WO2018145307A1 - 基于电控变焦透镜的透射式数字全息显微成像装置 - Google Patents

基于电控变焦透镜的透射式数字全息显微成像装置 Download PDF

Info

Publication number
WO2018145307A1
WO2018145307A1 PCT/CN2017/073324 CN2017073324W WO2018145307A1 WO 2018145307 A1 WO2018145307 A1 WO 2018145307A1 CN 2017073324 W CN2017073324 W CN 2017073324W WO 2018145307 A1 WO2018145307 A1 WO 2018145307A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
beam splitter
microscope objective
digital holographic
path steering
Prior art date
Application number
PCT/CN2017/073324
Other languages
English (en)
French (fr)
Inventor
彭翔
邓定南
彭军政
刘晓利
何文奇
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2017/073324 priority Critical patent/WO2018145307A1/zh
Publication of WO2018145307A1 publication Critical patent/WO2018145307A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto

Definitions

  • the invention belongs to the technical field of optical imaging and measurement, and in particular relates to a transmissive digital holographic microscopic imaging device based on an electronically controlled zoom lens.
  • digital holographic microscopy imaging can obtain real-time dynamic, high-resolution and non-intrusive measurements by using a hologram to simultaneously obtain the quantitative amplitude information and phase information of the object independently.
  • This technology is widely used in stress measurement, living cell observation, and three-dimensional measurement of microstructured devices.
  • Digital holographic microscopy technology can increase the lateral resolution of the measurement system by introducing a microscope objective.
  • Different magnification microscope objectives can be used in the measurement of different samples.
  • the large numerical aperture objective lens measures the field of view, it can observe more details of the sample and can be used for the measurement of biological tissue cells.
  • the objective lens of the small numerical aperture can not obtain more detailed information of the sample, it can obtain a larger measurement field of view, and can be used for measurement of a microarray structure device such as a Fresnel lens. Therefore, for different transparent samples to be tested, microscope objectives of different magnifications can be used.
  • phase distortion correction has become a hot topic for scholars at home and abroad.
  • the phase distortion correction method in digital holographic microscopic imaging is mainly divided into two types: numerical compensation method and physical compensation method.
  • the numerical compensation method that is, borrowing a computer and eliminating the phase distortion by the latter numerical algorithm processing, has proposed two exposure methods. This method is to collect two holograms with and without samples to obtain the corresponding phase phase. Subtraction can eliminate phase distortion, but this method requires the acquisition of two holograms, and the system needs to maintain high stability.
  • the research group also proposed phase masks, reference conjugate holograms, and Zernike polynomial fitting to eliminate phase distortion. In addition, it has been proposed to collect only one hologram, and the phase distortion can be eliminated by the least squares surface fitting method.
  • the physical compensation method that is, the phase distortion is eliminated by introducing a specific optical element in the measurement system, and can be used in the Mach-Zehnder interference structure and the Linnik interference structure.
  • a method of telecentric system structure has been proposed, which uses a lens barrel in the object light path to form a telecentric structure with the microscope objective to eliminate phase distortion, but in a commercial digital holographic microscope system, in order to save space and To ensure the compactness of the system, the requirements of the telecentric structure are often not met.
  • a group proposed a method of adding the same objective lens to the optical path in the reference optical path, and adjusting the position of the microscope objective to achieve the same spherical curvature of the spherical reference light and the spherical object, eliminating phase distortion.
  • Another method is to introduce a common lens in the reference light path, and adjust the position of the lens to produce the curvature of the spherical wave matching microscope lens with different curvatures, but both methods require mechanical movement of the lens.
  • the lens needs to be mechanically moved to eliminate the phase distortion caused by the microscope objective; and, when measuring different samples, on the one hand, it is necessary to manually switch the objective imaging of different magnifications.
  • the lens needs to be mechanically moved to eliminate the phase distortion caused by the microscope objective and the stability of the system cannot be guaranteed.
  • the technical problem to be solved by the present invention is to provide a transmissive digital holographic microscopic imaging device based on an electronically controlled zoom lens, which aims to meet different measurement requirements by switching different magnification microscope objectives, and can be flexibly utilized by an electronically controlled zoom lens. It compensates for the phase distortion caused by different magnification microscope objectives and avoids the mechanical movement of the optical components.
  • the invention provides a transmissive digital holographic microscopic imaging device based on an electronically controlled zoom lens, comprising:
  • a laser a first beam splitter, a first optical path steering component, a second optical path steering component, a second beam splitter, and a camera;
  • the laser is used to emit laser light and pass through the first beam splitter
  • the first beam splitter is configured to separate the laser light into object light and reference light, and the object light passes through the first light path steering component to generate a surface light spherical wave, and the reference light passes through the second light path Steering the component to generate a reference spherical surface wave;
  • the second beam splitting mirror is configured to output the object spherical surface wave and the reference optical spherical wave to an imaging plane of the camera;
  • the camera is configured to record an interference fringe pattern formed by interference of the object spherical surface wave and the reference optical spherical wave on an imaging plane of the camera;
  • the first optical path steering assembly comprises a microscope objective turntable and a microscope objective lens, the microscope objective lens being placed in the microscope objective turntable, wherein the microscope objective turntable is used for switching different magnifications according to the transparent sample to be tested Microscopic objective lens;
  • the second optical path steering assembly includes an electronically controlled zoom lens for changing a focal length according to a magnification of the switched microscope objective such that a reference light sphere formed by the reference light passing through the electronically controlled zoom lens
  • the curvature of the wave is the same as the curvature of the surface wave of the object.
  • the first optical path steering assembly further includes: a first plane mirror
  • the first plane mirror is placed at an angle of 45 degrees with the object light, and the first plane mirror is used for reflecting the object light, and the reflected light sequentially passes through the transparent sample to be tested and the microscope objective to generate a surface wave of the object.
  • the second optical path steering assembly further includes: a second plane mirror
  • the second planar mirror is placed at an angle of 45 degrees with the reference light, and the second planar mirror is configured to reflect the reference optical spherical wave to the second beam splitter.
  • the second optical path steering assembly further includes: an attenuating sheet
  • the attenuator is disposed between the first beam splitter and the electronically controlled zoom lens for attenuating the intensity of the passing reference light path.
