WO2018143726A1 - Heat pump system - Google Patents

Heat pump system Download PDF

Info

Publication number
WO2018143726A1
WO2018143726A1 PCT/KR2018/001455 KR2018001455W WO2018143726A1 WO 2018143726 A1 WO2018143726 A1 WO 2018143726A1 KR 2018001455 W KR2018001455 W KR 2018001455W WO 2018143726 A1 WO2018143726 A1 WO 2018143726A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heating
cooling
pipe
heat medium
Prior art date
Application number
PCT/KR2018/001455
Other languages
French (fr)
Korean (ko)
Inventor
사이토마사키
타카하라타케시
코다키미오
타지마카즈시게
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017110668A external-priority patent/JP6910210B2/en
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020197011307A priority Critical patent/KR102487265B1/en
Priority to US16/483,378 priority patent/US11629891B2/en
Publication of WO2018143726A1 publication Critical patent/WO2018143726A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a heat pump system, and more particularly, to a heat pump system including both a cooling unit used for cooling with a heat load unit and a heating unit used for heating.
  • the heat pump system is for generating cold and warm air through the refrigerant, and includes a configuration such as a compressor, a condenser, an evaporator and an expansion device.
  • the heat pump system includes an outdoor unit disposed in an outdoor space, a cooling unit used for cooling, a heating unit used for heating, and an intermediate unit for distributing the refrigerant to the cooling unit and the heating unit. Therefore, cool air is supplied to the cooling unit and warm air is supplied to the heating unit through the refrigerant.
  • One aspect of the present invention is to provide a heat pump system capable of supplying either cold or warm air, or both cold and warm air, in a simpler configuration.
  • a heat pump system includes an outdoor unit disposed in an outdoor space, a plurality of heat load units receiving cold and warm air, and an intermediate unit disposed between the outdoor unit and the plurality of heat load units.
  • the intermediate unit is connected to the outdoor unit through a refrigerant pipe through which a refrigerant passes, and is connected to the plurality of heat load units through a heat pipe through which a heat medium passes.
  • the plurality of heat load units include a cooling unit that receives and uses cold air and a heating unit that receives and uses warm air.
  • the outdoor unit may include a compressor for compressing a refrigerant, an outdoor heat exchanger for allowing the refrigerant to exchange heat with outdoor air, a four-way valve for guiding the refrigerant discharged from the compressor to one of the outdoor heat exchanger and the intermediate unit, and a refrigerant. And an outdoor expansion valve for expanding under reduced pressure.
  • the intermediate unit includes a cooling heat exchanger for heat exchange between the heat medium and the refrigerant transferred from the cooling unit, a heating heat exchanger for heat exchange between the heat medium and the refrigerant delivered from the heating unit, and an intermediate expansion valve for expanding the refrigerant under reduced pressure. do.
  • the first refrigerant pipe for guiding the refrigerant discharged from the compressor to the four-way valve the second refrigerant pipe for guiding the refrigerant from the four-way valve to the outdoor heat exchanger, and the refrigerant from the four-way valve to the heating heat exchanger
  • a sixth refrigerant pipe branched into two to form a cooling refrigerant pipe connected to the cooling heat exchanger and the other forming a heating refrigerant pipe connected to the heating heat exchanger, and the second refrigerant pipe and the third refrigerant pipe.
  • the fifth refrigerant pipe for guiding the refrigerant from the cooling heat exchanger to the suction side of the compressor, a pressure sensor for detecting the pressure of the refrigerant outlet side of the cooling heat exchanger, and the pressure sensor disposed in the fifth refrigerant pipe And a refrigerant flow rate control valve whose opening degree is controlled such that the pressure detected by the value is within a setting range.
  • a fifth refrigerant pipe for guiding the refrigerant from the cooling heat exchanger to the suction side of the compressor, a cooling temperature sensor for detecting the temperature of the heat medium cooled through the cooling heat exchanger, and branched from the cooling refrigerant pipe, the fifth refrigerant pipe.
  • a refrigerant bypass pipe connected to a refrigerant pipe, and a bypass disposed in the refrigerant bypass pipe to open a flow path of the refrigerant bypass pipe when the temperature of the heat medium detected by the cooling temperature sensor is lower than a set threshold value. It further comprises an expansion valve.
  • a defrost bypass tube one end of which is connected to the third refrigerant pipe for guiding the refrigerant from the four-way valve to the heating heat exchanger, and the other end is connected to the suction side of the compressor to the fifth refrigerant pipe, and the defrost bypass.
  • the apparatus may further include a refrigerant flow path switching valve arranged in the pipe to open a flow path of the defrost bypass pipe when a defrost demand is generated in the outdoor heat exchanger.
  • a cooling heat medium supply pipe for supplying the heat medium cooled by the cooling heat exchanger to the cooling unit, a cooling heat medium recovery tube for passing the heat medium absorbed heat passing through the cooling unit to the cooling heat exchanger, and the heating heat exchanger
  • a heating heat medium supply pipe for supplying the heat medium cooled in the heating unit to the heating unit, and a heating heat medium recovery tube for transferring the heat medium passing through the heating unit to release heat.
  • the apparatus further includes a cooling pump arranged in the cooling heat medium recovery pipe and a heating pump arranged in the heating heat medium recovery pipe.
  • a cooling heat medium bypass pipe whose one end is connected to the cooling heat medium supply pipe and the other end is connected to the cooling heat medium recovery pipe
  • a heating heat medium bypass pipe whose one end is connected to a heating heat medium supply pipe and the other end is connected to a heating heat medium recovery pipe.
  • a cooling heat medium bypass valve disposed in the cooling heat medium bypass pipe to open and close a flow path of the cooling heat medium bypass pipe, and a heating arranged in the heating heat medium bypass pipe to open and close a flow path of the heating heat medium bypass pipe. It further comprises a thermal medium bypass valve.
  • first connection bypass tube having one end connected to the heating heat medium supply pipe and the other end connected to the cooling heat medium recovery pipe, and one end connected to the cooling heat medium supply pipe and the other end connected to the heating heat medium recovery pipe
  • a cooling heat medium supply valve disposed in the cooling heat medium supply pipe to adjust an amount of the heat medium supplied to the cooling unit
  • a cooling heat medium recovery arranged in the cooling heat medium recovery pipe to adjust an amount of the heat medium recovered from the cooling unit.
  • a heating heating medium supply valve disposed in the heating heating medium supply pipe and adjusting the amount of the heating medium supplied to the heating unit, and a heating heating medium disposed in the heating heating medium recovery pipe and adjusting the amount of the heating medium recovered from the heating unit. It further comprises a recovery valve.
  • the outdoor unit and the intermediate unit are connected through the refrigerant pipe, and the intermediate unit and the heat load unit are connected through the heat medium pipe, the refrigerant pipes are not connected to the heat load unit.
  • the connection structure of the tubes is simplified, thus facilitating the construction of the heat pump system.
  • FIG. 1 is a schematic structural diagram of a heat pump system according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing the flow of the refrigerant and the heat medium when the cooling mode is performed in the heat pump system according to an embodiment of the present invention.
  • FIG. 3 is a circuit diagram showing the flow of the refrigerant and the heat medium when the heating mode is performed in the heat pump system according to the exemplary embodiment of the present invention.
  • FIG. 4 is a circuit diagram showing the flow of the refrigerant and the heat medium when the cooling center mode is performed in the heat pump system according to the exemplary embodiment of the present invention.
  • FIG. 5 is a circuit diagram showing the flow of the refrigerant and the heat medium when the heating center mode is performed in the heat pump system according to an embodiment of the present invention.
  • FIG. 6 is a view showing a case in which the heat pump system according to an embodiment of the present invention performs the low pressure pressure retention control.
  • FIG. 7 is a diagram illustrating a case in which a heat pump system performs a cold water temperature prevention prevention control according to an embodiment of the present invention.
  • FIG. 8 is a view showing a case in which the heat pump system according to an embodiment of the present invention performs defrost control.
  • FIG. 9 is a diagram illustrating a case in which the heat pump system according to an embodiment of the present invention performs the first defrost mode.
  • FIG. 10 is a diagram illustrating a case in which the heat pump system performs a second defrost mode according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a case in which the heat pump system performs freeze protection control according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a case in which the heat pump system performs water bypass defrost control according to an embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a case in which a heat pump system performs supercooling control according to an embodiment of the present invention.
  • first may be referred to as the second component
  • second component may also be referred to as the first component.
  • the term “and / or” includes any combination of a plurality of related items or any item of a plurality of related items.
  • FIG. 1 is a schematic diagram of a heat pump system 1 according to an embodiment of the present invention.
  • the heat pump system 1 includes an outdoor unit 10 disposed in an outdoor space, heat load units 30L and 30H disposed in a space or a device requiring cold or warm air, and an outdoor unit ( 10) and an intermediate unit 20 disposed between the heat load units 30L and 30H to allow the cold and warm air generated in the outdoor unit 10 to be distributedly supplied to the heat load units 30L and 30H.
  • the outdoor unit 10 operates as a heat source for generating cold and warm air through the refrigerant, including a heat pump cycle, and supplies the cold or warm air to the heat load units 30L and 30H through the intermediate unit 20.
  • the outdoor unit 10 is arranged in an outdoor space, that is, a rooftop or a veranda of a building.
  • the intermediate unit 20 allows the coolant and the warm air to be delivered to the heat load units 30L and 30H by allowing the refrigerant delivered from the outdoor unit 10 and the heat medium transferred from the heat load units 30L and 30H to heat exchange with each other.
  • the intermediate unit 20 may be disposed adjacent to the outdoor unit 10 or may be disposed in a separate space from the outdoor unit 10. That is, the intermediate unit 20 may be disposed together with the outdoor unit 10 in an outdoor space, or may be disposed in a common space of a building or an upper space of a ceiling.
  • the outdoor unit 10 and the intermediate unit 20 are each housed in separate housings and are connected to each other through the refrigerant pipes P1, P2, P3, P4, P5, P6, P7, and P8 that deliver the refrigerant.
  • the heat load units 30L and 30H receive and use cold and warm air generated in the outdoor unit 10 through the intermediate unit 20.
  • the heat load units 30L and 30H are connected to the intermediate unit 20 through the heat medium tubes L1, L2, H1, and H2 through which the heat medium passes, and transfer the cooling unit 30L and warmth to receive and use cold air.
  • the heating unit 30H which receives and uses is included.
  • the cooling unit 30L and the intermediate unit 20 are connected to each other through two cooling heat medium tubes L1 and L2 which transfer the heat medium.
  • the cooling heat medium pipe is a cooling heat medium supply pipe (L1) for supplying the heat medium cooled by the cooling heat exchanger (21) to the cooling unit (30L), and the heat medium that absorbs heat while passing through the cooling unit (30L).
  • the cooling pump 23 is arranged in the cooling heat medium recovery pipe L2. Therefore, the heat medium passes through the intermediate unit 20 and heat-exchanges with the refrigerant to be cooled, and the cooled heat medium is supplied to the cooling unit 30L to perform cooling in the cooling unit 30L.
  • the cooling unit 30L may be used as a cooling device that is disposed in the indoor space to cool the indoor space by the cold air delivered from the outdoor unit 10, or may be used as a cooling device that is arranged on a production line to cool the mold and the like. . In addition, it can be applied to various spaces and devices that require cooling, such as cold water supply.
  • the heating unit 30H may be used as a heating device that is disposed in the indoor space to heat the indoor space by the warmth transmitted from the outdoor unit 10, or may be used as a heating device that is arranged in a production line to heat a mold and the like. . In addition, it can be applied to various spaces and devices that require heating, such as hot water supply.
  • the heating unit 30H and the intermediate unit 20 are connected to each other through two heating heating medium tubes H1 and H2 which transfer the heating medium.
  • the heating heat medium tube includes a heating heat medium supply pipe (H1) for supplying the heat medium cooled by the heating heat exchanger (22) to the heating unit (30H), and a heat medium that radiates heat through the heating unit (30H). ) Is heated to the heating medium recovery tube (H2).
  • the heating pump 24 is arrange
  • the intermediate unit 20 transmits cool air to the cooling unit 30L by allowing the low temperature refrigerant supplied from the outdoor unit 10 to heat exchange with the heat medium transferred through the cooling heat medium tube, and the high temperature supplied from the outdoor unit 10.
  • the refrigerant of the heat transfer to the heating unit (30H) by allowing the heat exchange with the heat medium transferred through the heating medium pipe (H1, H2).
  • the heating unit 30H and the intermediate unit 20 are connected to the heating unit 30H through the heating heating medium tubes H1 and H2 through which the heating medium passes.
  • the heating unit 30H and the intermediate unit 20 are connected to each other through two heating heat pipes H1 and H2.
  • the heat pump system 1 includes a refrigerant circuit for allowing refrigerant to circulate between the outdoor unit 10 and the intermediate unit 20, and a cooling heat medium circuit for causing the heat medium to circulate between the intermediate unit 20 and the cooling unit 30L. And a heating heating medium circuit for causing the heating medium to circulate between the intermediate unit 20 and the heating unit 30H.
  • the refrigerant circuit generates cold and warm air and transmits the generated cold and warm air to the intermediate unit 20.
  • the cold air delivered to the intermediate unit 20 is delivered to the cooling unit 30L through the cooling heat medium circuit, and the warm air delivered to the intermediate unit 20 is delivered to the heating unit 30H through the heating heat medium circuit.
  • the heat pump system 1 has four operating modes: a cooling mode, a heating mode, a cooling center mode, and a heating center mode.
  • the heat pump system 1 selectively performs any one of the four operating modes in accordance with the needs of the heat load units 30L and 30H.
  • the cooling mode is an operation mode that is selected when only the cooling unit 30L is operated among the heat load units 30L and 30H. In the cooling mode, cold air is supplied only to the cooling unit 30L.
  • the heating mode is an operation mode selected when only the heating unit 30H operates among the heat load units 30L and 30H. In the heating mode, warmth is supplied only to the heating unit 30H.
  • the cooling center mode when the cooling unit 30L and the heating unit 30H of the heat load units 30L and 30H operate simultaneously, the load required on the cooling unit 30L side is applied to the heating unit 30H side.
  • the operating mode is selected when the load is larger than the required load.
  • the load required on the heating unit 30H side is on the cooling unit 30L side.
  • the operating mode is selected when the load is larger than the required load.
  • cooling center mode cold air is supplied to the cooling unit 30L and warm air is supplied to the heating unit 30H.
  • the outdoor unit 10 includes a compressor 11 for compressing a refrigerant at a high temperature and high pressure, a four-way valve 12 disposed at an outlet side of the compressor 11 to switch a flow path of the refrigerant discharged from the compressor 11, Check valve 13 for allowing the refrigerant to flow only in the forward direction, on / off valve 14 for switching the flow path of the refrigerant, and outdoor heat exchanger 15 for allowing the refrigerant to exchange heat with outdoor air passing through the outdoor unit 10. ).
  • the outdoor unit 10 includes a blower fan 16 through which the outdoor air passes through the outdoor heat exchanger 15, an accumulator 17 disposed on the suction side of the compressor 11 to separate the liquid refrigerant, and a refrigerant. It includes an outdoor expansion valve 18 for expanding under reduced pressure.
  • the compressor 11 is a device for compressing a refrigerant at high temperature and high pressure, and may be configured as an inverter compressor capable of controlling the capacity.
  • Four-way valve 12 is composed of an electromagnetic valve for switching the flow path is connected to the compressor 11 through the first refrigerant pipe (P1), and connected to the outdoor heat exchanger (15) through the second refrigerant pipe (P2) And a heat exchanger 22 to be described later through the third refrigerant pipe P3, and connected to the suction side of the compressor 11 through the fourth refrigerant pipe P4. Since the accumulator 17 is connected to the suction side of the compressor 11, the fourth refrigerant pipe P4 is connected to the accumulator 17.
  • the refrigerant discharged from the compressor 11 is transferred to the four-way valve 12 through the first refrigerant pipe P1, and then the four-way valve 12 is used as one of the outdoor heat exchanger 15 and the heat exchanger 22. You are guided.
  • the four-way valve 12 switches the flow path so that the refrigerant discharged from the compressor 11 is transferred to the heating heat exchanger 22 to be described later through the third refrigerant pipe P3 in which the check valve 13 is disposed. 2 to be delivered to the outdoor heat exchanger (16) through the refrigerant pipe (P2).
  • Switching of the flow path through the four-way valve 12 is made in accordance with the operation mode, that is, corresponding to the load change required by the cooling unit 30L and the heating unit 30H.
  • the check valve 13 is for preventing the backflow of the refrigerant and is disposed in the second refrigerant pipe P2 for guiding the refrigerant discharged from the compressor 11 to the heating heat exchanger 22.
  • the second refrigerant pipe P2 and the third refrigerant pipe P3 are connected via the seventh refrigerant pipe P7 branched from the downstream side in the forward direction of the check valve 13 in the third refrigerant pipe P3.
  • an on / off valve 14 for selectively allowing the refrigerant to flow through the seventh refrigerant pipe P7 according to the operation mode is disposed.
  • the shut-off valve 14 includes an anisotropic solenoid valve for opening and closing the inner flow path in accordance with the application of power to selectively pass the refrigerant.
  • the outdoor heat exchanger 15 allows outdoor air supplied by the blower fan 16 to exchange heat with the refrigerant.
  • the outdoor heat exchanger 15 is connected to the cooling heat exchanger 21 and the heating heat exchanger 22 which will be described later.
  • the outdoor heat exchanger 15 operates as a condenser for cooling the refrigerant when the cooling mode and the cooling center mode, which are cooling operations, are performed. That is, in the cooling operation, the refrigerant passing through the outdoor heat exchanger 15 is condensed by dissipating heat.
  • the outdoor heat exchanger 15 operates as an evaporator for allowing the refrigerant to absorb heat when the heating mode and the heating center mode, which are heating operations, are performed. That is, in the heating operation, the refrigerant passing through the outdoor heat exchanger 15 absorbs heat and evaporates.
  • the sixth refrigerant pipe P6 is connected to the outdoor heat exchanger 15 together with the second refrigerant pipe P2 described above.
  • the sixth refrigerant pipe (P6) is divided into two to form a cooling refrigerant pipe (P6-1), one of which is connected to the cooling heat exchanger 21, the other is a heating refrigerant connected to the heating heat exchanger (22)
  • the tube P6-2 is formed.
  • the blowing fan 16 includes an axial fan for blowing air in the axial direction.
  • the blowing fan includes a hub portion to which the rotating shaft of the motor is connected and a plurality of wings extending radially from the hub portion. As the blowing fan rotates, the air flows in the axial direction, passes through the outdoor heat exchanger 15, and the air passing through the outdoor heat exchanger 15 exchanges heat with the refrigerant passing through the outdoor heat exchanger 15.
  • the accumulator 17 is connected to the suction side of the compressor 11 via an eighth refrigerant pipe P8.
  • the accumulator 17 stores the excess refrigerant generated by the difference in the amount of the refrigerant required during the heating operation and the cooling operation and the excess refrigerant due to the excessive operation method change.
  • the accumulator 17 is connected to the four-way refrigerant pipe P8 and the fourth refrigerant pipe P4 and the fifth refrigerant pipe P5 in addition to the eight-way refrigerant pipe P8 and connected to the four-way valve 12 through the fourth refrigerant pipe P4. It is connected to the cooling heat exchanger 21 through the fifth refrigerant pipe (P5).
  • the fifth refrigerant pipe P5 guides the refrigerant passing through the cooling heat exchanger 21 to the suction side of the compressor 11.
  • the outdoor expansion valve 18 includes an electronic expansion valve that can adjust the opening degree.
  • the outdoor expansion valve 18 is disposed in the section before branching of the sixth refrigerant pipe P6. That is, the outdoor expansion valve 18 is installed at the outlet side of the outdoor heat exchanger 15 when the refrigerant proceeds from the outdoor heat exchanger 15 to the cooling heat exchanger 21.
  • the outdoor heat exchanger 15 is connected to the refrigerant outlet side (at the heating operation) of the heating heat exchanger 22 and the refrigerant inlet side (at the cooling operation) of the cooling heat exchanger 21 via the outdoor expansion valve 18.
  • the outdoor heat exchanger 15 is connected to the inlet side (at the heating operation) of the heating heat exchanger 22 through the on-off valve 14.
  • the outdoor unit 10 includes an outdoor processor C1 that controls the components of the outdoor unit 10 such as the compressor 11, the blower fan 16, the operation of the outdoor expansion valve 18, the four-way valve 12, and the like. do.
  • the outdoor processor C1 includes a read only memory (ROM), a random access memory (RAM), and a central processing unit (CPU). Therefore, the various programs stored in the ROM of the outdoor processor C1 are read into the RAM and executed by the CPU, whereby the configurations of the outdoor unit 10 are controlled.
  • ROM read only memory
  • RAM random access memory
  • CPU central processing unit
  • the intermediate unit 20 includes a cooling heat exchanger 21 for transmitting cold air to the heat medium and a heating heat exchanger 22 for transferring warmth to the heat medium.
  • the heat medium may be a liquid such as water or antifreeze.
  • the cooling heat exchanger 21 transfers cold air to the heat medium by causing the low temperature refrigerant and the heat medium to exchange heat with the low temperature refrigerant transferred from the outdoor unit 10.
  • the cooling heat exchanger 21 operates as an evaporator when the cooling mode, the cooling center mode and the heating center mode are performed. That is, the cooling heat exchanger 21 absorbs heat from the heat medium when the cooling mode, the cooling center mode, and the heating center mode is performed so that the heat medium is cooled.
  • the heat exchanger 22 transmits warmth to the heat medium by allowing the high temperature refrigerant and the heat medium to be thermally effected from the outdoor unit 10.
  • the heating heat exchanger 22 operates as a condenser when the heating mode, the cooling center mode and the heating center mode are performed. That is, the heating heat exchanger 22 supplies heat to the heating medium when the heating mode, the cooling center mode, and the heating center mode are performed so that the heating medium is heated.
  • the intermediate unit 20 includes a cooling pump 23 for circulating the heat medium through the cooling heat medium pipes L1 and L2 and a heat pump 24 for circulating the heat medium through the heating heat medium pipes H1 and H2. do.
  • the intermediate unit 20 includes an intermediate expansion valve 25 for expanding the refrigerant under reduced pressure.
  • the intermediate expansion valve 25 is made up of an electromagnetic expansion valve like the outdoor expansion valve 18.
  • the intermediate expansion valve 25 is provided at the inlet side (at the time of cooling operation) of the cooling heat exchanger 21.
  • the intermediate unit 20 includes an intermediate processor C2 which controls the components of the intermediate unit 20, such as the intermediate expansion valve 25, the cooling pump 23 and the heat pump 24.
  • the intermediate processor C2 includes a read only memory (ROM), a random access memory (RAM), and a central processing unit (CPU). Therefore, various programs stored in the ROM of the intermediate processor C2 are read into the RAM and executed by the CPU, whereby the configurations of the intermediate processor C2 are controlled.
  • the outdoor processor C1 and the intermediate processor C2 are configured to be communicable and control the operation of the heat pump system 1 while transmitting and receiving signals with each other.
  • the intermediate unit 20 is disposed at the cooling medium pressure sensor PS1 for detecting the refrigerant pressure at the refrigerant outlet side of the cooling heat exchanger 21, and at the heat medium outlet side of the cooling heat exchanger 21 to provide the cooling heat exchanger 21.
  • Cooling temperature sensor (T1) for detecting the temperature of the heat medium cooled through the heating temperature sensor (T2) disposed on the heat medium outlet side of the heat exchanger to detect the temperature of the heat medium heated through the heat exchanger (22) do.
  • the information detected by the cooling refrigerant pressure sensor PS1 and the information detected by the cooling temperature sensor T1 and the heating temperature sensor T2 are transferred to the intermediate processor C2 to use the operation of the heat pump system 1 for control. do.
  • the components forming the intermediate unit 20 are all accommodated in one housing, but this is only an example and the present disclosure is not limited thereto. That is, the cooling heat exchanger 21, the cooling pump 23 and the cooling temperature sensor T1 is accommodated in one housing, and the heating heat exchanger 22, the heating pump 24 and the heating temperature sensor T2 are It is also possible to be housed in another housing.
  • FIG. 2 the flow of the refrigerant is indicated by a solid arrow, and the flow of the heat medium is indicated by a dotted arrow.
  • the four-way valve 12 guides the refrigerant to the second flow path. That is, the four-way valve 12 allows the refrigerant to flow in the direction of arrow A1.
  • the open / close valve 14 closes the flow path, and the outdoor expansion valve 18 opens all the flow paths.
  • the opening degree of the intermediate expansion valve 25 is controlled to correspond to the outlet superheat degree of the cooling heat exchanger 21.
  • the opening degree of the intermediate expansion valve 25 when the opening degree of the intermediate expansion valve 25 is increased in the cooling mode, the amount of the refrigerant that is expanded under reduced pressure is increased to lower the refrigerant outlet temperature of the cooling heat exchanger 21.
  • the opening degree of the intermediate expansion valve 25 is made small, the amount of refrigerant decompressed under pressure decreases, and the refrigerant outlet side temperature of the cooling heat exchanger 21 becomes high. Therefore, by controlling the opening degree of the intermediate expansion valve 25, the outlet superheat degree of the cooling heat exchanger 21, that is, the temperature difference between the refrigerant inlet side and the outlet side of the cooling heat exchanger 21 can be controlled to a set value.
  • the refrigerant is compressed by the compressor 11 into a gaseous state of high temperature and high pressure, and is delivered to the outdoor heat exchanger 15 operating as a condenser through the four-way valve 12.
