WO2018146764A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2018146764A1
WO2018146764A1 PCT/JP2017/004706 JP2017004706W WO2018146764A1 WO 2018146764 A1 WO2018146764 A1 WO 2018146764A1 JP 2017004706 W JP2017004706 W JP 2017004706W WO 2018146764 A1 WO2018146764 A1 WO 2018146764A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft portion
crankshaft
bearing
main shaft
compression mechanism
Prior art date
Application number
PCT/JP2017/004706
Other languages
French (fr)
Japanese (ja)
Inventor
宏樹 長澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018566701A priority Critical patent/JP6771592B2/en
Priority to CN201780085519.6A priority patent/CN110249133B/en
Priority to PCT/JP2017/004706 priority patent/WO2018146764A1/en
Publication of WO2018146764A1 publication Critical patent/WO2018146764A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present invention relates to a rotary compressor that compresses a refrigerant, and more particularly to a rotary compressor that is reduced in size and increased in efficiency.
  • a conventional rotary compressor includes an electric motor having a rotor, a crankshaft connected to the rotor and transmitting a driving force of the electric motor, and a refrigerant connected to the crankshaft by the driving force transmitted from the crankshaft.
  • a rotary type compression mechanism for compressing The electric motor, the crankshaft, and the compression mechanism are housed in, for example, a sealed container (see, for example, Patent Document 1).
  • the crankshaft includes a main shaft portion connected to the rotor of the electric motor, a sub shaft portion having a central axis coaxial with the central axis of the main shaft portion, and a space between the main shaft portion and the sub shaft portion. And an eccentric shaft portion in which the central axis is eccentric with respect to the central axis of the main shaft portion and the central axis of the auxiliary shaft portion.
  • the crankshaft is constituted by a cast iron casting.
  • the compression mechanism has a cylinder chamber formed in a cylindrical shape and provided with an eccentric shaft portion, and a cylinder having a vane groove with one end communicating with the cylinder chamber.
  • the compression mechanism is attached to the outer periphery of the eccentric shaft, and is inserted into the vane groove so as to reciprocate in a rolling piston that rotates eccentrically in the cylinder chamber by the rotation of the crankshaft. And a vane that abuts the tip and partitions the cylinder chamber into two working chambers.
  • the compression mechanism portion closes one end portion of the cylinder chamber, and closes the first bearing portion that rotatably supports the main shaft portion, and the other end portion of the cylinder chamber, and rotates the sub-shaft portion. And a second bearing portion that is freely supported.
  • the part supporting the main shaft part in the first bearing part that is, the bearing part is a slide bearing.
  • Refrigerating machine oil is supplied between the bearing portion and the main shaft portion, for example, via an oil supply passage formed in the crankshaft.
  • the bearing portion rotatably supports the main shaft portion by fluid lubrication of the oil film.
  • the part which supports the countershaft part in the 2nd bearing part ie, the bearing part, is a slide bearing.
  • Refrigerating machine oil is supplied between the bearing portion and the countershaft portion via, for example, an oil supply passage formed in the crankshaft.
  • the said bearing part supports a countershaft part rotatably by the fluid lubrication of an oil film.
  • the crankshaft connected to the rotor When the rotor of the motor rotates, the crankshaft connected to the rotor also rotates. As a result, in the cylinder chamber, the eccentric shaft portion of the crankshaft and the rolling piston attached to the eccentric shaft portion perform an eccentric rotational motion with respect to the central axis of the cylinder chamber. Then, the eccentric working of the eccentric shaft portion and the rolling piston in the cylinder chamber changes the volume of the two working chambers formed in the cylinder chamber.
  • the cylinder chamber communicates with a suction port for sucking refrigerant into the cylinder chamber and a discharge port for discharging the refrigerant from the cylinder chamber.
  • the working chamber formed in the cylinder chamber communicates with the suction port or the discharge port in the process of changing the volume. That is, the working chamber functions as a suction chamber while communicating with the suction port, and sucks the refrigerant into the working chamber. Further, the working chamber functions as a compression chamber when it is not in communication with the suction port, and compresses the refrigerant in the working chamber as the volume decreases.
  • the compressed refrigerant is discharged from a discharge port that communicates with a working chamber that functions as a compression chamber.
  • two working chambers are formed in the cylinder chamber. While one working chamber functions as a suction chamber, the other working chamber functions as a compression chamber.
  • the eccentric shaft portion of the crankshaft is also subjected to a load (reaction force) received by the rolling piston when the refrigerant is compressed, in addition to the centrifugal force described above.
  • the load received by the rolling piston when compressing the refrigerant acts in a direction perpendicular to the central axis of the eccentric shaft part, in other words, in a direction perpendicular to the central axis of the main shaft part and the central axis of the sub-shaft part.
  • the crankshaft is a center of the eccentric shaft portion with the eccentric shaft portion side end portion of the bearing portion of the first bearing portion and the eccentric shaft portion side end portion of the bearing portion of the second bearing portion as supporting points. Deflection occurs due to the above-described force acting on the eccentric shaft portion in a direction perpendicular to the axis. That is, the crankshaft bends as if a load is applied to the center of the beam supported at two points. Accordingly, the main shaft portion is inclined inside the bearing portion of the first bearing portion, and the sub-shaft portion is inclined inside the bearing portion of the second bearing portion.
  • the oil film load capacity which is the sum of the oil film reaction force of the first bearing portion and the oil film reaction force of the second bearing portion, is based on the load supported by the first bearing portion and the second bearing portion, that is, the eccentric shaft portion of the crankshaft. It must be greater than the force acting on.
  • the oil film load capacity is smaller than the force acting on the eccentric shaft portion of the crankshaft, the oil film of the refrigerating machine oil partially disappears in the bearing portions of the first bearing portion and the second bearing portion, and the first bearing portion and the first bearing portion This is because the two bearing portions and the crankshaft are in metal contact. That is, adhesive wear and scuffing occur in the bearing portions of the first bearing portion and the second bearing portion, and the rotary compressor fails.
  • the diameters of the main shaft portion and the sub shaft portion necessary for preventing the occurrence of adhesive wear and scuffing in the bearing portions of the first bearing portion and the second bearing portion are generated in the eccentric shaft portion.
  • Centrifugal force, load acting on the eccentric shaft portion when the refrigerant is compressed, length from the end portion on the eccentric shaft portion side of the bearing portion of the first bearing portion to the end portion on the eccentric shaft portion side of the bearing portion of the second bearing portion It is determined almost uniquely by the longitudinal elastic modulus of the crankshaft.
  • the crankshaft of the rotary compressor described in Patent Document 1 has the same configuration as the conventional one except for a part of the eccentric shaft portion.
  • the crankshaft of the rotary compressor described in Patent Document 1 can reduce the centrifugal force generated in the eccentric shaft portion, but the load (reaction force) that the rolling piston receives when compressing the refrigerant.
  • the amount of bending with respect to is similar to that of the conventional crankshaft. Therefore, also in the rotary compressor described in Patent Document 1, it is difficult to make the diameters of the main shaft portion and the sub shaft portion of the crankshaft smaller than the current state.
  • the present invention has been made in order to solve the above-described problems, and can reduce the diameter of the main shaft portion and the sub-bearing of the crankshaft as compared with the conventional rotary compressor that is smaller and more efficient than the conventional compressor.
  • the purpose is to provide.
  • a rotary compressor includes a motor having a rotor, a crankshaft connected to the rotor and transmitting a driving force of the motor, connected to the crankshaft, and transmitted from the crankshaft.
  • a compression mechanism that compresses the refrigerant by a driving force, and the crankshaft includes a main shaft connected to the rotor, and a sub shaft having a central axis that is coaxial with the central axis of the main shaft. And an eccentric shaft portion that is provided between the main shaft portion and the sub shaft portion and whose center axis is eccentric with respect to the center axis of the main shaft portion and the center axis of the sub shaft portion.
  • the compression mechanism section includes a cylinder chamber that compresses the refrigerant, the cylinder in which the eccentric shaft section is disposed in the cylinder chamber, a first bearing that rotatably supports the main shaft section, A second bearing that rotatably supports the shaft, and the crankshaft Kicking portion disposed within at least said compression mechanism portion, the central axis perpendicular to the cross section of the main shaft portion, at least internally is composed of mixture of carbon fiber and resin.
  • the portion of the crankshaft disposed inside the compression mechanism portion is composed of a mixture of carbon fiber and resin.
  • the longitudinal elastic modulus of the portion of the crankshaft disposed inside the compression mechanism is made larger than that of a conventional crankshaft made of cast iron casting. be able to.
  • the eccentric shaft portion with the eccentric shaft portion side end portion of the first bearing and the eccentric shaft portion side end portion of the second bearing as support points.
  • the amount of deflection due to the force acting on the eccentric shaft portion in the direction perpendicular to the central axis of the shaft is smaller than that of the conventional crankshaft. Therefore, the rotary compressor according to the present invention generates adhesive wear and scuffing in the first bearing and the second bearing even if the diameter of the main shaft portion and the sub bearing of the crankshaft is made smaller than before. This can prevent the rotary compressor from being broken.
  • the rotary type compressor according to the present invention can reduce the diameter of the main shaft portion and the auxiliary bearing of the crankshaft as compared with the conventional one, so that typical mechanical loss of the rotary type compressor can be reduced, and the rotary type compressor is conventionally used. Smaller and more efficient.
  • FIG. 1 is a longitudinal sectional view showing a rotary compressor according to an embodiment of the present invention.
  • a rotary compressor 100 according to the present embodiment includes an electric motor 2, a compression mechanism unit 3, and a crankshaft 4 that connects the electric motor 2 and the compression mechanism unit 3.
  • the rotary compressor 100 according to the present embodiment is a hermetic compressor. For this reason, the electric motor 2, the compression mechanism portion 3, and the crankshaft 4 are accommodated in the sealed container 1.
  • the rotary compressor 100 is a vertical rotary compressor as described above, and the electric motor 2 is disposed above the compression mechanism section 3 in the sealed container 1.
  • the electric motor 2 includes a stator 21 and a rotor 22 that is rotated by a magnetic force generated by the stator 21.
  • the stator 21 includes a coil around which a conductive wire is wound, and generates a magnetic force when the coil is energized.
  • the coil of the stator 21 is connected to a terminal 23 provided in the rotary compressor 100, and is energized from the outside of the rotary compressor 100 via the terminal 23.
  • the rotor 22 includes a secondary conductor or a permanent magnet formed of an aluminum bar or the like, and rotates in response to the magnetic force generated by the coil of the stator 21.
  • the compression mechanism unit 3 compresses the low-pressure refrigerant gas sucked into the compression mechanism unit 3 by the driving force of the electric motor 2 transmitted from the crankshaft 4 and discharges the high-pressure refrigerant gas into the sealed container 1.
  • the sealed container 1 is filled with compressed high-temperature and high-pressure refrigerant gas.
  • refrigerating machine oil for lubricating the compression mechanism 3 is stored below the bottom of the sealed container 1, that is, at the bottom.
  • the crankshaft 4 is connected to the rotor 22 and the compression mechanism unit 3 of the electric motor 2 and transmits the driving force of the electric motor 2.
  • the crankshaft 4 includes a main shaft portion 41, a sub shaft portion 42, and an eccentric shaft portion 43.
  • the main shaft portion 41, the eccentric shaft portion 43, and the auxiliary shaft portion 42 are provided in this order from the top to the bottom. That is, the main shaft portion 41 is provided on one side of the eccentric shaft portion 43 in the axial direction, and the auxiliary shaft portion 42 is provided on the other side of the eccentric shaft portion 43 in the axial direction.
  • the eccentric shaft portion 43 is provided between the main shaft portion 41 and the sub shaft portion 42.
  • Each of the main shaft portion 41, the sub shaft portion 42, and the eccentric shaft portion 43 has a substantially cylindrical shape.
  • the central axis of the auxiliary shaft portion 42 is provided coaxially with the central axis of the main shaft portion 41.
  • the central axis of the eccentric shaft portion 43 is eccentric with respect to the central axes of the main shaft portion 41 and the auxiliary shaft portion 42. That is, when the main shaft portion 41 and the sub shaft portion 42 rotate around these central axes, the eccentric shaft portion 43 rotates eccentrically.
  • the rotor 22 of the electric motor 2 is fixed (connected) to the main shaft portion 41 by, for example, shrink fitting or press fitting.
  • a cylindrical-shaped rolling piston 32 is slidably attached to the outer peripheral portion of the eccentric shaft portion 43.
  • FIG. 2 is a longitudinal sectional view showing a compression mechanism portion of the rotary compressor according to the embodiment of the present invention.
  • FIG. 3 is a plan view showing the compression mechanism portion with the upper bearing portion removed in the rotary compressor according to the embodiment of the present invention. That is, FIG. 3 is a view of the compression mechanism portion 3 with the upper bearing portion 33 removed, as viewed from the AA direction shown in FIG. In FIG. 2, unlike FIG. 1, the crankshaft 4 is also shown in cross section.
  • the compression mechanism unit 3 includes a cylinder 31, a bearing 33 b that rotatably supports the main shaft portion 41 of the crankshaft 4, and a bearing 34 b that rotatably supports the subshaft portion 42 of the crankshaft 4.
  • the bearing 33b corresponds to the first bearing of the present invention.
  • the bearing 34b corresponds to the second bearing of the present invention.
  • the cylinder 31 has a cylinder chamber 36 that compresses the refrigerant.
  • the central axis of the cylinder chamber 36 is arranged coaxially with the central axes of the main shaft portion 41 and the subshaft portion 42 of the crankshaft 4.
  • the cylinder chamber 36 is formed in the cylinder 31, for example, in a cylindrical shape with both ends in the vertical direction opened. For this reason, the opening above the cylinder chamber 36 is closed by the flat closing member 33a. The opening below the cylinder chamber 36 is closed by a flat closing member 34a.
  • the rolling piston 32 attached to the outer peripheral portion of the eccentric shaft portion 43 is also arranged in the cylinder chamber 36 of the cylinder 31. Yes.
  • the closing member 33a corresponds to the first closing member of the present invention.
  • the closing member 34a corresponds to the second closing member of the present invention.
  • the cylinder 31 has a vane groove 37 formed along the radial direction of the cylinder chamber 36.
  • One end of the vane groove 37 communicates with the cylinder chamber 36, and the other end of the vane groove 37 communicates with the back pressure chamber 38.
  • a vane 35 having a substantially rectangular parallelepiped shape is inserted into the vane groove 37.
  • the vane 35 can reciprocate in the vane groove 37 and reciprocates while sliding in the vane groove 37.
  • the back pressure chamber 38 is provided with a spring (not shown). The vane 35 is pushed out from the vane groove 37 toward the cylinder chamber 36 of the cylinder 31, and the tip of the vane 35 is brought into contact with the outer peripheral surface of the rolling piston 32. Yes.
  • the vane 35 divides the cylinder chamber 36, more specifically, a space formed by the inner peripheral surface of the cylinder chamber 36 and the outer peripheral surface of the rolling piston 32 into two working chambers.
  • One of these working chambers becomes a suction chamber 36a for sucking refrigerant into the working chamber, as will be described later.
  • the other of these working chambers is a compression chamber 36b that compresses the refrigerant in the working chamber.
  • the vane 35 divides the cylinder chamber 36 into a suction chamber 36a and a compression chamber 36b.
  • the cylinder chamber 36 compresses the refrigerant in the compression chamber 36b.
  • the bearing 33b is a sliding bearing and has a cylindrical space that is open at both ends in the vertical direction.
  • the main shaft portion 41 is inserted into the space so as to penetrate from one opening portion to the other opening portion.
  • the bearing 33b supports the main-shaft part 41 rotatably.
  • the bearing 33 b is integrally formed with the closing member 33 a as the upper bearing portion 33.
  • the upper bearing portion 33 includes the closing member 33a and the bearing 33b.
  • the bearing 33 b extends from the closing member 33 a in the direction opposite to the cylinder 31, that is, in the direction of the rotor 22.
  • the upper bearing portion 33 is fixed to the upper surface of the cylinder 31 with, for example, bolts.
  • the upper bearing portion 33 corresponds to the first bearing portion of the present invention.
  • Refrigerator oil is supplied between the bearing 33 b of the upper bearing portion 33 and the main shaft portion 41.
  • the bearing 33b of the upper bearing portion 33 rotatably supports the main shaft portion 41 by fluid lubrication of the oil film.
  • the refrigerating machine oil stored at the bottom of the sealed container 1 passes through the oil supply passages 51 and 52 formed in the crankshaft 4 to form the bearing 33b of the upper bearing portion 33 and the main shaft portion 41. Supplied in between.
  • a bearing 34 b is provided below the cylinder 31.
  • the bearing 34b is a sliding bearing and has a cylindrical space that is open at both ends in the vertical direction.
  • the auxiliary shaft portion 42 is inserted into the space so as to penetrate from one opening portion to the other opening portion.
  • the bearing 34b supports the subshaft part 42 rotatably.
  • the bearing 34 b is integrally formed with the closing member 34 a as the lower bearing portion 34.
  • the lower bearing portion 34 includes the closing member 34a and the bearing 34b.
