WO2018145497A1 - 尿素加热过滤系统以及后处理系统组件 - Google Patents

尿素加热过滤系统以及后处理系统组件 Download PDF

Info

Publication number
WO2018145497A1
WO2018145497A1 PCT/CN2017/110637 CN2017110637W WO2018145497A1 WO 2018145497 A1 WO2018145497 A1 WO 2018145497A1 CN 2017110637 W CN2017110637 W CN 2017110637W WO 2018145497 A1 WO2018145497 A1 WO 2018145497A1
Authority
WO
WIPO (PCT)
Prior art keywords
urea
heating
filter
nozzle
assembly
Prior art date
Application number
PCT/CN2017/110637
Other languages
English (en)
French (fr)
Inventor
杨振球
李琦
彭威波
Original Assignee
天纳克(苏州)排放系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天纳克(苏州)排放系统有限公司 filed Critical 天纳克(苏州)排放系统有限公司
Publication of WO2018145497A1 publication Critical patent/WO2018145497A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/18Heating or cooling the filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the invention relates to a urea heating filter system and a post-processing system component, and belongs to the technical field of engine exhaust gas aftertreatment.
  • the post-treatment technology commonly used in the industry is selective catalytic reduction (SCR), and the exhaust gas is installed upstream of the SCR.
  • SCR selective catalytic reduction
  • the urea solution is sprayed in.
  • the urea solution is hydrolyzed and pyrolyzed to generate ammonia gas, and chemically reacts with nitrogen oxides to reduce the concentration of harmful substances.
  • Urea injection systems currently on the market typically include air assist systems and non-air assist systems.
  • any system includes a urea tank assembly, a pump supply unit connected to the urea tank assembly through a low pressure line, a nozzle module connected to the pump supply unit through a high pressure line, and a controller.
  • the pump supply unit includes a urea pump, a pressure sensor, and the like, and the nozzle module includes a urea nozzle or the like.
  • the urea pump is spaced farther from the urea nozzle and is connected by a urea tube.
  • the existing urea injection system contains more components, and the installation is complicated and the cost is high.
  • urea will freeze in a low temperature environment
  • a heating filter assembly is usually placed in the urea tank, and the engine coolant is introduced into the urea tank to carry out the frozen urea. heating.
  • heating and thawing takes a certain amount of time, and the aftertreatment system cannot wait for all the urea to be thawed before working, how to carry out effective heat management is a common technical problem in the industry.
  • a urea heating filtration system including a urea tank and a heating filter assembly for mounting on the urea tank, wherein the heating filter assembly includes a mounting seat and a urea tube a filter housed in the mount and a heating device for heating the filter and/or the urea tank, the urea pipe being provided with a urea solution inlet upstream of the filter,
  • the mount is further provided with a urea solution outlet downstream of the filter
  • the heating filter assembly comprising a metal heat pipe fixed under the mount and for accommodating the filter, the urea pipe Communicating with the metal heat conducting tube, the metal heat conducting tube is provided with an outer wall, the heating filter assembly further comprises a heat conducting member connecting the outer wall and the heating device;
  • the urea heating filter system further comprises a filter outlet Or a filter inlet, or a pressure sensor of the filter inlet and the filter outlet;
  • the urea heating filtration system further includes The signal fed back by the pressure sensor is used to determine
  • the pressure sensor is a negative pressure sensor;
  • the urea heating filter system further includes a liquid level sensor located in the urea tank, and a urea quality and temperature sensor, the liquid level sensor and the The urea quality and temperature sensor feeds back signals to the filter controller; the filter controller communicates with the engine control unit via a CAN bus.
  • the heating device includes a heating pipe connected to the mounting seat and a cooling water valve, and the mounting seat is provided with a coolant inlet joint and a coolant outlet joint connected to the heating pipe.
  • the cooling water valve is used to control the flow of engine coolant.
  • the heating device comprises an electric heating tube.
  • the metal heat conduction tube is injection molded together with the mounting seat.
  • the outer wall has a cylindrical shape
  • the metal heat conduction tube further includes a bottom wall connected to the outer wall.
  • the coolant inlet joint and the coolant outlet joint are located on the same side of the mount; the urea solution outlet and the coolant inlet joint and the coolant outlet joint They are all located on the same side of the mount.
  • the heat conducting member comprises a first heat conducting sheet and a second heat conducting sheet fixed to the first heat conducting sheet; the first heat conducting sheet is disposed to abut against the outer wall a first abutting portion on one side and two first mounting portions respectively extending from two sides of the first abutting portion; the second thermally conductive sheet is provided to be in contact with the other side of the outer wall a second abutting portion and two second mounting portions respectively extending from two sides of the second abutting portion; the first mounting abutting each other The portion and the second mounting portion are fixed by mechanical connection.
  • the invention also relates to an aftertreatment system assembly comprising an integrated device of a pump and a nozzle and the aforementioned urea heating filtration system, wherein the pump is for pumping a urea solution passing through the urea heating filtration system to the nozzle
  • the nozzle is for injecting urea droplets into the exhaust of the engine
  • the integrated device comprising a housing, a pump assembly at least partially mounted within the housing, and a nozzle assembly at least partially mounted within the housing, wherein
  • the housing includes an inlet passage upstream of the pump assembly and in communication with the pump assembly, and an outlet passage downstream of the pump assembly and in communication with the pump assembly, the inlet passage and the urea solution An outlet passage in communication with the nozzle assembly;
  • the pump assembly including a motor coil for driving a pump, the nozzle assembly including a nozzle coil for driving a nozzle, wherein the motor coil and the nozzle coil Independent control is performed separately.
  • the integrated device includes a controller connected to the motor coil and the nozzle coil, and the controller independently controls the pump and the nozzle, respectively.
  • the invention defines a relatively small internal volume through the metal heat conduction tube, and a part of heat is transmitted to the metal heat conduction tube through the heat conduction member to heat and thaw the urea therein, and the structure design is simple and the heating is convenient. .
  • the filter controller determines whether the filter needs to be replaced by the signal fed back by the pressure sensor, thereby improving the intelligence of the system.
  • the integrated device of the pump and the nozzle of the invention integrates the pump and the nozzle well, and has a simple and compact structure, which greatly facilitates the installation of the customer.
  • the motor coil and the nozzle coil by controlling the motor coil and the nozzle coil, mutual interference between the pump and the nozzle is avoided, and the accuracy of the control is improved.
  • the amount of urea injected into the exhaust gas can be appropriately proportioned with the nitrogen oxides, thereby reducing the excessive injection of urea. Risk of crystallization.
  • FIG. 1 is a schematic diagram of the exhaust gas aftertreatment system of the present invention applied to the treatment of engine exhaust.