  • the refrigerant is cooled by heat exchange with outdoor air in the outdoor heat exchanger 15 to condense.
  • the condensed refrigerant passes through the outdoor expansion valve 18 to the intermediate expansion valve 25, and is expanded under reduced pressure by the intermediate expansion valve 25.
  • the refrigerant is then delivered to a cooling heat exchanger 21 which acts as an evaporator. In the cooling heat exchanger 21, since the refrigerant absorbs heat from the heat medium, the heat medium is cooled.
  • the refrigerant passing through the cooling heat exchanger 21 is sucked back into the compressor 11 after passing through the accumulator 17.
  • the refrigerant is thus compressed in the compressor (11), the four-way valve (12), the outdoor heat exchanger (15), the outdoor expansion valve (18), the intermediate expansion valve (25), the cooling heat exchanger (21), and the accumulator (17).
  • a refrigerant circuit is configured to cycle through the circuits.
  • the heat medium flows from the cooling unit 30L to the cooling pump 23, and is then transferred from the cooling pump 23 to the cooling heat exchanger 21.
  • the cooling heat exchanger 21 since the refrigerant absorbs heat of the heat medium, the heat medium is cooled. Since the cooled heat medium is delivered back to the cooling unit 30L, cold air is supplied to the cooling unit 30L through the heat medium.
  • the heat medium in the cooling mode, is configured so that the heat medium circulates through the cooling unit 30L, the cooling pump 23, and the cooling heat exchanger 21 in sequence.
  • FIG. 3 the flow of the refrigerant is indicated by a solid arrow, and the flow of the heat medium is indicated by a dotted arrow.
  • the four-way valve 12 guides the refrigerant to the first flow path. That is, the four-way valve 12 allows the refrigerant to flow in the direction of arrow A2. At this time, the on-off valve 14 and the intermediate expansion valve 25 closes the flow path.
  • the opening degree of the outdoor expansion valve 18 is controlled in accordance with the outlet superheat degree of the outdoor heat exchanger 15 similarly to the opening degree of the intermediate expansion valve 25 in the cooling mode described above.
  • the refrigerant is compressed by the compressor 11 into a gaseous state of high temperature and high pressure, and is sequentially passed through the four-way valve 12 and the check valve 13 to a heating heat exchanger 22 operating as a condenser.
  • a heating heat exchanger 22 operating as a condenser.
  • the refrigerant is heat-exchanged with the heat medium, cooled and condensed, and the heat medium absorbs heat from the refrigerant and is heated.
  • the refrigerant condensed in the heat exchanger 22 is delivered to the outdoor expansion valve 18 and expanded under reduced pressure by the outdoor expansion valve 18.
  • the expanded pressure refrigerant is transferred to an outdoor heat exchanger (15) that operates as an evaporator, and heat exchanges with outdoor air in the outdoor heat exchanger (15) to absorb heat and evaporate. Subsequently, the refrigerant is sucked back into the compressor 11 through the four-way valve 12 and the accumulator 17.
  • the refrigerant is the compressor 11, the four-way valve 12, the check valve 13, the heat exchanger 22, the outdoor expansion valve 18, the outdoor heat exchanger 15, the four-way valve 12 And a refrigerant circuit for circulating the accumulator 17 in turn.
  • the heat medium flows from the heating unit 30H to the heat pump 24, and is then transferred from the heat pump 24 to the heat heat exchanger 22.
  • the heat medium absorbs heat of the refrigerant, the heat medium is heated. Since the heated heating medium is transferred back to the heating unit 30H, warmth is supplied to the heating unit 30H through the heating medium.
  • the heat medium in the heating mode, is configured so that the heat medium circulates through the heating unit 30H, the heat pump 24, and the heat exchanger 22 in sequence.
  • FIG. 4 the flow of the refrigerant is indicated by a solid arrow, and the flow of the heat medium is indicated by a dotted arrow.
  • the four-way valve 12 guides the refrigerant to the second flow path. That is, the four-way valve 12 guides the refrigerant to flow in the direction of arrow A1.
  • the opening degree of the intermediate expansion valve 25 is controlled to correspond to the outlet superheat degree of the cooling heat exchanger 21 as in the above-described cooling mode.
  • the opening degree of the outdoor expansion valve 18 is controlled to correspond to the load required by the heating unit 30H.
  • the opening degree of the outdoor expansion valve 18 is made small, the amount of refrigerant delivered to the heat exchanger 22 through the on-off valve 14 increases. Therefore, the larger the required load of the heating unit 30H is, the smaller the opening degree of the outdoor expansion valve 18 is controlled.
  • the refrigerant is compressed by the compressor 11 to be in a gaseous state of high temperature and high pressure, and is guided to the outdoor heat exchanger 15 and the open / close valve 14 by the four-way valve 12.
  • a portion of the refrigerant discharged from the compressor is delivered to the outdoor heat exchanger 15 that operates as a condenser, and the refrigerant delivered to the outdoor heat exchanger 15 is cooled by heat exchange with outdoor air in the outdoor heat exchanger 15 to be condensed.
  • the condensed refrigerant passes through the outdoor expansion valve 18 and is delivered to the intermediate expansion valve 25.
  • the remaining refrigerant is delivered to the on-off valve 14, the refrigerant delivered to the on-off valve 14 passes through the on-off valve 14, it is delivered to the heating heat exchanger 22 acting as a condenser.
  • the refrigerant condenses while heating the heat medium.
  • the heat medium absorbs heat from the refrigerant and is heated.
  • the refrigerant condensed through the heat exchanger 22 is joined with the refrigerant passed through the outdoor heat exchanger 15 and the outdoor expansion valve 18.
  • the combined refrigerant is expanded under reduced pressure by the intermediate expansion valve 25 to be in a gas-liquid mixed state of low temperature and low pressure.
  • the refrigerant is then delivered to a cooling heat exchanger 21 which acts as an evaporator.
  • the cooling heat exchanger (21) the refrigerant absorbs heat from the heat medium and becomes a low temperature low pressure gas refrigerant.
  • the refrigerant passing through the cooling heat exchanger 21 passes through the accumulator 17 and is sucked back into the compressor 11.
  • the refrigerant passes through the compressor 11 and the four-way valve 12
  • a part of the refrigerant passes through the outdoor heat exchanger 15 and the outdoor expansion valve 18, and the rest of the refrigerant opens and closes the valve.
  • the joined refrigerant is configured to pass through the intermediate expansion valve (25), the cooling heat exchanger (21), and the accumulator (17) in order to be sucked back into the compressor.
  • the flow of the heat medium in the cooling center mode is the same as the cooling mode and the heating mode. That is, the heat medium circuit for supplying cold air to the cooling unit 30L is configured by causing the heat medium to circulate through the cooling unit 30L, the cooling pump 23 and the cooling heat exchanger 21 in sequence, and to the heating unit 30H.
  • the heat medium circuit for supplying warmth is configured by causing the refrigerant to cycle through the heating unit 30H, the heat pump 24 and the heat exchanger 22 in sequence.
  • FIG. 5 the flow of the refrigerant is indicated by a solid arrow, and the flow of the heat medium is indicated by a dotted arrow.
  • the four-way valve 12 guides the refrigerant to the first flow path. That is, the four-way valve 12 allows the refrigerant to flow in the direction of arrow A2.
  • the on-off valve 14 closes the flow path, and the opening degree of the intermediate expansion valve 25 is controlled to correspond to the outlet superheat degree of the cooling heat exchanger 21 similarly to the cooling mode described above.
  • the opening degree of the outdoor expansion valve 18 is controlled to correspond to the load required by the cooling unit 30L. In more detail, when the opening degree of the outdoor expansion valve 18 is made small, the amount of the refrigerant delivered to the cooling heat exchanger 21 increases. Therefore, the larger the required load of the cooling unit 30L, the smaller the opening degree of the outdoor expansion valve 18 is controlled.
  • the refrigerant is compressed by the compressor 11 to be in a gaseous state of high temperature and high pressure, and after passing through the four-way valve 12 and the check valve 13 in sequence, the refrigerant is transferred to a heat exchanger 22 operating as a condenser. In the heat exchanger 22, the refrigerant heats and heats the heating medium to condense.
  • Some of the refrigerant condensed in the heat exchanger 22 is delivered to the intermediate expansion valve 25 and the rest to the outdoor expansion valve 18.
  • the refrigerant delivered to the intermediate expansion valve 25 is expanded under reduced pressure by the intermediate expansion valve 25 to become a gas-liquid mixed refrigerant of low temperature and low pressure, and then is delivered to the cooling heat exchanger 21 operating as an evaporator.
  • the cooling heat exchanger 21 the refrigerant absorbs heat from the heat medium and becomes a low temperature low pressure gas state. At this time, since the refrigerant absorbs heat from the heat medium, the heat medium is cooled. The refrigerant passing through the cooling heat exchanger 21 is sucked back into the compressor 11 after passing through the accumulator 17.
  • the refrigerant delivered to the outdoor expansion valve 18 is expanded under reduced pressure by the outdoor expansion valve 18 is a gas-liquid mixed state of low temperature and low pressure.
  • the refrigerant is then delivered to an outdoor heat exchanger 15 which acts as an evaporator.
  • the outdoor heat exchanger (15) the refrigerant exchanges heat with outdoor air, absorbs heat, becomes a low-temperature low-pressure gas state, passes through the four-way valve (12) and the accumulator (17), and is sucked back into the compressor (11).
  • the heating center mode after the refrigerant passes through the compressor 11, the four-way valve 12, the check valve 13, the heat exchanger 22, a part of the refrigerant is intermediate expansion valve 25 and the cooling heat exchange After passing through the group 21, the remainder is passed through the outdoor expansion valve 18, the outdoor heat exchanger 15, the four-way valve 12 in order and then joined. Subsequently, the joined refrigerant passes through the accumulator 17 and is then sucked back into the compressor 11 to form a refrigerant circuit.
  • the flow of the heat medium in the heating center mode is the same as the cooling mode and the heating mode. That is, the heat medium circuit for supplying cold air to the cooling unit 30L is configured by causing the heat medium to circulate through the cooling unit 30L, the cooling pump 23 and the cooling heat exchanger 21 in sequence, and to the heating unit 30H.
  • the heat medium circuit for supplying warmth is configured by causing the refrigerant to cycle through the heating unit 30H, the heat pump 24 and the heat exchanger 22 in sequence.
  • the low pressure pressure maintaining control is performed in the cooling mode, the cooling center mode and the heating center mode.
  • FIG. 6 shows a heat pump system 1 in which a refrigerant flow control valve 26 is added to the intermediate unit 20 shown in FIG. 1.
  • the refrigerant flow rate regulating valve 26 is disposed on the fifth refrigerant pipe P5 between the cooling heat exchanger 21 and the accumulator 17, that is, on the refrigerant outlet side of the cooling heat exchanger 21.
  • the low pressure pressure retention control is performed by controlling the opening degree of the refrigerant flow rate regulating valve 26 so that the pressure at the refrigerant outlet side of the cooling heat exchanger 21 becomes a value within a setting range.
  • the low pressure pressure maintaining control controls the opening degree of the refrigerant flow rate control valve 26 such that the internal refrigerant evaporation pressure of the cooling heat exchanger 21 is a value within a setting range. If it demonstrates further, the opening degree of the refrigerant flow volume control valve 26 is controlled so that the evaporation temperature computed from the refrigerant pressure of the exit side of the cooling heat exchanger 21 may not be below the freezing temperature of a heat medium.
  • the pressure at the refrigerant outlet side of the cooling heat exchanger 21 is detected by the cooling refrigerant pressure sensor PS1.
  • the coolant flow control valve 26 is controlled to reduce the opening degree of the coolant flow control valve 26.
  • the refrigerant outlet side pressure of the cooling heat exchanger 21 increases.
  • the refrigerant flow rate control valve 26 is controlled to increase the opening degree of the refrigerant flow rate control valve 26.
  • the opening degree of the refrigerant flow rate control valve 26 increases, the refrigerant outlet side pressure of the cooling heat exchanger 21 decreases.
  • the opening degree of the refrigerant flow rate control valve 26 is controlled so that the outlet refrigerant pressure of the cooling heat exchanger 21 is maintained within the set range.
  • the heat pump system 1 when the heat pump system 1 is operated in the heating center mode in the winter when the ambient temperature of the outdoor heat exchanger 15 is low, the evaporation pressure of the outdoor heat exchanger 15 is lowered and the cooling heat exchanger ( The evaporation pressure of 21 can be lowered.
  • the evaporation pressure of 21 can be lowered.
  • the flow rate of the refrigerant passing through the cooling heat exchanger 21 is increased, so that the heat medium can be cooled to an appropriate level or higher, and as a result, the cooling heat medium pipe L1. , The heat medium passing through L2) may be frozen.
  • the low pressure pressure maintaining control controls the refrigerant flow rate regulating valve 26 to open the refrigerant flow rate regulating valve 26 when the pressure of the refrigerant detected by the cooling refrigerant pressure sensor PS1 is abnormally lowered to be out of the setting range. To be reduced.
  • the opening degree of the refrigerant flow rate control valve 26 decreases, the pressure of the refrigerant passing through the cooling heat exchanger 21 increases so that the freezing of the heat medium of the cooling heat medium tubes L1 and L2 can be suppressed.
  • cold air can also be stably supplied to the cooling unit 30L.
  • Cold water temperature fall prevention control of the heat pump system 1 which concerns on a present Example is demonstrated with reference to FIG.
  • Cold water temperature fall prevention control is performed in the cooling mode, the cooling center mode and the heating center mode.
  • FIG. 7 shows a heat pump system 1 in which a refrigerant bypass pipe B1 and a bypass expansion valve 27 are added to the intermediate unit 20 shown in FIG. 1.
  • the refrigerant bypass pipe B1 is branched from the cooling refrigerant pipe P6-1 traveling from the outdoor expansion valve 18 to the intermediate expansion valve 25, and connects the cooling heat exchanger 21 and the accumulator 17. It is connected to the fifth refrigerant pipe (P5), so that the refrigerant can be delivered to the compressor (11) by bypassing the cooling heat exchanger (21).
  • the bypass expansion valve 27 is formed as a solenoid valve that can adjust the opening degree, and is disposed in the refrigerant bypass pipe B1 to open and close the flow path of the refrigerant bypass pipe B1. In general, the bypass expansion valve 27 closes the flow path of the refrigerant bypass pipe B1 to prevent the flow of the refrigerant through the refrigerant bypass pipe B1.
  • the cold water temperature reduction prevention control controls the intermediate expansion valve 25 when the temperature of the heat medium detected by the cooling temperature sensor T1 is lower than the set threshold, thereby controlling the cooling refrigerant pipe P6-1 at the inlet side of the cooling heat exchanger. ) And the bypass expansion valve 27 is controlled to open the flow path of the refrigerant bypass pipe B1.
  • the intermediate expansion valve 25 When the flow path of the inlet refrigerant pipe of the cooling heat exchanger 21 is closed through the intermediate expansion valve 25, the refrigerant transfer to the cooling heat exchanger 21 is blocked. In addition, as the flow path of the refrigerant bypass pipe B1 is opened through the bypass expansion valve 27, the refrigerant is transferred to the bypass expansion valve 27, as indicated by the arrow in the figure. Subsequently, when the temperature of the heat medium detected by the cooling temperature sensor T1 becomes equal to or greater than the set threshold value, the intermediate expansion valve 25 is controlled to control the inlet side of the cooling heat exchanger 21, that is, the cooling refrigerant pipe P6. When the flow path of -1) is opened and the flow path of the refrigerant bypass pipe B1 is closed by controlling the bypass expansion valve 27, the refrigerant is again transferred to the cooling heat exchanger 21.
  • the heat medium when the temperature of the heat medium becomes very low, the heat medium may be frozen. Therefore, when the temperature of the cold water lowering prevention control is lower than the set threshold value, the intermediate expansion valve 25 is closed to block the inflow of the refrigerant to the cooling heat exchanger 21. Since the heat medium is not cooled when the inflow of the refrigerant to the cooling heat exchanger 21 is blocked, the heat medium passing through the cooling heat medium tubes L1 and L2 is prevented from being frozen.
  • the threshold set here is preferably set to a temperature slightly higher than the freezing temperature of the heat medium. For example, when the heat medium is water, it is preferable that the set threshold value is set to 2 ° C., which is slightly higher than 0 ° C. which is the freezing temperature.
  • the refrigerant bypass pipe B1 and the bypass expansion valve 27 are installed to allow the refrigerant to circulate even when the flow path of the cooling refrigerant pipe P6-2 is closed by the intermediate expansion valve 25. Therefore, the refrigerant delivered from the outdoor expansion valve 18 by closing the intermediate expansion valve 25 and opening the bypass expansion valve 27 is transferred to the compressor 11 side through the refrigerant bypass pipe B1.
  • Defrost control includes a first defrost mode, a second defrost mode, and a third defrost mode.
  • FIG. 8 shows a heat pump system 1 in which a defrost bypass pipe B2 and a refrigerant flow path switching valve 28 are added to the intermediate unit 20 shown in FIG. 7.
  • the defrost bypass pipe B2 is connected at one end to the third refrigerant pipe P3 connecting the four-way valve 12 and the heating heat exchanger 22, and the other end thereof is the cooling heat exchanger 21 and the accumulator 17. It is connected to the fifth refrigerant pipe (P5) for connecting. That is, the defrost bypass pipe B2 connects the refrigerant inlet side of the heating heat exchanger 22 and the refrigerant outlet side passage of the cooling heat exchanger 21.
  • the coolant flow path switching valve 28 is disposed in the defrost bypass pipe B2 to selectively allow the flow of the coolant through the defrost bypass pipe B2. In a general state, the refrigerant flow path switching valve 28 maintains the state in which the flow path is closed to block the flow of the refrigerant through the defrost bypass pipe B2.
  • the heating mode is switched to the first defrost mode.
  • the defrost request in the outdoor heat exchanger 15 is confirmed by the temperature, pressure or ambient temperature of the refrigerant delivered to the outdoor heat exchanger 15 or the refrigerant discharged from the outdoor heat exchanger 15.
  • the case where the defrost request occurs in the outdoor heat exchanger 15 is, in other words, a case where a set condition for performing the defrost of the outdoor heat exchanger 15 is satisfied. More specifically, for example, the case where the outlet side refrigerant temperature of the outdoor heat exchanger 15 is lower than the set temperature while the heating mode is being performed may correspond to this.
  • the heating mode while the heating mode is being performed, the temperature of the heat medium detected by the heating temperature sensor T2 is greater than or equal to the predetermined threshold while the refrigerant temperature at the outlet side of the outdoor heat exchanger 15 is lower than the set threshold. Is confirmed, the heating mode is switched to the first defrost mode.
  • the heating mode while the heating mode is being performed, it is confirmed that the temperature of the heat medium detected by the heating temperature sensor T2 is lower than the set threshold while the temperature of the outlet refrigerant of the outdoor heat exchanger 15 is lower than the set threshold. In this case, it is switched to the second defrost mode to be described later in the heating mode.
  • FIG. 9 is a view showing the flow of the refrigerant and the heat medium in the first defrost mode.
  • the flow of the refrigerant is indicated by a solid arrow
  • the flow of the heat medium is indicated by a dotted arrow.
  • the four-way valve 12 guides the refrigerant to the outdoor heat exchanger 15. That is, the four-way valve 12 guides the refrigerant to flow in the direction of arrow A1.
  • the open / close valve 14, the intermediate expansion valve 25, and the bypass expansion valve 27 all close the flow path, and the refrigerant flow path switching valve 28 opens the flow path.
  • the opening degree of the outdoor expansion valve 18 is controlled to correspond to the outlet superheat degree of the heat exchanger 22 similarly to the opening degree of the intermediate expansion valve 25 in the cooling mode described above.
  • the refrigerant is compressed by the compressor 11 to become a gas state of high temperature and high pressure, and is delivered to the outdoor heat exchanger 15 through the four-way valve 12. Since the refrigerant in the outdoor heat exchanger 15 emits heat, the castle generated on the surface of the outdoor heat exchanger 15 is removed.
  • the refrigerant passing through the outdoor heat exchanger (15) is expanded under reduced pressure by the outdoor expansion valve (18) to be a gas-liquid mixed state of low temperature and low pressure, and is delivered to a heat exchanger (22) operating as an evaporator. In the heat exchanger 22, the refrigerant absorbs heat from the heat medium and is heated.
  • the refrigerant passing through the heat exchanger (22) passes through the refrigerant flow path switching valve (28) and the accumulator (17) and is sucked back into the compressor (11).
  • the refrigerant is provided in the compressor 11, the four-way valve 12, the outdoor heat exchanger 15, the outdoor expansion valve 18, the heat exchanger 22, the refrigerant flow path switching valve 28, A refrigerant circuit for circulating the accumulator 17 is configured.
  • the refrigerant is heated by heat absorbed by the heat medium, and the heated refrigerant is transferred to the outdoor heat exchanger 15 to perform defrosting of the outdoor heat exchanger 15.
  • the heat medium circulates the heating unit 30H, the heat pump 24, and the heat exchanger 22 to a shield, and the heat medium circuit is comprised.
  • the heat medium circulates along the heating heat medium tubes H1 and H2, so that warming is continuously supplied to the heating unit 30H.
  • the warmth to be supplied may be reduced as compared with the case in which the heating mode is performed.
  • the heat capacity of the heat medium may not be sufficiently secured.
  • the amount of heat required for defrosting exceeds the heat capacity of the heat medium, so that warmth cannot be supplied to the heating unit 30H, and heat is absorbed from the heating unit 30H. 30H) may be subjected to cooling.
  • the first defrost mode is switched to the second defrost mode.
  • the temperature of the refrigerant on the outlet side of the outdoor heat exchanger 15 is lower than the set threshold value in the state where the heating mode is being performed, and the temperature of the heat medium circulating the heating heat medium pipes H1 and H2 is set. If it is lower than the threshold value, the switching from the heating mode to the second defrost mode.
  • the set threshold value of the heat medium temperature in the case of switching from the first defrost mode or the heating mode to the second defrost mode may be determined by the air temperature in the room where the heating unit 30H is disposed. That is, when the temperature of the heat medium circulating the heating heat medium tubes H1 and H2 in the state where the first defrost mode is being performed is lower than the indoor set air temperature of the heating unit 30H, the second defrost in the first defrost mode. The mode is switched.
  • FIG. 10 is a view showing the flow of the refrigerant and the heat medium in the second defrost mode.
  • the flow of the refrigerant is indicated by a solid arrow.
  • the four-way valve 12 guides the refrigerant to the outdoor heat exchanger 15. That is, the four-way valve 12 allows the refrigerant to flow in the direction of arrow A1.
  • the opening / closing valve 14, the refrigerant flow path switching valve 28, and the outdoor expansion valve 18 open the flow path, and the intermediate expansion valve 25 closes the flow path.
  • the refrigerant is compressed by the compressor 11 to become a gas state of high temperature and high pressure, and is delivered to the outdoor heat exchanger 15 through the four-way valve 12.
  • the refrigerant releases heat, so that the castle attached to the surface of the outdoor heat exchanger (15) is removed.
  • the refrigerant passing through the outdoor heat exchanger (15) passes through the outdoor expansion valve (18), but is not delivered to the heating heat exchanger (22), and is expanded under reduced pressure by the bypass expansion valve (27) to form a gas-liquid mixed state of low temperature and low pressure.
  • the refrigerant sequentially rotates the compressor 11, the four-way valve 12, the outdoor heat exchanger 15, the outdoor expansion valve 18, the bypass expansion valve 27, and the accumulator 17.
  • a refrigerant circuit is configured to circulate through.
  • the third defrost mode is a mode in which the outdoor heat exchanger 15 is defrosted by switching from the heating center mode to the cooling center mode. That is, when the defrost request of the outdoor heat exchanger 15 occurs (for example, when the refrigerant temperature at the outlet side of the outdoor heat exchanger 15 is lower than the set threshold) while operating in the heating center mode. Switch from center mode to cooling center mode.
  • the refrigerant cooled in the heat exchanger 22 is transferred to the outdoor heat exchanger 15 which operates as an evaporator through the outdoor expansion valve 18. Accordingly, the temperature of the outdoor heat exchanger 15 is lowered, and frost may occur on the surface of the outdoor heat exchanger 15.
  • the high-temperature, high-pressure gaseous refrigerant compressed by the compressor 11 is transmitted to the outdoor heat exchanger 15 operating as a condenser through the four-way valve 12.
  • the heat pump system 1 to switch from the heating center mode to the cooling center mode, the refrigerant is allowed to dissipate heat from the outdoor heat exchanger 15, thereby eliminating the castle generated on the surface of the outdoor heat exchanger 15. .
  • the warmth supplied to the heating load may decrease as the switching from the heating center mode to the cooling center mode, but as the cooling center mode is performed, the warmth supply to the heating unit 30H and The supply of cold air to the cooling unit is continued.
  • freeze protection control of the heat pump system 1 according to the present embodiment will be described with reference to FIG.
  • the heat medium can be frozen in accordance with the decrease in the outside air temperature.
  • the heating heat exchanger 22, the cooling heat exchanger 21, the heating heat medium tubes H1 and H2, and the cooling heat medium tubes L1 and L2 may be damaged. Therefore, freezing prevention control is performed to prevent freezing of the heat medium.
  • FIG. 11 shows a heat pump system 1 in which an intermediate unit 20 disclosed in FIG. 1 is added with heat medium bypass tubes B3 and B4 and heat medium bypass valves 29L and 29H to prevent freezing. .