  • the bearing 34 b extends from the closing member 34 a in the direction opposite to the cylinder 31, that is, in the direction of the bottom of the sealed container 1.
  • the lower bearing portion 34 is fixed to the lower surface of the cylinder 31 with, for example, bolts.
  • the lower bearing portion 34 corresponds to the second bearing portion of the present invention.
  • Refrigerator oil is supplied between the bearing 34 b of the lower bearing portion 34 and the countershaft portion 42.
  • the bearing 34b of the lower bearing part 34 supports the countershaft part 42 rotatably by fluid lubrication of an oil film.
  • the refrigerating machine oil stored at the bottom of the sealed container 1 passes through the oil supply passages 51 and 53 formed in the crankshaft 4, and the bearing 34 b and the subshaft portion 42 of the lower bearing portion 34. Supplied during.
  • the cylinder 31 is formed with a suction port 39 for sucking refrigerant gas into the cylinder chamber 36 from the outside of the sealed container 1.
  • the suction port 39 communicates with a working chamber serving as a suction chamber 36 a among the two working chambers partitioned by the vane 35.
  • the upper bearing portion 33 is provided with a discharge port (not shown) for discharging the compressed refrigerant gas to the outside of the cylinder chamber 36.
  • the discharge port communicates with the working chamber serving as the compression chamber 36b among the two working chambers partitioned by the vane 35.
  • a discharge valve is provided at the discharge port of the upper bearing portion 33.
  • the discharge valve closes until the refrigerant gas compressed in the compression chamber 36b reaches a predetermined pressure, and opens to discharge the high-temperature and high-pressure refrigerant gas into the sealed container 1 when the pressure exceeds the predetermined pressure. Thereby, the discharge timing of the refrigerant gas discharged from the compression chamber 36b is controlled.
  • the refrigerant gas discharged into the sealed container 1 flows toward the discharge pipe 11 above the sealed container 1, and is sent out from the discharge pipe 11 to the outside of the sealed container 1. At that time, the refrigerant gas flows upward through a gap between the stator 21 and the rotor 22 of the electric motor 2 or an air hole provided in the rotor 22.
  • the suction muffler 101 provided outside the sealed container 1 is connected to the suction port 39 via the suction pipe 12.
  • Low-pressure refrigerant gas and liquid refrigerant are mixedly sent to the rotary compressor 100 from an external circuit to which the rotary compressor 100 is connected.
  • the suction muffler 101 separates the liquid refrigerant and the refrigerant gas. Then, only the refrigerant gas is sent to the compression mechanism unit 3.
  • FIG. 4 is a refrigerant circuit diagram showing a refrigeration cycle circuit using the rotary compressor according to the embodiment of the present invention.
  • a condenser 102, an expansion valve 103, and an evaporator 104 are provided outside the rotary compressor 100 to constitute a refrigeration cycle circuit.
  • the refrigeration cycle circuit is an annular circuit in which the discharge pipe 11, the condenser 102, the expansion valve 103, the evaporator 104, and the suction muffler 101 of the rotary compressor 100 are connected by piping.
  • the refrigerant circulates in the refrigeration cycle circuit, air or water exchanges heat with the refrigerant in the condenser 102 and the evaporator 104, and heat energy is conveyed.
  • a refrigeration cycle circuit is used in a heat pump device such as an air conditioner.
  • a four-way valve 105 is provided in the refrigeration cycle circuit shown in FIG.
  • the four-way valve 105 switches so as to reverse the route through which the refrigerant circulates.
  • the four-way valve 105 is configured such that the rotary compressor 100, the evaporator 104, and the expansion valve 103 pass through the refrigerant flow in the order of the rotary compressor 100, the condenser 102, the expansion valve 103, the evaporator 104 and the suction muffler 101. Then, switching is performed so that the refrigerant flows in the order of the condenser 102 and the suction muffler 101. Thereby, conveyance of heat energy can be reversed.
  • the refrigeration cycle circuit when used as an air conditioner, the cooling operation and the heating operation can be switched.
  • the condenser 102 When the forward path is reversed, the condenser 102 functions as an evaporator, and the evaporator 104 functions as a condenser.
  • the working chamber into which the low-pressure refrigerant gas is sucked from the suction port 39 moves in the cylinder chamber 36 by the eccentric rotational movement of the eccentric shaft portion 43 and the rolling piston 32, and the communication with the suction port 39 is cut off. . Thereafter, the working chamber functions as the compression chamber 36b. Furthermore, when the eccentric shaft portion 43 and the rolling piston 32 are eccentrically rotated, the volume of the working chamber is reduced and the sucked refrigerant gas is compressed. As the eccentric rotational movement of the eccentric shaft portion 43 and the rolling piston 32 proceeds, the working chamber communicates with the discharge port.
  • the working chamber and the discharge port communicate with each other and the discharge valve closing the discharge port opens the discharge port, the high-pressure refrigerant gas in the working chamber is discharged into the sealed container 1 through the discharge port. Further, when the eccentric shaft portion 43 and the rolling piston 32 are eccentrically rotated, the communication between the working chamber and the discharge port is cut off and the communication with the suction port 39 is resumed. Thereafter, the working chamber functions as the suction chamber 36a.
  • the eccentric shaft portion 43 of the crankshaft 4 receives a load (reverse force) applied to the rolling piston 32 when the refrigerant is compressed, in addition to the centrifugal force described above. Force) also works.
  • the load that the rolling piston 32 receives when compressing the refrigerant is perpendicular to the central axis of the eccentric shaft portion 43, in other words, perpendicular to the central axis of the main shaft portion 41 and the central axis of the auxiliary shaft portion 42. Acting in any direction.
  • crankshaft 4 is subjected to the eccentric shaft 43 by these forces acting on the eccentric shaft 43 side end of the bearing 33b of the upper bearing 33 and the eccentric shaft of the bearing 34b of the lower bearing 34. Deflection occurs with the end portion on the side of the portion 43 as a support point. That is, the crankshaft bends as if a load is applied to the center of the beam supported at two points. As a result, the main shaft portion 41 is inclined inside the bearing 33 b of the upper bearing portion 33, and the auxiliary shaft portion 42 is inclined inside the bearing 34 b of the lower bearing portion 34.
  • the oil film load capacity which is the sum of the oil film reaction force of the bearing 33b of the upper bearing portion 33 and the oil film reaction force of the bearing 34b of the lower bearing portion 34, is supported by the bearing 33b of the upper bearing portion 33 and the bearing 34b of the lower bearing portion 34. That is, it is necessary to be larger than the force acting on the eccentric shaft portion 43.
  • the oil film load capacity becomes smaller than the force acting on the eccentric shaft portion 43, the oil film of the refrigerating machine oil partially disappears in the bearing 33b of the upper bearing portion 33 and the bearing 34b of the lower bearing portion 34, and the upper bearing portion 33. This is because the bearing 33b and the bearing 34b of the lower bearing portion 34 and the crankshaft are in metal contact. That is, adhesive wear and scuffing occur in the bearing 33b of the upper bearing portion 33 and the bearing 34b of the lower bearing portion 34, and the rotary compressor 100 breaks down.
  • the main shaft portion 41 and the sub shaft portion 42 of the crankshaft 4 where typical mechanical loss of the rotary compressor 100 occurs are made as thin as possible. That is, it is effective to reduce the diameters of the main shaft portion 41 and the sub shaft portion 42. This is because the mechanical loss can be reduced and the input of the electric motor 2 can be reduced while maintaining the capability of the rotary compressor 100.
  • the crankshaft 4 is made of cast iron as in the conventional case, it is difficult to reduce the diameters of the main shaft portion 41 and the subshaft portion 42 as compared with the conventional case.
  • At least the inside of at least the portion of the crankshaft 4 disposed inside the compression mechanism portion 3 in the cross section perpendicular to the central axis of the main shaft portion 41 is carbon. It comprised with the mixture 45 of the fiber and resin.
  • the longitudinal elastic modulus of the mixture 45 can be made larger than the cast iron used for the conventional crankshaft, the carbon fiber and resin which comprise the mixture 45 will not be specifically limited.
  • Ductile cast iron generally used for the crankshaft of current rotary compressors has a longitudinal elastic modulus of 150 GPa.
  • the longitudinal elastic modulus can be set to 640 GPa to 900 GPa.
  • Carbon fiber Pitch-based carbon fiber having a fiber length of 50 ⁇ m to 500 ⁇ m and an ultra high modulus type.
  • Resin General-purpose thermoplastic resin such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT).
  • crankshaft 4 that is disposed inside the compression mechanism portion 3 has an outer peripheral portion made of metal in a cross section perpendicular to the central axis of the main shaft portion 41, and the inside It is comprised with the mixture 45 of carbon fiber and resin.
  • a mixture of carbon fiber and resin is provided along the central axis direction of the main shaft portion 41 at least inside the portion of the crankshaft 4 disposed inside the compression mechanism portion 3.
  • the crankshaft 4 having such a configuration is manufactured, for example, by inserting a mixture 45 of carbon fiber and resin as a core rod into the crankshaft 4 made of cast iron.
  • the sliding portions with the bearings 33b and 34b are cast iron as in the conventional case.
  • the longitudinal elastic modulus of the crankshaft 4 can be increased while the sliding characteristics with the bearings 33b and 34b are the same as the conventional one.
  • the portion of the crankshaft 4 that is disposed inside the compression mechanism portion 3 has the inside diameter of the auxiliary shaft portion 42. It is composed of a mixture 45 with a diameter of less than 90%.
  • the crankshaft 4 may be configured such that all of the portion of the crankshaft 4 disposed inside the compression mechanism section 3 is composed of a mixture 45 of carbon fiber and resin.
  • the crankshaft 4 having such a configuration for example, after an approximate shape is formed by an injection molding die, polishes an outer peripheral portion or the like inserted into the bearing 33b of the upper bearing portion 33 and the bearing 34b of the lower bearing portion 34. Manufactured by.
  • the longitudinal elastic modulus of the crankshaft 4 can be increased as compared with the case where cast iron is present on the outer peripheral portion of the mixture 45.
  • crankshaft 4 disposed inside the compression mechanism section 3 is configured by the carbon fiber and resin mixture 45, whereby the compression mechanism section 3 in the crankshaft 4 is configured.
  • the longitudinal elastic modulus of the portion arranged in the interior can be made larger than that of a conventional crankshaft made of cast iron casting.
  • the rotary compressor 100 With the end portion on the side of the portion 43 as a support point, the amount of deflection due to the force acting on the eccentric shaft portion 43 in a direction perpendicular to the central axis of the eccentric shaft portion 43 is reduced as compared with the conventional crankshaft. Therefore, in the rotary compressor 100 according to the present embodiment, even if the diameters of the main shaft portion 41 and the sub shaft portion 42 of the crankshaft 4 are made smaller than before, the bearing 33b and the lower bearing portion 34 of the upper bearing portion 33. It is possible to prevent adhesive wear and scuffing from occurring in the bearing 34b, and to prevent the rotary compressor 100 from failing.
  • the rotary compressor 100 can reduce the diameters of the main shaft portion 41 and the subshaft portion 42 of the crankshaft 4 as compared with the prior art, so that typical mechanical loss of the rotary compressor can be reduced.
  • the rotary compressor 100 can be made smaller and more efficient than conventional ones.
  • FIG. 5 is a diagram showing the relationship between the longitudinal elastic modulus of the crankshaft portion disposed inside the compression mechanism portion and the diameters of the main shaft portion and the subshaft portion in the rotary compressor according to the present invention.
  • the horizontal axis of FIG. 5 indicates the longitudinal elastic modulus of the portion of the crankshaft 4 disposed inside the compression mechanism section 3.
  • the vertical axis in FIG. 5 indicates the diameters of the main shaft portion 41 and the sub shaft portion 42 that are necessary when the longitudinal elastic modulus shown in the horizontal axis in FIG.
  • the required diameters of the main shaft portion 41 and the sub shaft portion 42 indicate that the main shaft portion 41 can prevent adhesion wear and scuffing from occurring in the bearing 33b of the upper bearing portion 33 and the bearing 34b of the lower bearing portion 34. And the minimum diameter of the countershaft portion 42.
  • the diameters of the main shaft portion 41 and the sub shaft portion 42 shown on the vertical axis in FIG. 5 are the diameters of the main shaft portion and the sub shaft portion of a duct shaft made of ductile cast iron generally used in current rotary type compressors. Is shown as “1”.
  • the necessary diameters of the main shaft portion and the sub shaft portion were calculated as follows. Specifically, a model is assumed in which a cylindrical beam is simply supported (supported rotatably) at two points, and a concentrated load of a specified magnitude is applied to the center position between the support points of the beam. Then, while changing the longitudinal elastic modulus of the beam, the beam diameter at which the deflection angle becomes the specified angle was calculated. In addition, the specified angle of the bending angle is allowed in the rotary compressor 100, and the inclination of the main shaft portion 41 inside the bearing 33b of the upper bearing portion 33 and the sub shaft portion 42 inside the bearing 34b of the lower bearing portion 34 are allowed. Determined based on slope.
  • the ductile cast iron generally used for the crankshaft of the current rotary compressor has a longitudinal elastic modulus of 150 GPa.
  • the longitudinal elastic modulus of the portion arranged inside the compression mechanism portion 3 is 300 GPa, with respect to the crankshaft made of ductile cast iron, The diameters of the main shaft portion 41 and the sub shaft portion 42 can be reduced by 15.9%.
  • the outer peripheral portion is made of ductile cast iron having a longitudinal elastic modulus of 150 GPa and the inside is the mixture 45 having a longitudinal elastic modulus of 800 GPa
  • the portion disposed inside the compression mechanism portion 3 in the crankshaft 4 is configured.
  • the longitudinal elasticity of the portion of the crankshaft 4 disposed inside the compression mechanism portion 3 is set.
  • the coefficient can be 300 GPa.
  • the diameter of the main shaft portion 41 and the sub shaft portion 42 is 21 mm
  • the diameter of the mixture 45 having a longitudinal elastic modulus of 800 GPa is set to 13.7 mm, so that the crankshaft 4 is disposed inside the compression mechanism portion 3.
  • the longitudinal elastic modulus of the portion that is present can be set to 300 GPa.
  • the crankshaft 4 in the crankshaft 4 according to the present embodiment, if the longitudinal elastic modulus of the portion arranged inside the compression mechanism portion 3 is set to 600 GPa, the crankshaft made of ductile cast iron Thus, the diameters of the main shaft portion 41 and the sub shaft portion 42 can be reduced by 29.3%.
  • the longitudinal elastic modulus of the portion disposed inside the compression mechanism portion 3 in the crankshaft 4 can be set to 600 GPa by configuring all the portions disposed inside the compression mechanism portion 3 with the mixture 45. .
  • ⁇ Crankshaft sliding loss accounts for approximately 10% of the total loss generated in the rotary compressor. For this reason, reducing the diameters of the main shaft portion 41 and the sub shaft portion 42 as in the present embodiment can greatly contribute to miniaturization and high efficiency of the rotary compressor 100.
  • the rotary compressor 100 is connected to the electric motor 2 having the rotor 22, the crankshaft 4 connected to the rotor 22 and transmitting the driving force of the electric motor 2, and the crankshaft 4. And a compression mechanism unit 3 that compresses the refrigerant by the driving force transmitted from the crankshaft 4.
  • the crankshaft 4 includes a main shaft portion 41 connected to the rotor 22, a sub shaft portion 42 having a central axis coaxial with the central axis of the main shaft portion 41, and the main shaft portion 41 and the sub shaft portion 42. And an eccentric shaft portion 43 whose central axis is eccentric with respect to the central axis of the main shaft portion 41 and the central axis of the auxiliary shaft portion 42.
  • the compression mechanism section 3 includes a cylinder chamber 36 that compresses the refrigerant, a cylinder 31 in which the eccentric shaft portion 43 is disposed in the cylinder chamber 36, a bearing 33b that rotatably supports the main shaft portion 41, And a bearing 34b that rotatably supports the countershaft portion 42.
  • the crankshaft 4 at least a portion of the crankshaft 4 disposed inside the compression mechanism portion 3 is composed of a mixture 45 of carbon fiber and resin at least in the cross section perpendicular to the central axis of the main shaft portion 41. .
  • the rotary compressor 100 according to the present embodiment has a longitudinal elastic modulus of a portion of the crankshaft 4 arranged in the compression mechanism portion 3 in the crankshaft 4 compared to a conventional crankshaft made of cast iron. Can also be increased.
  • the eccentric shaft portion 43 side end portion of the bearing 33b and the eccentric shaft portion 43 side end portion of the bearing 34b are used as supporting points. The amount of deflection due to the force acting on the eccentric shaft portion 43 in a direction perpendicular to the central axis of the eccentric shaft portion 43 is smaller than that of the conventional crankshaft.
  • the rotary compressor 100 can reduce the diameters of the main shaft portion 41 and the subshaft portion 42 of the crankshaft 4 as compared with the conventional one, so that typical mechanical loss of the rotary compressor can be reduced.
  • the rotary compressor 100 can be a rotary compressor that is smaller and more efficient than conventional ones.
  • crankshaft 4 that is disposed inside the compression mechanism portion 3 has a cross section perpendicular to the central axis of the main shaft portion 41, an outer peripheral portion made of metal, and an inner portion made of a mixture 45.
  • the longitudinal elastic modulus of the crankshaft 4 can be increased while the sliding characteristics with the bearings 33b and 34b are the same as the conventional one.
  • at least a portion of the crankshaft 4 disposed inside the compression mechanism portion 3 is composed of a mixture 45 having a diameter of less than 90% of the diameter of the subshaft portion 42.
  • crankshaft 4 all of the portions of the crankshaft 4 disposed inside the compression mechanism portion 3 are composed of the mixture 45.
  • the longitudinal elastic modulus of the crankshaft 4 can be increased as compared with the case where metal is present on the outer peripheral portion of the mixture 45.
  • crankshaft 4 disposed inside the compression mechanism 3 has a longitudinal elastic modulus of 300 GPa or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