  • Figure 2 is a schematic diagram of the integrated device of Figure 1.
  • Figure 3 is a perspective view of the heating filter assembly of Figure 1.
  • Figure 4 is a partial exploded view of Figure 3 with the filter separated.
  • Figure 5 is a further exploded perspective view of the filter of Figure 4 with the heat conductive members separated.
  • Figure 6 is a front elevational view of Figure 3.
  • Figure 7 is a left side view of Figure 3.
  • Figure 8 is a plan view of Figure 3.
  • Figure 9 is a bottom view of Figure 3.
  • Figure 10 is a cross-sectional view taken along line A-A of Figure 6.
  • Figure 11 is a cross-sectional view taken along line B-B of Figure 10.
  • Figure 12 is a schematic illustration of the urea heating filtration system of Figure 1 in a first embodiment.
  • Figure 13 is a schematic illustration of the urea heated filtration system of Figure 1 in a second embodiment.
  • the present invention discloses an exhaust aftertreatment system 100 that can be applied to treat exhaust gas from engine 10 to reduce emissions of hazardous materials to meet emission regulations.
  • the exhaust aftertreatment system 100 includes an exhaust aftertreatment injection system 200 and an exhaust aftertreatment packaging system 300, wherein the injection system 200 includes means for pumping urea solution from the urea tank 201 (as indicated by arrow X) and A nozzle assembly that injects urea solution into the intake or exhaust of the engine 10 (e.g., into the exhaust pipe 106 or within the packaging system 300).
  • the nozzle assembly is an integrated device 1.
  • the packaging system 300 includes a mixer 301 downstream of the integrated device 1 and a carrier 302 located downstream of the mixer 301.
  • the mixer may not be provided, or two or more mixers may be provided.
  • the carrier 302 can be, for example, a selective catalytic reduction (SCR) or the like.
  • the engine 10 has an engine coolant circulation circuit.
  • the engine coolant circulation circuit includes a first circulation circuit 101 (shown by a thick arrow Y) and a second circulation circuit 102 (refer to a thin arrow Z).
  • the first circulation loop 101 is configured to cool the integrated device 1 to reduce its risk of being burned out by a high temperature engine exhaust; the second circulation loop 102 is used to heat the urea tank 201, To achieve the heating and defrosting function.
  • the integrated device 1 in the first circulation loop 101, is provided with an inlet joint 103 for the engine coolant to flow in and an outlet joint 104 for the engine coolant to flow out; in the second circulation loop 102, it is provided There is a control valve 105 to open or close the control valve 105 under suitable conditions to effect control of the second circulation loop 102.
  • the urea tank 201 is provided with a heating filter assembly 202 connected in the second circulation loop 102 to heat and thaw the urea solution by using the temperature of the engine coolant, and the urea is filtered by the primary filter 203 and the filter 204. The solution was filtered.
  • the primary filter 203 is a filter mesh.
  • the integrated device 1 of the present invention will be described in detail below.
  • the integrated device 1 of the present invention integrates the functions of the urea pump 11 and the urea nozzle 12.
  • the urea pump 11 includes, but is not limited to, a gear pump, a diaphragm pump, a plunger pump, a vane pump, and the like. It should be understood that the term "integrated" as used herein means that the urea pump 11 and the urea nozzle 12 can be mounted as a single device on the intake or exhaust pipe; or the urea pump 11 and the urea nozzle 12 are close to each other and pass through. A shorter connecting pipe is connected and can be regarded as a device as a whole.
  • the exhaust gas post-treatment system 100 of the present invention is further provided with a controller 13.
  • the controller 13 may be integrated with or separate from the integrated device 1. Referring to FIG. 2, in the illustrated embodiment of the present invention, the controller 13 is integrated in the integrated device 1 to achieve high integration of parts and improve installation convenience of the client.
  • the integrated device 1 is provided with a housing 14 for accommodating the urea pump 11 and the urea nozzle 12.
  • the embodiment shown in Figure 2 is only a rough representation of the housing 14.
  • the housing 14 is shared by the urea pump 11 and the urea nozzle 12; in another embodiment, the housing 14 is divided into a first housing that mates with the urea pump 11. And a second housing that cooperates with the urea nozzle 12, the first housing and the second housing being assembled together to form a unitary body.
  • the housing 14 is provided with an inlet passage 15 connected between the urea tank 201 and the urea pump 11, and an outlet passage 16 connected between the urea pump 11 and the urea nozzle 12.
  • inlet in the "inlet passage 15" and “outlet” in the “outlet passage 16" are referenced by the urea pump 11, that is, the upstream of the urea pump 11 is the inlet, and the urea pump 11 The downstream is the exit.
  • the outlet passage 16 is in communication with the urea nozzle 12 to pump a urea solution to the urea nozzle 12. It can be understood that the inlet passage 15 is located upstream of the urea pump 11 and is a low pressure passage; the outlet passage 16 is located downstream of the urea pump 11 and is a high pressure passage.
  • the integrated device 1 is provided with a temperature sensor 171 for detecting temperature.
  • the temperature sensor 171 may be disposed to communicate with the inlet passage 15 and/or the outlet passage 16; or the temperature sensor 171 may be disposed to be mounted at any position of the integrated device 1.
  • the signal detected by the temperature sensor 171 is transmitted to the controller 13, and the control algorithm designed by the controller 13 based on the input signal and other signals can improve the injection accuracy of the urea nozzle 12.
  • the integrated device 1 is also provided with a pressure sensor 172 for detecting pressure, the pressure sensor 172 being in communication with the outlet passage 16 to detect the pressure in the high pressure passage of the outlet of the urea pump 11.
  • the distance of the internal passage is relatively short, so that the position of the pressure sensor 172 can be considered to be relatively close to the urea nozzle 12.
  • the advantage of this design is the pressure sensor The measured pressure of 172 is relatively close to the pressure in the urea nozzle 12, which improves the accuracy of the data, thereby improving the injection accuracy of the urea nozzle 12.
  • the temperature sensor 171 and the pressure sensor 172 are two components; in another embodiment of the present invention, the temperature sensor 171 and the pressure sensor 172 are One component, but at the same time has the function of detecting temperature and pressure.
  • the integrated device 1 is further provided with an overflow element 173 connected between the outlet passage 16 and the inlet passage 15.
  • the overflow element 173 includes, but is not limited to, a relief valve, a safety valve, or an electrically controlled valve or the like.
  • the function of the overflow element 173 is to open the overflow element 173 when the pressure in the high pressure passage is higher than the set value, to release the urea solution located in the high pressure passage into the low pressure passage or directly return to the In the urea tank 201, pressure regulation is achieved.
  • the urea pump 11 In order to drive the urea pump 11, the urea pump 11 is provided with a motor coil 111 that communicates with the controller 13. In order to drive the urea nozzle 12, the urea nozzle 12 is provided with a nozzle coil 121 that communicates with the controller 13.
  • the controller 13 communicates with the temperature sensor 171 and the pressure sensor 172 to transmit a temperature signal and a pressure signal to the controller 13.
