WO2018145340A1 - 一种基于剪切振动的压电复合材料及其制备方法 - Google Patents

一种基于剪切振动的压电复合材料及其制备方法 Download PDF

Info

Publication number
WO2018145340A1
WO2018145340A1 PCT/CN2017/075575 CN2017075575W WO2018145340A1 WO 2018145340 A1 WO2018145340 A1 WO 2018145340A1 CN 2017075575 W CN2017075575 W CN 2017075575W WO 2018145340 A1 WO2018145340 A1 WO 2018145340A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
layer
polymer
vibration
composite
Prior art date
Application number
PCT/CN2017/075575
Other languages
English (en)
French (fr)
Inventor
秦雷
贾俊博
王丽坤
Original Assignee
北京信息科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京信息科技大学 filed Critical 北京信息科技大学
Priority to US16/331,620 priority Critical patent/US11245066B2/en
Publication of WO2018145340A1 publication Critical patent/WO2018145340A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/092Forming composite materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/208Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using shear or torsion displacement, e.g. d15 type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/44Special adaptations for subaqueous use, e.g. for hydrophone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/005Piezoelectric transducers; Electrostrictive transducers using a piezoelectric polymer

Definitions

  • the invention belongs to the technical field of piezoelectric materials, and particularly relates to a piezoelectric composite material based on shear vibration and a preparation method thereof.
  • piezoelectric materials are mainly classified into piezoelectric ceramics, piezoelectric single crystals, piezoelectric composite materials, and piezoelectric polymers. Because of its different characteristics, it has different applications in the fields of underwater sound, ultrasound and sensing.
  • Piezoelectric composite materials are a kind of material that has appeared in the past forty years. It is composed of a piezoelectric material and a polymer. It mainly improves the comprehensive properties of the material by adding a polymer phase. Since the concept of connectivity was proposed by Newnham et al. at Pennsylvania State University in 1978, piezoelectric composites have grown considerably. Since then, piezoelectric composites have entered a period of rapid development. Newnham, Skinner, Horner, Gururaja, and Savakus conducted a large number of theoretical and experimental studies, and developed various types of 0-3, 2-2, 1-3, 3-1, and 3-2. Structural piezoelectric composites. Domestic researchers have also conducted related research.
  • the 1-3 type piezoelectric composite material is characterized in that the piezoelectric ceramic column or the single crystal column is connected in one dimension in the thickness direction, and the polymer such as epoxy resin is poured around, and the polymer phase is three-dimensionally connected. At this time, the researchers realized that the vibration mode of the ceramic inside the composite is the main factor affecting the performance of the composite.
  • 1-3 piezoelectric composites improve performance by converting the thickness vibration of a monolithic ceramic into longitudinally stretching vibrations (also known as d33 modes) of many piezoelectric columns.
  • the electromechanical coupling coefficient kt of thickness vibration is about 0.5, while the longitudinally telescopic electromechanical coupling coefficient k33 can reach 0.7. Therefore, by changing the vibration mode of the crystal column, the electromechanical coupling coefficient of the equivalent thickness of the 1-3 type composite material is increased by about 20% compared with the piezoelectric ceramic thickness.
  • the d15 shear vibration mode means that when the electric excitation is applied in one direction (non-polarization direction) of the piezoelectric ceramic material, the vibration state is deformed in the tangential direction of the other two directions.
  • the piezoelectric constant d15 is generally larger than d33 and d31.
  • the size of d15 has a large relationship with the crystal orientation and material.
  • k15 is not significantly lower than k33, especially for PZT-5A piezoelectric ceramics, and k15 is also significantly higher than k33.
  • the size of k15 has a large relationship with the crystal orientation and material.
  • the d15 mode of shear vibration is much better than the longitudinally stretched d33 mode.
  • the piezoelectric material d15 mode at home and abroad, mainly in the field of energy harvesting. Because it produces shear deformation, it is more difficult to concentrate the sound waves in a plane, so it is rare to use it as a conventional transducer.
  • this composite material is also suitable for use in the field of energy harvesting. Because it selects a vibration mode with higher energy conversion efficiency, and the composite material can be externally stressed and transmitted to the piezoelectric element through the transition structure, thereby generating a stress amplification effect and further increasing the voltage of the output electrical signal. Thereby making it more sensitive.
  • the present invention provides a piezoelectric composite material based on shear vibration (d15 mode) and a preparation method thereof, which are innovatively selected to have higher piezoelectric constants and electromechanical
  • the d15 mode of the coupling coefficient is used to prepare the piezoelectric composite material, and the weak point of shear vibration generated by the d15 mode is overcome, and the shear vibration is transformed into the thickness vibration of the upper and lower surfaces of the composite material through special structural design.
  • the purpose of composite properties is used to prepare the piezoelectric composite material, and the weak point of shear vibration generated by the d15 mode is overcome, and the shear vibration is transformed into the thickness vibration of the upper and lower surfaces of the composite material through special structural design.
  • a piezoelectric composite material based on shear vibration comprising a piezoelectric material and a passive material; the piezoelectric material comprising a piezoelectric material that is positively polarized along the x-axis and a piezoelectric material that is negatively polarized along the x-axis
  • the piezoelectric materials of the two polarization directions are alternately arranged along the x-axis direction;
  • the passive material comprises a filling layer, a transition layer and a planar layer;
  • the filling layer is disposed between every two adjacent piezoelectric materials;
  • the planar layer is located outside the two surfaces perpendicular to the z-axis of the piezoelectric material, wherein the planar layer on one side is fixedly connected to the filling layer at the odd-numbered position through the transition layer, and the planar layer on the other side passes through the transition layer and the even-numbered position
  • the fill layer is fixedly connected.
  • electrodes are disposed on two surfaces of the piezoelectric material perpendicular to the z-axis.
  • the angle between the polarization direction and the electric field direction is 90 degrees, and the piezoelectric material generates shear deformation under the electric field excitation and drives the filling layer between the piezoelectric materials to generate vibration, and adjacent
  • the filling layer generates opposite vibrations, and the generated vibration is transmitted to the planar layer through the transition layer, thereby realizing the shear vibration of the piezoelectric material to the transformation of the thickness vibration of the composite material.
