WO2018146877A1 - Power supply device and method for controlling power supply device - Google Patents

Power supply device and method for controlling power supply device Download PDF

Info

Publication number
WO2018146877A1
WO2018146877A1 PCT/JP2017/040246 JP2017040246W WO2018146877A1 WO 2018146877 A1 WO2018146877 A1 WO 2018146877A1 JP 2017040246 W JP2017040246 W JP 2017040246W WO 2018146877 A1 WO2018146877 A1 WO 2018146877A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
transformer
power supply
mode
current
Prior art date
Application number
PCT/JP2017/040246
Other languages
French (fr)
Japanese (ja)
Inventor
圭司 田代
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2018566756A priority Critical patent/JP6930549B2/en
Publication of WO2018146877A1 publication Critical patent/WO2018146877A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present invention relates to a power supply device and a control method for the power supply device.
  • This application claims priority based on Japanese Patent Application No. 2017-024055 filed on Feb. 13, 2017, and incorporates all the description content described in the above Japanese application.
  • the DC / DC converter includes an insulation type DC / DC converter (active clamp type DC / DC converter) including an active clamp circuit.
  • a series circuit of a primary winding of a transformer and a main switching element is connected to a DC power source, and an active clamp circuit including a capacitor and an auxiliary switching element is provided at both ends of the primary winding. It is connected.
  • a rectifying element in the forward direction and a rectifying element in the reverse direction are connected to the secondary winding.
  • the power supply apparatus includes a transformer, a first switching element connected in series to a primary winding of the transformer, a first capacitor connected in parallel to the first switching element, and the primary winding.
  • a power supply device comprising: a second rectifier element connected in parallel to the rectifier element; and a control unit that controls on / off of the first switching element and the second switching element.
  • the first switching element is turned on, the second switching element is turned off and the transformer is operated in a first mode, and after the first mode, the first switching element is turned on.
  • the transformer and the first capacitor are operated in a third mode to resonate, and the current flowing through the second rectifier element due to the resonance in the third mode is less than or equal to a predetermined threshold, and the control unit When the current flowing through the second rectifying element becomes equal to or less than the threshold value, the first switching element is turned on to shift to the first mode.
  • a control method for a power supply apparatus includes a transformer, a first switching element connected in series to a primary winding of the transformer, a first capacitor connected in parallel to the first switching element, A series circuit of a second switching element and a second capacitor connected in parallel to the primary winding, a first rectifier element connected in series to the secondary winding of the transformer, and the secondary winding And a second rectifying element connected in parallel to the first rectifying element, and a control unit for controlling on / off of the first switching element and the second switching element.
  • the control unit operates in a first mode in which the first switching element is turned on, the second switching element is turned off to excite the transformer, and after the first mode, the first switching element is operated.
  • the switching element is turned off, the second switching element is turned on and the transformer is operated in a second mode to reset the excitation.
  • the first switching element and the second switching element are simultaneously operated.
  • the transformer and the first capacitor are turned off to operate in a third mode, and the current flowing through the second rectifier element due to the resonance in the third mode is set to be equal to or lower than a predetermined threshold value.
  • the control unit turns on the first switching element and shifts to the first mode when the current flowing through the second rectifying element becomes equal to or less than the threshold value.
  • an object of the present disclosure is to provide a power supply apparatus and a control method for the power supply apparatus that can suppress the generation of steep counter electromotive force.
  • the power supply apparatus includes a transformer, a first switching element connected in series to a primary winding of the transformer, a first capacitor connected in parallel to the first switching element, and the primary winding.
  • a power supply device comprising: a second rectifier element connected in parallel to the rectifier element; and a control unit that controls on / off of the first switching element and the second switching element.
  • the first switching element is turned on, the second switching element is turned off and the transformer is operated in a first mode, and after the first mode, the first switching element is turned off. And operating in a second mode in which the second switching element is turned on to reset the excitation of the transformer, and after the second mode, the first switching element and the second switching element are simultaneously turned off and the second switching element is turned off.
  • the transformer and the first capacitor are operated in a third mode to resonate, and the current flowing through the second rectifier element due to the resonance in the third mode is less than or equal to a predetermined threshold, and the control unit When the current flowing through the second rectifying element becomes equal to or less than the threshold value, the first switching element is turned on to shift to the first mode.
  • a control method for a power supply apparatus includes a transformer, a first switching element connected in series to a primary winding of the transformer, a first capacitor connected in parallel to the first switching element, A series circuit of a second switching element and a second capacitor connected in parallel to the primary winding, a first rectifier element connected in series to the secondary winding of the transformer, and the secondary winding And a second rectifying element connected in parallel to the first rectifying element, and a control unit for controlling on / off of the first switching element and the second switching element.
  • the control unit operates in a first mode in which the first switching element is turned on, the second switching element is turned off to excite the transformer, and after the first mode, the first switching element is operated.
  • the switching element is turned off, the second switching element is turned on and the transformer is operated in a second mode to reset the excitation.
  • the first switching element and the second switching element are simultaneously operated.
  • the transformer and the first capacitor are turned off to operate in a third mode, and the current flowing through the second rectifier element due to the resonance in the third mode is set to be equal to or lower than a predetermined threshold value.
  • the control unit turns on the first switching element and shifts to the first mode when the current flowing through the second rectifying element becomes equal to or less than the threshold value.
  • the controller operates in the first mode in which the first switching element is turned on and the second switching element is turned off to excite the transformer.
  • a power supply voltage on the input side is applied to the primary winding of the transformer, and the first rectifying element is turned on to output a predetermined voltage to the output side.
  • the transformer excitation current increases.
  • the control unit operates in the second mode in which the first switching element is turned off and the second switching element is turned on to reset the excitation of the transformer.
  • the transformer voltage becomes negative
  • the first rectifying element is reverse-biased
  • the load current flows through the second rectifying element.
  • the series circuit of the second switching element and the second capacitor constitutes a so-called active clamp circuit.
  • the control unit operates in the third mode in which the first switching element and the second switching element are simultaneously turned off after the second mode to resonate the transformer and the first capacitor. Due to the resonance, the current flowing through the second rectifying element also resonates and begins to decrease once. On the other hand, when the voltage of the transformer becomes positive due to resonance, the first rectifier element becomes forward biased, current flows through the first rectifier element, and the current of the first rectifier element starts to increase once due to resonance.
  • the current flowing through the second rectifying element due to resonance in the third mode is set to be equal to or less than a predetermined threshold value.
  • the predetermined threshold may be, for example, 0A or a small value near 0A. That is, when the current flowing through the second rectifying element once starts to decrease due to resonance, the current decreases to 0 A or near 0 A. Specifically, the excitation inductance of the transformer may be reduced so that the resonance current is about 0A.
  • the control unit turns on the first switching element and shifts to the first mode when the current flowing through the second rectifying element becomes equal to or less than the threshold value.
  • the first switching element is turned on, the potential of the first rectifying element is lowered by a voltage corresponding to the voltage of the first capacitor, and a reverse voltage is applied to the second rectifying element (becomes a reverse bias).
  • a reverse voltage is applied to the second rectifier element, the current flowing through the second rectifier element is equal to or lower than the threshold value, so that the generation of reverse recovery current can be suppressed and the generation of steep back electromotive force can be prevented. Can be suppressed.
  • the power supply device of the present disclosure satisfies the formula 2 ⁇ Im ⁇ n ⁇ Imax.
  • the winding ratio between the primary winding and the secondary winding of the transformer is n: 1
  • the maximum load current is Imax
  • the exciting current of the transformer when transitioning to the third mode is Im.
  • the second rectifying element includes a load current (Il) flowing through the load, a transformer exciting current (Im), a transformer (transformer leakage inductance), and a resonance current (Ir) due to resonance of the first capacitor.
  • the load current Il becomes a constant value by, for example, relatively increasing the inductance of the output side choke coil or the like.
  • the excitation current Im does not change during the dead time (a period in which both the first switching element and the second switching element are off) because the voltage applied to the excitation inductance is almost zero.
  • the resonance current Ir becomes the same value as the excitation current Im at the resonance start timing (however, the direction of the current is opposite) and is canceled out with the excitation current Im.
  • the second rectifier element has the same magnitude as the load current. Current flows.
  • n the turns ratio of the primary winding and the secondary winding of the transformer
  • Ir the turns ratio of the primary winding and the secondary winding of the transformer
  • the current flowing through the second rectifying element based on the excitation inductance of the transformer is set to be equal to or less than the threshold value.
  • the current flowing through the second rectifying element is set to be equal to or less than the threshold value.
  • the characteristic that the amplitude of the resonance current increases when the excitation inductance of the transformer is reduced is utilized. That is, when the excitation inductance of the transformer is reduced, the amplitude can be increased so that when the current flowing through the second rectifying element starts to decrease due to resonance, the current decreases to a threshold value or less. Thereby, it is possible to suppress the generation of steep back electromotive force by adjusting the excitation inductance of the transformer without adding special parts.
  • the second rectifying element includes a synchronous rectifying element.
  • the second rectifying element includes a synchronous rectifying element.
  • a synchronous rectifying element For example, an FET can be used as the synchronous rectifier.
  • the synchronous rectification is a rectification method in which the FET is turned on / off at a necessary timing to perform a rectification operation. Since synchronous rectifying elements such as FETs have a smaller forward voltage than diodes, loss can be reduced. However, the reverse recovery current tends to increase due to the body diode of the FET.
  • FIG. 1 is an explanatory diagram illustrating a first example of a circuit configuration of the power supply device 100 according to the present embodiment.
  • the power supply apparatus 100 includes terminals A and B on the input side and terminals C and D on the output side.
  • a DC power supply (not shown) is connected to the terminals A and B on the input side, and the output side A load is connected to the terminals C and D.
  • the power supply device 100 is, for example, a step-down converter.
  • the power supply apparatus 100 includes a transformer 30, a MOSFET (Metal / Oxide / Semiconductor / Field / Effect / Transistor, hereinafter referred to as "FET") 11 as a first switching element, a capacitor 21 as a first capacitor, and a second switching element.
  • FET 12 capacitor 22 as the second capacitor
  • diode 41 as the first rectifier
  • diode 42 as the second rectifier
  • capacitor 24 inductor 61 (choke coil on the output side)
  • FET 11 and FET 12 are turned on The control part 50 etc. which control / off are provided.
  • the FET 11 and FET 12 each have a body diode.
  • the terminal A is connected to one end of the primary winding 31 of the transformer 30.
  • the other end of the primary winding 31 is connected to the drain of the FET 11.
  • the source of the FET 11 is connected to the terminal B.
  • a capacitor 21 (resonance capacitor) is connected between the drain and source of the FET 11.
  • a series circuit of the FET 12 and the capacitor 22 is connected to both ends of the primary winding 31.
  • a series circuit of the FET 12 and the capacitor 22 constitutes an active clamp circuit.
  • one end of the capacitor 22 is connected to one end of the primary winding 31, and the drain of the FET 12 is connected to the other end of the capacitor 22.
  • the source of the FET 12 is connected to the other end of the primary winding 31.
  • the cathode of the diode 41 is connected to one end of the secondary winding 32 of the transformer 30, and the anode of the diode 41 is connected to the terminal D (ground level).
  • the other end of the secondary winding 32 is connected to the cathode of the diode 42 and one end of the inductor 61.
  • the anode of the diode 42 is connected to the anode of the diode 41.
  • the anodes of the diode 41 and the diode 42 are connected to each other.
  • the present invention is not limited to this, and the cathodes of the diode 41 and the diode 42 are connected to each other. It may be configured.
  • the other end of the inductor 61 is connected to the terminal C.
  • a capacitor 24 is connected between the terminals C and D.
  • the control unit 50 outputs a gate voltage to the gates of the FETs 11 and 12.
  • FIG. 2 is an explanatory diagram illustrating an example of the operation state D1 of the power supply device 100 according to the present embodiment.
  • the control unit 50 turns on the FET 11 and turns off the FET 12.
  • the operation state D1 corresponds to the first mode.
  • the exciting current of the transformer 30 increases and the transformer 30 is excited.
  • the power supply voltage on the input side is applied to the primary winding of the transformer 30, and the voltage of the primary winding becomes positive.
  • the voltage of the secondary winding also becomes positive, the diode 41 becomes conductive, and a predetermined voltage and current are output to the output side.
  • the exciting current of the transformer 30 increases.
  • symbol Lm represents the exciting inductance of the transformer 30, and Ls represents the leakage inductance.
  • a positive voltage is defined when the upper end potential is higher than the lower ends of the primary and secondary windings.
  • FIG. 3 is an explanatory diagram showing an example of the operation state D2 of the power supply apparatus 100 of the present embodiment.
  • the control unit 50 turns off the FET 11, and the FET 12 remains off.
  • the capacitor Cs (21) is charged.
  • the capacitor 21 is also referred to as a capacitor Cs.
  • the voltage of the transformer 30 primary winding and secondary winding
  • FIG. 4 is an explanatory diagram showing an example of the operation state D3 of the power supply device 100 according to the present embodiment.
  • the FET 11 and FET 12 remain off.
  • the diode 41 becomes reverse biased and becomes non-conductive.
  • the load current flowing in the diode 41 flows through the diode 42.
  • FIG. 5 is an explanatory diagram showing an example of the operation state D4 of the power supply device 100 according to the present embodiment.
  • the operating state D4 when the capacitor Cs is charged to a predetermined voltage, the body diode of the FET 12 becomes forward biased, and the excitation current that has flowed through the capacitor Cs flows through the body diode of the FET 12.
  • the control unit 50 turns on the FET 12.
  • the FET 12 When the FET 12 is turned on, the voltage of the capacitor 22 is applied to the transformer 30 in the reverse direction (negative voltage direction), the exciting current of the transformer 30 decreases, and the state of the transformer 30 is reset.
  • the FET 12 is turned on in the operation state D4, the second mode is supported.
  • FIG. 6 is an explanatory diagram showing an example of the operating state D5 of the power supply apparatus 100 according to the present embodiment.
  • the FET 12 is on and the FET 11 is off.
  • the operation state D5 corresponds to the second mode.
  • the exciting current of the transformer 30 is reversed (becomes negative, the current direction is reversed), the energy stored in the capacitor 22 is released, and the energy is stored in the leakage inductance Ls of the transformer 30.
  • FIG. 7 is an explanatory diagram showing an example of the operation state D6 of the power supply apparatus 100 according to the present embodiment.
  • the control unit 50 turns off the FET 12, and the FET 11 remains off.