  • the controller 13 can also receive other signals, such as signals from the CAN bus that are related to engine operating parameters.
  • the controller 13 can also obtain the rotational speed of the urea pump 11.
  • the acquisition of the rotational speed signal can be achieved by a corresponding rotational speed sensor 175 (hardware) or by a control algorithm (software).
  • the controller 13 independently controls the urea pump 11 and the urea nozzle 12. The advantage of such control is that the effect of the action of the urea pump 11 on the urea nozzle 12 can be reduced to achieve a relatively high control accuracy.
  • the integrated device 1 is also provided with a cooling assembly for this purpose, which cools the urea nozzle 12 by means of a cooling medium.
  • the cooling medium includes, but is not limited to, air, and/or engine coolant, and/or lubricating oil, and/or urea, and the like.
  • the illustrated embodiment of the present invention uses water cooling, i.e., cooling the urea nozzle 12 with engine coolant.
  • a cooling passage 141 for circulating the engine coolant is provided in the housing 14.
  • the main working principle of the integrated device 1 is as follows:
  • the controller 13 drives the urea pump 11 to operate.
  • the urea solution in the urea tank 201 is sucked into the urea pump 11 through the inlet passage 15, and after being pressurized, is sent to the urea nozzle 12 through the outlet passage 16.
  • the controller 13 collects and/or calculates required signals such as temperature, pressure, pump speed, and the like.
  • the controller 13 sends a control signal to the urea spray
  • the nozzle 12 for example, energizes the nozzle coil 121, and achieves urea injection by controlling the movement of the valve needle.
  • the controller 13 sends a control signal to the urea pump 11 to control its rotational speed, thereby stabilizing the pressure of the system.
  • the controller 13 independently controls the urea pump 11 and the urea nozzle 12.
  • the present invention also discloses a heating filter assembly 202 for mounting on a urea tank 201 , wherein the heating filter assembly 202 includes a mounting seat 4 and is connected to the mounting seat 4 .
  • the mount 4 is provided with a coolant inlet joint 41 and a coolant outlet joint 42 connected to the heating pipe 5.
  • the urea pipe 6 is provided with a urea solution inlet 61 upstream of the filter 204 and a primary filter 203 at the bottom of the urea solution inlet 61.
  • better filtration can be achieved by providing two stages of filtration.
  • the filter 204 is detachably mounted on the top of the mount 4, it is easy to replace.
  • the mount 4 is also provided with a urea solution outlet 43 downstream of the filter 204.
  • the heating filter assembly 202 further includes a metal heat transfer tube 7 secured below the mount 4 for receiving the filter 204.
  • the urea pipe 6 is in communication with the metal heat transfer cylinder 7.
  • the metal heat conducting tube 7 is provided with an outer wall 71, and the heating filter assembly 202 further comprises a heat conducting member 8 connecting the outer wall 71 and the heating tube 5.
  • the metal heat transfer tube 7 is injection molded with the mount 4.
  • the outer wall 71 has a cylindrical shape, and the metal heat conducting tube 7 further includes a bottom wall 72 connected to the outer wall 71.
  • the coolant inlet fitting 41 and the coolant outlet fitting 42 are located on the same side of the mount 4 for ease of installation.
  • the urea solution outlet 43 and the coolant inlet fitting 41 and the coolant outlet fitting 42 are both located on the same side of the mount 4.
  • the heat conducting member 8 includes a first heat conducting sheet 81 and a second heat conducting sheet 82 fixed to the first heat conducting sheet 81.
  • the first heat conducting sheet 81 is provided with a first abutting portion 811 abutting on one side of the outer wall 71 and two first mounting portions 812 extending from two sides of the first abutting portion 811 respectively;
  • the second heat conducting sheet 82 is provided with a second abutting portion 821 abutting on the other side of the outer wall 71 and two second mounting portions 822 extending from two sides of the second abutting portion 821
  • the first mounting portion 811 and the second mounting portion 821 that are abutted against each other are fixed by mechanical connection, including but not limited to welding, riveting, bolting, and the like.
  • the first mounting portion 811 and the second mounting portion 821 that abut each other are fixed by bolts 83 and nuts 84.
  • the first abutting portion 811 and the second abutting portion 821 are both curved to increase the heat transfer area.
  • the engine coolant enters the heating pipe 5 from the coolant inlet joint 41, and a part of the heat is transferred to the metal heat pipe 7 through the heat conducting member 8 to heat and thaw the urea therein; on the other hand, heating
  • the tube 5 can also be heated and thawed by other urea solutions in the urea tank 201. It can be understood that the volume of urea in the metal heat transfer tube 7 is small, and the time required for thawing is short. After the urea in the metal heat pipe 7 is heated and thawed, a certain amount of urea solution is present in the system, and the post-treatment system can work under other conditions.
  • the urea heating filtration system in a first embodiment of the urea heating filtration system of the present invention, includes a urea tank 201 and a heating filter assembly 202 for mounting on the urea tank 201.
  • the heating filter assembly 202 is substantially identical in structure to the heating filter assembly 202 described in FIGS. 1 through 11 and will not be described herein.
  • the heating filter assembly 202 includes a mounting seat 4, a urea tube 6, a filter 204 housed in the mounting seat 4, and a pair of the filter 204 and/or the urea tank. 201 heating device for heating.
  • the urea pipe 6 is provided with a urea solution inlet 61 upstream of the filter 204, and the mount 4 is further provided with a urea solution outlet 43 downstream of the filter 204.
  • the heating filter assembly 202 includes a metal heat pipe 7 fixed under the mounting seat 4 and accommodating the filter 204.
  • the urea pipe 6 communicates with the metal heat pipe 7, the metal heat pipe 7 is provided with an outer wall 71, the heating filter assembly 202 further comprising a heat conducting member 8 connecting the outer wall 71 and the heating device; the urea heating filter system further comprises a filter outlet, or a filter inlet, or a a filter inlet 206 and a pressure sensor 206 of the filter outlet; the urea heating filter system further includes a filter controller 205 that determines whether the filter 204 needs to be replaced based on a signal fed back by the pressure sensor 206.
  • the pressure sensor 206 is a negative pressure sensor; the urea heating filtration system further includes a liquid level sensor 207 located in the urea tank 201 and a urea quality and temperature sensor 208, The level sensor 207 and the urea quality and temperature sensor 208 feed back signals to the filter controller 205; the filter controller 205 communicates with an engine control unit (ECU) via a CAN bus.
  • ECU engine control unit
  • the heating device includes a heating pipe 5 connected to the mounting seat 4 and a cooling water valve 209, and the mounting seat 4 is provided to be connected to the heating pipe 5.
  • the invention integrates the filter 204, the cooling water valve 209, the urea tank sensor group (including the liquid level sensor 207 and the urea quality and temperature sensor 208), the pressure sensor 206 and the intelligent control, thereby improving the performance of the product.
  • the heating device comprises electric heating.
  • the tube 2021 can also perform the function of heating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

