WO2018147108A1 - Directional control valve - Google Patents

Directional control valve Download PDF

Info

Publication number
WO2018147108A1
WO2018147108A1 PCT/JP2018/002667 JP2018002667W WO2018147108A1 WO 2018147108 A1 WO2018147108 A1 WO 2018147108A1 JP 2018002667 W JP2018002667 W JP 2018002667W WO 2018147108 A1 WO2018147108 A1 WO 2018147108A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
actuator
spool
flow path
communication
Prior art date
Application number
PCT/JP2018/002667
Other languages
French (fr)
Japanese (ja)
Inventor
岩崎 仁
明紀 阿部
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Priority to CN201880011137.3A priority Critical patent/CN110268168B/en
Priority to KR1020197025973A priority patent/KR102500484B1/en
Publication of WO2018147108A1 publication Critical patent/WO2018147108A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • F15B13/0402Valve members; Fluid interconnections therefor for linearly sliding valves, e.g. spool valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve

Definitions

  • the present invention relates to a direction switching valve that regulates the flow of hydraulic oil.
  • a hydraulic circuit system that drives various actuators with hydraulic oil (that is, pressure oil) supplied from two pumps is known.
  • hydraulic oil that is, pressure oil
  • the flow of hydraulic oil from the two pumps is restricted by a direction switching valve, and the operation of each actuator is controlled.
  • Patent Document 1 discloses a direction switching valve that can selectively form a plurality of types of passage patterns.
  • a plurality of types of passage patterns can be selectively formed by disposing a check valve, a stopper, or the like between each of the tandem passage and the parallel passage and the bridge passage.
  • a hydraulic cylinder having a large area is used as an actuator, and it is necessary to supply a large flow rate of hydraulic oil to the hydraulic cylinder, particularly when driving up.
  • a hydraulic cylinder having a large area is used as an actuator, and it is necessary to supply hydraulic oil with a relatively large flow rate to the hydraulic cylinder in order to move the boom against gravity while ensuring a sufficient speed.
  • the flow rate of the hydraulic oil required for driving the actuator is not necessarily constant, and varies depending on a specific operation state. Therefore, it is preferable to adjust the flow rate of the hydraulic oil supplied to the hydraulic cylinder by the above-described direction switching valve according to the specific operating state of the actuator.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a directional switching valve having a simple structure capable of changing the supply flow rate of hydraulic oil.
  • One aspect of the present invention is a valve main body having a spool hole formed therein, a spool disposed in the spool hole, and a bridge passage formed in a bridge shape and opened to the spool hole, wherein the junction passage and the communication passage are formed by a blocking portion. And a first passage, a second passage, a third passage, and a fourth passage formed in the valve body, and the first passage and the second passage are the first passage and the second passage.
  • the third flow path and the fourth flow path communicate with the second pump, and the spool is disposed at the first position, at least one of the first flow path and the second flow path
  • the spool is disposed at the first position, at least one of the first flow path and the second flow path
  • one side and at least one of the third flow path and the fourth flow path are communicated with the merging passage and the spool is disposed at the second position, the first flow path and the second flow path
  • the present invention relates to a direction switching valve in which at least one of them communicates with a communication passage.
  • the valve body has an actuator passage that opens into the spool hole and communicates with the actuator, and is one of the first flow path and the second flow path and at least one of the third flow path and the fourth flow path.
  • One communicates with the merging passage and the communication passage communicates with the other of the first flow path and the second flow path but does not communicate with the merging passage.
  • the spool is connected to the bridge passage according to the arrangement position in the spool hole. When the communication state and the shut-off state with the actuator passage are changed and the spool is arranged at the first position, the spool communicates with the communication passage while communicating the merging passage with the actuator passage through the spool hole. When the spool is disposed between the actuator passage and the spool is disposed at the second position, the spool passes through the spool hole while blocking between the merging passage and the actuator passage.
  • the communication passage may be communicated with the actuator passage.
  • valve body in which a spool hole is formed, and a spool disposed in the spool hole.
  • the valve body includes a first unload passage communicated with the first pump, a second A second unload passage communicated with the pump, a first supply passage communicated with the first pump, a second supply passage communicated with the second pump, and an actuator opened to the spool hole and communicated with the actuator A passage, a bridge passage opening in the spool hole, a first parallel region capable of forming a first parallel passage for communicating the first supply passage and the bridge passage, and a second for communicating the second supply passage and the bridge passage.
  • a second parallel region capable of forming a parallel passage, a first branch passage that connects any one of the first supply passage and the first unload passage to the bridge passage, a second supply passage, A second branch passage that communicates either one of the unload passages with the bridge passage, and the bridge passage includes the first parallel passage and the merge passage that communicates with the second parallel passage, and the first branch passage.
  • a communication passage that does not communicate with the merging passage, and the spool changes the communication state and the blocking state between the bridge passage and the actuator passage according to the arrangement position in the spool hole, and the spool
  • the spool communicates with the actuator passage through the spool hole while blocking between the communication passage and the actuator passage, and the spool is disposed at the second position.
  • the spool blocks the connection between the joining passage and the actuator passage, and communicates the communication passage with the actuator passage through the spool hole.
  • the direction switching valve is about the direction switching valve.
  • the blocking portion may block one end of the communication passage while closing one end of the junction passage.
  • the actuator passage has a first actuator passage that is disposed closer to the joining passage among the joining passage and the communication passage, and a second actuator passage that is disposed closer to the joining passage among the joining passage and the communication passage.
  • the spool When the spool is disposed at the third position, the spool may block between the junction path and the actuator path while blocking between the communication path and the actuator path.
  • the direction switching valve includes a first check valve that prevents backflow of hydraulic oil from the merging passage to the second flow path, a second check valve that prevents backflow of hydraulic oil from the merging path to the third flow path, and the first from the communication passage. You may further provide at least any one of the 3rd check valve which prevents the backflow of the hydraulic fluid to a flow path, and the 4th check valve which prevents the backflow of the hydraulic oil from a merge channel to a 4th flow path.
  • the actuator may be a hydraulic cylinder.
  • the actuator may be an actuator for driving the boom.
  • a directional switching valve capable of changing the supply flow rate of hydraulic oil can be realized with a simple structure.
  • FIG. 1 is an external view schematically showing a typical configuration example of a hydraulic excavator.
  • FIG. 2 is a sectional view of the direction switching valve.
  • FIG. 3 shows a hydraulic circuit diagram of the excavator, and particularly shows a case where the boom is raised by driving the hydraulic cylinder in the forward direction.
  • FIG. 4 shows a hydraulic circuit diagram of the excavator, and particularly shows a case where the boom is lowered by driving the hydraulic cylinder in the reverse direction.
  • FIG. 1 is an external view showing an outline of a typical configuration example of the excavator 10.
  • the excavator 10 generally includes a lower frame 11 having a crawler, an upper frame 12 provided so as to be pivotable with respect to the lower frame 11, a boom 14 attached to the upper frame 12, and an arm 15 attached to the boom 14. And a bucket 16 attached to the arm 15.
  • the hydraulic cylinders 18, 19, and 20 are boom, arm, and bucket actuators that drive the boom 14, arm 15, and bucket 16, respectively.
  • FIG. 2 is a cross-sectional view of the direction switching valve 30.
  • the direction switching valve 30 is a valve that regulates the flow of hydraulic fluid supplied from the pump to the actuator and hydraulic fluid discharged from the actuator, and can selectively form a desired passage pattern from among a plurality of types of passage patterns.
  • FIG. 2 shows the direction switching valve 30 disposed between the hydraulic cylinder 18 that is an actuator for driving the boom 14 shown in FIG. 1 and the first pump 51 and the second pump 52.
  • a direction switching valve disposed between another actuator (for example, a hydraulic cylinder 19 for driving the arm 15 and / or a hydraulic cylinder 20 for driving the bucket 16 shown in FIG. 1) and the pump, You may have the structure similar to the direction switching valve 30 shown in FIG.
  • the direction switching valve 30 includes a valve main body 31 in which a spool hole 33 is formed, and a spool 32 disposed in the spool hole 33.
  • the spool hole 33 is formed inside the valve body 31, and the spool 32 is slidably disposed.
  • the slide drive system of the spool 32 is not particularly limited, and for example, a mechanical, hydraulic pilot type, or electromagnetic drive structure is used as the direction switching valve 30 in order to slide the spool 32 in the spool hole 33 and arrange it at a desired position. It is possible to adopt.
  • the spool 32 is a substantially columnar member that is inserted into the spool hole 33, and includes a plurality of land portions that are spaced apart from each other in the axial direction and a plurality of notches provided between the land portions. The outer peripheral diameter of each land portion substantially coincides with the inner peripheral diameter of the spool hole 33.
  • each notch is smaller than the inner peripheral diameter of the spool hole 33.
  • the land portion blocks the spool hole 33 between these passages and blocks the flow of hydraulic oil.
  • each notch is disposed between passages, which will be described later, that open to the spool hole 33, it forms a flow path that connects these passages and allows the flow of hydraulic oil.
  • the spool 32 can not only switch between connection and disconnection (that is, presence / absence of connection) between the passages, but can also adjust the flow path opening degree (that is, the valve opening degree) between the passages.
  • the valve body 31 is a block-shaped (lumped) member, and includes a first unload passage 34, a second unload passage 35, a first supply passage 36, a second supply passage 37, an actuator passage 40, a bridge passage 43, and a tank.
  • a passage 58 is provided. Hydraulic fluid flows through these passages.
  • the first unload passage 34 communicates with the first pump 51, and the second unload passage 35 communicates with the second pump 52.
  • the first supply passage 36 is in communication with the first pump 51, and the second supply passage 37 is in communication with the second pump 52.
  • an oil passage extending from the first pump 51 branches in the middle, and one of those oil passages constitutes a first unload passage 34 (particularly the upstream first unload passage 34a), and other oil One of the paths constitutes the first supply passage 36.
  • an oil passage extending from the second pump 52 branches in the middle, and one of those oil passages constitutes a second unload passage 35 (especially the upstream second unload passage 35a), and other oil passages.
  • the first unload passage 34 has an upstream first unload passage 34a and a downstream first unload passage 34b
  • the second unload passage 35 has an upstream second unload passage 35a and a downstream second unload.
  • a passage 35b is provided.
  • the upstream first unload passage 34a and the upstream second unload passage 35a are upstream of the spool hole 33 (that is, the pump side), and the downstream first unload passage 34b and the downstream second unload passage 35a.
  • the load passage 35 b is a passage on the downstream side (that is, the tank side) from the spool hole 33.
  • the first unload passage 34 and the second unload passage 35 are arranged adjacent to each other with respect to the axial direction of the spool 32.
  • the downstream first unload passage 34b and the upstream second unload passage 35a are arranged adjacent to each other, and the upstream first unload passage 34a and the downstream first unload passage 34b are arranged next to each other, upstream.
  • the side second unload passage 35a and the downstream second unload passage 35b are arranged adjacent to each other.
  • the first unload passage 34 and the second unload passage 35 are passages (bypass passages) for returning the hydraulic oil from the first pump 51 and the second pump 52 to the tank without supplying them to the actuator.
  • first unload passage 34 and the second unload passage 35 and the actuator passage 40 that is, the first actuator passage 41 and the second actuator passage 42.
  • One or more land portions of the spool 32 exist. Therefore, each of the first unload passage 34 and the second unload passage 35 does not directly communicate with the actuator passage 40 via the spool hole 33, but the first unload passage 34 and the second unload passage 34 The hydraulic oil is not directly supplied to or discharged from the actuator passage 40 from each of the load passages 35 via the spool holes 33.
  • the hydraulic oil may be supplied to the actuator from the first unload passage 34 and the second unload passage 35.
  • the upstream second unload passage 35a communicates with the second branch passage 49, and hydraulic oil from the upstream second unload passage 35a is supplied to the second branch passage 49, the bridge passage 43 (particularly, It is possible to supply the hydraulic cylinder 18 via the merging passage 45), the spool hole 33 and the actuator passage 40 (particularly the second actuator passage 42).
  • the first supply passage 36 and the second supply passage 37 are passages for supplying hydraulic oil from the first pump 51 and the second pump 52 to the actuator.
  • the first supply passage 36 and the second supply passage 37 are not directly connected to the spool hole 33 but are connected to the spool hole 33 via the bridge passage 43.
  • the first supply passage 36 of the present embodiment is directly connected to the first pump 51, but may be connected to the first pump 51 via the first unload passage 34.
  • the second supply passage 37 of the present embodiment is directly connected to the second pump 52, but may be connected to the second pump 52 via the second unload passage 35.
  • the bridge passage 43 is formed in a bridge shape and opens into the spool hole 33.
  • the bridge passage 43 is formed between the first parallel passage 46, the second parallel passage 47, the first branch passage 48, and the second branch passage 49 and the spool hole 33. Intervene in.
  • the bridge passage 43 is a passage for supplying hydraulic oil to the hydraulic cylinder 18 via the spool hole 33 and the actuator passage 40.
  • the bridge passage 43 of this embodiment has a communication passage 44 and a joining passage 45 that do not communicate with each other, and each of the communication passage 44 and the joining passage 45 opens into the spool hole 33 at a position different from each other.
  • the actuator passage 40 opens to the spool hole 33 and communicates with the hydraulic cylinder 18 that functions as an actuator for driving the boom 14.
  • the actuator passage 40 of the present embodiment has a first actuator passage 41 and a second actuator passage 42.
  • the first actuator passage 41 is disposed closer to the communication passage 44 of the merging passage 45 and the communication passage 44, and is connected to the first port 18 a of the hydraulic cylinder 18.
  • the second actuator passage 42 is disposed closer to the joining passage 45 of the joining passage 45 and the communication passage 44 and is connected to the second port 18 b of the hydraulic cylinder 18.
  • the first port 18 a and the second port 18 b of the hydraulic cylinder 18 function as a supply port or a discharge port for the hydraulic oil to the hydraulic cylinder 18 according to the flow of the hydraulic oil determined based on the arrangement state of the spool 32.
  • the hydraulic cylinder 18 when the first port 18a functions as a discharge port and the second port 18b functions as a supply port, the hydraulic cylinder 18 is driven in the forward direction, and the piston of the hydraulic cylinder 18 protrudes from the cylinder.
  • the first port 18a functions as a supply port and the second port 18b functions as a discharge port the hydraulic cylinder 18 is driven in the reverse direction, and the piston of the hydraulic cylinder 18 is drawn into the cylinder.
  • the tank passage 58 is a passage connected to a tank (see reference numeral “59” in FIGS. 3 and 4), and is a passage for returning the hydraulic oil discharged from the hydraulic cylinder 18 to the tank. Specifically, depending on the arrangement state of the spool 32, the tank passage 58 communicates with the first actuator passage 41 or the second actuator passage 42, or communicates with both the first actuator passage 41 and the second actuator passage 42. do not do.
