WO2018143739A1 - 무선 통신 시스템에서 경쟁 기반 전송을 위한 혼잡도 제어 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 경쟁 기반 전송을 위한 혼잡도 제어 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018143739A1
WO2018143739A1 PCT/KR2018/001492 KR2018001492W WO2018143739A1 WO 2018143739 A1 WO2018143739 A1 WO 2018143739A1 KR 2018001492 W KR2018001492 W KR 2018001492W WO 2018143739 A1 WO2018143739 A1 WO 2018143739A1
Authority
WO
WIPO (PCT)
Prior art keywords
contention
based transmission
resource pool
resource
size
Prior art date
Application number
PCT/KR2018/001492
Other languages
English (en)
French (fr)
Inventor
서한별
변일무
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/478,589 priority Critical patent/US11026118B2/en
Priority to KR1020187019064A priority patent/KR101984608B1/ko
Publication of WO2018143739A1 publication Critical patent/WO2018143739A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a congestion control method and apparatus therefor for contention-based transmission in a wireless communication system.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is an access gateway (AG) located at an end of a user equipment (UE) and a base station (eNode B), an eNB, and a network (E-UTRAN) and connected to an external network.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • For downlink (DL) data the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • the base station transmits uplink scheduling information to the terminal for uplink (UL) data and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use.
  • DL downlink
  • HARQ Hybrid Automatic Repeat and reQuest
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required in order to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • the present invention proposes a congestion control method for contention-based transmission in a wireless communication system and an apparatus therefor.
  • a method for a contention-based transmission by a terminal includes: calculating channel congestion for contention-based transmission within a predetermined time window; And performing contention-based transmission to the base station by using the allocated resource based on the calculated channel congestion, wherein the channel congestion is the size of the resource used for contention-based transmission at the unit time point and the corresponding unit time point. Is a ratio of the size of the resource pool for the contention-based transmission, and is calculated and summed for each unit time point in the window, and the size of the resource pool is independently set for each unit time point.
  • a terminal in a wireless communication system of an aspect of the present invention, includes a wireless communication module; And a processor connected to the wireless communication module to calculate channel congestion for contention-based transmission within a predetermined time window and perform contention-based transmission to a base station using allocated resources based on the calculated channel congestion.
  • the channel congestion is a ratio of the size of a resource used for contention-based transmission at a unit time point and the size of a resource pool for contention-based transmission at the unit time point, and is calculated for each unit time point within the window.
  • the sum of the resource pools may be set independently for each unit time point.
  • the base station receives a control signal including information on a resource pool for the contention-based transmission among all resource pools at each unit time point.
  • the size of the resource pool for the contention-based transmission of the corresponding unit time point is set to the size of the minimum resource pool for the contention-based transmission.
  • the terminal may calculate the size of the resource pool for the contention-based transmission for each corresponding unit time point. In this case, when the calculated channel congestion exceeds a threshold and the priority of the contention-based transmission is the highest priority, contention to the base station is performed using a reserved resource not included in the resource pool for contention-based transmission. Based transmission may also be performed.
  • more efficient congestion control may be performed for contention-based communication.
  • FIG. 1 schematically illustrates an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 3 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 3 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • 5 is a diagram illustrating a structure of a downlink radio frame used in the LTE system.
  • FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • 7 is a conceptual diagram of direct communication between terminals.
  • FIG. 8 shows an example of the configuration of a resource pool and a resource unit.
  • FIG 9 illustrates an operation of a UE when CR_limit is reached in contention based transmission according to an embodiment of the present invention.
  • FIG. 10 illustrates an example of performing contention-based transmission by calculating channel congestion according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a configuration of a base station and a terminal that can be applied to an embodiment of the present invention.
  • the present specification describes an embodiment of the present invention using an LTE system and an LTE-A system
  • the embodiment of the present invention as an example may be applied to any communication system corresponding to the above definition.
  • the present specification describes an embodiment of the present invention with reference to the FDD scheme, but this is an example embodiment of the present invention can be easily modified and applied to the H-FDD scheme or TDD scheme.
  • the specification of the base station may be used in a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • relay and the like.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources.
  • the physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink, and modulated in a Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function to reduce unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • IPv4 Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 15, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
  • Different cells may be configured to provide different bandwidths.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (broadcast channel) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH Broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast Traffic Channel
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may also be (S302).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
  • RACH random access procedure
  • the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S303 and S305), and may receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the above-described procedure, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S308) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • a radio frame has a length of 10 ms (327200 ⁇ T s ) and is composed of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5 ms (15360 x T s ).
  • the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • one resource block includes 12 subcarriers x 7 (6) OFDM symbols.
  • Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 5 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
  • a subframe consists of 14 OFDM symbols.
  • the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
  • R1 to R4 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
  • the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
  • the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
  • Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
  • the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
  • the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
  • the PCFICH is composed of four Resource Element Groups (REGs), and each REG is distributed in a control region based on a Cell ID (Cell IDentity).
  • One REG is composed of four resource elements (REs).
  • the RE represents a minimum physical resource defined by one subcarrier x one OFDM symbol.
  • the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
  • QPSK Quadrature Phase Shift Keying
  • the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
  • the PHICH consists of one REG and is scrambled cell-specifically.
  • ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • a plurality of PHICHs mapped to the same resource constitutes a PHICH group.
  • the number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
  • the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
  • the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
  • n is indicated by the PCFICH as an integer of 1 or more.
  • the PDCCH consists of one or more CCEs.
  • the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
  • Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode PDSCH data is included in the PDCCH and transmitted.
  • a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A”, a radio resource (eg, frequency location) of "B” and a DCI format of "C", that is, a transmission format. It is assumed that information about data transmitted using information (eg, transport block size, modulation scheme, coding information, etc.) is transmitted through a specific subframe.
  • RTI Radio Network Temporary Identity
  • the terminal in the cell monitors, that is, blindly decodes, the PDCCH in the search region by using the RNTI information of the cell, and if there is at least one terminal having an "A" RNTI, the terminals receive and receive the PDCCH.
  • the PDSCH indicated by "B” and "C” is received through the information of one PDCCH.
  • FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • the uplink subframe may be divided into a region to which a Physical Uplink Control CHannel (PUCCH) carrying control information is allocated and a region to which a Physical Uplink Shared CHannel (PUSCH) carrying user data is allocated.
  • the middle part of the subframe is allocated to the PUSCH, and both parts of the data area are allocated to the PUCCH in the frequency domain.
  • the control information transmitted on the PUCCH includes ACK / NACK used for HARQ, Channel Quality Indicator (CQI) indicating downlink channel status, RI (Rank Indicator) for MIMO, and scheduling request (SR), which is an uplink resource allocation request. There is this.
  • the PUCCH for one UE uses one resource block occupying a different frequency in each slot in a subframe. That is, two resource blocks allocated to the PUCCH are frequency hoped at the slot boundary.
  • 7 is a conceptual diagram of direct communication between terminals.
  • an eNB may transmit a scheduling message for instructing D2D transmission and reception.
  • a UE participating in D2D communication receives a D2D scheduling message from an eNB and performs a transmission / reception operation indicated by the D2D scheduling message.
  • the UE refers to a terminal of the user, but when a network entity such as an eNB transmits and receives a signal according to a communication method between the UEs, it may also be regarded as a kind of UE.
  • the eNB may receive the D2D signal transmitted by the UE, and the method of transmitting / receiving a signal of the UE, which is designed for D2D transmission, may be applied to an operation in which the UE transmits an uplink signal to the eNB.
  • a link directly connected between UEs is referred to as a D2D link
  • a link through which the UE communicates with an eNB is referred to as a NU link
  • a link directly connected between UEs may be referred to as sidelink (SL) in a concept as opposed to uplink and downlink.
  • UE1 selects a resource unit corresponding to a specific resource in a resource pool, which means a set of resources, and transmits a sidelink signal using the resource unit.
  • the resource pool may inform the base station when the UE1 is located within the coverage of the base station. If the UE1 is outside the coverage of the base station, another base station may inform or determine a predetermined resource.
  • a resource pool is composed of a plurality of resource units, and each UE may select one or a plurality of resource units and use them for transmitting their own sidelink signals.
  • FIG. 8 shows an example of the configuration of a resource pool and a resource unit.
  • a resource pool is repeated every N T subframes.
  • one resource unit may appear periodically and repeatedly.
  • an index of a physical resource unit to which one logical resource unit is mapped may change in a predetermined pattern over time.
  • a resource pool may mean a set of resource units that can be used for transmission by a UE that wants to transmit sidelink signals.
  • the present invention describes a method of properly controlling congestion when the UE transmits a signal through a contention-based transmission scheme.
  • the contention-based transmission scheme refers to a transmission in the form of selecting a portion of the resource to be used by the UE when there is a predetermined set of resource pools, like the above-described sidelink signal transmission.
  • the transmitting UE informs through separate signaling, other base stations or UEs except the transmitting UE cannot know which resources are actually used, and in order to prevent resource waste, multiple UEs transmit contention-based transmissions in one resource pool. You can also apply the method. As a result, a phenomenon in which two UEs interfere with each other by performing transmission on the same resource may occur. In order to alleviate this, a sensing operation of determining whether to transmit another UE and selecting its own transmission resource may be applied.