  • one end thereof is connected to the cooling heat medium supply pipe L1 and the other end thereof is connected to the cooling heat medium recovery pipe L2, and one end thereof is a heated heat medium.
  • the heating heat medium bypass pipe B4 connected to the supply pipe H1 and the other end thereof to the heating heat medium recovery pipe H2 is included.
  • the heating medium bypass valves 29L and 29H are disposed in the cooling heating medium bypass pipes B3 and B4, and the cooling heating medium bypass valve 29L which opens and closes the flow path of the cooling heating medium bypass pipes B3 and B4, and the heating is performed.
  • the heating heating medium bypass valve 29H which is arrange
  • the heat medium bypass valves 29L and 29H close the flow path to block the flow of the heat medium through the heat medium bypass pipes 29L and 29H.
  • the temperature of the heat medium detected by the heating temperature sensor T2 is lower than the set threshold in a state where the compressor 11 and the heat pump 24 are stopped and the refrigerant and the heat medium are not circulated.
  • the flow path of the heating medium bypass valve 29H is opened and the heat pump 24 is operated. Opening the heat medium bypass valve 41 and operating the heat pump 24 causes the heat medium to heat the heat pump 24 and the heat exchanger 22 through the heat medium tubes H1 and H2 as indicated by the dotted arrows in the figure. ) And the bypass valve 41 in order to circulate.
  • the temperature of the heat medium passing through the heating heat medium tubes H1 and H2 becomes uniform.
  • the set threshold is set to a temperature slightly higher than the freezing temperature of the heat medium. That is, when the heat medium is water, the threshold value can be set to 3 ° C., which is slightly higher than 0 ° C. which is the freezing temperature.
  • the heat pump 24 after the heat medium starts to circulate, it is also possible to stop the operation of the heat pump 24 when the temperature of the heat medium detected by the heating temperature sensor T2 is equal to or higher than the set threshold value.
  • the operation of the heat pump 24 may be stopped when the temperature of the heat medium detected by the heating temperature sensor T2 is equal to or higher than the set threshold value after a set time such as 5 minutes after the heat medium starts to circulate. It is possible.
  • Freezing prevention control is also performed also about the heat medium passing through the cooling heat medium tubes L1 and L2.
  • the cooling bypass valve 42 The flow path of the gas is opened and the cooling pump 23 is operated.
  • the heat medium is cooled along the cooling heat medium pipes L1 and L2, and the cooling pump 23 is cooled. It circulates through the heat exchanger 21 and the freezing prevention bypass valve 42 in order.
  • the threshold value set here is set to a temperature slightly higher than the freezing temperature of the heat medium similarly to the case of the heating heat medium tubes H1 and H2.
  • the cooling pump 23 after the heat medium starts to circulate, it is also possible to stop the cooling pump 23 again when the temperature of the heat medium detected by the cooling temperature sensor T1 becomes equal to or higher than the set threshold value.
  • the cooling pump 23 may be stopped again when the temperature of the heating medium detected by the cooling temperature sensor T1 is equal to or higher than the set threshold value after a set time such as 5 minutes after the heating medium starts to circulate.
  • Water bypass defrost control is performed in the heating mode, the heating center mode.
  • the outdoor heat exchanger 15 is defrosted by circulating the heat medium by bypassing the heating heat medium pipes H1 and H2 and the cooling heat medium pipes L1 and L2.
  • FIG. 12 is a diagram when the heat pump system 1 performs water bypass defrost control.
  • FIG. 12 shows a heat pump system 1 in which connecting bypass pipes B5 and B6 and connecting bypass valves 29L1 and 29H1 are added to the intermediate unit 20 shown in FIG. 1.
  • connection bypass pipes B5 and B6 have a first connection bypass pipe B5 having one end connected to the heating heat medium supply pipe H1 and the other end connected to the cooling heat medium recovery pipe L2, and one end thereof cooled.
  • a second connection bypass pipe B6 connected to the heat medium supply pipe L1 and the other end connected to the heated heat medium recovery pipe H2 is included.
  • Connection bypass pipes B5 and B6 have a first connection bypass valve 29L1 disposed in the first connection bypass pipe B5 to open and close a flow path of the first connection bypass pipe B5, and a second connection bypass pipe B5 and B6.
  • Second connection bypass valves 29L1 and 29H1 are disposed in the connection bypass pipe B6 and open and close the flow path of the second connection bypass pipe B6.
  • the intermediate unit 20 is disposed in the cooling heat medium supply pipe L1 and is arranged in the cooling heat medium supply valve 29a for adjusting the amount of the heat medium supplied to the cooling unit 30L, and in the cooling heat medium recovery pipe L2.
  • a cooling heat medium recovery valve 29b for adjusting the amount of heat medium recovered from 30L is included.
  • the intermediate unit 20 is disposed in the heating heating medium supply pipe H1 and arranged in the heating heating medium supply valve 29c for adjusting the amount of the heating medium supplied to the heating unit 30H, and the heating heating medium recovery pipe H2.
  • a heating heat medium recovery valve 29d for adjusting the amount of the heat medium recovered from the heating unit 30H is included.
  • the flow paths of the first connecting bypass valve 43 and the second connecting bypass valve 46 are both kept closed, and the cooling heat medium supply valve 29a, the cooling heat medium recovery valve 46, The heating heating medium supply valve 29d and the heating heating medium recovery valve 29c are both kept open.
  • the water bypass defrost control is a threshold at which the refrigerant temperature at the outlet side of the outdoor heat exchanger 15 is set when a defrost request of the outdoor heat exchanger 15 occurs while the heating mode or the heating center mode is being performed. If it is below the value, it switches to the cooling center mode. That is, the outdoor heat exchanger 15 and the heat exchanger 22 are operated as a condenser, and the cooling heat exchanger 21 is operated as an evaporator. Moreover, the flow path of the 1st connection bypass valve 43 and the 2nd connection bypass valve 46 is opened, and the cooling heat medium supply valve 29a, the cooling heat medium recovery valve 46, and the heating heat medium supply valve 29d are opened. Then, all the flow paths of the heating medium recovery valve 29c are closed.
  • the heat medium transferred from the cooling heat exchanger 21 is heated by the second connection bypass valve 46 and the heating as indicated by the dotted arrows in the figure. Passed through the pump 24, it is delivered to the heat exchanger (22).
  • the heat medium transferred to the heat exchanger 22 is heated by the refrigerant passing through the heat exchanger 22 to raise the temperature.
  • the heat medium whose temperature is raised is passed to the cooling heat exchanger 21 through the first connection bypass valve 43 and the cooling pump 23. Cooled by the refrigerant in the cooling heat exchanger (21), the temperature is lowered.
  • the temperature of the heat medium circulating through the cooling heat medium pipes L1 and L2 and the heating heat medium pipes H1 and H2 is adjusted to maintain the set range.
  • the amount of heat supplied from the refrigerant to the heat medium in the heating heat exchanger 22 and the amount of heat supplied from the heat medium to the refrigerant in the cooling heat exchanger 21 are controlled to be maintained equal. In this way, when the thermal equilibrium state is reached, the heat amount compressed by the compressor 11 and applied to the refrigerant according to the principle of the heat pump cycle is supplied to the outdoor heat exchanger 15. And the castle which generate
  • FIG. 13 is a figure which shows the structural example of the heat pump system 1 in the case of performing supercooling degree control.
  • FIG. 13 shows a heat pump system 1 in which a heating refrigerant temperature sensor T3, a heating refrigerant pressure sensor PS2, and a refrigerant flow rate regulating valve 26 are added to the intermediate unit 20 shown in FIG. 1.
  • the heating refrigerant temperature sensor T3 and the heating refrigerant pressure sensor PS2 are provided at the refrigerant outlet side of the heating heat exchanger 22, that is, the heating refrigerant pipe P6-2.
  • a refrigerant flow rate control valve 26 is provided in the fifth refrigerant pipe P5 between the cooling heat exchanger 21 and the accumulator 17 as in FIG. 6.
  • the opening degree of the intermediate expansion valve 25 and the refrigerant flow rate control valve 26 are controlled so that the supercooling degree of the refrigerant on the outlet side of the heat exchanger 22 is maintained within a set range. That is, in the subcooling degree control, the opening degree of the intermediate expansion valve 25 and the refrigerant flow rate control valve 26 are controlled so that the subcooling degree becomes the value of the set target subcooling degree.
  • the temperature of the refrigerant is detected by the heating refrigerant temperature sensor T3 arranged in the heating refrigerant pipe P6-2, and the heating refrigerant pressure sensor PS2 arranged in the heating refrigerant pipe P6-2.
  • the pressure of the refrigerant is detected.
  • the detected pressure of the refrigerant is converted into a saturation temperature corresponding to the condensation temperature of the refrigerant.
  • the subcooling degree is calculated based on the difference between the saturation temperature of the refrigerant and the temperature of the refrigerant detected by the temperature sensor T3.
  • the opening degree of the intermediate expansion valve 25 and the refrigerant flow rate control valve 26 is controlled so that the calculated subcooling degree is within a set range.
  • the intermediate expansion valve 25 is opened to close the flow path of the refrigerant flow rate control valve 26.
  • the opening degree of the intermediate expansion valve 25 is increased and the opening degree of the refrigerant flow rate control valve 26 is controlled to be small.
  • the flow path of the intermediate expansion valve 25 is closed and the refrigerant flow rate control valve 26 is controlled to open the flow path.
  • the opening degree of the intermediate expansion valve 25 is made small, and the opening degree of the refrigerant flow rate regulating valve 26 is controlled to be large.
  • the intermediate processor C2 determines that the amount of refrigerant circuit refrigerant is excessive, thereby increasing the opening degree of the intermediate expansion valve 25 and at the same time opening the refrigerant flow rate control valve 26. Make it smaller. Under such control, the refrigerant in the refrigerant circuit is stored in the cooling heat exchanger 21 which is not used as the heat exchanger in the heating mode. When the excess refrigerant in the refrigerant circuit is stored in the cooling heat exchanger 21, the subcooling degree SC is lowered and maintained within the set range.
  • the intermediate processor C2 determines that the amount of refrigerant in the refrigerant circuit is insufficient, thereby reducing the opening degree of the intermediate expansion valve 25 and simultaneously opening the refrigerant flow rate control valve 26. To increase. By such control, the refrigerant stored in the cooling heat exchanger 21 is supplied to the refrigerant circuit. When the refrigerant of the cooling heat exchanger 21 is supplied to the refrigerant circuit, the supercooling degree rises and is maintained within the set range.
  • the heat pump system 1 calculates the supercooling degree SC of the outlet refrigerant of the heating heat exchanger 22, and adjusts the intermediate expansion valve 25 and the refrigerant flow rate so that the calculated supercooling degree is maintained within a set range.
  • the opening degree of the valve 26 is controlled. By controlling the opening degree of the intermediate expansion valve 25 and the refrigerant flow rate control valve 26 on the basis of the subcooling degree, the refrigerant flow rate of the refrigerant circuit is adjusted, and the warmth is stably supplied to the heating unit 30H.
  • the outdoor unit 10 and the intermediate unit 20 are housed in separate housings, but it is also possible for the outdoor unit 10 and the intermediate unit 20 to be housed in one housing.
  • the program for realizing the embodiments of the present invention can be provided not only by the communication means but also stored and provided in various recording media such as a CD-ROM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

The present invention relates to a heat pump system comprising: an outdoor unit installed in an outdoor space; a plurality of heat load units supplied with cold air and warm air; and an intermediate unit arranged between the outdoor unit and the plurality of heat load units, wherein the intermediate unit is connected to the outdoor unit through a refrigerant tube and is connected to the plurality of heat load units through a heat medium tube.

Description

히트 펌프 시스템Heat pump system
본 발명은 히트 펌프 시스템에 관한 것으로, 더욱 상세하게는 열부하 유닛으로 냉각에 사용되는 냉각 유닛과 가열에 사용되는 히팅 유닛을 모두 포함한 히트 펌프 시스템에 관한 것이다. The present invention relates to a heat pump system, and more particularly, to a heat pump system including both a cooling unit used for cooling with a heat load unit and a heating unit used for heating.
일반적으로 히트 펌프 시스템은 냉매를 통해 냉기 및 온기를 발생시키기 위한 것으로, 압축기, 응축기, 증발기 및 팽창장치 등의 구성을 포함한다. In general, the heat pump system is for generating cold and warm air through the refrigerant, and includes a configuration such as a compressor, a condenser, an evaporator and an expansion device.
히트 펌프 시스템은 실외 공간에 배치되는 실외 유닛과, 냉각을 위해 사용되는 냉각 유닛과 가열을 위해 사용되는 가열 유닛과, 냉매가 냉각 유닛과 가열 유닛에 분산 공급되도록 하는 중간 유닛을 포함한다. 따라서 냉매를 통해 냉각 유닛에는 냉기가 공급되고 가열 유닛에는 온기가 공급된다.The heat pump system includes an outdoor unit disposed in an outdoor space, a cooling unit used for cooling, a heating unit used for heating, and an intermediate unit for distributing the refrigerant to the cooling unit and the heating unit. Therefore, cool air is supplied to the cooling unit and warm air is supplied to the heating unit through the refrigerant.
본 발명의 일 측면은 보다 간단한 구성으로 냉기 및 온기 중 어느 하나, 또는 냉기 및 온기를 모두 공급할 수 있는 히트 펌프 시스템을 제공하는 것이다. One aspect of the present invention is to provide a heat pump system capable of supplying either cold or warm air, or both cold and warm air, in a simpler configuration.
본 발명의 일 측면에 따른 히트 펌프 시스템은 실외 공간에 배치되는 실외 유닛과, 냉기 및 온기를 공급받는 복수의 열부하 유닛들과, 상기 실외 유닛과 상기 복수의 열부하 유닛들 사이에 배치되는 중간 유닛을 포함하며, 상기 중간 유닛은 냉매가 통과하는 냉매관을 통해 상기 실외 유닛과 연결되고, 열매체가 통과하는 열매체관을 통해 상기 복수의 열부하 유닛들과 연결된다.According to an aspect of the present invention, a heat pump system includes an outdoor unit disposed in an outdoor space, a plurality of heat load units receiving cold and warm air, and an intermediate unit disposed between the outdoor unit and the plurality of heat load units. The intermediate unit is connected to the outdoor unit through a refrigerant pipe through which a refrigerant passes, and is connected to the plurality of heat load units through a heat pipe through which a heat medium passes.
또한, 상기 복수의 열부하 유닛들은 냉기를 전달받아 사용하는 쿨링 유닛과, 온기를 전달받아 사용하는 히팅 유닛을 포함한다.In addition, the plurality of heat load units include a cooling unit that receives and uses cold air and a heating unit that receives and uses warm air.
또한, 상기 실외 유닛은 냉매를 압축하는 압축기와, 냉매가 실외 공기와 열교환하도록 하는 실외 열교환기와, 상기 압축기에서 토출된 냉매를 상기 실외 열교환기와 상기 중간 유닛 중 어느 하나로 안내하는 사방밸브와, 냉매를 감압 팽창시키는 실외 팽창밸브를 포함한다.The outdoor unit may include a compressor for compressing a refrigerant, an outdoor heat exchanger for allowing the refrigerant to exchange heat with outdoor air, a four-way valve for guiding the refrigerant discharged from the compressor to one of the outdoor heat exchanger and the intermediate unit, and a refrigerant. And an outdoor expansion valve for expanding under reduced pressure.
또한, 상기 중간 유닛은 상기 쿨링 유닛에서 전달된 열매체와 냉매가 열교환하도록 하는 냉각 열교환기와, 상기 히팅 유닛에서 전달된 열매체와 냉매가 열교환하도록 하는 가열 열교환기와, 냉매를 감압 팽창시키는 중간 팽창밸브를 포함한다.In addition, the intermediate unit includes a cooling heat exchanger for heat exchange between the heat medium and the refrigerant transferred from the cooling unit, a heating heat exchanger for heat exchange between the heat medium and the refrigerant delivered from the heating unit, and an intermediate expansion valve for expanding the refrigerant under reduced pressure. do.
또한, 상기 압축기에서 토출된 냉매를 상기 사방밸브로 안내하는 제 1 냉매관과, 냉매를 상기 사방 밸브에서 상기 실외 열교환기로 안내하는 제 2 냉매관과, 냉매를 상기 사방 밸브에서 상기 가열 열교환기로 안내하는 제 3 냉매관과, 냉매를 상기 사방 밸브에서 상기 압축기의 흡입측으로 제 4 냉매관과, 냉매를 상기 냉각 열교환기에서 상기 압축기의 흡입측으로 안내하는 제 5 냉매관과, 상기 실외 열교환기와 연결되며 둘로 분기되어 그 하나가 상기 냉각 열교환기와 연결되는 냉각 냉매관을 형성하고 다른 하나가 상기 가열 열교환기와 연결되는 가열 냉매관을 형성하는 제 6 냉매관과, 상기 제 2 냉매관과 상기 제 3 냉매관을 연결하는 제 7 냉매관과, 상기 제 7 냉매관에 배치되어 상기 제 7 냉매관을 통해 선택적으로 냉매가 유동하도록 하는 개폐밸브를 더 포함한다.In addition, the first refrigerant pipe for guiding the refrigerant discharged from the compressor to the four-way valve, the second refrigerant pipe for guiding the refrigerant from the four-way valve to the outdoor heat exchanger, and the refrigerant from the four-way valve to the heating heat exchanger A third refrigerant pipe connected to the suction side of the compressor from the four-way valve to the suction side of the compressor, a fifth refrigerant pipe guiding the refrigerant from the cooling heat exchanger to the suction side of the compressor, and the outdoor heat exchanger. A sixth refrigerant pipe branched into two to form a cooling refrigerant pipe connected to the cooling heat exchanger and the other forming a heating refrigerant pipe connected to the heating heat exchanger, and the second refrigerant pipe and the third refrigerant pipe. A seventh refrigerant pipe for connecting the valve, and an on / off valve disposed in the seventh refrigerant pipe to selectively flow the refrigerant through the seventh refrigerant pipe. It includes more.
또한, 냉매를 상기 냉각 열교환기에서 상기 압축기의 흡입측으로 안내하는 제 5 냉매관과, 상기 냉각 열교환기의 냉매 출구측의 압력을 검출하는 압력센서와, 상기 제 5 냉매관에 배치되어 상기 압력센서에 의해 검출된 압력이 설정 범위 내의 값이 되도록 개도가 제어되는 냉매 유량 조절 밸브를 더 포함한다.In addition, the fifth refrigerant pipe for guiding the refrigerant from the cooling heat exchanger to the suction side of the compressor, a pressure sensor for detecting the pressure of the refrigerant outlet side of the cooling heat exchanger, and the pressure sensor disposed in the fifth refrigerant pipe And a refrigerant flow rate control valve whose opening degree is controlled such that the pressure detected by the value is within a setting range.
또한, 냉매를 상기 냉각 열교환기에서 상기 압축기의 흡입측으로 안내하는 제 5 냉매관과, 상기 냉각 열교환기를 통해 냉각된 열매체의 온도를 검출하는 냉각 온도센서와, 상기 냉각 냉매관으로부터 분기되어 상기 제 5 냉매관에 연결되는 냉매 바이패스관과, 상기 냉매 바이패스관에 배치되어 상기 냉각 온도센서에 의해 검출된 열매체의 온도가 설정된 임계값 보다 낮을 경우에 상기 냉매 바이패스관의 유로를 개방하는 바이패스 팽창밸브를 더 포함한다.In addition, a fifth refrigerant pipe for guiding the refrigerant from the cooling heat exchanger to the suction side of the compressor, a cooling temperature sensor for detecting the temperature of the heat medium cooled through the cooling heat exchanger, and branched from the cooling refrigerant pipe, the fifth refrigerant pipe. A refrigerant bypass pipe connected to a refrigerant pipe, and a bypass disposed in the refrigerant bypass pipe to open a flow path of the refrigerant bypass pipe when the temperature of the heat medium detected by the cooling temperature sensor is lower than a set threshold value. It further comprises an expansion valve.
또한, 일단이 냉매를 상기 사방 밸브에서 상기 가열 열교환기로 냉매를 안내하는 제 3 냉매관에 연결되고 타단이 상기 압축기의 흡입측을 제 5 냉매관에 연결되는 제상 바이패스관과, 상기 제상 바이패스관에 배치되어 상기 실외 열교환기에서의 제상 요구가 발생하면 상기 제상 바이패스관의 유로를 개방하는 냉매 유로 전환 밸브를 더 포함한다.In addition, a defrost bypass tube, one end of which is connected to the third refrigerant pipe for guiding the refrigerant from the four-way valve to the heating heat exchanger, and the other end is connected to the suction side of the compressor to the fifth refrigerant pipe, and the defrost bypass. The apparatus may further include a refrigerant flow path switching valve arranged in the pipe to open a flow path of the defrost bypass pipe when a defrost demand is generated in the outdoor heat exchanger.
또한, 상기 냉각 열교환기에서 냉각된 열매체를 상기 쿨링 유닛에 공급하는 냉각 열매체 공급관과, 상기 쿨링 유닛을 통과하며 열을 흡수한 열매체를 상기 냉각 열교환기에 전달하는 냉각 열매체 회수관과, 상기 가열 열교환기에서 냉각된 열매체를 상기 히팅 유닛에 공급하는 가열 열매체 공급관과, 상기 히팅 유닛을 통과하며 열을 방출한 열매체를 상기 가열 열교환기에 전달하는 가열 열매체 회수관을 더 포함한다.In addition, a cooling heat medium supply pipe for supplying the heat medium cooled by the cooling heat exchanger to the cooling unit, a cooling heat medium recovery tube for passing the heat medium absorbed heat passing through the cooling unit to the cooling heat exchanger, and the heating heat exchanger And a heating heat medium supply pipe for supplying the heat medium cooled in the heating unit to the heating unit, and a heating heat medium recovery tube for transferring the heat medium passing through the heating unit to release heat.
또한, 상기 냉각 열매체 회수관에 배치된 냉각 펌프와, 상기 가열 열매체 회수관에 배치된 가열 펌프를 더 포함한다.The apparatus further includes a cooling pump arranged in the cooling heat medium recovery pipe and a heating pump arranged in the heating heat medium recovery pipe.
또한, 그 일단이 상기 냉각 열매체 공급관에 연결되고 타단이 상기 냉각 열매체 회수관에 연결된 냉각 열매체 바이패스관과, 그 일단이 가열 열매체 공급관에 연결되고 타단이 가열 열매체 회수관에 연결된 가열 열매체 바이패스관과, 상기 냉각 열매체 바이패스관에 배치되어 상기 냉각 열매체 바이패스관의 유로를 개폐하는 냉각 열매체 바이패스 밸브와, 상기 가열 열매체 바이패스관에 배치되어 상기 가열 열매체 바이패스관의 유로를 개폐하는 가열 열매체 바이패스 밸브를 더 포함한다.In addition, a cooling heat medium bypass pipe whose one end is connected to the cooling heat medium supply pipe and the other end is connected to the cooling heat medium recovery pipe, and a heating heat medium bypass pipe whose one end is connected to a heating heat medium supply pipe and the other end is connected to a heating heat medium recovery pipe. And a cooling heat medium bypass valve disposed in the cooling heat medium bypass pipe to open and close a flow path of the cooling heat medium bypass pipe, and a heating arranged in the heating heat medium bypass pipe to open and close a flow path of the heating heat medium bypass pipe. It further comprises a thermal medium bypass valve.
또한, 그 일단이 상기 가열 열매체 공급관에 연결되고 타단이 상기 냉각 열매체 회수관에 연결되는 제 1 연결 바이패스관과, 그 일단이 상기 냉각 열매체 공급관에 연결되고 타단이 상기 가열 열매체 회수관에 연결된 제 2 연결 바이패스관과, 상기 제 1 연결 바이패스관에 배치되어 상기 제 1 연결 바이패스관의 유로를 개폐하는 제 1 연결 바이패스 밸브와, 상기 제 2 연결 바이패스관에 배치되어 상기 제 2 연결 바이패스관의 유로를 개폐하는 제 2 연결 바이패스 밸브를 더 포함한다.In addition, a first connection bypass tube having one end connected to the heating heat medium supply pipe and the other end connected to the cooling heat medium recovery pipe, and one end connected to the cooling heat medium supply pipe and the other end connected to the heating heat medium recovery pipe A second connection bypass pipe, a first connection bypass valve disposed in the first connection bypass pipe to open and close a flow path of the first connection bypass pipe, and a second connection bypass pipe disposed in the second connection bypass pipe. It further comprises a second connection bypass valve for opening and closing the flow path of the connection bypass pipe.
또한, 상기 냉각 열매체 공급관에 배치되어 상기 쿨링 유닛으로 공급되는 열매체의 양을 조절하는 냉각 열매체 공급 밸브와, 상기 냉각 열매체 회수관에 배치되어 상기 쿨링 유닛으로부터 회수되는 열매체의 양을 조절하는 냉각 열매체 회수 밸브와, 상기 가열 열매체 공급관에 배치되어 상기 히팅 유닛으로 공급되는 열매체의 양을 조절하는 가열 열매체 공급 밸브와, 상기 가열 열매체 회수관에 배치되어 상기 히팅 유닛으로부터 회수되는 열매체의 양을 조절하는 가열 열매체 회수 밸브를 더 포함한다.In addition, a cooling heat medium supply valve disposed in the cooling heat medium supply pipe to adjust an amount of the heat medium supplied to the cooling unit, and a cooling heat medium recovery arranged in the cooling heat medium recovery pipe to adjust an amount of the heat medium recovered from the cooling unit. A heating heating medium supply valve disposed in the heating heating medium supply pipe and adjusting the amount of the heating medium supplied to the heating unit, and a heating heating medium disposed in the heating heating medium recovery pipe and adjusting the amount of the heating medium recovered from the heating unit. It further comprises a recovery valve.