一种尿素加热过滤系统,包括尿素箱(201)以及加热过滤组件(202),其中加热过滤组件(202)包括安装座(4)、尿素管(6)、收容在安装座(4)内的过滤器(204)以及加热装置,加热过滤组件(202)还包括固定在安装座(4)的下方且用以容纳过滤器(204)的金属导热筒(7),尿素加热过滤系统还包括安装在过滤器出口、或者过滤器进口、或者过滤器进出口的压力传感器(206)以及根据压力传感器(206)所反馈的信号以判断过滤器(204)是否需要更换的过滤器控制器(205)。该尿素加热过滤系统一方面将一部分热量通过导热件(8)传递到金属导热筒(7)中,以对其内的尿素进行加热解冻,其结构设计简单、加热方便;另一方面,通过设置压力传感器(206)以判断过滤器(204)是否需要更换,提高了系统的智能化。

Description

尿素加热过滤系统以及后处理系统组件
本申请要求了申请日为2017年2月8日、申请号为201710069555.5、发明名称为“加热过滤组件以及后处理系统组件”以及申请日为2017年9月19日、申请号为201710851576.2、发明名称为“加热过滤组件以及后处理系统组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种尿素加热过滤系统以及后处理系统组件,属于发动机尾气后处理技术领域。
背景技术
随着内燃机汽车的排放标准越来越严,为了降低排气中氮氧化合物等有害物质,目前业界通常采用的后处理技术是选择性催化还原(SCR),并在SCR的上游安装向排气中喷射尿素溶液。尿素溶液发生水解、热解产生氨气,并与氮氧化合物等发生化学反应,进而降低有害物质的浓度。
目前市场上的尿素喷射系统通常包括空气辅助系统和非空气辅助系统。当然,无论哪种系统均包括尿素箱总成、通过低压管道与所述尿素箱总成相连的泵供给单元、通过高压管道与泵供给单元相连的喷嘴模块以及控制器。泵供给单元中包括尿素泵以及压力传感器等,喷嘴模块包括尿素喷嘴等。尿素泵与尿素喷嘴间隔较远的距离,并通过尿素管相连。现有的尿素喷射系统包含较多的零部件,安装复杂,成本较高。
另外,因为尿素在低温环境下会结冰,为了使后处理系统能够适应较低的温度环境,通常都会在尿素箱中设置加热过滤组件,将发动机冷却液引入尿素箱中对结冰的尿素进行加热。考虑到加热解冻需要一定的时间,而后处理系统无法等待所有的尿素都被解冻之后才进行工作,因此,如何进行有效的热管理是业界普遍存在的技术问题。
发明内容
本发明的目的在于提供一种热传递方便且易于判断过滤器是否需要更换的尿素加热过滤系统以及具有该尿素加热过滤系统的后处理系统组件。
为实现上述目的,本发明采用如下技术方案:一种尿素加热过滤系统,其包括尿素箱以及用以安装于所述尿素箱上的加热过滤组件,其中所述加热过滤组件包括安装座、尿素管、收容在所述安装座内的过滤器以及用以对所述过滤器及/或所述尿素箱进行加热的加热装置,所述尿素管设有位于所述过滤器的上游的尿素溶液入口,所述安装座还设有位于所述过滤器的下游的尿素溶液出口,所述加热过滤组件包括固定在所述安装座的下方且用以容纳所述过滤器的金属导热筒,所述尿素管与所述金属导热筒连通,所述金属导热筒设有外壁,所述加热过滤组件还包括连接所述外壁与所述加热装置的导热件;所述尿素加热过滤系统还包括安装在过滤器出口、或者过滤器进口、或者所述过滤器进口与所述过滤器出口的压力传感器;所述尿素加热过滤系统还包括根据所述压力传感器所反馈的信号以判断所述过滤器是否需要更换的过滤器控制器。
作为本发明进一步改进的技术方案,所述压力传感器为负压传感器;所述尿素加热过滤系统还包括位于所述尿素箱中的液位传感器以及尿素品质与温度传感器,所述液位传感器以及所述尿素品质与温度传感器将信号反馈给所述过滤器控制器;所述过滤器控制器通过CAN总线与发动机控制单元进行通讯。
作为本发明进一步改进的技术方案,所述加热装置包括与所述安装座连接的加热管以及冷却水阀,所述安装座设有与所述加热管连接的冷却液进口接头以及冷却液出口接头,其中所述冷却水阀用以控制发动机冷却液的流动。
作为本发明进一步改进的技术方案,所述加热装置包括电加热管。
作为本发明进一步改进的技术方案,所述金属导热筒与所述安装座注塑成型在一起。
作为本发明进一步改进的技术方案,所述外壁呈圆柱形,所述金属导热筒还包括与所述外壁相连接的底壁。
作为本发明进一步改进的技术方案,所述冷却液进口接头与所述冷却液出口接头位于所述安装座的同一侧;所述尿素溶液出口与所述冷却液进口接头以及所述冷却液出口接头均位于所述安装座的同一侧。
作为本发明进一步改进的技术方案,所述导热件包括第一导热片以及与所述第一导热片固定在一起的第二导热片;所述第一导热片设有贴靠在所述外壁的一侧的第一贴靠部以及自所述第一贴靠部的两侧分别延伸的两个第一安装部;所述第二导热片设有贴靠在所述外壁的另一侧的第二贴靠部以及自所述第二贴靠部的两侧分别延伸的两个第二安装部;相互贴靠在一起的所述第一安装 部与所述第二安装部通过机械连接方式进行固定。
本发明还涉及一种后处理系统组件,其包括泵与喷嘴的集成装置以及前述的尿素加热过滤系统,其中所述泵用以将经过所述尿素加热过滤系统的尿素溶液泵送到所述喷嘴,所述喷嘴用以向发动机的排气中喷射尿素液滴,所述集成装置包括壳体、至少部分安装于所述壳体内的泵组件以及至少部分安装于所述壳体内的喷嘴组件,其中所述壳体包括位于所述泵组件的上游且与所述泵组件连通的入口通道以及位于所述泵组件的下游且与所述泵组件连通的出口通道,所述入口通道与所述尿素溶液出口连通,所述出口通道与所述喷嘴组件连通;所述泵组件包括用以驱动泵的电机线圈,所述喷嘴组件包括用以驱动喷嘴的喷嘴线圈,其中所述电机线圈与所述喷嘴线圈分别进行独立控制。
作为本发明进一步改进的技术方案,所述集成装置包括与所述电机线圈以及所述喷嘴线圈连接的控制器,所述控制器分别对所述泵以及所述喷嘴进行独立控制。
相较于现有技术,本发明通过金属导热筒限定了一个相对较小的内部体积,一部分热量通过导热件传递到金属导热筒中,以对其内的尿素进行加热解冻,结构设计简单、加热方便。另外,通过设置压力传感器,过滤器控制器通过对压力传感器所反馈的信号判断过滤器是否需要更换,提高了系统的智能化。
另外,本发明泵与喷嘴的集成装置很好的将泵与喷嘴集成在一起,结构简单、紧凑,极大地方便了客户的安装。另外,通过对电机线圈以及喷嘴线圈进行控制,从而避免了泵与喷嘴之间的相互干扰,提高了控制的精确性。在集成装置集成了尿素泵与尿素喷嘴的基础上,由于控制精度的提高,能够使喷入排气中的尿素的量与氮氧化合物达到合适的比例,降低了因过多喷射尿素而产生的结晶风险。