In a rotary compressor according to the present invention, a crank shaft has at least a portion thereof arranged inside a compression mechanism section, wherein, in a cross section perpendicular to a central axis of a main shaft part of the crank shaft, the portion is at least internally constituted by a mixed body of carbon fibers and resin.

Description

ロータリ型圧縮機Rotary compressor
 本発明は、冷媒を圧縮するロータリ型圧縮機に関し、特に、小型化及び高効率化を図ったロータリ型圧縮機に関する。 The present invention relates to a rotary compressor that compresses a refrigerant, and more particularly to a rotary compressor that is reduced in size and increased in efficiency.
 従来のロータリ型圧縮機は、回転子を有する電動機と、回転子に接続され、該電動機の駆動力を伝達するクランク軸と、クランク軸に接続され、クランク軸から伝達された駆動力によって冷媒を圧縮するロータリ型の圧縮機構部と、を備えている。電動機、クランク軸及び圧縮機構部は、例えば密閉容器に収納されている(例えば、特許文献1参照)。 A conventional rotary compressor includes an electric motor having a rotor, a crankshaft connected to the rotor and transmitting a driving force of the electric motor, and a refrigerant connected to the crankshaft by the driving force transmitted from the crankshaft. A rotary type compression mechanism for compressing. The electric motor, the crankshaft, and the compression mechanism are housed in, for example, a sealed container (see, for example, Patent Document 1).
 詳しくは、クランク軸は、電動機の回転子に接続された主軸部、該主軸部の中心軸と同軸上に中心軸が配置された副軸部、及び、主軸部と副軸部との間に設けられ、中心軸が主軸部の中心軸及び副軸部の中心軸に対して偏芯している偏芯軸部と、を有している。一般的に、クランク軸は、鋳鉄の鋳物によって構成される。 Specifically, the crankshaft includes a main shaft portion connected to the rotor of the electric motor, a sub shaft portion having a central axis coaxial with the central axis of the main shaft portion, and a space between the main shaft portion and the sub shaft portion. And an eccentric shaft portion in which the central axis is eccentric with respect to the central axis of the main shaft portion and the central axis of the auxiliary shaft portion. Generally, the crankshaft is constituted by a cast iron casting.
 圧縮機構部は、円筒状に形成されて偏芯軸部が配置されたシリンダ室、及び、一方の端部がシリンダ室に連通したベーン溝を有するシリンダを有している。また、圧縮機構部は、偏芯軸部の外周部に取り付けられ、クランク軸の回転によってシリンダ室内を偏芯回転するローリングピストンと、往復動自在にベーン溝に挿入され、ローリングピストンの外周面に先端部が当接してシリンダ室を2つの作動室に仕切るベーンと、を有している。また、圧縮機構部は、シリンダ室の一方の端部を閉塞すると共に、主軸部を回転自在に支持する第1軸受部と、シリンダ室の他方の端部を閉塞すると共に、副軸部を回転自在に支持する第2軸受部と、を有している。 The compression mechanism has a cylinder chamber formed in a cylindrical shape and provided with an eccentric shaft portion, and a cylinder having a vane groove with one end communicating with the cylinder chamber. The compression mechanism is attached to the outer periphery of the eccentric shaft, and is inserted into the vane groove so as to reciprocate in a rolling piston that rotates eccentrically in the cylinder chamber by the rotation of the crankshaft. And a vane that abuts the tip and partitions the cylinder chamber into two working chambers. The compression mechanism portion closes one end portion of the cylinder chamber, and closes the first bearing portion that rotatably supports the main shaft portion, and the other end portion of the cylinder chamber, and rotates the sub-shaft portion. And a second bearing portion that is freely supported.
 第1軸受部における主軸部を支持している箇所は、すなわち軸受部分は、すべり軸受となっている。当該軸受部分と主軸部との間には、例えばクランク軸に形成された給油路を介して、冷凍機油が供給される。これにより、当該軸受部分は、油膜の流体潤滑により、主軸部を回転自在に支持する。同様に、第2軸受部における副軸部を支持している箇所は、すなわち軸受部分は、すべり軸受となっている。当該軸受部分と副軸部との間には、例えばクランク軸に形成された給油路を介して、冷凍機油が供給される。これにより、当該軸受部分は、油膜の流体潤滑により、副軸部を回転自在に支持する。 The part supporting the main shaft part in the first bearing part, that is, the bearing part is a slide bearing. Refrigerating machine oil is supplied between the bearing portion and the main shaft portion, for example, via an oil supply passage formed in the crankshaft. Thereby, the bearing portion rotatably supports the main shaft portion by fluid lubrication of the oil film. Similarly, the part which supports the countershaft part in the 2nd bearing part, ie, the bearing part, is a slide bearing. Refrigerating machine oil is supplied between the bearing portion and the countershaft portion via, for example, an oil supply passage formed in the crankshaft. Thereby, the said bearing part supports a countershaft part rotatably by the fluid lubrication of an oil film.
 電動機の回転子が回転すると、該回転子に接続されているクランク軸も回転する。これにより、シリンダ室内では、クランク軸の偏芯軸部と該偏芯軸部に取り付けられたローリングピストンとが、シリンダ室の中心軸に対して偏芯回転運動を行う。そして偏芯軸部及びローリングピストンのシリンダ室内での偏芯回転運動により、シリンダ室内に形成された2つの作動室は、容積を変化させていく。 When the rotor of the motor rotates, the crankshaft connected to the rotor also rotates. As a result, in the cylinder chamber, the eccentric shaft portion of the crankshaft and the rolling piston attached to the eccentric shaft portion perform an eccentric rotational motion with respect to the central axis of the cylinder chamber. Then, the eccentric working of the eccentric shaft portion and the rolling piston in the cylinder chamber changes the volume of the two working chambers formed in the cylinder chamber.
 シリンダ室には、冷媒を該シリンダ室に吸い込むための吸入口と、シリンダ室から冷媒を吐出する吐出口とが連通している。そして、シリンダ室に形成された作動室は、容積が変化していく過程において、吸入口又は吐出口と連通する。すなわち、作動室は、吸入口と連通している間は吸入室として機能し、作動室内に冷媒を吸入する。また、作動室は、吸入口と連通しなくなると圧縮室として機能し、容積が減少していく間、作動室内の冷媒を圧縮する。この圧縮された冷媒は、圧縮室として機能する作動室に連通する吐出口から吐出される。上述のようにシリンダ室には2つの作動室が形成されるが、一方の作動室が吸入室として機能している間、他方の作動室が圧縮室として機能することとなる。 The cylinder chamber communicates with a suction port for sucking refrigerant into the cylinder chamber and a discharge port for discharging the refrigerant from the cylinder chamber. The working chamber formed in the cylinder chamber communicates with the suction port or the discharge port in the process of changing the volume. That is, the working chamber functions as a suction chamber while communicating with the suction port, and sucks the refrigerant into the working chamber. Further, the working chamber functions as a compression chamber when it is not in communication with the suction port, and compresses the refrigerant in the working chamber as the volume decreases. The compressed refrigerant is discharged from a discharge port that communicates with a working chamber that functions as a compression chamber. As described above, two working chambers are formed in the cylinder chamber. While one working chamber functions as a suction chamber, the other working chamber functions as a compression chamber.
 ロータリ型圧縮機は、上述のように構成されているため、冷媒を圧縮するためにクランク軸を回転させた際、該クランク軸の偏芯軸部に遠心力が発生する。そして、当該遠心力によるクランク軸の撓みが大きくなると、第1軸受部又は第2軸受部においてかじり(スカッフ)が発生し、ロータリ型圧縮機が故障してしまう。このため、特許文献1に記載のロータリ型圧縮機は、偏芯軸部に発生する遠心力を低減させるため、偏芯軸部の一部を金属より比重が小さい材料で構成している。 Since the rotary compressor is configured as described above, when the crankshaft is rotated to compress the refrigerant, a centrifugal force is generated in the eccentric shaft portion of the crankshaft. When the crankshaft is greatly deflected by the centrifugal force, scuffing occurs in the first bearing portion or the second bearing portion, and the rotary compressor fails. For this reason, in the rotary compressor described in Patent Document 1, in order to reduce the centrifugal force generated in the eccentric shaft portion, a part of the eccentric shaft portion is made of a material having a specific gravity smaller than that of the metal.
特開2011-21584号公報JP 2011-21854 A
 小型で高効率なロータリ型圧縮機を製作するためには、ロータリ型圧縮機の代表的な機械損失が発生するクランク軸の主軸部及び副軸部をなるべく細くすることが、すなわち主軸部及び副軸部の直径を小さくすることが有効である。これにより、機械損失を低減でき、ロータリ型圧縮機の能力を維持したまま、電動機の入力を低減することができるからである。しかしながら、従来のロータリ型圧縮機は、以下に説明するように、クランク軸の主軸部及び副軸部の直径を現状よりも小さくすることが困難であった。 In order to manufacture a small and highly efficient rotary compressor, it is necessary to make the main shaft portion and the sub shaft portion of the crankshaft where typical mechanical loss of the rotary compressor occurs as thin as possible, that is, the main shaft portion and the sub shaft portion. It is effective to reduce the diameter of the shaft portion. This is because the mechanical loss can be reduced and the input of the electric motor can be reduced while maintaining the capability of the rotary compressor. However, in the conventional rotary compressor, as described below, it is difficult to make the diameters of the main shaft portion and the sub shaft portion of the crankshaft smaller than the current state.
 冷媒を圧縮するためにクランク軸を回転させた際、クランク軸の偏芯軸部には、上述した遠心力に加え、冷媒を圧縮するときにローリングピストンが受ける荷重(反力)も作用する。冷媒を圧縮するときにローリングピストンが受ける荷重は、偏芯軸部の中心軸に対して垂直な方向に、換言すると主軸部の中心軸及び副軸部の中心軸に対して垂直な方向に作用する。このため、クランク軸は、第1軸受部の軸受部分の偏芯軸部側端部、及び第2軸受部の軸受部分の偏芯軸部側端部を支持点として、偏芯軸部の中心軸に対して垂直な方向に該偏芯軸部に作用する上述の力によって撓みが発生する。つまり、クランク軸は、二点支持された梁の中央に荷重を加えたときのように撓む。これにより、第1軸受部の軸受部分の内部において主軸部が傾き、第2軸受部の軸受部分の内部において副軸部が傾くこととなる。 When the crankshaft is rotated to compress the refrigerant, the eccentric shaft portion of the crankshaft is also subjected to a load (reaction force) received by the rolling piston when the refrigerant is compressed, in addition to the centrifugal force described above. The load received by the rolling piston when compressing the refrigerant acts in a direction perpendicular to the central axis of the eccentric shaft part, in other words, in a direction perpendicular to the central axis of the main shaft part and the central axis of the sub-shaft part. To do. For this reason, the crankshaft is a center of the eccentric shaft portion with the eccentric shaft portion side end portion of the bearing portion of the first bearing portion and the eccentric shaft portion side end portion of the bearing portion of the second bearing portion as supporting points. Deflection occurs due to the above-described force acting on the eccentric shaft portion in a direction perpendicular to the axis. That is, the crankshaft bends as if a load is applied to the center of the beam supported at two points. Accordingly, the main shaft portion is inclined inside the bearing portion of the first bearing portion, and the sub-shaft portion is inclined inside the bearing portion of the second bearing portion.
 主軸部の直径が小さい場合、主軸部の剛性が低下し、第1軸受部の軸受部分の内部において主軸部の傾きが大きくなる。その結果、第1軸受部の軸受部分と主軸部との間に満たされた冷凍機油に発生する油膜反力が低下する。同様に、副軸部の直径が小さい場合、副軸部の剛性が低下し、第2軸受部の軸受部分の内部において副軸部の傾きが大きくなる。その結果、第2軸受部の軸受部分と副軸部との間に満たされた冷凍機油に発生する油膜反力が低下する。 When the diameter of the main shaft portion is small, the rigidity of the main shaft portion is reduced, and the inclination of the main shaft portion is increased inside the bearing portion of the first bearing portion. As a result, the oil film reaction force generated in the refrigerating machine oil filled between the bearing portion of the first bearing portion and the main shaft portion is reduced. Similarly, when the diameter of the countershaft portion is small, the rigidity of the subshaft portion is reduced, and the inclination of the countershaft portion is increased inside the bearing portion of the second bearing portion. As a result, the oil film reaction force generated in the refrigerating machine oil filled between the bearing portion of the second bearing portion and the countershaft portion is reduced.
 第1軸受部の油膜反力と第2軸受部の油膜反力との合計である油膜負荷容量は、第1軸受部及び第2軸受部が支持する荷重より、すなわちクランク軸の偏芯軸部に作用する力よりも大きい必要がある。油膜負荷容量がクランク軸の偏芯軸部に作用する力よりも小さくなると、第1軸受部及び第2軸受部の軸受部分において冷凍機油の油膜が部分的に消失し、第1軸受部及び第2軸受部とクランク軸とが金属接触してしまうからである。すなわち、第1軸受部及び第2軸受部の軸受部分において凝着摩耗及びかじり(スカッフ)が発生してしまい、ロータリ型圧縮機が故障してしまうからである。 The oil film load capacity, which is the sum of the oil film reaction force of the first bearing portion and the oil film reaction force of the second bearing portion, is based on the load supported by the first bearing portion and the second bearing portion, that is, the eccentric shaft portion of the crankshaft. It must be greater than the force acting on. When the oil film load capacity is smaller than the force acting on the eccentric shaft portion of the crankshaft, the oil film of the refrigerating machine oil partially disappears in the bearing portions of the first bearing portion and the second bearing portion, and the first bearing portion and the first bearing portion This is because the two bearing portions and the crankshaft are in metal contact. That is, adhesive wear and scuffing occur in the bearing portions of the first bearing portion and the second bearing portion, and the rotary compressor fails.
 したがって、従来のロータリ型圧縮機は、第1軸受部及び第2軸受部の軸受部分において凝着摩耗及びかじり(スカッフ)が発生することを防止するため、クランク軸の主軸部及び副軸部の直径を現状よりも小さくすることが困難であった。 Therefore, in the conventional rotary type compressor, in order to prevent adhesive wear and scuffing from occurring in the bearing portions of the first bearing portion and the second bearing portion, the main shaft portion and the sub shaft portion of the crankshaft are prevented. It was difficult to make the diameter smaller than the current situation.
 なお、第1軸受部及び第2軸受部の軸受部分において凝着摩耗及びかじり(スカッフ)が発生することを防止するために必要な主軸部及び副軸部の直径は、偏芯軸部に発生する遠心力、冷媒圧縮時に偏芯軸部に作用する荷重、第1軸受部の軸受部分の偏芯軸部側端部から第2軸受部の軸受部分の偏芯軸部側端部までの長さ、クランク軸の縦弾性係数等により、ほぼ一義的に決まる。ここで、特許文献1に記載のロータリ型圧縮機のクランク軸は、偏芯軸部の一部以外の構成が従来と同様である。このため、特許文献1に記載のロータリ型圧縮機のクランク軸は、偏芯軸部に発生する遠心力を低減させることはできるものの、冷媒を圧縮するときにローリングピストンが受ける荷重(反力)に対する撓み量は、従来のクランク軸と同様となる。したがって、特許文献1に記載のロータリ型圧縮機もまた、クランク軸の主軸部及び副軸部の直径を現状よりも小さくすることが困難である。 In addition, the diameters of the main shaft portion and the sub shaft portion necessary for preventing the occurrence of adhesive wear and scuffing in the bearing portions of the first bearing portion and the second bearing portion are generated in the eccentric shaft portion. Centrifugal force, load acting on the eccentric shaft portion when the refrigerant is compressed, length from the end portion on the eccentric shaft portion side of the bearing portion of the first bearing portion to the end portion on the eccentric shaft portion side of the bearing portion of the second bearing portion It is determined almost uniquely by the longitudinal elastic modulus of the crankshaft. Here, the crankshaft of the rotary compressor described in Patent Document 1 has the same configuration as the conventional one except for a part of the eccentric shaft portion. For this reason, the crankshaft of the rotary compressor described in Patent Document 1 can reduce the centrifugal force generated in the eccentric shaft portion, but the load (reaction force) that the rolling piston receives when compressing the refrigerant. The amount of bending with respect to is similar to that of the conventional crankshaft. Therefore, also in the rotary compressor described in Patent Document 1, it is difficult to make the diameters of the main shaft portion and the sub shaft portion of the crankshaft smaller than the current state.
 本発明は、上述のような課題を解決するためになされたものであり、従来よりもクランク軸の主軸部及び副軸受の直径を小さくでき、従来よりも小型で高効率となるロータリ型圧縮機を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and can reduce the diameter of the main shaft portion and the sub-bearing of the crankshaft as compared with the conventional rotary compressor that is smaller and more efficient than the conventional compressor. The purpose is to provide.
 本発明に係るロータリ型圧縮機は、回転子を有する電動機と、前記回転子に接続され、前記電動機の駆動力を伝達するクランク軸と、前記クランク軸に接続され、前記クランク軸から伝達された駆動力によって冷媒を圧縮する圧縮機構部と、を備え、前記クランク軸は、前記回転子に接続された主軸部と、該主軸部の中心軸と同軸上に中心軸が配置された副軸部と、前記主軸部と前記副軸部との間に設けられ、中心軸が前記主軸部の中心軸及び前記副軸部の中心軸に対して偏芯している偏芯軸部と、を有し、前記圧縮機構部は、冷媒を圧縮するシリンダ室を有し、該シリンダ室に前記偏芯軸部が配置されたシリンダと、前記主軸部を回転自在に支持する第1軸受と、前記副軸部を回転自在に支持する第2軸受と、を有し、前記クランク軸における少なくとも前記圧縮機構部の内部に配置されている部分は、前記主軸部の中心軸と垂直な断面において、少なくとも内部が炭素繊維と樹脂との混合体で構成されている。 A rotary compressor according to the present invention includes a motor having a rotor, a crankshaft connected to the rotor and transmitting a driving force of the motor, connected to the crankshaft, and transmitted from the crankshaft. A compression mechanism that compresses the refrigerant by a driving force, and the crankshaft includes a main shaft connected to the rotor, and a sub shaft having a central axis that is coaxial with the central axis of the main shaft. And an eccentric shaft portion that is provided between the main shaft portion and the sub shaft portion and whose center axis is eccentric with respect to the center axis of the main shaft portion and the center axis of the sub shaft portion. The compression mechanism section includes a cylinder chamber that compresses the refrigerant, the cylinder in which the eccentric shaft section is disposed in the cylinder chamber, a first bearing that rotatably supports the main shaft section, A second bearing that rotatably supports the shaft, and the crankshaft Kicking portion disposed within at least said compression mechanism portion, the central axis perpendicular to the cross section of the main shaft portion, at least internally is composed of mixture of carbon fiber and resin.