  • the UE may select one or more units in the actual transmission.
  • the resource pool may consist of only one unit, which may be interpreted as using the entire resource of the resource pool when the UE transmits.
  • the UE may perform D2D transmission directly to the neighboring UE or perform uplink transmission to the base station through this operation.
  • the operation may be further extended and applied to downlink transmission.
  • each base station may select an appropriate resource unit to perform downlink transmission.
  • contention-based transmission has the effect of reducing the time delay for initiating actual transmission by reducing the signaling sequence and signaling to prevent collisions between transmitting UEs. May be used.
  • the UE may calculate an amount of resources used for transmission during the last predetermined time interval (for example, within the last 1 second), and may define the amount of the transmission resource to be below a certain level.
  • the ratio between the amount of resources used for transmission by the UE and the total amount of resources in the resource pool is defined as a channel resource (CR).
  • the CR_limit may be a value determined by the channel load observed by the UE, and specifically, may be derived from a function of an attribute that decreases as the channel load increases. According to such congestion control, the ratio of resources available to the UE when the load is high decreases, thereby reducing the load again.
  • the present invention may be applied to grant free uplink transmission performed on a contention basis without uplink grant in NR (New RAT), which is a next-generation communication technique.
  • NR New RAT
  • the UE may take an operation of dropping the corresponding data in order to maintain the CR below the CR_limit.
  • this behavior is inappropriate for high priority data that requires a high level of success probability.
  • you can define CR or CR_limit separately for each priority so that low-priority transmissions do not affect congestion control for high-priority transmissions. May cause problems.
  • no congestion control is applied to the high priority, a situation may arise in which the high priority occupies the entire resource pool.
  • the present invention proposes to allow transmission with a resource having a predetermined size when CR_limit is reached when high priority data is generated.
  • Predetermined resources may be set to a relatively small size so that high-priority data can be minimally transmitted even when CR_limit is reached.
  • FIG 9 illustrates an operation of a UE when CR_limit is reached in contention based transmission according to an embodiment of the present invention.
  • the fourth and fifth transmissions use only resources of a predetermined size due to past CR_limit due to past transmissions, and again, the sixth transmission uses up as many resources as desired. You can also see that.
  • a certain threshold Y may be set to reflect resource usage of max ⁇ X-Y, 0 ⁇ in the CR calculation. In this case, the use of resources smaller than or equal to the threshold value Y is not reflected in the CR calculation, and thus can be used at any time.
  • the DM-RS used by the UE can be distinguished through different sequences even in the same resource.
  • a DM-RS sequence is specified for each UE in advance, if the channel situation is ideal and different DM-RS sequences are orthogonal, DM Transmission of only the -RS sequence does not interfere with transmission of another UE. Therefore, in the contention-based transmission, when the UE transmits only the DM-RS, the UE may operate so as not to include in the CR calculation. In particular, such an operation may be useful for an uplink operation in which a DM-RS sequence is previously assigned to each UE.
  • the UE transmits only DM-RS within the contention-based transmission resource pool and the base station determines that at least that UE has resources to transmit, and separately schedules appropriate resource It can also be done.
  • the UE which has performed the contention-based transmission may also perform retransmission for the corresponding data as necessary.
  • retransmission may be performed.
  • such a retransmission also interferes with the transmission of another UE, so it would be natural to include it in the CR calculation.
  • a resource management device for example, a retransmission is instructed by a base station that performs a resource pool setting, it may be operated so as not to be included in the CR calculation. This is because the retransmission can be indicated.
  • the base station since the base station is a receiving end, the base station may directly designate retransmission by checking whether reception is successful and congestion.
  • the receiving UE may report success and / or congestion status to the base station and directly specify the retransmission while forwarding it back to the transmitting UE.
  • an exception may occur when a congestion situation observed between the transmitting UE and the receiving UE is different in D2D transmission.
  • the receiving UE fails to receive a situation in which the retransmission is impossible because the transmitting UE reaches the CR_limit after transmitting the data.
  • the receiving UE informs the transmitting UE that this is the situation, and the receiving UE trusts the information on the low-congestion received from the receiving UE, and may be allowed to perform retransmission even when the CR_limit is exceptionally reached.
  • weights may be differently applied when reflecting the amount of resources used for initially transmitted data to the CR and reflecting the amount of resources used for retransmission to the CR.
  • the amount of resources used for the first transmission may be included in the CR calculation as it is, but the resources used for retransmission may be operated to include less than the amount actually used in the CR calculation with a certain weight.
  • the size of the resource pool may vary dynamically.
  • the base station may allocate some of its resources to contention-based transmission and use the rest as contention-free transmission.
  • the base station may indicate the exclusion portion from the resource pool through the DCI. Specifically, for a resource pool for sidelink communication, resources indicated for uplink or downlink use may be separately indicated.
  • the size of the contention-based transmission resource pool may be dynamically changed. In this case, a criterion for calculating CR is needed.
  • the resource pool of the resource used when calculating the CR may assume a nominal size signaled in advance. In this case, the change in the size of the resource pool at each time point does not affect the CR calculation. If the resource pool becomes small, each UE may substantially underestimate the CR, but the base station may make this determination in consideration of the overall load of the contention-based transmission.
  • the size of the resource pool used when calculating the CR may be considered as the size of the resource pool that is determined dynamically. Since CR is defined as the ratio of resources used for transmission among resource pools, even if one UE transmits multiple data using the same size of resource, if the resource pool size is variable, the value reflected in the CR will change over time. Variable.
  • Equation 1 is an equation for deriving a CR when the resource pool is not variable
  • Equation 2 is an equation for deriving CR when the size of the resource pool is dynamically changed according to the present invention.
  • the CR calculated at the time point t calculates the CR as transmission resources at M time points between the time intervals [t-M + 1, t].
  • the size of the resource used by the UE at time t is X (t) and the total size of the resource pool used at time t is conventionally a constant Y, in the present invention, Y (t) )to be.
  • Y (i) is variable not only by changing the size of a given resource pool, but also by changing the resource pool used by the UE as it moves. It is also applicable when the size of the resource pool used at the location is different. In this case, maintaining CR calculations even when moving between different resource pools allows the CR to be reset in the new resource pool and suddenly use more resources, thereby avoiding the problem of excessive interference even in congestion situations. It may be.
  • the CR may be calculated on the assumption that a predetermined size is maintained, and may be defined to assume that a resource pool having a minimum size that can be referred to through a corresponding dynamic signal is set. This may prevent congestion due to signaling error by conservatively operating so that the UE does not under-measure the CR.
  • FIG. 10 illustrates an example of performing contention-based transmission by calculating channel congestion according to an embodiment of the present invention.
  • FIG. 10 illustrates an example of calculating a CR based on the size of a variable resource pool when the size of the resource pool is dynamically changed according to a situation.
  • the UE calculates a channel congestion, or CR, for contention-based transmission within a predetermined time window.
  • the channel congestion is a ratio of a size of a resource used for contention-based transmission at a unit time point and a size of a resource pool for contention-based transmission at the unit time point, and is calculated and added to each unit time point in the window.
  • the size of the resource pool is set independently for each unit time point.
  • a control signal including information on the resource pool for the contention-based transmission of the entire resource pool may be received from the base station for each unit time point. In this case, however, if the reception of the control signal fails, it is preferable to calculate the CR by setting the size of the resource pool for contention-based transmission at the unit time to the size of the minimum resource pool for contention-based transmission. Do.
  • the UE may directly calculate the size of the resource pool for the contention-based transmission for each corresponding unit time point.
  • the terminal transmits a signal to the base station using the allocated resource based on the calculated CR.
  • the signal may be transmitted to the base station by using a reserved resource not included in the resource pool for contention-based transmission. It may be.
  • first to third embodiments may be performed alone, it is obvious that two or more of them may be performed by combining.
  • FIG. 11 is a diagram illustrating a configuration of a base station and a terminal that can be applied to an embodiment of the present invention.
  • a base station (eNB) 10 may include a receiving module 11, a transmitting module 12, a processor 13, a memory 14, and a plurality of antennas 15. .
  • the plurality of antennas 15 means a base station supporting MIMO transmission and reception.
  • the receiving module 11 may receive various signals, data, and information on the uplink from the terminal.
  • the transmission module 12 may transmit various signals, data, and information on downlink to the terminal.
  • the processor 13 may control the operation of the entire base station 10.
  • the processor 13 of the base station 10 according to an embodiment of the present invention may process matters necessary in each of the embodiments described in FIGS. 1 to 10.
  • the processor 13 of the base station 10 performs a function of processing information received by the base station 10, information to be transmitted to the outside, and the like, and the memory 14 stores the processed information and the like for a predetermined time. It may be replaced by a component such as a buffer (not shown).
  • the terminal UE 20 may include a reception module 21, a transmission module 22, a processor 23, a memory 24, and a plurality of antennas 25. It may be.
  • the plurality of antennas 25 refers to a terminal that supports MIMO transmission and reception.
  • the receiving module 21 may receive various signals, data, and information on downlink from the base station.
  • the transmission module 22 may transmit various signals, data, and information on the uplink to the base station.
  • the processor 23 may control operations of the entire terminal 20.
  • the processor 23 of the terminal 20 may process matters necessary in each of the embodiments described with reference to FIGS. 1 to 10.
  • the processor 23 of the terminal 20 performs a function of processing the information received by the terminal 20, information to be transmitted to the outside, and the memory 24 stores the processed information and the like for a predetermined time. It may be replaced by a component such as a buffer (not shown).
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Certain operations described in this document as being performed by a base station may, in some cases, be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( Field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Abstract