附图说明
图1是本发明的尾气后处理系统应用在处理发动机尾气时的原理图。
图2是图1中集成装置的原理图。
图3是图1中加热过滤组件的立体示意图。
图4是图3的部分分解图,其中过滤器被分离出来。
图5是去除图4中过滤器之后进一步的立体分解图,其中导热件被分离出来。
图6是图3的主视图。
图7是图3的左视图。
图8是图3的俯视图。
图9是图3的仰视图。
图10是沿图6中A-A线的剖面示意图。
图11是沿图10中B-B线的剖面示意图。
图12是图1中尿素加热过滤系统在第一实施方式中的示意图。
图13是图1中尿素加热过滤系统在第二实施方式中的示意图。
具体实施方式
请参图1所示,本发明揭示了一种尾气后处理系统100,能够应用于处理发动机10的尾气,降低有害物质的排放以满足排放法规的要求。所述尾气后处理系统100包括尾气后处理的喷射系统200以及尾气后处理的封装系统300,其中所述喷射系统200包括用以从尿素箱201中泵送尿素溶液(参箭头X所示)以及向所述发动机10的进气或者排气(例如向排气管106或者封装系统300内)中喷射尿素溶液的喷嘴组件。在本发明图示的实施方式中,所述喷嘴组件是一种集成装置1。所述封装系统300包括位于所述集成装置1下游的混合器301以及位于所述混合器301下游的载体302。当然,在某些实施方式中也可以不设置混合器,或者设置两个或者两个以上的混合器。所述载体302可以例如是选择性催化还原(SCR)等。
所述发动机10具有发动机冷却液循环回路。请参图1所示,在本发明图示的实施方式中,所述发动机冷却液循环回路包括第一循环回路101(参粗箭头Y所示)以及第二循环回路102(参细箭头Z所示),其中所述第一循环回路101用以冷却所述集成装置1,以降低其被高温的发动机排气烧坏的风险;所述第二循环回路102用以加热所述尿素箱201,以实现加热解冻功能。可以理解的是,在第一循环回路101中,所述集成装置1设有供发动机冷却液流入的入口接头103以及供发动机冷却液流出的出口接头104;在第二循环回路102中,其设有控制阀105,以在适宜的条件下打开或者关闭所述控制阀105,实现对第二循环回路102的控制。所述尿素箱201中设有连接在所述第二循环回路102中的加热过滤组件202,以利用发动机冷却液的温度对尿素溶液进行加热解冻,并利用初级过滤器203以及过滤器204对尿素溶液进行过滤。在本发明的一种实施方式中,所述初级过滤器203为过滤网。
以下就本发明的集成装置1进行详细描述。
请参图2所示,从原理上看,本发明的集成装置1集成了尿素泵11与尿素喷嘴12的功能。所述尿素泵11包括但不限于齿轮泵、膜片泵、柱塞泵或者叶片泵等。应该理解的是,在此使用的术语“集成”指的是尿素泵11与尿素喷嘴12可以作为单一装置被安装在进气管或者排气管上;或者尿素泵11与尿素喷嘴12相互靠近并通过较短的连接管道进行连接,在整体上可以被视为一个装置。
另外,为了对尿素泵11以及尿素喷嘴12进行独立控制,本发明的尾气后处理系统100还设有控制器13。可以理解,所述控制器13可以与所述集成装置1集成在一起或者与所述集成装置1分开设置。请参图2所示,在本发明图示的实施方式中,所述控制器13集成在所述集成装置1内,以实现零件的高度集成化,提高客户端的安装便利性。
所述集成装置1设有用以容纳所述尿素泵11与所述尿素喷嘴12的壳体14。图2所示的实施方式仅是对壳体14的粗略显示。例如,在一种实施方式中,所述壳体14由尿素泵11以及尿素喷嘴12共享;在另一种实施方式中,所述壳体14被区分为与尿素泵11相配合的第一壳体以及与尿素喷嘴12相配合的第二壳体,第一壳体与第二壳体装配在一起,以形成一个整体。所述壳体14设有连接在所述尿素箱201与所述尿素泵11之间的入口通道15以及连接在所述尿素泵11与所述尿素喷嘴12之间的出口通道16。需要说明的是,这里使用的术语“入口通道15”中的“入口”与“出口通道16”中的“出口”是以尿素泵11作为参照,即尿素泵11的上游为入口,尿素泵11的下游为出口。所述出口通道16与所述尿素喷嘴12连通,以向所述尿素喷嘴12泵送尿素溶液。可以理解的是,所述入口通道15位于尿素泵11的上游,为低压通道;所述出口通道16位于尿素泵11的下游,为高压通道。
另外,所述集成装置1设有用以检测温度的温度传感器171。所述温度传感器171可以被设置为与所述入口通道15及/或所述出口通道16连通;或者所述温度传感器171可以被设置为安装在所述集成装置1的任意位置。所述温度传感器171检测到的信号传递给控制器13,控制器13基于该输入信号以及其他信号所设计的控制算法能够提高尿素喷嘴12的喷射精度。所述集成装置1还设有用以检测压力的压力传感器172,所述压力传感器172与所述出口通道16连通,以检测尿素泵11出口的高压通道中的压力。由于本发明的集成设计,内部通道的距离比较短,因此可以认为所述压力传感器172的位置比较靠近所述尿素喷嘴12。这种设计的优点在于压力传感器 172所测得的压力比较接近尿素喷嘴12中的压力,提高了数据的精确性,进而提高了尿素喷嘴12的喷射精度。在本发明的一种实施方式中,所述温度传感器171与所述压力传感器172为两个元件;在在本发明的另一种实施方式中,所述温度传感器171与所述压力传感器172为一个元件,但是同时具有检测温度与压力的功能。
请参图2所示,所述集成装置1还设有连接在所述出口通道16与所述入口通道15之间的溢流元件173。所述溢流元件173包括但不限于溢流阀、安全阀或者电控阀等。所述溢流元件173的功能是当高压通道中的压力高于设定值时,将所述溢流元件173打开,将位于高压通道中的尿素溶液释放到低压通道中或者直接返回到所述尿素箱201中,以实现压力调节。
为了驱动尿素泵11,所述尿素泵11设有与所述控制器13进行通讯的电机线圈111。为了驱动尿素喷嘴12,所述尿素喷嘴12设有与所述控制器13进行通讯的喷嘴线圈121。
所述控制器13与所述温度传感器171以及所述压力传感器172进行通讯,以将温度信号以及压力信号传送给所述控制器13。当然,为了能够实现精确控制,所述控制器13还可以接收其他信号,例如来自CAN总线的、与发动机运行参数有关的信号。另外,所述控制器13还可以获得所述尿素泵11的转速,当然,转速信号的采集可以通过相应的转速传感器175(硬件)或者通过控制算法(软件)来实现。所述控制器13分别对所述尿素泵11以及所述尿素喷嘴12进行独立控制。这种控制的优点在于能够降低尿素泵11的动作对尿素喷嘴12的影响,以实现比较高的控制精度。