 本発明に係るロータリ型圧縮機においては、クランク軸における少なくとも圧縮機構部の内部に配置されている部分は、少なくとも内部が炭素繊維と樹脂との混合体で構成されている。このため、本発明に係るロータリ型圧縮機においては、クランク軸における前記圧縮機構部の内部に配置されている部分の縦弾性係数を、鋳鉄の鋳物で構成された従来のクランク軸よりも大きくすることができる。これにより、本発明に係るロータリ型圧縮機のクランク軸においては、第1軸受の偏芯軸部側端部、及び第2軸受の偏芯軸部側端部を支持点として、偏芯軸部の中心軸に対して垂直な方向に該偏芯軸部に作用する力によって撓む量が、従来のクランク軸よりも減少する。したがって、本発明に係るロータリ型圧縮機は、従来よりもクランク軸の主軸部及び副軸受の直径を小さくしても、第1軸受及び第2軸受において凝着摩耗及びかじり(スカッフ)が発生することを防止でき、ロータリ型圧縮機が故障してしまうことを防止できる。 In the rotary type compressor according to the present invention, at least the portion of the crankshaft disposed inside the compression mechanism portion is composed of a mixture of carbon fiber and resin. For this reason, in the rotary type compressor according to the present invention, the longitudinal elastic modulus of the portion of the crankshaft disposed inside the compression mechanism is made larger than that of a conventional crankshaft made of cast iron casting. be able to. As a result, in the crankshaft of the rotary compressor according to the present invention, the eccentric shaft portion with the eccentric shaft portion side end portion of the first bearing and the eccentric shaft portion side end portion of the second bearing as support points. The amount of deflection due to the force acting on the eccentric shaft portion in the direction perpendicular to the central axis of the shaft is smaller than that of the conventional crankshaft. Therefore, the rotary compressor according to the present invention generates adhesive wear and scuffing in the first bearing and the second bearing even if the diameter of the main shaft portion and the sub bearing of the crankshaft is made smaller than before. This can prevent the rotary compressor from being broken.
 すなわち、本発明に係るロータリ型圧縮機は、従来よりもクランク軸の主軸部及び副軸受の直径を小さくできるので、ロータリ型圧縮機の代表的な機械損失を低減でき、ロータリ型圧縮機を従来よりも小型で高効率にすることができる。 That is, the rotary type compressor according to the present invention can reduce the diameter of the main shaft portion and the auxiliary bearing of the crankshaft as compared with the conventional one, so that typical mechanical loss of the rotary type compressor can be reduced, and the rotary type compressor is conventionally used. Smaller and more efficient.
本発明実施の形態に係るロータリ型圧縮機を示す縦断面図である。It is a longitudinal section showing a rotary type compressor concerning an embodiment of the invention. 本発明の実施の形態に係るロータリ型圧縮機の圧縮機構部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the compression mechanism part of the rotary type compressor which concerns on embodiment of this invention. 本発明の実施の形態に係るロータリ型圧縮機における、上軸受部を取り外した状態の圧縮機構部を示す平面図である。It is a top view which shows the compression mechanism part of the state which removed the upper bearing part in the rotary compressor which concerns on embodiment of this invention. 本発明の実施の形態に係るロータリ型圧縮機を使用した冷凍サイクル回路を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the refrigerating cycle circuit which uses the rotary type compressor which concerns on embodiment of this invention. 本発明に係るロータリ型圧縮機における、圧縮機構部の内部に配置されているクランク軸部分の縦弾性係数と、主軸部及び副軸部の直径との関係を示す図である。It is a figure which shows the relationship between the longitudinal elastic modulus of the crankshaft part arrange | positioned inside the compression mechanism part, and the diameter of a main shaft part and a subshaft part in the rotary type compressor which concerns on this invention.
 以下、実施の形態において、本発明に係るロータリ型圧縮機の一例について説明する。なお、以下の実施の形態では、縦型で密閉型のロータリ型圧縮機を例に、本発明に係るロータリ型圧縮機の一例について説明する。 Hereinafter, in the embodiment, an example of a rotary compressor according to the present invention will be described. In the following embodiments, an example of a rotary compressor according to the present invention will be described using a vertical and hermetic rotary compressor as an example.
 実施の形態.
 図1は、本発明実施の形態に係るロータリ型圧縮機を示す縦断面図である。なお、図1では、符号の引き出し線を見やすくするため、ハッチングを省略している。
 本実施の形態に係るロータリ型圧縮機100は、電動機2、圧縮機構部3、及び、電動機2と圧縮機構部3とを接続するクランク軸4を有している。また、本実施の形態に係るロータリ型圧縮機100は、密閉型の圧縮機である。このため、電動機2、圧縮機構部3及びクランク軸4は、密閉容器1の内部に収容されている。また、ロータリ型圧縮機100は上述のように縦型のロータリ型圧縮機であり、電動機2は密閉容器1内において圧縮機構部3の上方に配置されている。
Embodiment.
FIG. 1 is a longitudinal sectional view showing a rotary compressor according to an embodiment of the present invention. In FIG. 1, hatching is omitted in order to make it easy to see the lead lines for the symbols.
A rotary compressor 100 according to the present embodiment includes an electric motor 2, a compression mechanism unit 3, and a crankshaft 4 that connects the electric motor 2 and the compression mechanism unit 3. Further, the rotary compressor 100 according to the present embodiment is a hermetic compressor. For this reason, the electric motor 2, the compression mechanism portion 3, and the crankshaft 4 are accommodated in the sealed container 1. The rotary compressor 100 is a vertical rotary compressor as described above, and the electric motor 2 is disposed above the compression mechanism section 3 in the sealed container 1.
 電動機2は、固定子21と、固定子21が発生する磁力によって回転する回転子22と、を備えている。固定子21は、導線を巻き回したコイルを備え、そのコイルに通電されることにより磁力を発生させる。固定子21のコイルは、ロータリ型圧縮機100に設けられた端子23と接続されており、端子23を介してロータリ型圧縮機100の外部から通電される。回転子22は、アルミバー等で構成された二次導体又は永久磁石等を備え、固定子21のコイルが発生する磁力に反応して回転する。 The electric motor 2 includes a stator 21 and a rotor 22 that is rotated by a magnetic force generated by the stator 21. The stator 21 includes a coil around which a conductive wire is wound, and generates a magnetic force when the coil is energized. The coil of the stator 21 is connected to a terminal 23 provided in the rotary compressor 100, and is energized from the outside of the rotary compressor 100 via the terminal 23. The rotor 22 includes a secondary conductor or a permanent magnet formed of an aluminum bar or the like, and rotates in response to the magnetic force generated by the coil of the stator 21.
 圧縮機構部3は、クランク軸4から伝達された電動機2の駆動力によって、圧縮機構部3に吸入した低圧の冷媒ガスを圧縮し、高圧の冷媒ガスを密閉容器1内に吐出する。密閉容器1内は圧縮された高温高圧の冷媒ガスによって満たされている。一方、密閉容器1の下方すなわち底部には圧縮機構部3の潤滑のための冷凍機油が貯留されている。 The compression mechanism unit 3 compresses the low-pressure refrigerant gas sucked into the compression mechanism unit 3 by the driving force of the electric motor 2 transmitted from the crankshaft 4 and discharges the high-pressure refrigerant gas into the sealed container 1. The sealed container 1 is filled with compressed high-temperature and high-pressure refrigerant gas. On the other hand, refrigerating machine oil for lubricating the compression mechanism 3 is stored below the bottom of the sealed container 1, that is, at the bottom.
 クランク軸4は、電動機2の回転子22と圧縮機構部3とに接続され、電動機2の駆動力を伝達するものである。クランク軸4は、主軸部41と副軸部42と偏芯軸部43とを備える。本実施の形態では、上方から下方に向かって、主軸部41、偏芯軸部43、副軸部42の順に設けられている。すなわち、偏芯軸部43の軸方向の一方に主軸部41が設けられており、偏芯軸部43の軸方向のもう一方に副軸部42が設けられている。換言すると、偏芯軸部43は、主軸部41と副軸部42との間に設けられている。主軸部41、副軸部42及び偏芯軸部43は、それぞれ、ほぼ円柱状の形状をしている。また、副軸部42の中心軸は、主軸部41の中心軸と同軸上に設けられている。一方、偏芯軸部43の中心軸は、主軸部41及び副軸部42の中心軸に対して偏芯している。すなわち、主軸部41及び副軸部42がこれらの中心軸を中心に回転すると、偏芯軸部43は偏芯回転をする。主軸部41には、例えば焼嵌又は圧入等により、電動機2の回転子22が固定(接続)されている。偏芯軸部43の外周部には、円筒状の形状のローリングピストン32が摺動自在に取り付けられている。 The crankshaft 4 is connected to the rotor 22 and the compression mechanism unit 3 of the electric motor 2 and transmits the driving force of the electric motor 2. The crankshaft 4 includes a main shaft portion 41, a sub shaft portion 42, and an eccentric shaft portion 43. In the present embodiment, the main shaft portion 41, the eccentric shaft portion 43, and the auxiliary shaft portion 42 are provided in this order from the top to the bottom. That is, the main shaft portion 41 is provided on one side of the eccentric shaft portion 43 in the axial direction, and the auxiliary shaft portion 42 is provided on the other side of the eccentric shaft portion 43 in the axial direction. In other words, the eccentric shaft portion 43 is provided between the main shaft portion 41 and the sub shaft portion 42. Each of the main shaft portion 41, the sub shaft portion 42, and the eccentric shaft portion 43 has a substantially cylindrical shape. The central axis of the auxiliary shaft portion 42 is provided coaxially with the central axis of the main shaft portion 41. On the other hand, the central axis of the eccentric shaft portion 43 is eccentric with respect to the central axes of the main shaft portion 41 and the auxiliary shaft portion 42. That is, when the main shaft portion 41 and the sub shaft portion 42 rotate around these central axes, the eccentric shaft portion 43 rotates eccentrically. The rotor 22 of the electric motor 2 is fixed (connected) to the main shaft portion 41 by, for example, shrink fitting or press fitting. A cylindrical-shaped rolling piston 32 is slidably attached to the outer peripheral portion of the eccentric shaft portion 43.
 図2は、本発明の実施の形態に係るロータリ型圧縮機の圧縮機構部を示す縦断面図である。また、図3は、本発明の実施の形態に係るロータリ型圧縮機における、上軸受部を取り外した状態の圧縮機構部を示す平面図である。つまり、図3は、上軸受部33を取り外した状態の圧縮機構部3を、図1に示すA-A方向から観察した図である。なお、図2では、図1と異なり、クランク軸4も断面で示している。 FIG. 2 is a longitudinal sectional view showing a compression mechanism portion of the rotary compressor according to the embodiment of the present invention. FIG. 3 is a plan view showing the compression mechanism portion with the upper bearing portion removed in the rotary compressor according to the embodiment of the present invention. That is, FIG. 3 is a view of the compression mechanism portion 3 with the upper bearing portion 33 removed, as viewed from the AA direction shown in FIG. In FIG. 2, unlike FIG. 1, the crankshaft 4 is also shown in cross section.
 圧縮機構部3は、シリンダ31、クランク軸4の主軸部41を回転自在に支持する軸受33b、及び、クランク軸4の副軸部42を回転自在に支持する軸受34bを備えている。ここで、軸受33bが、本発明の第1軸受に相当する。また、軸受34bが、本発明の第2軸受に相当する。 The compression mechanism unit 3 includes a cylinder 31, a bearing 33 b that rotatably supports the main shaft portion 41 of the crankshaft 4, and a bearing 34 b that rotatably supports the subshaft portion 42 of the crankshaft 4. Here, the bearing 33b corresponds to the first bearing of the present invention. The bearing 34b corresponds to the second bearing of the present invention.
 シリンダ31は、冷媒を圧縮するシリンダ室36を有する。このシリンダ室36の中心軸は、クランク軸4の主軸部41及び副軸部42の中心軸と同軸上に配置されている。なお、本実施の形態においては、シリンダ室36は、上下方向の両端が開口した例えば円筒状で、シリンダ31に形成されている。このため、シリンダ室36の上方の開口部は、平板状の閉塞部材33aによって閉塞されている。また、シリンダ室36の下方の開口は、平板状の閉塞部材34aによって閉塞されている。また、本実施の形態においては、シリンダ31のシリンダ室36には、クランク軸4の偏芯軸部43に加えて、偏芯軸部43の外周部に取り付けられたローリングピストン32も配置されている。このため、クランク軸4が回転することにより、シリンダ31のシリンダ室36内では、偏芯軸部43及びローリングピストン32が、シリンダ室36の中心軸に対して偏芯回転する。
 ここで、閉塞部材33aが、本発明の第1閉塞部材に相当する。また、閉塞部材34aが、本発明の第2閉塞部材に相当する。
The cylinder 31 has a cylinder chamber 36 that compresses the refrigerant. The central axis of the cylinder chamber 36 is arranged coaxially with the central axes of the main shaft portion 41 and the subshaft portion 42 of the crankshaft 4. In the present embodiment, the cylinder chamber 36 is formed in the cylinder 31, for example, in a cylindrical shape with both ends in the vertical direction opened. For this reason, the opening above the cylinder chamber 36 is closed by the flat closing member 33a. The opening below the cylinder chamber 36 is closed by a flat closing member 34a. In the present embodiment, in addition to the eccentric shaft portion 43 of the crankshaft 4, the rolling piston 32 attached to the outer peripheral portion of the eccentric shaft portion 43 is also arranged in the cylinder chamber 36 of the cylinder 31. Yes. Therefore, when the crankshaft 4 rotates, the eccentric shaft portion 43 and the rolling piston 32 rotate eccentrically with respect to the central axis of the cylinder chamber 36 in the cylinder chamber 36 of the cylinder 31.
Here, the closing member 33a corresponds to the first closing member of the present invention. The closing member 34a corresponds to the second closing member of the present invention.
 また、本実施の形態においては、シリンダ31は、該シリンダ室36の径方向に沿って形成されたベーン溝37を有する。ベーン溝37の一方の端部はシリンダ室36に連通しており、ベーン溝37の他方の端部は背圧室38に連通している。ベーン溝37には、形状がほぼ直方体状のベーン35が挿入されている。ベーン35は、ベーン溝37内を往復動自在となっており、ベーン溝37内を摺動しながら往復運動する。背圧室38には、図示せぬスプリングが設けられており、ベーン35をベーン溝37からシリンダ31のシリンダ室36側に押し出し、ベーン35の先端をローリングピストン32の外周面に当接させている。 In this embodiment, the cylinder 31 has a vane groove 37 formed along the radial direction of the cylinder chamber 36. One end of the vane groove 37 communicates with the cylinder chamber 36, and the other end of the vane groove 37 communicates with the back pressure chamber 38. A vane 35 having a substantially rectangular parallelepiped shape is inserted into the vane groove 37. The vane 35 can reciprocate in the vane groove 37 and reciprocates while sliding in the vane groove 37. The back pressure chamber 38 is provided with a spring (not shown). The vane 35 is pushed out from the vane groove 37 toward the cylinder chamber 36 of the cylinder 31, and the tip of the vane 35 is brought into contact with the outer peripheral surface of the rolling piston 32. Yes.
 すなわち、ベーン35は、シリンダ室36を、より詳しくはシリンダ室36の内周面とローリングピストン32の外周面とで形成される空間を、2つの作動室に仕切っている。これらの作動室の一方は、後述のように、冷媒を該作動室に吸入する吸入室36aとなる。また、これらの作動室の他方は、該作動室内の冷媒を圧縮する圧縮室36bとなる。すなわち、ベーン35は、シリンダ室36を、吸入室36aと圧縮室36bとに仕切っている。そして、シリンダ室36は、圧縮室36b部分において、冷媒を圧縮する。 That is, the vane 35 divides the cylinder chamber 36, more specifically, a space formed by the inner peripheral surface of the cylinder chamber 36 and the outer peripheral surface of the rolling piston 32 into two working chambers. One of these working chambers becomes a suction chamber 36a for sucking refrigerant into the working chamber, as will be described later. The other of these working chambers is a compression chamber 36b that compresses the refrigerant in the working chamber. That is, the vane 35 divides the cylinder chamber 36 into a suction chamber 36a and a compression chamber 36b. The cylinder chamber 36 compresses the refrigerant in the compression chamber 36b.
 シリンダ31の上方には、軸受33bが設けられている。軸受33bは、すべり軸受であり、上下方向の両端が開口した円筒状の空間を有する。当該空間には、一方の開口部から他方の開口部へ貫通するように、主軸部41が挿入されている。そして、軸受33bは、主軸部41を回転自在に支持する。本実施の形態では、軸受33bは、上軸受部33として、閉塞部材33aと一体形成されている。換言すると、上軸受部33は、閉塞部材33aと、軸受33bとを有している。詳しくは、軸受33bは、閉塞部材33aからシリンダ31とは逆方向、すなわち回転子22の方向に伸長されている。上軸受部33は、例えばボルトにより、シリンダ31の上面に固定されている。
 ここで、上軸受部33が、本発明の第1軸受部に相当する。
Above the cylinder 31, a bearing 33b is provided. The bearing 33b is a sliding bearing and has a cylindrical space that is open at both ends in the vertical direction. The main shaft portion 41 is inserted into the space so as to penetrate from one opening portion to the other opening portion. And the bearing 33b supports the main-shaft part 41 rotatably. In the present embodiment, the bearing 33 b is integrally formed with the closing member 33 a as the upper bearing portion 33. In other words, the upper bearing portion 33 includes the closing member 33a and the bearing 33b. Specifically, the bearing 33 b extends from the closing member 33 a in the direction opposite to the cylinder 31, that is, in the direction of the rotor 22. The upper bearing portion 33 is fixed to the upper surface of the cylinder 31 with, for example, bolts.
Here, the upper bearing portion 33 corresponds to the first bearing portion of the present invention.
 上軸受部33の軸受33bと主軸部41との間には、冷凍機油が供給される。これにより、上軸受部33の軸受33bは、油膜の流体潤滑により、主軸部41を回転自在に支持する。なお、本実施の形態では、密閉容器1の底部に貯留された冷凍機油が、クランク軸4に形成された給油路51,52を通って、上軸受部33の軸受33bと主軸部41との間に供給される。 Refrigerator oil is supplied between the bearing 33 b of the upper bearing portion 33 and the main shaft portion 41. Thereby, the bearing 33b of the upper bearing portion 33 rotatably supports the main shaft portion 41 by fluid lubrication of the oil film. In the present embodiment, the refrigerating machine oil stored at the bottom of the sealed container 1 passes through the oil supply passages 51 and 52 formed in the crankshaft 4 to form the bearing 33b of the upper bearing portion 33 and the main shaft portion 41. Supplied in between.
 同様に、シリンダ31の下方には、軸受34bが設けられている。軸受34bは、すべり軸受であり、上下方向の両端が開口した円筒状の空間を有する。当該空間には、一方の開口部から他方の開口部へ貫通するように、副軸部42が挿入されている。そして、軸受34bは、副軸部42を回転自在に支持する。本実施の形態では、軸受34bは、下軸受部34として、閉塞部材34aと一体形成されている。換言すると、下軸受部34は、閉塞部材34aと、軸受34bとを有している。詳しくは、軸受34bは、閉塞部材34aからシリンダ31とは逆方向、すなわち密閉容器1の底部の方向に伸長されている。下軸受部34は、例えばボルトにより、シリンダ31の下面に固定されている。
 ここで、下軸受部34が、本発明の第2軸受部に相当する。
Similarly, a bearing 34 b is provided below the cylinder 31. The bearing 34b is a sliding bearing and has a cylindrical space that is open at both ends in the vertical direction. The auxiliary shaft portion 42 is inserted into the space so as to penetrate from one opening portion to the other opening portion. And the bearing 34b supports the subshaft part 42 rotatably. In the present embodiment, the bearing 34 b is integrally formed with the closing member 34 a as the lower bearing portion 34. In other words, the lower bearing portion 34 includes the closing member 34a and the bearing 34b. Specifically, the bearing 34 b extends from the closing member 34 a in the direction opposite to the cylinder 31, that is, in the direction of the bottom of the sealed container 1. The lower bearing portion 34 is fixed to the lower surface of the cylinder 31 with, for example, bolts.
Here, the lower bearing portion 34 corresponds to the second bearing portion of the present invention.
 下軸受部34の軸受34bと副軸部42との間には、冷凍機油が供給される。これにより、下軸受部34の軸受34bは、油膜の流体潤滑により、副軸部42を回転自在に支持する。なお、本実施の形態では、密閉容器1の底部に貯留された冷凍機油が、クランク軸4に形成された給油路51,53を通って、下軸受部34の軸受34bと副軸部42との間に供給される。 Refrigerator oil is supplied between the bearing 34 b of the lower bearing portion 34 and the countershaft portion 42. Thereby, the bearing 34b of the lower bearing part 34 supports the countershaft part 42 rotatably by fluid lubrication of an oil film. In the present embodiment, the refrigerating machine oil stored at the bottom of the sealed container 1 passes through the oil supply passages 51 and 53 formed in the crankshaft 4, and the bearing 34 b and the subshaft portion 42 of the lower bearing portion 34. Supplied during.