  • An operation state D6 and an operation state D7 described later correspond to the third mode, and correspond to a dead time (pause period) in which the FET 11 and the FET 12 are simultaneously turned off before the operation state D1 (the FET 11 is turned on).
  • resonance occurs due to the transformer 30 (more specifically, the sum of the leakage inductance Ls and the excitation inductance Lm) and the resonance capacitor Cs.
  • the diode 41 becomes forward biased, a current flows through the diode 41, and the operation state D7 is entered.
  • FIG. 8 is an explanatory diagram showing an example of the operating state D7 of the power supply apparatus 100 of the present embodiment.
  • the FETs 11 and 12 remain off.
  • resonance occurs due to the transformer 30 (more specifically, the leakage inductance Ls) and the capacitor Cs.
  • the diode 42 includes a load current Il (shown by a solid line in the figure) flowing through the load, an excitation current Im (shown by a broken line in the figure) of the transformer 30, and a transformer 30 (leakage inductance Ls of the transformer 30). And a resonance current Ir (indicated by a one-dot chain line in the figure) due to resonance of the capacitor Cs flows.
  • the winding ratio of the transformer 30 is assumed to be 1: 1 for convenience, but the winding ratio of the transformer 30 is not limited to 1: 1.
  • the load current Il flows through the diode 42, the inductor 61 (also referred to as the output side choke coil), and the closed loop of the load.
  • the load current Il becomes a constant value by relatively increasing the inductance of the inductor 61.
  • the exciting current Im flows through the closed loop of the transformer 30 and the diodes 42 and 41. Since the voltage applied to the exciting inductance Lm is almost zero during the dead time (period in which the FET 11 and the FET 12 are simultaneously turned off), the exciting current Im does not change in the operating state D7, and the operating state D6 is The current value Im at the time of termination is maintained.
  • the resonance current Ir is a current due to resonance of the leakage inductance Ls of the transformer 30 and the capacitor Cs, and can be expressed by Expression (1).
  • t is time
  • the resonance current Ir excitation current Im.
  • the directions of the resonance current Ir and the excitation current Im are opposite. That is, at the start timing of the operation state D7, the resonance current Ir has the same value as the excitation current Im (however, the direction of the current is reversed) and is canceled out with the excitation current Im. The same current flows.
  • the resonance current Ir temporarily decreases. That is, the resonance current Ir decreases in a direction that cancels the load current Il, and the current flowing through the diode 42 decreases toward the threshold value as the resonance proceeds.
  • the current of the diode 41 increases as the resonance proceeds.
  • the resonance frequency f can be obtained by the equation 1 / ⁇ 2 ⁇ ⁇ ⁇ ⁇ (Ls ⁇ Cs) ⁇ .
  • the current flowing through the diode 42 due to resonance is equal to or less than a predetermined threshold value.
  • the predetermined threshold may be, for example, 0A or a small value near 0A. That is, when the current flowing through the diode 42 starts to decrease once due to resonance, the current decreases to 0 A or near 0 A. Specifically, the excitation inductance Lm of the transformer 30 may be reduced so that the resonance current is about 0A.
  • the control unit 50 turns on the FET 11. Thereby, the state shifts to an operation state D8 described later.
  • the winding ratio of the transformer 30 is described as 1: 1 for convenience.
  • the winding ratio of the transformer 30 is n: 1
  • the primary side and the secondary side of the transformer 30 are secondary.
  • the voltage may be 1 / n times and the current may be n times.
  • the expression (2) is satisfied with the excitation current Im as small as possible.
  • the condition for satisfying the expression (2) with the smallest exciting current Im can be expressed by the expression (4).
  • the inductor 61 output-side choke coil
  • the ripple current is zero. That's fine.
  • FIG. 9 is an explanatory diagram showing an example of the operating state D8 of the power supply apparatus 100 according to the present embodiment.
  • the operating state D8 when the FET 11 is turned on, the voltage of the transformer 30 decreases by a voltage corresponding to the voltage of the capacitor Cs. For this reason, when the cathode potential of the diode 41 that is forward-biased decreases, the anode potential of the diode 42 decreases, and a reverse voltage is applied to the diode 42 (becomes reverse bias).
  • the current flowing through the diode 42 is equal to or less than the threshold value, so that the generation of reverse recovery current can be suppressed and the generation of steep counter electromotive force can be suppressed.
  • the current flowing through the diode 42 is set to be equal to or less than the threshold value.
  • the characteristic that the amplitude of the resonance current is increased is used. That is, when the exciting inductance Lm of the transformer 30 is reduced, the amplitude can be increased so that when the current flowing through the diode 42 starts to decrease due to resonance, the current decreases below the threshold value.
  • the exciting inductance Lm of the transformer 30 without adding special parts, it is possible to suppress the generation of steep back electromotive force.
  • the value of the excitation inductance Lm may be calculated by calculation, or may be obtained by actual measurement or simulation.
  • the timing at which the current flowing through the diode 42 becomes equal to or lower than the threshold can be obtained based on the current value of the diode 42, the resonance frequency f, and the like.
  • FIG. 10 is an explanatory diagram showing an example of the waveform of each part in the operating state of the power supply apparatus 100 of the present embodiment.
  • the horizontal axis indicates time.
  • the waveforms in FIG. 10 indicate the gate voltage of the FET 12, the current of the diode 42, the current of the diode 42, the gate voltage of the FET 11, and the voltage of the diode 42 in order from the top.
  • the FET 12 is on and the FET 11 is off.
  • the diode 42 is forward biased, and the voltage of the diode 42 is a forward voltage.
  • a load current flows through the diode 42.
  • the diode 41 is reverse-biased and no current flows.
  • the operation state D6 In the operation state D5, when the FET 12 is turned from on to off, the operation state D6 is entered. In the operation state D6, resonance occurs due to the transformer 30 (more specifically, the sum of the leakage inductance Ls and the excitation inductance Lm) and the resonance capacitor Cs.
  • the operation state D7 is set.
  • the current flowing through the diode 42 also resonates and begins to decrease once.
  • the diode 41 becomes forward biased, a current flows through the diode 41, and the current of the diode 41 starts to increase once due to resonance.
  • the FET 11 In the operation state D7, when the current flowing through the diode 42 is equal to or less than the threshold value, the FET 11 is turned on, and the operation state D8 is entered. Since the FET 11 is turned on when the current flowing through the diode 42 becomes less than the threshold value, the forward current flowing when the diode 42 is reverse-biased by turning on the FET 11 is extremely small, so that reverse recovery is achieved. It is possible to suppress the generation of current (current in the negative direction when shifting from the operating state D7 to D8 in FIG. 10). As a result, the electromotive force generated in the diode 42 (the cathode potential with respect to the anode of the diode 42) can be suppressed. As shown in FIG. 10, it can be seen that the fluctuation of the voltage of the diode 42 is relatively small when shifting from the operating state D7 to D8.
  • FIG. 11 is an explanatory diagram showing an example of the waveform of each part in the operating state of the power supply device as a comparative example.
  • the comparative example shows a case where the current flowing through the diode 42 due to resonance is not set to be equal to or less than a predetermined threshold value.
  • the operation state D5 is the same as that in FIG.
  • the operation state D6 In the operation state D5, when the FET 12 is turned from on to off, the operation state D6 is entered. In the operation state D6, resonance occurs due to the transformer 30 (more specifically, the sum of the leakage inductance Ls and the excitation inductance Lm) and the resonance capacitor Cs.
  • the operation state D7 is set.
  • the current flowing through the diode 42 gradually decreases while resonating.
  • the current flowing through the diode 41 gradually increases while resonating.
  • the amplitude of the current flowing through the diode 42 due to resonance is increased so that the current becomes a predetermined threshold value or less, and this current becomes the threshold value or less. Since the FET 11 is turned on at the timing, even if the diode 42 is reverse biased by turning on the FET 11, the reverse recovery current can be reduced, and as a result, the generation of the surge voltage can be suppressed.
  • FIG. 12 is a flowchart showing an example of the processing procedure of the control method of the power supply apparatus 100 of the present embodiment.
  • the control unit 50 turns on the FET 11, turns off the FET 12 (S 11), excites the transformer 30 (S 12), and sets the power supply apparatus 100 to the operation state D 1.
  • the control unit 50 turns off the FET 11 (S13), shifts the power supply device 100 from the operating state D1 to the operating state D2, and charges the capacitor Cs (21). Thereafter, the power supply device 100 is set to the operation states D3 and D4.
  • the control unit 50 turns on the FET 12 at the timing when the body diode of the FET 12 becomes forward biased (S14), and shifts the power supply apparatus 100 to the operation state D5.
  • the control unit 50 releases the energy stored in the capacitor 22 of the active clamp circuit and stores the energy in the leakage inductance Ls (S15).
  • the control unit 50 turns off the FET 12 (S16) and shifts the power supply device 100 to the operation state D6.
  • the control unit 50 generates resonance by the leakage inductance Ls and the resonance capacitor Cs (S17). Thereafter, the power supply device 100 is shifted to the operation state D7.
  • the current flowing through the diode 42 decreases toward 0 A due to resonance.
  • the control unit 50 determines whether or not the current flowing through the diode 42 is equal to or less than a threshold value (S18). Note that the timing at which the current flowing through the diode 42 becomes equal to or less than the threshold value is obtained in advance, and it can also be determined based on whether or not the timing is reached.
  • control unit 50 continues the process of step S18. If the current flowing through the diode 42 is less than or equal to the threshold (YES in S18), the FET 11 is turned on ( S19), the power supply device 100 is shifted to the operation state D8.
  • the control unit 50 determines whether or not to end the process (S20). When it is determined that the process is not ended (NO in S20), the process after step S12 is continued and it is determined that the process is ended (S20). YES), the process is terminated.
  • control unit 50 is configured by, for example, a CPU (processor), a RAM (memory), and the like, and a computer program that defines the procedure of each process as shown in FIG. Is loaded into a RAM (memory), and a computer program is executed by a CPU (processor), whereby a control method of the power supply device 50 can be realized on the computer.
  • a CPU processor
  • RAM memory
  • CPU processor
  • FIG. 13 is an explanatory diagram showing a second example of the circuit configuration of the power supply device 100 of the present embodiment.
  • the difference from the first example shown in FIG. 1 is that FETs 13 and 14 as synchronous rectifier elements are provided instead of the diodes 41 and 42. That is, in the second example, the drain of the FET 13 is connected to one end of the secondary winding 32 of the transformer 30, and the source of the FET 13 is connected to the terminal D (ground level). The other end of the secondary winding 32 is connected to the drain of the FET 14. The source of the FET 14 is connected to the source of the FET 13.
  • the control unit 50 outputs a gate voltage to the gates of the FET 13 and FET 14 and controls on / off of the FET 13 and FET 14.
  • the controller 50 turns on and off the FET 13 and the FET 14 at a necessary timing to perform a synchronous rectification operation.
  • the current flowing through the FET 14 is equal to or lower than the threshold value. It can be reduced and generation of steep back electromotive force can be suppressed.
  • FIG. 14 is an explanatory diagram showing a third example of the circuit configuration of the power supply device 100 of the present embodiment.
  • a current detection unit 70 that detects the load current of the power supply device 100
  • the control unit 50 includes a dead time adjustment unit 51, a calculation unit 52, and the like.
  • the control unit 50 (dead time adjustment unit 51) adjusts the dead time indicating the time from the time when the FET 12 is turned off to the time when the FET 11 is turned on according to the load current detected by the current detection 70.
  • the third example can also be applied to the second example shown in FIG. Details will be described below.
  • FIG. 15 is a time chart showing an example of the switching state of the FETs 11 and 12 of the power supply apparatus 100 of the present embodiment.
  • the time chart illustrated in FIG. 15 is apparent from the description of the first example and the second example described above, but will be described again for convenience.
  • the FET 12 on time is T12
  • the FET 11 on time is T11
  • the dead time from the FET 12 off time to the FET 11 on time is Td1
  • the dead time from the FET 11 off time to the FET 12 on time is dead.
  • Td2 T.
  • T is the switching period of the FET 12. Note that the period T is constant.
  • the on-time T11 of the FET 11 can also be made constant when the rated input voltage of the power supply device 100 does not change.
  • the noticeable dead time is the period of the operating states D6 and D7, which is Td1.
  • FIG. 16 is an explanatory diagram showing an example of the optimum value of dead time due to the load current of the power supply device 100 of the present embodiment.
  • Td1 operation states D6 and D7
  • the current flowing through the diode 42 decreases and increases and decreases repeatedly.
  • the load current is relatively large
  • the time until the current flowing through the diode 42 reaches about 0 A is relatively long.
  • the load current is relatively small
  • the time until the current flowing through the diode 42 reaches about 0 A is relatively short. That is, it can be seen that the optimum value of the dead time Td1 (that is, the time from when the FET 12 is turned off until the current flowing through the diode 42 first reaches around 0 A) changes.
  • FIG. 17 is an explanatory diagram showing a correspondence relationship between the dead time Td1 and the load current of the power supply device 100 according to the present embodiment.
  • the horizontal axis represents the load current (corresponding to the load current detected by the current detection unit 70), and the vertical axis represents the dead time Td1.
  • the dead time Td1 can be set smaller as the load current decreases, and conversely, the dead time Td1 can be set larger as the load current increases.
  • the dead time Td1 is made smaller than the lower limit value, the FET 12 and the FET 11 are simultaneously turned on due to the operation delay of the gate drive circuit, etc., and there is a possibility that an overcurrent flows. .
  • the FET 12 may be turned off at a timing at which the resonance current flowing through the diode 42 does not become around 0 A, and the dead time Td1 is preferably set to the upper limit value or less.
  • the information indicating the correspondence between the dead time Td1 and the load current as shown in FIG. 17 may be stored in a non-volatile memory (not shown) provided inside or outside the control unit 50, or A chart as shown in FIG. 17 may be realized by an arithmetic circuit, and the dead time Td1 may be calculated from the load current.
  • the current detector 70 detects the load current while the FET 11 is on.
  • the current detection unit 70 can detect a current having a value obtained by dividing the load current by the turn ratio of the transformer 30. As a result, the load current is detected from the ON time point to the OFF time point in a certain switching cycle of the FET 12, so that the OFF time point can be determined within the switching cycle and the dead time Td1 can be adjusted.
  • the current detection unit 70 detects the load current a plurality of times while the FET 11 is turned on over a plurality of switching cycles of the FET 11, and the control unit 50 detects the load current detected a plurality of times by the current detection unit 70.
  • the dead time Td1 can be adjusted according to the statistical value.
  • the statistical value can be an average value, for example.
  • FIG. 18 is an explanatory diagram showing an example of a method for adjusting the dead time Td1 of the power supply apparatus 100 according to the present embodiment.
  • the dead time adjusting unit 51 (or the control unit 50) changes the OFF time of the FET 12 to adjust the dead time Td1.
  • the dead time Td1 can be adjusted while keeping T and T11 constant.
  • the dead time adjustment unit 51 increases the dead time Td1 when the load current is large, and shortens the dead time Td1 when the load current is small.
  • the calculation unit 52 calculates the ON time T12 of the FET 12 based on the load current detected by the current detection unit 70 and information indicating the correspondence relationship between the dead time Td1 and the load current illustrated in FIG.
  • the switching element is not limited to a MOSFET, but may be a device such as an IGBT (Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • the switching element is a MOSFET as in the present embodiment, there is an equivalently incorporated body diode between the drain and source.
  • a bipolar transistor is used as the switching element, a diode may be connected in antiparallel between the collector and emitter of the transistor.
  • the current detection unit 70 is provided between one end of the primary winding 31 of the transformer 30 and the input terminal A, and the current is detected when the FET 11 is on.
  • the present invention is not limited to this.
  • a current detector 70 may be provided between one end of the inductor 61 and the output terminal C so that the current is detected when the FET 12 is on.