또한, 상기 가열 열교환기의 냉매 토출측에 배치되어 냉매의 온도를 검출하는 가열 냉매 온도센서와, 상기 가열 열교환기의 냉매 토출측에 배치되어 냉매의 압력을 검출하는 가열 냉매 압력센서와, 상기 제 5 냉매관에 배치되어 상기 가열 열교환기의 냉매 출구측 과냉각도에 따라 개도가 조절되는 냉매 유량 조절 밸브를 더 포함한다.A heating refrigerant temperature sensor disposed on the refrigerant discharge side of the heating heat exchanger to detect a temperature of the refrigerant, a heating refrigerant pressure sensor disposed on the refrigerant discharge side of the heating heat exchanger to detect a pressure of the refrigerant, and the fifth refrigerant It further comprises a refrigerant flow rate control valve disposed in the tube is adjusted to the opening degree according to the supercooling degree of the refrigerant outlet side of the heating heat exchanger.
상술한 바와 같이 본 발명에 일 측면에 따른 히트 펌프 시스템은 실외 유닛과 중간 유닛은 냉매관을 통해 연결되고 중간 유닛과 열부하 유닛들은 열매체관을 통해 연결되므로, 냉매관들이 열부하 유닛과 연결되지 않아 냉매관들의 연결 구조가 간단해지며 그에 따라 히트 펌프 시스템의 구성이 용이해진다. As described above, in the heat pump system according to an aspect of the present invention, since the outdoor unit and the intermediate unit are connected through the refrigerant pipe, and the intermediate unit and the heat load unit are connected through the heat medium pipe, the refrigerant pipes are not connected to the heat load unit. The connection structure of the tubes is simplified, thus facilitating the construction of the heat pump system.
도 1은 본 발명의 일 실시예에 따른 히트 펌프 시스템의 개략 구성도이다. 1 is a schematic structural diagram of a heat pump system according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 히트 펌프 시스템에 있어서 쿨링 모드가 수행될 경우의 냉매 및 열매체의 흐름이 표시된 회로도이다. 2 is a circuit diagram showing the flow of the refrigerant and the heat medium when the cooling mode is performed in the heat pump system according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 히트 펌프 시스템에 있어서 히팅 모드 시가 수행될 경우의 냉매 및 열매체의 흐름을 보인 회로도이다. 3 is a circuit diagram showing the flow of the refrigerant and the heat medium when the heating mode is performed in the heat pump system according to the exemplary embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 히트 펌프 시스템에 있어서 쿨링 중심 모드가 수행될 경우의 냉매 및 열매체의 흐름을 보인 회로도이다. 4 is a circuit diagram showing the flow of the refrigerant and the heat medium when the cooling center mode is performed in the heat pump system according to the exemplary embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 히트 펌프 시스템에 있어서 히팅 중심 모드가 수행될 경우의 냉매 및 열매체의 흐름이 표시된 회로도이다. 5 is a circuit diagram showing the flow of the refrigerant and the heat medium when the heating center mode is performed in the heat pump system according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 히트 펌프 시스템이 저압 압력 유지 제어를 수행할 경우를 보인 도면이다. 6 is a view showing a case in which the heat pump system according to an embodiment of the present invention performs the low pressure pressure retention control.
도 7은 본 발명의 일 실시예에 따른 히트 펌프 시스템이 냉수 온도 저하 방지 제어를 수행할 경우를 보인 도면이다. FIG. 7 is a diagram illustrating a case in which a heat pump system performs a cold water temperature prevention prevention control according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 히트 펌프 시스템이 제상 제어를 수행할 경우를 보인 도면이다.8 is a view showing a case in which the heat pump system according to an embodiment of the present invention performs defrost control.
도 9는 본 발명의 일 실시예에 따른 히트 펌프 시스템이 제 1 제상 모드를 수행할 경우를 보인 도면이다. 9 is a diagram illustrating a case in which the heat pump system according to an embodiment of the present invention performs the first defrost mode.
도 10은 본 발명의 일 실시예에 따른 히트 펌프 시스템이 제 2 제상 모드를 수행할 경우를 보인 도면이다. FIG. 10 is a diagram illustrating a case in which the heat pump system performs a second defrost mode according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 히트 펌프 시스템이 동결 방지 제어를 수행할 경우를 보인 도면이다. 11 is a diagram illustrating a case in which the heat pump system performs freeze protection control according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 히트 펌프 시스템이 워터 바이패스 제상 제어를 수행하는 경우를 보인 도면이다. 12 is a diagram illustrating a case in which the heat pump system performs water bypass defrost control according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따른 히트 펌프 시스템이 과냉각도 제어를 수행할 경우를 보인 도면이다. FIG. 13 is a diagram illustrating a case in which a heat pump system performs supercooling control according to an embodiment of the present invention.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 개시된 발명의 바람직한 일 실시예이며, 본 출원의 출원 시점에 있어서 본 명세서의 실시예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.Configurations shown in the embodiments and drawings described herein is a preferred embodiment of the disclosed invention, there can be various modifications that can replace the embodiments and drawings of the present specification at the time of the filing of the present application.
또한, 본 명세서의 각 도면에서 제시된 동일한 참조 번호 또는 부호는 실질적으로 동일한 기능을 수행하는 부품 또는 구성 요소를 나타낸다.In addition, the same reference numerals or signs given in each drawing of the present specification represent parts or components that perform substantially the same function.
또한, 본 명세서에서 사용한 용어는 실시예를 설명하기 위해 사용된 것으로, 개시된 발명을 제한 및/또는 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는다.Also, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting and / or limiting the disclosed invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise", "comprise" or "have" are intended to designate that the features, numbers, steps, actions, components, parts, or combinations thereof described in the specification exist. Or any other feature or number, step, operation, component, part, or combination thereof, is not excluded in advance.
또한, 본 명세서에서 사용한 "제1", "제2" 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되지는 않으며, 상기 용어들은 하나의 구성 요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1구성 요소는 제2구성 요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1구성 요소로 명명될 수 있다. "및/또는" 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.In addition, terms including ordinal numbers such as "first", "second", and the like used in the present specification may be used to describe various components, but the components are not limited by the terms. It is used only to distinguish one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component. The term “and / or” includes any combination of a plurality of related items or any item of a plurality of related items.
또한, 본 명세서에서 사용한 "선단", "후단", "상부", "하부", "상단" 및 하단" 등의 용어는 도면을 기준으로 정의한 것이며, 이 용어에 의하여 각 구성요소의 형상 및 위치가 제한되는 것은 아니다.In addition, terms such as "leading", "back", "top", "bottom", "top", and "bottom" as used herein are defined based on the drawings, and the shape and position of each component by this term. Is not limited.
이하에서는 본 발명의 일 실시예에 따른 히트 펌프 시스템을 도면을 참조하여 상세히 설명한다. Hereinafter, a heat pump system according to an embodiment of the present invention will be described in detail with reference to the drawings.
도 1은 본 발명의 일 실시예에 따른 히트 펌프 시스템(1)의 개략도이다. 1 is a schematic diagram of a heat pump system 1 according to an embodiment of the present invention.
도 1에 도시한 바와 같이 히트 펌프 시스템(1)은 실외 공간에 배치되는 실외 유닛(10)과, 냉기 또는 온기가 필요한 공간 또는 장치에 배치되는 열부하 유닛(30L, 30H)들과, 실외 유닛(10)과 열부하 유닛(30L, 30H)들 사이에 배치되어 실외 유닛(10)에서 발생한 냉기 및 온기가 열부하 유닛(30L, 30H)들에 분산 공급하도록 하는 중간 유닛(20)을 포함한다. As shown in FIG. 1, the heat pump system 1 includes an outdoor unit 10 disposed in an outdoor space, heat load units 30L and 30H disposed in a space or a device requiring cold or warm air, and an outdoor unit ( 10) and an intermediate unit 20 disposed between the heat load units 30L and 30H to allow the cold and warm air generated in the outdoor unit 10 to be distributedly supplied to the heat load units 30L and 30H.
실외 유닛(10)은 히트 펌프 사이클을 포함하여 냉매를 통해 냉기 및 온기를 발생시키는 열원으로 동작하며, 중간 유닛(20)을 통해 열부하 유닛(30L, 30H)들에 냉기 또는 온기를 공급한다. 실외 유닛(10)은 실외 공간, 즉 건물의 옥상이나 베란다 등에 배치된다.The outdoor unit 10 operates as a heat source for generating cold and warm air through the refrigerant, including a heat pump cycle, and supplies the cold or warm air to the heat load units 30L and 30H through the intermediate unit 20. The outdoor unit 10 is arranged in an outdoor space, that is, a rooftop or a veranda of a building.
중간 유닛(20)은 실외 유닛(10)에서 전달된 냉매와 열부하 유닛(30L, 30H)에서 전달된 열매체가 서로 열교환하도록 함으로써 냉기 및 온기가 열부하 유닛(30L, 30H)에 전달되도록 한다.The intermediate unit 20 allows the coolant and the warm air to be delivered to the heat load units 30L and 30H by allowing the refrigerant delivered from the outdoor unit 10 and the heat medium transferred from the heat load units 30L and 30H to heat exchange with each other.
중간 유닛(20)은 실외 유닛(10)에 인접하게 배치되거나, 실외 유닛(10)과 별도의 공간에 배치될 수 있다. 즉, 중간 유닛(20)은 실외 유닛(10)과 함께 실외 공간에 배치되거나, 건물의 공용 공간 또는 천정의 상부 공간 등에 배치될 수 있다.The intermediate unit 20 may be disposed adjacent to the outdoor unit 10 or may be disposed in a separate space from the outdoor unit 10. That is, the intermediate unit 20 may be disposed together with the outdoor unit 10 in an outdoor space, or may be disposed in a common space of a building or an upper space of a ceiling.
실외 유닛(10)과 중간 유닛(20)은 각각 별도의 하우징에 수납되며, 냉매를 전달하는 냉매관(P1, P2, P3, P4, P5, P6, P7, P8)들을 통해 서로 연결된다. The outdoor unit 10 and the intermediate unit 20 are each housed in separate housings and are connected to each other through the refrigerant pipes P1, P2, P3, P4, P5, P6, P7, and P8 that deliver the refrigerant.
열부하 유닛(30L, 30H)들은 중간 유닛(20)을 통해 실외 유닛(10)에서 발생한 냉기 및 온기를 전달받아 사용한다. The heat load units 30L and 30H receive and use cold and warm air generated in the outdoor unit 10 through the intermediate unit 20.
열부하 유닛(30L, 30H)들에는 열매체가 통과하는 열매체관(L1, L2, H1, H2)들을 통해 중간 유닛(20)과 연결되며, 냉기를 전달받아 사용하는 쿨링 유닛(30L)과 온기를 전달받아 사용하는 히팅 유닛(30H)이 포함된다. The heat load units 30L and 30H are connected to the intermediate unit 20 through the heat medium tubes L1, L2, H1, and H2 through which the heat medium passes, and transfer the cooling unit 30L and warmth to receive and use cold air. The heating unit 30H which receives and uses is included.
쿨링 유닛(30L)과 중간 유닛(20)은 열매체를 전달하는 두 개의 냉각 열매체관(L1, L2)을 통해 서로 연결된다. 냉각 열매체관은 냉각 열교환기(21)에서 냉각된 열매체를 쿨링 유닛(30L)에 공급하는 냉각 열매체 공급관(L1)과, 쿨링 유닛(30L)을 통과하며 열을 흡수한 열매체를 냉각 열교환기(21)에 전달하는 냉각 열매체 회수관(L2)을 포함한다. 냉각 펌프(23)는 냉각 열매체 회수관(L2)에 배치된다. 따라서 열매체가 중간 유닛(20)을 통과하며 냉매와 열교환하며 냉각되고, 냉각된 열매체는 쿨링 유닛(30L)에 공급되어 쿨링 유닛(30L)에서 냉각을 수행한다. The cooling unit 30L and the intermediate unit 20 are connected to each other through two cooling heat medium tubes L1 and L2 which transfer the heat medium. The cooling heat medium pipe is a cooling heat medium supply pipe (L1) for supplying the heat medium cooled by the cooling heat exchanger (21) to the cooling unit (30L), and the heat medium that absorbs heat while passing through the cooling unit (30L). Cooling medium recovery tube (L2) to be delivered to). The cooling pump 23 is arranged in the cooling heat medium recovery pipe L2. Therefore, the heat medium passes through the intermediate unit 20 and heat-exchanges with the refrigerant to be cooled, and the cooled heat medium is supplied to the cooling unit 30L to perform cooling in the cooling unit 30L.
쿨링 유닛(30L)은 실내 공간에 배치되어 실외 유닛(10)에서 전달된 냉기에 의해 실내 공간이 냉방되도록 하는 냉방 장치로 사용되거나, 생산 라인에 배치되어 금형 등을 냉각하는 냉각 장치로 사용될 수 있다. 또한 이외에도 냉수 급수장치 등 냉각이 필요한 다양한 공간 및 장치에 적용되어 사용될 수 있다.The cooling unit 30L may be used as a cooling device that is disposed in the indoor space to cool the indoor space by the cold air delivered from the outdoor unit 10, or may be used as a cooling device that is arranged on a production line to cool the mold and the like. . In addition, it can be applied to various spaces and devices that require cooling, such as cold water supply.
히팅 유닛(30H)은 실내 공간에 배치되어 실외 유닛(10)에서 전달된 온기에 의해 실내 공간이 난방되도록 하는 난방 장치로 사용되거나, 생산 라인에 배치되어 금형 등을 가열하는 가열 장치로 사용될 수 있다. 또한 이외에도 온수 급수장치 등 가열이 필요한 다양한 공간 및 장치에 적용되어 사용될 수 있다.The heating unit 30H may be used as a heating device that is disposed in the indoor space to heat the indoor space by the warmth transmitted from the outdoor unit 10, or may be used as a heating device that is arranged in a production line to heat a mold and the like. . In addition, it can be applied to various spaces and devices that require heating, such as hot water supply.
히팅 유닛(30H)과 중간 유닛(20)은 열매체를 전달하는 두 개의 가열 열매체관(H1, H2)을 통해 서로 연결된다. 가열 열매체관은 가열 열교환기(22)에서 냉각된 열매체를 히팅 유닛(30H)에 공급하는 가열 열매체 공급관(H1)과, 히팅 유닛(30H)을 통과하며 열을 방출한 열매체를 가열 열교환기(22)에 전달하는 가열 열매체 회수관(H2)을 포함한다. 가열 열매체 회수관(H2)에는 가열 펌프(24)가 배치된다. 따라서 열매체가 중간 유닛(20)을 통과하며 냉매와 열교환하며 가열되고, 가열된 열매체는 쿨링 유닛(30L)에 전달되어 쿨링 유닛(30L)에서 가열을 수행한다. The heating unit 30H and the intermediate unit 20 are connected to each other through two heating heating medium tubes H1 and H2 which transfer the heating medium. The heating heat medium tube includes a heating heat medium supply pipe (H1) for supplying the heat medium cooled by the heating heat exchanger (22) to the heating unit (30H), and a heat medium that radiates heat through the heating unit (30H). ) Is heated to the heating medium recovery tube (H2). The heating pump 24 is arrange | positioned at the heating heat medium recovery pipe | tube H2. Therefore, the heat medium passes through the intermediate unit 20, heat exchanges with the refrigerant, and is heated, and the heated heat medium is transferred to the cooling unit 30L to perform the heating in the cooling unit 30L.
중간 유닛(20)은 실외 유닛(10)에서 공급된 저온의 냉매가 냉각 열매체관을 통해 전달된 열매체와 열교환하도록 함으로써 냉기를 쿨링 유닛(30L)에 전달하고, 실외 유닛(10)에서 공급된 고온의 냉매가 가열 열매체관(H1, H2)을 통해 전달된 열매체와 열교환하도록 함으로써 온기를 히팅 유닛(30H)에 전달한다. The intermediate unit 20 transmits cool air to the cooling unit 30L by allowing the low temperature refrigerant supplied from the outdoor unit 10 to heat exchange with the heat medium transferred through the cooling heat medium tube, and the high temperature supplied from the outdoor unit 10. The refrigerant of the heat transfer to the heating unit (30H) by allowing the heat exchange with the heat medium transferred through the heating medium pipe (H1, H2).
히팅 유닛(30H)과 중간 유닛(20)은 열매체가 통과하는 가열 열매체관(H1, H2)을 통해 히팅 유닛(30H)과 연결된다. 히팅 유닛(30H)과 중간 유닛(20)은 2개의 가열 열매체관(H1, H2)을 통해 서로 연결된다.The heating unit 30H and the intermediate unit 20 are connected to the heating unit 30H through the heating heating medium tubes H1 and H2 through which the heating medium passes. The heating unit 30H and the intermediate unit 20 are connected to each other through two heating heat pipes H1 and H2.
히트 펌프 시스템(1)은 실외 유닛(10)과 중간 유닛(20) 사이에서 냉매가 순환하도록 하는 냉매 회로와, 중간 유닛(20)과 쿨링 유닛(30L) 사이에서 열매체가 순환하도록 하는 냉각 열매체 회로와, 중간 유닛(20)과 히팅 유닛(30H) 사이에서 열매체가 순환하도록 하는 가열 열매체 회로를 포함한다.The heat pump system 1 includes a refrigerant circuit for allowing refrigerant to circulate between the outdoor unit 10 and the intermediate unit 20, and a cooling heat medium circuit for causing the heat medium to circulate between the intermediate unit 20 and the cooling unit 30L. And a heating heating medium circuit for causing the heating medium to circulate between the intermediate unit 20 and the heating unit 30H.
냉매 회로는 냉기와 온기를 발생시키며 발생된 냉기와 온기를 중간 유닛(20)에 전달한다. 중간 유닛(20)에 전달된 냉기는 냉각 열매체 회로를 통해 쿨링 유닛(30L)에 전달되고, 중간 유닛(20)에 전달된 온기는 가열 열매체 회로를 통해 히팅 유닛(30H)에 전달된다. The refrigerant circuit generates cold and warm air and transmits the generated cold and warm air to the intermediate unit 20. The cold air delivered to the intermediate unit 20 is delivered to the cooling unit 30L through the cooling heat medium circuit, and the warm air delivered to the intermediate unit 20 is delivered to the heating unit 30H through the heating heat medium circuit.
히트 펌프 시스템(1)은 쿨링 모드, 히팅 모드, 쿨링 중심 모드, 히팅 중심 모드의 4개의 운전 모드를 갖는다. 히트 펌프 시스템(1)은 열부하 유닛(30L, 30H)들의 요구에 따라 4개의 운전 모드 중의 어느 하나의 운전 모드가 선택적으로 수행된다. The heat pump system 1 has four operating modes: a cooling mode, a heating mode, a cooling center mode, and a heating center mode. The heat pump system 1 selectively performs any one of the four operating modes in accordance with the needs of the heat load units 30L and 30H.
쿨링 모드는 열부하 유닛(30L, 30H)들 중 쿨링 유닛(30L)만이 동작할 경우에 선택되는 운전 모드이다. 쿨링 모드에서는 쿨링 유닛(30L)에만 냉기가 공급된다. The cooling mode is an operation mode that is selected when only the cooling unit 30L is operated among the heat load units 30L and 30H. In the cooling mode, cold air is supplied only to the cooling unit 30L.
히팅 모드는 열부하 유닛(30L, 30H)들 중 히팅 유닛(30H)만이 동작할 경우에 선택되는 운전 모드이다. 히팅 모드에서는 히팅 유닛(30H)에만 온기가 공급된다. The heating mode is an operation mode selected when only the heating unit 30H operates among the heat load units 30L and 30H. In the heating mode, warmth is supplied only to the heating unit 30H.
쿨링 중심 모드는 열부하 유닛(30L, 30H)들 중 쿨링 유닛(30L)과 히팅 유닛(30H)이 동시에 동작할 경우에 있어서, 쿨링 유닛(30L)측에서 요구되는 부하가 히팅 유닛(30H)측에 요구되는 부하에 비해 클 경우에 선택되는 운전 모드이다. In the cooling center mode, when the cooling unit 30L and the heating unit 30H of the heat load units 30L and 30H operate simultaneously, the load required on the cooling unit 30L side is applied to the heating unit 30H side. The operating mode is selected when the load is larger than the required load.
히팅 중심 모드는 열부하 유닛(30L, 30H)들 중 쿨링 유닛(30L)과 히팅 유닛(30H)이 동시에 동작할 경우에 있어서, 히팅 유닛(30H)측에서 요구되는 부하가 쿨링 유닛(30L)측에 요구되는 부하에 비해 클 경우에 선택되는 운전 모드이다. In the heating center mode, when the cooling unit 30L and the heating unit 30H among the heat load units 30L and 30H operate simultaneously, the load required on the heating unit 30H side is on the cooling unit 30L side. The operating mode is selected when the load is larger than the required load.
상기의 쿨링 중심 모드 및 히팅 중심 모드의 경우, 쿨링 유닛(30L)에는 냉기가 공급됨과 동시에 히팅 유닛(30H)에는 온기가 공급된다. In the cooling center mode and the heating center mode, cold air is supplied to the cooling unit 30L and warm air is supplied to the heating unit 30H.
이하에서는 도 1을 참조하여 실외 유닛(10)을 보다 상세히 설명한다. Hereinafter, the outdoor unit 10 will be described in more detail with reference to FIG. 1.
실외 유닛(10)은 냉매를 고온 고압으로 압축하는 압축기(11)와, 압축기(11)의 출구측에 배치되어 압축기(11)에서 토출된 냉매의 유동 경로를 전환하는 사방 밸브(12)와, 냉매가 순 방향으로만 유동하도록 하는 체크 밸브(13)와, 냉매의 유로를 전환하는 개폐밸브(14)와, 냉매가 실외 유닛(10)을 통과하는 실외 공기와 열교환하도록 하는 실외 열교환기(15)를 포함한다.The outdoor unit 10 includes a compressor 11 for compressing a refrigerant at a high temperature and high pressure, a four-way valve 12 disposed at an outlet side of the compressor 11 to switch a flow path of the refrigerant discharged from the compressor 11, Check valve 13 for allowing the refrigerant to flow only in the forward direction, on / off valve 14 for switching the flow path of the refrigerant, and outdoor heat exchanger 15 for allowing the refrigerant to exchange heat with outdoor air passing through the outdoor unit 10. ).
또한, 실외 유닛(10)은 실외 공기가 실외 열교환기(15)를 통과하도록 하는 송풍팬(16)와, 압축기(11)의 흡입측에 배치되어 액냉매를 분리하는 어큐뮬레이터(17)와, 냉매를 감압 팽창시키는 실외 팽창밸브(18)를 포함한다. In addition, the outdoor unit 10 includes a blower fan 16 through which the outdoor air passes through the outdoor heat exchanger 15, an accumulator 17 disposed on the suction side of the compressor 11 to separate the liquid refrigerant, and a refrigerant. It includes an outdoor expansion valve 18 for expanding under reduced pressure.
압축기(11)는 냉매를 고온 고압으로 압축하는 장치로, 용량의 제어가 가능한 인버터 압축기 등으로 구성될 수 있다.The compressor 11 is a device for compressing a refrigerant at high temperature and high pressure, and may be configured as an inverter compressor capable of controlling the capacity.
사방 밸브(12)는 유로를 전환하는 전자 밸브로 이루어지며 제 1 냉매관(P1)을 통해 압축기(11)에 연결되고, 제 2 냉매관(P2)을 통해 실외 열교환기(15)와 연결되고, 제 3 냉매관(P3)을 통해 후술할 가열 열교환기(22)와 연결되고, 제 4 냉매관(P4)을 통해 압축기(11)의 흡입측에 연결된다. 압축기(11)의 흡입측에는 어큐뮬레이터(17)가 연결되어 있으므로, 제 4 냉매관(P4)은 어큐뮬레이터(17)에 연결된다. Four-way valve 12 is composed of an electromagnetic valve for switching the flow path is connected to the compressor 11 through the first refrigerant pipe (P1), and connected to the outdoor heat exchanger (15) through the second refrigerant pipe (P2) And a heat exchanger 22 to be described later through the third refrigerant pipe P3, and connected to the suction side of the compressor 11 through the fourth refrigerant pipe P4. Since the accumulator 17 is connected to the suction side of the compressor 11, the fourth refrigerant pipe P4 is connected to the accumulator 17.
따라서 압축기(11)에서 토출된 냉매는 제 1 냉매관(P1)을 통해 사방 밸브(12)로 전달되었다가 사방 밸브(12)에 의해 실외 열교환기(15)와 가열 열교환기(22) 중 하나로 안내된다.Therefore, the refrigerant discharged from the compressor 11 is transferred to the four-way valve 12 through the first refrigerant pipe P1, and then the four-way valve 12 is used as one of the outdoor heat exchanger 15 and the heat exchanger 22. You are guided.
사방 밸브(12)는 유로를 전환하여 압축기(11)에서 토출된 냉매가 체크 밸브(13)가 배치된 제 3 냉매관(P3)를 통해 후술할 가열 열교환기(22)로 전달되도록 하거나, 제 2 냉매관(P2)을 통해 실외 열교환기(16)로 전달되도록 한다. The four-way valve 12 switches the flow path so that the refrigerant discharged from the compressor 11 is transferred to the heating heat exchanger 22 to be described later through the third refrigerant pipe P3 in which the check valve 13 is disposed. 2 to be delivered to the outdoor heat exchanger (16) through the refrigerant pipe (P2).