另外,在某些工况下,由于发动机的排气具有较高的温度,而尿素喷嘴12一般情况下又是安装在排气管上的,因此需要对所述尿素喷嘴12进行冷却。所述集成装置1为此还设有冷却组件,所述冷却组件通过冷却介质对所述尿素喷嘴12进行冷却。所述冷却介质包括但不限于空气、及/或发动机冷却液、及/或润滑油、及/或尿素等。请参图2所示,本发明图示的实施方式采用水冷,即采用发动机冷却液对尿素喷嘴12进行冷却。壳体14内设有用以供发动机冷却液流通的冷却通道141。
请参图2所示,所述集成装置1的主要工作原理如下:
控制器13驱动尿素泵11运转,位于尿素箱201中尿素溶液通过入口通道15被吸入尿素泵11,经过加压之后,再通过出口通道16输送至尿素喷嘴12。其中,控制器13采集及/或计算需要的信号,例如温度、压力、泵转速等。当达到喷射条件时,控制器13发出控制信号给尿素喷 嘴12,例如给喷嘴线圈121通电,通过控制阀针的运动来实现尿素喷射。控制器13发出控制信号给尿素泵11以控制其转速,从而稳定系统的压力。在本发明图示的实施方式中,所述控制器13分别对所述尿素泵11以及所述尿素喷嘴12进行独立控制。
请参图3至图11所示,本发明还揭示了一种用以安装于尿素箱201上的加热过滤组件202,其中所述加热过滤组件202包括安装座4、与所述安装座4连接的加热管5、尿素管6以及收容在所述安装座4内的过滤器204。所述安装座4设有与所述加热管5连接的冷却液进口接头41以及冷却液出口接头42。所述尿素管6设有位于所述过滤器204的上游的尿素溶液入口61以及位于所述尿素溶液入口61的底部的初级过滤器203。在本发明图示的实施方式中,通过设置两级过滤,可以实现更好的过滤。另外,由于过滤器204是以可拆卸的方式安装在所述安装座4的顶部,因此便于更换。
所述安装座4还设有位于所述过滤器204的下游的尿素溶液出口43。另外,所述加热过滤组件202还包括固定在所述安装座4的下方且用以容纳所述过滤器204的金属导热筒7。所述尿素管6与所述金属导热筒7连通。所述金属导热筒7设有外壁71,所述加热过滤组件202还包括连接所述外壁71与所述加热管5的导热件8。
在本发明图示的实施方式中,所述金属导热筒7与所述安装座4注塑成型在一起。所述外壁71呈圆柱形,所述金属导热筒7还包括与所述外壁71相连接的底壁72。
所述冷却液进口接头41与所述冷却液出口接头42位于所述安装座4的同一侧,以便于安装。优选地,所述尿素溶液出口43与所述冷却液进口接头41以及所述冷却液出口接头42均位于所述安装座4的同一侧。
所述导热件8包括第一导热片81以及与所述第一导热片81固定在一起的第二导热片82。所述第一导热片81设有贴靠在所述外壁71的一侧的第一贴靠部811以及自所述第一贴靠部811的两侧分别延伸的两个第一安装部812;所述第二导热片82设有贴靠在所述外壁71的另一侧的第二贴靠部821以及自所述第二贴靠部821的两侧分别延伸的两个第二安装部822;相互贴靠在一起的所述第一安装部811与所述第二安装部821通过机械连接方式进行固定,包括但不限于焊接、铆接、螺栓连接等。在本发明图示的实施方式中,相互贴靠在一起的所述第一安装部811与所述第二安装部821通过螺栓83以及螺母84进行固定。优选地,所述第一贴靠部811与所述第二贴靠部821均呈弧形,以增大传热面积。
使用时,发动机冷却液自冷却液进口接头41进入到所述加热管5中,一部分热量通过导热件8传递到金属导热筒7中,以对其内的尿素进行加热解冻;另一方面,加热管5还可以对尿素箱201中的其他尿素溶液进行加热解冻。可以理解,金属导热筒7中的尿素体积较小,解冻需要的时间较短。当金属导热筒7中的尿素被加热解冻之后,系统中就存在一定量的尿素溶液,在满足其他条件的情况下,后处理系统便可工作。
请参图12所示,在本发明尿素加热过滤系统的第一实施方式中,所述尿素加热过滤系统包括尿素箱201、用以安装于所述尿素箱201上的加热过滤组件202。所述加热过滤组件202与图1至图11中所描述的加热过滤组件202结构大致相同,在此不再赘述。
请参图12所示,所述加热过滤组件202包括安装座4、尿素管6、收容在所述安装座4内的过滤器204以及用以对所述过滤器204及/或所述尿素箱201进行加热的加热装置。所述尿素管6设有位于所述过滤器204的上游的尿素溶液入口61,所述安装座4还设有位于所述过滤器204的下游的尿素溶液出口43。所述加热过滤组件202包括固定在所述安装座4的下方且用以容纳所述过滤器204的金属导热筒7,所述尿素管6与所述金属导热筒7连通,所述金属导热筒7设有外壁71,所述加热过滤组件202还包括连接所述外壁71与所述加热装置的导热件8;所述尿素加热过滤系统还包括安装在过滤器出口、或者过滤器进口、或者所述过滤器进口与所述过滤器出口的压力传感器206;所述尿素加热过滤系统还包括根据所述压力传感器206所反馈的信号以判断所述过滤器204是否需要更换的过滤器控制器205。
在本发明图示的实施方式中,所述压力传感器206为负压传感器;所述尿素加热过滤系统还包括位于所述尿素箱201中的液位传感器207以及尿素品质与温度传感器208,所述液位传感器207以及所述尿素品质与温度传感器208将信号反馈给所述过滤器控制器205;所述过滤器控制器205通过CAN总线与发动机控制单元(ECU)进行通讯。
在图1以及图12所示的实施方式中,所述加热装置包括与所述安装座4连接的加热管5以及冷却水阀209,所述安装座4设有与所述加热管5连接的冷却液进口接头41以及冷却液出口接头42,其中所述过滤器控制器205通过控制冷却水阀209以控制发动机冷却液的流动。
本发明将过滤器204、冷却水阀209、尿素箱传感器组(包括液位传感器207以及尿素品质与温度传感器208)、压力传感器206以及智能控制于一体,提高了产品的性能。
请参图13所示,在本发明尿素加热过滤系统的第二实施方式中,所述加热装置包括电加热 管2021,同样可以实现加热的功能。
另外,以上实施例仅用于说明本发明而并非限制本发明所描述的技术方案,对本说明书的理解应该以所属技术领域的技术人员为基础,尽管本说明书参照上述的实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本发明进行修改或者等同替换,而一切不脱离本发明的精神和范围的技术方案及其改进,均应涵盖在本发明的权利要求范围内。