  • the transmissive digital holographic microscopic imaging device further includes: a condensing mirror;
  • the concentrating mirror is interposed between the laser and the first beam splitter for turning the passing laser light into parallel light.
  • the reflected light separated by the first beam splitter mirror is used as object light, and the separated transmitted light is used as reference light.
  • the ratio of the object light to the reference light is 7:3.
  • the present invention has the beneficial effects that the present invention provides a transmissive digital holographic microscopic imaging device based on an electronically controlled zoom lens.
  • the electric power can be changed.
  • Control the focal length of the zoom lens to eliminate the phase distortion caused by the microscope objective and avoid the mechanical movement of the optical component; on the other hand, because the microscope objective turntable is introduced, it can be used for different transparent samples to be tested.
  • the micro objective knob realizes convenient switching of microscope objectives of different magnifications to meet different measurement requirements, and the focal length of the electronically controlled zoom lens can be changed according to the magnification of the switched microscope objective, so that the reference light passes through the electronically controlled zoom lens.
  • the curvature of the surface wave formed by the reference beam is the same as the curvature of the surface wave of the object, thereby eliminating phase distortion; it is not necessary to manually disassemble the optical path when switching the microscope objective of different magnification, especially for compact, cage-structured digital holography
  • the microscopic measurement system does not require mechanical movement of the lens, which satisfies different measurement requirements and ensures the system. Stability and practicality.
  • FIG. 1 is a schematic structural diagram of a transmissive digital holographic microscopic imaging apparatus based on an electronically controlled zoom lens according to an embodiment of the present invention
  • 2a is an interference fringe pattern collected when there is no transparent sample to be tested and no electronically controlled zoom lens according to an embodiment of the present invention
  • Figure 2b is a spectral distribution diagram of the interference fringe pattern provided in Figure 2a;
  • FIG. 3a is an interference fringe pattern collected when there is no transparent sample to be tested and an electronically controlled zoom lens according to an embodiment of the present invention
  • Figure 3b is a spectral distribution diagram of the interference fringe pattern provided in Figure 3a;
  • 4a is a pattern of a biological tissue sample to be tested according to an embodiment of the present invention.
  • Figure 4b is a schematic illustration of the imaging phase recovery results for the large boxed area of Figure 4a using a 4x microscope objective;
  • Figure 4c is a graphical representation of the imaging phase recovery results for the small boxed area of Figure 4a using a 10x microscope objective.
  • the main implementation idea of the present invention is that the first beam splitter mirror separates the incident laser light into object light and reference light, and the light in the light beam path passes through the transparent sample to be tested and the microscope objective lens to form a surface light wave;
  • the focal length of the electronically controlled zoom lens can be adjusted by adjusting the current, thereby generating a reference spherical surface wave having the same curvature as the object spherical wave, such that the object spherical wave and the reference optical spherical surface
  • the wave forms an interferogram on the imaging plane of the camera, eliminating phase distortion; and, due to the introduction of an electrically controlled zoom lens, the operation of mechanical movement required by the optical components in physical compensation is avoided.
  • the microscope objective of different magnification can be switched according to the transparent sample to be tested to meet the requirements of different transparent samples to be tested.
  • the transmissive digital holographic microscopic imaging device based on the electronically controlled zoom lens is specifically described below, as shown in FIG. 1, and includes:
  • a laser 1 a condensing mirror 2, a first beam splitter 3, a first optical path steering assembly 4, a second optical path steering assembly 5, a second beam splitter 6 and a camera 7;
  • the laser 1 is used to emit laser light, and the condensing mirror 2 is placed between the laser 1 and the first beam splitter 3 for converting the passing laser light into parallel light.
  • the first beam splitter 3 is configured to separate the parallel laser light passing through the condensing mirror 2 into object light and reference light.
  • the light reflected by the first beam splitter 3 is used as the object light, and the angle between the reflected light and the parallel laser beam emitted from the condensing mirror is 90 degrees, which is transmitted by the first beam splitter 3
  • the light is used as the reference light; the ratio of the object light to the reference light is 7:3, which is set to such a ratio, and the light-intensity ratio of the object can be better adjusted by combining the attenuating sheet.
  • the first optical path steering assembly 4 includes a first plane mirror 41, a microscope objective 42 and a microscope objective turntable 43, the first plane mirror 41 being placed at an angle of 45 degrees with the object light, the microscope objective 42 being placed In the microscope objective turntable 43, the microscope objective turntable 43 is configured to switch the microscope objective 42 of different magnification according to the transparent sample 8 to be tested; the first optical path steering component 4 is configured to pass the object light through the The propagation direction of the object spherical wave generated after the microscope objective 42 is guided to the second beam splitter 6; specifically, the object light is reflected by the first plane mirror 41, and sequentially passes through the transparent sample 8 to be tested. After the microscope objective 42, a surface spherical wave is formed and incident on the second beam splitter mirror 6.
  • the invention adopts a microscope objective turntable to rotate the microscope objective lens, and does not need to manually disassemble the optical path when switching the microscope objective of different magnifications, especially for the compact and cage structure digital holographic microscopic measurement system, which makes the operation simpler.
  • the transparent sample 8 to be tested to which the present invention is applied is a transparent sample, such as some biological tissue cells or the like; the object light is reflected by the first plane mirror, and is transmitted through the microscope objective after passing through the transparent sample, thereby Forming a spherical surface wave.
  • the second optical path steering assembly 5 includes an attenuator 51, an electrically controlled zoom lens 52, and a second planar mirror 53 disposed between the first beam splitter mirror 3 and the electronically controlled zoom lens 52,
  • the light intensity of the passing light path of the reference light is attenuated; specifically, the light intensity ratio of the object light (ie, the light intensity ratio of the object light and the reference light) can be adjusted by replacing the attenuation sheet 51 with different transmittances. Thereby, the interference fringes with better contrast can be obtained when the object light and the reference light interfere.
  • the electronically controlled zoom lens 52 is configured to change the focal length according to the magnification of the switched microscope objective such that the curvature of the reference spherical spherical wave formed by the reference optical path after passing through the electronically controlled zoom lens 52 and the object spherical surface wave