사방 밸브(12)를 통한 유로의 전환은 운전 모드에 따라, 즉, 쿨링 유닛(30L) 및 히팅 유닛(30H)에서 요구하는 부하의 변화에 대응하여 이루어진다. Switching of the flow path through the four-way valve 12 is made in accordance with the operation mode, that is, corresponding to the load change required by the cooling unit 30L and the heating unit 30H.
체크 밸브(13)는 냉매의 역류를 방지하기 위한 것으로, 압축기(11)에서 토출된 냉매를 가열 열교환기(22)로 안내하는 제 2 냉매관(P2)에 배치된다. The check valve 13 is for preventing the backflow of the refrigerant and is disposed in the second refrigerant pipe P2 for guiding the refrigerant discharged from the compressor 11 to the heating heat exchanger 22.
제 2 냉매관(P2)과 제 3 냉매관(P3)은 제 3 냉매관(P3)에 있어서 체크 밸브(13)의 순방향의 하류측으로부터 분기된 제 7 냉매관(P7)을 통해 연결된다. 제 7 냉매관(P7)에는 운전 모드에 따라 제 7 냉매관(P7)을 통해 선택적으로 냉매가 유동하도록 하는 개폐밸브(14)가 배치된다. The second refrigerant pipe P2 and the third refrigerant pipe P3 are connected via the seventh refrigerant pipe P7 branched from the downstream side in the forward direction of the check valve 13 in the third refrigerant pipe P3. In the seventh refrigerant pipe P7, an on / off valve 14 for selectively allowing the refrigerant to flow through the seventh refrigerant pipe P7 according to the operation mode is disposed.
개폐밸브(14)는 전원 인가에 따라 내부 유로를 개폐하여 선택적으로 냉매가 통과하도록 하는 이방 전자 밸브를 포함한다.The shut-off valve 14 includes an anisotropic solenoid valve for opening and closing the inner flow path in accordance with the application of power to selectively pass the refrigerant.
실외 열교환기(15)는 송풍팬(16)에 의해 공급되는 실외 공기가 냉매와 열교환하도록 한다. 실외 열교환기(15)는 후술할 냉각 열교환기(21) 및 가열 열교환기(22)와 각각 연결된다.The outdoor heat exchanger 15 allows outdoor air supplied by the blower fan 16 to exchange heat with the refrigerant. The outdoor heat exchanger 15 is connected to the cooling heat exchanger 21 and the heating heat exchanger 22 which will be described later.
실외 열교환기(15)는 냉방 운전인 쿨링 모드 및 쿨링 중심 모드가 수행될 경우에는 냉매를 냉각하는 응축기로 동작한다. 즉, 냉방 운전일 경우 실외 열교환기(15)를 통과하는 냉매는 열을 발산하며 응축된다.The outdoor heat exchanger 15 operates as a condenser for cooling the refrigerant when the cooling mode and the cooling center mode, which are cooling operations, are performed. That is, in the cooling operation, the refrigerant passing through the outdoor heat exchanger 15 is condensed by dissipating heat.
또한, 실외 열교환기(15)는 난방 운전인 히팅 모드 및 히팅 중심 모드가 수행될 경우에는 냉매가 열을 흡수하도록 하는 증발기로 동작한다. 즉, 난방 운전일 경우 실외 열교환기(15)를 통과하는 냉매는 열을 흡수하여 증발한다. In addition, the outdoor heat exchanger 15 operates as an evaporator for allowing the refrigerant to absorb heat when the heating mode and the heating center mode, which are heating operations, are performed. That is, in the heating operation, the refrigerant passing through the outdoor heat exchanger 15 absorbs heat and evaporates.
실외 열교환기(15)에는 상술한 제 2 냉매관(P2)와 함께 제 6 냉매관(P6)이 연결된다. 제 6 냉매관(P6)은 둘로 분기되어 둘 중 하나가 냉각 열교환기(21)와 연결되는 냉각 냉매관(P6-1)을 형성하고, 다른 하나가 가열 열교환기(22)와 연결되는 가열 냉매관(P6-2)를 형성한다. The sixth refrigerant pipe P6 is connected to the outdoor heat exchanger 15 together with the second refrigerant pipe P2 described above. The sixth refrigerant pipe (P6) is divided into two to form a cooling refrigerant pipe (P6-1), one of which is connected to the cooling heat exchanger 21, the other is a heating refrigerant connected to the heating heat exchanger (22) The tube P6-2 is formed.
송풍팬(16)는 축 방향으로 공기를 송풍하는 축류팬을 포함한다. 송풍팬은 모터의 회전축이 연결되는 허브부와 허브부로부터 반경 방향으로 연장된 복수의 날개부들을 포함하다. 송풍팬의 회전에 따라 공기가 축방향으로 유동하면서 실외 열교환기(15)를 통과하고, 실외 열교환기(15)를 통과하는 공기가 실외 열교환기(15) 내부를 통과하는 냉매와 열교환한다. The blowing fan 16 includes an axial fan for blowing air in the axial direction. The blowing fan includes a hub portion to which the rotating shaft of the motor is connected and a plurality of wings extending radially from the hub portion. As the blowing fan rotates, the air flows in the axial direction, passes through the outdoor heat exchanger 15, and the air passing through the outdoor heat exchanger 15 exchanges heat with the refrigerant passing through the outdoor heat exchanger 15.
어큐뮬레이터(17)는 압축기(11)의 흡입측에 제 8 냉매관(P8)을 통해 연결된다. 어큐뮬레이터(17)는 난방 운전시와 냉방 운전시 요구되는 냉매량의 차이에 의해 발생하는 잉여 냉매 및 과도한 운전 방식 변화에 따른 잉여 냉매를 저장한다. 또한, 어큐뮬레이터(17)에는 제 8 냉매관(P8) 외에도 제 4 냉매관(P4) 및 제 5 냉매관(P5)이 연결되어, 제 4 냉매관(P4)을 통해 사방 밸브(12)와 연결되고, 제 5 냉매관(P5)을 통해 냉각 열교환기(21)와 연결된다. 제 5 냉매관(P5)은 냉각 열교환기(21)를 통과한 냉매를 압축기(11)의 흡입측으로 안내한다.The accumulator 17 is connected to the suction side of the compressor 11 via an eighth refrigerant pipe P8. The accumulator 17 stores the excess refrigerant generated by the difference in the amount of the refrigerant required during the heating operation and the cooling operation and the excess refrigerant due to the excessive operation method change. In addition, the accumulator 17 is connected to the four-way refrigerant pipe P8 and the fourth refrigerant pipe P4 and the fifth refrigerant pipe P5 in addition to the eight-way refrigerant pipe P8 and connected to the four-way valve 12 through the fourth refrigerant pipe P4. It is connected to the cooling heat exchanger 21 through the fifth refrigerant pipe (P5). The fifth refrigerant pipe P5 guides the refrigerant passing through the cooling heat exchanger 21 to the suction side of the compressor 11.
실외 팽창밸브(18)는 개도를 조절할 수 있는 전자 팽창 밸브를 포함한다. The outdoor expansion valve 18 includes an electronic expansion valve that can adjust the opening degree.
실외 팽창밸브(18)는 제 6 냉매관(P6)의 분기되기 전의 구간에 배치된다. 즉, 실외 팽창밸브(18)는 냉매가 실외 열교환기(15)에서 냉각 열교환기(21)로 진행할 경우, 실외 열교환기(15)의 출구측에 설치된다. The outdoor expansion valve 18 is disposed in the section before branching of the sixth refrigerant pipe P6. That is, the outdoor expansion valve 18 is installed at the outlet side of the outdoor heat exchanger 15 when the refrigerant proceeds from the outdoor heat exchanger 15 to the cooling heat exchanger 21.
실외 열교환기(15)는 실외 팽창밸브(18)를 통해 가열 열교환기(22)의 냉매 출구측(난방 운전시) 및 냉각 열교환기(21)의 냉매 입구측(냉방 운전시)과 연결된다. 또한, 실외 열교환기(15)는 개폐밸브(14)를 통해 가열 열교환기(22)의 입구측(난방 운전시)과 연결된다. The outdoor heat exchanger 15 is connected to the refrigerant outlet side (at the heating operation) of the heating heat exchanger 22 and the refrigerant inlet side (at the cooling operation) of the cooling heat exchanger 21 via the outdoor expansion valve 18. In addition, the outdoor heat exchanger 15 is connected to the inlet side (at the heating operation) of the heating heat exchanger 22 through the on-off valve 14.
실외 유닛(10)은 압축기(11), 송풍팬(16), 실외 팽창밸브(18)의 동작, 사방 밸브(12)등과 같은 실외 유닛(10)의 구성들을 제어하는 실외 프로세서(C1)를 포함한다. 실외 프로세서(C1)는 ROM(Read Only Memory), RAM(Random Access Memory) 및 CPU(Central Processing Unit)를 포함한다. 따라서 실외 프로세서(C1)의 ROM에 기억되어 있는 각종 프로그램이 RAM에 읽혀져 CPU에 의해 실행됨으로써, 실외 유닛(10)의 구성들은 제어된다.The outdoor unit 10 includes an outdoor processor C1 that controls the components of the outdoor unit 10 such as the compressor 11, the blower fan 16, the operation of the outdoor expansion valve 18, the four-way valve 12, and the like. do. The outdoor processor C1 includes a read only memory (ROM), a random access memory (RAM), and a central processing unit (CPU). Therefore, the various programs stored in the ROM of the outdoor processor C1 are read into the RAM and executed by the CPU, whereby the configurations of the outdoor unit 10 are controlled.
이하에서는 도 1을 참조하여 중간 유닛(20) 을 보다 상세히 설명한다. Hereinafter, the intermediate unit 20 will be described in more detail with reference to FIG. 1.
중간 유닛(20)은 열매체에 냉기를 전달하는 냉각 열교환기(21)와, 열매체에 온기를 전달하는 가열 열교환기(22)를 포함한다. 여기서 열매체는 물 또는 부동액과 같은 액체가 사용될 수 있다. The intermediate unit 20 includes a cooling heat exchanger 21 for transmitting cold air to the heat medium and a heating heat exchanger 22 for transferring warmth to the heat medium. Here, the heat medium may be a liquid such as water or antifreeze.
냉각 열교환기(21)는 실외 유닛(10)에서 전달된 저온의 냉매와 열매체가 열교환하도록 함으로써 열매체에 냉기를 전달한다. 냉각 열교환기(21)는 쿨링 모드, 쿨링 중심 모드 및 히팅 중심 모드가 수행될 경우에 증발기로 동작한다. 즉, 냉각 열교환기(21)는 쿨링 모드, 쿨링 중심 모드 및 히팅 중심 모드가 수행될 경우에 열매체로부터 열을 흡수하여 열매체가 냉각되도록 한다.The cooling heat exchanger 21 transfers cold air to the heat medium by causing the low temperature refrigerant and the heat medium to exchange heat with the low temperature refrigerant transferred from the outdoor unit 10. The cooling heat exchanger 21 operates as an evaporator when the cooling mode, the cooling center mode and the heating center mode are performed. That is, the cooling heat exchanger 21 absorbs heat from the heat medium when the cooling mode, the cooling center mode, and the heating center mode is performed so that the heat medium is cooled.
가열 열교환기(22)는 실외 유닛(10)에서 전달된 고온의 냉매와 열매체가 열효관하도록 함으로써 열매체에 온기를 전달한다. 가열 열교환기(22)는 히팅 모드, 쿨링 중심 모드 및 히팅 중심 모드가 수행될 경우에 응축기로 동작한다. 즉, 가열 열교환기(22)는 히팅 모드, 쿨링 중심 모드 및 히팅 중심 모드가 수행될 경우 열매체에 열을 공급하여 열매체가 가열되도록 한다. The heat exchanger 22 transmits warmth to the heat medium by allowing the high temperature refrigerant and the heat medium to be thermally effected from the outdoor unit 10. The heating heat exchanger 22 operates as a condenser when the heating mode, the cooling center mode and the heating center mode are performed. That is, the heating heat exchanger 22 supplies heat to the heating medium when the heating mode, the cooling center mode, and the heating center mode are performed so that the heating medium is heated.
중간 유닛(20)은 냉각 열매체관(L1, L2)을 통해 열매체가 순환되도록 하는 냉각 펌프(23)와, 가열 열매체관(H1, H2)을 통해 열매체가 순환되도록 하는 가열 펌프(24)를 포함한다. The intermediate unit 20 includes a cooling pump 23 for circulating the heat medium through the cooling heat medium pipes L1 and L2 and a heat pump 24 for circulating the heat medium through the heating heat medium pipes H1 and H2. do.
중간 유닛(20)은 냉매를 감압 팽창시키는 중간 팽창밸브(25)를 포함한다. 중간 팽창밸브(25)는 실외 팽창밸브(18)와 마찬가지로 전자 팽창 밸브로 이루어진다. 중간 팽창밸브(25)는 냉각 열교환기(21)의 입구측(냉방 운전시)에 설치된다. The intermediate unit 20 includes an intermediate expansion valve 25 for expanding the refrigerant under reduced pressure. The intermediate expansion valve 25 is made up of an electromagnetic expansion valve like the outdoor expansion valve 18. The intermediate expansion valve 25 is provided at the inlet side (at the time of cooling operation) of the cooling heat exchanger 21.
중간 유닛(20)은 중간 팽창밸브(25), 냉각 펌프(23) 및 가열 펌프(24) 등의 중간 유닛(20)의 구성들을 제어하는 중간 프로세서(C2)를 포함한다. 중간 프로세서(C2)는 ROM(Read Only Memory), RAM(Random Access Memory) 및 CPU(Central Processing Unit)를 포함한다. 따라서 중간 프로세서(C2)의 ROM에 기억되어 있는 각종 프로그램이 RAM에 읽혀져 CPU에 의해 실행됨으로써, 중간 프로세서(C2)의 구성들은 제어된다.The intermediate unit 20 includes an intermediate processor C2 which controls the components of the intermediate unit 20, such as the intermediate expansion valve 25, the cooling pump 23 and the heat pump 24. The intermediate processor C2 includes a read only memory (ROM), a random access memory (RAM), and a central processing unit (CPU). Therefore, various programs stored in the ROM of the intermediate processor C2 are read into the RAM and executed by the CPU, whereby the configurations of the intermediate processor C2 are controlled.
실외 프로세서(C1)와 중간 프로세서(C2)는 통신 가능하게 구성되어, 서로 신호를 송수신하면서 히트 펌프 시스템(1)의 동작을 제어한다. The outdoor processor C1 and the intermediate processor C2 are configured to be communicable and control the operation of the heat pump system 1 while transmitting and receiving signals with each other.
중간 유닛(20)은 냉각 열교환기(21)의 냉매 출구측 냉매 압력을 검출하는 냉각 냉매 압력센서(PS1)와, 냉각 열교환기(21)의 열매체 출구측에 배치되어 냉각 열교환기(21)를 통해 냉각된 열매체의 온도를 검출하는 냉각 온도센서(T1), 가열 열교환기의 열매체 출구측에 배치되어 가열 열교환기(22)를 통해 가열된 열매체의 온도를 검출하는 가열 온도센서(T2)를 포함한다.The intermediate unit 20 is disposed at the cooling medium pressure sensor PS1 for detecting the refrigerant pressure at the refrigerant outlet side of the cooling heat exchanger 21, and at the heat medium outlet side of the cooling heat exchanger 21 to provide the cooling heat exchanger 21. Cooling temperature sensor (T1) for detecting the temperature of the heat medium cooled through the heating temperature sensor (T2) disposed on the heat medium outlet side of the heat exchanger to detect the temperature of the heat medium heated through the heat exchanger (22) do.
냉각 냉매 압력센서(PS1)에서 검출된 정보 및 냉각 온도센서(T1) 및 가열 온도센서(T2)에서 검출된 정보는 중간 프로세서(C2)에 전달되어 히트 펌프 시스템(1)의 동작을 제어에 사용된다. The information detected by the cooling refrigerant pressure sensor PS1 and the information detected by the cooling temperature sensor T1 and the heating temperature sensor T2 are transferred to the intermediate processor C2 to use the operation of the heat pump system 1 for control. do.
상기에서 중간 유닛(20)을 형성하는 구성들은 하나의 하우징에 모두 수용되나, 이는 일례를 보인 것으로, 이에 한정되는 것은 아니다. 즉, 냉각 열교환기(21), 냉각 펌프(23) 및 냉각 온도센서(T1)가 하나의 하우징에 수용되도록 하고, 가열 열교환기(22), 가열 펌프(24) 및 가열 온도센서(T2)가 다른 하나의 하우징에 수용되도록 하는 것도 가능하다. The components forming the intermediate unit 20 are all accommodated in one housing, but this is only an example and the present disclosure is not limited thereto. That is, the cooling heat exchanger 21, the cooling pump 23 and the cooling temperature sensor T1 is accommodated in one housing, and the heating heat exchanger 22, the heating pump 24 and the heating temperature sensor T2 are It is also possible to be housed in another housing.
이하에서는 본 발명의 일 측면에 따른 히트 펌프 시스템이 쿨링 모드를 수행할 경우를 도 2를 참조하여 설명한다. 도 2에서 냉매의 유동은 실선 화살표로 표시되며, 열매체의 유동은 점선 화살표로 표시된다.Hereinafter, a case in which the heat pump system according to an aspect of the present invention performs the cooling mode will be described with reference to FIG. 2. In FIG. 2, the flow of the refrigerant is indicated by a solid arrow, and the flow of the heat medium is indicated by a dotted arrow.
먼저, 쿨링 모드에서의 냉매의 유동을 설명한다. First, the flow of the refrigerant in the cooling mode will be described.
쿨링 모드에서 사방 밸브(12)는 냉매를 제 2 유로로 안내한다. 즉, 사방 밸브(12)는 냉매가 화살표 A1 방향으로 유동하도록 한다. 이때, 개폐밸브(14)는 유로를 폐쇄하고, 실외 팽창밸브(18)는 유로를 모두 개방한다.In the cooling mode, the four-way valve 12 guides the refrigerant to the second flow path. That is, the four-way valve 12 allows the refrigerant to flow in the direction of arrow A1. At this time, the open / close valve 14 closes the flow path, and the outdoor expansion valve 18 opens all the flow paths.
중간 팽창밸브(25)의 개도는 냉각 열교환기(21)의 출구 과열도에 대응하도록 제어된다. 보다 상세히 설명하면, 쿨링 모드에서 중간 팽창밸브(25)의 개도를 크게 하면, 감압 팽창되는 냉매의 양의 증가하여 냉각 열교환기(21)의 냉매 출구측 온도는 낮아진다. 반대로 중간 팽창밸브(25)의 개도를 작게 하면, 감압 팽창되는 냉매의 양이 감소하여 냉각 열교환기(21)의 냉매 출구측 온도는 높아진다. 따라서, 중간 팽창밸브(25)의 개도를 제어하여 냉각 열교환기(21)의 출구 과열도, 즉, 냉각 열교환기(21)의 냉매 입구측과 출구측의 온도차가 설정된 값으로 제어할 수 있다.The opening degree of the intermediate expansion valve 25 is controlled to correspond to the outlet superheat degree of the cooling heat exchanger 21. In more detail, when the opening degree of the intermediate expansion valve 25 is increased in the cooling mode, the amount of the refrigerant that is expanded under reduced pressure is increased to lower the refrigerant outlet temperature of the cooling heat exchanger 21. On the contrary, if the opening degree of the intermediate expansion valve 25 is made small, the amount of refrigerant decompressed under pressure decreases, and the refrigerant outlet side temperature of the cooling heat exchanger 21 becomes high. Therefore, by controlling the opening degree of the intermediate expansion valve 25, the outlet superheat degree of the cooling heat exchanger 21, that is, the temperature difference between the refrigerant inlet side and the outlet side of the cooling heat exchanger 21 can be controlled to a set value.
냉매는 압축기(11)에 의해 압축되어 고온 고압의 가스 상태가 되고, 사방 밸브(12)를 통해 응축기로 동작하는 실외 열교환기(15)에 전달된다. 냉매는 실외 열교환기(15)에서 실외 공기와 열교환하며 냉각되어 응축된다. 응축된 냉매는 실외 팽창밸브(18)를 통과하여 중간 팽창밸브(25)에 전달되고, 중간 팽창밸브(25)에 의해 감압 팽창된다. 계속해서 냉매는 증발기로 동작하는 냉각 열교환기(21)에 전달된다. 냉각 열교환기(21)에서 냉매는 열매체로부터 열을 흡수하므로 열매체는 냉각된다. 냉각 열교환기(21)를 통과한 냉매는 어큐뮬레이터(17)를 통과한 후 다시 압축기(11)로 흡입된다. The refrigerant is compressed by the compressor 11 into a gaseous state of high temperature and high pressure, and is delivered to the outdoor heat exchanger 15 operating as a condenser through the four-way valve 12. The refrigerant is cooled by heat exchange with outdoor air in the outdoor heat exchanger 15 to condense. The condensed refrigerant passes through the outdoor expansion valve 18 to the intermediate expansion valve 25, and is expanded under reduced pressure by the intermediate expansion valve 25. The refrigerant is then delivered to a cooling heat exchanger 21 which acts as an evaporator. In the cooling heat exchanger 21, since the refrigerant absorbs heat from the heat medium, the heat medium is cooled. The refrigerant passing through the cooling heat exchanger 21 is sucked back into the compressor 11 after passing through the accumulator 17.
쿨링 모드에서는 이와 같이 냉매가 압축기(11), 사방 밸브(12), 실외 열교환기(15), 실외 팽창밸브(18), 중간 팽창밸브(25), 냉각 열교환기(21) 및 어큐뮬레이터(17)를 차례로 순환하도록 하는 냉매 회로가 구성된다.In the cooling mode, the refrigerant is thus compressed in the compressor (11), the four-way valve (12), the outdoor heat exchanger (15), the outdoor expansion valve (18), the intermediate expansion valve (25), the cooling heat exchanger (21), and the accumulator (17). A refrigerant circuit is configured to cycle through the circuits.
다음으로 쿨링 모드에서의 열매체의 유동을 설명한다. Next, the flow of the heat medium in the cooling mode will be described.
냉각 펌프(23)의 구동에 따라 열매체는 쿨링 유닛(30L)에서 냉각 펌프(23)로 유동하고, 다시 냉각 펌프(23)에서 냉각 열교환기(21)로 전달된다. 냉각 열교환기(21)에서 냉매가 열매체의 열을 흡수하므로 열매체는 냉각된다. 냉각된 열매체는 쿨링 유닛(30L)으로 다시 전달되므로, 열매체를 통해 냉기가 쿨링 유닛(30L)에 공급된다. In accordance with the operation of the cooling pump 23, the heat medium flows from the cooling unit 30L to the cooling pump 23, and is then transferred from the cooling pump 23 to the cooling heat exchanger 21. In the cooling heat exchanger 21, since the refrigerant absorbs heat of the heat medium, the heat medium is cooled. Since the cooled heat medium is delivered back to the cooling unit 30L, cold air is supplied to the cooling unit 30L through the heat medium.
이와 같이 쿨링 모드에서는 열매체가 쿨링 유닛(30L), 냉각 펌프(23) 및 냉각 열교환기(21)를 차례로 순환하도록 하는 열매체 회로가 구성된다. In this way, in the cooling mode, the heat medium is configured so that the heat medium circulates through the cooling unit 30L, the cooling pump 23, and the cooling heat exchanger 21 in sequence.
이하에서는 본 발명의 일 측면에 따른 히트 펌프 시스템이 히팅 모드를 수행할 경우를 도 3를 참조하여 설명한다. 도 3에서 냉매의 유동은 실선 화살표로 표시되며, 열매체의 유동은 점선 화살표로 표시된다.Hereinafter, a case in which the heat pump system according to an aspect of the present invention performs the heating mode will be described with reference to FIG. 3. In FIG. 3, the flow of the refrigerant is indicated by a solid arrow, and the flow of the heat medium is indicated by a dotted arrow.
먼저, 히팅 모드에서의 냉매의 유동을 설명한다. First, the flow of the refrigerant in the heating mode will be described.
히팅 모드에서, 사방 밸브(12)는 냉매를 제 1 유로로 안내한다. 즉, 사방 밸브(12)는 냉매가 화살표 A2 방향으로 유동하도록 한다. 이때, 개폐밸브(14) 및 중간 팽창밸브(25)는 유로를 폐쇄한다. In the heating mode, the four-way valve 12 guides the refrigerant to the first flow path. That is, the four-way valve 12 allows the refrigerant to flow in the direction of arrow A2. At this time, the on-off valve 14 and the intermediate expansion valve 25 closes the flow path.
또한, 실외 팽창밸브(18)의 개도는 상술한 쿨링 모드에서의 중간 팽창밸브(25)의 개도와 마찬가지로 실외 열교환기(15)의 출구 과열도에 맞게 제어된다. In addition, the opening degree of the outdoor expansion valve 18 is controlled in accordance with the outlet superheat degree of the outdoor heat exchanger 15 similarly to the opening degree of the intermediate expansion valve 25 in the cooling mode described above.