  • the piezoelectric material stack structure formed along the x-axis direction can be added Prestressed structures, such as prestressed screws, locking devices, etc., to increase the compressive and tensile strength of the composite.
  • the piezoelectric material may be a piezoelectric ceramic, a piezoelectric single crystal, a piezoelectric polymer, a piezoelectric composite material, or the like.
  • the passive material is preferably a polymer, and in particular may be a metal or ceramic material.
  • the polymer may be an epoxy resin, a phenol resin, a polyurethane, a rubber, a plexiglass or the like.
  • transition layer has a trapezoidal or rectangular cross section, and its overall shape may be cylindrical, conical, parabolic, or the like.
  • planar layers may be joined together to form a plane, or may be independent of each other (ie, the polymer planar layers connected to the transition layers at different locations are independent of each other, not integrated).
  • a method for preparing the above piezoelectric vibration composite material based on shear vibration comprising the following steps:
  • a method for preparing the above piezoelectric vibration composite material based on shear vibration comprising the following steps:
  • a hydroacoustic transducer comprising a piezoelectric composite vibrator, a waterproof sound-permeable layer and an output cable, wherein the piezoelectric composite vibrator uses the above-mentioned shear-vibration-based piezoelectric composite material and is passed through a lead The piezoelectric material is connected to the output cable; and the waterproof sound-permeable layer is sealed on the outside of the piezoelectric composite vibrator.
  • An energy collecting device comprising a piezoelectric composite vibrator, a clamping structure for increasing compressive tensile strength, a waterproof sound-permeable layer and an output cable, the piezoelectric composite vibrator Using the shear vibration based on the above
  • the piezoelectric composite material is connected to the output cable by a lead wire; and the waterproof sound-permeable layer is sealed on the outside of the piezoelectric composite vibrator.
  • the shear vibration-based composite material of the invention overcomes the weak point of shear vibration generated by the d15 mode, and transforms the shear vibration into the thickness vibration of the upper and lower surfaces of the composite material through special structural design, thereby improving the performance of the composite material. It has a high electromechanical coupling coefficient and a high piezoelectric constant and can be used to prepare a high-power underwater acoustic transducer array.
  • the invention breaks through the limitation of the traditional mode 1-3 piezoelectric composite material d33 mode, and makes the d15 mode become possible in the use of the transducer vibrator, and provides a new idea for the new vibrator structure research.
  • the shear-vibration-based composite material can improve the working distance and detection accuracy of the sonar system.
  • the shear-vibration-based composite material can improve the detection accuracy of ultrasonic non-destructive testing and medical ultrasound.
  • Figure 1 is a schematic view showing the structure of a piezoelectric composite based on shear vibration.
  • FIG. 2 is a schematic diagram of polarization directions and vibration modes of a piezoelectric composite based on shear vibration.
  • FIG. 3 is a flow chart of a first method for preparing a piezoelectric composite based on shear vibration.
  • FIG. 4 is a flow chart of a second method for preparing a piezoelectric composite based on shear vibration.
  • Fig. 5 is a schematic view showing the structure of a 2-2 type piezoelectric ceramic composite material based on shear vibration.
  • Fig. 6 is a tensile and vibrational piezoelectric composite admittance and impedance curve, wherein (a) is a conductance G curve whose abscissa is a frequency; (b) is a resistance R curve whose abscissa is a frequency.
  • Fig. 7 is a vibration mode diagram of shear vibration of a PZT-4 piezoelectric composite.
  • Fig. 8 is a vibration mode diagram of shear vibration of a PZT-5H piezoelectric composite material.
  • 9A and 9B are two structural views of a hydroacoustic transducer of a piezoelectric composite based on shear vibration.
  • Figure 10 is a schematic illustration of the transition layers being independent of each other, i.e., not joined by a planar layer.
  • 11A and 11B are two structural views of a hydrophone and a piezoelectric energy absorbing device of a piezoelectric composite based on shear vibration.
  • the shear vibration-based piezoelectric composite structure of the present invention consists of an active material, that is, a piezoelectric material, and a passive material. That is, it is not composed of a piezoelectric material.
  • the composite material is composed of piezoelectric ceramics 1 and polymer 2.
  • the piezoelectric ceramics which are forwardly polarized along the x-axis and the piezoelectric ceramics which are negatively polarized along the x-axis are alternately arranged in the x-axis direction.
  • Piezoelectric ceramic interpenetrating polymer (epoxy resin), electrodes are prepared on two ceramic faces perpendicular to the z-axis.
  • the d15 vibration mode refers to an electric excitation when a z direction (ie, perpendicular to a polarization direction) is applied to a piezoelectric ceramic material whose polarization direction is an x direction (x positive or x negative direction), at x, A tangential deformation occurs in the z-plane. As shown in Fig.
  • the first and second primitives represent the polarization direction P and the electric field direction E of the ceramic material
  • the third, fourth, and fifth primitives represent the deformation of the ceramic material under electric field excitation. It can be seen that the interaction of the third and fourth two elements can drive the vibration of the polymer 2a (polymer filled layer) phase between the elements, and the fourth and fifth elements work together to drive the polymer to produce the opposite. vibration. This vibration is then transmitted to the polymer plane 2c (polymer plane layer) of the upper and lower surfaces through the trapezoidal polymer phase 2b (polymer transition layer), thereby completing the electromechanical conversion process and realizing the piezoelectric ceramic shear vibration to the composite material. Conversion of thickness vibration.
  • the piezoelectric material may be a piezoelectric single crystal, a piezoelectric polymer, a piezoelectric composite or the like in addition to the piezoelectric ceramic.
  • the polymer may be a phenolic resin, a polyurethane, a rubber, a plexiglass, or a metal, ceramic, or the like in addition to the epoxy resin.
  • the cross section of the polymer transition layer may be rectangular, parabolic, or the like in addition to the trapezoid, and the overall shape may be cylindrical, conical, or the like.
  • the polymer transition layers may be joined together by a polymer planar layer (the polymer planar layers are joined together to form a plane), as shown in Figs. In other embodiments, they may also be independent of each other, not connected by a planar layer (the polymer planar layers connected to the polymer transition layers at different locations are independent of each other, not integrated), as shown in FIG.
  • the above-mentioned piezoelectric composite material based on shear vibration is compounded by two-phase materials, and the preparation process of the material has an influence on its performance.
  • the invention proposes two composite material preparation processes:
  • the composite material is prepared by the preparation process as shown in FIG. 3, and specifically includes the following steps:
  • the composite material is prepared by the preparation process shown in FIG. 4, and specifically includes the following steps:
  • the three polymer planar layers, the polymer trapezoidal transition layer and the polymer filled layer may be integrally cast or formed separately, and then bonded together; the polymer trapezoidal transition layer and the plane
  • the layer may be selected from materials such as lightweight aluminum sheets and plexiglass, and the polymer trapezoidal transition layer and the planar layer may be integrally connected as needed or may be selected independently of each other.
  • the invention studies the shear vibration of piezoelectric ceramic materials.
  • Piezoelectric ceramic columns with length, width and height of 20mm, 5mm and 5mm were prepared by using PZT-4 and PZT-5H piezoelectric ceramics.
  • the polarization direction of the piezoelectric ceramic was the width direction and the electric field direction was the thickness direction.
  • the electrical conductance and electrical impedance curves of the piezoelectric ceramic d15 mode can be measured by using an impedance analyzer.
  • the experimental results show that the series resonant frequencies of PZT-5H and PZT-4 piezoelectric ceramics are 217 kHz and 244 kHz, respectively, and the parallel resonant frequencies are 263 kHz and 279 kHz, respectively.
  • the electromechanical coupling coefficients can be calculated to be 0.56 and 0.48, respectively.
  • the electromechanical coupling coefficient is lower than the theoretical value because the shear vibration is not simple enough to couple the vibration in the longitudinal direction.
  • the coupling of vibration can be avoided by adjusting the length dimension to increase the electromechanical coupling coefficient.
  • the present invention uses a laser Doppler vibration measuring instrument to measure the above two samples, and the measurement results show that the piezoelectric ceramic vibration is shear vibration.
  • the piezoelectric ceramic has a polarization direction of the x direction and the electric field direction is the z direction, the shear vibration of the piezoelectric ceramic occurs in the xz plane.
  • the piezoelectric ceramic has a long length, since the piezoelectric ceramic has a long length, the fundamental frequency along the length direction and the shear vibration are coupled at the resonance frequency. If it is not necessary to expand the bandwidth by vibration coupling, it may be considered to introduce a 2-2 type composite structure in the length direction to avoid vibration coupling.
  • the present invention designs a 2-2 type structure based on shear vibration as shown in FIG.
  • the adjacent piezoelectric ceramics have opposite polarization directions, the ceramic is filled with epoxy resin, and the upper and lower surfaces are sputtered with electrodes. Thereby the composite material is excited to produce shear vibration.
  • This structure differs from the piezoelectric composite of the present invention in that no epoxy transition layer is introduced, and shear vibration is not considered to be converted into thickness vibration for the time being, and shear vibration can be excited only to verify the structure.
  • the piezoelectric ceramic columns in the composite material have length, width and height of 20 mm, 5 mm and 5 mm, respectively.
  • the epoxy resin has a width of 1 mm.
  • the series resonant frequencies of PZT-5H and PZT-4 piezoelectric composites are 229 kHz and 245 kHz, respectively, and the parallel resonant frequencies are 270 kHz and 284 kHz, respectively.
  • the electromechanical coupling coefficients are 0.53 and 0.51, respectively.
  • the electromechanical coupling coefficient is reduced from 0.56 to 0.53 for pure ceramics. This is because the introduction of epoxy resin increases the load and therefore reduces the electromechanical coupling coefficient.
  • the electromechanical coupling coefficient increases from 0.48 to 0.51 for pure ceramics.
  • the vibration mode of pure ceramics is not pure, so the electromechanical coupling coefficient is not the coefficient of the simple shear vibration mode.
  • the theoretical value should be higher. After the composite material is prepared, the interference vibration mode is suppressed due to the presence of the epoxy resin, so that the shear vibration is more pure, so the electromechanical coupling coefficient is increased.
  • Figure 7 and Figure 8 show the vibration velocity spectrum and vibration mode of PZT-5H and PZT-4 piezoelectric composites, respectively.
  • the peak of each curve in the figure corresponds to a certain vibration mode of the piezoelectric ceramic, while the inset shows the surface topography of the sample at the maximum vibration velocity.
  • Vibration mode at the time It can be seen from the figure that under the shear vibration of the piezoelectric ceramic element, the peaks and troughs alternately appear at the epoxy resin.
  • the two vibrator structures designed in the foregoing are made into a water acoustic transducer, and the underwater acoustic transducer structure is as shown in FIG. 9A and FIG. 9B.
  • the piezoelectric composite vibrator is composed of a piezoelectric ceramic that excites shear vibration and a vibration transition layer, and leads are connected to the output cable between the ceramic columns.
  • the entire transducer is sealed with a waterproof sound-permeable layer, which can transmit sound and play a waterproof role.
  • the waterproof sound-permeable layer can be made of polyurethane, rubber or the like.
  • transitions are used, and the sound waves are emitted on both sides, but the invention is not limited thereto.
  • more sets of piezoelectric posts and transition layers may be employed depending on the different application requirements of the transducer and the structural design requirements.
  • the transition layers can be connected as a whole or disconnected. In addition, it can be modified to unilateral enhanced sound according to specific requirements.
  • the piezoelectric composite material can also be used to prepare a hydrophone (ie, a transducer receiving end) and a piezoelectric energy harvester.
  • a hydrophone ie, a transducer receiving end
  • a piezoelectric energy harvester When stress is applied to the surface of the polymer, the stress is transferred to the ceramic block by the polymer column bonded between the ceramic blocks to cause shear deformation, and the charge output is generated due to the piezoelectric effect.
  • the stress on the surface of the polymer is actually transmitted to the ceramic block through the inter-ceramic bonded polymer column, and the stress is amplified, which in turn generates a large shear deformation and output. Larger electrical energy can be used to make hydrophones and piezoelectric energy harvesters.
  • Both the hydrophone and the piezoelectric energy absorbing device can be made of the two vibrator structures previously designed, similar to the transmitting transducer. As shown in Figs. 11A and 11B, in order to increase the compressive tensile strength, the clamp fixing structure is increased. The clamping structure is sandwiched between two metal sheets on both sides of the piezoelectric vibrator along the x-axis, and the symmetry is tightened with long screws to apply pre-stress along the x-axis.
  • the number of ceramic block groups and structures used in this embodiment can be adjusted according to different application requirements. As long as the clamping and fixing structure achieves the purpose, it is not limited to this structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