본 출원에서는 무선 통신 시스템에서 단말이 경쟁 기반 송신을 수행하는 방법이 개시된다. 구체적으로, 상기 방법은, 소정의 시간 윈도우 내에서 경쟁 기반 송신을 위한 채널 혼잡도를 산출하는 단계; 및 상기 산출된 채널 혼잡도에 기반하여 할당된 자원을 이용하여 기지국으로의 경쟁 기반 송신을 수행하는 단계를 포함하고, 상기 채널 혼잡도는 단위 시점에서 경쟁 기반 송신을 위하여 사용한 자원의 크기와 상기 해당 단위 시점에서 상기 경쟁 기반 송신을 위한 자원 풀의 크기의 비율로서, 상기 윈도우 내에서 상기 단위 시점마다 산출되어 합산되며, 상기 자원 풀의 크기는 상기 단위 시점마다 독립적으로 설정되는 것을 특징으로 한다.

Description

무선 통신 시스템에서 경쟁 기반 전송을 위한 혼잡도 제어 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 경쟁 기반 전송을 위한 혼잡도 제어 (congestion control) 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향링크(Downlink; DL) 데이터에 대해 기지국은 하향링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향링크(Uplink; UL) 데이터에 대해 기지국은 상향링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위하여는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 경쟁 기반 전송을 위한 혼잡도 제어 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명의 일 양상인 무선 통신 시스템에서 단말이 경쟁 기반 송신을 수행하는 방법은, 소정의 시간 윈도우 내에서 경쟁 기반 송신을 위한 채널 혼잡도를 산출하는 단계; 및 상기 산출된 채널 혼잡도에 기반하여 할당된 자원을 이용하여 기지국으로의 경쟁 기반 송신을 수행하는 단계를 포함하고, 상기 채널 혼잡도는 단위 시점에서 경쟁 기반 송신을 위하여 사용한 자원의 크기와 상기 해당 단위 시점에서 상기 경쟁 기반 송신을 위한 자원 풀의 크기의 비율로서, 상기 윈도우 내에서 상기 단위 시점마다 산출되어 합산되며, 상기 자원 풀의 크기는 상기 단위 시점마다 독립적으로 설정되는 것을 특징으로 한다.
한편, 본 발명의 일 양상인 무선 통신 시스템에서 단말은, 무선 통신 모듈; 및 상기 무선 통신 모듈과 연결되어, 소정의 시간 윈도우 내에서 경쟁 기반 송신을 위한 채널 혼잡도를 산출하고, 상기 산출된 채널 혼잡도에 기반하여 할당된 자원을 이용하여 기지국으로의 경쟁 기반 송신을 수행하는 프로세서를 포함하고, 상기 채널 혼잡도는 단위 시점에서 경쟁 기반 송신을 위하여 사용한 자원의 크기와 상기 해당 단위 시점에서 상기 경쟁 기반 송신을 위한 자원 풀의 크기의 비율로서, 상기 윈도우 내에서 상기 단위 시점마다 산출되어 합산되며, 상기 자원 풀의 크기는 상기 단위 시점마다 독립적으로 설정되는 것을 특징으로 한다.
바람직하게는, 상기 기지국으로부터, 상기 단위 시점 마다 전체 자원 풀 중 상기 경쟁 기반 송신을 위한 자원 풀에 관한 정보를 포함하는 제어 신호를 수신하는 것을 특징으로 한다.
보다 바람직하게는, 상기 제어 신호의 수신이 실패한 경우, 상기 해당 단위 시점의 상기 경쟁 기반 송신을 위한 자원 풀의 크기는 상기 경쟁 기반 송신을 위한 최소 자원 풀의 크기로 설정되는 것을 특징으로 한다.
추가적으로, 상기 단말은 상기 해당 단위 시점 마다 상기 경쟁 기반 송신을 위한 자원 풀의 크기를 산출하는 것을 특징으로 한다. 이 경우, 상기 산출된 채널 혼잡도가 임계값을 초과하고 상기 경쟁 기반 송신의 우선 순위가 최우선 순위인 경우, 상기 경쟁 기반 송신을 위한 자원 풀에 포함되어 있지 않는 유보 자원을 이용하여 상기 기지국으로의 경쟁 기반 송신을 수행할 수도 있다.
본 발명의 실시예에 따르면 경쟁 기반 통신을 위하여 보다 효율적인 혼잡도 제어를 수행할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면.
도 5는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면.
도 7은 단말 간 직접 통신의 개념도이다.
도 8는 자원 풀 및 자원 유닛의 구성예를 도시한다.
도 9는 본 발명의 실시예에 따라 경쟁 기반 전송에서 CR_limit에 도달한 경우 UE의 동작을 예시한다.
도 10은 본 발명의 실시예에 따라 채널 혼잡도를 산출하여 경쟁 기반 송신을 수행하는 예를 도시한다.
도 11은 본 발명에 실시예에 적용될 수 있는 기지국과 단말의 구성을 도시한 도면이다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수도 있다. 또한, 본 명세서는 FDD 방식을 기준으로 본 발명의 실시예에 대해 설명하지만, 이는 예시로서 본 발명의 실시예는 H-FDD 방식 또는 TDD 방식에도 용이하게 변형되어 적용될 수도 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수도 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위하여 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 전송측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet 데이터 Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
기지국(eNB)을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수도 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(방송 Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(방송 Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수도 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical 방송 Channel)를 수신하여 셀 내 방송 정보를 획득할 수도 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수도 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수도 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수도 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수도 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수도 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수도 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수도 있다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 4를 참조하면, 무선 프레임(radio frame)은 10ms(327200×Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360×Ts)의 길이를 가진다. 여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파×7(6)개의 OFDM 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수도 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수도 있다.