  • the second optical path steering component 5 is configured to guide the propagation direction of the reference optical spherical wave to the second beam splitter 6; specifically, the second planar mirror 53 and the reference light are At a 45 degree angle, the reference light passes through the electronically controlled zoom lens 52 to form a reference optical spherical wave, and is reflected by the second planar mirror 53 and then incident on the second beam splitting mirror 6.
  • the focal length of the electronically controlled zoom lens 52 is controllable; more specifically, the focus is controlled by electronically controlled zoom lens control software; more specifically, the electronically controlled zoom lens 52 is different from conventional glass and Plastic lens, which is a variable focal length lens, uses an optically transparent elastic film to confine the liquid in the cavity. By changing the pressure on the liquid to control the change of the film profile, different pressures produce different shapes, thus changing the electricity. Controlling the curvature of the zoom lens 52, the focal length of the electronically controlled zoom lens 52 changes accordingly. There is an electromagnetic driver outside the cavity of the electronically controlled zoom lens 52.
  • the electronically controlled zoom lens 52 is connected to the computer through a USB cable, and the current of the electromagnetic driver is controlled by the electronically controlled zoom lens control software in the computer, and the electromagnetic flow is changed through the electromagnetic
  • the current in the drive changes the pressure on the liquid and eventually changes the focal length.
  • the second beam splitting mirror 6 is configured to output the object light spherical wave and the reference optical spherical wave to an imaging plane of the camera.
  • the object spherical surface wave passes through the second beam splitting mirror 6 and vertically illuminates the imaging plane of the camera 7;
  • the reference light spherical surface wave passes through the second beam splitting mirror 6 and then obliquely illuminates the camera
  • the imaging plane of 7 has a certain angle between the object spherical wave and the reference spherical surface wave.
  • the camera 7 is a CCD for recording an interference fringe pattern formed by interference of the object spherical surface wave and the reference optical spherical wave on the imaging plane of the camera 7.
  • the core of the transmissive digital holographic microscopic imaging device based on the electronically controlled zoom lens described in the present invention is that an electronically controlled zoom lens is employed.
  • the light in the light path passes through the transparent sample to be tested and the microscope objective to form a surface spherical wave.
  • an electronically controlled zoom lens is used to generate a reference spherical surface wave having the same curvature as the object spherical wave. Therefore, the object spherical wave and the reference optical spherical wave form an interference pattern on the imaging plane of the camera, thereby avoiding the operation of the conventional reference optical path using an ordinary lens or an optical element such as an objective lens, which requires mechanical movement, and eliminates the phase brought by the microscope objective.
  • the focal length of the electronically controlled zoom lens can be changed as needed, and when the microscope objective dial is rotated to switch the objective lenses of different magnifications, it is not necessary to manually disassemble the optical path to replace the microscope lens of different magnification, especially for the compact, cage
  • the digital holographic microscopic measurement system of the structure can flexibly compensate the phase distortion caused by different magnification microscope objectives in combination with the electronically controlled zoom lens, and meet different measurement requirements, and also ensure the stability and practicability of the system. . In the later stage, complex numerical calculation processing is not required, which improves the speed of imaging.
  • the first step compensating for the phase distortion caused by the microscope objective 42 of the selected magnification by adjusting the device;
  • the object light passes through the microscope objective 42 to form a surface spherical wave.
  • the electronically controlled zoom lens control software is used to change the focal length of the electronically controlled zoom lens 52 by changing the current, thereby generating
  • the reference spherical surface wave of the same curvature of the object spherical surface wave makes the interference fringe pattern when there is no object to be measured is a straight stripe.
  • the method of determining the parameter compensated by the electronically controlled zoom lens 52 can be determined by the spectral shape of the interference fringe pattern.
  • the second step placing the transparent sample to be tested in the transmissive digital holographic microscopic imaging device, using the camera 7 to acquire an interferogram image I;
  • the third step obtaining the spectrum F of the interferogram image I by Fourier transform
  • Step 4 Select the +1 level spectrum in the spectrum F;
  • Step 5 Find the maximum value of the energy in the +1 spectrum as the center of the +1 spectrum, and then shift the +1 spectrum to the center of the spectrum so that the center of the +1 spectrum coincides with the center of the entire spectrum. ;
  • Step 6 Perform an inverse Fourier transform on the coincident spectrum to obtain amplitude distribution and phase distribution information of the transparent sample 8 to be tested.
  • the obtained interference fringe pattern is analyzed, and the biological tissue sample Sword Shuiyu is subjected to different magnifications. Observed digital holographic microscopic imaging.
  • FIG. 2a is an interference fringe pattern acquired when there is no transparent sample to be tested and no electronically controlled zoom lens 52, and ring streaks appear, and it can be seen that the microscope objective 42 introduces phase distortion caused by phase error;
  • FIG. 2b is FIG. 2a Spectrum distribution.
  • FIG. 3a is an interference fringe pattern acquired when there is no transparent sample to be tested and has an electronically controlled zoom lens 52. It is a straight stripe. It can be seen that the phase error is well compensated by the electronically controlled zoom lens 52;
  • FIG. 3b is the spectrum distribution of FIG. 3a. .
  • Figure 4a is a pattern of the biological tissue sample to be tested;
  • Figure 4b is the imaging phase recovery result of the large square area of Figure 4a using a 4x microscope objective 42;
  • Figure 4c is a 10x microscope objective 42 Imaging phase recovery results for the small box area in Figure 4a.
  • the invention is based on an electronically controlled zoom lens, so that the object spherical surface wave and the reference optical spherical wave interfere with each other to form an interference fringe pattern on the imaging plane of the camera, thereby avoiding the operation of the conventional reference optical path using an ordinary lens or an optical element such as an objective lens that requires mechanical movement. Phase distortion is eliminated, which greatly improves the accuracy of the system.
  • the focal length of the electronically controlled zoom lens can be changed as needed, and when the microscope objective dial is rotated to switch different magnifications, there is no need to manually disassemble the optical path to replace different magnification microscope objectives, especially for compact, cage type
  • the digital holographic micro-measurement system of the structure can flexibly compensate the phase distortion of the microscopic objective lens of different magnifications in combination with the electronically controlled zoom lens, and meet different measurement requirements, and also ensure the stability and practicability of the system, and is suitable for Dynamic measurement. In the later stage, complex numerical calculation processing is not required, which improves the speed of imaging.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microscoopes, Condenser (AREA)
  • Holo Graphy (AREA)