Abstract

According to the present invention, a control unit: activates a first mode, in which a first switching element is turned on and a second switching element is turned off, thereby exciting a transformer; activates, after the first mode, a second mode in which the first switching element is turned off and the second switching element is turned on, thereby resetting the transformer; and activates, after the second mode, a third mode in which the first switching element and the second switching element are both turned off at the same time, thereby resonating the transformer and a first capacitor, wherein the current flowing to a second rectifying element by means of the resonance in the third mode is set to be equal to or less than a predetermined threshold, and the control unit turns on the first switching element when the current flowing to the second rectifying element is equal to or less than the threshold.

Description

電源装置及び電源装置の制御方法Power supply device and control method of power supply device
 本発明は、電源装置及び電源装置の制御方法に関する。
 本出願は、2017年2月13日出願の日本出願第2017-024055号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present invention relates to a power supply device and a control method for the power supply device.
This application claims priority based on Japanese Patent Application No. 2017-024055 filed on Feb. 13, 2017, and incorporates all the description content described in the above Japanese application.
 直流電圧を変換するDC/DCコンバータが産業用機器及び車載装置に用いられている。DC/DCコンバータには、アクティブクランプ回路を備える絶縁型のDC/DCコンバータ(アクティブクランプ型のDC/DCコンバータ)がある。 DC / DC converters that convert DC voltage are used in industrial equipment and in-vehicle devices. The DC / DC converter includes an insulation type DC / DC converter (active clamp type DC / DC converter) including an active clamp circuit.
 アクティブクランプ型のDC/DCコンバータは、トランスの1次巻線と主スイッチング素子との直列回路が直流電源に接続され、1次巻線の両端にキャパシタと補助スイッチング素子とからなるアクティブクランプ回路が接続されている。2次巻線には、順方向の整流素子と逆方向の整流素子が接続されている。主スイッチング素子と補助スイッチング素子とを交互にオン/オフすることによって、トランスの磁化エネルギー及び漏れエネルギーをアクティブクランプ回路のキャパシタを介して循環させ、電源変換効率を向上させることができる(特許文献1参照)。 In the active clamp type DC / DC converter, a series circuit of a primary winding of a transformer and a main switching element is connected to a DC power source, and an active clamp circuit including a capacitor and an auxiliary switching element is provided at both ends of the primary winding. It is connected. A rectifying element in the forward direction and a rectifying element in the reverse direction are connected to the secondary winding. By alternately turning on and off the main switching element and the auxiliary switching element, it is possible to circulate the magnetizing energy and leakage energy of the transformer through the capacitor of the active clamp circuit, thereby improving the power conversion efficiency (Patent Document 1). reference).
特開2009-290932号公報JP 2009-290932 A
 本開示の電源装置は、トランスと、該トランスの一次巻線に直列に接続された第1のスイッチング素子と、該第1のスイッチング素子に並列に接続された第1のキャパシタと、前記一次巻線に並列に接続された第2のスイッチング素子及び第2のキャパシタの直列回路と、前記トランスの二次巻線に直列に接続された第1の整流素子と、前記二次巻線及び第1の整流素子に対して並列に接続された第2の整流素子と、前記第1のスイッチング素子及び第2のスイッチング素子のオン/オフを制御する制御部とを備える電源装置であって、前記制御部は、前記第1のスイッチング素子をオンにし、前記第2のスイッチング素子をオフにして前記トランスを励磁する第1モードで動作させ、該第1モード後に、前記第1のスイッチング素子をオフにし、前記第2のスイッチング素子をオンにして前記トランスの励磁をリセットする第2モードで動作させ、該第2モード後に、前記第1のスイッチング素子及び第2のスイッチング素子を同時にオフにして前記トランス及び第1のキャパシタを共振させる第3モードで動作させ、該第3モードにて前記共振により前記第2の整流素子に流れる電流が所定の閾値以下となるようにしてあり、前記制御部は、前記第2の整流素子に流れる電流が前記閾値以下となった場合に、前記第1のスイッチング素子をオンにして前記第1モードに移行する。 The power supply apparatus according to the present disclosure includes a transformer, a first switching element connected in series to a primary winding of the transformer, a first capacitor connected in parallel to the first switching element, and the primary winding. A series circuit of a second switching element and a second capacitor connected in parallel to the line, a first rectifier element connected in series to the secondary winding of the transformer, the secondary winding and the first A power supply device comprising: a second rectifier element connected in parallel to the rectifier element; and a control unit that controls on / off of the first switching element and the second switching element. The first switching element is turned on, the second switching element is turned off and the transformer is operated in a first mode, and after the first mode, the first switching element is turned on. And operating in a second mode in which the second switching element is turned on to reset the excitation of the transformer, and after the second mode, the first switching element and the second switching element are simultaneously turned off and the second switching element is turned off. The transformer and the first capacitor are operated in a third mode to resonate, and the current flowing through the second rectifier element due to the resonance in the third mode is less than or equal to a predetermined threshold, and the control unit When the current flowing through the second rectifying element becomes equal to or less than the threshold value, the first switching element is turned on to shift to the first mode.
 本開示の電源装置の制御方法は、トランスと、該トランスの一次巻線に直列に接続された第1のスイッチング素子と、該第1のスイッチング素子に並列に接続された第1のキャパシタと、前記一次巻線に並列に接続された第2のスイッチング素子及び第2のキャパシタの直列回路と、前記トランスの二次巻線に直列に接続された第1の整流素子と、前記二次巻線及び第1の整流素子に対して並列に接続された第2の整流素子と、前記第1のスイッチング素子及び第2のスイッチング素子のオン/オフを制御する制御部とを備える電源装置の制御方法であって、前記制御部は、前記第1のスイッチング素子をオンにし、前記第2のスイッチング素子をオフにして前記トランスを励磁する第1モードで動作させ、該第1モード後に、前記第1のスイッチング素子をオフにし、前記第2のスイッチング素子をオンにして前記トランスの励磁をリセットする第2モードで動作させ、該第2モード後に、前記第1のスイッチング素子及び第2のスイッチング素子を同時にオフにして前記トランス及び第1のキャパシタを共振させる第3モードで動作させ、該第3モードにて前記共振により前記第2の整流素子に流れる電流が所定の閾値以下となるようにしてあり、前記制御部は、前記第2の整流素子に流れる電流が前記閾値以下となった場合に、前記第1のスイッチング素子をオンにして前記第1モードに移行する。 A control method for a power supply apparatus according to the present disclosure includes a transformer, a first switching element connected in series to a primary winding of the transformer, a first capacitor connected in parallel to the first switching element, A series circuit of a second switching element and a second capacitor connected in parallel to the primary winding, a first rectifier element connected in series to the secondary winding of the transformer, and the secondary winding And a second rectifying element connected in parallel to the first rectifying element, and a control unit for controlling on / off of the first switching element and the second switching element. The control unit operates in a first mode in which the first switching element is turned on, the second switching element is turned off to excite the transformer, and after the first mode, the first switching element is operated. of The switching element is turned off, the second switching element is turned on and the transformer is operated in a second mode to reset the excitation. After the second mode, the first switching element and the second switching element are simultaneously operated. The transformer and the first capacitor are turned off to operate in a third mode, and the current flowing through the second rectifier element due to the resonance in the third mode is set to be equal to or lower than a predetermined threshold value. The control unit turns on the first switching element and shifts to the first mode when the current flowing through the second rectifying element becomes equal to or less than the threshold value.
本実施の形態の電源装置の回路構成の第1例を示す説明図である。It is explanatory drawing which shows the 1st example of the circuit structure of the power supply device of this Embodiment. 本実施の形態の電源装置の動作状態D1の一例を示す説明図である。It is explanatory drawing which shows an example of the operation state D1 of the power supply device of this Embodiment. 本実施の形態の電源装置の動作状態D2の一例を示す説明図である。It is explanatory drawing which shows an example of the operation state D2 of the power supply device of this Embodiment. 本実施の形態の電源装置の動作状態D3の一例を示す説明図である。It is explanatory drawing which shows an example of the operation state D3 of the power supply device of this Embodiment. 本実施の形態の電源装置の動作状態D4の一例を示す説明図である。It is explanatory drawing which shows an example of the operation state D4 of the power supply device of this Embodiment. 本実施の形態の電源装置の動作状態D5の一例を示す説明図である。It is explanatory drawing which shows an example of the operation state D5 of the power supply device of this Embodiment. 本実施の形態の電源装置の動作状態D6の一例を示す説明図である。It is explanatory drawing which shows an example of the operation state D6 of the power supply device of this Embodiment. 本実施の形態の電源装置の動作状態D7の一例を示す説明図である。It is explanatory drawing which shows an example of the operation state D7 of the power supply device of this Embodiment. 本実施の形態の電源装置の動作状態D8の一例を示す説明図である。It is explanatory drawing which shows an example of the operation state D8 of the power supply device of this Embodiment. 本実施の形態の電源装置の動作状態での各部の波形の一例を示す説明図である。It is explanatory drawing which shows an example of the waveform of each part in the operation state of the power supply device of this Embodiment. 比較例としての電源装置の動作状態での各部の波形の一例を示す説明図である。It is explanatory drawing which shows an example of the waveform of each part in the operation state of the power supply device as a comparative example. 本実施の形態の電源装置の制御方法の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of the control method of the power supply device of this Embodiment. 本実施の形態の電源装置の回路構成の第2例を示す説明図である。It is explanatory drawing which shows the 2nd example of the circuit structure of the power supply device of this Embodiment. 本実施の形態の電源装置の回路構成の第3例を示す説明図である。It is explanatory drawing which shows the 3rd example of the circuit structure of the power supply device of this Embodiment. 本実施の形態の電源装置のFETのスイッチング状態の一例を示すタイムチャートである。It is a time chart which shows an example of the switching state of FET of the power supply device of this Embodiment. 本実施の形態の電源装置の負荷電流によるデッドタイムの最適値の一例を示す説明図である。It is explanatory drawing which shows an example of the optimal value of the dead time by the load current of the power supply device of this Embodiment. 本実施の形態の電源装置のデッドタイムと負荷電流との対応関係を示す説明図である。It is explanatory drawing which shows the correspondence of the dead time and load current of the power supply device of this Embodiment. 本実施の形態の電源装置のデッドタイムの調整方法の一例を示す説明図である。It is explanatory drawing which shows an example of the adjustment method of the dead time of the power supply device of this Embodiment.
[本開示が解決しようとする課題]
 しかし、特許文献1のような従来のアクティブクランプ型のDC/DCコンバータでは、整流素子に順方向電流が流れている状態で主スイッチング素子がオンするので、整流素子に逆電圧がかかる。整流素子には、順方向電流に比例した電荷が蓄積されているので、逆電圧が印加されると、蓄積した電荷による逆電流が流れ、逆電流の変化によって急峻な逆起電力が生じ、整流素子の破損やノイズの原因となる。
[Problems to be solved by the present disclosure]
However, in the conventional active clamp type DC / DC converter as disclosed in Patent Document 1, since the main switching element is turned on while a forward current flows through the rectifying element, a reverse voltage is applied to the rectifying element. Since charge proportional to the forward current is stored in the rectifier element, when a reverse voltage is applied, a reverse current flows due to the stored charge, and a steep counter electromotive force is generated due to a change in the reverse current. It may cause damage to elements and noise.
 そこで、本開示は、急峻な逆起電力の発生を抑制することができる電源装置及び電源装置の制御方法を提供することを目的とする。
[本開示の効果]
Therefore, an object of the present disclosure is to provide a power supply apparatus and a control method for the power supply apparatus that can suppress the generation of steep counter electromotive force.
[Effects of the present disclosure]
 本開示によれば、急峻な逆起電力の発生を抑制することができる。 According to the present disclosure, it is possible to suppress the generation of steep back electromotive force.
[本願発明の実施形態の説明]
 本開示の電源装置は、トランスと、該トランスの一次巻線に直列に接続された第1のスイッチング素子と、該第1のスイッチング素子に並列に接続された第1のキャパシタと、前記一次巻線に並列に接続された第2のスイッチング素子及び第2のキャパシタの直列回路と、前記トランスの二次巻線に直列に接続された第1の整流素子と、前記二次巻線及び第1の整流素子に対して並列に接続された第2の整流素子と、前記第1のスイッチング素子及び第2のスイッチング素子のオン/オフを制御する制御部とを備える電源装置であって、前記制御部は、前記第1のスイッチング素子をオンにし、前記第2のスイッチング素子をオフにして前記トランスを励磁する第1モードで動作させ、該第1モード後に、前記第1のスイッチング素子をオフにし、前記第2のスイッチング素子をオンにして前記トランスの励磁をリセットする第2モードで動作させ、該第2モード後に、前記第1のスイッチング素子及び第2のスイッチング素子を同時にオフにして前記トランス及び第1のキャパシタを共振させる第3モードで動作させ、該第3モードにて前記共振により前記第2の整流素子に流れる電流が所定の閾値以下となるようにしてあり、前記制御部は、前記第2の整流素子に流れる電流が前記閾値以下となった場合に、前記第1のスイッチング素子をオンにして前記第1モードに移行する。
[Description of Embodiment of Present Invention]
The power supply apparatus according to the present disclosure includes a transformer, a first switching element connected in series to a primary winding of the transformer, a first capacitor connected in parallel to the first switching element, and the primary winding. A series circuit of a second switching element and a second capacitor connected in parallel to the line, a first rectifier element connected in series to the secondary winding of the transformer, the secondary winding and the first A power supply device comprising: a second rectifier element connected in parallel to the rectifier element; and a control unit that controls on / off of the first switching element and the second switching element. The first switching element is turned on, the second switching element is turned off and the transformer is operated in a first mode, and after the first mode, the first switching element is turned off. And operating in a second mode in which the second switching element is turned on to reset the excitation of the transformer, and after the second mode, the first switching element and the second switching element are simultaneously turned off and the second switching element is turned off. The transformer and the first capacitor are operated in a third mode to resonate, and the current flowing through the second rectifier element due to the resonance in the third mode is less than or equal to a predetermined threshold, and the control unit When the current flowing through the second rectifying element becomes equal to or less than the threshold value, the first switching element is turned on to shift to the first mode.