一种基于剪切振动的压电复合材料及其制备方法,该压电复合材料包括压电材料(1)和被动性材料(2);压电材料包括沿x轴正向极化的压电材料和沿x轴负向极化的压电材料,两种极化方向的压电材料沿x轴方向交替排列;被动性材料包括填充层(2a)、过渡层(2b)和平面层(2c);填充层设于每两个相邻的压电材料之间;平面层位于压电材料的两个垂直于z轴的表面的外侧,其中一侧的平面层通过过渡层与奇数位置的填充层固定连接,另一侧的平面层通过过渡层与偶数位置的填充层固定连接。该压电复合材料将剪切振动转化为复合材料上下表面的厚度振动,达到了提高复合材料性能的目的,可用于制备水声换能器、水听器和压电俘能器等。

Description

一种基于剪切振动的压电复合材料及其制备方法 技术领域
本发明属于压电材料技术领域,具体涉及一种基于剪切振动的压电复合材料及其制备方法。
背景技术
自从1880年居里兄弟在石英中发现压电性以来,研究者们一直致力于提高压电材料的压电常数及其机电耦合系数,以此来提高换能器能量转换效率。目前压电材料主要分为压电陶瓷、压电单晶、压电复合材料以及压电聚合物四类。因其特点不同在水声、超声以及传感领域具有不同的应用。
压电复合材料是近四十年出现的一类材料,它由压电材料与聚合物复合而成,它主要通过添加聚合物相来提高材料的综合性能。自1978年美国宾夕法尼亚州立大学的Newnham等人提出了连通性的概念以后,压电复合材料才得到长足的发展。此后,压电复合材料进入了快速发展期。Newnham、Skinner、Klicker、Gururaja和Savakus等人进行了大量的理论和实验研究,研制出了0-3型、2-2型、1-3型、3-1型以及3-2型等多种结构压电复合材料。国内的研究者也进行了相关研究。综合制备工艺、批量生产的成本以及材料性能等因素,研究者们更加倾向于使用1-3型压电复合材料。因为它比其它类型压电复合材料具有制备工艺简单、压电性强、机电耦合系数大的特点。1-3型压电复合材料特点是压电陶瓷柱或单晶柱在厚度方向一维联通,周围灌注环氧树脂等聚合物,聚合物相三维联通。这时,研究者们意识到,复合材料内部陶瓷的振动模态才是影响复合材料性能的主要因素。1-3型压电复合材料就是通过将整块陶瓷的厚度振动转化为许多压电柱的纵向伸缩振动(亦称为d33模态),来提高性能的。对于压电陶瓷材料,厚度振动机电耦合系数kt在0.5左右,而纵向伸缩机电耦合系数k33可达0.7。因此,通过改变晶柱的振动模态,1-3型复合材料等效厚度机电耦合系数会比压电陶瓷厚度机电耦合系数提升约20%。
至此,1-3型压电复合材料的研究已经进入鼎盛时期,与此同时也迎来了继续发展的瓶颈期。综上所述,无论是采取哪种研究方法,都是基于压电材料的d33模式。且1-3型压电复合材料的理论研究、制备工艺已相当成熟,复合材料厚度机电耦合系数最大可达到0.89左右,距离其理论最大值0.93已经没有很大提升空间。压电常数d33最大值可以达到2000左右,也已经非常接近于弛豫铁电单晶的d33。因此,要想进一步提高复合材料的压电性和机电耦 合系数,只能从其它振动模态入手。d15剪切振动模态,即表示在压电陶瓷材料的1方向(非极化方向)施加电激励时,在另外两个方向的切向方向产生形变的振动状态。对于压电陶瓷,其压电常数d15普遍大于d33和d31。而对于弛豫铁电单晶,其d15的大小与晶向及材料有较大关系。对于压电陶瓷材料,k15相比于k33也没有明显下降,尤其是PZT-5A型压电陶瓷,其k15还明显高于k33。而对于弛豫铁电单晶,其k15的大小与晶向及材料同样有较大关系。故剪切振动的d15模态与纵向伸缩的d33模态相比不遑多让,但目前国内外对于压电材料d15模态的研究还比较少,主要是将其应用在能量收集领域。因其产生的是剪切形变,较难将声波集中平面发射,故用作传统换能器还不多见。
此外,这种复合材料也适用于能量收集领域。由于其选用了具有较高能量转换效率的振动模态,且该类型复合材料可以将外界应力通过过渡结构经放大后传递给压电元件,从而产生应力放大效应,进一步提高输出电信号的电压,从而使其具有较高的敏感度。
发明内容
为了突破传统压电复合材料应用d33模态的限制,本发明提供一种基于剪切振动(d15模态)的压电复合材料及其制备方法,创新性地选用具有更高压电常数和机电耦合系数的d15模态来制备压电复合材料,同时克服d15模态产生剪切振动的弱点,将其剪切振动通过特殊的结构设计转化为复合材料上下表面的厚度振动,以此来达到提高复合材料性能的目的。
本发明采用的技术方案如下:
一种基于剪切振动的压电复合材料,包括压电材料和被动性材料;所述压电材料包括沿x轴正向极化的压电材料和沿x轴负向极化的压电材料,两种极化方向的压电材料沿x轴方向交替排列;所述被动性材料包括填充层、过渡层和平面层;所述填充层设于每两个相邻的压电材料之间;所述平面层位于压电材料的两个垂直于z轴的表面的外侧,其中一侧的平面层通过过渡层与奇数位置的填充层固定连接,另一侧的平面层通过过渡层与偶数位置的填充层固定连接。
进一步地,在所述压电材料的两个垂直于z轴的表面上设置电极。
进一步地,上述复合材料在工作时,其极化方向与电场方向夹角为90度,压电材料在电场激励下产生剪切形变并带动压电材料间的填充层产生振动,且相邻的填充层产生相反的振动,产生的振动通过过渡层传递到平面层上,实现压电材料的剪切振动到复合材料厚度振动的转化。
进一步地,所述复合材料结构中,可在沿x轴方向构成的压电材料叠堆结构上增加可施 加预应力的结构,如预应力螺钉,紧锁装置等,以提高复合材料的抗压、抗张强度。
进一步地,所述压电材料可以是压电陶瓷、压电单晶、压电聚合物、压电复合材料等。
进一步地,所述被动性材料优选采用聚合物,特殊情况下亦可为金属或陶瓷材料。所述聚合物可为环氧树脂、酚醛树脂、聚氨酯、橡胶、有机玻璃等。在作为能量收集装置时,不需要与水进行阻抗匹配,而是需要更加结实的结构,此时金属或者陶瓷类材料更适合。
进一步地,所述过渡层的截面为梯形或矩形,其整体形状可以是圆柱形、圆锥形、抛物线形等。
进一步地,所述平面层可连接在一起构成一个平面,也可以彼此独立(即与不同位置的过渡层连接的聚合物平面层彼此独立,不连为一体)。