Abstract

一种基于电控变焦透镜(52)的透射式数字全息显微成像装置包括:激光器(1)、第一分束镜(3)、第一光路转向组件(4)、第二光路转向组件(5)、第二分束镜(6)和相机(7);其中,第一分束镜(3)用于将激光器(1)发出的激光分离为物光和参考光;第一光路转向组件(4)用于将物光经过显微物镜(42)后产生的物光球面波的传播方向引导至第二分束镜(6);第二光路转向组件(5)中的电控变焦透镜(52)用于通过改变焦距,来使参考光经过电控变焦透镜(52)后形成的参考光球面波的曲率与物光球面波的曲率相同;第二光路转向组件(5)用于将参考光球面波的传播方向引导至第二分束镜(6),第二分束镜(6)用于将球面波输出,相机(7)用于记录形成的干涉条纹图。该装置可以消除相位畸变。

Description

基于电控变焦透镜的透射式数字全息显微成像装置 技术领域
本发明属于光学成像及测量技术领域,尤其涉及一种基于电控变焦透镜的透射式数字全息显微成像装置。
背景技术
数字全息显微成像技术作为定量相位测量的一种重要手段,能够利用一幅全息图同时独立的获得物体定量的振幅信息和相位信息,实现实时动态、高分辨率、非侵入测量。该技术广泛应用在应力测量、活体细胞观测、微结构器件三维测量等方面。
数字全息显微技术由于引入了显微物镜,可以提高测量系统的横向分辨率。不同放大倍率显微物镜可应用在不同样品的测量中,大数值孔径的物镜虽然测量视场较小,但是能够观察到更多的样品的细节信息,可用于生物组织细胞的测量。反之,小数值孔径的物镜虽然不能得到样品更多细节的信息,但是能够获得较大的测量视场,可用于菲尼尔透镜等微阵列结构器件测量。所以,对于不同的待测透明样品,可以使用不同倍率的显微物镜。
然而,使用显微物镜,会在获取的相位信息中引入相位畸变,所以使用传统数字全息显微系统进行定量相位测量时,必须对此现象进行相位畸变校正,才能获得物体准确的相位信息。近年来,相位畸变校正已经成为国内外学者研究的热点。
数字全息显微成像中相位畸变校正方法,主要分为数值补偿法和物理补偿法两类。数值补偿法,即借用计算机,通过后期数值算法处理消除相位畸变,有课题组提出两次曝光法,这种方法是分别采集有样品和无样品时的两幅全息图,求得对应的相位相减就可以消除相位畸变,但是该方法需要采集两幅全息图,系统需要保持较高的稳定性。还有课题组提出相位掩膜、参考共轭全息图、泽尼克多项式拟合三种数值法来消除相位畸变。另外有人提出只采集一幅全息图,利用最小二乘曲面拟合法就能消除相位畸变。然而数值补偿法中需要曲线拟合、多项式拟合等数值计算,随着记录全息图尺寸增大,计算量也会增大。物理补偿法,即在测量系统中通过引入特定的光学元件来消除相位畸变,可用在Mach-Zehnder干涉结构、Linnik干涉结构。有人提出远心系统结构的方法,该方法是在物光光路中使用镜筒透镜,与显微物镜形成远心结构,从而消除相位畸变,但是在商业数字全息显微系统中,为了节省空间和保证系统紧凑性,常常不能满足远心结构的要求。有课题组提出一种方法,该方法在参考光路加入和物光光路相同的显微物镜,通过调节显微物镜位置实现球面参考光和球面物光曲率相同,消除相位畸变。还有一种方法是在参考光光路引入一个普通透镜,调节透镜的位置产生不同曲率球面波匹配显微物镜的曲率,但是上述两种方法都需要对透镜进行机械移动。
因此,在引入显微物镜的情况下,需要对透镜进行机械移动,来消除显微物镜带来的相位畸变;并且,在对不同样品进行测量时,一方面,需要手动切换不同倍率的物镜成像,另一方面,也需要对透镜进行机械移动,才能消除显微物镜带来的相位畸变,不能保证系统的稳定性。
技术问题
本发明所要解决的技术问题在于提供一种基于电控变焦透镜的透射式数字全息显微成像装置,旨在通过切换不同倍率显微物镜来满足不同测量需求的同时,能够利用电控变焦透镜灵活的补偿不同倍率显微物镜带来的相位畸变,避免了光学元件的机械移动。
技术解决方案
本发明提供了一种基于电控变焦透镜的透射式数字全息显微成像装置,包括:
激光器、第一分束镜、第一光路转向组件、第二光路转向组件、第二分束镜和相机;
其中,所述激光器用于发出激光,并经过所述第一分束镜;
所述第一分束镜用于将所述激光分离为物光和参考光,所述物光经过所述第一光路转向组件,产生物光球面波,所述参考光经过所述第二光路转向组件,产生参考光球面波;
所述第二分束镜,用于将所述物光球面波和所述参考光球面波输出至所述相机的成像平面;
所述相机,用于记录所述物光球面波和所述参考光球面波在所述相机的成像平面上干涉形成的干涉条纹图;