 本開示の電源装置の制御方法は、トランスと、該トランスの一次巻線に直列に接続された第1のスイッチング素子と、該第1のスイッチング素子に並列に接続された第1のキャパシタと、前記一次巻線に並列に接続された第2のスイッチング素子及び第2のキャパシタの直列回路と、前記トランスの二次巻線に直列に接続された第1の整流素子と、前記二次巻線及び第1の整流素子に対して並列に接続された第2の整流素子と、前記第1のスイッチング素子及び第2のスイッチング素子のオン/オフを制御する制御部とを備える電源装置の制御方法であって、前記制御部は、前記第1のスイッチング素子をオンにし、前記第2のスイッチング素子をオフにして前記トランスを励磁する第1モードで動作させ、該第1モード後に、前記第1のスイッチング素子をオフにし、前記第2のスイッチング素子をオンにして前記トランスの励磁をリセットする第2モードで動作させ、該第2モード後に、前記第1のスイッチング素子及び第2のスイッチング素子を同時にオフにして前記トランス及び第1のキャパシタを共振させる第3モードで動作させ、該第3モードにて前記共振により前記第2の整流素子に流れる電流が所定の閾値以下となるようにしてあり、前記制御部は、前記第2の整流素子に流れる電流が前記閾値以下となった場合に、前記第1のスイッチング素子をオンにして前記第1モードに移行する。 A control method for a power supply apparatus according to the present disclosure includes a transformer, a first switching element connected in series to a primary winding of the transformer, a first capacitor connected in parallel to the first switching element, A series circuit of a second switching element and a second capacitor connected in parallel to the primary winding, a first rectifier element connected in series to the secondary winding of the transformer, and the secondary winding And a second rectifying element connected in parallel to the first rectifying element, and a control unit for controlling on / off of the first switching element and the second switching element. The control unit operates in a first mode in which the first switching element is turned on, the second switching element is turned off to excite the transformer, and after the first mode, the first switching element is operated. of The switching element is turned off, the second switching element is turned on and the transformer is operated in a second mode to reset the excitation. After the second mode, the first switching element and the second switching element are simultaneously operated. The transformer and the first capacitor are turned off to operate in a third mode, and the current flowing through the second rectifier element due to the resonance in the third mode is set to be equal to or lower than a predetermined threshold value. The control unit turns on the first switching element and shifts to the first mode when the current flowing through the second rectifying element becomes equal to or less than the threshold value.
 制御部は、第1のスイッチング素子をオンにし、第2のスイッチング素子をオフにしてトランスを励磁する第1モードで動作させる。トランスの1次巻線には、入力側の電源電圧が印加され、第1の整流素子が導通して出力側へ所定の電圧が出力される。トランスの励磁電流は増加する。 The controller operates in the first mode in which the first switching element is turned on and the second switching element is turned off to excite the transformer. A power supply voltage on the input side is applied to the primary winding of the transformer, and the first rectifying element is turned on to output a predetermined voltage to the output side. The transformer excitation current increases.
 制御部は、第1モード後に、第1のスイッチング素子をオフにし、第2のスイッチング素子をオンにしてトランスの励磁をリセットする第2モードで動作させる。なお、第2モードの開始時点では、トランスの電圧が負になり、第1の整流素子は逆バイアスとなり、負荷電流は第2の整流素子を介して流れている。第2のスイッチング素子と第2のキャパシタの直列回路は、いわゆるアクティブクランプ回路を構成する。第2のスイッチング素子をオンにすることにより、第2のキャパシタの電圧がトランスに逆方向に印加され、トランスの励磁電流は減少する。また、第2のキャパシタに蓄えられたエネルギーが放出され、トランスの漏れインダクタンスにエネルギーが蓄積される。 After the first mode, the control unit operates in the second mode in which the first switching element is turned off and the second switching element is turned on to reset the excitation of the transformer. At the start of the second mode, the transformer voltage becomes negative, the first rectifying element is reverse-biased, and the load current flows through the second rectifying element. The series circuit of the second switching element and the second capacitor constitutes a so-called active clamp circuit. By turning on the second switching element, the voltage of the second capacitor is applied to the transformer in the reverse direction, and the exciting current of the transformer is reduced. Further, the energy stored in the second capacitor is released, and the energy is stored in the leakage inductance of the transformer.
 制御部は、第2モード後に、第1のスイッチング素子及び第2のスイッチング素子を同時にオフにしてトランス及び第1のキャパシタを共振させる第3モードで動作させる。共振により、第2の整流素子に流れる電流も共振し、一旦減少し始める。一方、共振によりトランスの電圧が正になると、第1の整流素子が順バイアスとなり、第1の整流素子に電流が流れ、第1の整流素子の電流は共振により一旦増加し始める。 The control unit operates in the third mode in which the first switching element and the second switching element are simultaneously turned off after the second mode to resonate the transformer and the first capacitor. Due to the resonance, the current flowing through the second rectifying element also resonates and begins to decrease once. On the other hand, when the voltage of the transformer becomes positive due to resonance, the first rectifier element becomes forward biased, current flows through the first rectifier element, and the current of the first rectifier element starts to increase once due to resonance.
 第3モードにて共振により第2の整流素子に流れる電流が所定の閾値以下となるようにしてある。所定の閾値は、例えば、0Aでもよく、0A付近の小さい値でもよい。すなわち、第2の整流素子に流れる電流が共振により一旦減少し始めたときに、その電流が0A又は0A付近まで減少するようにしてある。具体的には、共振電流が0A程度になるようにトランスの励磁インダクタンスを小さくすればよい。 The current flowing through the second rectifying element due to resonance in the third mode is set to be equal to or less than a predetermined threshold value. The predetermined threshold may be, for example, 0A or a small value near 0A. That is, when the current flowing through the second rectifying element once starts to decrease due to resonance, the current decreases to 0 A or near 0 A. Specifically, the excitation inductance of the transformer may be reduced so that the resonance current is about 0A.
 制御部は、第2の整流素子に流れる電流が閾値以下となった場合に、第1のスイッチング素子をオンにして第1モードに移行する。第1のスイッチング素子をオンにすると、第1の整流素子の電位が第1のキャパシタの電圧に相当する電圧だけ低下し、第2の整流素子に逆電圧がかかる(逆バイアスとなる)。第2の整流素子に逆電圧がかかる時点では、第2の整流素子に流れる電流が閾値以下となっているので、逆回復電流の発生を抑制することができ、急峻な逆起電力の発生を抑制することができる。 The control unit turns on the first switching element and shifts to the first mode when the current flowing through the second rectifying element becomes equal to or less than the threshold value. When the first switching element is turned on, the potential of the first rectifying element is lowered by a voltage corresponding to the voltage of the first capacitor, and a reverse voltage is applied to the second rectifying element (becomes a reverse bias). When a reverse voltage is applied to the second rectifier element, the current flowing through the second rectifier element is equal to or lower than the threshold value, so that the generation of reverse recovery current can be suppressed and the generation of steep back electromotive force can be prevented. Can be suppressed.
 本開示の電源装置は、2×Im×n≒Imaxという式を充足する。ここで、トランスの一次巻線と二次巻線との巻線比をn:1とし、最大負荷電流をImaxとし、第3モードに遷移した際のトランスの励磁電流をImとする。 The power supply device of the present disclosure satisfies the formula 2 × Im × n≈Imax. Here, the winding ratio between the primary winding and the secondary winding of the transformer is n: 1, the maximum load current is Imax, and the exciting current of the transformer when transitioning to the third mode is Im.
 第3モードでは、第2の整流素子には、負荷に流れる負荷電流(Il)、トランスの励磁電流(Im)、トランス(トランスの漏れインダクタンス)及び第1のキャパシタの共振による共振電流(Ir)が流れる。負荷電流Ilは、例えば、出力側のチョークコイル等のインダクタンスを比較的大きくすることにより、一定の値となる。励磁電流Imは、デッドタイム(第1のスイッチング素子及び第2のスイッチング素子の両方がオフの期間)において、励磁インダクタンスに印加される電圧がほぼゼロであるため、変化しない。共振電流Irは、共振の開始タイミングでは、励磁電流Imと同じ値となり(ただし、電流の向きは逆)、励磁電流Imとの間で相殺され、第2の整流素子には負荷電流と同じ大きさの電流が流れる。トランスの一次巻線と二次巻線との巻線比をn:1とすると、n(Ir-Im)+Il≒0という関係が成立する。共振電流Irが、負荷電流を最も打ち消す向きに大きくなるのは、Ir=-Imのときであることを考慮して、最大負荷条件にて、なるべく小さいImで当該関係が成立するための条件は、n(-Im-Im)+Imax≒0となる。励磁電流Imを小さくすることで、スイッチング素子の損失を低減することができる。 In the third mode, the second rectifying element includes a load current (Il) flowing through the load, a transformer exciting current (Im), a transformer (transformer leakage inductance), and a resonance current (Ir) due to resonance of the first capacitor. Flows. The load current Il becomes a constant value by, for example, relatively increasing the inductance of the output side choke coil or the like. The excitation current Im does not change during the dead time (a period in which both the first switching element and the second switching element are off) because the voltage applied to the excitation inductance is almost zero. The resonance current Ir becomes the same value as the excitation current Im at the resonance start timing (however, the direction of the current is opposite) and is canceled out with the excitation current Im. The second rectifier element has the same magnitude as the load current. Current flows. When the turns ratio of the primary winding and the secondary winding of the transformer is n: 1, a relationship of n (Ir−Im) + Il≈0 is established. Considering that the resonance current Ir increases in the direction that most cancels the load current, when Ir = −Im, the condition for the relationship to be established with the smallest load Im is as follows. , N (−Im−Im) + Imax≈0. By reducing the excitation current Im, the loss of the switching element can be reduced.
 本開示の電源装置は、前記トランスの励磁インダクタンスに基づいて前記第2の整流素子に流れる電流を前記閾値以下とする。 In the power supply device according to the present disclosure, the current flowing through the second rectifying element based on the excitation inductance of the transformer is set to be equal to or less than the threshold value.
 トランスの励磁インダクタンスに基づいて第2の整流素子に流れる電流が閾値以下となるようにしてある。トランスの励磁インダクタンスを小さくすると、共振電流の振幅は大きくなるという特性を利用する。すなわち、トランスの励磁インダクタンスを小さくすると、第2の整流素子に流れていた電流が共振により減少し始めるときに、その電流が閾値以下まで減少するように、振幅を大きくすることができる。これにより、特段の部品を追加することなく、トランスの励磁インダクタンスを調整することにより、急峻な逆起電力の発生を抑制することができる。 Based on the exciting inductance of the transformer, the current flowing through the second rectifying element is set to be equal to or less than the threshold value. The characteristic that the amplitude of the resonance current increases when the excitation inductance of the transformer is reduced is utilized. That is, when the excitation inductance of the transformer is reduced, the amplitude can be increased so that when the current flowing through the second rectifying element starts to decrease due to resonance, the current decreases to a threshold value or less. Thereby, it is possible to suppress the generation of steep back electromotive force by adjusting the excitation inductance of the transformer without adding special parts.
 本開示の電源装置において、前記第2の整流素子は、同期整流素子を含む。 In the power supply device according to the present disclosure, the second rectifying element includes a synchronous rectifying element.
 第2の整流素子は、同期整流素子を含む。同期整流素子は、例えば、FETを用いることができる。同期整流は、必要なタイミングでFETをオン/オフして整流動作をさせる整流方式である。FETなどの同期整流素子は、ダイオードに比べて順方向電圧が小さいので、損失を低減することができる。しかし、FETのボディダイオードにより逆回復電流が大きくなる傾向がある。 The second rectifying element includes a synchronous rectifying element. For example, an FET can be used as the synchronous rectifier. The synchronous rectification is a rectification method in which the FET is turned on / off at a necessary timing to perform a rectification operation. Since synchronous rectifying elements such as FETs have a smaller forward voltage than diodes, loss can be reduced. However, the reverse recovery current tends to increase due to the body diode of the FET.
 上述の構成により、第2の整流素子に逆電圧がかかる時点では、第2の整流素子に流れる電流が閾値以下となっているので、逆回復電流の発生を抑制することができ、整流動作時の損失を低減することができるとともに、急峻な逆起電力の発生を抑制することができる。 With the above-described configuration, when a reverse voltage is applied to the second rectifier element, the current flowing through the second rectifier element is equal to or lower than the threshold value. Loss and a steep counter electromotive force can be suppressed.
[本願発明の実施形態の詳細]
 以下、本発明の実施の形態を図面に基づいて説明する。図1は本実施の形態の電源装置100の回路構成の第1例を示す説明図である。本実施の形態の電源装置100は、入力側の端子A及びB、出力側の端子C及びDを備え、入力側の端子A及びBには、直流電源(不図示)が接続され、出力側の端子C及びDには負荷が接続される。電源装置100は、例えば、降圧変換装置である。
[Details of the embodiment of the present invention]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram illustrating a first example of a circuit configuration of the power supply device 100 according to the present embodiment. The power supply apparatus 100 according to the present embodiment includes terminals A and B on the input side and terminals C and D on the output side. A DC power supply (not shown) is connected to the terminals A and B on the input side, and the output side A load is connected to the terminals C and D. The power supply device 100 is, for example, a step-down converter.
 電源装置100は、トランス30、第1のスイッチング素子としてのMOSFET(Metal Oxide Semiconductor Field Effect Transistor、以下、「FET」と称する)11、第1のキャパシタとしてのキャパシタ21、第2のスイッチング素子としてのFET12、第2のキャパシタとしてのキャパシタ22、第1の整流素子としてのダイオード41、第2の整流素子としてのダイオード42、キャパシタ24、インダクタ61(出力側のチョークコイル)、及びFET11、FET12のオン/オフを制御する制御部50などを備える。FET11、FET12は、それぞれボディダイオードを有する。 The power supply apparatus 100 includes a transformer 30, a MOSFET (Metal / Oxide / Semiconductor / Field / Effect / Transistor, hereinafter referred to as "FET") 11 as a first switching element, a capacitor 21 as a first capacitor, and a second switching element. FET 12, capacitor 22 as the second capacitor, diode 41 as the first rectifier, diode 42 as the second rectifier, capacitor 24, inductor 61 (choke coil on the output side), and FET 11 and FET 12 are turned on The control part 50 etc. which control / off are provided. The FET 11 and FET 12 each have a body diode.
 端子Aには、トランス30の1次巻線31の一端が接続されている。1次巻線31の他端には、FET11のドレインが接続されている。FET11のソースは、端子Bに接続されている。FET11のドレイン・ソース間には、キャパシタ21(共振用のキャパシタ)が接続されている。 The terminal A is connected to one end of the primary winding 31 of the transformer 30. The other end of the primary winding 31 is connected to the drain of the FET 11. The source of the FET 11 is connected to the terminal B. A capacitor 21 (resonance capacitor) is connected between the drain and source of the FET 11.