一种制备上述基于剪切振动的压电复合材料的方法,包括以下步骤:
1)将压电材料切割成整齐排列的多个压电材料块;
2)在各压电材料块的两个相对的表面溅射电极;
3)通过机加工的方式加工形成填充层、过渡层和平面层;
4)将填充层、过渡层和平面层与压电材料块粘接在一起,并引出电极,构成压电复合材料。
一种制备上述基于剪切振动的压电复合材料的方法,包括以下步骤:
1)在压电材料的第一表面粘贴掩膜材料;
2)沿与所述第一表面垂直的方向对压电材料进行切割,形成整齐排列的多个压电材料块;
3)在各压电材料块的第一表面及切割面上溅射电极;
4)按照填充层、过渡层和平面层的形状设计模具,将模具放置在各压电材料块上的合适位置;
5)利用所述模具灌注聚合物并固化,形成聚合物填充层、聚合物过渡层和聚合物平面层;
6)在与所述第一表面相对的第二表面上,重复步骤1)至5),形成另一侧的聚合物填充层、聚合物过渡层和聚合物平面层;
7)采用温度冲击法去除模具和掩膜材料,形成压电复合材料。
一种水声换能器,包括压电复合材料振子、防水透声层和输出电缆,所述压电复合材料振子采用上面所述的基于剪切振动的压电复合材料,并通过引线将其中的压电材料与输出电缆连接;在所述压电复合材料振子外部胶封防水透声层。
一种能量收集装置(水听器或压电俘能器),包括压电复合材料振子、增加抗压抗张强度的夹持结构、防水透声层和输出电缆,所述压电复合材料振子采用上面所述的基于剪切振动 的压电复合材料,并通过引线将其中的压电材料与输出电缆连接;在所述压电复合材料振子外部胶封防水透声层。
本发明的有益效果如下:
本发明的基于剪切振动的复合材料,克服了d15模态产生剪切振动的弱点,将其剪切振动通过特殊的结构设计转化为复合材料上下表面的厚度振动,从而提高了复合材料的性能,使其具有高的机电耦合系数和高的压电常数,能够用于制备大功率水声换能器阵。本发明突破传统1-3型压电复合材料d33模态的局限性,另辟蹊径,使d15模态在换能器振子的使用上成为可能,为新的振子结构研究提供了新思路。在军用领域,该基于剪切振动的复合材料能够提高声呐系统的作用距离以及探测精度。在民用领域,该基于剪切振动的复合材料能够提高超声无损检测、医用超声等的探测精度。
附图说明
图1是基于剪切振动的压电复合材料结构示意图。
图2是基于剪切振动的压电复合材料极化方向及振动模态示意图。
图3是基于剪切振动的压电复合材料的制备方法一的流程图。
图4是基于剪切振动的压电复合材料的制备方法二的流程图。
图5是基于剪切振动的2-2型压电陶瓷复合材料结构示意图。
图6是剪切振动的压电复合材料导纳、阻抗曲线,其中(a)为电导G曲线,其横坐标为频率;(b)为电阻R曲线,其横坐标为频率。
图7是PZT-4型压电复合材料剪切振动的振动模态图。
图8是PZT-5H型压电复合材料剪切振动的振动模态图。
图9A和图9B是基于剪切振动的压电复合材料的水声换能器的两种结构图。
图10是过渡层彼此独立即不通过平面层连接在一起的示意图。
图11A和图11B是基于剪切振动的压电复合材料的水听器、压电俘能器的两种结构图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面通过具体实施例和附图,对本发明做进一步说明。
1.基于剪切振动的压电复合材料的结构
本发明的基于剪切振动的压电复合材料结构由主动性材料即压电材料,以及被动性材料 即非压电材料构成。如图1所示,本实施例中该复合材料由压电陶瓷1、聚合物2构成。其中沿x轴正向极化的压电陶瓷以及沿x轴负向极化的压电陶瓷沿x轴方向交替排列。压电陶瓷间灌注聚合物(环氧树脂),垂直于z轴的两个陶瓷面上制备电极。
图2为上述压电复合材料的极化方向及振动模态示意图。由于极化方向与电场方向夹角为90度,所以会激发压电陶瓷的d15振动模态。所述d15振动模态是指在极化方向为x方向(x正向或x负向)的压电陶瓷材料上,施加z方向(即垂直于极化方向)的电激励时,在x、z平面内产生切向形变。如图2所示,第一和第二个基元表示了陶瓷材料的极化方向P和电场方向E,第三、四、五个基元表示了陶瓷材料在电场激励下产生的形变。可以看出第三、第四两个基元共同作用可以带动基元间的聚合物2a(聚合物填充层)相产生振动,而第四、五个基元共同作用可以带动聚合物产生相反的振动。这种振动再通过梯形聚合物相2b(聚合物过渡层)分别传递到上下表面的聚合物平面2c(聚合物平面层)上,从而完成机电转化过程,实现压电陶瓷剪切振动到复合材料厚度振动的转化。
在其它实施例中,压电材料除压电陶瓷外,还可以是压电单晶、压电聚合物、压电复合材料等。
在其它实施例中,聚合物除环氧树脂外,还可以是酚醛树脂、聚氨酯、橡胶、有机玻璃,或者采用金属、陶瓷等。
在其它实施例中,聚合物过渡层的截面除梯形外,还可以是矩形、抛物线形等,其整体形状可以是圆柱形、圆锥形等。
上述实施例中聚合物过渡层可通过聚合物平面层连接在一起(聚合物平面层连接在一起构成一个平面),如图1、图2所示。在其它实施例中,也可以彼此独立,不通过平面层连接在一起(与不同位置的聚合物过渡层连接的聚合物平面层彼此独立,不连为一体),如图10所示。
2.基于剪切振动的压电复合材料的制备工艺流程
上述基于剪切振动的压电复合材料采用两相材料复合,材料的制备工艺对其性能会产生影响。本发明提出两种复合材料制备工艺流程:
第一种方法,采用如图3所示制备工艺制作该复合材料,具体包括以下步骤:
1)取一完整的压电陶瓷块,使用砂纸或者精密研磨机去除上下表面电极;
2)在去除电极的压电陶瓷上,根据设计尺寸沿Z方向进行精密切割,将压电陶瓷切割成多个压电陶瓷块;
3)将压电陶瓷块放倒,放入真空溅射仪溅射电极;
4)将压电陶瓷块转换方向,在已溅射电极的对面溅射电极;
5)取一完整的环氧树脂块,通过机加工的方式加工成图中所示结构;
6)按照图中所示将环氧树脂块、压电陶瓷粘接起来,最后引出电极,构成压电复合材料。
第二种方法,采用如图4所示制备工艺制作该复合材料,具体包括以下步骤:
1)取一完整的压电陶瓷块,使用砂纸或者精密研磨机去除上下表面电极;