其中,所述第一光路转向组件包括显微物镜转盘和显微物镜,所述显微物镜置于所述显微物镜转盘中,所述显微物镜转盘用于根据待测透明样品切换不同倍率的显微物镜;
所述第二光路转向组件包括电控变焦透镜,所述电控变焦透镜用于根据切换的显微物镜的倍率来改变焦距,从而使参考光经过所述电控变焦透镜后形成的参考光球面波的曲率与所述物光球面波的曲率相同。
进一步地,所述第一光路转向组件还包括:第一平面镜;
所述第一平面镜与所述物光呈45度角放置,所述第一平面镜用于对物光进行反射,并且反射光依次经过待测透明样品和显微物镜后产生物光球面波。
进一步地,所述第二光路转向组件还包括:第二平面镜;
所述第二平面镜与所述参考光呈45度角放置,所述第二平面镜用于将所述参考光球面波反射到所述第二分束镜。
进一步地,所述第二光路转向组件还包括:衰减片;
所述衰减片置于所述第一分束镜和所述电控变焦透镜之间,用于使经过的参考光光路的光强发生衰减。
进一步地,所述透射式数字全息显微成像装置还包括:聚光镜;
所述聚光镜置于所述激光器和所述第一分束镜之间,用于使经过的激光变成平行光。
进一步地,所述第一分束镜分离的反射光作为物光,分离的透射光作为参考光。
进一步地,所述物光和参考光的比例为7:3。
有益效果
本发明与现有技术相比,有益效果在于:本发明提供的一种基于电控变焦透镜的透射式数字全息显微成像装置,一方面,在引入显微物镜的情况下,可以通过改变电控变焦透镜的焦距,来消除显微物镜带来的相位畸变,避免了光学元件的机械移动;另一方面,因为引入了显微物镜转盘,在针对不同的待测透明样品时,可以利用显微物镜转盘实现方便的切换不同倍率的显微物镜,满足不同的测量需求,并且,可以根据切换的显微物镜的倍率来改变电控变焦透镜的焦距,使参考光经过所述电控变焦透镜后形成的参考光球面波的曲率与所述物光球面波的曲率相同,从而消除相位畸变;切换不同倍率显微物镜时既不需要手动拆卸光路,特别是对于紧凑、笼式结构的数字全息显微测量系统,又不需要对透镜进行机械移动,满足了不同的测量需求,保证了系统的稳定性和实用性。
附图说明
图1是本发明实施例提供的基于电控变焦透镜的透射式数字全息显微成像装置的结构示意图;
图2a是本发明实施例提供的无待测透明样品、无电控变焦透镜时采集的干涉条纹图;
图2b是图2a提供的干涉条纹图的频谱分布图;
图3a是本发明实施例提供的无待测透明样品、有电控变焦透镜时采集的干涉条纹图;
图3b是图3a提供的干涉条纹图的频谱分布图;
图4a是本发明实施例提供的待测的生物组织样品剑水蚤的图样;
图4b是采用4倍显微物镜对图4a中的大方框区域的成像相位恢复结果的示意图;
图4c是采用10倍显微物镜对图4a中的小方框区域的成像相位恢复结果的示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的主要实现思想为:利用第一分束镜将射入的激光分离为物光和参考光,物光光路中光通过待测透明样品和显微物镜后,形成物光球面波;在参考光光路中,因为引入了电控变焦透镜,可以通过调节电流来调节电控变焦透镜的焦距,从而产生与物光球面波一样曲率的参考光球面波,这样物光球面波和参考光球面波在相机成像平面上形成干涉图,消除了相位畸变;并且,由于引入了电控变焦透镜,从而避免了物理补偿中光学元件需要的机械移动的操作。在物光光路中,由于引入了显微物镜转盘,可以根据待测透明样品切换不同倍率的显微物镜,以满足不同待测透明样品的需求。
下面具体介绍这种基于电控变焦透镜的透射式数字全息显微成像装置,如图1所示,包括:
激光器1、聚光镜2、第一分束镜3、第一光路转向组件4、第二光路转向组件5、第二分束镜6和相机7;
其中,所述激光器1用于发出激光,所述聚光镜2置于所述激光器1和所述第一分束镜3之间,用于使经过的激光变成平行光。
所述第一分束镜3,用于将经过所述聚光镜2后的平行激光分离为物光和参考光。
具体地,其中,以所述第一分束器3反射的光作为物光,反射光和从聚光镜射出的平行激光所成的夹角为90度,以所述第一分束器3透射的光作为参考光;所述物光和参考光的比例为7:3,设置成这样的比例,并结合衰减片可以更好的调整物参光光强比。
所述第一光路转向组件4包括第一平面镜41、显微物镜42和显微物镜转盘43,所述第一平面镜41与所述物光呈45度角放置,所述显微物镜42置于所述显微物镜转盘43中,所述显微物镜转盘43用于根据待测透明样品8切换不同倍率的显微物镜42;所述第一光路转向组件4,用于将物光经过所述显微物镜42后产生的物光球面波的传播方向引导至所述第二分束镜6;具体地,所述物光经过所述第一平面镜41反射,并依次经过待测透明样品8和显微物镜42后形成物光球面波,并射入所述第二分束镜6。
