥粒の平均二次粒子径DP2は、200nm以下が適当であり、好ましくは150nm以下、より好ましくは100nm以下である。砥粒の平均二次粒子径DP2は、例えば、日機装株式会社製の型式「UPA-UT151」を用いた動的光散乱法により測定することができる。 But not limited abrasive grains having an average secondary particle diameter D P2 in particular, from the viewpoint of polishing rate is preferably 15nm or more, and more preferably 25nm or more. From the viewpoint of obtaining a higher polishing effect, the average secondary particle diameter DP2 is preferably 40 nm or more, and more preferably 50 nm or more. From the viewpoint of storage stability (e.g., dispersion stability), average secondary particle diameter D P2 of the abrasive grains is appropriately 200nm or less, preferably 150nm or less, more preferably 100nm or less. Average abrasive grain of the secondary particle diameter D P2, for example, can be measured by a dynamic light scattering method using a Nikkiso Co. Model "UPA-UT151".
 砥粒の平均二次粒子径DP2は、一般に砥粒の平均一次粒子径DP1と同等以上(DP2/DP1≧1)であり、典型的にはDP1よりも大きい(DP2/DP1>1)。特に限定するものではないが、研磨効果および研磨後の表面平滑性の観点から、砥粒のDP2/DP1は、通常は1.05~3の範囲にあることが適当であり、1.1~2.5の範囲が好ましく、1.2~2.3(例えば1.3を超えて2.2以下)の範囲がより好ましい。 The average secondary particle diameter D P2 of the abrasive grains is generally equal to or greater than the average primary particle diameter D P1 of the abrasive grains (D P2 / D P1 ≧ 1) and is typically larger than D P1 (D P2 / D P1 > 1). Although not particularly limited, in view of the polishing effect and the surface smoothness after polishing, the D P2 / D P1 of the abrasive grains is usually suitably in the range of 1.05 to 3, and The range of 1 to 2.5 is preferable, and the range of 1.2 to 2.3 (for example, more than 1.3 and 2.2 or less) is more preferable.
 砥粒の形状(外形)は、球形であってもよく、非球形であってもよい。非球形をなす砥粒の具体例としては、ピーナッツ形状(すなわち、落花生の殻の形状)、繭型形状、金平糖形状、ラグビーボール形状等が挙げられる。 The shape (outer shape) of the abrasive grains may be spherical or non-spherical. Specific examples of non-spherical abrasive grains include a peanut shape (that is, a peanut shell shape), a bowl shape, a confetti shape, and a rugby ball shape.
 特に限定するものではないが、砥粒の一次粒子の長径/短径比の平均値(平均アスペクト比)は、好ましくは1.05以上、さらに好ましくは1.1以上である。砥粒の平均アスペクト比の増大によって、より高い研磨レートが実現され得る。また、砥粒の平均アスペクト比は、スクラッチ低減等の観点から、好ましくは3.0以下であり、より好ましくは2.0以下、さらに好ましくは1.5以下である。 Although not particularly limited, the average value (average aspect ratio) of the major axis / minor axis ratio of the primary particles of the abrasive grains is preferably 1.05 or more, more preferably 1.1 or more. Higher polishing rates can be achieved by increasing the average aspect ratio of the abrasive grains. The average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, and still more preferably 1.5 or less, from the viewpoint of reducing scratches.
 上記砥粒の形状(外形)や平均アスペクト比は、例えば、電子顕微鏡観察により把握することができる。平均アスペクト比を把握する具体的な手順としては、例えば、走査型電子顕微鏡(SEM)を用いて、独立した粒子の形状を認識できる所定個数(例えば200個)の砥粒粒子について、各々の粒子画像に外接する最小の長方形を描く。そして、各粒子画像に対して描かれた長方形について、その長辺の長さ(長径の値)を短辺の長さ(短径の値)で除した値を長径/短径比(アスペクト比)として算出する。上記所定個数の粒子のアスペクト比を算術平均することにより、平均アスペクト比を求めることができる。 The shape (outer shape) and average aspect ratio of the abrasive grains can be grasped by, for example, observation with an electron microscope. As a specific procedure for grasping the average aspect ratio, for example, a predetermined number (for example, 200) of abrasive particles capable of recognizing the shape of independent particles using a scanning electron microscope (SEM) is used. Draw the smallest rectangle that circumscribes the image. For the rectangle drawn for each particle image, the value obtained by dividing the length of the long side (major axis value) by the length of the short side (minor axis value) is the major axis / minor axis ratio (aspect ratio). ). An average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
 研磨用組成物における砥粒の含有量は、典型的には0.01重量%以上であり、0.05重量%以上であることが好ましく、0.1重量%以上であることがより好ましく、0.15重量%以上であることがさらに好ましい。砥粒の含有量の増大によって、より高い研磨レートが実現され得る。また、研磨用組成物の分散安定性、コスト削減等の観点から、通常は、上記含有量は、2重量%以下が適当であり、好ましくは1.5重量%以下、より好ましくは1重量%以下、さらに好ましくは1重量%未満、特に好ましくは0.5重量%以下である。 The content of abrasive grains in the polishing composition is typically 0.01 wt% or more, preferably 0.05 wt% or more, more preferably 0.1 wt% or more, More preferably, it is 0.15 weight% or more. Higher polishing rates can be achieved by increasing the abrasive content. Further, from the viewpoint of dispersion stability of the polishing composition, cost reduction, etc., the content is usually suitably 2% by weight or less, preferably 1.5% by weight or less, more preferably 1% by weight. Hereinafter, it is more preferably less than 1% by weight, particularly preferably 0.5% by weight or less.
 <その他の成分>
 ここに開示される研磨用組成物は、本発明の効果が著しく妨げられない範囲で、水溶性高分子、界面活性剤、緩衝剤、キレート剤、有機酸、有機酸塩、無機酸、無機酸塩、防腐剤、防カビ剤等の、研磨用組成物(典型的には、シリコンウェーハのポリシング工程に用いられる研磨用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。
<Other ingredients>
The polishing composition disclosed herein is a water-soluble polymer, surfactant, buffering agent, chelating agent, organic acid, organic acid salt, inorganic acid, inorganic acid as long as the effects of the present invention are not significantly hindered. Further containing known additives as needed, which can be used for polishing compositions (typically, polishing compositions used in the polishing process of silicon wafers) such as salts, preservatives, and fungicides. May be.
 キレート剤の例としては、研磨用組成物中に含まれ得る金属不純物と錯イオンを形成してこれを捕捉することにより、金属不純物による研磨対象物の汚染を抑制する働きをする。キレート剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。
 キレート剤の例としては、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤が挙げられる。アミノカルボン酸系キレート剤の例には、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸、ジエチレントリアミン五酢酸ナトリウム、トリエチレンテトラミン六酢酸およびトリエチレンテトラミン六酢酸ナトリウムが含まれる。有機ホスホン酸系キレート剤の例には、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸およびα-メチルホスホノコハク酸が含まれる。これらのうち有機ホスホン酸系キレート剤がより好ましく、なかでも好ましいものとしてアミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)およびジエチレントリアミンペンタ(メチレンホスホン酸)が挙げられる。
As an example of the chelating agent, it functions to suppress contamination of an object to be polished by metal impurities by forming and capturing complex ions with metal impurities that can be contained in the polishing composition. A chelating agent can be used individually by 1 type or in combination of 2 or more types.
Examples of chelating agents include aminocarboxylic acid chelating agents and organic phosphonic acid chelating agents. Examples of aminocarboxylic acid chelating agents include ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid sodium, nitrilotriacetic acid, nitrilotriacetic acid sodium, nitrilotriacetic acid ammonium, hydroxyethylethylenediaminetriacetic acid, hydroxyethylethylenediamine sodium triacetate, diethylenetriaminepentaacetic acid Diethylenetriamine sodium pentaacetate, triethylenetetramine hexaacetic acid and sodium triethylenetetramine hexaacetate. Examples of organic phosphonic acid chelating agents include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic). Acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid Ethane-1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4-tricarboxylic acid and α-methylphospho Nosuccinic acid is included. Of these, organic phosphonic acid-based chelating agents are more preferable, and aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), and diethylenetriaminepenta (methylenephosphonic acid) are particularly preferable.
 水溶性高分子の例としては、セルロース誘導体、デンプン誘導体、オキシアルキレン単位を含むポリマー、窒素原子を含有するポリマー、ビニルアルコール系ポリマー等が挙げられる。具体例としては、ヒドロキシエチルセルロース、プルラン、エチレンオキサイドとプロピレンオキサイドとのランダム共重合体やブロック共重合体、ポリビニルアルコール、ポリイソプレンスルホン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリイソアミレンスルホン酸、ポリスチレンスルホン酸塩、ポリアクリル酸塩、ポリ酢酸ビニル、ポリエチレングリコール、ポリビニルピロリドン、ポリアクリロイルモルホリン、ポリアクリルアミド等が挙げられる。水溶性高分子は、1種を単独でまたは2種以上を組み合わせて用いることができる。ここに開示される研磨用組成物は、上記水溶性高分子を実質的に含有しない組成であってもよい。 Examples of water-soluble polymers include cellulose derivatives, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, vinyl alcohol polymers, and the like. Specific examples include hydroxyethyl cellulose, pullulan, random copolymer or block copolymer of ethylene oxide and propylene oxide, polyvinyl alcohol, polyisoprene sulfonic acid, polyvinyl sulfonic acid, polyallyl sulfonic acid, polyisoamylene sulfonic acid. Polystyrene sulfonate, polyacrylate, polyvinyl acetate, polyethylene glycol, polyvinyl pyrrolidone, polyacryloylmorpholine, polyacrylamide and the like. A water-soluble polymer can be used singly or in combination of two or more. The polishing composition disclosed herein may be a composition that does not substantially contain the water-soluble polymer.