  • the valve body 31 includes a first parallel region 53, a second parallel region 54, a first tandem region 55, and a second tandem region 56 in addition to the above-described passages.
  • the first parallel region 53 is a region in which a first parallel passage 46 that connects the first supply passage 36 and the bridge passage 43 (particularly the confluence passage 45) can be formed.
  • the second parallel region 54 is a region in which a second parallel passage 47 that allows the second supply passage 37 and the bridge passage 43 (particularly the merge passage 45) to communicate with each other can be formed.
  • the first tandem region 55 allows any one of the first supply passage 36 and the first unload passage 34 (particularly the upstream first unload passage 34a) to communicate with the bridge passage 43 (particularly the communication passage 44). This is a region where the first branch passage 48 can be formed.
  • the first branch passage 48 of the present embodiment connects the first supply passage 36 and the communication passage 44.
  • the second tandem region 56 allows any one of the second supply passage 37 and the second unload passage 35 (particularly the upstream second unload passage 35a) to communicate with the bridge passage 43 (particularly the junction passage 45). This is a region where the second branch passage 49 can be formed.
  • the second branch passage 49 of the present embodiment connects the second unload passage 35 (that is, the upstream second unload passage 35a) and the merge passage 45.
  • the valve body 31 is a blocking portion 50 disposed between the communication passage 44 and the merging passage 45, and has a blocking portion 50 that divides the bridge passage 43 into the communication passage 44 and the merging passage 45.
  • the blocking portion 50 closes one end portion (the right end portion in FIG. 2) of the communication passage 44 while closing one end portion (the left end portion in FIG. 2) of the merging passage 45.
  • the communication passage 44 can communicate with the first branch passage 48 and the spool hole 33, but does not communicate with the merge passage 45.
  • the merging passage 45 can communicate with the first parallel passage 46, the second parallel passage 47, the second branch passage 49, and the spool hole 33, but does not communicate with the communication passage 44.
  • a first check valve 61 is disposed in the first parallel passage 46, a second check valve 62 is disposed in the second parallel passage 47, a third check valve 63 is disposed in the first branch passage 48, and a second A fourth check valve 64 is disposed in the branch passage 49.
  • the first check valve 61 is a valve that prevents the backflow of hydraulic oil from the merging passage 45 to the first parallel passage 46.
  • the pressure of the hydraulic oil in the first parallel passage 46 is greater than the pressure of the hydraulic oil in the merging passage 45. Is larger, the first parallel passage 46 is not blocked. When the pressure of the hydraulic oil in the first parallel passage 46 is smaller than the pressure of the hydraulic oil in the merging passage 45, the first parallel passage 46 is blocked.
  • the second check valve 62 is a valve that prevents the backflow of hydraulic oil from the merging passage 45 to the second parallel passage 47
  • the fourth check valve 64 is an operation from the merging passage 45 to the second branch passage 49. This valve prevents backflow of oil.
  • the third check valve 63 is a valve that prevents the backflow of the hydraulic oil from the communication passage 44 to the first branch passage 48, and the pressure of the hydraulic oil in the first branch passage 48 reduces the hydraulic oil in the communication passage 44. When the pressure is higher than the pressure, the first branch passage 48 is not blocked, and when the pressure of the hydraulic oil in the first branch passage 48 is lower than the pressure of the hydraulic oil in the communication passage 44, the first branch passage 48 is blocked. Block it.
  • Each of the spool 32 and the check valves 61, 62, 63, 64 described above is detachably attached to the valve body 31, and can be replaced with a member other than the configuration shown in FIG. 2 as necessary. May be.
  • another spool having a land portion and a notch portion different from the spool 32 shown in FIG. 2 may be disposed in the spool hole 33.
  • a member such as a plug that blocks the passage may be arranged. Thereby, the direction switching valve 30 can selectively form various passage patterns, and exhibits excellent general-purpose performance.
  • the directional switching valve 30 can supply hydraulic oil to the actuator from only one pump, or supply hydraulic oil to the actuator from two pumps. Further, the direction switching valve 30 can flexibly change and determine whether the oil passage connection mode is parallel connection or tandem connection. In addition, when it is desired to set priority regarding the supply of hydraulic oil to the oil passage, it is possible to form a throttle structure at a corresponding portion of the valve body 31 as necessary.
  • the spool 32 changes the communication state and the blocking state between the bridge passage 43 and the actuator passage 40 according to the arrangement position (that is, the stroke position) in the spool hole 33,
  • the flow direction of hydraulic oil can be changed.
  • FIG. 2 shows a state in which the spool 32 is disposed at the neutral position (that is, the “third position”).
  • the spool 32 (particularly the land portion) shuts off the connection passage 44 and the actuator passage 40 (that is, the first actuator passage 41 and the second actuator passage 42), while the merging passage 45 and the actuator passage 40 (ie, the land portion).
  • the first actuator passage 41 and the second actuator passage 42) are disconnected.
  • the hydraulic oil from the first pump 51 and the second pump 52 does not flow into the spool hole 33 from the bridge passage 43 (that is, the communication passage 44 and the merging passage 45), and the actuator passage 40 (that is, the first actuator passage 41).
  • each of the first actuator passage 41 and the second actuator passage 42 is blocked from the other flow paths to block the hydraulic oil, and the state of the hydraulic cylinder 18 is maintained.
  • the spool 32 is moved from the neutral position in one axial direction (see reference numeral “D1” in FIG. 2) to be arranged at the first operating position (ie, “first position”), or It is also possible to move it from the position in the other axial direction (see reference numeral “D2” in FIG. 2) and place it in the second operating position (ie, “second position”).
  • a land portion of the spool 32 is disposed between the communication passage 44 and the first actuator passage 41, and between the junction passage 45 and the second actuator passage 42. Is provided with a notch portion of the spool 32. A notch portion of the spool 32 is disposed between the first actuator passage 41 and the tank passage 58, and a land portion of the spool 32 is disposed between the second actuator passage 42 and the tank passage 58.
  • the spool 32 communicates the joining passage 45 with the actuator passage 40 (particularly the second actuator passage 42) via the spool hole 33, while the communication passage 44 and the actuator passage 40 (that is, the first actuator passage 41 and the second actuator passage).
  • the passage between the passages 42) is blocked. Further, at least one of the first branch passage 48 (first flow passage) and the first parallel passage 46 (second flow passage) (the first parallel passage 46 in this example) and the second parallel passage 47 (first flow passage). 3 flow paths) and at least one of the second branch passages 49 (fourth flow paths) (in this example, at least the second branch passages 49) communicate with the merge passage 45. Thereby, at least one of the first supply passage 36 and the first unload passage 34 (the first supply passage 36 in this example), and at least one of the second supply passage 37 and the second unload passage 35. Either one (in this example, at least the second unload passage 35) communicates with the merging passage 45.
  • the hydraulic oil that has flowed into the merging passage 45 via the merging flow merges in the merging passage 45 and flows into the second actuator passage 42 via the spool hole 33.
  • the second parallel passage 47 is provided with a diaphragm (not shown) (see FIG. 3). Therefore, the flow rate of the hydraulic oil flowing from the second supply passage 37 into the merge passage 45 is limited by the restriction of the second parallel passage 47.
  • the hydraulic cylinder 18 is supplied with hydraulic oil from the second actuator passage 42 and discharges the hydraulic oil to the tank passage 58 via the first actuator passage 41, and is driven in the forward direction.
  • the forward driving here means driving for moving the boom 14, which requires higher power, among the driving for moving the boom 14 in the vertical direction.
  • a notch portion of the spool 32 is disposed between the communication passage 44 and the first actuator passage 41, and between the joining passage 45 and the second actuator passage 42.
  • the land portion of the spool 32 is disposed in the center.
  • a land portion of the spool 32 is disposed between the first actuator passage 41 and the tank passage 58, and a notch portion of the spool 32 is disposed between the second actuator passage 42 and the tank passage 58.
  • the spool 32 blocks the connection passage 44 through the spool hole 33 and the actuator passage 40 (particularly the first passage) while blocking between the merging passage 45 and the actuator passage 40 (the first actuator passage 41 and the second actuator passage 42). 1 actuator passage 41).
  • first branch passage 48 first flow path
  • first parallel path 46 second flow path
  • first branch passage 48 in this example is communicated with the communication passage 44.
  • first unload passage 34 and the first supply passage 36 in this example, the first supply passage 36
  • first branch passage 48 communicates with the communication passage 44. Therefore, the hydraulic oil that has flowed from the first pump 51 into the communication passage 44 through the first supply passage 36 and the first branch passage 48 flows into the first actuator passage 41 through the spool hole 33.
  • the hydraulic cylinder 18 is supplied with hydraulic oil from the first actuator passage 41 and discharges hydraulic oil to the second actuator passage 42 and is driven in the reverse direction.
  • the driving in the reverse direction referred to here means driving for moving the boom 14 that requires smaller power downward, among driving for moving the boom 14 in the vertical direction.
  • FIG. 3 is a hydraulic circuit diagram of the excavator 10, and particularly shows a case where the boom 14 is raised by driving the hydraulic cylinder 18 in the forward direction.
  • FIG. 4 is a hydraulic circuit diagram of the excavator 10, and particularly shows a case where the boom 14 is lowered by driving the hydraulic cylinder 18 in the reverse direction. 3 and 4, not only the hydraulic circuit for the hydraulic cylinder 18 that drives the boom 14, but also the hydraulic circuit for the swing motor 13, the hydraulic circuit for the hydraulic cylinder 19 that drives the arm 15, and A hydraulic circuit for the hydraulic cylinder 20 that drives the bucket 16 is also shown. In the following, the hydraulic circuit of the hydraulic cylinder 18 that drives the boom 14 will be mainly described. Therefore, the direction switching valves 70, 71, 72 provided for the swing motor 13, the hydraulic cylinder 19, and the hydraulic cylinder 20 are shown in FIGS. At 4, it is neutral.
  • the direction switching valve 30 has the circuit configuration shown in FIG. 3, and the first pump 51 and the second pump 52 and the hydraulic cylinder 18 are connected by an oil passage denoted by reference numeral “30b”.
  • the oil passage extending from the first pump 51 is branched halfway to form the first supply passage 36, and the first parallel passage 46 branched from the first supply passage 36 communicates with the merge passage 45.
  • an upstream second unload passage 35 a is formed by an oil passage extending from the second pump 52, and a second branch passage 49 branched from the upstream second unload passage 35 a communicates with the merge passage 45.
  • a throttle and a second check valve 62 are provided in the second parallel passage 47 branched from the second supply passage 37, and the second parallel passage 47 also communicates with the merging passage 45.
  • the junction passage 45 is communicated with the second actuator passage 42, and the second actuator passage 42 is connected to the second port 18 b of the hydraulic cylinder 18.
  • the first actuator passage 41 connected to the first port 18 a of the hydraulic cylinder 18 is connected to the tank passage 58, and the tank passage 58 is connected to the tank 59.
  • the hydraulic oil from the first pump 51 and the hydraulic oil from the second pump 52 are merged in the merging passage 45 and supplied to the hydraulic cylinder 18 via the second actuator passage 42. Is done.
  • the hydraulic oil flowing out from the hydraulic cylinder 18 is discharged to the tank 59 through the first actuator passage 41 and the tank passage 58. Thereby, the hydraulic cylinder 18 is driven in the forward direction, and the boom 14 is raised.
  • the direction switching valve 30 has the circuit configuration shown in FIG. 4, and the first pump 51 and the second pump 52 and the hydraulic cylinder 18 are connected by an oil passage denoted by reference numeral “30c”.
  • an oil passage extending from the first pump 51 is branched halfway to form a first supply passage 36, and a first branch passage 48 is branched from the first supply passage 36, and the first branch passage 48 communicates.
  • the first actuator passage 41 is communicated with the passage 44.
  • the oil passage extending from the second pump 52 is blocked by the direction switching valve 30 and does not communicate with the actuator passage 40 (that is, the first actuator passage 41 and the second actuator passage 42).
  • the second actuator passage 42 is connected to the tank 59 via the tank passage 58.
  • the hydraulic oil from the first pump 51 is supplied to the hydraulic cylinder 18 via the first supply passage 36, the first branch passage 48, the communication passage 44, and the first actuator passage 41.
  • the hydraulic oil from the second pump 52 is not supplied to the hydraulic cylinder 18.
  • the hydraulic oil flowing out from the hydraulic cylinder 18 is discharged to the tank 59 through the second actuator passage 42 and the tank passage 58. As a result, the hydraulic cylinder 18 is driven in the reverse direction, and the boom 14 is lowered.
  • the spool 32 When the boom 14 is not raised or lowered, the spool 32 is disposed at the neutral position as described above, and the oil path between the first pump 51 and the second pump 52 and the hydraulic cylinder 18 is shown in FIG. This is configured as indicated by reference numeral “30a” in FIG. That is, the first pump 51 and the second pump 52 and the actuator passage 40 (that is, the first actuator passage 41 and the second actuator passage 42) are blocked by the direction switching valve 30, and the hydraulic oil is supplied to the hydraulic cylinder 18. There is no discharge.
  • the supply flow rate of hydraulic oil to the hydraulic cylinder 18 can be changed by the direction switching valve 30 having a simple structure.
  • the hydraulic cylinder 18 supplies a desired amount of hydraulic oil corresponding to the operating state of the hydraulic cylinder 18 only by dividing the bridge passage 43 into the communication passage 44 and the junction passage 45 by the blocking portion 50.
  • the amount of hydraulic oil supplied to the hydraulic cylinder 18 is sufficiently low and the reverse drive is sufficient, the hydraulic oil can be supplied to the hydraulic cylinder 18 only from one pump (that is, the first pump 51).
  • the supply mode of the hydraulic oil can be optimized according to the driving state of the hydraulic cylinder 18, and the energy efficiency can be improved.
  • the direction switching valve 30 that restricts the supply and discharge of the hydraulic oil to and from the hydraulic cylinder 18 for driving the boom 14 has the configuration shown in FIG. , 71 and 72 (particularly the direction switching valves 71 and 72 for regulating the supply and discharge of hydraulic oil to and from the hydraulic cylinders 19 and 20 for driving the arm 15 and the bucket 16) have the configuration shown in FIG. Good.
  • the present invention is not limited to the above-described embodiments and modifications. For example, various modifications may be made to the elements of the above-described embodiments and modifications. In addition, embodiments including components other than the above-described components are also included in the embodiments of the present invention. Further, a form in which some of the above-described components are not included is also included in the embodiment of the present invention. Therefore, the constituent elements included in each of the embodiments and modifications described above and the embodiments of the present invention other than those described above may be combined with each other, and embodiments related to such combinations are also included in the embodiments of the present invention. . Moreover, the effect produced by the present invention is not limited to the above-described effect, and a specific effect corresponding to the specific configuration of each embodiment can be exhibited. As described above, various additions, modifications, and partial deletions may be made to each element described in the claims, the description, the abstract, and the drawings without departing from the technical idea and spirit of the present invention. It is.
  • the merging passage 45 only needs to communicate with one of the first branch passage 48 and the first parallel passage 46 and at least one of the second parallel passage 47 and the second branch passage 49.
  • the communication passage 44 only needs to communicate with the other of the first branch passage 48 and the first parallel passage 46. However, also in this case, the communication passage 44 does not communicate with the merge passage 45.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Valve Housings (AREA)
  • Multiple-Way Valves (AREA)