 1次巻線31の両端には、FET12とキャパシタ22との直列回路が接続されている。FET12とキャパシタ22との直列回路は、アクティブクランプ回路を構成する。 A series circuit of the FET 12 and the capacitor 22 is connected to both ends of the primary winding 31. A series circuit of the FET 12 and the capacitor 22 constitutes an active clamp circuit.
 図1の例では、1次巻線31の一端にキャパシタ22の一端が接続され、キャパシタ22の他端にはFET12のドレインが接続されている。FET12のソースは、1次巻線31の他端に接続されている。 In the example of FIG. 1, one end of the capacitor 22 is connected to one end of the primary winding 31, and the drain of the FET 12 is connected to the other end of the capacitor 22. The source of the FET 12 is connected to the other end of the primary winding 31.
 トランス30の2次巻線32の一端にはダイオード41のカソードが接続され、ダイオード41のアノードは端子D(接地レベル)に接続されている。2次巻線32の他端には、ダイオード42のカソード及びインダクタ61の一端が接続されている。ダイオード42のアノードは、ダイオード41のアノードに接続されている。なお、図1の例では、ダイオード41、ダイオード42それぞれのアノード同士が接続された構成となっているが、これに限定されるものではなく、ダイオード41、ダイオード42それぞれのカソード同士が接続された構成にしてもよい。 The cathode of the diode 41 is connected to one end of the secondary winding 32 of the transformer 30, and the anode of the diode 41 is connected to the terminal D (ground level). The other end of the secondary winding 32 is connected to the cathode of the diode 42 and one end of the inductor 61. The anode of the diode 42 is connected to the anode of the diode 41. In the example of FIG. 1, the anodes of the diode 41 and the diode 42 are connected to each other. However, the present invention is not limited to this, and the cathodes of the diode 41 and the diode 42 are connected to each other. It may be configured.
 インダクタ61の他端は端子Cに接続されている。端子C及びD間にはキャパシタ24が接続されている。制御部50は、FET11、FET12のゲートへゲート電圧を出力する。 The other end of the inductor 61 is connected to the terminal C. A capacitor 24 is connected between the terminals C and D. The control unit 50 outputs a gate voltage to the gates of the FETs 11 and 12.
 次に、本実施の形態の電源装置100の動作について説明する。便宜上、電源装置100の動作状態を状態D1からD8に分けて説明する。 Next, the operation of the power supply device 100 of the present embodiment will be described. For convenience, the operation state of the power supply apparatus 100 will be described separately from states D1 to D8.
 図2は本実施の形態の電源装置100の動作状態D1の一例を示す説明図である。動作状態D1では、制御部50は、FET11をオンにし、FET12をオフにする。動作状態D1は第1モードに対応する。動作状態D1では、トランス30の励磁電流が増加し、トランス30を励磁する。トランス30の1次巻線には、入力側の電源電圧が印加され、1次巻線の電圧は正となる。2次巻線の電圧も正となり、ダイオード41が導通して出力側へ所定の電圧、電流が出力される。トランス30の励磁電流は増加する。図中、符号Lmはトランス30の励磁インダクタンスを表し、Lsは漏れインダクタンスを表す。なお、便宜上、図において、1次巻線及び2次巻線の下端に対して上端の電位が高い場合を正の電圧とする。 FIG. 2 is an explanatory diagram illustrating an example of the operation state D1 of the power supply device 100 according to the present embodiment. In the operation state D1, the control unit 50 turns on the FET 11 and turns off the FET 12. The operation state D1 corresponds to the first mode. In the operating state D1, the exciting current of the transformer 30 increases and the transformer 30 is excited. The power supply voltage on the input side is applied to the primary winding of the transformer 30, and the voltage of the primary winding becomes positive. The voltage of the secondary winding also becomes positive, the diode 41 becomes conductive, and a predetermined voltage and current are output to the output side. The exciting current of the transformer 30 increases. In the figure, symbol Lm represents the exciting inductance of the transformer 30, and Ls represents the leakage inductance. For convenience, in the figure, a positive voltage is defined when the upper end potential is higher than the lower ends of the primary and secondary windings.
 図3は本実施の形態の電源装置100の動作状態D2の一例を示す説明図である。動作状態D2では、制御部50は、FET11をオフにし、FET12はオフのままである。FET11をオフにすることにより、キャパシタCs(21)が充電される。なお、キャパシタ21が共振用のキャパシタであることを表すため、キャパシタ21をキャパシタCsとも称する。キャパシタCsの充電に伴ってトランス30(1次巻線及び2次巻線)の電圧は減少する。 FIG. 3 is an explanatory diagram showing an example of the operation state D2 of the power supply apparatus 100 of the present embodiment. In the operation state D2, the control unit 50 turns off the FET 11, and the FET 12 remains off. By turning off the FET 11, the capacitor Cs (21) is charged. In order to indicate that the capacitor 21 is a resonance capacitor, the capacitor 21 is also referred to as a capacitor Cs. As the capacitor Cs is charged, the voltage of the transformer 30 (primary winding and secondary winding) decreases.
 図4は本実施の形態の電源装置100の動作状態D3の一例を示す説明図である。動作状態D3では、FET11及びFET12はオフのままである。トランス30の電圧が減少し、負になると、ダイオード41は逆バイアスとなり、非導通となる。ダイオード41に流れていた負荷電流はダイオード42を介して流れるようになる。 FIG. 4 is an explanatory diagram showing an example of the operation state D3 of the power supply device 100 according to the present embodiment. In the operating state D3, the FET 11 and FET 12 remain off. When the voltage of the transformer 30 decreases and becomes negative, the diode 41 becomes reverse biased and becomes non-conductive. The load current flowing in the diode 41 flows through the diode 42.
 図5は本実施の形態の電源装置100の動作状態D4の一例を示す説明図である。動作状態D4では、キャパシタCsが所定電圧まで充電されると、FET12のボディダイオードが順バイアスとなり、キャパシタCsを流れていた励磁電流は、FET12のボディダイオードを介して流れる。このとき、制御部50は、FET12をオンにする。FET12がオンになると、トランス30には、キャパシタ22の電圧が逆方向(負の電圧の方向)に印加され、トランス30の励磁電流は減少し、トランス30の励磁をリセットする状態に移行する。動作状態D4において、FET12がオンされると、第2モードに対応することになる。 FIG. 5 is an explanatory diagram showing an example of the operation state D4 of the power supply device 100 according to the present embodiment. In the operating state D4, when the capacitor Cs is charged to a predetermined voltage, the body diode of the FET 12 becomes forward biased, and the excitation current that has flowed through the capacitor Cs flows through the body diode of the FET 12. At this time, the control unit 50 turns on the FET 12. When the FET 12 is turned on, the voltage of the capacitor 22 is applied to the transformer 30 in the reverse direction (negative voltage direction), the exciting current of the transformer 30 decreases, and the state of the transformer 30 is reset. When the FET 12 is turned on in the operation state D4, the second mode is supported.
 図6は本実施の形態の電源装置100の動作状態D5の一例を示す説明図である。動作状態D5では、FET12がオンであり、FET11がオフである。動作状態D5は第2モードに対応する。動作状態D5では、トランス30の励磁電流が逆転し(負になる、電流方向が逆になる)、キャパシタ22に蓄えられたエネルギーが放出され、トランス30の漏れインダクタンスLsにエネルギーが蓄積される。 FIG. 6 is an explanatory diagram showing an example of the operating state D5 of the power supply apparatus 100 according to the present embodiment. In the operating state D5, the FET 12 is on and the FET 11 is off. The operation state D5 corresponds to the second mode. In the operating state D5, the exciting current of the transformer 30 is reversed (becomes negative, the current direction is reversed), the energy stored in the capacitor 22 is released, and the energy is stored in the leakage inductance Ls of the transformer 30.
 図7は本実施の形態の電源装置100の動作状態D6の一例を示す説明図である。動作状態D6では、制御部50は、FET12をオフにし、FET11はオフのままである。動作状態D6及び後述の動作状態D7は第3モードに対応し、動作状態D1(FET11がオンになる)に移行する前の、FET11及びFET12を同時にオフにするデッドタイム(休止期間)に相当する。動作状態D6では、トランス30(より具体的には、漏れインダクタンスLsと励磁インダクタンスLmとの和)及び共振用のキャパシタCsによる共振が発生する。キャパシタCsの電荷が放電され、キャパシタCsの電圧が入力電圧以下になると、ダイオード41が順バイアスとなり、ダイオード41に電流が流れ動作状態D7に移行する。 FIG. 7 is an explanatory diagram showing an example of the operation state D6 of the power supply apparatus 100 according to the present embodiment. In the operation state D6, the control unit 50 turns off the FET 12, and the FET 11 remains off. An operation state D6 and an operation state D7 described later correspond to the third mode, and correspond to a dead time (pause period) in which the FET 11 and the FET 12 are simultaneously turned off before the operation state D1 (the FET 11 is turned on). . In the operation state D6, resonance occurs due to the transformer 30 (more specifically, the sum of the leakage inductance Ls and the excitation inductance Lm) and the resonance capacitor Cs. When the charge of the capacitor Cs is discharged and the voltage of the capacitor Cs becomes equal to or lower than the input voltage, the diode 41 becomes forward biased, a current flows through the diode 41, and the operation state D7 is entered.
 図8は本実施の形態の電源装置100の動作状態D7の一例を示す説明図である。動作状態D7では、FET11、FET12はオフのままである。動作状態D7では、トランス30(より具体的には、漏れインダクタンスLs)及びキャパシタCsによる共振が発生する。 FIG. 8 is an explanatory diagram showing an example of the operating state D7 of the power supply apparatus 100 of the present embodiment. In the operating state D7, the FETs 11 and 12 remain off. In the operating state D7, resonance occurs due to the transformer 30 (more specifically, the leakage inductance Ls) and the capacitor Cs.
 動作状態D7では、ダイード42には、負荷に流れる負荷電流Il(図中、実線で示す)、トランス30の励磁電流Im(図中、破線で示す)、トランス30(トランス30の漏れインダクタンスLs)及びキャパシタCsの共振による共振電流Ir(図中、一点鎖線で示す)が流れる。なお、図8では、便宜上、トランス30の巻線比を1:1として説明するが、トランス30の巻線比は1:1に限定されない。 In the operating state D7, the diode 42 includes a load current Il (shown by a solid line in the figure) flowing through the load, an excitation current Im (shown by a broken line in the figure) of the transformer 30, and a transformer 30 (leakage inductance Ls of the transformer 30). And a resonance current Ir (indicated by a one-dot chain line in the figure) due to resonance of the capacitor Cs flows. In FIG. 8, the winding ratio of the transformer 30 is assumed to be 1: 1 for convenience, but the winding ratio of the transformer 30 is not limited to 1: 1.
 負荷電流Ilは、ダイオード42、インダクタ61(出力側のチョークコイルとも称する)、負荷の閉ループを流れる。負荷電流Ilは、例えば、インダクタ61のインダクタンスを比較的大きくすることにより、一定の値となる。 The load current Il flows through the diode 42, the inductor 61 (also referred to as the output side choke coil), and the closed loop of the load. For example, the load current Il becomes a constant value by relatively increasing the inductance of the inductor 61.
 励磁電流Imは、トランス30、ダイオード42、41の閉ループを流れる。励磁電流Imは、デッドタイム(FET11及びFET12が同時にオフの期間)において、励磁インダクタンスLmに印加される電圧がほぼゼロであるため、動作状態D7においては電流値が変化せず、動作状態D6が終了した時点の電流値Imが維持される。 The exciting current Im flows through the closed loop of the transformer 30 and the diodes 42 and 41. Since the voltage applied to the exciting inductance Lm is almost zero during the dead time (period in which the FET 11 and the FET 12 are simultaneously turned off), the exciting current Im does not change in the operating state D7, and the operating state D6 is The current value Im at the time of termination is maintained.
 共振電流Irは、トランス30の漏れインダクタンスLs及びキャパシタCsの共振による電流であり、式(1)で表すことができる。式(1)において、tは時間であり、漏れインダクタンスLs及びキャパシタCsによる共振の開始時点(動作状態D7に移行した時点)をt=0とする。 The resonance current Ir is a current due to resonance of the leakage inductance Ls of the transformer 30 and the capacitor Cs, and can be expressed by Expression (1). In the equation (1), t is time, and t = 0 is a starting time of resonance by the leakage inductance Ls and the capacitor Cs (a time point when the operation state is shifted to the operation state D7).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)から分かるように、動作状態D7に移行した時点(t=0)においては、共振電流Ir=励磁電流Imとなる。ただし、図示しているように、共振電流Irと励磁電流Imとの電流の向きは逆である。すなわち、動作状態D7の開始タイミングでは、共振電流Irは、励磁電流Imと同じ値となり(ただし、電流の向きは逆)、励磁電流Imとの間で相殺され、ダイオード42には負荷電流Ilと同じ大きさの電流が流れる。 As can be seen from the equation (1), at the time of transition to the operating state D7 (t = 0), the resonance current Ir = excitation current Im. However, as shown, the directions of the resonance current Ir and the excitation current Im are opposite. That is, at the start timing of the operation state D7, the resonance current Ir has the same value as the excitation current Im (however, the direction of the current is reversed) and is canceled out with the excitation current Im. The same current flows.
 励磁電流Imが、十分大きいと見なせる場合、式(2)が成立する。漏れインダクタンスLs及びキャパシタCsによる共振が進むにつれて、共振電流Irは、一旦減少する。すなわち、共振電流Irは、負荷電流Ilを相殺する方向に減少し、ダイオード42に流れる電流は、共振が進むにつれて閾値に向かって減少する。一方、ダイオード41の電流は共振が進むにつれて増加する。 When the exciting current Im can be considered sufficiently large, the formula (2) is established. As the resonance by the leakage inductance Ls and the capacitor Cs progresses, the resonance current Ir temporarily decreases. That is, the resonance current Ir decreases in a direction that cancels the load current Il, and the current flowing through the diode 42 decreases toward the threshold value as the resonance proceeds. On the other hand, the current of the diode 41 increases as the resonance proceeds.
 なお、共振周波数fは、1/{2×π×√(Ls×Cs)} という式で求めることができる。 Note that the resonance frequency f can be obtained by the equation 1 / {2 × π × √ (Ls × Cs)}.
 本実施の形態の電源装置100では、動作状態D7において、共振によりダイオード42に流れる電流が所定の閾値以下となるようにしてある。所定の閾値は、例えば、0Aでもよく、0A付近の小さい値でもよい。すなわち、ダイオード42に流れる電流が共振により一旦減少し始めたときに、その電流が0A又は0A付近まで減少するようにしてある。具体的には、共振電流が0A程度になるようにトランス30の励磁インダクタンスLmを小さくすればよい。ダイオード42に流れる電流が閾値以下となったときに、制御部50は、FET11をオンにする。これにより、後述の動作状態D8に移行する。 In the power supply device 100 of the present embodiment, in the operating state D7, the current flowing through the diode 42 due to resonance is equal to or less than a predetermined threshold value. The predetermined threshold may be, for example, 0A or a small value near 0A. That is, when the current flowing through the diode 42 starts to decrease once due to resonance, the current decreases to 0 A or near 0 A. Specifically, the excitation inductance Lm of the transformer 30 may be reduced so that the resonance current is about 0A. When the current flowing through the diode 42 becomes equal to or less than the threshold value, the control unit 50 turns on the FET 11. Thereby, the state shifts to an operation state D8 described later.