2)在原电极表面粘贴掩膜材料;
3)根据设计尺寸沿Z方向进行精密切割,将压电陶瓷切割成多个压电陶瓷块;
4)放入真空溅射仪溅射电极,沿Z轴正向从陶瓷柱间引出正极;
5)将设计好的梯形和边界模具放置在正确位置;
6)灌注配制好的618型环氧树脂,等待12小时,使其完全固化;
7)使用砂纸或者精密研磨机去除多余的环氧树脂;
8)将半成品反向放置,并粘贴掩模材料;
9)根据设计尺寸沿Z方向进行二次精密切割;
10)放入真空溅射仪溅射电极,沿Z轴负向从陶瓷柱间引出负极;
11)将设计好的梯形和边界模具放置在反面的正确位置;
12)灌注配制好的618型环氧树脂,等待12小时,完全固化;
13)使用砂纸或者精密研磨机去除多余的环氧树脂;
14)最后应用温度冲击法去除模具和掩膜材料后,形成压电复合材料。
在上述制备工艺中,两个聚合物平面层、聚合物梯形过渡层、聚合物填充层这三部分结构可以选择一体浇注成型,也可以分别成型然后粘接在一起;聚合物梯形过渡层以及平面层,可以根据需要选择轻质铝板、有机玻璃等透声性能好的材料;另外,聚合物梯形过渡层以及平面层,可以根据需要为一体连接,也可以选择彼此独立。
3.基于剪切振动的压电复合材料的实验验证与性能分析
本发明对压电陶瓷材料的剪切振动进行了相关研究。应用PZT-4和PZT-5H型压电陶瓷制备了长宽高分别为20mm、5mm和5mm的压电陶瓷柱,压电陶瓷极化方向为宽度方向,电场方向为厚度方向。应用阻抗分析仪可以测得压电陶瓷d15模式的电导纳、电阻抗曲线。实验结果表明,PZT-5H和PZT-4型压电陶瓷串联谐振频率分别为217kHz和244kHz,并联谐振频率分别为263kHz和279kHz。由此可计算出机电耦合系数分别为0.56和0.48。机电耦合系数相比理论值较低,这是由于剪切振动不够单纯,耦合了长度方向的振动导致的。可通过调节长度方向尺寸来避免振动的耦合,从而提高其机电耦合系数。
为验证该谐振频率下的振动模态,本发明应用激光多普勒振动测量仪对上述两个样品进行测量,测量结果表明,压电陶瓷振动为剪切振动。设压电陶瓷的极化方向为x方向,电场方向为z方向,则压电陶瓷的剪切振动发生在xz平面内。而在y方向上,由于压电陶瓷长度较长,沿长度方向的基频与剪切振动在谐振频率处产生耦合。如果不需要通过振动耦合来拓展带宽,可以考虑在长度方向引入2-2型复合结构以避免振动耦合。
为验证本发明提出的压电复合材料结构的有效性,本发明设计了一种基于剪切振动的2-2型结构如图5所示。图中相邻压电陶瓷极化方向相反,陶瓷间灌注环氧树脂,上下表面溅射电极。从而激励复合材料产生剪切振动。该结构与本发明的压电复合材料的区别在于没有引入环氧树脂过渡层,暂时不考虑将剪切振动转化为厚度振动,只为验证该结构可以激励剪切振动。同样的,复合材料中压电陶瓷柱长宽高分别为20mm、5mm和5mm。环氧树脂宽度为1mm。
由图6给出的测量结果可以看出,PZT-5H和PZT-4型压电复合材料串联谐振频率分别为229kHz和245kHz,并联谐振频率分别为270kHz和284kHz。机电耦合系数分别为0.53和0.51。对于PZT-5H型压电复合材料,机电耦合系数由纯陶瓷的0.56降低到0.53,这是由于环氧树脂的引入增加了负载,所以降低了机电耦合系数。而对于PZT-4型压电复合材料,其机电耦合系数从纯陶瓷的0.48增加到了0.51,这是由于纯陶瓷的振动模态不纯净,所以机电耦合系数不是单纯剪切振动模态的系数,理论值应该更高些,而制备成复合材料以后,由于环氧树脂的存在,抑制了干扰振动模态,使得剪切振动更加纯净,所以机电耦合系数有所增加。
图7和图8分别给出了PZT-5H和PZT-4型压电复合材料振速频谱及振动模态。图中每一个曲线的峰值对应压电陶瓷的某个振动模态,而插图中则给出在振动速度最大值时,样品表面形貌,通过观察表面形貌的特点,可以总结出样品在此时的振动模态。从图中可以看出,在压电陶瓷基元的剪切振动的带动下,环氧树脂处会交替出现波峰和波谷。如果将所有的波峰振动通过过渡层引导到图2所示的复合材料的上表面,而将波谷的振动引导到复合材料下表面,则会产生本发明预期的结果。因此,通过上述实验,可以证明本发明提出的新型复合材料的可行性。
4.采用上述压电复合材料制备水声换能器
分别由前文设计的两种振子结构(一种是过渡层通过平面层连接在一起,一种是过渡层彼此独立)制成水声换能器,水声换能器结构如图9A和图9B所示,包括压电复合材料振子、防水透声层、水下电缆。压电复合材料振子由激发剪切振动的压电陶瓷和振动过渡层构成,在陶瓷柱间分别引线与输出电缆连接。整个换能器胶封防水透声层,即可传声又能起到防水的作用。防水透声层可以采用聚氨酯、橡胶等材料。
本实施例中采用三组过渡,双侧发射声波,但本发明不以此为限制。在其它实施例中,根据换能器的不同应用需求以及结构设计要求,也可以采用更多组的压电柱和过渡层。过渡层可以整体相连,也可以断开。另外也可根据具体要求修改为单侧增强发声。
5.采用上述压电复合材料制备水听器和压电俘能器
本压电复合材料还可用于制备水听器(即换能器接收端)和压电俘能器。当应力施加在聚合物表面时,应力通过陶瓷块间粘接的聚合物柱传递到陶瓷块上产生剪切形变,由于压电效应产生电荷输出。采取该过渡层结构,实际上将聚合物表面受到的应力通过陶瓷间粘接的聚合物柱传递到陶瓷块上的同时对应力起到了放大的作用,继而产生较大幅度的剪切形变,输出较大电能,故可用于制作水听器和压电俘能器。水听器和压电俘能器均可由前文设计的两种振子结构制成,与发射换能器类似。如图11A和图11B所示,为了提高其抗压抗张强度,故增加夹持固定结构。夹持结构采用两个金属片夹在沿x轴的压电振子两侧,对称用长螺丝拧紧,沿x轴施加预应力。
同发射换能器相同,本实施例中采用的陶瓷块组数和结构均可根据不同的应用需求进行相应调整。夹持固定结构只要达到目的即可,不拘泥于此结构。
以上实施例仅用以说明本发明的技术方案而非对其进行限制,本领域的普通技术人员可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明的精神和范围,本发明的保护范围应以权利要求书所述为准。