Abstract

Provided is a simply structured directional control valve that change the supply flow of a hydraulic fluid. According to the present invention, a valve main body (31) has: a first branch passage (48) and a first parallel passage (46) that communicate with a first pump (51); a second branch passage (49) and a second parallel passage (47) that communicate with a second pump (52); and a bridge passage (43) that opens at a spool hole (33). The bridge passage (43) is divided into a confluence passage (45) and a connecting passage (44). When a spool (32) is in a first position, the confluence passage (45) communicates with: the first branch passage (48) and/or the first parallel passage (46); and the second branch passage (49) and/or the second parallel passage (47). When the spool (32) is in a second position, the connecting passage (44) communicates with the first branch passage (48) and/or the first parallel passage (46).

Description

方向切換弁Directional switching valve
 本発明は、作動油の流れを規制する方向切換弁に関する。 The present invention relates to a direction switching valve that regulates the flow of hydraulic oil.
 2つのポンプから供給される作動油(すなわち圧油)によって各種のアクチュエータを駆動する油圧回路システムが知られている。そのような油圧回路システムでは、2つのポンプからの作動油の流れを方向切換弁により規制し、各アクチュエータの動作が制御される。 A hydraulic circuit system that drives various actuators with hydraulic oil (that is, pressure oil) supplied from two pumps is known. In such a hydraulic circuit system, the flow of hydraulic oil from the two pumps is restricted by a direction switching valve, and the operation of each actuator is controlled.
 特許文献1は、複数種類の通路パターンを選択的に形成できる方向切換弁を開示する。この方向切換弁では、タンデム通路及びパラレル通路の各々とブリッジ通路との間にチェックバルブや栓等を配置することで、複数種類の通路パターンの選択的な形成が可能である。 Patent Document 1 discloses a direction switching valve that can selectively form a plurality of types of passage patterns. In this direction switching valve, a plurality of types of passage patterns can be selectively formed by disposing a check valve, a stopper, or the like between each of the tandem passage and the parallel passage and the bridge passage.
特開2016-138619号公報JP 2016-138619 A
 油圧ショベルのブームのような重量のある作動機器を駆動するには、アクチュエータとして面積の大きい油圧シリンダが使われ、とりわけ上昇駆動時には大流量の作動油を油圧シリンダに供給する必要がある。例えば、ブームを上昇させる場合には、十分な速度を確保しつつ重力に抗してブームを移動させるため、比較的大きな流量の作動油を油圧シリンダに供給する必要がある。その一方で、ブームを下降させる場合には、ブームの位置エネルギーを利用することができるため、比較的小さな流量の作動油を油圧シリンダに供給すれば済む。 In order to drive a heavy operating device such as a boom of a hydraulic excavator, a hydraulic cylinder having a large area is used as an actuator, and it is necessary to supply a large flow rate of hydraulic oil to the hydraulic cylinder, particularly when driving up. For example, when the boom is raised, it is necessary to supply hydraulic oil with a relatively large flow rate to the hydraulic cylinder in order to move the boom against gravity while ensuring a sufficient speed. On the other hand, when lowering the boom, since the potential energy of the boom can be used, it is only necessary to supply hydraulic oil with a relatively small flow rate to the hydraulic cylinder.
 このようにアクチュエータの駆動に要する作動油の流量は、必ずしも一定ではなく、具体的な作動状態に応じて変わる。したがって、アクチュエータの具体的な作動状態に応じて、油圧シリンダに供給する作動油の流量を、上述の方向切換弁により調整することが好ましい。しかしながら、そのような方向切換弁を簡単な構造で実現することは容易ではなく、流路、バルブ及び栓等の単なる追加は、方向切換弁の構造を複雑化し、高コスト化を招く。 As described above, the flow rate of the hydraulic oil required for driving the actuator is not necessarily constant, and varies depending on a specific operation state. Therefore, it is preferable to adjust the flow rate of the hydraulic oil supplied to the hydraulic cylinder by the above-described direction switching valve according to the specific operating state of the actuator. However, it is not easy to realize such a directional switching valve with a simple structure, and the mere addition of a flow path, a valve, a plug, and the like complicates the structure of the directional switching valve and causes an increase in cost.
 本発明は上述の事情に鑑みてなされたものであり、作動油の供給流量を変えることができる簡単な構造の方向切換弁を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a directional switching valve having a simple structure capable of changing the supply flow rate of hydraulic oil.
 本発明の一態様は、スプール孔が形成された弁本体と、スプール孔に配置されたスプールと、ブリッジ状に形成されスプール孔に開口するブリッジ通路であって、遮断部によって合流通路と連絡通路とに分断されるブリッジ通路と、弁本体に形成される第1流路、第2流路、第3流路及び第4流路と、を備え、第1流路及び第2流路は第1ポンプに連通され、第3流路及び第4流路は第2ポンプに連通され、スプールが第1の位置に配置された場合、第1流路及び第2流路のうちの少なくともいずれか一方と、第3流路及び第4流路のうちの少なくともいずれか一方とが、合流通路に連通され、スプールが第2の位置に配置された場合、第1流路及び第2流路のうちの少なくともいずれか一方が連絡通路に連通される方向切換弁に関する。 One aspect of the present invention is a valve main body having a spool hole formed therein, a spool disposed in the spool hole, and a bridge passage formed in a bridge shape and opened to the spool hole, wherein the junction passage and the communication passage are formed by a blocking portion. And a first passage, a second passage, a third passage, and a fourth passage formed in the valve body, and the first passage and the second passage are the first passage and the second passage. When communicating with one pump, the third flow path and the fourth flow path communicate with the second pump, and the spool is disposed at the first position, at least one of the first flow path and the second flow path When one side and at least one of the third flow path and the fourth flow path are communicated with the merging passage and the spool is disposed at the second position, the first flow path and the second flow path The present invention relates to a direction switching valve in which at least one of them communicates with a communication passage.
 弁本体は、スプール孔に開口するとともにアクチュエータに連通されるアクチュエータ通路を有し、第1流路及び第2流路のうちの一方及び第3流路及び第4流路のうちの少なくともいずれか一方は合流通路に連通し、連絡通路は、第1流路及び第2流路の他方に連通するが合流通路には連通せず、スプールは、スプール孔における配置位置に応じて、ブリッジ通路とアクチュエータ通路との間の連通状態及び遮断状態を変更し、スプールが第1の位置に配置された場合には、スプールは、スプール孔を介して合流通路をアクチュエータ通路に連通させつつ、連絡通路とアクチュエータ通路との間を遮断し、スプールが第2の位置に配置された場合には、スプールは、合流通路とアクチュエータ通路との間を遮断しつつ、スプール孔を介して連絡通路をアクチュエータ通路に連通させてもよい。 The valve body has an actuator passage that opens into the spool hole and communicates with the actuator, and is one of the first flow path and the second flow path and at least one of the third flow path and the fourth flow path. One communicates with the merging passage, and the communication passage communicates with the other of the first flow path and the second flow path but does not communicate with the merging passage. The spool is connected to the bridge passage according to the arrangement position in the spool hole. When the communication state and the shut-off state with the actuator passage are changed and the spool is arranged at the first position, the spool communicates with the communication passage while communicating the merging passage with the actuator passage through the spool hole. When the spool is disposed between the actuator passage and the spool is disposed at the second position, the spool passes through the spool hole while blocking between the merging passage and the actuator passage. The communication passage may be communicated with the actuator passage.
 本発明の他の態様は、スプール孔が形成された弁本体と、スプール孔に配置されたスプールと、を備え、弁本体は、第1ポンプに連通される第1アンロード通路と、第2ポンプに連通される第2アンロード通路と、第1ポンプに連通される第1供給通路と、第2ポンプに連通される第2供給通路と、スプール孔に開口し、アクチュエータに連通されるアクチュエータ通路と、スプール孔に開口するブリッジ通路と、第1供給通路とブリッジ通路とを連通させる第1パラレル通路を形成可能な第1パラレル領域と、第2供給通路とブリッジ通路とを連通させる第2パラレル通路を形成可能な第2パラレル領域と、第1供給通路及び第1アンロード通路のうちのいずれか一方とブリッジ通路とを連通させる第1分岐通路と、第2供給通路及び第2アンロード通路のうちのいずれか一方とブリッジ通路とを連通させる第2分岐通路と、を有し、ブリッジ通路は、第1パラレル通路及び第2パラレル通路に連通する合流通路と、第1分岐通路に連通するが合流通路には連通しない連絡通路と、を有し、スプールは、スプール孔における配置位置に応じて、ブリッジ通路とアクチュエータ通路との間の連通状態及び遮断状態を変更し、スプールが第1の位置に配置された場合には、スプールは、スプール孔を介して合流通路をアクチュエータ通路に連通させつつ、連絡通路とアクチュエータ通路との間を遮断し、スプールが第2の位置に配置された場合には、スプールは、合流通路とアクチュエータ通路との間を遮断しつつ、スプール孔を介して連絡通路をアクチュエータ通路に連通させる方向切換弁に関する。 Another aspect of the present invention includes a valve body in which a spool hole is formed, and a spool disposed in the spool hole. The valve body includes a first unload passage communicated with the first pump, a second A second unload passage communicated with the pump, a first supply passage communicated with the first pump, a second supply passage communicated with the second pump, and an actuator opened to the spool hole and communicated with the actuator A passage, a bridge passage opening in the spool hole, a first parallel region capable of forming a first parallel passage for communicating the first supply passage and the bridge passage, and a second for communicating the second supply passage and the bridge passage. A second parallel region capable of forming a parallel passage, a first branch passage that connects any one of the first supply passage and the first unload passage to the bridge passage, a second supply passage, A second branch passage that communicates either one of the unload passages with the bridge passage, and the bridge passage includes the first parallel passage and the merge passage that communicates with the second parallel passage, and the first branch passage. And a communication passage that does not communicate with the merging passage, and the spool changes the communication state and the blocking state between the bridge passage and the actuator passage according to the arrangement position in the spool hole, and the spool When the spool is disposed at the first position, the spool communicates with the actuator passage through the spool hole while blocking between the communication passage and the actuator passage, and the spool is disposed at the second position. In this case, the spool blocks the connection between the joining passage and the actuator passage, and communicates the communication passage with the actuator passage through the spool hole. About the direction switching valve.
 遮断部は、合流通路の一方の端部を塞ぎつつ連絡通路の一方の端部を塞いでもよい。 The blocking portion may block one end of the communication passage while closing one end of the junction passage.
 アクチュエータ通路は、合流通路及び連絡通路のうち連絡通路により近接して配置される第1アクチュエータ通路と、合流通路及び連絡通路のうち合流通路により近接して配置される第2アクチュエータ通路と、を有し、スプールが第1の位置に配置された場合には、スプールは、スプール孔を介して合流通路を第2アクチュエータ通路に連通させつつ、連絡通路と第1アクチュエータ通路との間を遮断し、スプールが第2の位置に配置された場合には、スプールは、合流通路と第2アクチュエータ通路との間を遮断しつつ、スプール孔を介して連絡通路を第1アクチュエータ通路に連通させてもよい。 The actuator passage has a first actuator passage that is disposed closer to the joining passage among the joining passage and the communication passage, and a second actuator passage that is disposed closer to the joining passage among the joining passage and the communication passage. When the spool is disposed in the first position, the spool blocks the connection passage and the first actuator passage while communicating the joining passage with the second actuator passage through the spool hole, When the spool is disposed at the second position, the spool may connect the communication passage to the first actuator passage through the spool hole while blocking between the joining passage and the second actuator passage. .
 スプールが第3の位置に配置された場合には、スプールは、連絡通路とアクチュエータ通路との間を遮断しつつ、合流通路とアクチュエータ通路との間を遮断してもよい。 When the spool is disposed at the third position, the spool may block between the junction path and the actuator path while blocking between the communication path and the actuator path.
 方向切換弁は、合流通路から第2流路への作動油の逆流を防ぐ第1チェックバルブ、合流通路から第3流路への作動油の逆流を防ぐ第2チェックバルブ、連絡通路から第1流路への作動油の逆流を防ぐ第3チェックバルブ、及び合流通路から第4流路への作動油の逆流を防ぐ第4チェックバルブのうちの、少なくともいずれかを更に備えてもよい。 The direction switching valve includes a first check valve that prevents backflow of hydraulic oil from the merging passage to the second flow path, a second check valve that prevents backflow of hydraulic oil from the merging path to the third flow path, and the first from the communication passage. You may further provide at least any one of the 3rd check valve which prevents the backflow of the hydraulic fluid to a flow path, and the 4th check valve which prevents the backflow of the hydraulic oil from a merge channel to a 4th flow path.
 アクチュエータは、油圧シリンダであってもよい。 The actuator may be a hydraulic cylinder.
 アクチュエータは、ブームを駆動するためのアクチュエータであってもよい。 The actuator may be an actuator for driving the boom.
 本発明によれば、作動油の供給流量を変えることができる方向切換弁を簡単な構造で実現できる。 According to the present invention, a directional switching valve capable of changing the supply flow rate of hydraulic oil can be realized with a simple structure.
図1は、油圧ショベルの典型的な構成例の概略を示す外観図である。FIG. 1 is an external view schematically showing a typical configuration example of a hydraulic excavator. 図2は、方向切換弁の断面図である。FIG. 2 is a sectional view of the direction switching valve. 図3は、油圧ショベルの油圧回路図を示し、特に油圧シリンダを順方向に駆動してブームを上昇させる場合を示す。FIG. 3 shows a hydraulic circuit diagram of the excavator, and particularly shows a case where the boom is raised by driving the hydraulic cylinder in the forward direction. 図4は、油圧ショベルの油圧回路図を示し、特に油圧シリンダを逆方向に駆動してブームを下降させる場合を示す。FIG. 4 shows a hydraulic circuit diagram of the excavator, and particularly shows a case where the boom is lowered by driving the hydraulic cylinder in the reverse direction.
 以下、図面を参照して本発明の一実施形態について説明する。以下では、油圧ショベルに対し、特にブームを駆動するための油圧回路に使用される方向切換弁に対し、本発明を適用する場合について説明する。ただし、本発明を適用可能な対象は油圧ショベルで使われる方向切換弁に限定されない。例えば、油圧ショベル以外の建設機械や、建設機械以外の油圧駆動機器に対しても、本発明を適用することが可能である。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Below, the case where this invention is applied with respect to the direction switching valve used for the hydraulic circuit for driving a boom with respect to a hydraulic shovel is demonstrated. However, the object to which the present invention can be applied is not limited to the direction switching valve used in the hydraulic excavator. For example, the present invention can be applied to construction machines other than hydraulic excavators and hydraulic drive devices other than construction machines.
 図1は、油圧ショベル10の典型的な構成例の概略を示す外観図である。 FIG. 1 is an external view showing an outline of a typical configuration example of the excavator 10.
 油圧ショベル10は、一般に、クローラを具備する下部フレーム11と、下部フレーム11に対して旋回可能に設けられる上部フレーム12と、上部フレーム12に取り付けられるブーム14と、ブーム14に取り付けられるアーム15と、アーム15に取り付けられるバケット16とを備える。油圧シリンダ18、19、20は、ブーム用、アーム用及びバケット用のアクチュエータであり、それぞれブーム14、アーム15及びバケット16を駆動する。上部フレーム12を旋回させる場合、旋回モータ13からの回転駆動力が上部フレーム12に伝達される。また油圧ショベル10を走行させる場合には、走行モータ17からの回転駆動力が下部フレーム11のクローラに伝達される。 The excavator 10 generally includes a lower frame 11 having a crawler, an upper frame 12 provided so as to be pivotable with respect to the lower frame 11, a boom 14 attached to the upper frame 12, and an arm 15 attached to the boom 14. And a bucket 16 attached to the arm 15. The hydraulic cylinders 18, 19, and 20 are boom, arm, and bucket actuators that drive the boom 14, arm 15, and bucket 16, respectively. When the upper frame 12 is turned, the rotational driving force from the turning motor 13 is transmitted to the upper frame 12. When the hydraulic excavator 10 is caused to travel, the rotational driving force from the traveling motor 17 is transmitted to the crawler of the lower frame 11.