 上述の動作状態D7の説明では、便宜上、トランス30の巻線比を1:1として説明したが、トランス30の巻線比がn:1の場合には、トランス30の1次側と2次側とで、電圧を1/n倍とし、電流をn倍とすればよい。 In the description of the operation state D7 described above, the winding ratio of the transformer 30 is described as 1: 1 for convenience. However, when the winding ratio of the transformer 30 is n: 1, the primary side and the secondary side of the transformer 30 are secondary. On the side, the voltage may be 1 / n times and the current may be n times.
 トランス30の巻線比がn:1の場合を考慮して、負荷電流Ilが最大負荷電流Imax(最大負荷条件)となるときに、式(2)が成立する条件を求める。式(1)において、共振電流Irが最も負荷電流Ilを打ち消す向きに大きくなるので、時間tが、式(3)を満たすときである。そのときの共振電流Irの値は、-Imである。 In consideration of the case where the winding ratio of the transformer 30 is n: 1, a condition for satisfying Expression (2) is obtained when the load current Il becomes the maximum load current Imax (maximum load condition). In the equation (1), the resonance current Ir increases in the direction that cancels the load current Il most, so the time t satisfies the equation (3). The value of the resonance current Ir at that time is −Im.
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 なお、励磁電流Imが大きくなると、FET11、12の導通損失が大きくなるので、励磁電流Imが、なるべく小さい値で式(2)が成立することが望ましい。トランス30の巻線比nを考慮し、なるべく小さい励磁電流Imで式(2)が成立するための条件は、式(4)で表すことができる。なお、式(4)では、便宜上、インダクタ61(出力側のチョークコイル)のインダクタが十分大きく、リップル電流がゼロとしているが、インダクタ61のインダクタが小さい場合には、リップルを考慮した値に置き換えればよい。 In addition, since the conduction loss of the FETs 11 and 12 increases as the excitation current Im increases, it is desirable that the expression (2) is satisfied with the excitation current Im as small as possible. In consideration of the winding ratio n of the transformer 30, the condition for satisfying the expression (2) with the smallest exciting current Im can be expressed by the expression (4). In equation (4), for convenience, the inductor 61 (output-side choke coil) has a sufficiently large inductor and the ripple current is zero. That's fine.
 図9は本実施の形態の電源装置100の動作状態D8の一例を示す説明図である。動作状態D8では、FET11をオンにすると、トランス30の電圧が、キャパシタCsの電圧に相当する電圧だけ低下する。このため、順バイアスされているダイオード41のカソードの電位が下がることによって、ダイオード42のアノードの電位が下がり、ダイオード42に逆電圧がかかる(逆バイアスとなる)。ダイオード42に逆電圧がかかる時点では、ダイオード42に流れる電流が閾値以下となっているので、逆回復電流の発生を抑制することができ、急峻な逆起電力の発生を抑制することができる。 FIG. 9 is an explanatory diagram showing an example of the operating state D8 of the power supply apparatus 100 according to the present embodiment. In the operating state D8, when the FET 11 is turned on, the voltage of the transformer 30 decreases by a voltage corresponding to the voltage of the capacitor Cs. For this reason, when the cathode potential of the diode 41 that is forward-biased decreases, the anode potential of the diode 42 decreases, and a reverse voltage is applied to the diode 42 (becomes reverse bias). At the time when the reverse voltage is applied to the diode 42, the current flowing through the diode 42 is equal to or less than the threshold value, so that the generation of reverse recovery current can be suppressed and the generation of steep counter electromotive force can be suppressed.
 トランス30の励磁インダクタンスLmに基づいてダイオード42に流れる電流が閾値以下となるようにしてある。トランス30の励磁インダクタンスLmを小さくすると、共振電流の振幅は大きくなるという特性を利用する。すなわち、トランス30の励磁インダクタンスLmを小さくすると、ダイオード42に流れていた電流が共振により減少し始めるときに、その電流が閾値以下まで減少するように、振幅を大きくすることができる。これにより、特段の部品を追加することなく、トランス30の励磁インダクタンスLmを調整することにより、急峻な逆起電力の発生を抑制することができる。 Based on the excitation inductance Lm of the transformer 30, the current flowing through the diode 42 is set to be equal to or less than the threshold value. When the excitation inductance Lm of the transformer 30 is reduced, the characteristic that the amplitude of the resonance current is increased is used. That is, when the exciting inductance Lm of the transformer 30 is reduced, the amplitude can be increased so that when the current flowing through the diode 42 starts to decrease due to resonance, the current decreases below the threshold value. As a result, by adjusting the exciting inductance Lm of the transformer 30 without adding special parts, it is possible to suppress the generation of steep back electromotive force.
 励磁インダクタンスLmの値は、計算によって算出してもよく、あるいは実測又はシミュレーション等によって求めてもよい。 The value of the excitation inductance Lm may be calculated by calculation, or may be obtained by actual measurement or simulation.
 ダイオード42に流れる電流が閾値以下となるタイミングは、例えば、ダイオード42の電流値、共振周波数fなどに基づいて求めることができる。 The timing at which the current flowing through the diode 42 becomes equal to or lower than the threshold can be obtained based on the current value of the diode 42, the resonance frequency f, and the like.
 図10は本実施の形態の電源装置100の動作状態での各部の波形の一例を示す説明図である。図10において、横軸は時間を示す。図10における波形は、上から順番に、FET12のゲート電圧、ダイオード42の電流、ダイオード42の電流、FET11のゲート電圧、及びダイオード42の電圧を示す。 FIG. 10 is an explanatory diagram showing an example of the waveform of each part in the operating state of the power supply apparatus 100 of the present embodiment. In FIG. 10, the horizontal axis indicates time. The waveforms in FIG. 10 indicate the gate voltage of the FET 12, the current of the diode 42, the current of the diode 42, the gate voltage of the FET 11, and the voltage of the diode 42 in order from the top.
 動作状態D5では、FET12がオンであり、FET11はオフである。ダイオード42は順バイアスされ、ダイオード42の電圧は順方向電圧となっている。ダイオード42には負荷電流が流れている。ダイオード41は逆バイアスされ、電流は流れていない。 In the operation state D5, the FET 12 is on and the FET 11 is off. The diode 42 is forward biased, and the voltage of the diode 42 is a forward voltage. A load current flows through the diode 42. The diode 41 is reverse-biased and no current flows.
 動作状態D5において、FET12がオンからオフになることによって動作状態D6に移行する。動作状態D6では、トランス30(より具体的には、漏れインダクタンスLsと励磁インダクタンスLmとの和)及び共振用のキャパシタCsによる共振が発生する。 In the operation state D5, when the FET 12 is turned from on to off, the operation state D6 is entered. In the operation state D6, resonance occurs due to the transformer 30 (more specifically, the sum of the leakage inductance Ls and the excitation inductance Lm) and the resonance capacitor Cs.
 動作状態D6の後に動作状態D7となる。動作状態D7では、共振により、ダイオード42に流れる電流も共振し、一旦減少し始める。一方、共振によりトランス30の電圧が正になると、ダイオード41が順バイアスとなり、ダイオード41に電流が流れ、ダイオード41の電流は共振により一旦増加し始める。 After the operation state D6, the operation state D7 is set. In the operating state D7, due to resonance, the current flowing through the diode 42 also resonates and begins to decrease once. On the other hand, when the voltage of the transformer 30 becomes positive due to resonance, the diode 41 becomes forward biased, a current flows through the diode 41, and the current of the diode 41 starts to increase once due to resonance.
 動作状態D7において、ダイオード42に流れる電流が閾値以下となった場合に、FET11をオンにすると、動作状態D8に移行する。ダイオード42に流れる電流が閾値以下になったときにFET11をオンにするので、FET11をオンにすることによってダイオード42に逆バイアスがかかったときに流れている順方向電流が極めて少ないので、逆回復電流(図10において、動作状態D7からD8へ移行するときの負方向の電流)の発生を抑制することができる。これによって、ダイオード42に発生する起電力(ダイオード42のアノードに対するカソードの電位)を抑制することができる。図10に示すように、動作状態D7からD8へ移行するときのダイオード42の電圧の変動は比較的小さいことがわかる。 In the operation state D7, when the current flowing through the diode 42 is equal to or less than the threshold value, the FET 11 is turned on, and the operation state D8 is entered. Since the FET 11 is turned on when the current flowing through the diode 42 becomes less than the threshold value, the forward current flowing when the diode 42 is reverse-biased by turning on the FET 11 is extremely small, so that reverse recovery is achieved. It is possible to suppress the generation of current (current in the negative direction when shifting from the operating state D7 to D8 in FIG. 10). As a result, the electromotive force generated in the diode 42 (the cathode potential with respect to the anode of the diode 42) can be suppressed. As shown in FIG. 10, it can be seen that the fluctuation of the voltage of the diode 42 is relatively small when shifting from the operating state D7 to D8.
 図11は比較例としての電源装置の動作状態での各部の波形の一例を示す説明図である。比較例は、共振によりダイオード42に流れる電流が所定の閾値以下となるようにしていない場合を示す。動作状態D5は、図10の場合と同様である。 FIG. 11 is an explanatory diagram showing an example of the waveform of each part in the operating state of the power supply device as a comparative example. The comparative example shows a case where the current flowing through the diode 42 due to resonance is not set to be equal to or less than a predetermined threshold value. The operation state D5 is the same as that in FIG.
 動作状態D5において、FET12がオンからオフになることによって動作状態D6に移行する。動作状態D6では、トランス30(より具体的には、漏れインダクタンスLsと励磁インダクタンスLmとの和)及び共振用のキャパシタCsによる共振が発生する。 In the operation state D5, when the FET 12 is turned from on to off, the operation state D6 is entered. In the operation state D6, resonance occurs due to the transformer 30 (more specifically, the sum of the leakage inductance Ls and the excitation inductance Lm) and the resonance capacitor Cs.
 動作状態D6の後に動作状態D7となる。動作状態D7では、共振により、ダイオード42に流れる電流は共振しながら徐々に減少する。一方、ダイオード41に流れる電流は共振しながら徐々に増加する。 After the operation state D6, the operation state D7 is set. In the operating state D7, due to resonance, the current flowing through the diode 42 gradually decreases while resonating. On the other hand, the current flowing through the diode 41 gradually increases while resonating.
 動作状態D7の終了時点(すなわち、動作状態D8の開始時点)において、FET11をオンにすると、FET11がオンした時点ではダイオード42には順方向電流が流れている。このため、ダイオード42には、順方向電流に比例する電荷が蓄積されている。このため、ダイオード42の逆回復電流が大きくなり(図11において、動作状態D7から動作状態D8へ移行するときの負方向の電流)、結果としてダイオード42の逆起電力が非常に大きくなる。図11に示すように、動作状態D7から動作状態D8へ移行するときのダイオード42の電圧の変動は急峻となり、そのピーク電圧も非常に大きいことがわかる。 When the FET 11 is turned on at the end point of the operation state D7 (that is, the start point of the operation state D8), a forward current flows through the diode 42 when the FET 11 is turned on. For this reason, a charge proportional to the forward current is accumulated in the diode 42. For this reason, the reverse recovery current of the diode 42 becomes large (in FIG. 11, the current in the negative direction when shifting from the operation state D7 to the operation state D8). As a result, the back electromotive force of the diode 42 becomes very large. As shown in FIG. 11, it can be seen that the voltage fluctuation of the diode 42 at the time of transition from the operation state D7 to the operation state D8 is steep, and the peak voltage thereof is very large.
 一方、上述のように、本実施の形態の電源装置100では、共振によってダイオード42に流れる電流の振幅を大きくして、電流が所定の閾値以下になるようにし、この電流が閾値以下になったタイミングでFET11をオンにするので、FET11をオンにすることによってダイオード42が逆バイアスとなっても、逆回復電流を小さくすることができ、結果としてサージ電圧の発生を抑制することができる。 On the other hand, as described above, in the power supply device 100 according to the present embodiment, the amplitude of the current flowing through the diode 42 due to resonance is increased so that the current becomes a predetermined threshold value or less, and this current becomes the threshold value or less. Since the FET 11 is turned on at the timing, even if the diode 42 is reverse biased by turning on the FET 11, the reverse recovery current can be reduced, and as a result, the generation of the surge voltage can be suppressed.
 図12は本実施の形態の電源装置100の制御方法の処理手順の一例を示すフローチャートである。制御部50は、FET11をオンにし、FET12をオフにし(S11)、トランス30を励磁し(S12)、電源装置100を動作状態D1にする。 FIG. 12 is a flowchart showing an example of the processing procedure of the control method of the power supply apparatus 100 of the present embodiment. The control unit 50 turns on the FET 11, turns off the FET 12 (S 11), excites the transformer 30 (S 12), and sets the power supply apparatus 100 to the operation state D 1.
  制御部50は、FET11をオフにし(S13)、電源装置100を動作状態D1から動作状態D2に移行させ、キャパシタCs(21)を充電する。その後、電源装置100を動作状態D3、D4にする。 The control unit 50 turns off the FET 11 (S13), shifts the power supply device 100 from the operating state D1 to the operating state D2, and charges the capacitor Cs (21). Thereafter, the power supply device 100 is set to the operation states D3 and D4.
 制御部50は、FET12のボディダイオードが順バイアスになったタイミングでFET12をオンにし(S14)、電源装置100を動作状態D5に移行させる。制御部50は、アクティブクランプ回路のキャパシタ22に蓄積されたエネルギーを放出し、漏れインダクタンスLsにエネルギーを蓄積する(S15)。 The control unit 50 turns on the FET 12 at the timing when the body diode of the FET 12 becomes forward biased (S14), and shifts the power supply apparatus 100 to the operation state D5. The control unit 50 releases the energy stored in the capacitor 22 of the active clamp circuit and stores the energy in the leakage inductance Ls (S15).
 制御部50は、FET12をオフにし(S16)、電源装置100を動作状態D6に移行させる。制御部50は、漏れインダクタンスLsと共振用のキャパシタCsとによって共振を発生させる(S17)。その後、電源装置100を動作状態D7に移行させる。ダイオード42に流れる電流は、共振により0Aに向かって減少する。 The control unit 50 turns off the FET 12 (S16) and shifts the power supply device 100 to the operation state D6. The control unit 50 generates resonance by the leakage inductance Ls and the resonance capacitor Cs (S17). Thereafter, the power supply device 100 is shifted to the operation state D7. The current flowing through the diode 42 decreases toward 0 A due to resonance.
 制御部50は、ダイオード42に流れる電流が閾値以下であるか否かを判定する(S18)。なお、ダイオード42に流れる電流が閾値以下となるタイミングを予め求めておき、そのタイミングになったか否かで判定することもできる。 The control unit 50 determines whether or not the current flowing through the diode 42 is equal to or less than a threshold value (S18). Note that the timing at which the current flowing through the diode 42 becomes equal to or less than the threshold value is obtained in advance, and it can also be determined based on whether or not the timing is reached.
 ダイオード42に流れる電流が閾値以下でない場合(S18でNO)、制御部50は、ステップS18の処理を続け、ダイオード42に流れる電流が閾値以下である場合(S18でYES)、FET11をオンにし(S19)、電源装置100を動作状態D8に移行させる。 If the current flowing through the diode 42 is not less than or equal to the threshold (NO in S18), the control unit 50 continues the process of step S18. If the current flowing through the diode 42 is less than or equal to the threshold (YES in S18), the FET 11 is turned on ( S19), the power supply device 100 is shifted to the operation state D8.
 制御部50は、処理を終了するか否かを判定し(S20)、処理を終了しないと判定した場合(S20でNO)、ステップS12以降の処理を続け、処理を終了すると判定した場合(S20でYES)、処理を終了する。 The control unit 50 determines whether or not to end the process (S20). When it is determined that the process is not ended (NO in S20), the process after step S12 is continued and it is determined that the process is ended (S20). YES), the process is terminated.