 有機酸の例としては、ギ酸、酢酸、プロピオン酸等の脂肪酸、安息香酸、フタル酸等の芳香族カルボン酸、クエン酸、シュウ酸、酒石酸、リンゴ酸、マレイン酸、フマル酸、コハク酸、有機スルホン酸、有機ホスホン酸等が挙げられる。有機酸塩の例としては、有機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩等が挙げられる。無機酸の例としては、硫酸、硝酸、塩酸、炭酸等が挙げられる。無機酸塩の例としては、無機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩が挙げられる。有機酸およびその塩、ならびに無機酸およびその塩は、1種を単独でまたは2種以上を組み合わせて用いることができる。
 防腐剤および防カビ剤の例としては、イソチアゾリン系化合物、パラオキシ安息香酸エステル類、フェノキシエタノール等が挙げられる。
Examples of organic acids include fatty acids such as formic acid, acetic acid and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, citric acid, oxalic acid, tartaric acid, malic acid, maleic acid, fumaric acid, succinic acid, organic Examples include sulfonic acid and organic phosphonic acid. Examples of organic acid salts include alkali metal salts (sodium salts, potassium salts, etc.) and ammonium salts of organic acids. Examples of inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, carbonic acid and the like. Examples of inorganic acid salts include alkali metal salts (sodium salts, potassium salts, etc.) and ammonium salts of inorganic acids. An organic acid and its salt, and an inorganic acid and its salt can be used individually by 1 type or in combination of 2 or more types.
Examples of antiseptics and fungicides include isothiazoline compounds, paraoxybenzoates, phenoxyethanol and the like.
 ここに開示される研磨用組成物は、酸化剤を実質的に含まないことが好ましい。研磨用組成物中に酸化剤が含まれていると、当該組成物が研磨対象物(例えばシリコンウェーハ)に供給されることで該研磨対象物の表面が酸化されて酸化膜が生じ、これにより所要研磨時間が長くなってしまうためである。ここでいう酸化剤の具体例としては、過酸化水素(H)、過硫酸ナトリウム、過硫酸アンモニウム、ジクロロイソシアヌル酸ナトリウム等が挙げられる。なお、研磨用組成物が酸化剤を実質的に含まないとは、少なくとも意図的には酸化剤を含有させないことをいう。したがって、原料や製法等に由来して微量(例えば、研磨用組成物中における酸化剤のモル濃度が0.0005モル/L以下、好ましくは0.0001モル以下、より好ましくは0.00001モル/L以下、特に好ましくは0.000001モル/L以下)の酸化剤が不可避的に含まれている研磨用組成物は、ここでいう酸化剤を実質的に含有しない研磨用組成物の概念に包含され得る。 It is preferable that the polishing composition disclosed here contains substantially no oxidizing agent. When an oxidizing agent is contained in the polishing composition, the composition is supplied to an object to be polished (for example, a silicon wafer), whereby the surface of the object to be polished is oxidized to produce an oxide film. This is because the required polishing time becomes long. Specific examples of the oxidizing agent herein include hydrogen peroxide (H 2 O 2 ), sodium persulfate, ammonium persulfate, sodium dichloroisocyanurate, and the like. In addition, that polishing composition does not contain an oxidizing agent substantially means not containing an oxidizing agent at least intentionally. Therefore, a trace amount (for example, the molar concentration of the oxidant in the polishing composition is 0.0005 mol / L or less, preferably 0.0001 mol or less, more preferably 0.00001 mol / A polishing composition inevitably containing an oxidizing agent of L or less, particularly preferably 0.000001 mol / L or less) is included in the concept of a polishing composition substantially containing no oxidizing agent. Can be done.
 研磨用組成物のpHは、8.0以上(例えば8.5以上)であることが好ましく、より好ましくは9.0以上、さらに好ましくは9.5以上(例えば10.0以上)である。研磨用組成物のpHが高くなると、研磨レートが向上する傾向にある。研磨用組成物のpHの上限値は特に制限されないが、12.0以下(例えば11.8以下)であることが好ましく、11.5以下であることがより好ましい。このことによって、研磨対象物をより良く研磨することができる。上記pHは、シリコンウェーハの研磨に用いられる研磨用組成物に好ましく適用され得る。 The pH of the polishing composition is preferably 8.0 or more (for example, 8.5 or more), more preferably 9.0 or more, and further preferably 9.5 or more (for example, 10.0 or more). When the pH of the polishing composition increases, the polishing rate tends to improve. The upper limit of the pH of the polishing composition is not particularly limited, but is preferably 12.0 or less (for example, 11.8 or less), and more preferably 11.5 or less. As a result, the object to be polished can be better polished. The pH can be preferably applied to a polishing composition used for polishing a silicon wafer.
 <研磨用組成物の調製>
 ここに開示される研磨用組成物の製造方法は特に限定されない。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、研磨用組成物に含まれる各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。
<Preparation of polishing composition>
The manufacturing method of polishing composition disclosed here is not specifically limited. For example, each component contained in the polishing composition may be mixed using a well-known mixing device such as a blade-type stirrer, an ultrasonic disperser, or a homomixer. The aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once and may be mixed in the order set suitably.
 ここに開示される研磨用組成物は、一剤型であってもよいし、二剤型を始めとする多剤型であってもよい。例えば、該研磨用組成物の構成成分(典型的には、水系溶媒以外の成分)のうち一部の成分を含むA液と、残りの成分を含むB液とが混合されて研磨対象物の研磨に用いられるように構成されていてもよい。 The polishing composition disclosed herein may be a one-part type or a multi-part type including a two-part type. For example, the liquid A containing a part of the constituents of the polishing composition (typically, components other than the aqueous solvent) and the liquid B containing the remaining components are mixed to form a polishing object. You may be comprised so that it may be used for grinding | polishing.
 <研磨液>
 ここに開示される研磨用組成物は、典型的には該研磨用組成物を含む研磨液の形態でエポキシガラス樹脂製の加工キャリアに保持された研磨対象物に供給されて、その研磨対象物の研磨に用いられる。上記研磨液は、例えば、ここに開示されるいずれかの研磨用組成物を希釈(典型的には、水により希釈)して調製されたものであり得る。あるいは、該研磨用組成物をそのまま研磨液として使用してもよい。すなわち、ここに開示される技術における研磨用組成物の概念には、研磨対象物に供給されて該研磨対象物の研磨に用いられる研磨液(ワーキングスラリー)と、希釈して研磨液として用いられる濃縮液(研磨液の原液)との双方が包含される。ここに開示される研磨用組成物を含む研磨液の他の例として、該組成物のpHを調整してなる研磨液が挙げられる。
<Polishing liquid>
The polishing composition disclosed herein is supplied to a polishing object typically held in a processing carrier made of epoxy glass resin in the form of a polishing liquid containing the polishing composition, and the polishing object Used for polishing. The polishing liquid may be prepared, for example, by diluting (typically diluting with water) any of the polishing compositions disclosed herein. Or you may use this polishing composition as polishing liquid as it is. That is, the concept of the polishing composition in the technology disclosed herein is used as a polishing liquid diluted with a polishing liquid (working slurry) that is supplied to a polishing object and used for polishing the polishing object. Both concentrated liquid (polishing liquid stock solution) are included. Another example of the polishing liquid containing the polishing composition disclosed herein is a polishing liquid obtained by adjusting the pH of the composition.
 ここに開示される研磨液におけるロールアップアミン化合物Aのモル濃度は特に制限されないが、典型的には0.00005モル/L以上であり、0.0001モル/L以上であることが好ましく、0.00015モル/L以上であることがより好ましく、0.0002モル/L以上であることがさらに好ましい。また、通常は、上記モル濃度は、1モル/L以下が適当であり、好ましくは0.5モル/L以下、より好ましくは0.3モル/L以下、さらに好ましくは0.1モル/L以下、例えば0.05モル/L以下である。 The molar concentration of the roll-up amine compound A in the polishing liquid disclosed herein is not particularly limited, but is typically 0.00005 mol / L or more, preferably 0.0001 mol / L or more, and 0 More preferably, it is 0.00000 mol / L or more, and further more preferably 0.0002 mol / L or more. In general, the molar concentration is suitably 1 mol / L or less, preferably 0.5 mol / L or less, more preferably 0.3 mol / L or less, and still more preferably 0.1 mol / L. Hereinafter, for example, it is 0.05 mol / L or less.