Claims (10)

  1. 一种尿素加热过滤系统,其包括尿素箱以及用以安装于所述尿素箱上的加热过滤组件,其中所述加热过滤组件包括安装座、尿素管、收容在所述安装座内的过滤器以及用以对所述过滤器及/或所述尿素箱进行加热的加热装置,所述尿素管设有位于所述过滤器的上游的尿素溶液入口,所述安装座还设有位于所述过滤器的下游的尿素溶液出口,其特征在于:所述加热过滤组件包括固定在所述安装座的下方且用以容纳所述过滤器的金属导热筒,所述尿素管与所述金属导热筒连通,所述金属导热筒设有外壁,所述加热过滤组件还包括连接所述外壁与所述加热装置的导热件;所述尿素加热过滤系统还包括安装在过滤器出口、或者过滤器进口、或者所述过滤器进口与所述过滤器出口的压力传感器;所述尿素加热过滤系统还包括根据所述压力传感器所反馈的信号以判断所述过滤器是否需要更换的过滤器控制器。
  2. 如权利要求1所述的尿素加热过滤系统,其特征在于:所述压力传感器为负压传感器;所述尿素加热过滤系统还包括位于所述尿素箱中的液位传感器以及尿素品质与温度传感器,所述液位传感器以及所述尿素品质与温度传感器将信号反馈给所述过滤器控制器;所述过滤器控制器通过CAN总线与发动机控制单元进行通讯。
  3. 如权利要求1所述的尿素加热过滤系统,其特征在于:所述加热装置包括与所述安装座连接的加热管以及冷却水阀,所述安装座设有与所述加热管连接的冷却液进口接头以及冷却液出口接头,其中所述过滤器控制器通过控制冷却水阀以控制发动机冷却液的流动。
  4. 如权利要求1所述的尿素加热过滤系统,其特征在于:所述加热装置包括电加热管。
  5. 如权利要求1所述的尿素加热过滤系统,其特征在于:所述金属导热筒与所述安装座注塑成型在一起。
  6. 如权利要求1所述的尿素加热过滤系统,其特征在于:所述外壁呈圆柱形,所述金属导热筒还包括与所述外壁相连接的底壁。
  7. 如权利要求3所述的尿素加热过滤系统,其特征在于:所述冷却液进口接头与所述冷却液出口接头位于所述安装座的同一侧;所述尿素溶液出口与所述冷却液进口接头以及所述冷却液出口接头均位于所述安装座的同一侧。
  8. 如权利要求1所述的尿素加热过滤系统,其特征在于:所述导热件包括第一导热片以及与所述第一导热片固定在一起的第二导热片;所述第一导热片设有贴靠在所述外壁的一侧的第一贴靠部以及自所述第一贴靠部的两侧分别延伸的两个第一安装部;所述第二导热片设有贴靠在所述外壁的另一侧的第二贴靠部以及自所述第二贴靠部的两侧分别延伸的两个第二安装部;相互贴靠在一起的所述第一安装部与所述第二安装部通过机械连接方式进行固定。
  9. 一种后处理系统组件,其包括泵与喷嘴的集成装置以及如权利要求1至8项中任意一项所述的尿素加热过滤系统,其中所述泵用以将经过所述尿素加热过滤系统的尿素溶液泵送到所述喷嘴,所述喷嘴用以向发动机的排气中喷射尿素液滴,所述集成装置包括壳体、至少部分安装于所述壳体内的泵组件以及至少部分安装于所述壳体内的喷嘴组件,其中所述壳体包括位于所述泵组件的上游且与所述泵组件连通的入口通道以及位于所述泵组件的下游且与所述泵组件连通的出口通道,所述入口通道与所述尿素溶液出口连通,所述出口通道与所述喷嘴组件连通;所述泵组件包括用以驱动泵的电机线圈,所述喷嘴组件包括用以驱动喷嘴的喷嘴线圈,其中所述电机线圈与所述喷嘴线圈分别进行独立控制。
  10. 如权利要求9所述的后处理系统组件,其特征在于:所述集成装置包括与所述电机线圈以及所述喷嘴线圈连接的控制器,所述控制器分别对所述泵以及所述喷嘴进行独立控制。
PCT/CN2017/110637 2017-02-08 2017-11-13 尿素加热过滤系统以及后处理系统组件 WO2018145497A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710069555 2017-02-08
CN201710069555.5 2017-02-08
CN201710851576.2 2017-09-19
CN201710851576 2017-09-19