 本実施の形態の電源装置100の制御方法は、制御部50を、例えば、CPU(プロセッサ)、RAM(メモリ)などで構成し、図12に示すような、各処理の手順を定めたコンピュータプログラムをRAM(メモリ)にロードし、コンピュータプログラムをCPU(プロセッサ)で実行することにより、コンピュータ上で電源装置50の制御方法を実現することができる。 In the control method of the power supply apparatus 100 according to the present embodiment, the control unit 50 is configured by, for example, a CPU (processor), a RAM (memory), and the like, and a computer program that defines the procedure of each process as shown in FIG. Is loaded into a RAM (memory), and a computer program is executed by a CPU (processor), whereby a control method of the power supply device 50 can be realized on the computer.
 図13は本実施の形態の電源装置100の回路構成の第2例を示す説明図である。図1に示す第1例との相違点は、ダイオード41、42に代えて、同期整流素子としてのFET13、14を備える点である。すなわち、第2例では、トランス30の2次巻線32の一端にはFET13のドレインが接続され、FET13のソースは端子D(接地レベル)に接続されている。2次巻線32の他端には、FET14のドレインが接続されている。FET14のソースは、FET13のソースに接続されている。 FIG. 13 is an explanatory diagram showing a second example of the circuit configuration of the power supply device 100 of the present embodiment. The difference from the first example shown in FIG. 1 is that FETs 13 and 14 as synchronous rectifier elements are provided instead of the diodes 41 and 42. That is, in the second example, the drain of the FET 13 is connected to one end of the secondary winding 32 of the transformer 30, and the source of the FET 13 is connected to the terminal D (ground level). The other end of the secondary winding 32 is connected to the drain of the FET 14. The source of the FET 14 is connected to the source of the FET 13.
 制御部50は、FET13、FET14のゲートにゲート電圧を出力し、FET13、FET14のオン/オフを制御する。制御部50は、必要なタイミングでFET13、FET14をオン/オフして同期整流動作をさせる。 The control unit 50 outputs a gate voltage to the gates of the FET 13 and FET 14 and controls on / off of the FET 13 and FET 14. The controller 50 turns on and off the FET 13 and the FET 14 at a necessary timing to perform a synchronous rectification operation.
 FETなどの同期整流素子は、ダイオードに比べて順方向電圧が小さいので、損失を低減することができる。しかし、FETのボディダイオードにより逆回復電流が大きくなる傾向がある。 Since synchronous rectifying elements such as FETs have a smaller forward voltage than diodes, loss can be reduced. However, the reverse recovery current tends to increase due to the body diode of the FET.
 しかし、本実施の形態によれば、FET14に逆電圧がかかる時点では、FET14に流れる電流が閾値以下となっているので、逆回復電流の発生を抑制することができ、整流動作時の損失を低減することができるとともに、急峻な逆起電力の発生を抑制することができる。 However, according to the present embodiment, when the reverse voltage is applied to the FET 14, the current flowing through the FET 14 is equal to or lower than the threshold value. It can be reduced and generation of steep back electromotive force can be suppressed.
 図14は本実施の形態の電源装置100の回路構成の第3例を示す説明図である。図1に示す第1例との相違点は、電源装置100の負荷電流を検出する電流検出部70を備え、制御部50は、デッドタイム調整部51、算出部52などを備える点である。第3例では、電流検出70で検出した負荷電流に応じて、制御部50(デッドタイム調整部51)は、FET12のオフ時点からFET11のオン時点までの時間を示すデッドタイムを調整する。なお、第3例は、図13に示す第2例においても適用することができる。以下、詳細に説明する。 FIG. 14 is an explanatory diagram showing a third example of the circuit configuration of the power supply device 100 of the present embodiment. The difference from the first example shown in FIG. 1 is that a current detection unit 70 that detects the load current of the power supply device 100 is provided, and the control unit 50 includes a dead time adjustment unit 51, a calculation unit 52, and the like. In the third example, the control unit 50 (dead time adjustment unit 51) adjusts the dead time indicating the time from the time when the FET 12 is turned off to the time when the FET 11 is turned on according to the load current detected by the current detection 70. The third example can also be applied to the second example shown in FIG. Details will be described below.
 図15は本実施の形態の電源装置100のFET11、12のスイッチング状態の一例を示すタイムチャートである。図15に例示するタイムチャートは、前述の第1例及び第2例の説明によって明らかであるが、便宜上、改めて記述することにする。図15に示すように、FET12のオン時間をT12とし、FET11のオン時間をT11とし、FET12のオフ時点からFET11のオン時点までデッドタイムをTd1とし、FET11のオフ時点からFET12のオン時点までデッドタイムをTd2とすると、T12+T11+Td1+Td2=Tとなる。TはFET12のスイッチング周期となる。なお、周期Tは一定である。また、FET11のオン時間T11も電源装置100の定格入力電圧が変わらない場合には一定とすることができる。本実施の形態において、注目すべきデッドタイムは、動作状態D6及びD7の期間であり、Td1である。 FIG. 15 is a time chart showing an example of the switching state of the FETs 11 and 12 of the power supply apparatus 100 of the present embodiment. The time chart illustrated in FIG. 15 is apparent from the description of the first example and the second example described above, but will be described again for convenience. As shown in FIG. 15, the FET 12 on time is T12, the FET 11 on time is T11, the dead time from the FET 12 off time to the FET 11 on time is Td1, and the dead time from the FET 11 off time to the FET 12 on time is dead. When the time is Td2, T12 + T11 + Td1 + Td2 = T. T is the switching period of the FET 12. Note that the period T is constant. The on-time T11 of the FET 11 can also be made constant when the rated input voltage of the power supply device 100 does not change. In the present embodiment, the noticeable dead time is the period of the operating states D6 and D7, which is Td1.
 図16は本実施の形態の電源装置100の負荷電流によるデッドタイムの最適値の一例を示す説明図である。FET12のオフ時点からFET11のオン時点までデッドタイムTd1の期間(動作状態D6及びD7)では、図11に例示したように、ダイオード42に流れる電流は、共振により減少した後、増減を繰り返す。この場合、図16に示すように、負荷電流が比較的大きい場合には、ダイオード42に流れる電流が0A付近になるまでの時間が比較的長くなる。一方、負荷電流が比較的小さい場合には、ダイオード42に流れる電流が0A付近になるまでの時間が比較的短くなる。すなわち、デッドタイムTd1の最適値(すなわち、FET12のオフ時点からダイオード42に流れる電流が最初に0A付近に到達するまでの時間)が変化することが分かる。 FIG. 16 is an explanatory diagram showing an example of the optimum value of dead time due to the load current of the power supply device 100 of the present embodiment. In the period of the dead time Td1 (operation states D6 and D7) from the time when the FET 12 is turned off to the time when the FET 11 is turned on, as illustrated in FIG. 11, the current flowing through the diode 42 decreases and increases and decreases repeatedly. In this case, as shown in FIG. 16, when the load current is relatively large, the time until the current flowing through the diode 42 reaches about 0 A is relatively long. On the other hand, when the load current is relatively small, the time until the current flowing through the diode 42 reaches about 0 A is relatively short. That is, it can be seen that the optimum value of the dead time Td1 (that is, the time from when the FET 12 is turned off until the current flowing through the diode 42 first reaches around 0 A) changes.
 図17は本実施の形態の電源装置100のデッドタイムTd1と負荷電流との対応関係を示す説明図である。図17において、横軸は負荷電流(電流検出部70で検出する負荷電流に相当)を示し、縦軸はデッドタイムTd1を示す。図17に示すように、負荷電流の減少に伴ってデッドタイムTd1を小さく設定することができ、逆に、負荷電流の増加に伴ってデッドタイムTd1を大きく設定することができる。しかし、デッドタイムTd1を下限値より小さくするとゲートドライブ回路の動作遅延等によりFET12とFET11とが同時にオン状態となり、過電流が流れるおそれがあるので、デッドタイムTd1は下限値以上とすることが好ましい。また、デッドタイムTd1を上限値より大きくするとダイオード42に流れる共振電流が0A付近にならないタイミングでFET12をオフにすることになる場合があり、デッドタイムTd1は上限値以下とすることが好ましい。 FIG. 17 is an explanatory diagram showing a correspondence relationship between the dead time Td1 and the load current of the power supply device 100 according to the present embodiment. In FIG. 17, the horizontal axis represents the load current (corresponding to the load current detected by the current detection unit 70), and the vertical axis represents the dead time Td1. As shown in FIG. 17, the dead time Td1 can be set smaller as the load current decreases, and conversely, the dead time Td1 can be set larger as the load current increases. However, if the dead time Td1 is made smaller than the lower limit value, the FET 12 and the FET 11 are simultaneously turned on due to the operation delay of the gate drive circuit, etc., and there is a possibility that an overcurrent flows. . Further, if the dead time Td1 is made larger than the upper limit value, the FET 12 may be turned off at a timing at which the resonance current flowing through the diode 42 does not become around 0 A, and the dead time Td1 is preferably set to the upper limit value or less.
 なお、図17に示すようなデッドタイムTd1と負荷電流との対応関係を示す情報は、制御部50の内部又は外部に設けられた不揮発性のメモリ(不図示)に記憶してもよく、あるいは、図17に示すようなチャートを演算回路で実現して、負荷電流からデッドタイムTd1を算出してもよい。 Note that the information indicating the correspondence between the dead time Td1 and the load current as shown in FIG. 17 may be stored in a non-volatile memory (not shown) provided inside or outside the control unit 50, or A chart as shown in FIG. 17 may be realized by an arithmetic circuit, and the dead time Td1 may be calculated from the load current.
 電流検出部70は、FET11がオンしている状態で負荷電流を検出する。電流検出部70は、負荷電流をトランス30の巻数比で除算した値の電流を検出することができる。これにより、FET12のあるスイッチング周期でのオン時点からオフ時点までの間に負荷電流を検出するので、当該スイッチング周期内でオフ時点を決定してデッドタイムTd1を調整することができる。 The current detector 70 detects the load current while the FET 11 is on. The current detection unit 70 can detect a current having a value obtained by dividing the load current by the turn ratio of the transformer 30. As a result, the load current is detected from the ON time point to the OFF time point in a certain switching cycle of the FET 12, so that the OFF time point can be determined within the switching cycle and the dead time Td1 can be adjusted.
 また、電流検出部70は、FET11の複数回のスイッチング周期に亘ってFET11がオンしている状態で負荷電流を複数回検出し、制御部50は、電流検出部70で複数回検出した負荷電流の統計値に応じてデッドタイムTd1を調整することもできる。統計値は、例えば、平均値とすることができる。複数回検出した負荷電流の統計値を用いることにより、過渡的に負荷電流の増加又は減少が生じた場合でも、より正確に負荷電流の安定的な状態を検出することができるので、より最適なデッドタイムTd1を求めることができ、サージ電圧の発生を抑制することができる。 Further, the current detection unit 70 detects the load current a plurality of times while the FET 11 is turned on over a plurality of switching cycles of the FET 11, and the control unit 50 detects the load current detected a plurality of times by the current detection unit 70. The dead time Td1 can be adjusted according to the statistical value. The statistical value can be an average value, for example. By using the load current statistics that are detected multiple times, even if the load current increases or decreases transiently, the stable state of the load current can be detected more accurately. The dead time Td1 can be obtained, and the generation of a surge voltage can be suppressed.
 図18は本実施の形態の電源装置100のデッドタイムTd1の調整方法の一例を示す説明図である。図18に示すように、デッドタイム調整部51(制御部50でもよい)は、FET12のオフ時点を変更してデッドタイムTd1を調整する。これにより、前述のT12+T11+Td1+Td2=Tという式において、T及びT11を一定としつつ、デッドタイムTd1を調整することができる。 FIG. 18 is an explanatory diagram showing an example of a method for adjusting the dead time Td1 of the power supply apparatus 100 according to the present embodiment. As shown in FIG. 18, the dead time adjusting unit 51 (or the control unit 50) changes the OFF time of the FET 12 to adjust the dead time Td1. Thereby, in the above-mentioned formula of T12 + T11 + Td1 + Td2 = T, the dead time Td1 can be adjusted while keeping T and T11 constant.
 また、デッドタイム調整部51は、負荷電流が大きいときは、デッドタイムTd1を長くし、負荷電流が小さいときは、デッドタイムTd1を短くする。 The dead time adjustment unit 51 increases the dead time Td1 when the load current is large, and shortens the dead time Td1 when the load current is small.
 具体的には、算出部52は、電流検出部70で検出した負荷電流及び図17に例示したデッドタイムTd1と負荷電流の対応関係を示す情報に基づいて、FET12のオン時間T12を算出する。 Specifically, the calculation unit 52 calculates the ON time T12 of the FET 12 based on the load current detected by the current detection unit 70 and information indicating the correspondence relationship between the dead time Td1 and the load current illustrated in FIG.
 デッドタイム調整部51は、算出部52で算出したオン時間T12に応じてデッドタイムTd1を調整する。例えば、前述のT12+T11+Td1+Td2=Tという式において、T、T11及びTd2を一定とすると、T12が決まれば、デッドタイムTd1を求めることができる。 The dead time adjustment unit 51 adjusts the dead time Td1 according to the on-time T12 calculated by the calculation unit 52. For example, assuming that T, T11, and Td2 are constant in the above-described equation T12 + T11 + Td1 + Td2 = T, the dead time Td1 can be obtained if T12 is determined.
 本実施の形態によれば、サージ電圧の発生を抑制することができるので、スナバなどの部品を追加する必要がなく、コストの増加又は装置の大型化を避けることができる。 According to this embodiment, since the generation of surge voltage can be suppressed, it is not necessary to add parts such as a snubber, and an increase in cost or an increase in size of the apparatus can be avoided.
 スイッチング素子はMOSFETに限定されるものではなく、IGBT(Insulated Gate Bipolar Transistor)などのデバイスであってもよい。本実施の形態のように、スイッチング素子が、MOSFETの場合には、ドレイン・ソース間には等価的に内蔵されたボディダイオードが存在する。また、スイッチング素子として、バイポーラトランジスタを用いる場合には、トランジスタのコレクタ・エミッタ間にダイオードを逆並列に接続すればよい。 The switching element is not limited to a MOSFET, but may be a device such as an IGBT (Insulated Gate Bipolar Transistor). In the case where the switching element is a MOSFET as in the present embodiment, there is an equivalently incorporated body diode between the drain and source. When a bipolar transistor is used as the switching element, a diode may be connected in antiparallel between the collector and emitter of the transistor.
 図14の例では、トランス30の一次巻線31の一端と入力端Aとの間に電流検出部70を設け、FET11がオンのときに電流を検出する構成であったが、これに限定されない。例えば、インダクタ61の一端と出力端Cとの間に電流検出部70を設け、FET12がオンのときに電流を検出するようにしてもよい。 In the example of FIG. 14, the current detection unit 70 is provided between one end of the primary winding 31 of the transformer 30 and the input terminal A, and the current is detected when the FET 11 is on. However, the present invention is not limited to this. . For example, a current detector 70 may be provided between one end of the inductor 61 and the output terminal C so that the current is detected when the FET 12 is on.
 以上に開示された実施の形態及び実施例は、全ての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態及び実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての修正や変形を含むものと意図される。 It should be considered that the embodiments and examples disclosed above are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the scope of claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the scope of claims. .
 11、12、13、14 FET
 21、22、24 キャパシタ
 30 トランス
 31 1次巻線
 32 2次巻線
 41、42 ダイオード
 50 制御部
 51 デッドタイム調整部
 52 算出部
 61 インダクタ
 70 電流検出部
 