 ここに開示される研磨液におけるロールオフ化合物Bのモル濃度は特に制限されないが、典型的には0.00005モル/L以上であり、0.0001モル/L以上であることが好ましく、0.001モル/L以上であることがより好ましく、0.002モル/L以上であることがさらに好ましい。また、通常は、上記モル濃度は、1モル/L以下が適当であり、好ましくは0.5モル/L以下、より好ましくは0.3モル/L以下、さらに好ましくは0.1モル/L以下、例えば0.05モル/L以下である。 The molar concentration of the roll-off compound B in the polishing liquid disclosed herein is not particularly limited, but is typically 0.00005 mol / L or more, preferably 0.0001 mol / L or more, and It is more preferably 001 mol / L or more, and further preferably 0.002 mol / L or more. In general, the molar concentration is suitably 1 mol / L or less, preferably 0.5 mol / L or less, more preferably 0.3 mol / L or less, and still more preferably 0.1 mol / L. Hereinafter, for example, it is 0.05 mol / L or less.
 ここに開示される研磨液における砥粒の含有量は特に制限されないが、典型的には0.01重量%以上であり、0.03重量%以上であることが好ましく、0.05重量%以上であることがより好ましく、0.1重量%以上であることがさらに好ましい。砥粒の含有量の増大によって、より高い研磨レートが実現され得る。また、研磨用組成物の分散安定性等の観点から、通常は、上記含有量は、15重量%以下が適当であり、好ましくは10重量%以下、より好ましくは5重量%以下、さらに好ましくは3重量%以下、例えば1.2重量%以下である。 The content of abrasive grains in the polishing liquid disclosed herein is not particularly limited, but is typically 0.01% by weight or more, preferably 0.03% by weight or more, and 0.05% by weight or more. It is more preferable that it is 0.1% by weight or more. Higher polishing rates can be achieved by increasing the abrasive content. From the viewpoint of dispersion stability of the polishing composition, the content is usually suitably 15% by weight or less, preferably 10% by weight or less, more preferably 5% by weight or less, and still more preferably. 3% by weight or less, for example 1.2% by weight or less.
 研磨液のpHは、8.0以上(例えば8.5以上)であることが好ましく、より好ましくは9.0以上、さらに好ましくは9.5以上、特に好ましくは10.0以上(例えば10.5以上)である。研磨液のpHが高くなると、研磨レートが向上する傾向にある。研磨液のpHの上限値は特に制限されないが、12.0以下(例えば11.8以下)であることが好ましく、11.5以下であることがより好ましい。このことによって、研磨対象物をより良く研磨することができる。上記pHは、シリコンウェーハの研磨に用いられる研磨液に好ましく適用され得る。 The pH of the polishing liquid is preferably 8.0 or more (for example, 8.5 or more), more preferably 9.0 or more, still more preferably 9.5 or more, and particularly preferably 10.0 or more (for example, 10. 5 or more). When the pH of the polishing liquid increases, the polishing rate tends to improve. The upper limit of the pH of the polishing liquid is not particularly limited, but is preferably 12.0 or less (for example, 11.8 or less), and more preferably 11.5 or less. As a result, the object to be polished can be better polished. The pH can be preferably applied to a polishing liquid used for polishing a silicon wafer.
 <濃縮液>
 ここに開示される研磨用組成物は、研磨対象物に供給される前には濃縮された形態(すなわち、研磨液の濃縮液の形態)であってもよい。このように濃縮された形態の研磨用組成物は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。濃縮倍率は、例えば、体積換算で2倍~60倍程度とすることができる。
<Concentrate>
The polishing composition disclosed herein may be in a concentrated form (that is, in the form of a polishing liquid concentrate) before being supplied to the object to be polished. The polishing composition in such a concentrated form is advantageous from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage and the like. The concentration rate can be, for example, about 2 to 60 times in terms of volume.
 このように濃縮液の形態にある研磨用組成物は、所望のタイミングで希釈して研磨液を調製し、その研磨液を研磨対象物に供給する態様で使用することができる。上記希釈は、典型的には、上記濃縮液に前述の水系溶媒を加えて混合することにより行うことができる。また、上記水系溶媒が混合溶媒である場合、該水系溶媒の構成成分のうち一部の成分のみを加えて希釈してもよく、それらの構成成分を上記水系溶媒とは異なる量比で含む混合溶媒を加えて希釈してもよい。また、後述するように多剤型の研磨用組成物においては、それらのうち一部の剤を希釈した後に他の剤と混合して研磨液を調製してもよく、複数の剤を混合した後にその混合物を希釈して研磨液を調製してもよい。 Thus, the polishing composition in the form of a concentrated liquid can be used in such a manner that a polishing liquid is prepared by diluting at a desired timing and the polishing liquid is supplied to an object to be polished. The dilution can be typically performed by adding and mixing the above-mentioned aqueous solvent to the concentrated solution. In addition, when the aqueous solvent is a mixed solvent, only a part of the components of the aqueous solvent may be added for dilution, and a mixture containing these components in a different ratio from the aqueous solvent. A solvent may be added for dilution. In addition, as will be described later, in a multi-component polishing composition, a part of them may be diluted and then mixed with another agent to prepare a polishing liquid, or a plurality of agents may be mixed. Later, the mixture may be diluted to prepare a polishing liquid.
 上記濃縮液における砥粒の含有量は、例えば50重量%以下とすることができる。研磨用組成物の安定性(例えば、砥粒の分散安定性)や濾過性等の観点から、通常、上記含有量は、好ましくは45重量%以下であり、より好ましくは40重量%以下である。好ましい一態様において、砥粒の含有量を30重量%以下としてもよく、20重量%以下(例えば15重量%以下)としてもよい。また、製造、流通、保存等の際における利便性やコスト低減等の観点から、砥粒の含有量は、例えば1.0重量%以上とすることができ、好ましくは3.0重量%以上、より好ましくは5.0重量%以上、さらに好ましくは7.0重量%以上である。 The content of abrasive grains in the concentrated liquid can be, for example, 50% by weight or less. From the viewpoint of the stability of the polishing composition (for example, dispersion stability of abrasive grains) and filterability, the content is usually preferably 45% by weight or less, more preferably 40% by weight or less. . In a preferred embodiment, the abrasive content may be 30% by weight or less, or 20% by weight or less (eg, 15% by weight or less). From the viewpoint of convenience, cost reduction, etc. during production, distribution, storage, etc., the content of the abrasive grains can be, for example, 1.0% by weight or more, preferably 3.0% by weight or more, More preferably, it is 5.0 weight% or more, More preferably, it is 7.0 weight% or more.
 <用途>
 ここに開示される研磨用組成物は、種々の材質および形状を有する研磨対象物の研磨に適用され得る。研磨対象物の材質は、例えば、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン、ステンレス鋼、ゲルマニウム等の金属もしくは半金属、またはこれらの合金;石英ガラス、アルミノシリケートガラス、ガラス状カーボン等のガラス状物質;アルミナ、シリカ、サファイア、窒化ケイ素、窒化タンタル、炭化チタン等のセラミック材料;炭化ケイ素、窒化ガリウム、ヒ化ガリウム等の化合物半導体基板材料;ポリイミド樹脂等の樹脂材料;等であり得る。これらのうち複数の材質により構成された研磨対象物であってもよい。なかでも、シリコンからなる表面を備えた研磨対象物の研磨に好適である。ここに開示される技術は、例えば、砥粒としてシリカ粒子を含む研磨用組成物(典型的には、砥粒としてシリカ粒子のみを含む研磨用組成物)であって、研磨対象物がシリコンである研磨用組成物に対して特に好ましく適用され得る。
 研磨対象物の形状は特に制限されない。ここに開示される研磨用組成物は、例えば、板状や多面体状等の、平面を有する研磨対象物、もしくは研磨対象物の端部の研磨(例えばウェーハエッジの研磨)に好ましく適用され得る。
<Application>
The polishing composition disclosed herein can be applied to polishing a polishing object having various materials and shapes. The material of the object to be polished is, for example, a metal or semimetal such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, stainless steel, germanium, or an alloy thereof; quartz glass, aluminosilicate glass, glassy carbon, etc. A glassy substance; ceramic material such as alumina, silica, sapphire, silicon nitride, tantalum nitride, titanium carbide; compound semiconductor substrate material such as silicon carbide, gallium nitride, gallium arsenide; resin material such as polyimide resin; obtain. Of these, a polishing object composed of a plurality of materials may be used. Especially, it is suitable for grinding | polishing of the grinding | polishing target object provided with the surface which consists of silicon | silicone. The technique disclosed here is, for example, a polishing composition containing silica particles as abrasive grains (typically, a polishing composition containing only silica particles as abrasive grains), and the object to be polished is silicon. It can be particularly preferably applied to a certain polishing composition.
The shape of the object to be polished is not particularly limited. The polishing composition disclosed herein can be preferably applied to, for example, a polishing object having a flat surface such as a plate shape or a polyhedron shape, or polishing of an end portion of the polishing object (for example, polishing of a wafer edge).
 <研磨方法>
 ここに開示される研磨用組成物は、シリコン(例えば、単結晶または多結晶のシリコンウェーハ)を研磨するための研磨用組成物として好ましく使用され得る。以下、ここに開示される研磨用組成物を用いて研磨対象物を研磨する方法の好適な一態様につき説明する。
 すなわち、ここに開示されるいずれかの研磨用組成物を含む研磨液(スラリー)を用意する。上記研磨液を用意することには、研磨用組成物に、濃度調整(例えば希釈)等の操作を加えて研磨液を調製することが含まれ得る。あるいは、上記研磨用組成物をそのまま研磨液として使用してもよい。また、多剤型の研磨用組成物の場合、上記研磨液を用意することには、それらの剤を混合すること、該混合の前に1または複数の剤を希釈すること、該混合の後にその混合物を希釈すること、等が含まれ得る。
<Polishing method>
The polishing composition disclosed herein can be preferably used as a polishing composition for polishing silicon (for example, a single crystal or polycrystalline silicon wafer). Hereinafter, a preferred embodiment of a method for polishing a polishing object using the polishing composition disclosed herein will be described.