本发明采用显微物镜转盘来转动显微物镜,切换不同倍率的显微物镜成像时不需要手动拆卸光路,特别是对于紧凑、笼式结构的数字全息显微测量系统,使操作更简单。
进一步地,本发明适用的待测透明样品8为透明样品,比如,一些生物组织细胞等;物光被所述第一平面镜反射,并从所述透明样品透射后经过所述显微物镜,从而形成物光球面波。
所述第二光路转向组件5包括衰减片51、电控变焦透镜52和第二平面镜53,所述衰减片51置于所述第一分束镜3和所述电控变焦透镜52之间,用于使经过的参考光光路的光强发生衰减;具体地,可以通过更换不同透过率的衰减片51,来调整物参光光强比(即物光和参考光的光强比),从而使得物光和参考光干涉时能得到较好对比度的干涉条纹。
所述电控变焦透镜52用于根据切换的显微物镜的倍率来改变焦距,从而使参考光光路经过所述电控变焦透镜52后形成的参考光球面波的曲率与所述物光球面波的曲率相同;所述第二光路转向组件5用于将所述参考光球面波的传播方向引导至所述第二分束镜6;具体地,所述第二平面镜53与所述参考光呈45度角放置,所述参考光经过所述电控变焦透镜52后形成参考光球面波,并经过所述第二平面镜53反射后射入所述第二分束镜6。
具体地,所述电控变焦透镜52的焦距可控;更具体地,是通过电控变焦透镜控制软件来控制其焦距的;更具体地,所述电控变焦透镜52不同于传统的玻璃和塑料透镜,它是一种焦距可变的透镜,使用光学透明的弹性薄膜将液体限制在腔体当中,通过改变对液体的压力控制薄膜面型的变化,不同压力产生不同形状,从而改变了电控变焦透镜52的曲率,电控变焦透镜52的焦距随之改变。在电控变焦透镜52的腔体外有一个电磁驱动器,将所述电控变焦透镜52通过USB线连接电脑,通过电脑中的电控变焦透镜控制软件来控制电磁驱动器的电流,通过改变流过电磁驱动器的电流,从而改变对液体的压力,最终使焦距发生改变。
所述第二分束镜6,用于将所述物光球面波和所述参考光球面波输出至所述相机的成像平面。
具体地,所述物光球面波经过所述第二分束镜6后垂直照射所述相机7的成像平面;所述参考光球面波经过所述第二分束镜6后倾斜照射所述相机7的成像平面,所述物光球面波和所述参考光球面波之间呈一定的夹角。
所述相机7即CCD,用于记录所述物光球面波和所述参考光球面波在所述相机7的成像平面上干涉形成的干涉条纹图。
本发明介绍的基于电控变焦透镜的透射式数字全息显微成像装置的核心就在于采用了电控变焦透镜。物光光路中光通过待测透明样品和显微物镜后,形成物光球面波,为了消除显微物镜引入的相位误差,利用电控变焦透镜产生与物光球面波一样曲率的参考光球面波,这样物光球面波和参考光球面波在相机成像平面上形成干涉图,避免了传统参考光路使用普通透镜或者同等参数物镜等光学元件需要机械移动的操作,消除了显微物镜带来的相位畸变,大大提高了系统的准确度。并且由于使用了电控变焦透镜,可以根据需要改变电控变焦透镜的焦距,转动显微物镜转盘来切换不同倍率物镜时,不需要手动拆卸光路更换不同倍率显微物镜,特别是对于紧凑、笼式结构的数字全息显微测量系统,就可结合所述电控变焦透镜灵活补偿不同倍率显微物镜带来的相位畸变,满足了不同的测量需求,同时也保证了系统的稳定性和实用性。后期也不需要复杂的数值计算处理过程,提高了成像的速度。
下面具体介绍利用本发明提供的使用Mach-Zehnder干涉结构的一种基于电控变焦透镜的透射式数字全息显微成像装置进行待测透明样品的干涉图像采集,并进行相关待测量数据重建的过程:
第一步:通过对装置进行调整,来补偿所选择倍率的显微物镜42造成的相位畸变;
具体地,物光经过显微物镜42后形成物光球面波,对于不同倍率的显微物镜42,利用电控变焦透镜控制软件,通过改变电流来改变电控变焦透镜52的焦距,从而产生与物光球面波相同曲率的参考光球面波,使得无待测物体时的干涉条纹图为直条纹。其中,确定电控变焦透镜52补偿的参数的方法,可以通过干涉条纹图的频谱形状来判断。
第二步:放置待测透明样品于该透射式数字全息显微成像装置中,利用所述相机7采集一幅干涉图图像I;
第三步:通过傅里叶变换求得所述干涉图图像I的频谱F;
第四步:选取频谱F中的+1级频谱;
第五步:找出+1级频谱中能量最大值位置作为+1级频谱的中心,然后将+1级频谱平移到整幅频谱中央,使得+1级频谱的中心与整幅频谱的中心重合;
第六步:对重合后的频谱进行傅里叶逆变换,得到待测透明样品8的振幅分布和相位分布信息。
结合图2-4所示,为了测试基于电控变焦透镜的透射式数字全息显微成像装置的有效性,对得到的干涉条纹图进行了分析,以及对生物组织样本剑水蚤进行了不同倍率观察的数字全息显微成像。