 シリンダ31には、密閉容器1の外部からシリンダ室36の中に冷媒ガスを吸入する吸入口39が形成されている。吸入口39は、ベーン35によって仕切られた2つの作動室のうち、吸入室36aとなる作動室と連通する。また、上軸受部33には、圧縮した冷媒ガスをシリンダ室36の外に吐出する図示せぬ吐出口が設けられている。該吐出口は、ベーン35によって仕切られた2つの作動室のうち、圧縮室36bとなる作動室と連通する。 The cylinder 31 is formed with a suction port 39 for sucking refrigerant gas into the cylinder chamber 36 from the outside of the sealed container 1. The suction port 39 communicates with a working chamber serving as a suction chamber 36 a among the two working chambers partitioned by the vane 35. Further, the upper bearing portion 33 is provided with a discharge port (not shown) for discharging the compressed refrigerant gas to the outside of the cylinder chamber 36. The discharge port communicates with the working chamber serving as the compression chamber 36b among the two working chambers partitioned by the vane 35.
 上軸受部33の吐出口には、吐出弁が設けられている。吐出弁は、圧縮室36b内で圧縮される冷媒ガスが所定の圧力になるまで閉塞し、所定の圧力以上となると開口して高温高圧の冷媒ガスを密閉容器1内へ吐出させる。これによって、圧縮室36bから吐出される冷媒ガスの吐出タイミングが制御される。 A discharge valve is provided at the discharge port of the upper bearing portion 33. The discharge valve closes until the refrigerant gas compressed in the compression chamber 36b reaches a predetermined pressure, and opens to discharge the high-temperature and high-pressure refrigerant gas into the sealed container 1 when the pressure exceeds the predetermined pressure. Thereby, the discharge timing of the refrigerant gas discharged from the compression chamber 36b is controlled.
 再び図1に着目すると、密閉容器1内に吐出された冷媒ガスは、密閉容器1の上方にある吐出管11に向かって流れ、吐出管11から密閉容器1の外部に送り出される。そのとき、冷媒ガスは、電動機2の固定子21と回転子22との隙間、又は回転子22に設けられた風穴を通って、上方に流れる。 Referring again to FIG. 1, the refrigerant gas discharged into the sealed container 1 flows toward the discharge pipe 11 above the sealed container 1, and is sent out from the discharge pipe 11 to the outside of the sealed container 1. At that time, the refrigerant gas flows upward through a gap between the stator 21 and the rotor 22 of the electric motor 2 or an air hole provided in the rotor 22.
 吸入口39には、密閉容器1の外部に設けられた吸入マフラ101が、吸入管12を介して接続されている。ロータリ型圧縮機100には、ロータリ型圧縮機100が接続された外部の回路から、低圧の冷媒ガスと液冷媒が混在して送られてくる。液冷媒が圧縮機構部3に流入し圧縮されると、圧縮機構部3の故障となる。このため、吸入マフラ101では、液冷媒と冷媒ガスとを分離する。そして、冷媒ガスのみが圧縮機構部3に送られる。 The suction muffler 101 provided outside the sealed container 1 is connected to the suction port 39 via the suction pipe 12. Low-pressure refrigerant gas and liquid refrigerant are mixedly sent to the rotary compressor 100 from an external circuit to which the rotary compressor 100 is connected. When the liquid refrigerant flows into the compression mechanism unit 3 and is compressed, the compression mechanism unit 3 fails. For this reason, the suction muffler 101 separates the liquid refrigerant and the refrigerant gas. Then, only the refrigerant gas is sent to the compression mechanism unit 3.
 図4は、本発明の実施の形態に係るロータリ型圧縮機を使用した冷凍サイクル回路を示す冷媒回路図である。
 図4に示すように、ロータリ型圧縮機100の外部に、凝縮器102、膨張弁103及び蒸発器104が設けられて、冷凍サイクル回路が構成される。すなわち、冷凍サイクル回路は、ロータリ型圧縮機100の吐出管11、凝縮器102、膨張弁103、蒸発器104、及び吸入マフラ101が配管にて接続された、円環状の回路である。冷凍サイクル回路内を冷媒が循環することで、凝縮器102及び蒸発器104において空気又は水等と冷媒とが熱交換を行い、熱エネルギーを搬送する。このような冷凍サイクル回路は、空気調和装置等のヒートポンプ装置に用いられる。
FIG. 4 is a refrigerant circuit diagram showing a refrigeration cycle circuit using the rotary compressor according to the embodiment of the present invention.
As shown in FIG. 4, a condenser 102, an expansion valve 103, and an evaporator 104 are provided outside the rotary compressor 100 to constitute a refrigeration cycle circuit. That is, the refrigeration cycle circuit is an annular circuit in which the discharge pipe 11, the condenser 102, the expansion valve 103, the evaporator 104, and the suction muffler 101 of the rotary compressor 100 are connected by piping. As the refrigerant circulates in the refrigeration cycle circuit, air or water exchanges heat with the refrigerant in the condenser 102 and the evaporator 104, and heat energy is conveyed. Such a refrigeration cycle circuit is used in a heat pump device such as an air conditioner.
 なお、図4で示した冷凍サイクル回路には、四方弁105が設けられている。四方弁105は、冷媒が循環する順路を逆転するように切替える。詳しくは、四方弁105は、ロータリ型圧縮機100、凝縮器102、膨張弁103、蒸発器104及び吸入マフラ101の順に流れる冷媒の順路を、ロータリ型圧縮機100、蒸発器104、膨張弁103、凝縮器102及び吸入マフラ101の順に冷媒が流れるように切り替える。これにより、熱エネルギーの搬送を逆転させることができる。すなわち、当該冷凍サイクル回路を空気調和装置として用いる場合、冷房運転と暖房運転とを切り替えることができる。順路を逆転させた場合、凝縮器102が蒸発器として機能し、蒸発器104が凝縮器として機能する。 Note that a four-way valve 105 is provided in the refrigeration cycle circuit shown in FIG. The four-way valve 105 switches so as to reverse the route through which the refrigerant circulates. Specifically, the four-way valve 105 is configured such that the rotary compressor 100, the evaporator 104, and the expansion valve 103 pass through the refrigerant flow in the order of the rotary compressor 100, the condenser 102, the expansion valve 103, the evaporator 104 and the suction muffler 101. Then, switching is performed so that the refrigerant flows in the order of the condenser 102 and the suction muffler 101. Thereby, conveyance of heat energy can be reversed. That is, when the refrigeration cycle circuit is used as an air conditioner, the cooling operation and the heating operation can be switched. When the forward path is reversed, the condenser 102 functions as an evaporator, and the evaporator 104 functions as a condenser.
 次に、圧縮機構部3の動作について説明する。
 電動機2の回転子22が回転すると、該回転子22に接続されているクランク軸4も回転する。これにより、シリンダ室36内では、クランク軸4の偏芯軸部43と該偏芯軸部43に取り付けられたローリングピストン32とが、シリンダ室36の中心軸に対して偏芯回転運動を行う。そして偏芯軸部43及びローリングピストン32のシリンダ室36内での偏芯回転運動により、吸入口39と連通した作動室が、吸入室36aとして機能し、低圧の冷媒ガスを吸入する。
Next, the operation of the compression mechanism unit 3 will be described.
When the rotor 22 of the electric motor 2 rotates, the crankshaft 4 connected to the rotor 22 also rotates. Thus, in the cylinder chamber 36, the eccentric shaft portion 43 of the crankshaft 4 and the rolling piston 32 attached to the eccentric shaft portion 43 perform an eccentric rotational motion with respect to the central axis of the cylinder chamber 36. . Then, due to the eccentric rotational movement of the eccentric shaft portion 43 and the rolling piston 32 in the cylinder chamber 36, the working chamber communicating with the suction port 39 functions as the suction chamber 36a and sucks low-pressure refrigerant gas.
 低圧の冷媒ガスを吸入口39から吸入した作動室は、偏芯軸部43及びローリングピストン32の偏芯回転運動により、シリンダ室36内を移動して、吸入口39との連通が断たれる。これ以降、当該作動室は圧縮室36bとして機能することとなる。さらに、偏芯軸部43及びローリングピストン32が偏芯回転運動していくことにより、作動室の容積が縮小し、吸入した冷媒ガスを圧縮する。偏芯軸部43及びローリングピストン32の偏芯回転運動が進むにしたがって、作動室と吐出口が連通する。 The working chamber into which the low-pressure refrigerant gas is sucked from the suction port 39 moves in the cylinder chamber 36 by the eccentric rotational movement of the eccentric shaft portion 43 and the rolling piston 32, and the communication with the suction port 39 is cut off. . Thereafter, the working chamber functions as the compression chamber 36b. Furthermore, when the eccentric shaft portion 43 and the rolling piston 32 are eccentrically rotated, the volume of the working chamber is reduced and the sucked refrigerant gas is compressed. As the eccentric rotational movement of the eccentric shaft portion 43 and the rolling piston 32 proceeds, the working chamber communicates with the discharge port.
 作動室と吐出口が連通し、吐出口を閉塞している吐出弁が吐出口を開口したところで、作動室内の高圧の冷媒ガスは、吐出口を介して、密閉容器1内に吐出される。さらに、偏芯軸部43及びローリングピストン32が偏芯回転運動していくと、作動室は、吐出口との連通が断たれ、再び、吸入口39と連通される。これ以降、当該作動室は吸入室36aとして機能することとなる。 When the working chamber and the discharge port communicate with each other and the discharge valve closing the discharge port opens the discharge port, the high-pressure refrigerant gas in the working chamber is discharged into the sealed container 1 through the discharge port. Further, when the eccentric shaft portion 43 and the rolling piston 32 are eccentrically rotated, the communication between the working chamber and the discharge port is cut off and the communication with the suction port 39 is resumed. Thereafter, the working chamber functions as the suction chamber 36a.
 上述した一連の動作は、偏芯軸部43及びローリングピストン32がシリンダ室36内を一回転する間に行われる。なお、2つの作動室のうち、一方の作動室が冷媒ガスを吸入しているときには、他方の作動室は冷媒ガスを吐出するという動作となる。よって、ベーン35を挟んで、吸入口39が連通し低圧冷媒ガスを吸入している作動室が低圧空間の吸入室36aとなり、吸入口39と連通せずに冷媒を圧縮している作動室が高圧空間の圧縮室36bとなる。 The series of operations described above is performed while the eccentric shaft portion 43 and the rolling piston 32 make one rotation in the cylinder chamber 36. When one of the two working chambers sucks the refrigerant gas, the other working chamber discharges the refrigerant gas. Therefore, the working chamber in which the suction port 39 communicates with the vane 35 and sucks the low-pressure refrigerant gas becomes the suction chamber 36a of the low-pressure space, and the working chamber in which the refrigerant is compressed without communicating with the suction port 39. It becomes the compression chamber 36b of a high pressure space.
 ロータリ型圧縮機100は、上述のように構成されているため、冷媒を圧縮するためにクランク軸4を回転させた際、該クランク軸4の偏芯軸部43に遠心力が発生する。また、冷媒を圧縮するためにクランク軸4を回転させた際、クランク軸4の偏芯軸部43には、上述した遠心力に加え、冷媒を圧縮するときにローリングピストン32が受ける荷重(反力)も作用する。冷媒を圧縮するときにローリングピストン32が受ける荷重は、偏芯軸部43の中心軸に対して垂直な方向に、換言すると主軸部41の中心軸及び副軸部42の中心軸に対して垂直な方向に作用する。 Since the rotary compressor 100 is configured as described above, centrifugal force is generated in the eccentric shaft portion 43 of the crankshaft 4 when the crankshaft 4 is rotated to compress the refrigerant. Further, when the crankshaft 4 is rotated to compress the refrigerant, the eccentric shaft portion 43 of the crankshaft 4 receives a load (reverse force) applied to the rolling piston 32 when the refrigerant is compressed, in addition to the centrifugal force described above. Force) also works. The load that the rolling piston 32 receives when compressing the refrigerant is perpendicular to the central axis of the eccentric shaft portion 43, in other words, perpendicular to the central axis of the main shaft portion 41 and the central axis of the auxiliary shaft portion 42. Acting in any direction.
 このため、クランク軸4は、偏芯軸部43に作用するこれらの力によって、上軸受部33の軸受33bの偏芯軸部43側端部、及び下軸受部34の軸受34bの偏芯軸部43側端部を支持点として、撓みが発生する。つまり、クランク軸は、二点支持された梁の中央に荷重を加えたときのように撓む。これにより、上軸受部33の軸受33bの内部において主軸部41が傾き、下軸受部34の軸受34bの内部において副軸部42が傾くこととなる。 For this reason, the crankshaft 4 is subjected to the eccentric shaft 43 by these forces acting on the eccentric shaft 43 side end of the bearing 33b of the upper bearing 33 and the eccentric shaft of the bearing 34b of the lower bearing 34. Deflection occurs with the end portion on the side of the portion 43 as a support point. That is, the crankshaft bends as if a load is applied to the center of the beam supported at two points. As a result, the main shaft portion 41 is inclined inside the bearing 33 b of the upper bearing portion 33, and the auxiliary shaft portion 42 is inclined inside the bearing 34 b of the lower bearing portion 34.
 主軸部41の直径が小さい場合、主軸部41の剛性が低下し、上軸受部33の軸受33bの内部において主軸部41の傾きが大きくなる。その結果、上軸受部33の軸受33bと主軸部41との間に満たされた冷凍機油に発生する油膜反力が低下する。同様に、副軸部42の直径が小さい場合、副軸部42の剛性が低下し、下軸受部34の軸受34bの内部において副軸部42の傾きが大きくなる。その結果、下軸受部34の軸受34bと副軸部42との間に満たされた冷凍機油に発生する油膜反力が低下する。 When the diameter of the main shaft portion 41 is small, the rigidity of the main shaft portion 41 is lowered, and the inclination of the main shaft portion 41 is increased inside the bearing 33b of the upper bearing portion 33. As a result, the oil film reaction force generated in the refrigerating machine oil filled between the bearing 33b of the upper bearing portion 33 and the main shaft portion 41 is reduced. Similarly, when the diameter of the sub-shaft portion 42 is small, the rigidity of the sub-shaft portion 42 is reduced, and the inclination of the sub-shaft portion 42 is increased inside the bearing 34 b of the lower bearing portion 34. As a result, the oil film reaction force generated in the refrigerating machine oil filled between the bearing 34b of the lower bearing portion 34 and the countershaft portion 42 is reduced.
 上軸受部33の軸受33bの油膜反力と下軸受部34の軸受34bの油膜反力との合計である油膜負荷容量は、上軸受部33の軸受33b及び下軸受部34の軸受34bが支持する荷重より、すなわち偏芯軸部43に作用する上記力よりも大きい必要がある。油膜負荷容量が偏芯軸部43に作用する上記力よりも小さくなると、上軸受部33の軸受33b及び下軸受部34の軸受34bにおいて冷凍機油の油膜が部分的に消失し、上軸受部33の軸受33b及び下軸受部34の軸受34bとクランク軸とが金属接触してしまうからである。すなわち、上軸受部33の軸受33b及び下軸受部34の軸受34bにおいて凝着摩耗及びかじり(スカッフ)が発生してしまい、ロータリ型圧縮機100が故障してしまうからである。 The oil film load capacity, which is the sum of the oil film reaction force of the bearing 33b of the upper bearing portion 33 and the oil film reaction force of the bearing 34b of the lower bearing portion 34, is supported by the bearing 33b of the upper bearing portion 33 and the bearing 34b of the lower bearing portion 34. That is, it is necessary to be larger than the force acting on the eccentric shaft portion 43. When the oil film load capacity becomes smaller than the force acting on the eccentric shaft portion 43, the oil film of the refrigerating machine oil partially disappears in the bearing 33b of the upper bearing portion 33 and the bearing 34b of the lower bearing portion 34, and the upper bearing portion 33. This is because the bearing 33b and the bearing 34b of the lower bearing portion 34 and the crankshaft are in metal contact. That is, adhesive wear and scuffing occur in the bearing 33b of the upper bearing portion 33 and the bearing 34b of the lower bearing portion 34, and the rotary compressor 100 breaks down.
 したがって、偏芯軸部43に発生する遠心力、冷媒圧縮時に偏芯軸部43に作用する荷重、上軸受部33の軸受33bの偏芯軸部43側端部から下軸受部34の軸受34bの偏芯軸部43側端部までの長さ等により、主軸部41及び副軸部42の直径を決定する必要がある。 Therefore, the centrifugal force generated in the eccentric shaft portion 43, the load acting on the eccentric shaft portion 43 when the refrigerant is compressed, the bearing 34b of the lower bearing portion 34 from the end portion on the eccentric shaft portion 43 side of the bearing 33b of the upper bearing portion 33. It is necessary to determine the diameters of the main shaft portion 41 and the sub shaft portion 42 based on the length to the end portion on the eccentric shaft portion 43 side.
 ここで、小型で高効率なロータリ型圧縮機100を製作するためには、ロータリ型圧縮機100の代表的な機械損失が発生するクランク軸4の主軸部41及び副軸部42をなるべく細くすることが、すなわち主軸部41及び副軸部42の直径を小さくすること有効である。これにより、機械損失を低減でき、ロータリ型圧縮機100の能力を維持したまま電動機2の入力を低減することができるからである。しかしながら、従来と同様に鋳鉄の鋳物でクランク軸4を製作した場合、従来よりも主軸部41及び副軸部42の直径を小さくすることが困難であった。 Here, in order to manufacture a small and highly efficient rotary compressor 100, the main shaft portion 41 and the sub shaft portion 42 of the crankshaft 4 where typical mechanical loss of the rotary compressor 100 occurs are made as thin as possible. That is, it is effective to reduce the diameters of the main shaft portion 41 and the sub shaft portion 42. This is because the mechanical loss can be reduced and the input of the electric motor 2 can be reduced while maintaining the capability of the rotary compressor 100. However, when the crankshaft 4 is made of cast iron as in the conventional case, it is difficult to reduce the diameters of the main shaft portion 41 and the subshaft portion 42 as compared with the conventional case.
 そこで、本実施の形態に係るロータリ型圧縮機100では、主軸部41の中心軸と垂直な断面において、クランク軸4における少なくとも圧縮機構部3の内部に配置されている部分の少なくとも内部を、炭素繊維と樹脂との混合体45で構成した。なお、従来のクランク軸に用いられている鋳鉄よりも混合体45の縦弾性係数を大きくできれば、混合体45を構成する炭素繊維及び樹脂は特に限定されるものではない。現在のロータリ型圧縮機のクランク軸に一般的に用いられているダクタイル鋳鉄は、縦弾性係数が150GPaである。例えば、以下の炭素繊維及び樹脂を適宜の割合で混合し、混合体45を構成することにより、縦弾性係数を640GPa~900GPaとすることができる。
(1)炭素繊維:繊維長さ50μm~500μmで、超高弾性率(ultra high modulus)タイプのピッチ系炭素繊維。
(2)樹脂:ポリエチレンテレフタレート(PET)又はポリブチレンテレフタレート(PBT)等の汎用熱可塑性樹脂。
Therefore, in the rotary compressor 100 according to the present embodiment, at least the inside of at least the portion of the crankshaft 4 disposed inside the compression mechanism portion 3 in the cross section perpendicular to the central axis of the main shaft portion 41 is carbon. It comprised with the mixture 45 of the fiber and resin. In addition, if the longitudinal elastic modulus of the mixture 45 can be made larger than the cast iron used for the conventional crankshaft, the carbon fiber and resin which comprise the mixture 45 will not be specifically limited. Ductile cast iron generally used for the crankshaft of current rotary compressors has a longitudinal elastic modulus of 150 GPa. For example, by mixing the following carbon fibers and resin at an appropriate ratio to form the mixture 45, the longitudinal elastic modulus can be set to 640 GPa to 900 GPa.
(1) Carbon fiber: Pitch-based carbon fiber having a fiber length of 50 μm to 500 μm and an ultra high modulus type.
(2) Resin: General-purpose thermoplastic resin such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT).