11, 12, 13, 14 FET
21, 22, 24 Capacitor 30 Transformer 31 Primary winding 32 Secondary winding 41, 42 Diode 50 Control unit 51 Dead time adjustment unit 52 Calculation unit 61 Inductor 70 Current detection unit

Claims (10)

  1.  トランスと、該トランスの一次巻線に直列に接続された第1のスイッチング素子と、該第1のスイッチング素子に並列に接続された第1のキャパシタと、前記一次巻線に並列に接続された第2のスイッチング素子及び第2のキャパシタの直列回路と、前記トランスの二次巻線に直列に接続された第1の整流素子と、前記二次巻線及び第1の整流素子に対して並列に接続された第2の整流素子と、前記第1のスイッチング素子及び第2のスイッチング素子のオン/オフを制御する制御部とを備える電源装置であって、
     前記制御部は、
     前記第1のスイッチング素子をオンにし、前記第2のスイッチング素子をオフにして前記トランスを励磁する第1モードで動作させ、
     該第1モード後に、前記第1のスイッチング素子をオフにし、前記第2のスイッチング素子をオンにして前記トランスの励磁をリセットする第2モードで動作させ、
     該第2モード後に、前記第1のスイッチング素子及び第2のスイッチング素子を同時にオフにして前記トランス及び第1のキャパシタを共振させる第3モードで動作させ、
     該第3モードにて前記共振により前記第2の整流素子に流れる電流が所定の閾値以下となるようにしてあり、
     前記制御部は、
     前記第2の整流素子に流れる電流が前記閾値以下となった場合に、前記第1のスイッチング素子をオンにして前記第1モードに移行する電源装置。
    A transformer, a first switching element connected in series to the primary winding of the transformer, a first capacitor connected in parallel to the first switching element, and connected in parallel to the primary winding A series circuit of a second switching element and a second capacitor, a first rectifying element connected in series to the secondary winding of the transformer, and parallel to the secondary winding and the first rectifying element A power supply device comprising: a second rectifying element connected to the control circuit; and a control unit that controls on / off of the first switching element and the second switching element,
    The controller is
    Turning on the first switching element, turning off the second switching element, and operating in a first mode in which the transformer is excited;
    After the first mode, the first switching element is turned off, the second switching element is turned on, and the second mode is operated in the second mode to reset the excitation of the transformer,
    After the second mode, the first switching element and the second switching element are simultaneously turned off to operate in the third mode in which the transformer and the first capacitor resonate,
    In the third mode, the current flowing through the second rectifying element due to the resonance is less than or equal to a predetermined threshold value,
    The controller is
    A power supply device that turns on the first switching element and shifts to the first mode when a current flowing through the second rectifying element becomes equal to or less than the threshold value.
  2.  2×Im×n≒Imaxという式を充足する請求項1に記載の電源装置。ここで、前記トランスの一次巻線と二次巻線との巻線比をn:1とし、最大負荷電流をImaxとし、前記第3モードに遷移した際の前記トランスの励磁電流をImとする。 The power supply device according to claim 1, wherein the formula 2 × Im × n≈Imax is satisfied. Here, the winding ratio between the primary winding and the secondary winding of the transformer is n: 1, the maximum load current is Imax, and the exciting current of the transformer at the time of transition to the third mode is Im. .
  3.  前記トランスの励磁インダクタンスに基づいて前記第2の整流素子に流れる電流を前記閾値以下とする請求項1又は請求項2に記載の電源装置。 3. The power supply device according to claim 1 or 2, wherein a current flowing through the second rectifying element based on an excitation inductance of the transformer is set to be equal to or less than the threshold value.
  4.  前記第2の整流素子は、同期整流素子を含む請求項1から請求項3のいずれか一項に記載の電源装置。 The power supply apparatus according to any one of claims 1 to 3, wherein the second rectifying element includes a synchronous rectifying element.
  5.  前記電源装置の負荷電流を検出する電流検出部を備え、
     前記制御部は、
     前記電流検出で検出した負荷電流に応じて、前記第2のスイッチング素子のオフ時点から前記第1のスイッチング素子のオン時点までの時間を示すデッドタイムを調整する請求項1から請求項4のいずれか一項に記載の電源装置。
    A current detection unit for detecting a load current of the power supply device;
    The controller is
    5. The dead time indicating the time from the time when the second switching element is turned off to the time when the first switching element is turned on is adjusted according to the load current detected by the current detection. The power supply device according to any one of the above.
  6.  前記電流検出部は、
     前記第1のスイッチング素子がオンしている状態で負荷電流を検出する請求項5に記載の電源装置。
    The current detector is
    The power supply device according to claim 5, wherein a load current is detected in a state where the first switching element is on.
  7.  前記電流検出部は、
     前記第1のスイッチング素子の複数回のスイッチング周期に亘って前記第1のスイッチング素子がオンしている状態で負荷電流を複数回検出し、
     前記制御部は、
     前記電流検出部で複数回検出した負荷電流の統計値に応じて前記デッドタイムを調整する請求項5又は請求項6に記載の電源装置。
    The current detector is
    Detecting a load current a plurality of times while the first switching element is on over a plurality of switching periods of the first switching element;
    The controller is
    The power supply device according to claim 5, wherein the dead time is adjusted according to a statistical value of a load current detected a plurality of times by the current detection unit.
  8.  前記制御部は、
     前記第2のスイッチング素子のオフ時点を変更して前記デッドタイムを調整する請求項5から請求項7のいずれか一項に記載の電源装置。
    The controller is
    The power supply device according to any one of claims 5 to 7, wherein the dead time is adjusted by changing an OFF time of the second switching element.
  9.  前記電流検出部で検出した負荷電流及び前記デッドタイムと負荷電流の対応関係を示す情報に基づいて、前記第2のスイッチング素子のオン時間を算出する算出部を備え、
     前記制御部は、
     前記算出部で算出したオン時間に応じて前記デッドタイムを調整する請求項5から請求項8のいずれか一項に記載の電源装置。
    Based on the load current detected by the current detection unit and information indicating a correspondence relationship between the dead time and the load current, a calculation unit that calculates the on-time of the second switching element,
    The controller is
    The power supply device according to any one of claims 5 to 8, wherein the dead time is adjusted according to an on-time calculated by the calculation unit.
  10.  トランスと、該トランスの一次巻線に直列に接続された第1のスイッチング素子と、該第1のスイッチング素子に並列に接続された第1のキャパシタと、前記一次巻線に並列に接続された第2のスイッチング素子及び第2のキャパシタの直列回路と、前記トランスの二次巻線に直列に接続された第1の整流素子と、前記二次巻線及び第1の整流素子に対して並列に接続された第2の整流素子と、前記第1のスイッチング素子及び第2のスイッチング素子のオン/オフを制御する制御部とを備える電源装置の制御方法であって、
     前記制御部は、
     前記第1のスイッチング素子をオンにし、前記第2のスイッチング素子をオフにして前記トランスを励磁する第1モードで動作させ、
     該第1モード後に、前記第1のスイッチング素子をオフにし、前記第2のスイッチング素子をオンにして前記トランスの励磁をリセットする第2モードで動作させ、
     該第2モード後に、前記第1のスイッチング素子及び第2のスイッチング素子を同時にオフにして前記トランス及び第1のキャパシタを共振させる第3モードで動作させ、
     該第3モードにて前記共振により前記第2の整流素子に流れる電流が所定の閾値以下となるようにしてあり、
     前記制御部は、
     前記第2の整流素子に流れる電流が前記閾値以下となった場合に、前記第1のスイッチング素子をオンにして前記第1モードに移行する電源装置の制御方法。
     
     
    A transformer, a first switching element connected in series to the primary winding of the transformer, a first capacitor connected in parallel to the first switching element, and connected in parallel to the primary winding A series circuit of a second switching element and a second capacitor, a first rectifying element connected in series to the secondary winding of the transformer, and parallel to the secondary winding and the first rectifying element A control method of a power supply device comprising: a second rectifying element connected to the control circuit; and a control unit that controls on / off of the first switching element and the second switching element,
    The controller is
    Turning on the first switching element, turning off the second switching element, and operating in a first mode in which the transformer is excited;
    After the first mode, the first switching element is turned off, the second switching element is turned on, and the second mode is operated in the second mode to reset the excitation of the transformer,
    After the second mode, the first switching element and the second switching element are simultaneously turned off to operate in the third mode in which the transformer and the first capacitor resonate,
    In the third mode, the current flowing through the second rectifying element due to the resonance is less than or equal to a predetermined threshold value,
    The controller is
    A method for controlling a power supply apparatus, wherein when the current flowing through the second rectifier element becomes equal to or less than the threshold value, the first switching element is turned on to shift to the first mode.

PCT/JP2017/040246 2017-02-13 2017-11-08 Power supply device and method for controlling power supply device WO2018146877A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018566756A JP6930549B2 (en) 2017-02-13 2017-11-08 Power supply unit and control method of power supply unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-024055 2017-02-13
JP2017024055 2017-02-13

Publications (1)

Publication Number Publication Date
WO2018146877A1 true WO2018146877A1 (en) 2018-08-16

Family

ID=63108105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040246 WO2018146877A1 (en) 2017-02-13 2017-11-08 Power supply device and method for controlling power supply device

Country Status (2)

Country Link
JP (1) JP6930549B2 (en)
WO (1) WO2018146877A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042393A1 (en) * 2021-09-17 2023-03-23 Tdk株式会社 Switching control device, switching power supply device, and power supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238649A (en) * 2005-02-25 2006-09-07 Sanken Electric Co Ltd Dc converter
JP5032525B2 (en) * 2009-03-12 2012-09-26 コーセル株式会社 Switching power supply

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238649A (en) * 2005-02-25 2006-09-07 Sanken Electric Co Ltd Dc converter
JP5032525B2 (en) * 2009-03-12 2012-09-26 コーセル株式会社 Switching power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042393A1 (en) * 2021-09-17 2023-03-23 Tdk株式会社 Switching control device, switching power supply device, and power supply system

Also Published As

Publication number Publication date
JPWO2018146877A1 (en) 2019-11-21
JP6930549B2 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
US9667153B2 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
EP3522350B1 (en) Power conversion device
JP6260665B2 (en) DC / DC converter
JPWO2014155604A1 (en) DC / DC converter
WO2018146877A1 (en) Power supply device and method for controlling power supply device
WO2023226896A1 (en) Control circuit of power module, power module and electronic device
US11342841B2 (en) Method for controlling resonance-type power converter, resonance-type power converter, and DC-DC converter
US20220393597A1 (en) System and methods for switching an active clamp flyback converter
JP5355655B2 (en) DCDC converter and control method of DCDC converter
US20190386574A1 (en) Power supply and power supply unit
JPWO2020129157A1 (en) Power converter
US8564974B2 (en) Switching power source apparatus
JP5954256B2 (en) Control method
US11476748B2 (en) Method for controlling resonant power conversion device, and resonant power conversion device
WO2018186344A1 (en) Power source and power source control method
JP6662151B2 (en) DC / DC converter, computer program, and method of controlling DC / DC converter
JP2002078323A (en) Power device
US20230268760A1 (en) Charging system
WO2018185999A1 (en) Power source and power source control method
US11870355B2 (en) Power converting device, and control method for power converting device
WO2018163631A1 (en) Power source device and method for controlling power source device
JP2019146384A (en) Power supply device and control method for power supply device
WO2019131469A1 (en) Power supply device and power supply device control method
JP2014197949A (en) Power conversion circuit
CN114598153A (en) Voltage conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566756

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895620

Country of ref document: EP

Kind code of ref document: A1