That is, a polishing liquid (slurry) containing any of the polishing compositions disclosed herein is prepared. Preparing the polishing liquid may include preparing a polishing liquid by adding operations such as concentration adjustment (for example, dilution) to the polishing composition. Or you may use the said polishing composition as polishing liquid as it is. Further, in the case of a multi-drug type polishing composition, to prepare the polishing liquid, mixing those agents, diluting one or more agents before the mixing, and after the mixing Diluting the mixture, etc. can be included.
 次いで、その研磨液を研磨対象物に供給し、常法により研磨する。例えば、研磨対象物の1次研磨工程(典型的には両面研磨工程)を行う場合には、ラッピング工程を経た研磨対象物を一般的な研磨装置にセットし、該研磨装置の研磨パッドを通じて上記研磨対象物の表面(研磨対象面)に研磨液を供給する。典型的には、上記研磨液を連続的に供給しつつ、研磨対象物の表面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させる。その後、必要に応じてさらなる2次研磨工程(典型的には片面研磨工程)を経て、最終的にファイナルポリシングを行って研磨対象物の研磨が完了する。
 なお、ここに開示される研磨用組成物を用いる研磨工程において使用される研磨パッドは特に限定されない。例えば、不織布タイプ、スウェードタイプ、ポリウレタンタイプ、砥粒を含むもの、砥粒を含まないもの等のいずれを用いてもよい。
Next, the polishing liquid is supplied to the object to be polished and polished by a conventional method. For example, when performing a primary polishing process (typically a double-side polishing process) of an object to be polished, the object to be polished that has undergone the lapping process is set in a general polishing apparatus, and the above-mentioned is passed through a polishing pad of the polishing apparatus A polishing liquid is supplied to the surface of the object to be polished (surface to be polished). Typically, while supplying the polishing liquid continuously, the polishing pad is pressed against the surface of the object to be polished, and both are relatively moved (for example, rotated). Thereafter, if necessary, a further secondary polishing step (typically a single-side polishing step) is performed, and finally final polishing is performed to complete polishing of the object to be polished.
In addition, the polishing pad used in the polishing process using the polishing composition disclosed herein is not particularly limited. For example, any of non-woven fabric type, suede type, polyurethane type, those containing abrasive grains, and those not containing abrasive grains may be used.
 この明細書によると、ここに開示される研磨用組成物を用いて研磨対象物を研磨する工程を含む研磨物製造方法が提供される。ここに開示される研磨物製造方法は、上記研磨用組成物を用いる研磨工程を経た研磨対象物にファイナルポリシングを施す工程をさらに含んでもよい。ここでファイナルポリシングとは、目的物の製造プロセスにおける最後のポリシング工程(すなわち、その工程の後にはさらなるポリシングを行わない工程)を指す。上記ファイナルポリシング工程は、ここに開示される研磨用組成物を用いて行ってもよく、他の研磨用組成物を用いて行ってもよい。
 好ましい一態様において、上記研磨用組成物を用いる研磨工程は、ファイナルポリシングよりも上流のポリシング工程である。なかでも、ラッピング工程を終えた予備ポリシングに好ましく適用することができる。例えば、ラッピング工程を経た両面研磨工程(典型的には1次研磨工程)や、該両面研磨工程を経た基板に対して行われる最初の片面研磨工程(典型的には最初の2次研磨工程)において好ましく使用され得る。上記両面研磨工程および最初の片面研磨工程では、ファイナルポリシングに比べて要求される研磨レートが大きい。そのため、ここに開示される研磨用組成物は、両面研磨工程および最初の片面研磨工程の少なくとも一方(好ましくは両方)において研磨対象物の研磨に用いられる研磨用組成物として好適である。
According to this specification, there is provided a method for producing a polished article comprising a step of polishing an object to be polished using the polishing composition disclosed herein. The method for producing a polished product disclosed herein may further include a step of subjecting a polishing object that has undergone a polishing step using the polishing composition to a final polishing. Here, final polishing refers to the final polishing step in the manufacturing process of the object (that is, a step in which no further polishing is performed after that step). The final polishing step may be performed using the polishing composition disclosed herein, or may be performed using another polishing composition.
In a preferred embodiment, the polishing step using the polishing composition is a polishing step upstream of final polishing. Especially, it can apply preferably to the preliminary | backup polishing which finished the lapping process. For example, a double-side polishing process (typically a primary polishing process) that has undergone a lapping process, or an initial single-side polishing process (typically an initial secondary polishing process) that is performed on a substrate that has undergone the double-side polishing process. Can be preferably used. In the double-side polishing step and the first single-side polishing step, a required polishing rate is larger than final polishing. Therefore, the polishing composition disclosed herein is suitable as a polishing composition used for polishing a polishing object in at least one (preferably both) of the double-side polishing step and the first single-side polishing step.
 なお、上記研磨用組成物は、いったん研磨に使用したら使い捨てにする態様(いわゆる「掛け流し」)で使用されてもよいし、循環して繰り返し使用されてもよい。研磨用組成物を循環使用する方法の一例として、研磨装置から排出される使用済みの研磨用組成物をタンク内に回収し、回収した研磨用組成物を再度研磨装置に供給する方法が挙げられる。研磨用組成物を循環使用する場合には、掛け流しで使用する場合に比べて、廃液として処理される使用済みの研磨用組成物の量が減ることにより環境負荷を低減できる。また、研磨用組成物の使用量が減ることによりコストを抑えることができる。ここに開示される研磨用組成物を循環使用する場合、その使用中の研磨用組成物に、任意のタイミングで新たな成分、使用により減少した成分または増加させることが望ましい成分を添加してもよい。 Note that the polishing composition may be used in a disposable form (so-called “running”) once used for polishing, or may be repeatedly used after circulation. As an example of a method of circulating and using the polishing composition, there is a method of collecting a used polishing composition discharged from the polishing apparatus in a tank and supplying the recovered polishing composition to the polishing apparatus again. . When the polishing composition is used in a circulating manner, the environmental load can be reduced by reducing the amount of the used polishing composition to be treated as a waste liquid, as compared with the case where the polishing composition is used by pouring. Moreover, cost can be suppressed by reducing the usage-amount of polishing composition. When the polishing composition disclosed herein is used in a circulating manner, a new component, a component reduced by use, or a component desired to increase may be added to the polishing composition in use at any timing. Good.
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り重量基準である。 Hereinafter, some examples relating to the present invention will be described. However, the present invention is not intended to be limited to the examples shown in the examples. In the following description, “parts” and “%” are based on weight unless otherwise specified.
≪試験A≫
 <研磨用組成物の調製>
  (実施例1A)
 砥粒とエーテル結合非含有アミン化合物と脱イオン水とを混合して研磨用組成物を調製した。砥粒としてはシリカ粒子(平均一次粒径50nm)を使用した。エーテル結合非含有アミン化合物としてはトリエチレンテトラミン(以下「TETA」と表記する。)を使用した。研磨用組成物における砥粒の含有量は0.5%、TETAの含有量は研磨用組成物のpHが11.2となる量(1%未満)とした。
≪Test A≫
<Preparation of polishing composition>
Example 1A
A polishing composition was prepared by mixing abrasive grains, an amine bond-free amine compound and deionized water. Silica particles (average primary particle size 50 nm) were used as the abrasive grains. Triethylenetetramine (hereinafter referred to as “TETA”) was used as the amine compound not containing an ether bond. The abrasive grain content in the polishing composition was 0.5%, and the TETA content was such that the polishing composition had a pH of 11.2 (less than 1%).