냉매는 압축기(11)에 의해 압축되어 고온 고압의 가스 상태가 되고, 사방 밸브(12) 및 체크 밸브(13)를 차례로 통과하여 응축기로 동작하는 가열 열교환기(22)에 전달된다. 가열 열교환기(22)에서 냉매는 열매체와 열교환하며 냉각되며 응축되고, 열매체는 냉매로부터 열을 흡수하여 가열된다. The refrigerant is compressed by the compressor 11 into a gaseous state of high temperature and high pressure, and is sequentially passed through the four-way valve 12 and the check valve 13 to a heating heat exchanger 22 operating as a condenser. In the heat exchanger 22, the refrigerant is heat-exchanged with the heat medium, cooled and condensed, and the heat medium absorbs heat from the refrigerant and is heated.
가열 열교환기(22)에서 응축된 냉매는 실외 팽창밸브(18)에 전달되어 실외 팽창밸브(18)에 의해 감압 팽창된다. 감압 팽창된 냉매는 증발기로 동작하는 실외 열교환기(15)에 전달되고, 실외 열교환기(15)에서 실외 공기와 열교환하며 열을 흡수하여 증발한다. 계속해서 냉매는 사방 밸브(12) 및 어큐뮬레이터(17)를 통과하여 압축기(11)에 다시 흡입된다. The refrigerant condensed in the heat exchanger 22 is delivered to the outdoor expansion valve 18 and expanded under reduced pressure by the outdoor expansion valve 18. The expanded pressure refrigerant is transferred to an outdoor heat exchanger (15) that operates as an evaporator, and heat exchanges with outdoor air in the outdoor heat exchanger (15) to absorb heat and evaporate. Subsequently, the refrigerant is sucked back into the compressor 11 through the four-way valve 12 and the accumulator 17.
이와 같이 히팅 모드에서는 냉매가 압축기(11), 사방 밸브(12), 체크 밸브(13), 가열 열교환기(22), 실외 팽창밸브(18), 실외 열교환기(15), 사방 밸브(12) 및 어큐뮬레이터(17)를 차례로 순환하도록 하는 냉매 회로가 구성된다. Thus, in the heating mode, the refrigerant is the compressor 11, the four-way valve 12, the check valve 13, the heat exchanger 22, the outdoor expansion valve 18, the outdoor heat exchanger 15, the four-way valve 12 And a refrigerant circuit for circulating the accumulator 17 in turn.
다음으로, 히팅 모드에서의 열매체의 유동을 설명한다. Next, the flow of the heat medium in the heating mode will be described.
가열 펌프(24)의 구동에 따라 열매체는 히팅 유닛(30H)에서 가열 펌프(24)로 유동하고, 다시 가열 펌프(24)에서 가열 열교환기(22)로 전달된다. 가열 열교환기(22)에서는 열매체가 냉매의 열을 흡수하므로 열매체는 가열된다. 가열된 열매체는 히팅 유닛(30H)으로 다시 전달되므로, 열매체를 통해 온기가 히팅 유닛(30H)에 공급된다. As the heat pump 24 is driven, the heat medium flows from the heating unit 30H to the heat pump 24, and is then transferred from the heat pump 24 to the heat heat exchanger 22. In the heat exchanger 22, since the heat medium absorbs heat of the refrigerant, the heat medium is heated. Since the heated heating medium is transferred back to the heating unit 30H, warmth is supplied to the heating unit 30H through the heating medium.
이와 같이 히팅 모드에서는 열매체가 히팅 유닛(30H), 가열 펌프(24) 및 가열 열교환기(22)를 차례로 순환하도록 하는 열매체 회로가 구성된다. In this manner, in the heating mode, the heat medium is configured so that the heat medium circulates through the heating unit 30H, the heat pump 24, and the heat exchanger 22 in sequence.
이하에서는 본 발명의 일 측면에 따른 히트 펌프 시스템이 쿨링 중심 모드를 수행할 경우를 도 4를 참조하여 설명한다. 도 4에서 냉매의 유동은 실선 화살표로 표시되며, 열매체의 유동은 점선 화살표로 표시된다.Hereinafter, a case in which the heat pump system according to an aspect of the present invention performs the cooling center mode will be described with reference to FIG. 4. In FIG. 4, the flow of the refrigerant is indicated by a solid arrow, and the flow of the heat medium is indicated by a dotted arrow.
먼저, 쿨링 중심 모드에서의 냉매의 유동을 설명한다. First, the flow of the refrigerant in the cooling center mode will be described.
쿨링 중심 모드에서 사방 밸브(12)는 냉매를 제 2 유로로 안내한다. 즉, 사방 밸브(12)는 냉매가 화살표 A1 방향으로 유동하도록 안내한다. 이때, 중간 팽창밸브(25)의 개도는 상술한 쿨링 모드에서와 마찬가지로 냉각 열교환기(21)의 출구 과열도에 대응하도록 제어된다. In the cooling center mode, the four-way valve 12 guides the refrigerant to the second flow path. That is, the four-way valve 12 guides the refrigerant to flow in the direction of arrow A1. At this time, the opening degree of the intermediate expansion valve 25 is controlled to correspond to the outlet superheat degree of the cooling heat exchanger 21 as in the above-described cooling mode.
실외 팽창밸브(18)의 개도는 히팅 유닛(30H)에서 요구하는 부하에 대응하도록 제어된다. 보다 상세하게 설명하면, 실외 팽창밸브(18)의 개도를 작게 하면, 개폐밸브(14)를 통해 가열 열교환기(22)로 전달되는 냉매의 양이 증가한다. 따라서, 히팅 유닛(30H)의 요구 부하가 클수록, 실외 팽창밸브(18)의 개도는 작아지도록 제어된다. The opening degree of the outdoor expansion valve 18 is controlled to correspond to the load required by the heating unit 30H. In more detail, when the opening degree of the outdoor expansion valve 18 is made small, the amount of refrigerant delivered to the heat exchanger 22 through the on-off valve 14 increases. Therefore, the larger the required load of the heating unit 30H is, the smaller the opening degree of the outdoor expansion valve 18 is controlled.
냉매는 압축기(11)에 의해 압축되어 고온 고압의 가스 상태가 되고, 사방 밸브(12)에 의해 실외 열교환기(15) 및 개폐밸브(14)로 안내된다.The refrigerant is compressed by the compressor 11 to be in a gaseous state of high temperature and high pressure, and is guided to the outdoor heat exchanger 15 and the open / close valve 14 by the four-way valve 12.
압축기에서 토출된 냉매의 일부는 응축기로 동작하는 실외 열교환기(15)에 전달되고, 실외 열교환기(15)에 전달된 냉매는 실외 열교환기(15)에서 실외 공기와 열교환하며 냉각되어 응축된다. 응축된 냉매는 실외 팽창밸브(18)를 통과하여 중간 팽창밸브(25)에 전달된다. A portion of the refrigerant discharged from the compressor is delivered to the outdoor heat exchanger 15 that operates as a condenser, and the refrigerant delivered to the outdoor heat exchanger 15 is cooled by heat exchange with outdoor air in the outdoor heat exchanger 15 to be condensed. The condensed refrigerant passes through the outdoor expansion valve 18 and is delivered to the intermediate expansion valve 25.
한편, 나머지 냉매는 개폐밸브(14)로 전달되고, 개폐밸브(14)에 전달된 냉매는 개폐밸브(14)를 통과하여, 응축기로 동작하는 가열 열교환기(22)에 전달된다. 가열 열교환기(22)에서 냉매는 열매체를 가열하며 응축된다. 여기서, 열매체는 냉매로부터 열을 흡수하므로 가열된다. 가열 열교환기(22)를 통과하며 응축된 냉매는 실외 열교환기(15) 및 실외 팽창밸브(18)를 통과한 냉매와 합류된다. On the other hand, the remaining refrigerant is delivered to the on-off valve 14, the refrigerant delivered to the on-off valve 14 passes through the on-off valve 14, it is delivered to the heating heat exchanger 22 acting as a condenser. In the heat exchanger 22, the refrigerant condenses while heating the heat medium. Here, the heat medium absorbs heat from the refrigerant and is heated. The refrigerant condensed through the heat exchanger 22 is joined with the refrigerant passed through the outdoor heat exchanger 15 and the outdoor expansion valve 18.
합류된 냉매는 중간 팽창밸브(25)에 의해 감압 팽창되어 저온 저압의 기액 혼합 상태가 된다. 계속해서 냉매는 증발기로 동작하는 냉각 열교환기(21)에 전달된다. 냉각 열교환기(21)에서 냉매는 열매체로부터 열을 흡수하여 저온 저압의 가스 냉매가 된다. 냉각 열교환기(21)를 통과한 냉매는 어큐뮬레이터(17)를 통과하여 압축기(11)로 다시 흡입된다. The combined refrigerant is expanded under reduced pressure by the intermediate expansion valve 25 to be in a gas-liquid mixed state of low temperature and low pressure. The refrigerant is then delivered to a cooling heat exchanger 21 which acts as an evaporator. In the cooling heat exchanger (21), the refrigerant absorbs heat from the heat medium and becomes a low temperature low pressure gas refrigerant. The refrigerant passing through the cooling heat exchanger 21 passes through the accumulator 17 and is sucked back into the compressor 11.
이와 같이, 쿨링 중심 모드에서는 냉매가 압축기(11) 및 사방 밸브(12)를 통과한 후, 냉매의 일부는 실외 열교환기(15) 및 실외 팽창밸브(18)를 통과하고, 그 나머지는 개폐밸브(14) 및 가열 열교환기(22)를 통과한 후 다시 합류된다. 합류된 냉매는 중간 팽창밸브(25), 냉각 열교환기(21), 어큐뮬레이터(17)를 차례로 통과하여 다시 압축기로 흡입되도록 하는 냉매 회로가 구성된다. As described above, in the cooling center mode, after the refrigerant passes through the compressor 11 and the four-way valve 12, a part of the refrigerant passes through the outdoor heat exchanger 15 and the outdoor expansion valve 18, and the rest of the refrigerant opens and closes the valve. After passing through the heat exchanger (14) and the heat exchanger (22), it joins again. The joined refrigerant is configured to pass through the intermediate expansion valve (25), the cooling heat exchanger (21), and the accumulator (17) in order to be sucked back into the compressor.
쿨링 중심 모드에 있어서의 열매체의 유동은 쿨링 모드 및 히팅 모드와 동일하다. 즉, 쿨링 유닛(30L)에 냉기를 공급하기 위한 열매체 회로는 열매체가 쿨링 유닛(30L), 냉각 펌프(23) 및 냉각 열교환기(21)를 차례로 순환하도록 함으로써 구성되며, 히팅 유닛(30H)에 온기를 공급하기 위한 열매체 회로는 냉매가 열매체가 히팅 유닛(30H), 가열 펌프(24) 및 가열 열교환기(22)를 차례로 순환하도록 함으로써 구성된다. The flow of the heat medium in the cooling center mode is the same as the cooling mode and the heating mode. That is, the heat medium circuit for supplying cold air to the cooling unit 30L is configured by causing the heat medium to circulate through the cooling unit 30L, the cooling pump 23 and the cooling heat exchanger 21 in sequence, and to the heating unit 30H. The heat medium circuit for supplying warmth is configured by causing the refrigerant to cycle through the heating unit 30H, the heat pump 24 and the heat exchanger 22 in sequence.
이하에서는 본 발명의 일 측면에 따른 히트 펌프 시스템이 히팅 중심 모드를 수행할 경우를 도 5를 참조하여 설명한다. 도 5에서 냉매의 유동은 실선 화살표로 표시되며, 열매체의 유동은 점선 화살표로 표시된다.Hereinafter, a case in which the heat pump system according to an aspect of the present invention performs the heating center mode will be described with reference to FIG. 5. In FIG. 5, the flow of the refrigerant is indicated by a solid arrow, and the flow of the heat medium is indicated by a dotted arrow.
먼저, 히팅 중심 모드에서의 냉매의 유동을 설명한다. First, the flow of the refrigerant in the heating center mode will be described.
히팅 중심 모드에서 사방 밸브(12)는 냉매를 제 1 유로로 안내한다. 즉, 사방 밸브(12)는 냉매가 화살표 A2 방향으로 유동하도록 한다. 개폐밸브(14)은 유로를 폐쇄하고, 중간 팽창밸브(25)의 개도는 상술한 쿨링 모드와 마찬가지로 냉각 열교환기(21)의 출구 과열도에 대응하도록 제어된다. 또한, 실외 팽창밸브(18)의 개도는 쿨링 유닛(30L)이 요구하는 부하에 대응하도록 제어된다. 보다 상세히 설명하면, 실외 팽창밸브(18)의 개도를 작게 하면, 냉각 열교환기(21)에 전달되는 냉매의 양이 증가한다. 따라서 쿨링 유닛(30L)의 요구 부하가 클수록, 실외 팽창밸브(18)의 개도가 작아지도록 제어된다. In the heating center mode, the four-way valve 12 guides the refrigerant to the first flow path. That is, the four-way valve 12 allows the refrigerant to flow in the direction of arrow A2. The on-off valve 14 closes the flow path, and the opening degree of the intermediate expansion valve 25 is controlled to correspond to the outlet superheat degree of the cooling heat exchanger 21 similarly to the cooling mode described above. In addition, the opening degree of the outdoor expansion valve 18 is controlled to correspond to the load required by the cooling unit 30L. In more detail, when the opening degree of the outdoor expansion valve 18 is made small, the amount of the refrigerant delivered to the cooling heat exchanger 21 increases. Therefore, the larger the required load of the cooling unit 30L, the smaller the opening degree of the outdoor expansion valve 18 is controlled.
냉매는 압축기(11)에 의해 압축되어 고온 고압의 가스 상태가 되고, 사방 밸브(12), 체크 밸브(13)를 차례로 통과한 후, 응축기로 동작하는 가열 열교환기(22)에 전달된다. 가열 열교환기(22)에서 냉매는 열매체를 가열하며 냉각되어 응축된다. The refrigerant is compressed by the compressor 11 to be in a gaseous state of high temperature and high pressure, and after passing through the four-way valve 12 and the check valve 13 in sequence, the refrigerant is transferred to a heat exchanger 22 operating as a condenser. In the heat exchanger 22, the refrigerant heats and heats the heating medium to condense.
가열 열교환기(22)에서 응축된 냉매 중 일부는 중간 팽창밸브(25)에 전달되고 그 나머지는 실외 팽창밸브(18)에 전달된다. Some of the refrigerant condensed in the heat exchanger 22 is delivered to the intermediate expansion valve 25 and the rest to the outdoor expansion valve 18.
중간 팽창밸브(25)에 전달된 냉매는 중간 팽창밸브(25)에 의해 감압 팽창되어 저온 저압의 기액 혼합 냉매가 된 후, 증발기로 동작하는 냉각 열교환기(21)에 전달된다. 냉각 열교환기(21)에서 냉매는 열매체로부터 열을 흡수하면서 저온 저압의 가스 상태가 된다. 이때, 냉매는 열매체로부터 열을 흡수하므로 열매체는 냉각된다. 냉각 열교환기(21)를 통과한 냉매는 어큐뮬레이터(17)를 통과한 후 압축기(11)에 다시 흡입된다. The refrigerant delivered to the intermediate expansion valve 25 is expanded under reduced pressure by the intermediate expansion valve 25 to become a gas-liquid mixed refrigerant of low temperature and low pressure, and then is delivered to the cooling heat exchanger 21 operating as an evaporator. In the cooling heat exchanger 21, the refrigerant absorbs heat from the heat medium and becomes a low temperature low pressure gas state. At this time, since the refrigerant absorbs heat from the heat medium, the heat medium is cooled. The refrigerant passing through the cooling heat exchanger 21 is sucked back into the compressor 11 after passing through the accumulator 17.
한편, 실외 팽창밸브(18)에 전달된 냉매는 실외 팽창밸브(18)에 의해 감압 팽창되어 저온 저압의 기액 혼합 상태가 된다. 계속해서 냉매는 증발기로 동작하는 실외 열교환기(15)에 전달된다. 실외 열교환기(15)에서 냉매는 실외 공기와 열교환하며 열을 흡수하여 저온 저압의 가스 상태가 되고, 사방 밸브(12), 어큐뮬레이터(17)를 통과한 후 압축기(11)에 다시 흡입된다. On the other hand, the refrigerant delivered to the outdoor expansion valve 18 is expanded under reduced pressure by the outdoor expansion valve 18 is a gas-liquid mixed state of low temperature and low pressure. The refrigerant is then delivered to an outdoor heat exchanger 15 which acts as an evaporator. In the outdoor heat exchanger (15), the refrigerant exchanges heat with outdoor air, absorbs heat, becomes a low-temperature low-pressure gas state, passes through the four-way valve (12) and the accumulator (17), and is sucked back into the compressor (11).
이와 같이, 히팅 중심 모드에서는 냉매가 압축기(11), 사방 밸브(12), 체크 밸브(13), 가열 열교환기(22)를 통과한 후, 냉매의 일부는 중간 팽창밸브(25) 및 냉각 열교환기(21)를 차례로 통과하고, 그 나머지는 실외 팽창밸브(18), 실외 열교환기(15), 사방 밸브(12)를 차례로 통과한 후 합류된다. 계속해서 합류된 냉매는 어큐뮬레이터(17)를 통과한 후 다시 압축기(11)로 흡입되도록 함으로써 냉매 회로가 구성된다. Thus, in the heating center mode, after the refrigerant passes through the compressor 11, the four-way valve 12, the check valve 13, the heat exchanger 22, a part of the refrigerant is intermediate expansion valve 25 and the cooling heat exchange After passing through the group 21, the remainder is passed through the outdoor expansion valve 18, the outdoor heat exchanger 15, the four-way valve 12 in order and then joined. Subsequently, the joined refrigerant passes through the accumulator 17 and is then sucked back into the compressor 11 to form a refrigerant circuit.
히팅 중심 모드에 있어서의 열매체의 유동은 쿨링 모드 및 히팅 모드와 동일하다. 즉, 쿨링 유닛(30L)에 냉기를 공급하기 위한 열매체 회로는 열매체가 쿨링 유닛(30L), 냉각 펌프(23) 및 냉각 열교환기(21)를 차례로 순환하도록 함으로써 구성되며, 히팅 유닛(30H)에 온기를 공급하기 위한 열매체 회로는 냉매가 열매체가 히팅 유닛(30H), 가열 펌프(24) 및 가열 열교환기(22)를 차례로 순환하도록 함으로써 구성된다. The flow of the heat medium in the heating center mode is the same as the cooling mode and the heating mode. That is, the heat medium circuit for supplying cold air to the cooling unit 30L is configured by causing the heat medium to circulate through the cooling unit 30L, the cooling pump 23 and the cooling heat exchanger 21 in sequence, and to the heating unit 30H. The heat medium circuit for supplying warmth is configured by causing the refrigerant to cycle through the heating unit 30H, the heat pump 24 and the heat exchanger 22 in sequence.
이하에서는 본 실시예에 따른 히트 펌프 시스템(1)의 저압 압력 유지 제어에 대해 도 6을 참조하여 설명한다. 저압 압력 유지 제어는 쿨링 모드, 쿨링 중심 모드 및 히팅 중심 모드일 경우에 수행된다. Hereinafter, the low pressure pressure retention control of the heat pump system 1 according to the present embodiment will be described with reference to FIG. 6. The low pressure pressure maintaining control is performed in the cooling mode, the cooling center mode and the heating center mode.
도 6에는 도 1에 도시된 중간 유닛(20)에 냉매 유량 조절 밸브(26)가 추가된 히트 펌프 시스템(1)이 도시되어 있다. FIG. 6 shows a heat pump system 1 in which a refrigerant flow control valve 26 is added to the intermediate unit 20 shown in FIG. 1.
냉매 유량 조절 밸브(26)는 냉각 열교환기(21)와 어큐뮬레이터(17) 사이의 제 5 냉매관(P5), 즉, 냉각 열교환기(21)의 냉매 출구측에 배치된다. The refrigerant flow rate regulating valve 26 is disposed on the fifth refrigerant pipe P5 between the cooling heat exchanger 21 and the accumulator 17, that is, on the refrigerant outlet side of the cooling heat exchanger 21.
저압 압력 유지 제어는 냉각 열교환기(21)의 냉매 출구측의 압력이 설정 범위 내의 값이 되도록 냉매 유량 조절 밸브(26)의 개도를 제어함으로써 수행된다. 다시 말하면, 저압 압력 유지 제어는 냉각 열교환기(21)의 내부 냉매 증발 압력이 설정 범위 내의 값이 되도록 냉매 유량 조절 밸브(26)의 개도를 제어한다. 추가로 설명하면, 냉각 열교환기(21)의 출구측의 냉매 압력으로부터 산출되는 증발 온도가 열매체의 동결 온도 이하가 되지 않도록, 냉매 유량 조절 밸브(26)의 개도를 제어한다. The low pressure pressure retention control is performed by controlling the opening degree of the refrigerant flow rate regulating valve 26 so that the pressure at the refrigerant outlet side of the cooling heat exchanger 21 becomes a value within a setting range. In other words, the low pressure pressure maintaining control controls the opening degree of the refrigerant flow rate control valve 26 such that the internal refrigerant evaporation pressure of the cooling heat exchanger 21 is a value within a setting range. If it demonstrates further, the opening degree of the refrigerant flow volume control valve 26 is controlled so that the evaporation temperature computed from the refrigerant pressure of the exit side of the cooling heat exchanger 21 may not be below the freezing temperature of a heat medium.
보다 상세히 설명하면, 냉각 열교환기(21)의 냉매 출구측의 압력이 냉각 냉매 압력센서(PS1)에 의해 검출된다. 검출된 냉매의 압력이 설정 범위보다 낮을 경우, 냉매 유량 조절 밸브(26)를 제어하여 냉매 유량 조절 밸브(26)의 개도를 감소시킨다. 냉매 유량 조절 밸브(26)의 개도가 감소하면, 냉각 열교환기(21)의 냉매 출구측 압력은 증가한다. 또한 검출된 냉매의 압력이 설정 범위를 넘을 경우, 냉매 유량 조절 밸브(26)를 제어하여 냉매 유량 조절 밸브(26)의 개도를 증가시킨다. 냉매 유량 조절 밸브(26)의 개도가 증가함에 따라 냉각 열교환기(21)의 냉매 출구측 압력은 감소한다. 상기와 같이 냉매 유량 조절 밸브(26)의 개도는 냉각 열교환기(21)의 출구측 냉매 압력이 설정 범위 내를 유지하도록 제어된다. In more detail, the pressure at the refrigerant outlet side of the cooling heat exchanger 21 is detected by the cooling refrigerant pressure sensor PS1. When the detected pressure of the coolant is lower than the set range, the coolant flow control valve 26 is controlled to reduce the opening degree of the coolant flow control valve 26. When the opening degree of the refrigerant flow rate control valve 26 decreases, the refrigerant outlet side pressure of the cooling heat exchanger 21 increases. In addition, when the detected pressure of the refrigerant exceeds the set range, the refrigerant flow rate control valve 26 is controlled to increase the opening degree of the refrigerant flow rate control valve 26. As the opening degree of the refrigerant flow rate control valve 26 increases, the refrigerant outlet side pressure of the cooling heat exchanger 21 decreases. As described above, the opening degree of the refrigerant flow rate control valve 26 is controlled so that the outlet refrigerant pressure of the cooling heat exchanger 21 is maintained within the set range.
추가로 설명하면, 실외 열교환기(15)의 주위 온도가 낮은 동절기에 히트 펌프 시스템(1)이 히팅 중심 모드로 운전되는 경우, 실외 열교환기(15)의 증발 압력이 낮아짐과 동시에 냉각 열교환기(21)의 증발 압력이 낮아질 수 있다. 여기서 냉각 열교환기(21)의 증발 압력이 비정상적으로 낮아질 경우에는 냉각 열교환기(21)를 통과하는 냉매의 유량이 증가하여 열매체가 적정 수준 이상으로 냉각될 수 있으며, 그 결과로 냉각 열매체관(L1, L2)을 통과하는 열매체가 동결될 수도 있다.Further, when the heat pump system 1 is operated in the heating center mode in the winter when the ambient temperature of the outdoor heat exchanger 15 is low, the evaporation pressure of the outdoor heat exchanger 15 is lowered and the cooling heat exchanger ( The evaporation pressure of 21 can be lowered. In this case, when the evaporation pressure of the cooling heat exchanger 21 is abnormally lowered, the flow rate of the refrigerant passing through the cooling heat exchanger 21 is increased, so that the heat medium can be cooled to an appropriate level or higher, and as a result, the cooling heat medium pipe L1. , The heat medium passing through L2) may be frozen.
따라서, 저압 압력 유지 제어는 냉각 냉매 압력센서(PS1)에 의해 검출되는 냉매의 압력이 비정상적으로 낮아져 설정 범위에서 벗어날 경우, 냉매 유량 조절 밸브(26)를 제어하여 냉매 유량 조절 밸브(26)의 개도가 감소되도록 한다. 냉매 유량 조절 밸브(26)의 개도 감소에 따라 냉각 열교환기(21)를 통과하는 냉매의 압력은 증가하므로 냉각 열매체관(L1, L2)의 열매체의 동결을 억제할 수 있다. 또, 쿨링 유닛(30L)에도 냉기가 안정적으로 공급되게 할 수 있다. Accordingly, the low pressure pressure maintaining control controls the refrigerant flow rate regulating valve 26 to open the refrigerant flow rate regulating valve 26 when the pressure of the refrigerant detected by the cooling refrigerant pressure sensor PS1 is abnormally lowered to be out of the setting range. To be reduced. As the opening degree of the refrigerant flow rate control valve 26 decreases, the pressure of the refrigerant passing through the cooling heat exchanger 21 increases so that the freezing of the heat medium of the cooling heat medium tubes L1 and L2 can be suppressed. In addition, cold air can also be stably supplied to the cooling unit 30L.