Publications (1)

Publication Number Publication Date
WO2018145497A1 true WO2018145497A1 (zh) 2018-08-16

Family

ID=62264068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110637 WO2018145497A1 (zh) 2017-02-08 2017-11-13 尿素加热过滤系统以及后处理系统组件

Country Status (2)

Country Link
CN (1) CN207470267U (zh)
WO (1) WO2018145497A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207363744U (zh) * 2017-02-08 2018-05-15 天纳克(苏州)排放系统有限公司 加热过滤组件以及后处理系统组件
CN112253292B (zh) * 2020-11-16 2023-09-08 吉林大学 一种车用尿素加热装置及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130199979A1 (en) * 2010-08-06 2013-08-08 Mahle International Gmbh Fluid filter
CN204003021U (zh) * 2014-07-25 2014-12-10 宁波春华汽配有限公司 尿素罐
CN205559025U (zh) * 2016-03-15 2016-09-07 茵卡排放控制系统(江苏)有限公司 用于scr尾气后处理的压差式尿素泵
JP6005413B2 (ja) * 2012-06-18 2016-10-12 日野自動車株式会社 排気浄化装置
EP3097964A1 (en) * 2015-05-28 2016-11-30 Shaw Development LLC Filter inline heater
CN106285853A (zh) * 2016-10-31 2017-01-04 中国第汽车股份有限公司 一种集成液位传感器的高压车用尿素液供给模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130199979A1 (en) * 2010-08-06 2013-08-08 Mahle International Gmbh Fluid filter
JP6005413B2 (ja) * 2012-06-18 2016-10-12 日野自動車株式会社 排気浄化装置
CN204003021U (zh) * 2014-07-25 2014-12-10 宁波春华汽配有限公司 尿素罐
EP3097964A1 (en) * 2015-05-28 2016-11-30 Shaw Development LLC Filter inline heater
CN205559025U (zh) * 2016-03-15 2016-09-07 茵卡排放控制系统(江苏)有限公司 用于scr尾气后处理的压差式尿素泵
CN106285853A (zh) * 2016-10-31 2017-01-04 中国第汽车股份有限公司 一种集成液位传感器的高压车用尿素液供给模块

Also Published As

Publication number Publication date
CN207470267U (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
WO2018145496A1 (zh) 加热过滤组件以及后处理系统组件
US9719392B2 (en) Systems and techniques for nozzle cooling of diesel exhaust fluid injection systems
US8888017B2 (en) System, method, and apparatus for delivering highly atomized diesel exhaust fluid to an exhaust aftertreatment system
US9470129B2 (en) Systems and techniques for heating urea injection systems
US9458746B2 (en) Systems and techniques for heating urea injection systems
CN107299851B (zh) 集成装置、尾气后处理系统以及控制方法
WO2017114060A1 (zh) 集成装置、尾气后处理系统以及控制方法
WO2017092651A1 (zh) 集成装置、尾气后处理系统以及控制方法
JP2011247141A (ja) Scrシステム
US11136905B2 (en) Rankine power system with working fluid tank and control system
WO2018145497A1 (zh) 尿素加热过滤系统以及后处理系统组件
WO2018171214A1 (zh) 尾气后处理系统
CN108331644B (zh) 集成装置、尾气后处理系统以及控制方法
WO2017211120A1 (zh) 集成装置、尾气后处理系统以及控制方法
WO2018171213A1 (zh) 尾气后处理系统
WO2017211118A1 (zh) 集成装置、尾气后处理系统以及控制方法
US10156173B1 (en) Systems and methods for compensating a reductant delivery system in an aftertreatment system of an internal combustion engine
WO2018171215A1 (zh) 集成装置、尾气后处理系统以及控制方法
WO2017211121A1 (zh) 集成装置、尾气后处理系统以及控制方法
WO2018171218A1 (zh) 集成装置、尾气后处理系统以及控制方法
WO2017211119A1 (zh) 集成装置、尾气后处理系统以及控制方法
WO2018171219A1 (zh) 集成装置、尾气后处理系统以及控制方法
WO2018171216A1 (zh) 集成装置、尾气后处理系统以及控制方法
US20190211727A1 (en) Injection controller
WO2017211117A1 (zh) 集成装置、尾气后处理系统以及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896186

Country of ref document: EP

Kind code of ref document: A1