 図2は、方向切換弁30の断面図である。方向切換弁30は、ポンプからアクチュエータに供給する作動油及びアクチュエータから排出される作動油の流れを規制する弁であり、複数種類の通路パターンの中から所望の通路パターンを選択的に形成できる。図2には、図1に示すブーム14を駆動するためのアクチュエータである油圧シリンダ18と第1ポンプ51及び第2ポンプ52との間に配置される方向切換弁30が示されている。なお、他のアクチュエータ(例えば、図1に示すアーム15を駆動するための油圧シリンダ19及び/又はバケット16を駆動するための油圧シリンダ20)とポンプとの間に配置される方向切換弁が、図2に示す方向切換弁30と同様の構成を有していてもよい。 FIG. 2 is a cross-sectional view of the direction switching valve 30. The direction switching valve 30 is a valve that regulates the flow of hydraulic fluid supplied from the pump to the actuator and hydraulic fluid discharged from the actuator, and can selectively form a desired passage pattern from among a plurality of types of passage patterns. FIG. 2 shows the direction switching valve 30 disposed between the hydraulic cylinder 18 that is an actuator for driving the boom 14 shown in FIG. 1 and the first pump 51 and the second pump 52. Note that a direction switching valve disposed between another actuator (for example, a hydraulic cylinder 19 for driving the arm 15 and / or a hydraulic cylinder 20 for driving the bucket 16 shown in FIG. 1) and the pump, You may have the structure similar to the direction switching valve 30 shown in FIG.
 方向切換弁30は、スプール孔33が形成された弁本体31と、スプール孔33に配置されたスプール32とを備える。 The direction switching valve 30 includes a valve main body 31 in which a spool hole 33 is formed, and a spool 32 disposed in the spool hole 33.
 スプール孔33は、弁本体31の内部に形成され、スプール32がスライド可能に配置されている。スプール32のスライド駆動方式は特に限定されず、スプール32をスプール孔33内でスライドさせて所望位置に配置するために、例えば機械式、油圧パイロット式或いは電磁式の駆動構造を方向切換弁30は採用することが可能である。スプール32は、スプール孔33に挿入される略円柱状の部材であり、軸方向へ相互に離間して配置される複数のランド部と、ランド部間に設けられる複数の切欠部とを有する。各ランド部の外周径はスプール孔33の内周径とほぼ一致する。各切欠部の外周径はスプール孔33の内周径よりも小さい。各ランド部は、スプール孔33に開口する後述の通路間に配置された場合、これらの通路間のスプール孔33を塞いで作動油の流れを遮断する。一方、各切欠部は、スプール孔33に開口する後述の通路間に配置された場合、これらの通路同士をつなぐ流路を形成し、作動油の流れを許容する。スプール32は、このように通路同士の接続及び遮断(すなわち接続の有無)を切り換えることができるだけでなく、通路間の流路開度(すなわち弁開度)を調整することもできる。 The spool hole 33 is formed inside the valve body 31, and the spool 32 is slidably disposed. The slide drive system of the spool 32 is not particularly limited, and for example, a mechanical, hydraulic pilot type, or electromagnetic drive structure is used as the direction switching valve 30 in order to slide the spool 32 in the spool hole 33 and arrange it at a desired position. It is possible to adopt. The spool 32 is a substantially columnar member that is inserted into the spool hole 33, and includes a plurality of land portions that are spaced apart from each other in the axial direction and a plurality of notches provided between the land portions. The outer peripheral diameter of each land portion substantially coincides with the inner peripheral diameter of the spool hole 33. The outer peripheral diameter of each notch is smaller than the inner peripheral diameter of the spool hole 33. When each land portion is disposed between passages to be described later that open to the spool hole 33, the land portion blocks the spool hole 33 between these passages and blocks the flow of hydraulic oil. On the other hand, when each notch is disposed between passages, which will be described later, that open to the spool hole 33, it forms a flow path that connects these passages and allows the flow of hydraulic oil. In this way, the spool 32 can not only switch between connection and disconnection (that is, presence / absence of connection) between the passages, but can also adjust the flow path opening degree (that is, the valve opening degree) between the passages.
 弁本体31は、ブロック状(塊状)の部材であり、第1アンロード通路34、第2アンロード通路35、第1供給通路36、第2供給通路37、アクチュエータ通路40、ブリッジ通路43及びタンク通路58を有する。これらの通路には作動油が流される。 The valve body 31 is a block-shaped (lumped) member, and includes a first unload passage 34, a second unload passage 35, a first supply passage 36, a second supply passage 37, an actuator passage 40, a bridge passage 43, and a tank. A passage 58 is provided. Hydraulic fluid flows through these passages.
 第1アンロード通路34は第1ポンプ51に連通され、第2アンロード通路35は第2ポンプ52に連通される。第1供給通路36は第1ポンプ51に連通され、第2供給通路37は第2ポンプ52に連通される。具体的には、第1ポンプ51から延びる油路が途中で分岐し、それらの油路の1つが第1アンロード通路34(特に上流側第1アンロード通路34a)を構成し、他の油路の1つが第1供給通路36を構成する。同様に、第2ポンプ52から延びる油路が途中で分岐し、それらの油路の1つが第2アンロード通路35(特に上流側第2アンロード通路35a)を構成し、他の油路の1つが第2供給通路37を構成する。 The first unload passage 34 communicates with the first pump 51, and the second unload passage 35 communicates with the second pump 52. The first supply passage 36 is in communication with the first pump 51, and the second supply passage 37 is in communication with the second pump 52. Specifically, an oil passage extending from the first pump 51 branches in the middle, and one of those oil passages constitutes a first unload passage 34 (particularly the upstream first unload passage 34a), and other oil One of the paths constitutes the first supply passage 36. Similarly, an oil passage extending from the second pump 52 branches in the middle, and one of those oil passages constitutes a second unload passage 35 (especially the upstream second unload passage 35a), and other oil passages. One constitutes the second supply passage 37.
 第1アンロード通路34は上流側第1アンロード通路34a及び下流側第1アンロード通路34bを有し、第2アンロード通路35は上流側第2アンロード通路35a及び下流側第2アンロード通路35bを有する。上流側第1アンロード通路34a及び上流側第2アンロード通路35aは、スプール孔33よりも上流側(すなわちポンプ側)の通路であり、下流側第1アンロード通路34b及び下流側第2アンロード通路35bは、スプール孔33よりも下流側(すなわちタンク側)の通路である。なお本実施形態では、第1アンロード通路34及び第2アンロード通路35は、スプール32の軸方向に関して相互に隣り合って配置される。すなわち下流側第1アンロード通路34b及び上流側第2アンロード通路35aが隣り合って配置され、上流側第1アンロード通路34a及び下流側第1アンロード通路34bが隣り合って配置され、上流側第2アンロード通路35a及び下流側第2アンロード通路35bが隣り合って配置されている。このように第1アンロード通路34及び第2アンロード通路35を構成する各油路を隣り合って配置することで、スプール32の共通のランド部を利用して第1アンロード通路34及び第2アンロード通路35の接続/遮断を切り換えることができ、スプール32及びスプール孔33の軸方向の長大化を抑制することができる。 The first unload passage 34 has an upstream first unload passage 34a and a downstream first unload passage 34b, and the second unload passage 35 has an upstream second unload passage 35a and a downstream second unload. A passage 35b is provided. The upstream first unload passage 34a and the upstream second unload passage 35a are upstream of the spool hole 33 (that is, the pump side), and the downstream first unload passage 34b and the downstream second unload passage 35a. The load passage 35 b is a passage on the downstream side (that is, the tank side) from the spool hole 33. In the present embodiment, the first unload passage 34 and the second unload passage 35 are arranged adjacent to each other with respect to the axial direction of the spool 32. That is, the downstream first unload passage 34b and the upstream second unload passage 35a are arranged adjacent to each other, and the upstream first unload passage 34a and the downstream first unload passage 34b are arranged next to each other, upstream. The side second unload passage 35a and the downstream second unload passage 35b are arranged adjacent to each other. In this way, by arranging the oil passages constituting the first unload passage 34 and the second unload passage 35 next to each other, the first unload passage 34 and the second unload passage 34 are utilized by using the common land portion of the spool 32. 2 The connection / cutoff of the unload passage 35 can be switched, and the axial length of the spool 32 and the spool hole 33 can be suppressed.
 第1アンロード通路34及び第2アンロード通路35は、第1ポンプ51及び第2ポンプ52からの作動油を、アクチュエータに供給せずに、タンクに戻すための通路(バイパス通路)である。本実施形態では、図2に示すように、第1アンロード通路34及び第2アンロード通路35の各々と、アクチュエータ通路40(すなわち第1アクチュエータ通路41及び第2アクチュエータ通路42)との間に、スプール32のランド部が1つ以上存在する。したがって、第1アンロード通路34及び第2アンロード通路35の各々は、スプール孔33を介してアクチュエータ通路40に対して直接的に連通することはなく、第1アンロード通路34及び第2アンロード通路35の各々からスプール孔33を介してアクチュエータ通路40に対して直接的に作動油が供給及び排出されることもない。ただし、例えば第1アンロード通路34及び第2アンロード通路35から他の油路が分岐する場合は、第1アンロード通路34及び第2アンロード通路35からアクチュエータに作動油を供給することが可能である。本実施形態では、上流側第2アンロード通路35aが第2分岐通路49に連通しており、上流側第2アンロード通路35aからの作動油を、第2分岐通路49、ブリッジ通路43(特に合流通路45)、スプール孔33及びアクチュエータ通路40(特に第2アクチュエータ通路42)を介して油圧シリンダ18に供給することが可能である。 The first unload passage 34 and the second unload passage 35 are passages (bypass passages) for returning the hydraulic oil from the first pump 51 and the second pump 52 to the tank without supplying them to the actuator. In the present embodiment, as shown in FIG. 2, between each of the first unload passage 34 and the second unload passage 35 and the actuator passage 40 (that is, the first actuator passage 41 and the second actuator passage 42). One or more land portions of the spool 32 exist. Therefore, each of the first unload passage 34 and the second unload passage 35 does not directly communicate with the actuator passage 40 via the spool hole 33, but the first unload passage 34 and the second unload passage 34 The hydraulic oil is not directly supplied to or discharged from the actuator passage 40 from each of the load passages 35 via the spool holes 33. However, for example, when another oil passage branches from the first unload passage 34 and the second unload passage 35, the hydraulic oil may be supplied to the actuator from the first unload passage 34 and the second unload passage 35. Is possible. In the present embodiment, the upstream second unload passage 35a communicates with the second branch passage 49, and hydraulic oil from the upstream second unload passage 35a is supplied to the second branch passage 49, the bridge passage 43 (particularly, It is possible to supply the hydraulic cylinder 18 via the merging passage 45), the spool hole 33 and the actuator passage 40 (particularly the second actuator passage 42).
 第1供給通路36及び第2供給通路37は、第1ポンプ51及び第2ポンプ52からの作動油を、アクチュエータに供給するための通路である。第1供給通路36及び第2供給通路37は、スプール孔33に対して直接的には接続せず、ブリッジ通路43を介してスプール孔33に接続されている。本実施形態の第1供給通路36は、第1ポンプ51に直接的に接続されているが、第1アンロード通路34を介して第1ポンプ51に接続されてもよい。同様に、本実施形態の第2供給通路37は、第2ポンプ52に直接的に接続されているが、第2アンロード通路35を介して第2ポンプ52に接続されてもよい。 The first supply passage 36 and the second supply passage 37 are passages for supplying hydraulic oil from the first pump 51 and the second pump 52 to the actuator. The first supply passage 36 and the second supply passage 37 are not directly connected to the spool hole 33 but are connected to the spool hole 33 via the bridge passage 43. The first supply passage 36 of the present embodiment is directly connected to the first pump 51, but may be connected to the first pump 51 via the first unload passage 34. Similarly, the second supply passage 37 of the present embodiment is directly connected to the second pump 52, but may be connected to the second pump 52 via the second unload passage 35.
 ブリッジ通路43はブリッジ状に形成されるとともにスプール孔33に開口し、第1パラレル通路46、第2パラレル通路47、第1分岐通路48及び第2分岐通路49の各々とスプール孔33との間に介在する。ブリッジ通路43は、スプール孔33及びアクチュエータ通路40を介して油圧シリンダ18に作動油を供給するための通路である。ブリッジ通路43がスプール32のランド部により塞がれた場合、スプール孔33及びアクチュエータ通路40とブリッジ通路43との間の連通が遮断されたり弁開度が制限されたりする。本実施形態のブリッジ通路43は、相互に連通しない連絡通路44及び合流通路45を有し、連絡通路44及び合流通路45の各々が相互に異なる位置でスプール孔33に開口する。 The bridge passage 43 is formed in a bridge shape and opens into the spool hole 33. The bridge passage 43 is formed between the first parallel passage 46, the second parallel passage 47, the first branch passage 48, and the second branch passage 49 and the spool hole 33. Intervene in. The bridge passage 43 is a passage for supplying hydraulic oil to the hydraulic cylinder 18 via the spool hole 33 and the actuator passage 40. When the bridge passage 43 is blocked by the land portion of the spool 32, the communication between the spool hole 33 and the actuator passage 40 and the bridge passage 43 is blocked or the valve opening degree is restricted. The bridge passage 43 of this embodiment has a communication passage 44 and a joining passage 45 that do not communicate with each other, and each of the communication passage 44 and the joining passage 45 opens into the spool hole 33 at a position different from each other.
 アクチュエータ通路40は、スプール孔33に開口し、ブーム14を駆動するためのアクチュエータとして機能する油圧シリンダ18に連通される。本実施形態のアクチュエータ通路40は、第1アクチュエータ通路41及び第2アクチュエータ通路42を有する。第1アクチュエータ通路41は、合流通路45及び連絡通路44のうち連絡通路44により近接して配置され、油圧シリンダ18の第1ポート18aに接続される。第2アクチュエータ通路42は、合流通路45及び連絡通路44のうち合流通路45により近接して配置され、油圧シリンダ18の第2ポート18bに接続される。 The actuator passage 40 opens to the spool hole 33 and communicates with the hydraulic cylinder 18 that functions as an actuator for driving the boom 14. The actuator passage 40 of the present embodiment has a first actuator passage 41 and a second actuator passage 42. The first actuator passage 41 is disposed closer to the communication passage 44 of the merging passage 45 and the communication passage 44, and is connected to the first port 18 a of the hydraulic cylinder 18. The second actuator passage 42 is disposed closer to the joining passage 45 of the joining passage 45 and the communication passage 44 and is connected to the second port 18 b of the hydraulic cylinder 18.
 油圧シリンダ18の第1ポート18a及び第2ポート18bは、スプール32の配置状態に基づいて決まる作動油の流れに応じて、油圧シリンダ18に対する作動油の供給口又は排出口として機能する。本実施形態では、第1ポート18aが排出口として機能し且つ第2ポート18bが供給口として機能する場合、油圧シリンダ18は順方向に駆動され、油圧シリンダ18のピストンがシリンダから突出される。一方、第1ポート18aが供給口として機能し且つ第2ポート18bが排出口として機能する場合、油圧シリンダ18は逆方向に駆動され、油圧シリンダ18のピストンがシリンダ内に引き込まれる。 The first port 18 a and the second port 18 b of the hydraulic cylinder 18 function as a supply port or a discharge port for the hydraulic oil to the hydraulic cylinder 18 according to the flow of the hydraulic oil determined based on the arrangement state of the spool 32. In the present embodiment, when the first port 18a functions as a discharge port and the second port 18b functions as a supply port, the hydraulic cylinder 18 is driven in the forward direction, and the piston of the hydraulic cylinder 18 protrudes from the cylinder. On the other hand, when the first port 18a functions as a supply port and the second port 18b functions as a discharge port, the hydraulic cylinder 18 is driven in the reverse direction, and the piston of the hydraulic cylinder 18 is drawn into the cylinder.
 タンク通路58は、タンク(図3及び図4の符合「59」参照)に接続される通路であり、油圧シリンダ18から排出された作動油をタンクに戻すための通路である。具体的には、スプール32の配置状態に応じて、タンク通路58は、第1アクチュエータ通路41又は第2アクチュエータ通路42に連通され、或いは第1アクチュエータ通路41及び第2アクチュエータ通路42の両者と連通しない。 The tank passage 58 is a passage connected to a tank (see reference numeral “59” in FIGS. 3 and 4), and is a passage for returning the hydraulic oil discharged from the hydraulic cylinder 18 to the tank. Specifically, depending on the arrangement state of the spool 32, the tank passage 58 communicates with the first actuator passage 41 or the second actuator passage 42, or communicates with both the first actuator passage 41 and the second actuator passage 42. do not do.
 また弁本体31は、上述の各通路の他に、第1パラレル領域53、第2パラレル領域54、第1タンデム領域55及び第2タンデム領域56を有する。 The valve body 31 includes a first parallel region 53, a second parallel region 54, a first tandem region 55, and a second tandem region 56 in addition to the above-described passages.