도 5는 하향링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 5를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 참조 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element Group)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파×하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야 하는 지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 DCI 포맷 즉, 전송 형식 정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 검색 영역에서 PDCCH를 모니터링, 즉 블라인드 디코딩하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 6을 참조하면, 상향링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수도 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 전송되는 제어정보는 HARQ에 사용되는 ACK/NACK, 하향링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), MIMO를 위한 RI(Rank Indicator), 상향링크 자원 할당 요청인 SR(Scheduling Request) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑(frequency hopping)된다. 특히 도 6은 m=0인 PUCCH, m=1인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
도 7은 단말 간 직접 통신의 개념도이다.
도 7을 참조하면, UE가 다른 UE와 직접 무선 통신을 수행하는 D2D(device-to-device) 통신, 즉, 단말 간 직접 통신에서는 eNB가 D2D 송수신을 지시하기 위한 스케줄링 메시지를 전송할 수도 있다. D2D 통신에 참여하는 UE는 eNB로부터 D2D 스케줄링 메시지를 수신하고, D2D 스케줄링 메시지가 지시하는 송수신 동작을 수행한다. 여기서 UE는 사용자의 단말을 의미하지만 eNB와 같은 네트워크 엔티티가 UE 사이의 통신 방식에 따라서 신호를 송수신하는 경우에는 역시 일종의 UE로 간주될 수도 있다. 또한 UE가 송신한 D2D 신호를 eNB가 수신하는 것도 가능하며, D2D 송신을 위해 설계된 UE의 신호 송수신 방법을 UE가 eNB에게 상향링크 신호를 송신하는 동작에도 적용이 가능하다.
이하에서는 UE 사이에 직접 연결된 링크를 D2D 링크로, UE가 eNB와 통신하는 링크를 NU링크로 지칭한다. 또는 UE 사이에 직접 연결된 링크를 상향링크 및 하향링크과 대비되는 개념으로 사이드링크 (Sidelink; SL)라고 지칭할 수도 있다.
이하에서는 UE1은 일련의 자원의 집합을 의미하는 자원 풀 (resource pool) 내에서 특정한 자원에 해당하는 자원 유닛을 선택하고 해당 자원 유닛을 사용하여 사이드링크 신호를 전송하는 경우에 대해서 설명한다. 여기서, 자원 풀은 UE1이 기지국의 커버리지 내에 위치하는 경우 기지국이 알려줄 수 있으며, UE1이 기지국의 커버리지 밖에 있는 경우에는 다른 UE가 알려주거나 혹은 사전에 정해진 자원으로 결정될 수도 있다. 일반적으로 자원 풀은 복수의 자원 유닛으로 구성되며 각 UE는 하나 혹은 복수의 자원 유닛을 선정하여 자신의 사이드링크 신호 전송에 사용할 수도 있다.
도 8는 자원 풀 및 자원 유닛의 구성예를 도시한다.
도 8을 참조하면, 전체 주파수 자원이 NF개로 분할되고, 전체 시간 자원이 NT개로 분할되어, 총 NF*NT 개의 자원 유닛이 정의되는 경우를 예시하고 있다. 특히, 해당 자원 풀이 NT 서브프레임을 주기로 반복된다고 할 수도 있다. 특징적으로, 하나의 자원 유닛은 주기적으로 반복하여 나타날 수도 있다. 혹은 시간이나 주파수 차원에서의 다이버시티 (diversity) 효과를 얻기 위하여 하나의 논리적인 자원 유닛이 맵핑되는 물리적 자원 유닛의 인덱스가 시간에 따라서 사전에 정해진 패턴으로 변화할 수도 있다. 이러한 자원 유닛 구조에 있어서, 자원 풀이란 사이드링크 신호를 전송하고자 하는 UE가 전송에 사용할 수 있는 자원 유닛의 집합을 의미할 수도 있다.
본 발명에서는 UE가 경쟁 기반의 전송 방식을 통하여 신호를 전송할 때 적절하게 혼잡도를 제어하는 방법을 설명한다. 여기서, 경쟁 기반 전송 방식이란, 상술한 사이드링크 신호 전송과 같이, 사전에 설정된 일련의 자원 풀이 있을 때, 그 중 일부를 UE가 자신의 전송에 사용할 자원으로 선택하는 형태의 전송을 의미한다.
이 경우 별도의 시그널링을 통해 전송 UE가 알려주지 않는 이상 전송 UE를 제외한 나머지 기지국이나 UE는 어떤 자원이 실제 사용될 지를 알 수가 없으며, 자원의 낭비를 방지하기 위해서 하나의 자원 풀에 여러 UE가 경쟁 기반 전송 방식을 적용할 수도 있다. 그 결과 두 UE가 동일한 자원에서 전송을 수행하여 서로에게 간섭을 주는 현상이 발생할 수 있으며, 이를 완화하기 위하여 다른 UE의 전송 여부를 판별하여 자신의 전송 자원을 선택하는 센싱 동작을 적용할 수도 있다.
상술한 도 8을 참조하면, UE는 실제 전송에서 하나 혹은 그 이상의 유닛을 선택할 수도 있다. 특수한 경우로 자원 풀이 하나의 유닛으로만 구성될 수도 있으며, 이는 UE가 전송할 경우 자원 풀의 전체 자원을 사용하는 것으로 해석할 수도 있다. UE는 이러한 동작을 통해서 주변 UE로 직접 D2D 전송을 수행하거나 기지국으로 상향링크 전송을 수행할 수도 있다. 혹은 이 동작을 보다 확장하여 하향링크 전송에도 적용할 수 있는데, 가령 인접한 기지국들이 일정한 자원 풀을 공유한 상황에서 각 기지국이 적절한 자원 유닛을 선택하여 하향링크 전송을 수행할 수도 있다. 일반적으로 경쟁 기반 전송은 송신 UE 사이의 충돌을 방지하기 위한 일련의 스케줄링 과정 및 이를 알리는 시그널링을 줄여 실제 전송에 돌입하는데 걸리는 시간 지연을 줄이는 효과가 있으며, 따라서 신속하게 전송되어야 하는 메시지 전송에 유용하게 사용될 수도 있다.
상술한 경쟁 기반 전송에서 한 UE가 과도하게 많은 자원을 전송에 사용하게 되면 다른 UE의 전송에 심각한 간섭을 유발할 수도 있다. 따라서 일시적으로 트래픽이 많이 발생하는 경우에도 자원 풀에 걸리는 부하를 적절한 수준으로 조절하여 전송 신호 사이의 간섭이 과도하게 커지는 것을 방지하는 동작이 필요하다. 이를 혼잡도 제어 (Congestion control)라고 정의한다. 일 예로, UE는 지난 일정 시간 구간 동안 (예를 들어, 최근 1초 이내) 자신이 전송에 사용한 자원의 양을 계산하고, 그 전송 자원의 양이 일정 수준 이하가 되도록 규정할 수도 있다. 이 때 UE가 전송에 사용한 자원의 양과 자원 풀 내 전체 자원의 양 사이의 비율을 CR (channel resource)이라 정의하고, 각 시점에서 새로운 전송이 발생할 경우 CR을 갱신하면서 이 갱신된 CR이 주어진 상한인 CR_limit 이하가 되도록 동작할 수도 있다. 여기서 CR_limit은 UE가 관찰한 채널 부하에 의해 결정되는 값일 수 있으며, 구체적으로 채널 부하가 높아질수록 작아지는 속성의 함수로부터 유도될 수도 있다. 이러한 혼잡도 제어에 따르는 경우, 부하가 높을 때 UE가 사용할 수 있는 자원의 비율이 적어져서 부하를 다시 줄이는 효과가 생긴다.