Claims (13)

  1. 一种基于剪切振动的压电复合材料,其特征在于,包括压电材料和被动性材料;所述压电材料包括沿x轴正向极化的压电材料和沿x轴负向极化的压电材料,两种极化方向的压电材料沿x轴方向交替排列;所述被动性材料包括填充层、过渡层和平面层;所述填充层设于每两个相邻的压电材料之间;所述平面层位于压电材料的两个垂直于z轴的表面的外侧,其中一侧的平面层通过过渡层与奇数位置的填充层固定连接,另一侧的平面层通过过渡层与偶数位置的填充层固定连接。
  2. 如权利要求1所述的压电复合材料,其特征在于:在所述压电材料的两个垂直于z轴的表面上设置电极。
  3. 如权利要求1所述的压电复合材料,其特征在于:在工作时,极化方向与电场方向夹角为90度,压电材料在电场激励下产生剪切形变并带动压电材料间的填充层产生振动,且相邻的填充层产生相反的振动,产生的振动通过过渡层传递到平面层上,实现压电材料的剪切振动到复合材料厚度振动的转化。
  4. 如权利要求1所述的压电复合材料,其特征在于:所述压电材料是下列中的一种:压电陶瓷、压电单晶、压电聚合物或压电复合材料;所述被动性材料为聚合物、金属、陶瓷中的一种;所述聚合物是下列中的一种:环氧树脂、酚醛树脂、聚氨酯、橡胶、有机玻璃。
  5. 如权利要求1所述的压电复合材料,其特征在于:所述过渡层的截面为梯形、矩形或抛物线形,所述过渡层的整体形状为圆柱形或圆锥形。
  6. 如权利要求1所述的压电复合材料,其特征在于:位于压电材料同一侧的过渡层彼此独立,或者通过平面层连接在一起。
  7. 如权利要求1所述的压电复合材料,其特征在于:还包括施加预应力的结构,用于对沿x轴方向的压电材料施加预应力以提高其抗压和抗张强度。
  8. 一种制备权利要求2所述基于剪切振动的压电复合材料的方法,包括以下步骤:
    1)将压电材料切割成整齐排列的多个压电材料块;
    2)在各压电材料块的两个相对的表面溅射电极;
    3)通过机加工的方式形成填充层、过渡层和平面层;
    4)将填充层、过渡层和平面层与压电材料块粘接在一起,并引出电极,构成压电复合材料。
  9. 一种制备权利要求2所述基于剪切振动的压电复合材料的方法,包括以下步骤:
    1)在压电材料的第一表面粘贴掩膜材料;
    2)沿与所述第一表面垂直的方向对压电材料进行切割,形成整齐排列的多个压电材料块;
    3)在各压电材料块的第一表面及切割面上溅射电极;
    4)按照填充层、过渡层和平面层的形状设计模具,将模具放置在各压电材料块上的合适位置;
    5)利用所述模具灌注聚合物并固化,形成聚合物填充层、聚合物过渡层和聚合物平面层;
    6)在与所述第一表面相对的第二表面上,重复步骤1)至5),形成另一侧的聚合物填充层、聚合物过渡层和聚合物平面层;
    7)采用温度冲击法去除模具和掩膜材料,形成压电复合材料。
  10. 一种水声换能器,其特征在于,包括压电复合材料振子、防水透声层和输出电缆,所述压电复合材料振子采用权利要求1~7中任一权利要求所述的基于剪切振动的压电复合材料,并通过引线将其中的压电材料与输出电缆连接;在所述压电复合材料振子外部胶封防水透声层。
  11. 一种能量收集装置,其特征在于,包括压电复合材料振子、增加抗压抗张强度的夹持结构、防水透声层和输出电缆,所述压电复合材料振子采用权利要求1~7中任一权利要求所述的基于剪切振动的压电复合材料,并通过引线将其中的压电材料与输出电缆连接;在所述压电复合材料振子外部胶封防水透声层。
  12. 如权利要求11所述的能量收集装置,其特征在于,所述能量收集装置为水听器或压电俘能器。
  13. 如权利要求11或12所述的能量收集装置,其特征在于,所述夹持结构采用两个金属片夹在沿x轴的压电振子两侧并固定,沿x轴对压电振子施加预应力。
PCT/CN2017/075575 2017-02-13 2017-03-03 一种基于剪切振动的压电复合材料及其制备方法 WO2018145340A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/331,620 US11245066B2 (en) 2017-02-13 2017-03-03 Shear vibration-based piezoelectric composite material and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710075924.1 2017-02-13
CN201710075924.1A CN106876576B (zh) 2017-02-13 2017-02-13 一种基于剪切振动的压电复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2018145340A1 true WO2018145340A1 (zh) 2018-08-16