 第1パラレル領域53は、第1供給通路36とブリッジ通路43(特に合流通路45)とを連通させる第1パラレル通路46を形成可能な領域である。第2パラレル領域54は、第2供給通路37とブリッジ通路43(特に合流通路45)とを連通させる第2パラレル通路47を形成可能な領域である。第1タンデム領域55は、第1供給通路36及び第1アンロード通路34(特に上流側第1アンロード通路34a)のうちのいずれか一方とブリッジ通路43(特に連絡通路44)とを連通させる第1分岐通路48を形成可能な領域である。本実施形態の第1分岐通路48は、第1供給通路36と連絡通路44とを連通させる。第2タンデム領域56は、第2供給通路37及び第2アンロード通路35(特に上流側第2アンロード通路35a)のうちのいずれか一方とブリッジ通路43(特に合流通路45)とを連通させる第2分岐通路49を形成可能な領域である。本実施形態の第2分岐通路49は、第2アンロード通路35(すなわち上流側第2アンロード通路35a)と合流通路45とを連通させる。 The first parallel region 53 is a region in which a first parallel passage 46 that connects the first supply passage 36 and the bridge passage 43 (particularly the confluence passage 45) can be formed. The second parallel region 54 is a region in which a second parallel passage 47 that allows the second supply passage 37 and the bridge passage 43 (particularly the merge passage 45) to communicate with each other can be formed. The first tandem region 55 allows any one of the first supply passage 36 and the first unload passage 34 (particularly the upstream first unload passage 34a) to communicate with the bridge passage 43 (particularly the communication passage 44). This is a region where the first branch passage 48 can be formed. The first branch passage 48 of the present embodiment connects the first supply passage 36 and the communication passage 44. The second tandem region 56 allows any one of the second supply passage 37 and the second unload passage 35 (particularly the upstream second unload passage 35a) to communicate with the bridge passage 43 (particularly the junction passage 45). This is a region where the second branch passage 49 can be formed. The second branch passage 49 of the present embodiment connects the second unload passage 35 (that is, the upstream second unload passage 35a) and the merge passage 45.
 弁本体31は、連絡通路44と合流通路45との間に配置される遮断部50であって、ブリッジ通路43を連絡通路44と合流通路45とに分断する遮断部50を有する。遮断部50は、合流通路45の一方の端部(図2の左側端部)を塞ぎつつ、連絡通路44の一方の端部(図2の右側端部)を塞ぐ。これにより連絡通路44は、第1分岐通路48及びスプール孔33には連通可能であるが、合流通路45には連通しない。一方、合流通路45は、第1パラレル通路46、第2パラレル通路47、第2分岐通路49及びスプール孔33に連通可能であるが、連絡通路44には連通しない。 The valve body 31 is a blocking portion 50 disposed between the communication passage 44 and the merging passage 45, and has a blocking portion 50 that divides the bridge passage 43 into the communication passage 44 and the merging passage 45. The blocking portion 50 closes one end portion (the right end portion in FIG. 2) of the communication passage 44 while closing one end portion (the left end portion in FIG. 2) of the merging passage 45. As a result, the communication passage 44 can communicate with the first branch passage 48 and the spool hole 33, but does not communicate with the merge passage 45. On the other hand, the merging passage 45 can communicate with the first parallel passage 46, the second parallel passage 47, the second branch passage 49, and the spool hole 33, but does not communicate with the communication passage 44.
 第1パラレル通路46には第1チェックバルブ61が配置され、第2パラレル通路47には第2チェックバルブ62が配置され、第1分岐通路48には第3チェックバルブ63が配置され、第2分岐通路49には第4チェックバルブ64が配置されている。第1チェックバルブ61は、合流通路45から第1パラレル通路46への作動油の逆流を防ぐ弁であり、第1パラレル通路46内の作動油の圧力が合流通路45内の作動油の圧力よりも大きい場合には第1パラレル通路46を塞がず、第1パラレル通路46内の作動油の圧力が合流通路45内の作動油の圧力よりも小さい場合には第1パラレル通路46を塞ぐ。同様に、第2チェックバルブ62は、合流通路45から第2パラレル通路47への作動油の逆流を防ぐ弁であり、第4チェックバルブ64は、合流通路45から第2分岐通路49への作動油の逆流を防ぐ弁である。一方、第3チェックバルブ63は、連絡通路44から第1分岐通路48への作動油の逆流を防ぐ弁であり、第1分岐通路48内の作動油の圧力が連絡通路44内の作動油の圧力よりも大きい場合には第1分岐通路48を塞がず、第1分岐通路48内の作動油の圧力が連絡通路44内の作動油の圧力よりも小さい場合には第1分岐通路48を塞ぐ。 A first check valve 61 is disposed in the first parallel passage 46, a second check valve 62 is disposed in the second parallel passage 47, a third check valve 63 is disposed in the first branch passage 48, and a second A fourth check valve 64 is disposed in the branch passage 49. The first check valve 61 is a valve that prevents the backflow of hydraulic oil from the merging passage 45 to the first parallel passage 46. The pressure of the hydraulic oil in the first parallel passage 46 is greater than the pressure of the hydraulic oil in the merging passage 45. Is larger, the first parallel passage 46 is not blocked. When the pressure of the hydraulic oil in the first parallel passage 46 is smaller than the pressure of the hydraulic oil in the merging passage 45, the first parallel passage 46 is blocked. Similarly, the second check valve 62 is a valve that prevents the backflow of hydraulic oil from the merging passage 45 to the second parallel passage 47, and the fourth check valve 64 is an operation from the merging passage 45 to the second branch passage 49. This valve prevents backflow of oil. On the other hand, the third check valve 63 is a valve that prevents the backflow of the hydraulic oil from the communication passage 44 to the first branch passage 48, and the pressure of the hydraulic oil in the first branch passage 48 reduces the hydraulic oil in the communication passage 44. When the pressure is higher than the pressure, the first branch passage 48 is not blocked, and when the pressure of the hydraulic oil in the first branch passage 48 is lower than the pressure of the hydraulic oil in the communication passage 44, the first branch passage 48 is blocked. Block it.
 なお、上述のスプール32及びチェックバルブ61、62、63、64の各々は、弁本体31に対して着脱可能に設けられており、必要に応じて、図2に示す構成以外の部材に置き換えられてもよい。例えば、図2に示すスプール32とは異なるランド部及び切欠部を有する別のスプールが、スプール孔33に配置されてもよい。またチェックバルブ61、62、63、64のうちの1又は複数のバルブの代わりに、通路を遮断する栓等の部材が配置されてもよい。これにより方向切換弁30は、様々な通路パターンを選択的に形成することができ、優れた汎用性能を示す。例えば方向切換弁30によって、1つのポンプのみからアクチュエータに作動油を供給したり、2つのポンプからアクチュエータに作動油を供給したりすることが可能である。また方向切換弁30によって、油路の接続態様を、パラレル接続及びタンデム接続のいずれにするかを柔軟に変更及び決定することも可能である。また油路に対する作動油の供給に関して優先順位を設けたい場合には、必要に応じて、弁本体31の対応箇所に絞り構造を形成することも可能である。 Each of the spool 32 and the check valves 61, 62, 63, 64 described above is detachably attached to the valve body 31, and can be replaced with a member other than the configuration shown in FIG. 2 as necessary. May be. For example, another spool having a land portion and a notch portion different from the spool 32 shown in FIG. 2 may be disposed in the spool hole 33. Further, instead of one or more of the check valves 61, 62, 63, 64, a member such as a plug that blocks the passage may be arranged. Thereby, the direction switching valve 30 can selectively form various passage patterns, and exhibits excellent general-purpose performance. For example, the directional switching valve 30 can supply hydraulic oil to the actuator from only one pump, or supply hydraulic oil to the actuator from two pumps. Further, the direction switching valve 30 can flexibly change and determine whether the oil passage connection mode is parallel connection or tandem connection. In addition, when it is desired to set priority regarding the supply of hydraulic oil to the oil passage, it is possible to form a throttle structure at a corresponding portion of the valve body 31 as necessary.
 上述の構成を有する方向切換弁30において、スプール32は、スプール孔33における配置位置(すなわちストローク位置)に応じて、ブリッジ通路43とアクチュエータ通路40との間の連通状態及び遮断状態を変更し、作動油の流動方向を変えることができる。 In the direction switching valve 30 having the above-described configuration, the spool 32 changes the communication state and the blocking state between the bridge passage 43 and the actuator passage 40 according to the arrangement position (that is, the stroke position) in the spool hole 33, The flow direction of hydraulic oil can be changed.
 例えば、図2には、スプール32が中立位置(すなわち「第3の位置」)に配置されている状態が示されている。この場合、スプール32(特にランド部)は、連絡通路44とアクチュエータ通路40(すなわち第1アクチュエータ通路41及び第2アクチュエータ通路42)との間を遮断しつつ、合流通路45とアクチュエータ通路40(すなわち第1アクチュエータ通路41及び第2アクチュエータ通路42)との間を遮断する。これにより、第1ポンプ51及び第2ポンプ52からの作動油は、ブリッジ通路43(すなわち連絡通路44及び合流通路45)からスプール孔33に流入せず、アクチュエータ通路40(すなわち第1アクチュエータ通路41及び第2アクチュエータ通路42)にも流入しないため、油圧シリンダ18は中立状態に置かれる。なお、この場合、第1アクチュエータ通路41及び第2アクチュエータ通路42の各々は他の流路から遮断されて作動油を封鎖し、油圧シリンダ18の状態が維持される。 For example, FIG. 2 shows a state in which the spool 32 is disposed at the neutral position (that is, the “third position”). In this case, the spool 32 (particularly the land portion) shuts off the connection passage 44 and the actuator passage 40 (that is, the first actuator passage 41 and the second actuator passage 42), while the merging passage 45 and the actuator passage 40 (ie, the land portion). The first actuator passage 41 and the second actuator passage 42) are disconnected. Thus, the hydraulic oil from the first pump 51 and the second pump 52 does not flow into the spool hole 33 from the bridge passage 43 (that is, the communication passage 44 and the merging passage 45), and the actuator passage 40 (that is, the first actuator passage 41). And the hydraulic cylinder 18 is placed in a neutral state since it does not flow into the second actuator passage 42). In this case, each of the first actuator passage 41 and the second actuator passage 42 is blocked from the other flow paths to block the hydraulic oil, and the state of the hydraulic cylinder 18 is maintained.
 また、スプール孔33においてスプール32を、中立位置から一方の軸方向(図2の符合「D1」参照)へ移動させて第1作動位置(すなわち「第1の位置」)に配置したり、中立位置から他方の軸方向(図2の符合「D2」参照)へ移動させて第2作動位置(すなわち「第2の位置」)に配置したりすることもできる。 Further, in the spool hole 33, the spool 32 is moved from the neutral position in one axial direction (see reference numeral “D1” in FIG. 2) to be arranged at the first operating position (ie, “first position”), or It is also possible to move it from the position in the other axial direction (see reference numeral “D2” in FIG. 2) and place it in the second operating position (ie, “second position”).
 例えばスプール32が第1作動位置に配置された場合、連絡通路44と第1アクチュエータ通路41との間にはスプール32のランド部が配置され、合流通路45と第2アクチュエータ通路42との間にはスプール32の切欠部が配置される。また、第1アクチュエータ通路41とタンク通路58との間にはスプール32の切欠部が配置され、第2アクチュエータ通路42とタンク通路58との間にはスプール32のランド部が配置される。これによりスプール32は、スプール孔33を介して合流通路45をアクチュエータ通路40(特に第2アクチュエータ通路42)に連通させつつ、連絡通路44とアクチュエータ通路40(すなわち第1アクチュエータ通路41及び第2アクチュエータ通路42)との間を遮断する。また、第1分岐通路48(第1流路)及び第1パラレル通路46(第2流路)のうち少なくともいずれか一方(本例では第1パラレル通路46)と、第2パラレル通路47(第3流路)及び第2分岐通路49(第4流路)のうちの少なくともいずれか一方(本例では少なくとも第2分岐通路49)とが、合流通路45に連通される。これにより、第1供給通路36及び第1アンロード通路34のうちの少なくともいずれか一方(本例では第1供給通路36)と、第2供給通路37及び第2アンロード通路35のうちの少なくともいずれか一方(本例では少なくとも第2アンロード通路35)とが、合流通路45に連通される。したがって、第1ポンプ51から第1供給通路36及び第1パラレル通路46を介して合流通路45に流入した作動油と、第2ポンプ52から上流側第2アンロード通路35a及び第2分岐通路49を介して合流通路45に流入した作動油とが、合流通路45で合流し、スプール孔33を介して第2アクチュエータ通路42に流入する。なお、第2パラレル通路47には図示しない絞り(図3参照)が設けられている。したがって、第2供給通路37から合流通路45に流入する作動油は、第2パラレル通路47の絞りによって流量が制限される。これにより油圧シリンダ18は、第2アクチュエータ通路42から作動油が供給されるとともに第1アクチュエータ通路41を介してタンク通路58に作動油を排出し、順方向に駆動される。ここでいう順方向の駆動とは、上下方向にブーム14を移動させる駆動のうち、より大きなパワーが必要とされるブーム14を上方向へ移動させるための駆動を意味する。 For example, when the spool 32 is disposed at the first operating position, a land portion of the spool 32 is disposed between the communication passage 44 and the first actuator passage 41, and between the junction passage 45 and the second actuator passage 42. Is provided with a notch portion of the spool 32. A notch portion of the spool 32 is disposed between the first actuator passage 41 and the tank passage 58, and a land portion of the spool 32 is disposed between the second actuator passage 42 and the tank passage 58. As a result, the spool 32 communicates the joining passage 45 with the actuator passage 40 (particularly the second actuator passage 42) via the spool hole 33, while the communication passage 44 and the actuator passage 40 (that is, the first actuator passage 41 and the second actuator passage). The passage between the passages 42) is blocked. Further, at least one of the first branch passage 48 (first flow passage) and the first parallel passage 46 (second flow passage) (the first parallel passage 46 in this example) and the second parallel passage 47 (first flow passage). 3 flow paths) and at least one of the second branch passages 49 (fourth flow paths) (in this example, at least the second branch passages 49) communicate with the merge passage 45. Thereby, at least one of the first supply passage 36 and the first unload passage 34 (the first supply passage 36 in this example), and at least one of the second supply passage 37 and the second unload passage 35. Either one (in this example, at least the second unload passage 35) communicates with the merging passage 45. Therefore, the hydraulic oil that has flowed from the first pump 51 into the merge passage 45 via the first supply passage 36 and the first parallel passage 46, and the upstream second unload passage 35 a and the second branch passage 49 from the second pump 52. The hydraulic oil that has flowed into the merging passage 45 via the merging flow merges in the merging passage 45 and flows into the second actuator passage 42 via the spool hole 33. The second parallel passage 47 is provided with a diaphragm (not shown) (see FIG. 3). Therefore, the flow rate of the hydraulic oil flowing from the second supply passage 37 into the merge passage 45 is limited by the restriction of the second parallel passage 47. As a result, the hydraulic cylinder 18 is supplied with hydraulic oil from the second actuator passage 42 and discharges the hydraulic oil to the tank passage 58 via the first actuator passage 41, and is driven in the forward direction. The forward driving here means driving for moving the boom 14, which requires higher power, among the driving for moving the boom 14 in the vertical direction.
 一方、スプール32が第2作動位置に配置された場合、連絡通路44と第1アクチュエータ通路41との間にはスプール32の切欠部が配置され、合流通路45と第2アクチュエータ通路42との間にはスプール32のランド部が配置される。また、第1アクチュエータ通路41とタンク通路58との間にはスプール32のランド部が配置され、第2アクチュエータ通路42とタンク通路58との間にはスプール32の切欠部が配置される。これによりスプール32は、合流通路45とアクチュエータ通路40(第1アクチュエータ通路41及び第2アクチュエータ通路42)との間を遮断しつつ、スプール孔33を介して連絡通路44をアクチュエータ通路40(特に第1アクチュエータ通路41)に連通させる。また、第1分岐通路48(第1流路)及び第1パラレル通路46(第2流路)のうちの少なくともいずれか一方(本例では第1分岐通路48)が、連絡通路44に連通される。これにより、第1アンロード通路34及び第1供給通路36のうちの少なくともいずれか一方(本例では第1供給通路36)が連絡通路44に連通される。したがって、第1ポンプ51から第1供給通路36及び第1分岐通路48を介して連絡通路44に流入した作動油が、スプール孔33を介して第1アクチュエータ通路41に流入する。これにより油圧シリンダ18は、第1アクチュエータ通路41から作動油が供給されるとともに第2アクチュエータ通路42に作動油を排出し、逆方向に駆動される。ここでいう逆方向の駆動とは、上下方向にブーム14を移動させる駆動のうち、より小さなパワーが必要とされるブーム14を下方向へ移動させるための駆動を意味する。 On the other hand, when the spool 32 is disposed at the second operating position, a notch portion of the spool 32 is disposed between the communication passage 44 and the first actuator passage 41, and between the joining passage 45 and the second actuator passage 42. The land portion of the spool 32 is disposed in the center. A land portion of the spool 32 is disposed between the first actuator passage 41 and the tank passage 58, and a notch portion of the spool 32 is disposed between the second actuator passage 42 and the tank passage 58. As a result, the spool 32 blocks the connection passage 44 through the spool hole 33 and the actuator passage 40 (particularly the first passage) while blocking between the merging passage 45 and the actuator passage 40 (the first actuator passage 41 and the second actuator passage 42). 1 actuator passage 41). In addition, at least one of the first branch passage 48 (first flow path) and the first parallel path 46 (second flow path) (the first branch passage 48 in this example) is communicated with the communication passage 44. The As a result, at least one of the first unload passage 34 and the first supply passage 36 (in this example, the first supply passage 36) communicates with the communication passage 44. Therefore, the hydraulic oil that has flowed from the first pump 51 into the communication passage 44 through the first supply passage 36 and the first branch passage 48 flows into the first actuator passage 41 through the spool hole 33. As a result, the hydraulic cylinder 18 is supplied with hydraulic oil from the first actuator passage 41 and discharges hydraulic oil to the second actuator passage 42 and is driven in the reverse direction. The driving in the reverse direction referred to here means driving for moving the boom 14 that requires smaller power downward, among driving for moving the boom 14 in the vertical direction.