이하에서는 경쟁 기반 전송에서 혼잡도 제어를 효과적으로 수행할 수 있는 방법들을 기술한다. 특히, 본 발명은 차세대 통신 기법인 NR (New RAT)에서 상향링크 그랜트 없이 경쟁 기반으로 수행되는 그랜트 프리 (grant free) 상향링크 송신에 적용할 수도 있다.
<제 1 실시예>
경쟁 기반 전송을 동작하던 중에 UE가 전송할 데이터가 생겼으나 그 시점에서의 CR이 CR_limit에 도달하는 경우, UE는 CR_limit 이하의 CR을 유지하기 위해서 해당 데이터를 드랍핑하는 동작을 취할 수도 있다. 그러나 이러한 동작은 높은 수준의 성공 확률을 요구하는 높은 우선 순위의 데이터에는 부적절한 동작이다. 물론 우선 순위 별로 별도로 CR이나 CR_limit을 정의하여 낮은 우선 순위의 전송이 높은 우선 순위 전송에 대한 혼잡도 제어에 영향을 주지 않도록 할 수도 있으나, 여전히 특정 상황에서 높은 우선 순위 데이터가 집중적으로 발생하는 경우에는 마찬가지의 문제가 발생할 수도 있다. 그러나, 높은 우선 순위에 대해서 일체의 혼잡도 제어를 적용하지 않는다면 높은 우선 순위가 전체 자원 풀을 점유하는 사태가 발생할 수도 있다.
이를 해결하기 위해서 본 발명에서는 높은 우선 순위의 데이터가 발생했을 때 CR_limit에 도달한 경우에는 사전에 정해진 크기의 자원으로 전송을 허용할 것을 제안한다. 사전에 정해진 자원은 상대적으로 작은 크기로 설정되어 높은 우선 순위의 데이터는 CR_limit에 도달한 상황에서도 최소한의 전송은 가능하도록 만들 수도 있다.
도 9는 본 발명의 실시예에 따라 경쟁 기반 전송에서 CR_limit에 도달한 경우 UE의 동작을 예시한다.
도 9를 참조하면, 네 번째 전송과 다섯 번째 전송에서는 과거의 전송으로 인해 CR_limit에 걸려 사전에 정해진 크기의 자원만을 사용하고, 다시 여섯 번째 전송에서는 CR_limit까지의 여유가 있어 원하는 만큼의 자원을 사용하는 것을 알 수도 있다.
특히, 이러한 동작에 의해서 사용된 자원은 CR 계산에서 배제하도록 규정함으로써, 연쇄적으로 최소 자원을 사용해야 하는 상황이 발생하는 것을 방지할 수도 있다. 혹은 일정 수준 이하의 자원을 사용하는 경우에는 CR 계산에 배제하도록 규정할 수도 있다. 즉 UE가 특정 시점에서 사용하는 자원의 크기가 X인 경우 일정 임계값 Y를 두어 max{X-Y, 0}만큼의 자원 사용을 CR 계산에 반영하도록 규정할 수도 있다. 이 경우 임계값 Y보다 작거나 같은 크기의 자원 사용은 CR 계산에 반영되지 않기 때문에, 언제든지 사용이 가능하다.
한편 UE가 사용하는 DM-RS는 동일 자원에서도 상이한 시퀀스를 통해 구분될 수 있으며, 특히 사전에 개별 UE별로 DM-RS 시퀀스가 지정된 경우에는, 채널 상황이 이상적이면서 상이한 DM-RS 시퀀스가 직교한다면 DM-RS 시퀀스만의 전송은 다른 UE의 전송에 간섭으로 작용하지 않는다. 따라서 경쟁 기반 전송에서 UE가 DM-RS만 전송하는 경우에는 CR 계산에 포함하지 않도록 동작할 수도 있다. 특히 이러한 동작은 사전에 DM-RS 시퀀스를 UE마다 할당한 상향 링크 동작에 유용할 수도 있다. 특정 UE가 CR_limit에 도달했지만 여전히 전송할 데이터가 있는 경우, UE는 경쟁 기반 전송 자원 풀 내에서 DM-RS만 전송하고 기지국이 이를 통해 적어도 해당 UE가 전송할 자원이 있음을 판단하고, 적절한 자원 스케줄링을 별도로 수행할 수도 있다.
<제 2 실시예>
경쟁 기반 전송을 수행한 UE가 필요에 따라서는 해당 데이터에 대한 재전송 역시 수행할 수도 있다. 특히 폐루프 HARQ가 동작하여 수신단으로부터 전송 데이터를 올바로 했다는 메시지를 수신하지 못한 경우 재전송을 수행할 수도 있다. 일반적으로 이러한 재전송 역시 다른 UE의 전송에 간섭으로 작용하므로 CR 계산에 포함되는 것이 당연한 동작일 것이다.
하지만 예외적으로 자원을 관리하는 장치, 일 예로 자원 풀에 대한 설정을 수행하는 기지국으로부터 재전송을 지시 받은 경우에는 CR 계산에 포함하지 않도록 동작할 수 있으며, 이는 자원 관리 장치가 이미 혼잡 상황까지 고려하여 이러한 재전송을 지시할 수 있기 때문이다. UL 전송의 경우 기지국이 곧 수신단이므로 기지국이 수신 성공 여부 및 혼잡 상황을 파악하여 재전송을 직접적으로 지정할 수도 있다. D2D 전송의 경우에는 수신 UE가 성공 여부 및/또는 혼잡 상황을 기지국에게 보고하고 기지국이 이를 다시 송신 UE에게 전달하면서 재전송을 직접적으로 지정할 수도 있다.
혹은 D2D 전송에서 송신 UE와 수신 UE가 관찰하는 혼잡 상황이 상이한 경우에 예외가 발생할 수도 있다. 송신 UE가 데이터를 전송한 뒤 CR_limit에 도달하여 재전송이 불가한 상황에서 수신 UE가 수신에 실패한 경우를 고려해보자. 이 때 만일 수신 UE 입장에서는 혼잡도가 높지 않아 송신 UE의 재전송이 문제를 발생하지 않는 것으로 판단할 수도 있다. 이에 수신 UE는 이러한 상황임을 송신 UE에게 알리고, 이를 수신한 송신 UE는 수신 UE로부터 전달받은 저-혼잡도에 대한 정보를 신뢰하여, 예외적으로 CR_limit에 도달한 상황에서도 재전송을 수행하는 것이 허용될 수도 있다.
상술한 동작을 보다 일반화하여, 처음 전송하는 데이터가 사용하는 자원의 양을 CR에 반영할 때와 재전송에 사용하는 자원의 양을 CR에 반영할 때 가중치를 상이하게 부여할 수도 있다. 일 예로 처음 전송 시에는 사용한 자원의 양을 그대로 CR 계산에 포함하되, 재전송에 사용하는 자원은 일정한 가중치를 두어 실제 사용한 양보다 적은 양이 CR 계산에 포함되도록 동작할 수도 있다.
<제 3 실시예>
상황에 따라서 자원 풀의 크기는 동적으로 가변할 수도 있다. 일 예로 기지국은 자신이 확보한 자원 중 일부를 경쟁 기반 전송에 할당하고 나머지를 비경쟁 기반 전송으로 활용할 수도 있다. 다른 예로, 기지국은 DCI를 통하여 자원 풀에서 제외 부분을 지시할 수도 있다. 구체적으로, 사이드링크 통신을 위한 자원 풀에 대하여, 상향링크 또는 하향링크 용도로 지시된 자원이 별도로 지시될 수도 있다.
이 때 비경쟁 기반 전송에 필요한 자원의 양이 가변함에 따라서 경쟁 기반 전송 자원 풀의 크기가 동적으로 가변할 수 있는데, 이 경우에 CR을 계산하는 기준이 필요하다.
한 가지 방법으로 CR을 계산할 때 사용하는 자원의 자원 풀은 사전에 시그널링된 명목상의 크기를 상정할 수도 있다. 이 경우 각 시점에서의 자원 풀의 크기 변화는 CR 계산에 영향을 주지 않는다. 만일 자원 풀이 작아지게 되면 실질적으로 각 UE는 CR을 과소 측정하게 될 수 있지만 기지국은 경쟁 기반 전송의 전반적인 부하 등을 감안하여 이러한 판단을 내릴 수도 있다.
다른 방법으로 CR을 계산할 때 사용하는 자원 풀의 크기를 실제 동적으로 결정된 자원 풀의 크기로 간주할 수도 있다. CR은 자원 풀 중 전송에 활용한 자원의 비율로 정의되므로, 하나의 UE가 동일한 크기의 자원을 이용하여 여러 데이터를 전송하는 상황이라도 자원 풀의 크기가 가변한다면 CR에 반영되는 값은 시간에 따라 가변하게 된다.