 例えば、図2に示すように、クランク軸4における少なくとも圧縮機構部3の内部に配置されている部分は、主軸部41の中心軸と垂直な断面において、外周部が金属で構成され、内部が炭素繊維と樹脂との混合体45で構成されている。換言すると、クランク軸4における少なくとも圧縮機構部3の内部に配置されている部分の内部には、主軸部41の中心軸方向に沿って、炭素繊維と樹脂との混合体が設けられている。このような構成のクランク軸4は、例えば、鋳鉄の鋳物で構成されたクランク軸4の内部に、炭素繊維と樹脂との混合体45を芯棒として挿入することで製造される。このように構成されたクランク軸4おいては、軸受33b,34bとの摺動箇所が、従来と同様に鋳鉄となる。このため、軸受33b,34bとの摺動特性を従来と同様としたまま、クランク軸4の縦弾性係数を大きくすることができる。ここで、本実施の形態においては、主軸部41の中心軸と垂直な断面において、クランク軸4における少なくとも圧縮機構部3の内部に配置されている部分は、内部が副軸部42の直径の90%未満の直径の混合体45で構成されている。このようにクランク軸4を構成することにより、鋳鉄部分の変形を抑制できるため、鋳鉄と混合体45とが剥離することを防止できる。 For example, as shown in FIG. 2, at least a portion of the crankshaft 4 that is disposed inside the compression mechanism portion 3 has an outer peripheral portion made of metal in a cross section perpendicular to the central axis of the main shaft portion 41, and the inside It is comprised with the mixture 45 of carbon fiber and resin. In other words, a mixture of carbon fiber and resin is provided along the central axis direction of the main shaft portion 41 at least inside the portion of the crankshaft 4 disposed inside the compression mechanism portion 3. The crankshaft 4 having such a configuration is manufactured, for example, by inserting a mixture 45 of carbon fiber and resin as a core rod into the crankshaft 4 made of cast iron. In the crankshaft 4 configured in this way, the sliding portions with the bearings 33b and 34b are cast iron as in the conventional case. For this reason, the longitudinal elastic modulus of the crankshaft 4 can be increased while the sliding characteristics with the bearings 33b and 34b are the same as the conventional one. Here, in the present embodiment, in the cross section perpendicular to the central axis of the main shaft portion 41, at least the portion of the crankshaft 4 that is disposed inside the compression mechanism portion 3 has the inside diameter of the auxiliary shaft portion 42. It is composed of a mixture 45 with a diameter of less than 90%. By constituting the crankshaft 4 in this way, the deformation of the cast iron portion can be suppressed, so that the cast iron and the mixture 45 can be prevented from peeling off.
 また例えば、クランク軸4は、クランク軸4における圧縮機構部3の内部に配置されている部分の全てが、炭素繊維と樹脂との混合体45で構成されていてもよい。このような構成のクランク軸4は、例えば、射出成型の型によって概略形状が形成された後、上軸受部33の軸受33b及び下軸受部34の軸受34bに挿入される外周部分等を研磨することによって製造される。このように構成されたクランク軸4おいては、混合体45の外周部に鋳鉄が存在する場合と比較して、クランク軸4の縦弾性係数をより大きくすることができる。 Further, for example, the crankshaft 4 may be configured such that all of the portion of the crankshaft 4 disposed inside the compression mechanism section 3 is composed of a mixture 45 of carbon fiber and resin. The crankshaft 4 having such a configuration, for example, after an approximate shape is formed by an injection molding die, polishes an outer peripheral portion or the like inserted into the bearing 33b of the upper bearing portion 33 and the bearing 34b of the lower bearing portion 34. Manufactured by. In the crankshaft 4 configured as described above, the longitudinal elastic modulus of the crankshaft 4 can be increased as compared with the case where cast iron is present on the outer peripheral portion of the mixture 45.
 上述のように、クランク軸4における少なくとも圧縮機構部3の内部に配置されている部分の少なくとも一部を炭素繊維と樹脂との混合体45で構成することにより、クランク軸4における圧縮機構部3の内部に配置されている部分の縦弾性係数を、鋳鉄の鋳物で構成された従来のクランク軸よりも大きくすることができる。これにより、本実施の形態に係るロータリ型圧縮機100のクランク軸4においては、上軸受部33の軸受33bの偏芯軸部43側端部、及び下軸受部34の軸受34bの偏芯軸部43側端部を支持点として、偏芯軸部43の中心軸に対して垂直な方向に該偏芯軸部43に作用する力によって撓む量が、従来のクランク軸よりも減少する。したがって、本実施の形態に係るロータリ型圧縮機100は、従来よりもクランク軸4の主軸部41及び副軸部42の直径を小さくしても、上軸受部33の軸受33b及び下軸受部34の軸受34bにおいて凝着摩耗及びかじり(スカッフ)が発生することを防止でき、ロータリ型圧縮機100が故障してしまうことを防止できる。 As described above, at least a part of at least a portion of the crankshaft 4 disposed inside the compression mechanism section 3 is configured by the carbon fiber and resin mixture 45, whereby the compression mechanism section 3 in the crankshaft 4 is configured. The longitudinal elastic modulus of the portion arranged in the interior can be made larger than that of a conventional crankshaft made of cast iron casting. Thus, in the crankshaft 4 of the rotary compressor 100 according to the present embodiment, the eccentric shaft portion 43 side end of the bearing 33 b of the upper bearing portion 33 and the eccentric shaft of the bearing 34 b of the lower bearing portion 34. With the end portion on the side of the portion 43 as a support point, the amount of deflection due to the force acting on the eccentric shaft portion 43 in a direction perpendicular to the central axis of the eccentric shaft portion 43 is reduced as compared with the conventional crankshaft. Therefore, in the rotary compressor 100 according to the present embodiment, even if the diameters of the main shaft portion 41 and the sub shaft portion 42 of the crankshaft 4 are made smaller than before, the bearing 33b and the lower bearing portion 34 of the upper bearing portion 33. It is possible to prevent adhesive wear and scuffing from occurring in the bearing 34b, and to prevent the rotary compressor 100 from failing.
 すなわち、本実施の形態に係るロータリ型圧縮機100は、従来よりもクランク軸4の主軸部41及び副軸部42の直径を小さくできるので、ロータリ型圧縮機の代表的な機械損失を低減でき、ロータリ型圧縮機100を従来よりも小型で高効率にすることができる。 That is, the rotary compressor 100 according to the present embodiment can reduce the diameters of the main shaft portion 41 and the subshaft portion 42 of the crankshaft 4 as compared with the prior art, so that typical mechanical loss of the rotary compressor can be reduced. The rotary compressor 100 can be made smaller and more efficient than conventional ones.
 図5は、本発明に係るロータリ型圧縮機における、圧縮機構部の内部に配置されているクランク軸部分の縦弾性係数と、主軸部及び副軸部の直径との関係を示す図である。
 ここで、図5の横軸は、クランク軸4における圧縮機構部3の内部に配置されている部分の縦弾性係数を示している。また、図5の縦軸は、図5の横軸に示す縦弾性係数であった場合に必要な主軸部41及び副軸部42の直径を示している。必要な主軸部41及び副軸部42の直径とは、上軸受部33の軸受33b及び下軸受部34の軸受34bにおいて凝着摩耗及びかじり(スカッフ)が発生することを防止できる、主軸部41及び副軸部42の最小直径のことである。なお、図5の縦軸に示す主軸部41及び副軸部42の直径は、現在のロータリ型圧縮機に一般的に用いられているダクタイル鋳鉄製のクランク軸の主軸部及び副軸部の直径を「1」として示している。
FIG. 5 is a diagram showing the relationship between the longitudinal elastic modulus of the crankshaft portion disposed inside the compression mechanism portion and the diameters of the main shaft portion and the subshaft portion in the rotary compressor according to the present invention.
Here, the horizontal axis of FIG. 5 indicates the longitudinal elastic modulus of the portion of the crankshaft 4 disposed inside the compression mechanism section 3. Further, the vertical axis in FIG. 5 indicates the diameters of the main shaft portion 41 and the sub shaft portion 42 that are necessary when the longitudinal elastic modulus shown in the horizontal axis in FIG. The required diameters of the main shaft portion 41 and the sub shaft portion 42 indicate that the main shaft portion 41 can prevent adhesion wear and scuffing from occurring in the bearing 33b of the upper bearing portion 33 and the bearing 34b of the lower bearing portion 34. And the minimum diameter of the countershaft portion 42. The diameters of the main shaft portion 41 and the sub shaft portion 42 shown on the vertical axis in FIG. 5 are the diameters of the main shaft portion and the sub shaft portion of a duct shaft made of ductile cast iron generally used in current rotary type compressors. Is shown as “1”.
 また、図5では、以下のようにして、必要な主軸部及び副軸部の直径を算出した。詳しくは、円柱状の梁を2点で単純支持(回転自在に支持)し、該梁における支持点間の中央位置に、規定の大きさの集中荷重を作用させるモデルを想定した。そして、梁の縦弾性係数を変更しながら、撓み角が規定角度となる梁の直径を計算した。なお、撓み角の規定角度は、ロータリ型圧縮機100において許容される、上軸受部33の軸受33b内部における主軸部41の傾き、及び、下軸受部34の軸受34b内部における副軸部42の傾きに基づいて決定した。 Further, in FIG. 5, the necessary diameters of the main shaft portion and the sub shaft portion were calculated as follows. Specifically, a model is assumed in which a cylindrical beam is simply supported (supported rotatably) at two points, and a concentrated load of a specified magnitude is applied to the center position between the support points of the beam. Then, while changing the longitudinal elastic modulus of the beam, the beam diameter at which the deflection angle becomes the specified angle was calculated. In addition, the specified angle of the bending angle is allowed in the rotary compressor 100, and the inclination of the main shaft portion 41 inside the bearing 33b of the upper bearing portion 33 and the sub shaft portion 42 inside the bearing 34b of the lower bearing portion 34 are allowed. Determined based on slope.
 現在のロータリ型圧縮機のクランク軸に一般的に用いられているダクタイル鋳鉄は、縦弾性係数が150GPaである。図5に示すように、本実施の形態に係るクランク軸4において、圧縮機構部3の内部に配置されている部分の縦弾性係数を300GPaにすれば、ダクタイル鋳鉄製のクランク軸に対して、主軸部41及び副軸部42の直径を15.9%小さくできる。例えば、外周部が縦弾性係数150GPaのダクタイル鋳鉄となり、内部が縦弾性係数800GPaの混合体45となるように、クランク軸4における圧縮機構部3の内部に配置されている部分を構成した場合、主軸部41及び副軸部42の断面積と混合体45の断面積との面積比を3:10にすることで、クランク軸4における圧縮機構部3の内部に配置されている部分の縦弾性係数を300GPaにできる。例えば、主軸部41及び副軸部42の直径を21mmとした場合、縦弾性係数800GPaの混合体45の直径を13.7mmとすることにより、クランク軸4における圧縮機構部3の内部に配置されている部分の縦弾性係数を300GPaにできる。 The ductile cast iron generally used for the crankshaft of the current rotary compressor has a longitudinal elastic modulus of 150 GPa. As shown in FIG. 5, in the crankshaft 4 according to the present embodiment, if the longitudinal elastic modulus of the portion arranged inside the compression mechanism portion 3 is 300 GPa, with respect to the crankshaft made of ductile cast iron, The diameters of the main shaft portion 41 and the sub shaft portion 42 can be reduced by 15.9%. For example, when the outer peripheral portion is made of ductile cast iron having a longitudinal elastic modulus of 150 GPa and the inside is the mixture 45 having a longitudinal elastic modulus of 800 GPa, the portion disposed inside the compression mechanism portion 3 in the crankshaft 4 is configured. By setting the area ratio of the cross-sectional area of the main shaft portion 41 and the sub-shaft portion 42 to the cross-sectional area of the mixture 45 to 3:10, the longitudinal elasticity of the portion of the crankshaft 4 disposed inside the compression mechanism portion 3 is set. The coefficient can be 300 GPa. For example, when the diameter of the main shaft portion 41 and the sub shaft portion 42 is 21 mm, the diameter of the mixture 45 having a longitudinal elastic modulus of 800 GPa is set to 13.7 mm, so that the crankshaft 4 is disposed inside the compression mechanism portion 3. The longitudinal elastic modulus of the portion that is present can be set to 300 GPa.
 また、図5に示すように、本実施の形態に係るクランク軸4において、圧縮機構部3の内部に配置されている部分の縦弾性係数を600GPaにすれば、ダクタイル鋳鉄製のクランク軸に対して、主軸部41及び副軸部42の直径を29.3%小さくできる。例えば、圧縮機構部3の内部に配置されている部分の全てを混合体45で構成することにより、クランク軸4における圧縮機構部3の内部に配置されている部分の縦弾性係数を600GPaにできる。 Further, as shown in FIG. 5, in the crankshaft 4 according to the present embodiment, if the longitudinal elastic modulus of the portion arranged inside the compression mechanism portion 3 is set to 600 GPa, the crankshaft made of ductile cast iron Thus, the diameters of the main shaft portion 41 and the sub shaft portion 42 can be reduced by 29.3%. For example, the longitudinal elastic modulus of the portion disposed inside the compression mechanism portion 3 in the crankshaft 4 can be set to 600 GPa by configuring all the portions disposed inside the compression mechanism portion 3 with the mixture 45. .
 クランク軸の摺動損失は、ロータリ型圧縮機に発生する損失全体のおよそ10%を占めている。このため、本実施の形態のように主軸部41及び副軸部42の直径を小さくすることは、ロータリ型圧縮機100の小型化及び高効率化に大きく貢献できる。 ¡Crankshaft sliding loss accounts for approximately 10% of the total loss generated in the rotary compressor. For this reason, reducing the diameters of the main shaft portion 41 and the sub shaft portion 42 as in the present embodiment can greatly contribute to miniaturization and high efficiency of the rotary compressor 100.
 以上、本実施の形態に係るロータリ型圧縮機100は、回転子22を有する電動機2と、回転子22に接続され、電動機2の駆動力を伝達するクランク軸4と、クランク軸4に接続され、クランク軸4から伝達された駆動力によって冷媒を圧縮する圧縮機構部3と、を備える。また、クランク軸4は、回転子22に接続された主軸部41、主軸部41の中心軸と同軸上に中心軸が配置された副軸部42、及び、主軸部41と副軸部42との間に設けられ、中心軸が主軸部41の中心軸及び副軸部42の中心軸に対して偏芯している偏芯軸部43と、を有している。また、圧縮機構部3は、冷媒を圧縮するシリンダ室36を有し、該シリンダ室36に偏芯軸部43が配置されたシリンダ31と、主軸部41を回転自在に支持する軸受33bと、副軸部42を回転自在に支持する軸受34bと、を有している。そして、クランク軸4における少なくとも圧縮機構部3の内部に配置されている部分は、主軸部41の中心軸と垂直な断面において、少なくとも内部が炭素繊維と樹脂との混合体45で構成されている。 As described above, the rotary compressor 100 according to the present embodiment is connected to the electric motor 2 having the rotor 22, the crankshaft 4 connected to the rotor 22 and transmitting the driving force of the electric motor 2, and the crankshaft 4. And a compression mechanism unit 3 that compresses the refrigerant by the driving force transmitted from the crankshaft 4. The crankshaft 4 includes a main shaft portion 41 connected to the rotor 22, a sub shaft portion 42 having a central axis coaxial with the central axis of the main shaft portion 41, and the main shaft portion 41 and the sub shaft portion 42. And an eccentric shaft portion 43 whose central axis is eccentric with respect to the central axis of the main shaft portion 41 and the central axis of the auxiliary shaft portion 42. The compression mechanism section 3 includes a cylinder chamber 36 that compresses the refrigerant, a cylinder 31 in which the eccentric shaft portion 43 is disposed in the cylinder chamber 36, a bearing 33b that rotatably supports the main shaft portion 41, And a bearing 34b that rotatably supports the countershaft portion 42. In the crankshaft 4, at least a portion of the crankshaft 4 disposed inside the compression mechanism portion 3 is composed of a mixture 45 of carbon fiber and resin at least in the cross section perpendicular to the central axis of the main shaft portion 41. .
 このため、本実施の形態に係るロータリ型圧縮機100は、クランク軸4における圧縮機構部3の内部に配置されている部分の縦弾性係数を、鋳鉄の鋳物で構成された従来のクランク軸よりも大きくすることができる。これにより、本実施の形態に係るロータリ型圧縮機100のクランク軸4においては、軸受33bの偏芯軸部43側端部、及び軸受34bの偏芯軸部43側端部を支持点として、偏芯軸部43の中心軸に対して垂直な方向に該偏芯軸部43に作用する力によって撓む量が、従来のクランク軸よりも減少する。したがって、本実施の形態に係るロータリ型圧縮機100は、従来よりもクランク軸4の主軸部41及び副軸部42の直径を小さくできるので、ロータリ型圧縮機の代表的な機械損失を低減でき、ロータリ型圧縮機100を従来よりも小型で高効率なロータリ型圧縮機とすることができる。 For this reason, the rotary compressor 100 according to the present embodiment has a longitudinal elastic modulus of a portion of the crankshaft 4 arranged in the compression mechanism portion 3 in the crankshaft 4 compared to a conventional crankshaft made of cast iron. Can also be increased. Thus, in the crankshaft 4 of the rotary compressor 100 according to the present embodiment, the eccentric shaft portion 43 side end portion of the bearing 33b and the eccentric shaft portion 43 side end portion of the bearing 34b are used as supporting points. The amount of deflection due to the force acting on the eccentric shaft portion 43 in a direction perpendicular to the central axis of the eccentric shaft portion 43 is smaller than that of the conventional crankshaft. Therefore, the rotary compressor 100 according to the present embodiment can reduce the diameters of the main shaft portion 41 and the subshaft portion 42 of the crankshaft 4 as compared with the conventional one, so that typical mechanical loss of the rotary compressor can be reduced. The rotary compressor 100 can be a rotary compressor that is smaller and more efficient than conventional ones.
 例えば、クランク軸4における少なくとも圧縮機構部3の内部に配置されている部分は、主軸部41の中心軸と垂直な断面において、外周部が金属で構成され、内部が混合体45で構成されている。このように構成されたクランク軸4おいては、軸受33b,34bとの摺動特性を従来と同様としたまま、クランク軸4の縦弾性係数を大きくすることができる。この際、例えば、クランク軸4における少なくとも圧縮機構部3の内部に配置されている部分は、内部が副軸部42の直径の90%未満の直径の混合体45で構成されている。このようにクランク軸4を構成することにより、金属と混合体45とが剥離することを防止できる。 For example, at least a portion of the crankshaft 4 that is disposed inside the compression mechanism portion 3 has a cross section perpendicular to the central axis of the main shaft portion 41, an outer peripheral portion made of metal, and an inner portion made of a mixture 45. Yes. In the crankshaft 4 configured in this way, the longitudinal elastic modulus of the crankshaft 4 can be increased while the sliding characteristics with the bearings 33b and 34b are the same as the conventional one. At this time, for example, at least a portion of the crankshaft 4 disposed inside the compression mechanism portion 3 is composed of a mixture 45 having a diameter of less than 90% of the diameter of the subshaft portion 42. By constituting the crankshaft 4 in this way, it is possible to prevent the metal and the mixture 45 from peeling off.
 また例えば、クランク軸4における圧縮機構部3の内部に配置されている部分の全てが、混合体45で構成されている。このように構成されたクランク軸4おいては、混合体45の外周部に金属が存在する場合と比較して、クランク軸4の縦弾性係数をより大きくすることができる。 Also, for example, all of the portions of the crankshaft 4 disposed inside the compression mechanism portion 3 are composed of the mixture 45. In the crankshaft 4 configured as described above, the longitudinal elastic modulus of the crankshaft 4 can be increased as compared with the case where metal is present on the outer peripheral portion of the mixture 45.
 また例えば、クランク軸4における少なくとも圧縮機構部3の内部に配置されている部分は、縦弾性係数が300GPa以上となっている。 Further, for example, at least a portion of the crankshaft 4 disposed inside the compression mechanism 3 has a longitudinal elastic modulus of 300 GPa or more.
 1 密閉容器、11 吐出管、12 吸入管、2 電動機、21 固定子、22 回転子、23 端子、3 圧縮機構部、31 シリンダ、32 ローリングピストン、33 上軸受部、33a 閉塞部材、33b 軸受、34 下軸受部、34a 閉塞部材、34b 軸受、35 ベーン、36 シリンダ室、36a 吸入室、36b 圧縮室、37 ベーン溝、38 背圧室、39 吸入口、4 クランク軸、41 主軸部、42 副軸部、43 偏芯軸部、45 混合体、51 給油路、52 給油路、53 給油路、100 ロータリ型圧縮機、101 吸入マフラ、102 凝縮器、103 膨張弁、104 蒸発器、105 四方弁。 1 sealed container, 11 discharge pipe, 12 suction pipe, 2 motor, 21 stator, 22 rotor, 23 terminal, 3 compression mechanism part, 31 cylinder, 32 rolling piston, 33 upper bearing part, 33a closing member, 33b bearing, 34 Lower bearing portion, 34a closing member, 34b bearing, 35 vane, 36 cylinder chamber, 36a suction chamber, 36b compression chamber, 37 vane groove, 38 back pressure chamber, 39 suction port, 4 crankshaft, 41 main shaft portion, 42 secondary Shaft part, 43 eccentric shaft part, 45 mixture, 51 oil supply path, 52 oil supply path, 53 oil supply path, 100 rotary compressor, 101 suction muffler, 102 condenser, 103 expansion valve, 104 evaporator, 105 four-way valve .