 次に、図3及び図4の油圧回路図を使って、第1ポンプ51、第2ポンプ52、方向切換弁30及び油圧シリンダ18の駆動状態について説明する。 Next, driving states of the first pump 51, the second pump 52, the direction switching valve 30, and the hydraulic cylinder 18 will be described with reference to the hydraulic circuit diagrams of FIGS.
 図3は、油圧ショベル10の油圧回路図を示し、特に油圧シリンダ18を順方向に駆動してブーム14を上昇させる場合を示す。図4は、油圧ショベル10の油圧回路図を示し、特に油圧シリンダ18を逆方向に駆動してブーム14を下降させる場合を示す。なお図3及び図4には、ブーム14を駆動する油圧シリンダ18のための油圧回路だけではなく、旋回モータ13のための油圧回路、アーム15を駆動する油圧シリンダ19のための油圧回路、及びバケット16を駆動する油圧シリンダ20のための油圧回路も示されている。以下では、主としてブーム14を駆動する油圧シリンダ18の油圧回路を説明するので、旋回モータ13、油圧シリンダ19及び油圧シリンダ20のために設けられる方向切換弁70、71、72は、図3及び図4では中立状態に置かれている。 FIG. 3 is a hydraulic circuit diagram of the excavator 10, and particularly shows a case where the boom 14 is raised by driving the hydraulic cylinder 18 in the forward direction. FIG. 4 is a hydraulic circuit diagram of the excavator 10, and particularly shows a case where the boom 14 is lowered by driving the hydraulic cylinder 18 in the reverse direction. 3 and 4, not only the hydraulic circuit for the hydraulic cylinder 18 that drives the boom 14, but also the hydraulic circuit for the swing motor 13, the hydraulic circuit for the hydraulic cylinder 19 that drives the arm 15, and A hydraulic circuit for the hydraulic cylinder 20 that drives the bucket 16 is also shown. In the following, the hydraulic circuit of the hydraulic cylinder 18 that drives the boom 14 will be mainly described. Therefore, the direction switching valves 70, 71, 72 provided for the swing motor 13, the hydraulic cylinder 19, and the hydraulic cylinder 20 are shown in FIGS. At 4, it is neutral.
 油圧シリンダ18を順方向に駆動してブーム14を上昇させる場合、上述のようにスプール32は第1作動位置に配置される。この場合、方向切換弁30は図3に示す回路構成を有し、符号「30b」で示される油路によって第1ポンプ51及び第2ポンプ52と油圧シリンダ18とが接続される。 When driving the hydraulic cylinder 18 in the forward direction to raise the boom 14, the spool 32 is disposed at the first operating position as described above. In this case, the direction switching valve 30 has the circuit configuration shown in FIG. 3, and the first pump 51 and the second pump 52 and the hydraulic cylinder 18 are connected by an oil passage denoted by reference numeral “30b”.
 すなわち、第1ポンプ51から延在する油路が途中で分岐して第1供給通路36を形成し、第1供給通路36から分岐する第1パラレル通路46が合流通路45に連通する。一方、第2ポンプ52から延在する油路によって上流側第2アンロード通路35aが形成され、上流側第2アンロード通路35aから分岐する第2分岐通路49が合流通路45に連通する。なお第2供給通路37から分岐する第2パラレル通路47には絞り及び第2チェックバルブ62が設けられており、当該第2パラレル通路47も合流通路45に連通する。そして合流通路45が第2アクチュエータ通路42に連通され、第2アクチュエータ通路42が油圧シリンダ18の第2ポート18bに接続されている。また油圧シリンダ18の第1ポート18aに接続されている第1アクチュエータ通路41は、タンク通路58に連通され、タンク通路58はタンク59に接続されている。 That is, the oil passage extending from the first pump 51 is branched halfway to form the first supply passage 36, and the first parallel passage 46 branched from the first supply passage 36 communicates with the merge passage 45. On the other hand, an upstream second unload passage 35 a is formed by an oil passage extending from the second pump 52, and a second branch passage 49 branched from the upstream second unload passage 35 a communicates with the merge passage 45. A throttle and a second check valve 62 are provided in the second parallel passage 47 branched from the second supply passage 37, and the second parallel passage 47 also communicates with the merging passage 45. The junction passage 45 is communicated with the second actuator passage 42, and the second actuator passage 42 is connected to the second port 18 b of the hydraulic cylinder 18. The first actuator passage 41 connected to the first port 18 a of the hydraulic cylinder 18 is connected to the tank passage 58, and the tank passage 58 is connected to the tank 59.
 上述の構成を有する油圧回路によれば、第1ポンプ51からの作動油及び第2ポンプ52からの作動油は、合流通路45で合流し、第2アクチュエータ通路42を介して油圧シリンダ18に供給される。また油圧シリンダ18から流出される作動油は、第1アクチュエータ通路41及びタンク通路58を経てタンク59に排出される。これにより、油圧シリンダ18が順方向に駆動され、ブーム14が上昇させられる。 According to the hydraulic circuit having the above-described configuration, the hydraulic oil from the first pump 51 and the hydraulic oil from the second pump 52 are merged in the merging passage 45 and supplied to the hydraulic cylinder 18 via the second actuator passage 42. Is done. The hydraulic oil flowing out from the hydraulic cylinder 18 is discharged to the tank 59 through the first actuator passage 41 and the tank passage 58. Thereby, the hydraulic cylinder 18 is driven in the forward direction, and the boom 14 is raised.
 一方、油圧シリンダ18を逆方向に駆動してブーム14を下降させる場合、上述のようにスプール32は第2作動位置に配置される。この場合、方向切換弁30は図4に示す回路構成を有し、符号「30c」で示される油路によって第1ポンプ51及び第2ポンプ52と油圧シリンダ18とが接続される。 On the other hand, when the hydraulic cylinder 18 is driven in the reverse direction to lower the boom 14, the spool 32 is disposed at the second operating position as described above. In this case, the direction switching valve 30 has the circuit configuration shown in FIG. 4, and the first pump 51 and the second pump 52 and the hydraulic cylinder 18 are connected by an oil passage denoted by reference numeral “30c”.
 すなわち、第1ポンプ51から延在する油路が途中で分岐して第1供給通路36を形成し、第1供給通路36から第1分岐通路48が分岐し、この第1分岐通路48は連絡通路44を介して第1アクチュエータ通路41に連通される。一方、第2ポンプ52から延在する油路は、方向切換弁30により遮断されて、アクチュエータ通路40(すなわち第1アクチュエータ通路41及び第2アクチュエータ通路42)に連通しない。そして、第2アクチュエータ通路42がタンク通路58を介してタンク59に接続されている。 That is, an oil passage extending from the first pump 51 is branched halfway to form a first supply passage 36, and a first branch passage 48 is branched from the first supply passage 36, and the first branch passage 48 communicates. The first actuator passage 41 is communicated with the passage 44. On the other hand, the oil passage extending from the second pump 52 is blocked by the direction switching valve 30 and does not communicate with the actuator passage 40 (that is, the first actuator passage 41 and the second actuator passage 42). The second actuator passage 42 is connected to the tank 59 via the tank passage 58.
 上述の構成を有する油圧回路によれば、第1ポンプ51からの作動油は、第1供給通路36、第1分岐通路48、連絡通路44及び第1アクチュエータ通路41を経て油圧シリンダ18に供給されるが、第2ポンプ52からの作動油は油圧シリンダ18に供給されない。また油圧シリンダ18から流出される作動油は、第2アクチュエータ通路42及びタンク通路58を経てタンク59に排出される。これにより、油圧シリンダ18が逆方向に駆動され、ブーム14が下降させられる。 According to the hydraulic circuit having the above-described configuration, the hydraulic oil from the first pump 51 is supplied to the hydraulic cylinder 18 via the first supply passage 36, the first branch passage 48, the communication passage 44, and the first actuator passage 41. However, the hydraulic oil from the second pump 52 is not supplied to the hydraulic cylinder 18. The hydraulic oil flowing out from the hydraulic cylinder 18 is discharged to the tank 59 through the second actuator passage 42 and the tank passage 58. As a result, the hydraulic cylinder 18 is driven in the reverse direction, and the boom 14 is lowered.
 なおブーム14を上昇も下降もさせない場合には、上述のようにスプール32は中立位置に配置され、第1ポンプ51及び第2ポンプ52と油圧シリンダ18との間の油路は、図3及び図4の符号「30a」に示されるように構成される。すなわち、第1ポンプ51及び第2ポンプ52とアクチュエータ通路40(すなわち第1アクチュエータ通路41及び第2アクチュエータ通路42)との間は方向切換弁30によって遮断され、油圧シリンダ18に対する作動油の供給も排出も行われない。 When the boom 14 is not raised or lowered, the spool 32 is disposed at the neutral position as described above, and the oil path between the first pump 51 and the second pump 52 and the hydraulic cylinder 18 is shown in FIG. This is configured as indicated by reference numeral “30a” in FIG. That is, the first pump 51 and the second pump 52 and the actuator passage 40 (that is, the first actuator passage 41 and the second actuator passage 42) are blocked by the direction switching valve 30, and the hydraulic oil is supplied to the hydraulic cylinder 18. There is no discharge.
 以上説明したように本実施形態によれば、簡単な構造の方向切換弁30によって油圧シリンダ18への作動油の供給流量を変えることができる。特に本実施形態の方向切換弁30では、遮断部50によってブリッジ通路43を連絡通路44及び合流通路45に分割するだけで、油圧シリンダ18の作動状態に応じた所望量の作動油を油圧シリンダ18に供給することができる。すなわち、油圧シリンダ18が大流量の作動油を必要とする順方向駆動の際には、2つのポンプ(すなわち第1ポンプ51及び第2ポンプ52)から油圧シリンダ18に作動油を供給することができる。一方、油圧シリンダ18に対する作動油の供給量が小流量で十分な逆方向駆動の際には、1つのポンプ(すなわち第1ポンプ51)からのみ油圧シリンダ18に作動油を供給することができる。 As described above, according to this embodiment, the supply flow rate of hydraulic oil to the hydraulic cylinder 18 can be changed by the direction switching valve 30 having a simple structure. In particular, in the direction switching valve 30 of the present embodiment, the hydraulic cylinder 18 supplies a desired amount of hydraulic oil corresponding to the operating state of the hydraulic cylinder 18 only by dividing the bridge passage 43 into the communication passage 44 and the junction passage 45 by the blocking portion 50. Can be supplied to. That is, when the hydraulic cylinder 18 is driven in a forward direction that requires a large amount of hydraulic fluid, hydraulic fluid can be supplied to the hydraulic cylinder 18 from two pumps (that is, the first pump 51 and the second pump 52). it can. On the other hand, when the amount of hydraulic oil supplied to the hydraulic cylinder 18 is sufficiently low and the reverse drive is sufficient, the hydraulic oil can be supplied to the hydraulic cylinder 18 only from one pump (that is, the first pump 51).
 このように、油圧シリンダ18の駆動状態に応じて作動油の供給態様を最適化することができ、エネルギー効率を向上させることができる。 Thus, the supply mode of the hydraulic oil can be optimized according to the driving state of the hydraulic cylinder 18, and the energy efficiency can be improved.
 なお上述の実施形態では、ブーム14を駆動するための油圧シリンダ18に対する作動油の供給及び排出を規制する方向切換弁30が図2に示す構成を有しているが、他の方向切換弁70、71、72(特にアーム15及びバケット16を駆動するための油圧シリンダ19、20に対する作動油の供給及び排出を規制する方向切換弁71、72)が図2に示す構成を有していてもよい。 In the above-described embodiment, the direction switching valve 30 that restricts the supply and discharge of the hydraulic oil to and from the hydraulic cylinder 18 for driving the boom 14 has the configuration shown in FIG. , 71 and 72 (particularly the direction switching valves 71 and 72 for regulating the supply and discharge of hydraulic oil to and from the hydraulic cylinders 19 and 20 for driving the arm 15 and the bucket 16) have the configuration shown in FIG. Good.
 本発明は、上述の実施形態及び変形例には限定されない。例えば、上述の実施形態及び変形例の各要素に各種の変形が加えられてもよい。また、上述の構成要素以外の構成要素を含む形態も、本発明の実施形態に含まれる。また、上述の構成要素のうちの一部の要素が含まれない形態も、本発明の実施形態に含まれる。したがって、上述の実施形態及び変形例、及び上述以外の本発明の実施形態の各々に含まれる構成要素同士が組み合わされてもよく、そのような組み合わせに係る形態も本発明の実施形態に含まれる。また、本発明によって奏される効果も上述の効果に限定されず、各実施形態の具体的な構成に応じた特有の効果も発揮されうる。このように、本発明の技術的思想及び趣旨を逸脱しない範囲で、特許請求の範囲、明細書、要約書及び図面に記載される各要素に対して種々の追加、変更及び部分的削除が可能である。 The present invention is not limited to the above-described embodiments and modifications. For example, various modifications may be made to the elements of the above-described embodiments and modifications. In addition, embodiments including components other than the above-described components are also included in the embodiments of the present invention. Further, a form in which some of the above-described components are not included is also included in the embodiment of the present invention. Therefore, the constituent elements included in each of the embodiments and modifications described above and the embodiments of the present invention other than those described above may be combined with each other, and embodiments related to such combinations are also included in the embodiments of the present invention. . Moreover, the effect produced by the present invention is not limited to the above-described effect, and a specific effect corresponding to the specific configuration of each embodiment can be exhibited. As described above, various additions, modifications, and partial deletions may be made to each element described in the claims, the description, the abstract, and the drawings without departing from the technical idea and spirit of the present invention. It is.
 例えば、合流通路45は、第1分岐通路48及び第1パラレル通路46のうちの一方と、第2パラレル通路47及び第2分岐通路49のうちの少なくともいずれか一方と連通していればよい。また連絡通路44は、第1分岐通路48及び第1パラレル通路46のうちの他方と連通していればよい。ただしこの場合にも、連絡通路44は合流通路45には連通しない。 For example, the merging passage 45 only needs to communicate with one of the first branch passage 48 and the first parallel passage 46 and at least one of the second parallel passage 47 and the second branch passage 49. The communication passage 44 only needs to communicate with the other of the first branch passage 48 and the first parallel passage 46. However, also in this case, the communication passage 44 does not communicate with the merge passage 45.
10…油圧ショベル、11…下部フレーム、12…上部フレーム、13…旋回モータ、14…ブーム、15…アーム、16…バケット、17…走行モータ、18…油圧シリンダ、18a…第1ポート、18b…第2ポート、19…油圧シリンダ、20…油圧シリンダ、30…方向切換弁、30a…中立位置、30b…第1作動位置、30c…第2作動位置、31…弁本体、32…スプール、33…スプール孔、34…第1アンロード通路、34a…上流側第1アンロード通路、34b…下流側第1アンロード通路、35…第2アンロード通路、35a…上流側第2アンロード通路、35b…下流側第2アンロード通路、36…第1供給通路、37…第2供給通路、40…アクチュエータ通路、41…第1アクチュエータ通路、42…第2アクチュエータ通路、43…ブリッジ通路、44…連絡通路、45…合流通路、46…第1パラレル通路(第2流路)、47…第2パラレル通路(第3流路)、48…第1分岐通路(第1流路)、49…第2分岐通路(第4流路)、50…遮断部、51…第1ポンプ、52…第2ポンプ、53…第1パラレル領域、54…第2パラレル領域、55…第1タンデム領域、56…第2タンデム領域、58…タンク通路、59…タンク、61…第1チェックバルブ、62…第2チェックバルブ、63…第3チェックバルブ、64…第4チェックバルブ、70…方向切換弁、71…方向切換弁、72…方向切換弁 DESCRIPTION OF SYMBOLS 10 ... Hydraulic excavator, 11 ... Lower frame, 12 ... Upper frame, 13 ... Turning motor, 14 ... Boom, 15 ... Arm, 16 ... Bucket, 17 ... Traveling motor, 18 ... Hydraulic cylinder, 18a ... First port, 18b ... 2nd port, 19 ... hydraulic cylinder, 20 ... hydraulic cylinder, 30 ... directional switching valve, 30a ... neutral position, 30b ... first operating position, 30c ... second operating position, 31 ... valve body, 32 ... spool, 33 ... Spool hole 34 ... first unload passage 34a ... upstream first unload passage 34b downstream first unload passage 35 ... second unload passage 35a upstream second unload passage 35b ... downstream second unload passage, 36 ... first supply passage, 37 ... second supply passage, 40 ... actuator passage, 41 ... first actuator passage, 42 ... second accelerator Numerator passage, 43 ... Bridge passage, 44 ... Communication passage, 45 ... Junction passage, 46 ... First parallel passage (second passage), 47 ... Second parallel passage (third passage), 48 ... First branch passage (First flow path), 49 ... second branch passage (fourth flow path), 50 ... blocking section, 51 ... first pump, 52 ... second pump, 53 ... first parallel area, 54 ... second parallel area 55 ... first tandem region, 56 ... second tandem region, 58 ... tank passage, 59 ... tank, 61 ... first check valve, 62 ... second check valve, 63 ... third check valve, 64 ... fourth check Valve, 70 ... Direction switching valve, 71 ... Direction switching valve, 72 ... Direction switching valve