아래 수학식 1은 자원 풀이 가변하지 않는 경우 CR을 도출하는 수학식이며, 수학식 2는 본 발명에 따라 자원 풀의 크기가 동적으로 가변하는 경우의 CR 도출을 위한 수학식이다. 특히, 수학식 1 및 수학식 2에서는 시점 t에서 계산하는 CR은 시간 구간 [t-M+1, t] 사이의 M개의 시점에서의 전송 자원으로 CR을 계산하는 것을 가정하였다.
수학식 1
Figure PCTKR2018001492-appb-M000001
수학식 2
Figure PCTKR2018001492-appb-M000002
수식으로 설명하자면 UE가 시점 t에서 사용하는 자원의 크기가 X(t)이고 시점 t에서 사용하는 자원 풀의 전체 크기가 종래에는 상수인 Y이지만, 본 발명에서는 시점 t를 인자로 갖는 Y(t)이다.
이 동작에 있어서 Y(i)가 가변하는 것은 비단 주어진 자원 풀의 크기를 변화해서뿐만이 아니라, 자원 풀의 크기는 시간 상 반정적으로 고정되어 있으나 UE가 움직이면서 자신이 사용하는 자원 풀을 바꾸고, 상이한 위치에서 사용하는 자원 풀의 크기가 다른 경우에도 적용이 가능하다. 이러한 경우에는 크기가 다른 자원 풀 사이를 이동하는 상황에서도 CR 계산을 유지함으로써 새로운 자원 풀에서 CR이 리셋되어 갑자기 많은 자원을 사용하는 것이 허용되고, 그 결과로 혼잡 상황에서도 과도한 간섭을 일으키는 문제를 막을 수도 있다.
만일 CR 계산에 사용되는 자원 풀 크기가 동적으로 변화하는 경우, 자원 풀 크기를 알려주는 동적 신호의 수신을 실패하는 경우가 발생할 수도 있다. 이 경우에는 사전에 정해진 크기가 유지되었다고 가정하고 CR을 계산할 수 있는데, 특징적으로 해당 동적 신호를 통해 지칭될 수 있는 최소 크기의 자원 풀이 설정되었다고 가정하도록 규정될 수도 있다. 이는 UE가 CR을 과소 측정하지 않도록 보수적으로 운영함으로써, 시그널링 오류로 인한 혼잡 발생을 방지할 수도 있다.
도 10은 본 발명의 실시예에 따라 채널 혼잡도를 산출하여 경쟁 기반 송신을 수행하는 예를 도시한다. 특히, 도 10은 상황에 따라서 자원 풀의 크기는 동적으로 가변하는 경우, 가변 자원 풀의 사이즈에 기반하여 CR을 산출하는 예를 도시한다.
도 10을 참조하면, 단계 1001에서 단말은 소정의 시간 윈도우 내에서 경쟁 기반 송신을 위한 채널 혼잡도, 즉 CR를 산출한다. 특히, 상기 채널 혼잡도는 단위 시점에서 경쟁 기반 송신을 위하여 사용한 자원의 크기와 상기 해당 단위 시점에서 상기 경쟁 기반 송신을 위한 자원 풀의 크기의 비율로서, 상기 윈도우 내에서 상기 단위 시점마다 산출되어 합산되며, 상기 자원 풀의 크기는 상기 단위 시점마다 독립적으로 설정된다.
상기 자원 풀의 크기를 단말이 인식하기 위한 하나의 방안으로서, 상기 기지국으로부터, 상기 단위 시점 마다 전체 자원 풀 중 상기 경쟁 기반 송신을 위한 자원 풀에 관한 정보를 포함하는 제어 신호를 수신할 수도 있다. 다만 이와 같은 경우, 상기 제어 신호의 수신이 실패하였다면, 상기 해당 단위 시점의 상기 경쟁 기반 송신을 위한 자원 풀의 크기는 상기 경쟁 기반 송신을 위한 최소 자원 풀의 크기로 설정하여 CR을 산출하는 것이 바람직하다.
상기 자원 풀의 크기를 단말이 인식하기 위한 다른 방안으로서, 단말이 직접 상기 해당 단위 시점 마다 상기 경쟁 기반 송신을 위한 자원 풀의 크기를 산출할 수도 있다.
다음으로, 단계 1003에서 단말은 상기 산출된 CR에 기반하여 할당된 자원을 이용하여 기지국으로 신호를 송신한다. 특징적으로, 상기 산출된 CR이 임계값을 초과하고 상기 신호의 우선 순위가 최우선 순위인 경우, 상기 경쟁 기반 송신을 위한 자원 풀에 포함되어 있지 않는 유보 자원을 이용하여 상기 기지국으로 상기 신호를 송신할 수도 있다.
상기 제 1 실시예 내지 제 3 실시예들은 단독으로 수행될 수도 있지만, 둘 이상은 결합을 통하여 수행될 수 있음은 자명하다.
도 11은 본 발명에 실시예에 적용될 수 있는 기지국과 단말의 구성을 도시한 도면이다.
도 11을 참조하여 본 발명에 따른 기지국 (eNB, 10)는, 수신 모듈(11), 전송 모듈 (12), 프로세서(13), 메모리(14) 및 복수개의 안테나(15)를 포함할 수도 있다. 복수개의 안테나(15)는 MIMO 송수신을 지원하는 기지국을 의미한다. 수신 모듈 (11)은 단말로부터의 상향링크 상의 각종 신호, 데이터 및 정보를 수신할 수도 있다. 전송 모듈 (12)은 단말로의 하향링크 상의 각종 신호, 데이터 및 정보를 전송할 수도 있다. 프로세서(13)는 기지국 (10) 전반의 동작을 제어할 수도 있다. 특히, 본 발명의 일 실시예에 따른 기지국 (10)의 프로세서(13)는, 도 1 내지 도 10에서 설명된 각 실시예들에서 필요한 사항들을 처리할 수도 있다.
기지국 (10)의 프로세서(13)는 그 외에도 기지국 (10)이 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(14)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수도 있다.
계속해서 도 11을 참조하면 본 발명에 따른 단말(UE, 20)는, 수신 모듈 (21), 전송 모듈 (22), 프로세서(23), 메모리(24) 및 복수개의 안테나(25)를 포함할 수도 있다. 복수개의 안테나(25)는 MIMO 송수신을 지원하는 단말을 의미한다. 수신 모듈 (21)은 기지국으로부터의 하향링크 상의 각종 신호, 데이터 및 정보를 수신할 수도 있다. 전송 모듈 (22)은 기지국으로의 상향링크 상의 각종 신호, 데이터 및 정보를 전송할 수도 있다. 프로세서(23)는 단말(20) 전반의 동작을 제어할 수도 있다.
특히, 본 발명의 일 실시예에 따른 단말(20)의 프로세서(23)는, 도 1 내지 도 10에서 설명된 각 실시예들에서 필요한 사항들을 처리할 수도 있다.
단말(20)의 프로세서(23)는 그 외에도 단말(20)이 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(24)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수도 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수도 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수도 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수도 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수도 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수도 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(필드 programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수도 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수도 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수도 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수도 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 무선 통신 시스템에서 경쟁 기반 전송을 위한 혼잡도 제어 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (10)