Claims (7)

  1.  回転子を有する電動機と、
     前記回転子に接続され、前記電動機の駆動力を伝達するクランク軸と、
     前記クランク軸に接続され、前記クランク軸から伝達された駆動力によって冷媒を圧縮する圧縮機構部と、
     を備え、
     前記クランク軸は、
     前記回転子に接続された主軸部と、該主軸部の中心軸と同軸上に中心軸が配置された副軸部と、前記主軸部と前記副軸部との間に設けられ、中心軸が前記主軸部の中心軸及び前記副軸部の中心軸に対して偏芯している偏芯軸部と、
     を有し、
     前記圧縮機構部は、
     冷媒を圧縮するシリンダ室を有し、該シリンダ室に前記偏芯軸部が配置されたシリンダと、
     前記主軸部を回転自在に支持する第1軸受と、
     前記副軸部を回転自在に支持する第2軸受と、
     を有し、
     前記クランク軸における少なくとも前記圧縮機構部の内部に配置されている部分は、
     前記主軸部の中心軸と垂直な断面において、少なくとも内部が炭素繊維と樹脂との混合体で構成されているロータリ型圧縮機。
    An electric motor having a rotor;
    A crankshaft connected to the rotor and transmitting a driving force of the electric motor;
    A compression mechanism that is connected to the crankshaft and compresses the refrigerant by the driving force transmitted from the crankshaft;
    With
    The crankshaft is
    A main shaft portion connected to the rotor, a sub shaft portion having a center axis coaxially arranged with a central axis of the main shaft portion, and a main shaft portion provided between the main shaft portion and the sub shaft portion. An eccentric shaft portion that is eccentric with respect to the central axis of the main shaft portion and the central axis of the auxiliary shaft portion;
    Have
    The compression mechanism is
    A cylinder chamber that compresses the refrigerant, and a cylinder in which the eccentric shaft portion is disposed in the cylinder chamber;
    A first bearing that rotatably supports the main shaft portion;
    A second bearing rotatably supporting the countershaft portion;
    Have
    A portion of the crankshaft disposed at least inside the compression mechanism portion is
    A rotary compressor in which at least the inside is composed of a mixture of carbon fiber and resin in a cross section perpendicular to the central axis of the main shaft portion.
  2.  前記クランク軸における少なくとも前記圧縮機構部の内部に配置されている部分は、
     前記主軸部の中心軸と垂直な断面において、外周部が金属で構成され、内部が前記混合体で構成されている請求項1に記載のロータリ型圧縮機。
    A portion of the crankshaft disposed at least inside the compression mechanism portion is
    2. The rotary compressor according to claim 1, wherein an outer peripheral portion is made of metal and an inside is made of the mixture in a cross section perpendicular to the central axis of the main shaft portion.
  3.  前記クランク軸における少なくとも前記圧縮機構部の内部に配置されている部分は、
     内部が前記副軸部の直径の90%未満の直径の前記混合体で構成されている請求項2に記載のロータリ型圧縮機。
    A portion of the crankshaft disposed at least inside the compression mechanism portion is
    The rotary type compressor according to claim 2, wherein the inside is constituted by the mixture having a diameter of less than 90% of the diameter of the countershaft portion.
  4.  前記クランク軸における前記圧縮機構部の内部に配置されている部分の全てが、前記混合体で構成されている請求項1に記載のロータリ型圧縮機。 2. The rotary compressor according to claim 1, wherein all of the portions of the crankshaft disposed inside the compression mechanism section are configured by the mixture.
  5.  前記クランク軸における少なくとも前記圧縮機構部の内部に配置されている部分は、縦弾性係数が300GPa以上である請求項1~請求項4のいずれか一項に記載のロータリ型圧縮機。 The rotary compressor according to any one of claims 1 to 4, wherein at least a portion of the crankshaft disposed inside the compression mechanism section has a longitudinal elastic modulus of 300 GPa or more.
  6.  前記シリンダ室は、両端が開口した形状で前記シリンダに形成されており、
     前記圧縮機構部は、
     前記シリンダ室の一方の開口部を閉塞する第1閉塞部材と、前記第1軸受とを有する第1軸受部と、
     前記シリンダ室の他方の開口部を閉塞する第2閉塞部材と、前記第2軸受とを有する第2軸受部と、
     を備えた請求項1~請求項5のいずれか一項に記載のロータリ型圧縮機。
    The cylinder chamber is formed in the cylinder in a shape in which both ends are open,
    The compression mechanism is
    A first bearing member having a first closing member that closes one opening of the cylinder chamber, and the first bearing;
    A second bearing member having a second closing member for closing the other opening of the cylinder chamber, and the second bearing;
    The rotary compressor according to any one of claims 1 to 5, further comprising:
  7.  前記シリンダは、一方の端部が前記シリンダ室に連通したベーン溝を有し、
     前記圧縮機構部は、
     前記偏芯軸部の外周部に取り付けられ、前記クランク軸の回転によって前記シリンダ室内を偏芯回転するローリングピストンと、
     往復動自在に前記ベーン溝に挿入され、前記ローリングピストンの外周面に先端部が当接して、前記シリンダ室を、冷媒を吸入する吸入室と冷媒を圧縮する圧縮室とに仕切るベーンと、
     を備えた請求項1~請求項6のいずれか一項に記載のロータリ型圧縮機。
    The cylinder has a vane groove with one end communicating with the cylinder chamber,
    The compression mechanism is
    A rolling piston attached to an outer peripheral portion of the eccentric shaft portion and eccentrically rotating in the cylinder chamber by rotation of the crankshaft;
    A vane which is inserted into the vane groove so as to be freely reciprocable, a tip part abuts on an outer peripheral surface of the rolling piston, and partitions the cylinder chamber into a suction chamber for sucking refrigerant and a compression chamber for compressing refrigerant;
    The rotary compressor according to any one of claims 1 to 6, further comprising:
PCT/JP2017/004706 2017-02-09 2017-02-09 Rotary compressor WO2018146764A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018566701A JP6771592B2 (en) 2017-02-09 2017-02-09 Rotary compressor
CN201780085519.6A CN110249133B (en) 2017-02-09 2017-02-09 Rotary compressor
PCT/JP2017/004706 WO2018146764A1 (en) 2017-02-09 2017-02-09 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004706 WO2018146764A1 (en) 2017-02-09 2017-02-09 Rotary compressor