Claims (8)

  1.  スプール孔が形成された弁本体と、
     前記スプール孔に配置されたスプールと、
     ブリッジ状に形成され前記スプール孔に開口するブリッジ通路であって、遮断部によって合流通路と連絡通路とに分断されるブリッジ通路と、
     前記弁本体に形成される第1流路、第2流路、第3流路及び第4流路と、を備え、
     前記第1流路及び前記第2流路は第1ポンプに連通され、
     前記第3流路及び前記第4流路は第2ポンプに連通され、
     前記スプールが第1の位置に配置された場合、前記第1流路及び前記第2流路のうちの少なくともいずれか一方と、前記第3流路及び前記第4流路のうちの少なくともいずれか一方とが、前記合流通路に連通され、
     前記スプールが第2の位置に配置された場合、前記第1流路及び前記第2流路のうちの少なくともいずれか一方が前記連絡通路に連通される方向切換弁。
    A valve body in which a spool hole is formed;
    A spool disposed in the spool hole;
    A bridge passage formed in a bridge shape and opened to the spool hole, the bridge passage being divided into a merging passage and a communication passage by a blocking portion;
    A first flow path, a second flow path, a third flow path, and a fourth flow path formed in the valve body,
    The first flow path and the second flow path are communicated with a first pump;
    The third flow path and the fourth flow path are communicated with a second pump,
    When the spool is disposed at the first position, at least one of the first flow path and the second flow path, and at least one of the third flow path and the fourth flow path. One is communicated with the merging passage,
    A direction switching valve in which at least one of the first flow path and the second flow path is communicated with the communication path when the spool is disposed at the second position.
  2.  前記弁本体は、前記スプール孔に開口するとともにアクチュエータに連通されるアクチュエータ通路を有し、
     前記第1流路及び前記第2流路のうちの一方及び前記第3流路及び第4流路のうちの少なくともいずれか一方は前記合流通路に連通し、
     前記連絡通路は、前記第1流路及び前記第2流路のうちの他方に連通するが前記合流通路には連通せず、
     前記スプールは、前記スプール孔における配置位置に応じて、前記ブリッジ通路と前記アクチュエータ通路との間の連通状態及び遮断状態を変更し、
     前記スプールが前記第1の位置に配置された場合には、前記スプールは、前記スプール孔を介して前記合流通路を前記アクチュエータ通路に連通させつつ、前記連絡通路と前記アクチュエータ通路との間を遮断し、
     前記スプールが前記第2の位置に配置された場合には、前記スプールは、前記合流通路と前記アクチュエータ通路との間を遮断しつつ、前記スプール孔を介して前記連絡通路を前記アクチュエータ通路に連通させる請求項1に記載の方向切換弁。
    The valve body has an actuator passage that opens into the spool hole and communicates with the actuator,
    At least one of the first flow path and the second flow path and at least one of the third flow path and the fourth flow path communicates with the merge passage;
    The communication path communicates with the other of the first flow path and the second flow path but does not communicate with the merge path,
    The spool changes a communication state and a blocking state between the bridge passage and the actuator passage according to an arrangement position in the spool hole,
    When the spool is disposed at the first position, the spool blocks the connection between the communication passage and the actuator passage while communicating the merging passage with the actuator passage through the spool hole. And
    When the spool is disposed at the second position, the spool communicates the communication passage with the actuator passage through the spool hole while blocking between the merging passage and the actuator passage. The direction switching valve according to claim 1 to be made.
  3.  前記遮断部は、前記合流通路の一方の端部を塞ぎつつ前記連絡通路の一方の端部を塞ぐ請求項2に記載の方向切換弁。 3. The direction switching valve according to claim 2, wherein the blocking portion closes one end of the connecting passage while closing one end of the merging passage.
  4.  前記アクチュエータ通路は、前記合流通路及び前記連絡通路のうち前記連絡通路により近接して配置される第1アクチュエータ通路と、前記合流通路及び前記連絡通路のうち前記合流通路により近接して配置される第2アクチュエータ通路と、を有し、
     前記スプールが前記第1の位置に配置された場合には、前記スプールは、前記スプール孔を介して前記合流通路を前記第2アクチュエータ通路に連通させつつ、前記連絡通路と前記第1アクチュエータ通路との間を遮断し、
     前記スプールが前記第2の位置に配置された場合には、前記スプールは、前記合流通路と前記第2アクチュエータ通路との間を遮断しつつ、前記スプール孔を介して前記連絡通路を前記第1アクチュエータ通路に連通させる請求項2又は3に記載の方向切換弁。
    The actuator passage is disposed closer to the junction passage of the junction passage and the communication passage and closer to the junction passage of the junction passage and the communication passage. 2 actuator passages,
    When the spool is disposed at the first position, the spool communicates the merging passage with the second actuator passage through the spool hole, and the communication passage and the first actuator passage. Block between
    When the spool is disposed at the second position, the spool blocks the communication passage through the spool hole while blocking between the merging passage and the second actuator passage. The direction switching valve according to claim 2 or 3, wherein the direction switching valve communicates with the actuator passage.
  5.  前記スプールが第3の位置に配置された場合には、前記スプールは、前記連絡通路と前記アクチュエータ通路との間を遮断しつつ、前記合流通路と前記アクチュエータ通路との間を遮断する請求項2~4のいずれか一項に記載の方向切換弁。 3. When the spool is disposed at the third position, the spool blocks between the junction path and the actuator path while blocking between the communication path and the actuator path. The direction switching valve according to any one of 1 to 4.
  6.  前記合流通路から前記第2流路への作動油の逆流を防ぐ第1チェックバルブ、前記合流通路から前記第3流路への作動油の逆流を防ぐ第2チェックバルブ、前記連絡通路から前記第1流路への作動油の逆流を防ぐ第3チェックバルブ、及び前記合流通路から前記第4流路への作動油の逆流を防ぐ第4チェックバルブのうちの、少なくともいずれかを更に備える請求項2~5のいずれか一項に記載の方向切換弁。 A first check valve that prevents backflow of hydraulic oil from the merging passage to the second flow path, a second check valve that prevents backflow of hydraulic oil from the merging path to the third flow path, and A third check valve that prevents backflow of hydraulic oil to one flow path and a fourth check valve that prevents backflow of hydraulic oil from the merging passage to the fourth flow path are further provided. The direction switching valve according to any one of 2 to 5.
  7.  前記アクチュエータは、油圧シリンダである請求項2~6のいずれか一項に記載の方向切換弁。 The direction switching valve according to any one of claims 2 to 6, wherein the actuator is a hydraulic cylinder.
  8.  前記アクチュエータは、ブームを駆動するためのアクチュエータである請求項2~7のいずれか一項に記載の方向切換弁。 The direction switching valve according to any one of claims 2 to 7, wherein the actuator is an actuator for driving a boom.
PCT/JP2018/002667 2017-02-09 2018-01-29 Directional control valve WO2018147108A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880011137.3A CN110268168B (en) 2017-02-09 2018-01-29 Reversing valve
KR1020197025973A KR102500484B1 (en) 2017-02-09 2018-01-29 directional seated valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017022514A JP6755814B2 (en) 2017-02-09 2017-02-09 Direction switching valve
JP2017-022514 2017-02-09