  (実施例2A)
 TETAに代えて、N‐エチルエチレンジアミン(以下「NEDA」と表記する。)を使用した。研磨用組成物におけるNEDAの含有量は、研磨用組成物のpHが11.2となる量(1%未満)とした。その他の点は実施例1Aと同様にして、本例に係る研磨用組成物を調製した。
(Example 2A)
Instead of TETA, N-ethylethylenediamine (hereinafter referred to as “NEDA”) was used. The NEDA content in the polishing composition was such that the pH of the polishing composition was 11.2 (less than 1%). The other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  (実施例3A)
 TETAに代えて、N‐(2‐アミノエチル)ピペラジン(以下「AEP」と表記する。)を使用した。研磨用組成物におけるAEPの含有量は、研磨用組成物のpHが11.2となる量(1%未満)とした。その他の点は実施例1Aと同様にして、本例に係る研磨用組成物を調製した。
(Example 3A)
Instead of TETA, N- (2-aminoethyl) piperazine (hereinafter referred to as “AEP”) was used. The content of AEP in the polishing composition was such that the pH of the polishing composition was 11.2 (less than 1%). The other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  (実施例4A)
 TETAに代えて、1,6‐ジアミノヘキサン(以下「DAH」と表記する。)を使用した。研磨用組成物におけるDAHの含有量は、研磨用組成物のpHが11.2となる量(1%未満)とした。その他の点は実施例1Aと同様にして、本例に係る研磨用組成物を調製した。
(Example 4A)
Instead of TETA, 1,6-diaminohexane (hereinafter referred to as “DAH”) was used. The content of DAH in the polishing composition was such that the pH of the polishing composition was 11.2 (less than 1%). The other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  (実施例5A)
 TETAに代えて、2‐(2‐アミノエチルアミノ)エタノール(以下「AEAE」と表記する。)を使用した。研磨用組成物におけるAEAEの含有量は、研磨用組成物のpHが11.2となる量(1%未満)とした。その他の点は実施例1Aと同様にして、本例に係る研磨用組成物を調製した。
(Example 5A)
Instead of TETA, 2- (2-aminoethylamino) ethanol (hereinafter referred to as “AEAE”) was used. The content of AEAE in the polishing composition was such that the pH of the polishing composition was 11.2 (less than 1%). The other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  (比較例1A)
 TETAに代えて、水酸化カリウム(以下「KOH」と表記する。)を使用した。研磨用組成物におけるKOHの含有量は、研磨用組成物のpHが11.2となる量とした。その他の点は実施例1Aと同様にして、本例に係る研磨用組成物を調製した。
(Comparative Example 1A)
Instead of TETA, potassium hydroxide (hereinafter referred to as “KOH”) was used. The content of KOH in the polishing composition was such an amount that the pH of the polishing composition was 11.2. The other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  (比較例2A)
 TETAに代えて、テトラエチルアンモニウムヒドロキシド(以下「TEAH」と表記する。)を使用した。研磨用組成物におけるTEAHの含有量は、研磨用組成物のpHが11.2となる量とした。その他の点は実施例1Aと同様にして、本例に係る研磨用組成物を調製した。
(Comparative Example 2A)
Tetraethylammonium hydroxide (hereinafter referred to as “TEAH”) was used in place of TETA. The content of TEAH in the polishing composition was such that the polishing composition had a pH of 11.2. The other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  (比較例3A)
 TETAに代えて、トリエチルアミン(以下「TEA」と表記する。)を使用した。研磨用組成物におけるTEAの含有量は、研磨用組成物のpHが11.2となる量とした。その他の点は実施例1Aと同様にして、本例に係る研磨用組成物を調製した。
(Comparative Example 3A)
Instead of TETA, triethylamine (hereinafter referred to as “TEA”) was used. The TEA content in the polishing composition was such that the polishing composition had a pH of 11.2. The other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  (比較例4A)
 TETAに代えて、3‐エトキシプロピルアミン(以下「EPA」と表記する。)を使用した。研磨用組成物におけるEPAの含有量は、研磨用組成物のpHが11.2となる量とした。その他の点は実施例1Aと同様にして、本例に係る研磨用組成物を調製した。
(Comparative Example 4A)
Instead of TETA, 3-ethoxypropylamine (hereinafter referred to as “EPA”) was used. The content of EPA in the polishing composition was such that the pH of the polishing composition was 11.2. The other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  (比較例5A)
 TETAに代えて、エチレンジアミン(以下「en」と表記する。)を使用した。研磨用組成物におけるenの含有量は、研磨用組成物のpHが11.2となる量とした。その他の点は実施例1Aと同様にして、本例に係る研磨用組成物を調製した。
(Comparative Example 5A)
Instead of TETA, ethylenediamine (hereinafter referred to as “en”) was used. The en content in the polishing composition was such that the pH of the polishing composition was 11.2. The other points were the same as Example 1A, and a polishing composition according to this example was prepared.
  (比較例6A)
 TETAに代えて、1,4‐ブタンジオールビス(3‐アミノプロピル)エーテル(以下「BBAE」と表記する。)を使用した。研磨用組成物におけるBBAEの含有量は、研磨用組成物のpHが11.2となる量とした。その他の点は実施例1Aと同様にして、本例に係る研磨用組成物を調製した。
(Comparative Example 6A)
Instead of TETA, 1,4-butanediol bis (3-aminopropyl) ether (hereinafter referred to as “BBAE”) was used. The content of BBAE in the polishing composition was such that the pH of the polishing composition was 11.2. The other points were the same as Example 1A, and a polishing composition according to this example was prepared.
 <シリコンの研磨レートの評価>
 各例に係る研磨用組成物をそのまま研磨液として使用して、シリコンウェーハに対して研磨試験を行い、シリコンの研磨レートおよびエッジロールオフ量を評価した。試験片としては、6cm×6cmのシリコンウェーハ(伝導型:P型、結晶方位:<100>)を使用した。この試験片を以下の条件で研磨した。そして、以下の計算式(a)、(b)に従って研磨レートを算出した。結果を表1の該当欄に示す。
(a)研磨取り代[cm]=研磨前後のシリコンウェーハの重量の差[g]/シリコンの密度[g/cm](=2.33g/cm)/研磨対象面積[cm](=36cm
(b)研磨レート[nm/分]=研磨取り代[μm]×10/研磨時間[分]
  [研磨条件]
 研磨装置:日本エンギス社製卓上研磨機、型式「EJ-380IN」
 研磨パッド :ニッタハース社製、商品名「MH S-15A」
 研磨圧力:16.8kPa
 定盤回転数:50回転/分
 ヘッド回転数:40回転/分
 研磨取り代:8μm
 研磨液の供給レート:100mL/分(掛け流し使用)
 研磨液の温度:25℃
<Evaluation of polishing rate of silicon>
The polishing composition according to each example was directly used as a polishing liquid, and a silicon wafer was subjected to a polishing test to evaluate the silicon polishing rate and the edge roll-off amount. As a test piece, a 6 cm × 6 cm silicon wafer (conduction type: P type, crystal orientation: <100>) was used. This specimen was polished under the following conditions. The polishing rate was calculated according to the following calculation formulas (a) and (b). The results are shown in the corresponding column of Table 1.
(A) Polishing allowance [cm] = difference in weight of silicon wafer before and after polishing [g] / silicon density [g / cm 3 ] (= 2.33 g / cm 3 ) / polishing target area [cm 2 ] ( = 36cm 2 )
(B) Polishing rate [nm / min] = polishing allowance [μm] × 10 3 / polishing time [min]
[Polishing conditions]
Polishing machine: Desktop polishing machine manufactured by Nippon Engis Co., Ltd. Model “EJ-380IN”
Polishing pad: Product name “MH S-15A” manufactured by Nittahs
Polishing pressure: 16.8 kPa
Surface plate rotation speed: 50 rotations / minute Head rotation speed: 40 rotations / minute Polishing allowance: 8 μm
Polishing liquid supply rate: 100 mL / min
Polishing liquid temperature: 25 ° C
 <エッジロールオフ量評価>
 研磨後のシリコンウェーハの外周部におけるエッジロールオフ量を評価した。エッジロールオフ量の評価は、Zygo社(米国)製の「NewView 5032」を用いてシリコンウェーハ表面の形状変位量を測定することにより行った。具体的には、シリコンウェーハの外周端から中心に向かって2.0mm~4.0mm位置の比較的平坦な領域を基準領域とし、該領域における形状変位量に対して近似する直線(基準直線)を最小二乗法を用いて引く。次に、上記基準直線上の点を基準点とし、外周端位置におけるシリコンウェーハ形状変位量と上記基準点との差を測定し、これをシリコンウェーハのロールオフ値とした。なお、シリコンウェーハの外周端がダレた形状であればロールオフ値はマイナスとなり、一方、跳ね上がった形状であればロールオフ値はプラスとなる。得られた結果を表1の「ロールオフ値(nm)」の欄に示す。
<Edge roll-off amount evaluation>
The edge roll-off amount at the outer peripheral portion of the polished silicon wafer was evaluated. The evaluation of the edge roll-off amount was performed by measuring the shape displacement amount of the silicon wafer surface by using “New View 5032” manufactured by Zygo (USA). Specifically, a straight line (reference straight line) that approximates the amount of shape displacement in this area is defined as a relatively flat area at a position of 2.0 mm to 4.0 mm from the outer peripheral edge of the silicon wafer toward the center. Is subtracted using the method of least squares. Next, using the point on the reference straight line as a reference point, the difference between the silicon wafer shape displacement amount at the outer peripheral end position and the reference point was measured, and this was used as the roll-off value of the silicon wafer. If the outer peripheral edge of the silicon wafer has a sag shape, the roll-off value is negative. On the other hand, if the silicon wafer is bounced up, the roll-off value is positive. The obtained results are shown in the “roll-off value (nm)” column of Table 1.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、前記(1)、(2)の何れかの条件を満たすエーテル結合非含有アミン化合物を用いた実施例1A~5Aの研磨用組成物によると、比較例1A~4A、6Aに比べて、シリコンの研磨レートを格段に向上させることができた。また、実施例1A~5Aの研磨用組成物は、比較例1A~6Aに比べて、シリコンウェーハの端面ダレが抑制され、エッジロールオフ量低減効果に優れるものとなった。この結果から、上記エーテル結合非含有アミン化合物を用いることにより、砥粒の含有量を低く抑えつつ、高い研磨レートとエッジロールオフ量の低減とを高いレベルで両立し得ることが確認できた。 As shown in Table 1, according to the polishing compositions of Examples 1A to 5A using an ether bond-free amine compound that satisfies any of the conditions (1) and (2), Comparative Examples 1A to 4A, Compared with 6A, the polishing rate of silicon could be remarkably improved. In addition, the polishing compositions of Examples 1A to 5A were more effective in reducing the edge roll-off amount because the sagging of the end face of the silicon wafer was suppressed as compared with Comparative Examples 1A to 6A. From this result, it was confirmed that by using the amine compound not containing an ether bond, a high polishing rate and a reduction in the edge roll-off amount can be achieved at a high level while suppressing the content of abrasive grains low.