Publications (1)

Publication Number Publication Date
WO2018146764A1 true WO2018146764A1 (en) 2018-08-16

Family

ID=63108005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004706 WO2018146764A1 (en) 2017-02-09 2017-02-09 Rotary compressor

Country Status (3)

Country Link
JP (1) JP6771592B2 (en)
CN (1) CN110249133B (en)
WO (1) WO2018146764A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020165962A1 (en) * 2019-02-13 2021-09-30 三菱電機株式会社 Compressor and air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241486A (en) * 1985-04-17 1986-10-27 Matsushita Electric Ind Co Ltd Rotor for rotary compressor
JPS63263278A (en) * 1987-04-17 1988-10-31 Sanyo Electric Co Ltd Sliding member for compressor
JP2014211093A (en) * 2013-04-17 2014-11-13 三菱電機株式会社 Refrigerant compressor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213961A (en) * 1983-05-20 1984-12-03 Nippon Piston Ring Co Ltd Rotor of rotary fluid pump
JPH04103886A (en) * 1990-08-23 1992-04-06 Sanyo Electric Co Ltd Piston device of compressor
JP2002195180A (en) * 2000-12-27 2002-07-10 Fujitsu General Ltd Rotary compressor
JP2011021584A (en) * 2009-07-21 2011-02-03 Panasonic Corp Hermetic compressor
KR101667720B1 (en) * 2010-07-23 2016-10-19 엘지전자 주식회사 Hermetic compressor
JP5715884B2 (en) * 2011-05-31 2015-05-13 住友ベークライト株式会社 Scroll molding
JP5996455B2 (en) * 2013-02-27 2016-09-21 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Scroll compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241486A (en) * 1985-04-17 1986-10-27 Matsushita Electric Ind Co Ltd Rotor for rotary compressor
JPS63263278A (en) * 1987-04-17 1988-10-31 Sanyo Electric Co Ltd Sliding member for compressor
JP2014211093A (en) * 2013-04-17 2014-11-13 三菱電機株式会社 Refrigerant compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020165962A1 (en) * 2019-02-13 2021-09-30 三菱電機株式会社 Compressor and air conditioner
CN113474560A (en) * 2019-02-13 2021-10-01 三菱电机株式会社 Compressor and air conditioner
JP7003305B2 (en) 2019-02-13 2022-01-20 三菱電機株式会社 Compressor and air conditioner
CN113474560B (en) * 2019-02-13 2022-11-29 三菱电机株式会社 Compressor and air conditioner
US11976657B2 (en) 2019-02-13 2024-05-07 Mitsubishi Electric Corporation Compressor and air conditioner

Also Published As

Publication number Publication date
JPWO2018146764A1 (en) 2019-11-07
CN110249133A (en) 2019-09-17
CN110249133B (en) 2021-03-26
JP6771592B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
US10253774B2 (en) Compressor
KR101375979B1 (en) Rotary compressor
JP5477455B2 (en) Hermetic compressor
KR20100112486A (en) 2-stage rotary compressor
JP2017150425A (en) Two-cylinder type sealed compressor
JP5152385B1 (en) Compressor
WO2018146764A1 (en) Rotary compressor
JP4172514B2 (en) Compressor
KR101510698B1 (en) rotary compressor
US20110176942A1 (en) Sealed compressor
KR102320908B1 (en) Compressors and refrigeration cycle units
KR20200054262A (en) Compressor and refrigeration cycle units
KR101300961B1 (en) Rotary compressor
JP2015040471A (en) Hermetic type compressor and refrigerator using the same
WO2023074389A1 (en) Scroll compressor and refrigeration device
WO2018142564A1 (en) Compressor
JP5810273B2 (en) Hermetic compressor and refrigeration system
WO2016151769A1 (en) Hermetic rotary compressor
WO2021229742A1 (en) Electric motor, compressor, and refrigeration cycle device
CN113474560B (en) Compressor and air conditioner
KR20100112488A (en) 2-stage rotary compressor
WO2016139825A1 (en) Rotary compressor
JP2007092639A (en) Hermetically sealed reciprocating compressor and refrigerating cycle device
JP2017008819A (en) Rotary compressor
KR101992586B1 (en) Compressor and refrigeration cycle unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566701

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896198

Country of ref document: EP

Kind code of ref document: A1