다음으로 본 실시예에 따른 히트 펌프 시스템(1)의 냉수 온도 저하 방지 제어에 대해 도 7을 참조하여 설명한다. 냉수 온도 저하 방지 제어는 쿨링 모드, 쿨링 중심 모드 및 히팅 중심 모드일 경우에 수행된다. Next, cold water temperature fall prevention control of the heat pump system 1 which concerns on a present Example is demonstrated with reference to FIG. Cold water temperature fall prevention control is performed in the cooling mode, the cooling center mode and the heating center mode.
도 7에는 도 1에 도시된 중간 유닛(20)에 냉매 바이패스관(B1)과 바이패스 팽창밸브(27)가 추가된 히트 펌프 시스템(1)이 도시되어 있다.7 shows a heat pump system 1 in which a refrigerant bypass pipe B1 and a bypass expansion valve 27 are added to the intermediate unit 20 shown in FIG. 1.
냉매 바이패스관(B1)은 실외 팽창밸브(18)에서 중간 팽창밸브(25)로 진행하는 냉각 냉매관(P6-1)으로부터 분기되며, 냉각 열교환기(21)와 어큐뮬레이터(17)를 연결하는 제 5 냉매관(P5)에 연결되어, 냉매가 냉각 열교환기(21)를 우회하여 압축기(11)로 전달될 수 있도록 한다. The refrigerant bypass pipe B1 is branched from the cooling refrigerant pipe P6-1 traveling from the outdoor expansion valve 18 to the intermediate expansion valve 25, and connects the cooling heat exchanger 21 and the accumulator 17. It is connected to the fifth refrigerant pipe (P5), so that the refrigerant can be delivered to the compressor (11) by bypassing the cooling heat exchanger (21).
바이패스 팽창밸브(27)는 개도를 조절할 수 있는 전자 밸브로 형성되며, 냉매 바이패스관(B1)에 배치되어 냉매 바이패스관(B1)의 유로를 개폐한다. 일반적인 경우, 바이패스 팽창밸브(27)는 냉매 바이패스관(B1)의 유로를 폐쇄하여 냉매 바이패스관(B1)을 통한 냉매의 유동을 막는다.The bypass expansion valve 27 is formed as a solenoid valve that can adjust the opening degree, and is disposed in the refrigerant bypass pipe B1 to open and close the flow path of the refrigerant bypass pipe B1. In general, the bypass expansion valve 27 closes the flow path of the refrigerant bypass pipe B1 to prevent the flow of the refrigerant through the refrigerant bypass pipe B1.
냉수 온도 저하 방지 제어는 냉각 온도센서(T1)에 의해 검출되는 열매체의 온도가 설정된 임계값 보다 낮을 경우, 중간 팽창밸브(25)를 제어하여 냉각 열교환기의 입구측인 냉각 냉매관(P6-1)의 유로를 폐쇄함과 동시에 바이패스 팽창밸브(27)를 제어하여 냉매 바이패스관(B1)의 유로를 개방한다. The cold water temperature reduction prevention control controls the intermediate expansion valve 25 when the temperature of the heat medium detected by the cooling temperature sensor T1 is lower than the set threshold, thereby controlling the cooling refrigerant pipe P6-1 at the inlet side of the cooling heat exchanger. ) And the bypass expansion valve 27 is controlled to open the flow path of the refrigerant bypass pipe B1.
중간 팽창밸브(25)를 통해 냉각 열교환기(21)의 입구측 냉매관의 유로를 폐쇄하면 냉각 열교환기(21)로의 냉매 전달은 차단된다. 또한, 바이패스 팽창밸브(27)를 통해 냉매 바이패스관(B1)의 유로를 개방함에 따라 냉매는 도면에서 화살표로 나타낸 바와 같이, 바이패스 팽창밸브(27)에 전달된다. 이후, 냉각 온도센서(T1)에 의해 검출되는 열매체의 온도가 설정된 임계값 이상이 될 경우, 중간 팽창밸브(25)를 제어하여 냉각 열교환기(21)의 입구측, 즉, 냉각 냉매관(P6-1)의 유로를 개방하고, 바이패스 팽창밸브(27)를 제어하여 냉매 바이패스관(B1)의 유로을 폐쇄하면 냉각 열교환기(21)에는 다시 냉매가 전달된다. When the flow path of the inlet refrigerant pipe of the cooling heat exchanger 21 is closed through the intermediate expansion valve 25, the refrigerant transfer to the cooling heat exchanger 21 is blocked. In addition, as the flow path of the refrigerant bypass pipe B1 is opened through the bypass expansion valve 27, the refrigerant is transferred to the bypass expansion valve 27, as indicated by the arrow in the figure. Subsequently, when the temperature of the heat medium detected by the cooling temperature sensor T1 becomes equal to or greater than the set threshold value, the intermediate expansion valve 25 is controlled to control the inlet side of the cooling heat exchanger 21, that is, the cooling refrigerant pipe P6. When the flow path of -1) is opened and the flow path of the refrigerant bypass pipe B1 is closed by controlling the bypass expansion valve 27, the refrigerant is again transferred to the cooling heat exchanger 21.
추가로 설명하면, 열매체의 온도가 매우 낮아지면 열매체가 동결될 수 있다. 따라서 냉수 온도 저하 방지 제어는 열매체의 온도가 설정된 임계값 보다 낮을 경우, 중간 팽창밸브(25)를 폐쇄하여 냉각 열교환기(21)로의 냉매의 유입을 차단한다. 냉각 열교환기(21)로의 냉매의 유입이 차단되면 열매체가 냉각되지 않으므로, 냉각 열매체관(L1, L2)을 통과하는 열매체가 동결되는 것은 방지된다. 여기에서 설정된 임계값은 열매체의 동결 온도보다도 조금 높은 온도로 설정되는 것이 바람직하다. 예를 들면, 열매체가 물일 경우, 설정 임계값은 동결 온도인 0℃보다도 조금 높은 2℃ 등으로 설정되는 것이 바람직하다.In further detail, when the temperature of the heat medium becomes very low, the heat medium may be frozen. Therefore, when the temperature of the cold water lowering prevention control is lower than the set threshold value, the intermediate expansion valve 25 is closed to block the inflow of the refrigerant to the cooling heat exchanger 21. Since the heat medium is not cooled when the inflow of the refrigerant to the cooling heat exchanger 21 is blocked, the heat medium passing through the cooling heat medium tubes L1 and L2 is prevented from being frozen. The threshold set here is preferably set to a temperature slightly higher than the freezing temperature of the heat medium. For example, when the heat medium is water, it is preferable that the set threshold value is set to 2 ° C., which is slightly higher than 0 ° C. which is the freezing temperature.
또한 중간 팽창밸브(25)에 의해 냉각 냉매관(P6-2)의 유로가 폐쇄될 경우에도 냉매가 순환할 수 있도록 냉매 바이패스관(B1)과 바이패스 팽창밸브(27)가 설치된다. 따라서, 중간 팽창밸브(25)를 폐쇄하고, 바이패스 팽창밸브(27)를 개방함으로써 실외 팽창밸브(18)로부터 전달된 냉매는 냉매 바이패스관(B1)을 통해 압축기(11)측으로 전달된다. In addition, the refrigerant bypass pipe B1 and the bypass expansion valve 27 are installed to allow the refrigerant to circulate even when the flow path of the cooling refrigerant pipe P6-2 is closed by the intermediate expansion valve 25. Therefore, the refrigerant delivered from the outdoor expansion valve 18 by closing the intermediate expansion valve 25 and opening the bypass expansion valve 27 is transferred to the compressor 11 side through the refrigerant bypass pipe B1.
다음으로 본 실시예에 따른 히트 펌프 시스템(1)의 제상 제어에 대해 도 8을 참조하여 설명한다. 제상 제어에는 제 1 제상 모드, 제 2 제상 모드 및 제 3 제상 모드가 존재한다. Next, defrost control of the heat pump system 1 which concerns on a present Example is demonstrated with reference to FIG. Defrost control includes a first defrost mode, a second defrost mode, and a third defrost mode.
도 8에는 도 7에 개시된 중간 유닛(20)에 제상 바이패스관(B2)과 냉매 유로 전환 밸브(28)가 추가된 히트 펌프 시스템(1)이 도시되어 있다.8 shows a heat pump system 1 in which a defrost bypass pipe B2 and a refrigerant flow path switching valve 28 are added to the intermediate unit 20 shown in FIG. 7.
제상 바이패스관(B2)은 그 일단이 사방 밸브(12)와 가열 열교환기(22)를 연결하는 제 3 냉매관(P3)에 연결되고 그 타단이 냉각 열교환기(21)와 어큐뮬레이터(17)를 연결하는 제 5 냉매관(P5)에 연결된다. 즉, 제상 바이패스관(B2)은 가열 열교환기(22)의 냉매 입구측과 냉각 열교환기(21)의 냉매 출구측 유로를 연결한다.The defrost bypass pipe B2 is connected at one end to the third refrigerant pipe P3 connecting the four-way valve 12 and the heating heat exchanger 22, and the other end thereof is the cooling heat exchanger 21 and the accumulator 17. It is connected to the fifth refrigerant pipe (P5) for connecting. That is, the defrost bypass pipe B2 connects the refrigerant inlet side of the heating heat exchanger 22 and the refrigerant outlet side passage of the cooling heat exchanger 21.
냉매 유로 전환 밸브(28)는 제상 바이패스관(B2)에 배치되어 제상 바이패스관(B2)을 통한 냉매의 유동이 선택적으로 이루지도록 한다. 일반적인 상태에서 냉매 유로 전환 밸브(28)는 유로를 폐쇄한 상태를 유지하여 제상 바이패스관(B2)을 통한 냉매의 유동을 차단한다. The coolant flow path switching valve 28 is disposed in the defrost bypass pipe B2 to selectively allow the flow of the coolant through the defrost bypass pipe B2. In a general state, the refrigerant flow path switching valve 28 maintains the state in which the flow path is closed to block the flow of the refrigerant through the defrost bypass pipe B2.
먼저, 제 1 제상 모드를 설명한다. First, the first defrost mode will be described.
히팅 모드가 수행되는 있는 상태에서 실외 열교환기(15)에서의 제상 요구가 발생하면, 히팅 모드에서 제 1 제상 모드로 전환된다. 여기서, 실외 열교환기(15)에서의 제상 요구는 실외 열교환기(15)에 전달되는 냉매 또는 실외 열교환기(15)로부터 배출되는 냉매의 온도, 압력 또는 외기 온도 등에 의해 확인된다. 실외 열교환기(15)에서의 제상 요구가 발생한 경우란, 다시 말하면, 실외 열교환기(15)의 제상을 수행하기 위한 설정 조건이 충족된 경우이다. 보다 구체적으로 예를 들면, 히팅 모드가 수행되고 있는 상태에서 실외 열교환기(15)의 출구측 냉매 온도가 설정 온도 보다 낮은 경우가 이에 해당할 수 있다.When the defrost request in the outdoor heat exchanger 15 occurs while the heating mode is being performed, the heating mode is switched to the first defrost mode. Here, the defrost request in the outdoor heat exchanger 15 is confirmed by the temperature, pressure or ambient temperature of the refrigerant delivered to the outdoor heat exchanger 15 or the refrigerant discharged from the outdoor heat exchanger 15. The case where the defrost request occurs in the outdoor heat exchanger 15 is, in other words, a case where a set condition for performing the defrost of the outdoor heat exchanger 15 is satisfied. More specifically, for example, the case where the outlet side refrigerant temperature of the outdoor heat exchanger 15 is lower than the set temperature while the heating mode is being performed may correspond to this.
추가로 설명하면, 히팅 모드가 수행되고 있는 상태에서 실외 열교환기(15)의 출구측의 냉매 온도가 설정된 임계값 보다 낮으면서 가열 온도센서(T2)에 의해 검출되는 열매체의 온도가 설정된 임계값 이상이라는 것이 확인되면, 히팅 모드에서 제 1 제상 모드로 전환된다. In further detail, while the heating mode is being performed, the temperature of the heat medium detected by the heating temperature sensor T2 is greater than or equal to the predetermined threshold while the refrigerant temperature at the outlet side of the outdoor heat exchanger 15 is lower than the set threshold. Is confirmed, the heating mode is switched to the first defrost mode.
한편, 히팅 모드가 수행되고 있는 상태에서 실외 열교환기(15)의 출구측 냉매 온도가 설정된 임계값 보다 낮으면서 가열 온도센서(T2)에 의해 검출되는 열매체의 온도도 설정된 임계값 보다 낮다는 것이 확인되면, 히팅 모드에서 후술할 제 2 제상 모드로 전환된다. Meanwhile, while the heating mode is being performed, it is confirmed that the temperature of the heat medium detected by the heating temperature sensor T2 is lower than the set threshold while the temperature of the outlet refrigerant of the outdoor heat exchanger 15 is lower than the set threshold. In this case, it is switched to the second defrost mode to be described later in the heating mode.
도 9는 제 1 제상 모드에서의 냉매 및 열매체의 흐름을 나타낸 도면이다. 도 9에서 냉매의 유동은 실선 화살표로 표시되며, 열매체의 유동은 점선 화살표로 표시된다.9 is a view showing the flow of the refrigerant and the heat medium in the first defrost mode. In FIG. 9, the flow of the refrigerant is indicated by a solid arrow, and the flow of the heat medium is indicated by a dotted arrow.
제 1 제상 모드에서 사방 밸브(12)는 냉매를 실외 열교환기(15)로 안내한다. 즉, 사방 밸브(12)는 냉매가 화살표 A1 방향으로 유동하도록 안내한다. 또한, 개폐밸브(14), 중간 팽창밸브(25) 및 바이패스 팽창밸브(27)는 모두 유로를 폐쇄하고, 냉매 유로 전환 밸브(28)는 유로를 개방한다. 한편, 실외 팽창밸브(18)의 개도는 상술한 쿨링 모드에서의 중간 팽창밸브(25)의 개도와 마찬가지로 가열 열교환기(22)의 출구 과열도에 대응하도록 제어된다. In the first defrost mode, the four-way valve 12 guides the refrigerant to the outdoor heat exchanger 15. That is, the four-way valve 12 guides the refrigerant to flow in the direction of arrow A1. In addition, the open / close valve 14, the intermediate expansion valve 25, and the bypass expansion valve 27 all close the flow path, and the refrigerant flow path switching valve 28 opens the flow path. On the other hand, the opening degree of the outdoor expansion valve 18 is controlled to correspond to the outlet superheat degree of the heat exchanger 22 similarly to the opening degree of the intermediate expansion valve 25 in the cooling mode described above.
냉매는 압축기(11)에 의해 압축되어 고온 고압의 가스 상태가 되고, 사방 밸브(12)를 통해 실외 열교환기(15)에 전달된다. 실외 열교환기(15)에서 냉매는 열을 방출하므로 실외 열교환기(15)의 표면에 발생한 성에는 제거된다. 실외 열교환기(15)를 통과한 냉매는 실외 팽창밸브(18)에 의해 감압 팽창되어 저온 저압의 기액 혼합 상태가 되고, 증발기로서 동작하는 가열 열교환기(22)에 전달된다. 가열 열교환기(22)에서 냉매는 열매체로부터 열을 흡수하여 가열된다. 가열 열교환기(22)를 통과한 냉매는 냉매 유로 전환 밸브(28) 및 어큐뮬레이터(17)를 차례로 통과하여 압축기(11)로 다시 흡입된다. The refrigerant is compressed by the compressor 11 to become a gas state of high temperature and high pressure, and is delivered to the outdoor heat exchanger 15 through the four-way valve 12. Since the refrigerant in the outdoor heat exchanger 15 emits heat, the castle generated on the surface of the outdoor heat exchanger 15 is removed. The refrigerant passing through the outdoor heat exchanger (15) is expanded under reduced pressure by the outdoor expansion valve (18) to be a gas-liquid mixed state of low temperature and low pressure, and is delivered to a heat exchanger (22) operating as an evaporator. In the heat exchanger 22, the refrigerant absorbs heat from the heat medium and is heated. The refrigerant passing through the heat exchanger (22) passes through the refrigerant flow path switching valve (28) and the accumulator (17) and is sucked back into the compressor (11).
상기와 같이 제 1 제상 모드에서는 냉매가 압축기(11), 사방 밸브(12), 실외 열교환기(15), 실외 팽창밸브(18), 가열 열교환기(22), 냉매 유로 전환 밸브(28), 어큐뮬레이터(17)를 차례로 순환하도록 하는 냉매 회로가 구성된다. 냉매는 열매체에서 흡수된 열에 의해 가열되고, 가열된 냉매가 실외 열교환기(15)에 전달되어 실외 열교환기(15)의 제상이 수행된다. As described above, in the first defrosting mode, the refrigerant is provided in the compressor 11, the four-way valve 12, the outdoor heat exchanger 15, the outdoor expansion valve 18, the heat exchanger 22, the refrigerant flow path switching valve 28, A refrigerant circuit for circulating the accumulator 17 is configured. The refrigerant is heated by heat absorbed by the heat medium, and the heated refrigerant is transferred to the outdoor heat exchanger 15 to perform defrosting of the outdoor heat exchanger 15.
한편, 제 1 제상 모드에서는 열매체가 히팅 유닛(30H), 가열 펌프(24) 및 가열 열교환기(22)를 차폐로 순환하는 열매체 회로가 구성된다. 제 1 제상 모드에서 열매체는 가열 열매체관(H1, H2)을 따라 순환하므로 히팅 유닛(30H)에는 계속해서 온기가 공급된다. On the other hand, in the 1st defrost mode, the heat medium circulates the heating unit 30H, the heat pump 24, and the heat exchanger 22 to a shield, and the heat medium circuit is comprised. In the first defrost mode, the heat medium circulates along the heating heat medium tubes H1 and H2, so that warming is continuously supplied to the heating unit 30H.
다만, 가열 열교환기(22)에서 냉매와 열교환하며 냉각된 열매체가 히팅 유닛(30H)으로 전달되므로, 히팅 모드가 수행될 경우에 비해서는 공급하는 온기가 적어질 수 있다. However, since the heat medium cooled while heat-exchanging with the refrigerant in the heat exchanger 22 is transferred to the heating unit 30H, the warmth to be supplied may be reduced as compared with the case in which the heating mode is performed.
또한, 가열 열매체관(H1, H2)의 길이가 짧을 경우에는 열매체의 열용량이 충분히 확보되지 않을 수도 있다. 이와 같이 열매체의 열용량이 충분히 확보되지 않을 경우에는 제상에 필요한 열량이 열매체의 열용량을 상회하여, 히팅 유닛(30H)에 온기를 공급할 수 없어지며, 히팅 유닛(30H)으로부터 열을 흡수하여 히팅 유닛(30H)이 냉각을 수행하게 될 수도 있다. In addition, when the lengths of the heating heat medium tubes H1 and H2 are short, the heat capacity of the heat medium may not be sufficiently secured. When the heat capacity of the heat medium is not sufficiently secured, the amount of heat required for defrosting exceeds the heat capacity of the heat medium, so that warmth cannot be supplied to the heating unit 30H, and heat is absorbed from the heating unit 30H. 30H) may be subjected to cooling.
따라서, 히팅 유닛(30H)에서부터 흡열하여 냉각이 이루어지기 전에, 열매체로부터의 열 흡수를 정지하여 히팅 유닛(30H)에서 냉각이 이루어지지 않도록 해야 한다.Therefore, before the endotherm is cooled from the heating unit 30H, the heat absorption from the heat medium must be stopped to prevent cooling from the heating unit 30H.
보다 구체적으로는 제 1 제상 모드가 수행되고 있는 상태에서 가열 열매체관(H1, H2)을 따라 순환하는 열매체의 온도가 설정된 임계값 보다 낮을 경우에는 제 1 제상 모드에서 제 2 제상 모드로 전환된다. 또한, 상술한 바와 같이, 히팅 모드가 수행되고 있는 상태에서 실외 열교환기(15)의 출구측의 냉매 온도가 설정된 임계값 보다 낮고, 가열 열매체관(H1, H2)을 순환하는 열매체의 온도가 설정된 임계값 보다 낮으면 히팅 모드에서 제 2 제상 모드로 전환된다. More specifically, when the temperature of the heat medium circulating along the heating heat medium tubes H1 and H2 in the state where the first defrost mode is being performed is lower than the set threshold, the first defrost mode is switched to the second defrost mode. In addition, as described above, the temperature of the refrigerant on the outlet side of the outdoor heat exchanger 15 is lower than the set threshold value in the state where the heating mode is being performed, and the temperature of the heat medium circulating the heating heat medium pipes H1 and H2 is set. If it is lower than the threshold value, the switching from the heating mode to the second defrost mode.
제 1 제상 모드 또는 히팅 모드에서 제 2 제상 모드로 전환되는 경우의 열매체 온도의 설정된 임계값은 히팅 유닛(30H)이 배치된 실내의 공기 온도에 의해 정해질 수 있다. 즉, 제 1 제상 모드가 수행되고 있는 상태에서 가열 열매체관(H1, H2)을 순환하는 열매체의 온도가 히팅 유닛(30H)의 실내 설정 공기 온도 보다 낮은 경우 경우에 제 1 제상 모드에서 제 2 제상 모드로 전환된다. The set threshold value of the heat medium temperature in the case of switching from the first defrost mode or the heating mode to the second defrost mode may be determined by the air temperature in the room where the heating unit 30H is disposed. That is, when the temperature of the heat medium circulating the heating heat medium tubes H1 and H2 in the state where the first defrost mode is being performed is lower than the indoor set air temperature of the heating unit 30H, the second defrost in the first defrost mode. The mode is switched.
도 10은 제 2 제상 모드에서의 냉매 및 열매체의 흐름을 나타낸 도면이다. 도 10에서 냉매의 유동은 실선 화살표로 표시된다. 10 is a view showing the flow of the refrigerant and the heat medium in the second defrost mode. In FIG. 10, the flow of the refrigerant is indicated by a solid arrow.
제 2 제상 모드에서 사방 밸브(12)는 냉매를 실외 열교환기(15)로 안내한다. 즉, 사방 밸브(12)는 냉매가 화살표 A1 방향으로 유동하도록 한다. 또한, 개폐밸브(14), 냉매 유로 전환 밸브(28) 및 실외 팽창밸브(18)는 유로를 개방하고, 중간 팽창밸브(25)는 유로를 폐쇄한다. In the second defrost mode, the four-way valve 12 guides the refrigerant to the outdoor heat exchanger 15. That is, the four-way valve 12 allows the refrigerant to flow in the direction of arrow A1. In addition, the opening / closing valve 14, the refrigerant flow path switching valve 28, and the outdoor expansion valve 18 open the flow path, and the intermediate expansion valve 25 closes the flow path.
냉매는 압축기(11)에 의해 압축되어 고온 고압의 가스 상태가 되고, 사방 밸브(12)를 통해 실외 열교환기(15)에 전달된다. 실외 열교환기(15)에서 냉매는 열을 방출하므로 실외 열교환기(15)의 표면에 부착된 성에는 제거된다. 실외 열교환기(15)를 통과한 냉매는 실외 팽창밸브(18)를 통과하나, 가열 열교환기(22)에는 전달되지 않고, 바이패스 팽창밸브(27)에 의해 감압 팽창되어 저온 저압의 기액 혼합상태가 된다. 바이패스 팽창밸브(27)에 의해 팽창된 냉매는 제상 바이패스관(B2)을 통해 전달된 고온 고압의 냉매와 혼합되어 과열 가스가 된 후, 어큐뮬레이터(17)를 통하여 압축기(11)로 흡입된다. The refrigerant is compressed by the compressor 11 to become a gas state of high temperature and high pressure, and is delivered to the outdoor heat exchanger 15 through the four-way valve 12. In the outdoor heat exchanger (15), the refrigerant releases heat, so that the castle attached to the surface of the outdoor heat exchanger (15) is removed. The refrigerant passing through the outdoor heat exchanger (15) passes through the outdoor expansion valve (18), but is not delivered to the heating heat exchanger (22), and is expanded under reduced pressure by the bypass expansion valve (27) to form a gas-liquid mixed state of low temperature and low pressure. Becomes The refrigerant expanded by the bypass expansion valve 27 is mixed with the high temperature and high pressure refrigerant delivered through the defrost bypass pipe B2 to become a superheated gas, and then sucked into the compressor 11 through the accumulator 17. .
이와 같이 하여, 제 2 제상모드에서는 냉매가 압축기(11), 사방 밸브(12), 실외 열교환기(15), 실외 팽창밸브(18), 바이패스 팽창밸브(27) 및 어큐뮬레이터(17)를 차례로 통과하며 순환하도록 하는 냉매 회로가 구성된다. In this manner, in the second defrost mode, the refrigerant sequentially rotates the compressor 11, the four-way valve 12, the outdoor heat exchanger 15, the outdoor expansion valve 18, the bypass expansion valve 27, and the accumulator 17. A refrigerant circuit is configured to circulate through.
다음으로, 제 3 제상 모드에 대하여 설명한다. Next, the third defrost mode will be described.
제 3 제상 모드는 히팅 중심 모드에서 쿨링 중심 모드로 전환하여 실외 열교환기(15)의 제상을 수행하는 모드이다. 즉, 히팅 중심 모드로 동작하고 있는 상태에서 실외 열교환기(15)의 제상 요구가 발생한 경우(예를 들면, 실외 열교환기(15)의 출구측의 냉매 온도가 설정된 임계값 보다 낮은 경우)에 히팅 중심 모드에서 쿨링 중심 모드로 전환된다. The third defrost mode is a mode in which the outdoor heat exchanger 15 is defrosted by switching from the heating center mode to the cooling center mode. That is, when the defrost request of the outdoor heat exchanger 15 occurs (for example, when the refrigerant temperature at the outlet side of the outdoor heat exchanger 15 is lower than the set threshold) while operating in the heating center mode. Switch from center mode to cooling center mode.