≪試験B≫
 <ロールオフ量Xおよびロールオフ量X評価>
 ロールアップアミン化合物Aのロールオフ量Xおよびロールオフ化合物Bのロールオフ量Xを以下のとおり評価した。まず表2および表3に記載の化合物をそれぞれ水に溶かしてpH11.0に調整した。その後、シリカ砥粒濃度0.5質量%となるように研磨用組成物を調製した。該研磨用組成物を用いて下記の標準研磨試験条件でシリコンウェーハを研磨した。シリコンウェーハの外周端から中心に向かって2.0mm~4.0mm位置の比較的平坦な領域を基準点とし、外周端から0.5mm位置におけるシリコンウェーハ形状変位量と上記基準点との差をロールオフ量Xおよびロールオフ量Xとして算出した。その結果を表2および表3に示す。なお、表2中の「NEDA」はN‐エチルエチレンジアミンであり、「AEAE」は2‐(2‐アミノエチルアミノ)エタノールであり、「TETA」はトリエチレンテトラミンであり、「AEP」はN‐(2‐アミノエチル)ピペラジンであり、「DETA」はジエチレントリアミンである。表3中の「KOH」は水酸化カリウムであり、「TMAH」は水酸化テトラメチルアンモニウムであり、「en」はエチレンジアミンであり、「TEA」はトリエチルアミンであり、「DEA」はジエチルアミンであり、「m-DACy」は1,2-ジアミノシクロヘキサンであり、「EPA」は3-エトキシプロピルアミンであり、「AMB」は2-アミノ-1-メトキシブタンであり、「BBAE」は1,4‐ブタンジオールビス(3‐アミノプロピル)エーテルである。
  [標準研磨試験条件]
 研磨装置:日本エンギス社製卓上研磨機、型式「EJ-380IN」
 研磨パッド :ニッタハース社製、商品名「MH S-15A」
 研磨圧力:16.8kPa
 定盤回転数:50回転/分
 ヘッド回転数:40回転/分
 研磨取り代:8μm
 研磨液の供給レート:100mL/分(掛け流し使用)
 研磨液の温度:25℃
≪Test B≫
<Rolloff amount X A and roll off quantity X B Evaluation>
The roll-off amount X B of the roll-off amount X A and roll-off compound B rollup amine compound A was evaluated as follows. First, the compounds described in Table 2 and Table 3 were each dissolved in water and adjusted to pH 11.0. Then, polishing composition was prepared so that it might become a silica abrasive grain density | concentration of 0.5 mass%. A silicon wafer was polished under the following standard polishing test conditions using the polishing composition. The reference point is a relatively flat area from 2.0 mm to 4.0 mm from the outer peripheral edge to the center of the silicon wafer, and the difference between the silicon wafer shape displacement at the 0.5 mm position from the outer peripheral edge and the reference point It was calculated as a roll-off amount X A and roll off quantity X B. The results are shown in Tables 2 and 3. In Table 2, “NEDA” is N-ethylethylenediamine, “AEAE” is 2- (2-aminoethylamino) ethanol, “TETA” is triethylenetetramine, and “AEP” is N- (2-aminoethyl) piperazine and “DETA” is diethylenetriamine. In Table 3, “KOH” is potassium hydroxide, “TMAH” is tetramethylammonium hydroxide, “en” is ethylenediamine, “TEA” is triethylamine, “DEA” is diethylamine, “M-DACy” is 1,2-diaminocyclohexane, “EPA” is 3-ethoxypropylamine, “AMB” is 2-amino-1-methoxybutane, and “BBAE” is 1,4- Butanediol bis (3-aminopropyl) ether.
[Standard polishing test conditions]
Polishing machine: Desktop polishing machine manufactured by Nippon Engis Co., Ltd. Model “EJ-380IN”
Polishing pad: Product name “MH S-15A” manufactured by Nittahs
Polishing pressure: 16.8 kPa
Surface plate rotation speed: 50 rotations / minute Head rotation speed: 40 rotations / minute Polishing allowance: 8 μm
Polishing liquid supply rate: 100 mL / min
Polishing liquid temperature: 25 ° C
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <研磨用組成物の調製>
  (実施例1B)
 砥粒とロールアップアミン化合物Aとロールオフ化合物Bと脱イオン水とを混合して研磨用組成物を調製した。砥粒としてはシリカ粒子(平均一次粒径50nm)を使用した。ロールアップアミン化合物AとしてはN‐エチルエチレンジアミン(以下「NEDA」と表記する。)を使用した。ロールオフ化合物Bとしては水酸化カリウム(以下「KOH」と表記する。)を使用した。研磨用組成物における砥粒の含有量は0.5%、NEDAのモル濃度は0.01モル/L、KOHのモル濃度は0.002モル/Lとした。研磨用組成物のpHは11.0に調整した。
<Preparation of polishing composition>
(Example 1B)
Abrasive grains, a roll-up amine compound A, a roll-off compound B, and deionized water were mixed to prepare a polishing composition. Silica particles (average primary particle size 50 nm) were used as the abrasive grains. As the roll-up amine compound A, N-ethylethylenediamine (hereinafter referred to as “NEDA”) was used. As the roll-off compound B, potassium hydroxide (hereinafter referred to as “KOH”) was used. The abrasive content in the polishing composition was 0.5%, the molar concentration of NEDA was 0.01 mol / L, and the molar concentration of KOH was 0.002 mol / L. The pH of the polishing composition was adjusted to 11.0.
  (実施例2B)
 NEDAに代えて、2‐(2‐アミノエチルアミノ)エタノール(以下「AEAE」と表記する。)を使用した。研磨用組成物におけるAEAEのモル濃度は0.02モル/Lとした。その他の点は実施例1Bと同様にして、本例に係る研磨用組成物を調製した。
(Example 2B)
Instead of NEDA, 2- (2-aminoethylamino) ethanol (hereinafter referred to as “AEAE”) was used. The molar concentration of AEAE in the polishing composition was 0.02 mol / L. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  (実施例3B)
 NEDAに代えて、トリエチレンテトラミン(以下「TETA」と表記する。)を使用した。研磨用組成物におけるTETAのモル濃度は0.0003モル/L、KOHのモル濃度は0.004モル/Lとした。その他の点は実施例1Bと同様にして、本例に係る研磨用組成物を調製した。
(Example 3B)
Instead of NEDA, triethylenetetramine (hereinafter referred to as “TETA”) was used. The molar concentration of TETA in the polishing composition was 0.0003 mol / L, and the molar concentration of KOH was 0.004 mol / L. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  (実施例4B)
 NEDAに代えて、N‐(2‐アミノエチル)ピペラジン(以下「AEP」と表記する。)を使用した。KOHに代えて、水酸化テトラメチルアンモニウム(以下「TMAH」と表記する。)を使用した。研磨用組成物におけるAEPのモル濃度は0.0021モル/L、TMAHのモル濃度は0.006モル/Lとした。研磨用組成物における砥粒の含有量は1.1%とした。その他の成分として炭酸カリウム(KCO)0.035%と、エチレンジアミンテトラキス(メチレンホスホン酸)水和物0.0025%とを添加した。その他の点は実施例1Bと同様にして、本例に係る研磨用組成物を調製した。
(Example 4B)
Instead of NEDA, N- (2-aminoethyl) piperazine (hereinafter referred to as “AEP”) was used. Instead of KOH, tetramethylammonium hydroxide (hereinafter referred to as “TMAH”) was used. The molar concentration of AEP in the polishing composition was 0.0021 mol / L, and the molar concentration of TMAH was 0.006 mol / L. The content of abrasive grains in the polishing composition was 1.1%. As other components, 0.035% potassium carbonate (K 2 CO 3 ) and 0.0025% ethylenediaminetetrakis (methylenephosphonic acid) hydrate were added. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  (実施例5B)
 NEDAに代えて、AEAEを使用した。KOHに代えて、TMAHを使用した。研磨用組成物におけるAEAEのモル濃度は0.0026モル/L、TMAHのモル濃度は0.006モル/Lとした。研磨用組成物における砥粒の含有量は1.1%とした。その他の点は実施例1Bと同様にして、本例に係る研磨用組成物を調製した。
(Example 5B)
AEAE was used instead of NEDA. TMAH was used instead of KOH. The molar concentration of AEAE in the polishing composition was 0.0026 mol / L, and the molar concentration of TMAH was 0.006 mol / L. The content of abrasive grains in the polishing composition was 1.1%. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  (実施例6B)
 NEDAに代えて、TETAを使用した。KOHに代えて、エチレンジアミン(以下「en」と表記する。)を使用した。研磨用組成物におけるTETAのモル濃度は0.0013モル/L、enのモル濃度は0.013モル/Lとした。その他の点は実施例1Bと同様にして、本例に係る研磨用組成物を調製した。
(Example 6B)
TETA was used instead of NEDA. Instead of KOH, ethylenediamine (hereinafter referred to as “en”) was used. The molar concentration of TETA in the polishing composition was 0.0013 mol / L, and the molar concentration of en was 0.013 mol / L. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  (実施例7B)
 NEDAに代えて、TETAを使用した。KOHに代えて、トリエチルアミン(以下「TEA」と表記する。)を使用した。研磨用組成物におけるTETAのモル濃度は0.003モル/L、TEAのモル濃度は0.003モル/Lとした。その他の点は実施例1Bと同様にして、本例に係る研磨用組成物を調製した。
(Example 7B)
TETA was used instead of NEDA. Instead of KOH, triethylamine (hereinafter referred to as “TEA”) was used. The molar concentration of TETA in the polishing composition was 0.003 mol / L, and the molar concentration of TEA was 0.003 mol / L. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  (比較例1B)
 NEDAは用いなかった。研磨用組成物におけるKOHのモル濃度は0.004モル/Lとした。その他の点は実施例1Bと同様にして、本例に係る研磨用組成物を調製した。
(Comparative Example 1B)
NEDA was not used. The molar concentration of KOH in the polishing composition was 0.004 mol / L. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  (参考例2B)
 KOHは用いなかった。研磨用組成物におけるNEDAのモル濃度は0.018モル/Lとした。その他の点は実施例1Bと同様にして、本例に係る研磨用組成物を調製した。
(Reference Example 2B)
KOH was not used. The molar concentration of NEDA in the polishing composition was 0.018 mol / L. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  (参考例3B)
 KOHは用いなかった、NEDAに代えて、AEAEを使用した。研磨用組成物におけるAEAEのモル濃度は0.035モル/Lとした。その他の点は実施例1Bと同様にして、本例に係る研磨用組成物を調製した。
(Reference Example 3B)