  1. 무선 통신 시스템에서 단말이 경쟁 기반 송신을 수행하는 방법에 있어서,
    소정의 시간 윈도우 내에서 경쟁 기반 송신을 위한 채널 혼잡도를 산출하는 단계; 및
    상기 산출된 채널 혼잡도에 기반하여 할당된 자원을 이용하여 기지국으로의 경쟁 기반 송신을 수행하는 단계를 포함하고,
    상기 채널 혼잡도는 단위 시점에서 경쟁 기반 송신을 위하여 사용한 자원의 크기와 상기 해당 단위 시점에서 상기 경쟁 기반 송신을 위한 자원 풀의 크기의 비율로서, 상기 윈도우 내에서 상기 단위 시점마다 산출되어 합산되며,
    상기 자원 풀의 크기는 상기 단위 시점마다 독립적으로 설정되는 것을 특징으로 하는,
    경쟁 기반 송신 수행 방법.
  2. 제 1 항에 있어서,
    상기 기지국으로부터, 상기 단위 시점 마다 전체 자원 풀 중 상기 경쟁 기반 송신을 위한 자원 풀에 관한 정보를 포함하는 제어 신호를 수신하는 단계를 더 포함하는 것을 특징으로 하는,
    경쟁 기반 송신 수행 방법.
  3. 제 2 항에 있어서,
    상기 제어 신호의 수신이 실패한 경우, 상기 해당 단위 시점의 상기 경쟁 기반 송신을 위한 자원 풀의 크기는 상기 경쟁 기반 송신을 위한 최소 자원 풀의 크기로 설정되는 것을 특징으로 하는,
    경쟁 기반 송신 수행 방법.
  4. 제 1 항에 있어서,
    상기 채널 혼잡도를 산출하는 단계는,
    상기 해당 단위 시점 마다 상기 경쟁 기반 송신을 위한 자원 풀의 크기를 산출하는 단계를 포함하는 것을 특징으로 하는,
    경쟁 기반 송신 수행 방법.
  5. 제 1 항에 있어서,
    상기 기지국으로의 경쟁 기반 송신을 수행하는 단계는,
    상기 산출된 채널 혼잡도가 임계값을 초과하고 상기 경쟁 기반 송신의 우선 순위가 최우선 순위인 경우, 상기 경쟁 기반 송신을 위한 자원 풀에 포함되어 있지 않는 유보 자원을 이용하여 상기 기지국으로의 경쟁 기반 송신을 수행하는 단계를 포함하는 것을 특징으로 하는,
    경쟁 기반 송신 수행 방법.
  6. 무선 통신 시스템에서 단말로서,
    무선 통신 모듈; 및
    상기 무선 통신 모듈과 연결되어, 소정의 시간 윈도우 내에서 경쟁 기반 송신을 위한 채널 혼잡도를 산출하고, 상기 산출된 채널 혼잡도에 기반하여 할당된 자원을 이용하여 기지국으로의 경쟁 기반 송신을 수행하는 하는 프로세서를 포함하고,
    상기 채널 혼잡도는 단위 시점에서 경쟁 기반 송신을 위하여 사용한 자원의 크기와 상기 해당 단위 시점에서 상기 경쟁 기반 송신을 위한 자원 풀의 크기의 비율로서, 상기 윈도우 내에서 상기 단위 시점마다 산출되어 합산되며,
    상기 자원 풀의 크기는 상기 단위 시점마다 독립적으로 설정되는 것을 특징으로 하는,
    단말.
  7. 제 6 항에 있어서,
    상기 프로세서는,
    상기 기지국으로부터, 상기 단위 시점 마다 전체 자원 풀 중 상기 경쟁 기반 송신을 위한 자원 풀에 관한 정보를 포함하는 제어 신호를 수신하는 것을 특징으로 하는,
    단말.
  8. 제 7 항에 있어서,
    상기 제어 신호의 수신이 실패한 경우, 상기 해당 단위 시점의 상기 경쟁 기반 송신을 위한 자원 풀의 크기는 상기 경쟁 기반 송신을 위한 최소 자원 풀의 크기로 설정되는 것을 특징으로 하는,
    단말.
  9. 제 6 항에 있어서,
    상기 프로세서는,
    상기 해당 단위 시점 마다 상기 경쟁 기반 송신을 위한 자원 풀의 크기를 산출하는 것을 특징으로 하는,
    단말.
  10. 제 6 항에 있어서,
    상기 프로세서는,
    상기 산출된 채널 혼잡도가 임계값을 초과하고 상기 경쟁 기반 송신의 우선 순위가 최우선 순위인 경우, 상기 경쟁 기반 송신을 위한 자원 풀에 포함되어 있지 않는 유보 자원을 이용하여 상기 기지국으로의 경쟁 기반 송신을 수행하는 것을 특징으로 하는,
    단말.
PCT/KR2018/001492 2017-02-03 2018-02-05 무선 통신 시스템에서 경쟁 기반 전송을 위한 혼잡도 제어 방법 및 이를 위한 장치 WO2018143739A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/478,589 US11026118B2 (en) 2017-02-03 2018-02-05 Congestion control method for contention-based transmission in wireless communication system and apparatus therefor
KR1020187019064A KR101984608B1 (ko) 2017-02-03 2018-02-05 무선 통신 시스템에서 경쟁 기반 전송을 위한 혼잡도 제어 방법 및 이를 위한 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762454099P 2017-02-03 2017-02-03
US62/454,099 2017-02-03