其中,图2a是无待测透明样品、无电控变焦透镜52时采集的干涉条纹图,出现了圆环条纹,可以看出显微物镜42引入相位误差造成的相位畸变;图2b是图2a的频谱分布。
图3a是无待测透明样品、有电控变焦透镜52时采集的干涉条纹图,为直条纹,可以看出利用电控变焦透镜52很好补偿了相位误差;图3b是图3a的频谱分布。
图4a是待测的生物组织样品剑水蚤的图样;图4b是采用4倍显微物镜42对图4a中的大方框区域的成像相位恢复结果;图4c是采用10倍显微物镜42对图4a中的小方框区域的成像相位恢复结果。
本发明基于电控变焦透镜,使得物光球面波和参考光球面波在相机成像平面上干涉形成干涉条纹图,避免了传统参考光路使用普通透镜或者同等参数物镜等光学元件需要机械移动的操作,消除了相位畸变,大大提高了系统的准确度。并且由于使用了电控变焦透镜,可以根据需要改变电控变焦透镜的焦距,转动显微物镜转盘来切换不同倍率时,不需要手动拆卸光路更换不同倍率显微物镜,特别是对于紧凑、笼式结构的数字全息显微测量系统,就可结合所述电控变焦透镜灵活补偿不同倍率显微物镜的相位畸变,满足了不同的测量需求,同时也保证了系统的稳定性和实用性,适用于动态测量。后期也不需要复杂的数值计算处理过程,提高了成像的速度。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种基于电控变焦透镜的透射式数字全息显微成像装置,其特征在于,包括:
    激光器、第一分束镜、第一光路转向组件、第二光路转向组件、第二分束镜和相机;
    其中,所述激光器用于发出激光,并经过所述第一分束镜;
    所述第一分束镜用于将所述激光分离为物光和参考光,所述物光经过所述第一光路转向组件,产生物光球面波,所述参考光经过所述第二光路转向组件,产生参考光球面波;
    所述第二分束镜,用于将所述物光球面波和所述参考光球面波输出至所述相机的成像平面;
    所述相机,用于记录所述物光球面波和所述参考光球面波在所述相机的成像平面上干涉形成的干涉条纹图;
    其中,所述第一光路转向组件包括显微物镜转盘和显微物镜,所述显微物镜置于所述显微物镜转盘中,所述显微物镜转盘用于根据待测透明样品切换不同倍率的显微物镜;
    所述第二光路转向组件包括电控变焦透镜,所述电控变焦透镜用于根据切换的显微物镜的倍率来改变焦距,从而使参考光经过所述电控变焦透镜后形成的参考光球面波的曲率与所述物光球面波的曲率相同。
  2. 如权利要求1所述的透射式数字全息显微成像装置,其特征在于,所述第一光路转向组件还包括:第一平面镜;
    所述第一平面镜与所述物光呈45度角放置,所述第一平面镜用于对物光进行反射,并且反射光依次经过所述待测透明样品和显微物镜后产生物光球面波。
  3. 如权利要求1或2所述的透射式数字全息显微成像装置,其特征在于,所述第二光路转向组件还包括:第二平面镜;
    所述第二平面镜与所述参考光呈45度角放置,所述第二平面镜用于将所述参考光球面波反射到所述第二分束镜。
  4. 如权利要求3所述的透射式数字全息显微成像装置,其特征在于,所述第二光路转向组件还包括:衰减片;
    所述衰减片置于所述第一分束镜和所述电控变焦透镜之间,用于使经过的参考光光路的光强发生衰减。
  5. 如权利要求1所述的透射式数字全息显微成像装置,其特征在于,所述透射式数字全息显微成像装置还包括:聚光镜;
    所述聚光镜置于所述激光器和所述第一分束镜之间,用于使经过的激光变成平行光。
  6. 如权利要求1所述的透射式数字全息显微成像装置,其特征在于,所述第一分束镜分离的反射光作为物光,分离的透射光作为参考光。
  7. 如权利要求6所述的透射式数字全息显微成像装置,其特征在于,所述物光和参考光的比例为7:3。
PCT/CN2017/073324 2017-02-13 2017-02-13 基于电控变焦透镜的透射式数字全息显微成像装置 WO2018145307A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/073324 WO2018145307A1 (zh) 2017-02-13 2017-02-13 基于电控变焦透镜的透射式数字全息显微成像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/073324 WO2018145307A1 (zh) 2017-02-13 2017-02-13 基于电控变焦透镜的透射式数字全息显微成像装置