Family

ID=59166156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075575 WO2018145340A1 (zh) 2017-02-13 2017-03-03 一种基于剪切振动的压电复合材料及其制备方法

Country Status (3)

Country Link
US (1) US11245066B2 (zh)
CN (1) CN106876576B (zh)
WO (1) WO2018145340A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482113B (zh) * 2017-08-28 2020-02-04 湖北工程学院 一种短纤维压电复合材料及其制备方法
CN107516710B (zh) * 2017-08-28 2020-02-04 湖北工程学院 一种横向梯度短纤维压电复合材料及其制备方法
CN108493328B (zh) * 2018-01-29 2021-12-17 北京信息科技大学 基于剪切振动和弯张振动的压电振子、换能器及制作方法
CN109888086A (zh) * 2019-02-27 2019-06-14 北京信息科技大学 一种基于剪切振动的压电变压器及其制备方法
CN110702213A (zh) * 2019-10-15 2020-01-17 海鹰企业集团有限责任公司 一种小型高灵敏度水听器
CN111313747B (zh) * 2020-02-17 2021-06-01 北京大学 一种多层陶瓷共烧压电驱动器、压电马达及其制备方法
CN111641350A (zh) * 2020-05-14 2020-09-08 西安交通大学 一种基于剪切压电模式的弯张换能器
CN112221917B (zh) * 2020-09-04 2022-02-18 北京信息科技大学 一种大功率高频定向发射水声换能器及其制备方法
CN113013319B (zh) * 2021-02-24 2023-04-07 武汉理工大学 一种基于一体化结构的低频主动抑振系统
CN113649253A (zh) * 2021-08-12 2021-11-16 苏州思萃电子功能材料技术研究所有限公司 一种弧形换能器阵列及其制备方法
CN115474128B (zh) * 2022-10-19 2024-03-08 哈尔滨工业大学(威海) 一种高灵敏度水声换能器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239736A (en) * 1991-11-12 1993-08-31 Acuson Corporation Method for making piezoelectric composites
CN101304067A (zh) * 2008-06-11 2008-11-12 深圳先进技术研究院 一种压电复合材料及其制备方法
CN104821372A (zh) * 2015-05-20 2015-08-05 中南大学 一种剪切型压电复合材料
US20150311424A1 (en) * 2014-04-24 2015-10-29 General Electric Company Piezoelectric composite and method of forming same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3094717B2 (ja) * 1993-02-09 2000-10-03 株式会社村田製作所 圧電共振部品
JP3838024B2 (ja) * 2000-11-27 2006-10-25 株式会社村田製作所 縦結合型マルチモード圧電フィルタ
CN103076402A (zh) * 2012-12-29 2013-05-01 大连理工大学 一种用于在管道中激励和接收多模式超声导波的换能器
CN103134999B (zh) * 2013-01-30 2015-04-08 湘潭大学 一种测量压电材料压电系数d15的准静态方法
CN105047811B (zh) * 2015-05-29 2018-04-24 北京信息科技大学 基于不同厚度的压电材料层的叠堆压电换能器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239736A (en) * 1991-11-12 1993-08-31 Acuson Corporation Method for making piezoelectric composites
CN101304067A (zh) * 2008-06-11 2008-11-12 深圳先进技术研究院 一种压电复合材料及其制备方法
US20150311424A1 (en) * 2014-04-24 2015-10-29 General Electric Company Piezoelectric composite and method of forming same
CN104821372A (zh) * 2015-05-20 2015-08-05 中南大学 一种剪切型压电复合材料

Also Published As

Publication number Publication date
US20190386200A1 (en) 2019-12-19
CN106876576B (zh) 2019-05-21
US11245066B2 (en) 2022-02-08
CN106876576A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
WO2018145340A1 (zh) 一种基于剪切振动的压电复合材料及其制备方法
CN108493328B (zh) 基于剪切振动和弯张振动的压电振子、换能器及制作方法
Lin An improved cymbal transducer with combined piezoelectric ceramic ring and metal ring
Lin et al. 0.36 BiScO 3–0.64 PbTiO 3/Epoxy 1–3 Composite for Ultrasonic Transducer Applications
CN103041978A (zh) 聚焦型超声换能器及其制备方法
Fei et al. Fabrication and characterization of high-sensitivity ultrasonic transducers with functionally graded design
Lin et al. Study on the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration
Jia et al. High-Performance Curved Piezoelectric Single-Crystal Composites via 3D-Printing-Assisted Dice and Insert Technology for Underwater Acoustic Transducer Applications
Wang et al. Electromechanical characteristics of radially layered piezoceramic/epoxy cylindrical composite transducers: theoretical solution, numerical simulation, and experimental verification
Lin et al. Design and fabrication of non-periodic 1–3 composite structure for ultrasonic transducer application
JP3589482B2 (ja) 圧電振動体
Chen et al. Experimental analysis of 1-3 piezocomposites for high-intensity focused ultrasound transducer applications
US7030542B2 (en) Composite piezoelectric body
Lu et al. Single crystals vs. PZT ceramics for medical ultrasound applications
Herzog et al. High-performance ultrasonic transducers based on PMN-PT single crystals fabricated in 1-3 Piezo-Composite Technology
Lin Radial vibration of the combination of a piezoelectric ceramic disk and a circular metal ring
Lin Study on the radial vibration of a new type of composite piezoelectric transducer
CN110012402A (zh) 一种纵向振动复合材料换能器
JP2023181572A (ja) 積層型圧電体素子及びその製造方法
Zhou et al. Fabrication and properties of 1-3-2 multi-element piezoelectric composite
CN107403616A (zh) 一种低频框架驱动式四边型弯张换能器
Cannata et al. Development of high frequency linear arrays using interdigital bonded composites
Li et al. A magnetoelectric transducer consisting of magnetostrictive and piezoelectric composite array
CN106856401A (zh) 一种压电振子及其制备方法和应用
Lin Study on the radial vibration of a piezoelectric ceramic thin ring with an inner metal disc

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895889

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17895889

Country of ref document: EP

Kind code of ref document: A1