AEAE was used instead of NEDA, which did not use KOH. The molar concentration of AEAE in the polishing composition was 0.035 mol / L. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  (参考例4B)
 KOHは用いなかった、NEDAに代えて、TETAを使用した。研磨用組成物におけるTETAのモル濃度は0.025モル/Lとした。その他の点は実施例1Bと同様にして、本例に係る研磨用組成物を調製した。
(Reference Example 4B)
TETA was used instead of NEDA, which did not use KOH. The molar concentration of TETA in the polishing composition was 0.025 mol / L. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  (比較例5B)
 NEDAは用いなかった。KOHに加えて、TMAHを使用した。研磨用組成物におけるKOHのモル濃度は0.0007モル/L、TMAHのモル濃度は0.006モル/Lとした。研磨用組成物における砥粒の含有量は1.1%とした。その他の成分として炭酸カリウム(KCO)0.035%と、エチレンジアミンテトラキス(メチレンホスホン酸)水和物0.0025%とを添加した。その他の点は実施例1Bと同様にして、本例に係る研磨用組成物を調製した。
(Comparative Example 5B)
NEDA was not used. In addition to KOH, TMAH was used. The molar concentration of KOH in the polishing composition was 0.0007 mol / L, and the molar concentration of TMAH was 0.006 mol / L. The content of abrasive grains in the polishing composition was 1.1%. As other components, 0.035% potassium carbonate (K 2 CO 3 ) and 0.0025% ethylenediaminetetrakis (methylenephosphonic acid) hydrate were added. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  (比較例6B)
 NEDAは用いなかった。KOHに代えて、TMAHとイミダゾール(以下「imd」と表記する。)を使用した。研磨用組成物におけるTMAHのモル濃度は0.006モル/L、imdのモル濃度は0.004モル/Lとした。研磨用組成物における砥粒の含有量は1.1%とした。その他の点は実施例1Bと同様にして、本例に係る研磨用組成物を調製した。
(Comparative Example 6B)
NEDA was not used. Instead of KOH, TMAH and imidazole (hereinafter referred to as “imd”) were used. In the polishing composition, the molar concentration of TMAH was 0.006 mol / L, and the molar concentration of imd was 0.004 mol / L. The content of abrasive grains in the polishing composition was 1.1%. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
  (比較例7B)
 NEDAは用いなかった。KOHに代えて、enとTEAとを使用した。研磨用組成物におけるenのモル濃度は0.0084モル/L、TEAのモル濃度は0.0014モル/Lとした。その他の点は実施例1Bと同様にして、本例に係る研磨用組成物を調製した。
(Comparative Example 7B)
NEDA was not used. Instead of KOH, en and TEA were used. The molar concentration of en in the polishing composition was 0.0084 mol / L, and the molar concentration of TEA was 0.0014 mol / L. Otherwise, the polishing composition according to this example was prepared in the same manner as in Example 1B.
 各例に係る研磨組成物について、使用したロールアップアミン化合物Aの種類およびモル濃度、ロールオフ化合物Bの種類およびモル濃度を表4に纏めて示す。 Table 4 summarizes the types and molar concentrations of the roll-up amine compound A and the types and molar concentrations of the roll-off compound B used for the polishing composition according to each example.
 <シリコンの研磨レートの評価>
 各例に係る研磨用組成物をそのまま研磨液として使用して、シリコンウェーハに対して研磨試験を行い、シリコンの研磨レートおよびエッジロールオフ量を評価した。試験片としては、6cm×6cmのシリコンウェーハ(伝導型:P型、結晶方位:<100>)を使用した。この試験片を以下の条件で研磨した。そして、以下の計算式(a)、(b)に従って研磨レートを算出した。結果を表4の該当欄に示す。
(a)研磨取り代[cm]=研磨前後のシリコンウェーハの重量の差[g]/シリコンの密度[g/cm](=2.33g/cm)/研磨対象面積[cm](=36cm
(b)研磨レート[nm/分]=研磨取り代[μm]×103/研磨時間[分]
  [研磨条件]
 研磨装置:日本エンギス社製卓上研磨機、型式「EJ-380IN」
 研磨パッド :ニッタハース社製、商品名「MH S-15A」
 研磨圧力:16.8kPa
 定盤回転数:50回転/分
 ヘッド回転数:50回転/分
 研磨取り代:8μm
 研磨液の供給レート:100mL/分(掛け流し使用)
 研磨液の温度:25℃
<Evaluation of polishing rate of silicon>
The polishing composition according to each example was directly used as a polishing liquid, and a silicon wafer was subjected to a polishing test to evaluate the silicon polishing rate and the edge roll-off amount. As a test piece, a 6 cm × 6 cm silicon wafer (conduction type: P type, crystal orientation: <100>) was used. This specimen was polished under the following conditions. The polishing rate was calculated according to the following calculation formulas (a) and (b). The results are shown in the corresponding column of Table 4.
(A) Polishing allowance [cm] = difference in weight of silicon wafer before and after polishing [g] / silicon density [g / cm 3 ] (= 2.33 g / cm 3 ) / polishing target area [cm 2 ] ( = 36cm 2 )
(B) Polishing rate [nm / min] = polishing allowance [μm] × 103 / polishing time [min]
[Polishing conditions]
Polishing machine: Desktop polishing machine manufactured by Nippon Engis Co., Ltd. Model “EJ-380IN”
Polishing pad: Product name “MH S-15A” manufactured by Nittahs
Polishing pressure: 16.8 kPa
Surface plate rotation speed: 50 rotations / minute Head rotation speed: 50 rotations / minute Polishing allowance: 8 μm
Polishing liquid supply rate: 100 mL / min
Polishing liquid temperature: 25 ° C
 <エッジロールオフ量評価>
 研磨後のシリコンウェーハの外周部におけるエッジロールオフ量を評価した。エッジロールオフ量の評価は、Zygo社(米国)製の「NewView 5032」を用いてシリコンウェーハ表面の形状変位量を測定することにより行った。具体的には、シリコンウェーハの外周端から中心に向かって2.0mm~4.0mm位置の比較的平坦な領域を基準領域とし、該領域における形状変位量に対して近似する直線(基準直線)を最小二乗法を用いて引く。次に、上記基準直線上の点を基準点とし、外周端から0.5mm位置におけるシリコンウェーハ形状変位量と上記基準点との差を測定し、これをシリコンウェーハのロールオフ量とした。なお、シリコンウェーハの外周端がダレた形状であればロールオフ量はマイナスとなり、一方、跳ね上がった形状であればロールオフ量はプラスとなる。得られた結果を表4の「ロールオフ量(nm)」の欄に示す。
<Edge roll-off amount evaluation>
The edge roll-off amount at the outer peripheral portion of the polished silicon wafer was evaluated. The evaluation of the edge roll-off amount was performed by measuring the shape displacement amount of the silicon wafer surface by using “New View 5032” manufactured by Zygo (USA). Specifically, a straight line (reference straight line) that approximates the amount of shape displacement in this area is defined as a relatively flat area at a position of 2.0 mm to 4.0 mm from the outer peripheral edge of the silicon wafer toward the center. Is subtracted using the method of least squares. Next, using the point on the reference straight line as a reference point, the difference between the silicon wafer shape displacement at the position of 0.5 mm from the outer peripheral edge and the reference point was measured, and this was used as the roll-off amount of the silicon wafer. Note that the roll-off amount is negative if the outer peripheral edge of the silicon wafer is bent, while the roll-off amount is positive if the silicon wafer is flipped up. The obtained results are shown in the column of “Roll-off amount (nm)” in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、ロールアップアミン化合物Aとロールオフ化合物Bとを組み合わせて用いた実施例1B~7Bの研磨用組成物は、何れもロールオフ量が±70nm以内となり、比較例1B、参考例2B~4B、比較例5B~7Bに比べて研磨後表面の平坦性が良好であった。この結果から、上記ロールアップアミン化合物Aと上記ロールオフ化合物Bとを組み合わせて用いることにより、エッジ近傍と中央部とで厚み差が少ない平坦性のよい研磨後表面を実現し得ることが確認できた。 As shown in Table 4, each of the polishing compositions of Examples 1B to 7B using a combination of roll-up amine compound A and roll-off compound B had a roll-off amount within ± 70 nm, and Comparative Example 1B, Compared to Reference Examples 2B to 4B and Comparative Examples 5B to 7B, the flatness of the surface after polishing was good. From this result, it can be confirmed that by using a combination of the roll-up amine compound A and the roll-off compound B, it is possible to realize a polished surface with good flatness with little thickness difference between the edge and the center. It was.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

Claims (11)

  1.  砥粒と、水と、以下の条件:
    (1)分子内の2つの1級アミノ基間に炭素原子数3以上の炭化水素基を有し、かつ、エーテル結合を有していない;および、
    (2)1級アミノ基と、2級アミノ基および3級アミノ基の少なくとも一方のアミノ基とを有し、かつ、エーテル結合を有していない;
    の少なくとも一方を満たすエーテル結合非含有アミン化合物と
    を含み、
     前記砥粒の含有量が2重量%以下である、研磨用組成物。
    Abrasive grains, water, and the following conditions:
    (1) having a hydrocarbon group having 3 or more carbon atoms between two primary amino groups in the molecule and having no ether bond; and
    (2) having a primary amino group and at least one of a secondary amino group and a tertiary amino group, and having no ether bond;
    An ether bond-free amine compound that satisfies at least one of
    Polishing composition whose content of the said abrasive grain is 2 weight% or less.