Publications (1)

Publication Number Publication Date
WO2018143739A1 true WO2018143739A1 (ko) 2018-08-09

Family

ID=63040900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001492 WO2018143739A1 (ko) 2017-02-03 2018-02-05 무선 통신 시스템에서 경쟁 기반 전송을 위한 혼잡도 제어 방법 및 이를 위한 장치

Country Status (3)

Country Link
US (1) US11026118B2 (ko)
KR (1) KR101984608B1 (ko)
WO (1) WO2018143739A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130010712A1 (en) * 2009-12-10 2013-01-10 Soeng-Hun Kim Apparatus and method for performing contention based access in mobile communication system
US20160345348A1 (en) * 2014-01-28 2016-11-24 Lg Electronics Inc. Method and apparatus for device-to-device terminal for transmitting control channel in wireless communication system
US20170019894A1 (en) * 2015-07-14 2017-01-19 Motorola Mobility Llc Method and apparatus for reducing latency of lte uplink transmissions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964187B1 (ko) 2008-07-09 2010-06-17 한국전자통신연구원 무선 네트워크의 pcs 임계값조정방법 및 단말장치
EP4266643A1 (en) * 2014-09-02 2023-10-25 Huawei Technologies Co., Ltd. Data transmission method and device
CN106304386B (zh) * 2015-05-18 2020-11-06 上海诺基亚贝尔股份有限公司 在lte laa中用于触发lbt的随机退避机制的方法
KR101627465B1 (ko) 2015-06-23 2016-06-03 성균관대학교산학협력단 경쟁 기반 랜덤 액세스 통신 환경에서 rf 에너지 하비스팅을 하는 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130010712A1 (en) * 2009-12-10 2013-01-10 Soeng-Hun Kim Apparatus and method for performing contention based access in mobile communication system
US20160345348A1 (en) * 2014-01-28 2016-11-24 Lg Electronics Inc. Method and apparatus for device-to-device terminal for transmitting control channel in wireless communication system
US20170019894A1 (en) * 2015-07-14 2017-01-19 Motorola Mobility Llc Method and apparatus for reducing latency of lte uplink transmissions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on UE Behavior in Congestion Control", R1-1611741, 3GPP TSG RAN WG1 MEETING #87, 5 November 2016 (2016-11-05), Reno, USA, XP051190110 *
NEC: "Discussions on Congestion Control in Distributed Scheduling", R1-1609141, 3GPP TSG RAN WG1 MEETING #86BIS, 30 September 2016 (2016-09-30), Lisbon, Portugal, XP051158444 *

Also Published As

Publication number Publication date
KR20180116237A (ko) 2018-10-24
US20200045578A1 (en) 2020-02-06
US11026118B2 (en) 2021-06-01
KR101984608B1 (ko) 2019-05-31

Similar Documents

Publication Publication Date Title
WO2018084556A1 (ko) 무선 통신 시스템에서 혼잡 제어에 기반하여 단말 간 직접 통신을 위한 자원을 설정하는 방법 및 이를 위한 장치
WO2018080184A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 자원 센싱 방법 및 이를 위한 장치
WO2017048009A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신 방법 및 이를 위한 장치
WO2017155324A1 (ko) 무선 통신 시스템에서 단일 톤 전송을 위한 랜덤 액세스 절차 수행 방법 및 이를 위한 장치
WO2018174671A1 (ko) 다중 반송파 통신 시스템에서 단말 간 직접 통신을 위한 반송파 선택 방법 및 이를 위한 장치
WO2017179784A1 (ko) 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2018164450A1 (ko) 무선 통신 시스템에서 ack/nack 자원 할당 방법 및 이를 위한 장치
WO2017069559A1 (ko) 무선 통신 시스템에서 브로드캐스트 신호/멀티캐스트 신호에 대한 ack/nack 응답을 송신하는 방법 및 이를 위한 장치
WO2018048273A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치
WO2017176088A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 자원 설정 방법 및 이를 위한 장치
WO2018012887A1 (ko) 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치
WO2012150772A2 (ko) 무선 통신 시스템에서 단말이 기지국으로부터 하향링크 신호를 수신하는 방법 및 이를 위한 장치
WO2012150793A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2018169342A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 반송파 설정 및 제어 방법과 이를 위한 장치
WO2012150773A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2018101738A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 자원 할당 방법 및 이를 위한 장치
WO2012141490A2 (ko) 무선 통신 시스템에서 셀 간 간섭을 완화하기 위한 신호 송수신 방법 및 이를 위한 장치
WO2013095041A1 (ko) 무선 통신 시스템에서 무선 자원 동적 변경에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2013137582A1 (ko) 무선 통신 시스템에서 하향링크 채널의 시작 심볼을 설정하는 방법 및 이를 위한 장치
WO2017155332A2 (ko) 무선 통신 시스템에서 멀티캐스트 신호를 수신하는 방법 및 이를 위한 장치
WO2017043947A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치
WO2013115519A1 (ko) 무선 통신 시스템에서 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치
WO2018030851A1 (ko) 무선 통신 시스템에서 신호 송신 방법 및 이를 위한 장치
WO2017171321A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 통신 기법 설정 방법 및 이를 위한 장치
WO2016144069A1 (ko) 무선 통신 시스템에서 시간 지연 적응적 신호 송수신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187019064

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019064

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747882

Country of ref document: EP

Kind code of ref document: A1