Publications (1)

Publication Number Publication Date
WO2018145307A1 true WO2018145307A1 (zh) 2018-08-16

Family

ID=63107873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073324 WO2018145307A1 (zh) 2017-02-13 2017-02-13 基于电控变焦透镜的透射式数字全息显微成像装置

Country Status (1)

Country Link
WO (1) WO2018145307A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111044455A (zh) * 2019-12-27 2020-04-21 河北工程大学 一种数字全息显微成像设备光路共焦装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1688944A (zh) * 2002-09-03 2005-10-26 Ut-巴特勒有限责任公司 离轴照明直接数字全息术
CN1804666A (zh) * 2005-01-13 2006-07-19 三星电机株式会社 驱动电压降低了的可变焦液体透镜
CN101384928A (zh) * 2006-02-24 2009-03-11 新加坡科技研究局 在管状外壳中形成可变焦液体透镜的方法
CN101604067A (zh) * 2009-07-23 2009-12-16 北京赛尔蒂扶科技发展有限公司 全自动化摆动式物镜转台
CN101950078A (zh) * 2010-09-07 2011-01-19 华中科技大学 基于逆压电效应的可变焦双液体透镜
CN103454705A (zh) * 2012-06-04 2013-12-18 清华大学 液体透镜
CN105242512A (zh) * 2015-09-29 2016-01-13 南京理工大学 基于远心光学结构的透射式数字全息显微成像装置
CN106773585A (zh) * 2017-02-10 2017-05-31 深圳大学 基于电控变焦透镜的透射式数字全息显微成像装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1688944A (zh) * 2002-09-03 2005-10-26 Ut-巴特勒有限责任公司 离轴照明直接数字全息术
CN1804666A (zh) * 2005-01-13 2006-07-19 三星电机株式会社 驱动电压降低了的可变焦液体透镜
CN101384928A (zh) * 2006-02-24 2009-03-11 新加坡科技研究局 在管状外壳中形成可变焦液体透镜的方法
CN101604067A (zh) * 2009-07-23 2009-12-16 北京赛尔蒂扶科技发展有限公司 全自动化摆动式物镜转台
CN101950078A (zh) * 2010-09-07 2011-01-19 华中科技大学 基于逆压电效应的可变焦双液体透镜
CN103454705A (zh) * 2012-06-04 2013-12-18 清华大学 液体透镜
CN105242512A (zh) * 2015-09-29 2016-01-13 南京理工大学 基于远心光学结构的透射式数字全息显微成像装置
CN106773585A (zh) * 2017-02-10 2017-05-31 深圳大学 基于电控变焦透镜的透射式数字全息显微成像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111044455A (zh) * 2019-12-27 2020-04-21 河北工程大学 一种数字全息显微成像设备光路共焦装置

Similar Documents

Publication Publication Date Title
Colomb et al. Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements
CN108303020B (zh) 一种数字全息与微分干涉联合的双通道相移相位测量显微镜
JP7161777B2 (ja) ホログラフィック撮像装置および同装置に用いるデータ処理方法
CN111561864B (zh) 一种基于偏振光栅的点衍射数字全息显微装置及方法
US20140375792A1 (en) Systems and methods for self-referenced quantitative phase microscopy
CN111650203B (zh) 一种微球内表面缺陷测量方法
Coquoz et al. Performances of endoscopic holography with a multicore optical fiber
US11561389B2 (en) High spatial and temporal resolution synthetic aperture phase microscopy (HISTR-SAPM)
CN106292238A (zh) 一种反射式离轴数字全息显微测量装置
CN111220553B (zh) 基于光学自旋霍尔效应以及古斯-汉森效应的微分相衬方法及系统
CN105466668B (zh) 点衍射干涉波像差测量仪及光学系统波像差的检测方法
CN102289152A (zh) 光学系统波像差检测装置
CN104390722A (zh) 一种基于光纤传导的数字全息层析三维测温装置
CN105424325B (zh) 点衍射干涉波像差测量仪及光学系统波像差的检测方法
JPWO2020045589A1 (ja) 表面形状計測装置および表面形状計測方法
CN105242512A (zh) 基于远心光学结构的透射式数字全息显微成像装置
CN115930773A (zh) 轻离轴数字全息检测装置
CN108918465A (zh) 光学三维成像系统及光学三维成像方法
WO2018145307A1 (zh) 基于电控变焦透镜的透射式数字全息显微成像装置
CN101487695B (zh) 一种多灵敏度制栅云纹干涉仪
CN208580026U (zh) 光学三维成像系统
CN106969702A (zh) 一种可柔性变倍的离轴数字全息测量装置
Zhao et al. Single-pixel phase microscopy without 4f system
Mu et al. Three dimension refractive index characterization for photonic waveguides
CN105159043A (zh) 基于远心光学结构的反射式数字全息显微成像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.11.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17895929

Country of ref document: EP

Kind code of ref document: A1