  2.  前記エーテル結合非含有アミン化合物の含有量が1重量%未満である、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the content of the amine bond-free amine compound is less than 1% by weight.
  3.  前記砥粒の含有量が1重量%未満である、請求項1または2に記載の研磨用組成物。 The polishing composition according to claim 1 or 2, wherein the content of the abrasive grains is less than 1% by weight.
  4.  前記砥粒はシリカ粒子である、請求項1から3のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 3, wherein the abrasive grains are silica particles.
  5.  シリコンの研磨に用いられる、請求項1から4のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 4, which is used for polishing silicon.
  6.  砥粒と水とロールアップアミン化合物Aとロールオフ化合物Bとを含む、研磨用組成物。 Polishing composition containing abrasive grains, water, roll-up amine compound A, and roll-off compound B.
  7.  前記ロールアップアミン化合物Aとして、以下の条件:
    (1)分子内の2つの1級アミノ基間に炭素原子数3以上の炭化水素基を有し、かつ、エーテル結合を有していない;および、
    (2)1級アミノ基と、2級アミノ基および3級アミノ基の少なくとも一方のアミノ基とを有し、かつ、エーテル結合を有していない;
    の少なくとも一方を満たすエーテル結合非含有アミン化合物を含む、請求項6に記載の研磨用組成物。
    As the roll-up amine compound A, the following conditions:
    (1) having a hydrocarbon group having 3 or more carbon atoms between two primary amino groups in the molecule and having no ether bond; and
    (2) having a primary amino group and at least one of a secondary amino group and a tertiary amino group, and having no ether bond;
    The polishing composition according to claim 6, comprising an ether compound not containing an ether bond that satisfies at least one of the following.
  8.  前記ロールオフ化合物Bとして、以下の化合物: 
    (B1)アンモニア、アンモニウム水酸化物、ホスホニウム水酸化物および金属水酸化物からなる群から選択された少なくとも1種の塩基性化合物;
    (B2)2級アミノ基および3級アミノ基の少なくとも一方のアミノ基を有し、かつ、1級アミノ基を有していないアミン化合物;
    (B3)分子内にエーテル結合を含むアミン化合物;および
    (B4)分子内の2つの1級アミノ基間に炭素原子数1または2の炭化水素基を有するアミン化合物;
    からなる群から選択された少なくとも1種の化合物を含む、請求項6または7に記載の研磨用組成物。
    As the roll-off compound B, the following compounds:
    (B1) at least one basic compound selected from the group consisting of ammonia, ammonium hydroxide, phosphonium hydroxide and metal hydroxide;
    (B2) an amine compound having at least one of a secondary amino group and a tertiary amino group and not having a primary amino group;
    (B3) an amine compound containing an ether bond in the molecule; and (B4) an amine compound having a hydrocarbon group having 1 or 2 carbon atoms between two primary amino groups in the molecule;
    The polishing composition according to claim 6 or 7, comprising at least one compound selected from the group consisting of:
  9.  前記ロールアップアミン化合物Aおよびロールオフ化合物Bのモル濃度の比(ロールアップアミン化合物A:ロールオフ化合物B)が1:500~200:1の範囲である、請求項6から8のいずれか一項に記載の研磨用組成物。 The ratio of the molar concentration of the roll-up amine compound A and roll-off compound B (roll-up amine compound A: roll-off compound B) is in the range of 1: 500 to 200: 1. The polishing composition according to item.
  10.  前記砥粒はシリカ粒子である、請求項6から9のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 6 to 9, wherein the abrasive grains are silica particles.
  11.  シリコンの研磨に用いられる、請求項6から10のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 6 to 10, which is used for polishing silicon.
PCT/JP2018/003326 2017-02-08 2018-02-01 Polishing composition WO2018147148A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018567388A JP7141339B2 (en) 2017-02-08 2018-02-01 Polishing composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017021539 2017-02-08
JP2017-068256 2017-03-30
JP2017068256 2017-03-30
JP2017-021539 2017-09-29

Publications (1)

Publication Number Publication Date
WO2018147148A1 true WO2018147148A1 (en) 2018-08-16

Family

ID=63108187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003326 WO2018147148A1 (en) 2017-02-08 2018-02-01 Polishing composition

Country Status (3)

Country Link
JP (1) JP7141339B2 (en)
TW (1) TW201835284A (en)
WO (1) WO2018147148A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258825A (en) * 2010-06-10 2011-12-22 Nitta Haas Inc Composition for polishing
JP2014509073A (en) * 2011-01-21 2014-04-10 キャボット マイクロエレクトロニクス コーポレイション Silicon polishing composition having improved PSD performance
JP2014194016A (en) * 2013-03-12 2014-10-09 Air Products And Chemicals Inc Chemical mechanical planarization for base material containing tungsten
JP2016023216A (en) * 2014-07-18 2016-02-08 株式会社フジミインコーポレーテッド Polishing composition
JP2016084371A (en) * 2014-10-22 2016-05-19 株式会社フジミインコーポレーテッド Polishing composition
JP2016124943A (en) * 2014-12-26 2016-07-11 ニッタ・ハース株式会社 Polishing composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258825A (en) * 2010-06-10 2011-12-22 Nitta Haas Inc Composition for polishing
JP2014509073A (en) * 2011-01-21 2014-04-10 キャボット マイクロエレクトロニクス コーポレイション Silicon polishing composition having improved PSD performance
JP2014194016A (en) * 2013-03-12 2014-10-09 Air Products And Chemicals Inc Chemical mechanical planarization for base material containing tungsten
JP2016023216A (en) * 2014-07-18 2016-02-08 株式会社フジミインコーポレーテッド Polishing composition
JP2016084371A (en) * 2014-10-22 2016-05-19 株式会社フジミインコーポレーテッド Polishing composition
JP2016124943A (en) * 2014-12-26 2016-07-11 ニッタ・ハース株式会社 Polishing composition

Also Published As

Publication number Publication date
TW201835284A (en) 2018-10-01
JPWO2018147148A1 (en) 2019-11-21
JP7141339B2 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
JP6482234B2 (en) Polishing composition
US9579769B2 (en) Composition for polishing purposes, polishing method using same, and method for producing substrate
JP6360311B2 (en) Polishing composition and method for producing the same
JP6279593B2 (en) Polishing composition, method for producing polishing composition, and method for producing silicon wafer
KR102397821B1 (en) Composition for polishing silicon wafers
CN110312776B (en) Polishing composition, method for producing same, and polishing method using polishing composition
KR101981826B1 (en) Polishing composition, manufacturing process therefor, undiluted liquid, process for producing silicon substrate, and silicon substrate
JP6482200B2 (en) Polishing composition
KR20140117496A (en) Polishing composition, manufacturing process therefor, process for production of silicon substrate, and silicon substrate
TW201402734A (en) Method for producing polishing composition
WO2015005433A1 (en) Polishing composition and method for producing same
TW202024259A (en) Polishing composition
JP6373029B2 (en) Polishing composition
WO2019189124A1 (en) Polishing composition
JP7141339B2 (en) Polishing composition
JP6847692B2 (en) Polishing composition
JP6436638B2 (en) Polishing composition
WO2014057932A1 (en) Process for manufacturing polishing composition, and polishing composition
JP6295052B2 (en) Polishing composition, method for producing polishing composition, and method for producing silicon wafer
CN114450376A (en) Polishing composition
JP2018174321A (en) Polishing composition and polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18752058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018567388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18752058

Country of ref document: EP

Kind code of ref document: A1