Publications (1)

Publication Number Publication Date
WO2018147108A1 true WO2018147108A1 (en) 2018-08-16

Family

ID=63108156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002667 WO2018147108A1 (en) 2017-02-09 2018-01-29 Directional control valve

Country Status (4)

Country Link
JP (1) JP6755814B2 (en)
KR (1) KR102500484B1 (en)
CN (1) CN110268168B (en)
WO (1) WO2018147108A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373406B2 (en) * 2020-01-08 2023-11-02 ナブテスコ株式会社 Hydraulic circuits and construction machinery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527399A (en) * 2010-05-17 2013-06-27 ボルボ コンストラクション イクイップメント アーベー Hydraulic control valve for construction machinery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1510418A (en) * 1976-03-08 1978-05-10 Caterpillar Tractor Co Fluid control valve
JP6242312B2 (en) * 2014-09-02 2017-12-06 株式会社日立建機ティエラ Construction machine hydraulic system
JP6522320B2 (en) * 2014-11-11 2019-05-29 ナブテスコ株式会社 Directional switching valve
JP6552829B2 (en) * 2015-01-28 2019-07-31 ナブテスコ株式会社 Directional switching valve
CN106351905B (en) * 2016-10-31 2018-04-10 浙江海克力液压有限公司 A kind of new type multipath reversal valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527399A (en) * 2010-05-17 2013-06-27 ボルボ コンストラクション イクイップメント アーベー Hydraulic control valve for construction machinery

Also Published As

Publication number Publication date
CN110268168B (en) 2021-03-09
JP2018128103A (en) 2018-08-16
KR102500484B1 (en) 2023-02-16
CN110268168A (en) 2019-09-20
KR20190115050A (en) 2019-10-10
JP6755814B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
KR20140034756A (en) Hydraulic circuit for pipe layer
JP6001846B2 (en) Hydraulic control device and construction machine including the same
JP6773418B2 (en) Direction switching valve and hydraulic system
JP6773421B2 (en) Direction switching valve and hydraulic system
JP6514522B2 (en) Hydraulic drive system of unloading valve and hydraulic shovel
KR20080088763A (en) Hydraulic circuit of construction equipment
US9551361B2 (en) Travel control valve
CN107061404B (en) Direction switching valve and hydraulic system
CN109563695B (en) Control valve for excavator and excavator
JP6196567B2 (en) Hydraulic drive system for construction machinery
KR102026550B1 (en) Fluid pressure control device
KR20020030747A (en) Hydraulic drive device of working machine
WO2018147108A1 (en) Directional control valve
US10359057B2 (en) Valve device and fluid pressure control device
KR101844170B1 (en) Fluid pressure control device for construction machine
JP6145386B2 (en) Fluid pressure control device for construction machinery
JP6918538B2 (en) Multiple direction switching valve
KR102678535B1 (en) Direction converter valve and hydraulic system
KR102679002B1 (en) Direction converter valve and hydraulic system
KR102083034B1 (en) Main control valve for Excavator
JP7121641B2 (en) Fluid pressure controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197025973

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18751328

Country of ref document: EP

Kind code of ref document: A1