히팅 중심 모드에서는 가열 열교환기(22)에서 냉각된 냉매가 실외 팽창밸브(18)를 통해 증발기로서 동작하는 실외 열교환기(15)에 전달된다. 이에 따라, 실외 열교환기(15)의 온도가 낮아지고, 실외 열교환기(15)의 표면에 성에가 발생할 수 있다.In the heating center mode, the refrigerant cooled in the heat exchanger 22 is transferred to the outdoor heat exchanger 15 which operates as an evaporator through the outdoor expansion valve 18. Accordingly, the temperature of the outdoor heat exchanger 15 is lowered, and frost may occur on the surface of the outdoor heat exchanger 15.
한편, 쿨링 중심 모드에서는 압축기(11)에 의해 압축된 고온 고압의 가스 상태의 냉매가 사방 밸브(12)를 통해 응축기로서 동작하는 실외 열교환기(15)에 전달된다. 따라서, 히트 펌프 시스템(1)이 히팅 중심 모드에서 쿨링 중심 모드로 전환되도록 함으로써, 냉매가 실외 열교환기(15)에서 열을 방출하도록 하여, 실외 열교환기(15)의 표면에 발생한 성에는 제거된다.On the other hand, in the cooling center mode, the high-temperature, high-pressure gaseous refrigerant compressed by the compressor 11 is transmitted to the outdoor heat exchanger 15 operating as a condenser through the four-way valve 12. Thus, by causing the heat pump system 1 to switch from the heating center mode to the cooling center mode, the refrigerant is allowed to dissipate heat from the outdoor heat exchanger 15, thereby eliminating the castle generated on the surface of the outdoor heat exchanger 15. .
추가로 설명하면, 제 3 제상 모드에서는 히팅 중심 모드에서 쿨링 중심 모드로 전환됨에 따라 난방 부하에 공급되는 온기가 작아질 수 있으나, 쿨링 중심 모드가 수행됨에 따라 히팅 유닛(30H)으로의 온기 공급 및 냉방 유닛으로의 냉기의 공급은 계속 수행된다. In further detail, in the third defrost mode, the warmth supplied to the heating load may decrease as the switching from the heating center mode to the cooling center mode, but as the cooling center mode is performed, the warmth supply to the heating unit 30H and The supply of cold air to the cooling unit is continued.
다음으로 본 실시예에 따른 히트 펌프 시스템(1)의 동결 방지 제어에 대해 도 11을 참조하여 설명한다. Next, freeze protection control of the heat pump system 1 according to the present embodiment will be described with reference to FIG.
압축기(11)나 냉각 펌프(23), 가열 펌프(24) 등이 정지하여 냉매 및 열매체가 순환하지 않는 경우, 외기 온도의 저하에 따라서 열매체가 동결될 수 있다. 열매체가 동결되면 가열 열교환기(22)나 냉각 열교환기(21), 가열 열매체관(H1, H2), 냉각 열매체관(L1, L2) 등이 파손될 수 있다. 따라서, 열매체의 동결을 방지하기 위해서 동결 방지 제어가 수행된다. When the compressor 11, the cooling pump 23, the heat pump 24, or the like is stopped and the refrigerant and the heat medium do not circulate, the heat medium can be frozen in accordance with the decrease in the outside air temperature. When the heat medium is frozen, the heating heat exchanger 22, the cooling heat exchanger 21, the heating heat medium tubes H1 and H2, and the cooling heat medium tubes L1 and L2 may be damaged. Therefore, freezing prevention control is performed to prevent freezing of the heat medium.
도 11에는 도 1에 개시된 중간 유닛(20)에 동결방지를 위해 열매체 바이패스관(B3, B4)들과 열매체 바이패스 밸브(29L, 29H)들이 추가된 히트 펌프 시스템(1)이 도시되어 있다. FIG. 11 shows a heat pump system 1 in which an intermediate unit 20 disclosed in FIG. 1 is added with heat medium bypass tubes B3 and B4 and heat medium bypass valves 29L and 29H to prevent freezing. .
열매체 바이패스관(B3, B4)들에는 그 일단이 냉각 열매체 공급관(L1)에 연결되고 그 타단이 냉각 열매체 회수관(L2)에 연결된 냉각 열매체 바이패스관(B3)과, 그 일단이 가열 열매체 공급관(H1)에 연결되고 그 타단이 가열 열매체 회수관(H2)에 연결된 가열 열매체 바이패스관(B4)가 포함된다. In the heat medium bypass pipes B3 and B4, one end thereof is connected to the cooling heat medium supply pipe L1 and the other end thereof is connected to the cooling heat medium recovery pipe L2, and one end thereof is a heated heat medium. The heating heat medium bypass pipe B4 connected to the supply pipe H1 and the other end thereof to the heating heat medium recovery pipe H2 is included.
열매체 바이패스 밸브(29L, 29H)들에는 냉각 열매체 바이패스관(B3, B4)에 배치되어 냉각 열매체 바이패스관(B3, B4)의 유로를 개폐하는 냉각 열매체 바이패스 밸브(29L)와, 가열 열매체 바이패스관(B3, B4)에 배치되어 가열 열매체 바이패스관(B3, B4)의 유로를 개폐하는 가열 열매체 바이패스 밸브(29H)가 포함된다.The heating medium bypass valves 29L and 29H are disposed in the cooling heating medium bypass pipes B3 and B4, and the cooling heating medium bypass valve 29L which opens and closes the flow path of the cooling heating medium bypass pipes B3 and B4, and the heating is performed. The heating heating medium bypass valve 29H which is arrange | positioned in heating medium bypass pipe B3, B4 and opens and closes the flow path of heating heating medium bypass pipe B3, B4 is contained.
일반적인 상태에서 열매체 바이패스 밸브(29L, 29H)들은 유로를 폐쇄하여 열매체 바이패스관(29L, 29H)들을 통한 열매체의 유동을 차단한다. In the general state, the heat medium bypass valves 29L and 29H close the flow path to block the flow of the heat medium through the heat medium bypass pipes 29L and 29H.
동결 방지 제어가 수행될 경우는 압축기(11) 및 가열 펌프(24)들이 정지되어 냉매 및 열매체가 순환하지 않고 있는 상태에서 가열 온도센서(T2)에 의해 검출된 열매체의 온도가 설정된 임계값 보다 낮을 경우에 가열 열매체 바이패스 밸브(29H)의 유로를 개방하고 가열 펌프(24)의 동작시킨다. 가열 열매체 바이패스 밸브(41)를 개방하고 가열 펌프(24)를 동작시키면 도면에서 점선 화살표로 표시된 바와 같이 가열 열매체관(H1, H2)을 통해 열매체가 가열 펌프(24), 가열 열교환기(22) 및 바이패스 밸브(41)를 차례로 통과하여 순환한다. 이와 같이 열매체를 순환시킴으로써 가열 열매체관(H1, H2)들을 통과하는 열매체의 온도가 균일해진다. 또한 가열 펌프(24)로부터의 유입된 열에 의해 온도가 낮아진 부분의 열매체의 온도가 상승하므로 열매체의 동결은 억제된다. 여기에서 설정 임계값은 열매체의 동결 온도보다도 조금 높은 온도로 설정되는 것이 바람직하다. 즉, 열매체가 물인 경우, 임계값은 동결 온도인 0℃보다도 조금 높은 3℃ 등으로 설정될 수 있다. When the freezing prevention control is performed, the temperature of the heat medium detected by the heating temperature sensor T2 is lower than the set threshold in a state where the compressor 11 and the heat pump 24 are stopped and the refrigerant and the heat medium are not circulated. In this case, the flow path of the heating medium bypass valve 29H is opened and the heat pump 24 is operated. Opening the heat medium bypass valve 41 and operating the heat pump 24 causes the heat medium to heat the heat pump 24 and the heat exchanger 22 through the heat medium tubes H1 and H2 as indicated by the dotted arrows in the figure. ) And the bypass valve 41 in order to circulate. By circulating the heat medium as described above, the temperature of the heat medium passing through the heating heat medium tubes H1 and H2 becomes uniform. Moreover, since the temperature of the heat medium of the part whose temperature fell by the heat which flowed in from the heat pump 24 rises, freezing of the heat medium is suppressed. Here, it is preferable that the set threshold is set to a temperature slightly higher than the freezing temperature of the heat medium. That is, when the heat medium is water, the threshold value can be set to 3 ° C., which is slightly higher than 0 ° C. which is the freezing temperature.
또한 열매체가 순환하기 시작한 후, 가열 온도센서(T2)에 의해 검출되는 열매체의 온도가 설정된 임계값 이상일 경우, 가열 펌프(24)의 동작이 정지되도록 하는 것도 가능하다. 또는 열매체가 순환하기 시작한 후, 5분 등과 같이 설정된 시간 경과 후에, 가열 온도센서(T2)에 의해 검출되는 열매체의 온도가 설정된 임계값 이상인 경우에, 가열 펌프(24)의의 동작이 정지되도록 하는 것도 가능하다. In addition, after the heat medium starts to circulate, it is also possible to stop the operation of the heat pump 24 when the temperature of the heat medium detected by the heating temperature sensor T2 is equal to or higher than the set threshold value. Alternatively, the operation of the heat pump 24 may be stopped when the temperature of the heat medium detected by the heating temperature sensor T2 is equal to or higher than the set threshold value after a set time such as 5 minutes after the heat medium starts to circulate. It is possible.
냉각 열매체관(L1, L2)를 통과하는 열매체에 대해서도 동결 방지 제어가 행해진다. 압축기(11) 및 냉각 펌프(23)가 정지되어 냉매 및 열매체가 순환하지 않는 상태에서 냉각 온도센서(T1)에 의해 검출되는 열매체의 온도가 설정된 임계값 보다 낮을 경우, 냉각 바이패스 밸브(42)의 유로를 개방하고 냉각 펌프(23)를 동작시킨다. 냉각 바이패스 밸브(42)의 유로를 개방하고 냉각 펌프(23)를 동작시킴에 따라 도면에서 점선 화살표로 표시된 바와 같이, 열매체가 냉각 열매체관(L1, L2)을 따라 냉각 펌프(23), 냉각 열교환기(21) 및 동결방지 바이패스 밸브(42)를 차례로 통과하여 순환한다. 이와 같이 열매체를 순환시킴에 따라 냉각 열매체관(L1, L2)을 통과하는 열매체의 동결은 억제된다. 여기에서 설정된 임계값은 가열 열매체관(H1, H2)의 경우와 마찬가지로 열매체의 동결 온도보다도 조금 높은 온도로 설정되는 것이 바람직하다. Freezing prevention control is also performed also about the heat medium passing through the cooling heat medium tubes L1 and L2. When the temperature of the heat medium detected by the cooling temperature sensor T1 is lower than the set threshold value when the compressor 11 and the cooling pump 23 are stopped and the refrigerant and the heat medium do not circulate, the cooling bypass valve 42 The flow path of the gas is opened and the cooling pump 23 is operated. As the flow path of the cooling bypass valve 42 is opened and the cooling pump 23 is operated, as shown by the dotted line arrow in the drawing, the heat medium is cooled along the cooling heat medium pipes L1 and L2, and the cooling pump 23 is cooled. It circulates through the heat exchanger 21 and the freezing prevention bypass valve 42 in order. As the heat medium is circulated, the freezing of the heat medium passing through the cooling heat medium tubes L1 and L2 is suppressed. It is preferable that the threshold value set here is set to a temperature slightly higher than the freezing temperature of the heat medium similarly to the case of the heating heat medium tubes H1 and H2.
또한 열매체가 순환하기 시작한 후, 냉각 온도센서(T1)에 의해 검출되는 열매체의 온도가 설정된 임계값 이상이 될 경우, 냉각 펌프(23)를 다시 정지시키는 것도 가능하다. 또는 열매체가 순환하기 시작한 후 5분 등의 설정된 시간 경과 후에 냉각 온도센서(T1)에 의해 검출되는 열매체의 온도가 설정된 임계값 이상일 경우 냉각 펌프(23)를 다시 정지시키는 것도 가능하다. Moreover, after the heat medium starts to circulate, it is also possible to stop the cooling pump 23 again when the temperature of the heat medium detected by the cooling temperature sensor T1 becomes equal to or higher than the set threshold value. Alternatively, the cooling pump 23 may be stopped again when the temperature of the heating medium detected by the cooling temperature sensor T1 is equal to or higher than the set threshold value after a set time such as 5 minutes after the heating medium starts to circulate.
다음으로 본 실시예에 따른 히트 펌프 시스템(1)의 워터 바이패스 제상 제어에 대해 설명한다. 워터 바이패스 제상 제어는 히팅 모드, 히팅 중심 모드에서 수행된다. 워터 바이패스 제상 제어에서는 가열 열매체관(H1, H2)과 냉각 열매체관(L1, L2)을 바이패스 연결하여 열매체를 순환시킴으로써 실외 열교환기(15)의 제상이 수행된다. Next, water bypass defrost control of the heat pump system 1 according to the present embodiment will be described. Water bypass defrost control is performed in the heating mode, the heating center mode. In the water bypass defrost control, the outdoor heat exchanger 15 is defrosted by circulating the heat medium by bypassing the heating heat medium pipes H1 and H2 and the cooling heat medium pipes L1 and L2.
도 12는 히트 펌프 시스템(1)이 워터 바이패스 제상 제어를 수행될 경우의 도면이다. 도 12에는 도 1에 개시된 중간 유닛(20)에 연결 바이패스관(B5, B6)들과 연결 바이패스 밸브(29L1, 29H1)들이 추가된 히트 펌프 시스템(1)이 도시되어 있다. 12 is a diagram when the heat pump system 1 performs water bypass defrost control. FIG. 12 shows a heat pump system 1 in which connecting bypass pipes B5 and B6 and connecting bypass valves 29L1 and 29H1 are added to the intermediate unit 20 shown in FIG. 1.
연결 바이패스관(B5, B6)들에는 그 일단이 가열 열매체 공급관(H1)에 연결되고 타단이 냉각 열매체 회수관(L2)에 연결되는 제 1 연결 바이패스관(B5)과, 그 일단이 냉각 열매체 공급관(L1)에 연결되고 타단이 가열 열매체 회수관(H2)에 연결된 제 2 연결 바이패스관(B6)이 포함된다. The connection bypass pipes B5 and B6 have a first connection bypass pipe B5 having one end connected to the heating heat medium supply pipe H1 and the other end connected to the cooling heat medium recovery pipe L2, and one end thereof cooled. A second connection bypass pipe B6 connected to the heat medium supply pipe L1 and the other end connected to the heated heat medium recovery pipe H2 is included.
연결 바이패스관(B5, B6)들에는 제 1 연결 바이패스관(B5)에 배치되어 제 1 연결 바이패스관(B5)의 유로를 개폐하는 제 1 연결 바이패스 밸브(29L1)와, 제 2 연결 바이패스관(B6)에 배치되어 제 2 연결 바이패스관(B6)의 유로를 개폐하는 제 2 연결 바이패스 밸브(29L1, 29H1)가 포함된다. Connection bypass pipes B5 and B6 have a first connection bypass valve 29L1 disposed in the first connection bypass pipe B5 to open and close a flow path of the first connection bypass pipe B5, and a second connection bypass pipe B5 and B6. Second connection bypass valves 29L1 and 29H1 are disposed in the connection bypass pipe B6 and open and close the flow path of the second connection bypass pipe B6.
중간 유닛(20)은 냉각 열매체 공급관(L1)에 배치되어 쿨링 유닛(30L)으로 공급되는 열매체의 양을 조절하는 냉각 열매체 공급 밸브(29a)와, 냉각 열매체 회수관(L2)에 배치되어 쿨링 유닛(30L)으로부터 회수되는 열매체의 양을 조절하는 냉각 열매체 회수 밸브(29b)를 포함한다. 또한, 중간 유닛(20)은 가열 열매체 공급관(H1)에 배치되어 히팅 유닛(30H)으로 공급되는 열매체의 양을 조절하는 가열 열매체 공급 밸브(29c)와, 가열 열매체 회수관(H2)에 배치되어 히팅 유닛(30H)으로부터 회수되는 열매체의 양을 조절하는 가열 열매체 회수 밸브(29d)를 포함한다.The intermediate unit 20 is disposed in the cooling heat medium supply pipe L1 and is arranged in the cooling heat medium supply valve 29a for adjusting the amount of the heat medium supplied to the cooling unit 30L, and in the cooling heat medium recovery pipe L2. A cooling heat medium recovery valve 29b for adjusting the amount of heat medium recovered from 30L is included. In addition, the intermediate unit 20 is disposed in the heating heating medium supply pipe H1 and arranged in the heating heating medium supply valve 29c for adjusting the amount of the heating medium supplied to the heating unit 30H, and the heating heating medium recovery pipe H2. A heating heat medium recovery valve 29d for adjusting the amount of the heat medium recovered from the heating unit 30H is included.
여기서, 일반적인 상태에서 제 1 연결 바이패스 밸브(43) 및 제 2 연결 바이패스 밸브(46)의 유로는 모두 닫힌 상태를 유지하고, 냉각 열매체 공급 밸브(29a), 냉각 열매체 회수 밸브(46), 가열 열매체 공급 밸브(29d), 가열 열매체 회수 밸브(29c)는 모두 개방된 상태를 유지한다. Here, in the general state, the flow paths of the first connecting bypass valve 43 and the second connecting bypass valve 46 are both kept closed, and the cooling heat medium supply valve 29a, the cooling heat medium recovery valve 46, The heating heating medium supply valve 29d and the heating heating medium recovery valve 29c are both kept open.
워터 바이패스 제상 제어는 히팅 모드 또는 히팅 중심 모드가 수행되고 있는 상태에서 실외 열교환기(15)의 제상 요구가 발생할 경우(예를 들면, 실외 열교환기(15)의 출구측의 냉매 온도가 설정된 임계값을 밑도는 경우), 쿨링 중심 모드로 전환된다. 즉, 실외 열교환기(15) 및 가열 열교환기(22)가 응축기로 동작하도록 하고, 냉각 열교환기(21)가 증발기로 동작하도록 한다. 또한, 제 1 연결 바이패스 밸브(43) 및 제 2 연결 바이패스 밸브(46)의 유로를 개방하고, 냉각 열매체 공급 밸브(29a), 냉각 열매체 회수 밸브(46), 가열 열매체 공급 밸브(29d), 가열 열매체 회수 밸브(29c)의 유로를 모두 폐쇄한다. The water bypass defrost control is a threshold at which the refrigerant temperature at the outlet side of the outdoor heat exchanger 15 is set when a defrost request of the outdoor heat exchanger 15 occurs while the heating mode or the heating center mode is being performed. If it is below the value, it switches to the cooling center mode. That is, the outdoor heat exchanger 15 and the heat exchanger 22 are operated as a condenser, and the cooling heat exchanger 21 is operated as an evaporator. Moreover, the flow path of the 1st connection bypass valve 43 and the 2nd connection bypass valve 46 is opened, and the cooling heat medium supply valve 29a, the cooling heat medium recovery valve 46, and the heating heat medium supply valve 29d are opened. Then, all the flow paths of the heating medium recovery valve 29c are closed.
이러한 상태에서 냉각 펌프(23) 및 가열 펌프(24)가 동작하도록 하면, 냉각 열교환기(21)에서 전달된 열매체는 도면에서 점선 화살표로 표시한 바와 같이 제 2 연결 바이패스 밸브(46) 및 가열 펌프(24)를 통과하여, 가열 열교환기(22)에 전달된다. 가열 열교환기(22)에 전달된 열매체는 가열 열교환기(22)를 통과하는 냉매에 의해 가열되어 온도가 상승한다. 온도가 상승된 열매체는 제 1 연결 바이패스 밸브(43) 및 냉각 펌프(23)를 통과하여 냉각 열교환기(21)로 전달되고. 냉각 열교환기(21)에서 냉매에 의해 냉각되어 온도가 낮아진다. When the cooling pump 23 and the heat pump 24 operate in this state, the heat medium transferred from the cooling heat exchanger 21 is heated by the second connection bypass valve 46 and the heating as indicated by the dotted arrows in the figure. Passed through the pump 24, it is delivered to the heat exchanger (22). The heat medium transferred to the heat exchanger 22 is heated by the refrigerant passing through the heat exchanger 22 to raise the temperature. The heat medium whose temperature is raised is passed to the cooling heat exchanger 21 through the first connection bypass valve 43 and the cooling pump 23. Cooled by the refrigerant in the cooling heat exchanger (21), the temperature is lowered.
이와 같이 열매체를 순환시킴으로써 냉각 열매체관(L1, L2) 및 가열 열매체관(H1, H2)을 순환하는 열매체의 온도는 설정된 범위 내를 유지하도록 조절된다. 또한, 열매체를 순환시킴으로써 가열 열교환기(22)에서 냉매로부터 열매체에 공급되는 열량과, 냉각 열교환기(21)에서 열매체부터 냉매에 공급되는 열량은 동등하게 유지되도록 제어된다. 이와 같이 열 평형 상태가 되면, 히트 펌프 사이클의 원리에 따라 압축기(11)에 의해 압축되어 냉매에 가해진 열량은 모두 실외 열교환기(15)에 공급된다. 그리고 실외 열교환기(15)의 표면에 발생한 성에는 제거된다. 추가로, 실외 열교환기(15)를 제상할 때에 열매체에 대한 열용량의 제한이 없어 냉각 열매체관(L1, L2)이나 가열 열매체관(H1, H2)의 배관량이 작은 상황에서도 안정적으로 제상이 수행될 수 있다. By circulating the heat medium in this manner, the temperature of the heat medium circulating through the cooling heat medium pipes L1 and L2 and the heating heat medium pipes H1 and H2 is adjusted to maintain the set range. In addition, by circulating the heat medium, the amount of heat supplied from the refrigerant to the heat medium in the heating heat exchanger 22 and the amount of heat supplied from the heat medium to the refrigerant in the cooling heat exchanger 21 are controlled to be maintained equal. In this way, when the thermal equilibrium state is reached, the heat amount compressed by the compressor 11 and applied to the refrigerant according to the principle of the heat pump cycle is supplied to the outdoor heat exchanger 15. And the castle which generate | occur | produced on the surface of the outdoor heat exchanger 15 is removed. In addition, when the outdoor heat exchanger 15 is defrosted, there is no restriction on the heat capacity of the heat medium, so that defrosting can be stably performed even in a situation where the piping amount of the cooling heat medium pipes L1 and L2 or the heating heat medium pipes H1 and H2 is small. Can be.
또한, 이와 같이 열매체를 순환시킴으로써, 열매체의 양에 관계없이, 실외 열교환기(15)의 제상이 수행될 수 있다. 또한 열매체의 온도 변화가 억제되므로 히팅 유닛(30H) 및 쿨링 유닛(30L)의 온도 변화도 억제된다. In addition, by circulating the heat medium in this manner, regardless of the amount of the heat medium, defrosting of the outdoor heat exchanger 15 can be performed. In addition, since the temperature change of the heat medium is suppressed, the temperature change of the heating unit 30H and the cooling unit 30L is also suppressed.
다음으로 본 실시예에 따른 히트 펌프 시스템(1)의 과냉각도의 제어에 대해 설명한다. 과냉각도 제어는 히팅 모드에서 수행된다. Next, the control of the supercooling degree of the heat pump system 1 which concerns on a present Example is demonstrated. Supercooling control is performed in the heating mode.
도 13은 과냉각도 제어를 행하는 경우의 히트 펌프 시스템(1)의 구성예를 나타낸 도면이다. 도 13에는 도 1에 개시된 중간 유닛(20)에 가열 냉매 온도센서(T3), 가열 냉매 압력센서(PS2), 냉매 유량 조절 밸브(26)가 추가된 히트 펌프 시스템(1)이 도시되어 있다.FIG. 13: is a figure which shows the structural example of the heat pump system 1 in the case of performing supercooling degree control. FIG. 13 shows a heat pump system 1 in which a heating refrigerant temperature sensor T3, a heating refrigerant pressure sensor PS2, and a refrigerant flow rate regulating valve 26 are added to the intermediate unit 20 shown in FIG. 1.
가열 냉매 온도센서(T3), 가열 냉매 압력센서(PS2)는 가열 열교환기(22)의 냉매 출구측, 즉 가열 냉매관(P6-2)에 설치된다. 또한 냉매 유량 조절 밸브(26)가 도 6에서와 마찬가지로 냉각 열교환기(21)와 어큐뮬레이터(17) 사이의 제 5 냉매관(P5)에 설치된다. The heating refrigerant temperature sensor T3 and the heating refrigerant pressure sensor PS2 are provided at the refrigerant outlet side of the heating heat exchanger 22, that is, the heating refrigerant pipe P6-2. In addition, a refrigerant flow rate control valve 26 is provided in the fifth refrigerant pipe P5 between the cooling heat exchanger 21 and the accumulator 17 as in FIG. 6.
과냉각도 제어는 가열 열교환기(22)의 출구측의 냉매의 과냉각도가 설정된 범위 내의 값을 유지하도록, 중간 팽창밸브(25) 및 냉매 유량 조절 밸브(26)의 개도가 제어된다. 즉, 과냉각도 제어에서는 과냉각도가 설정된 목표 과냉각도의 값이 되도록, 중간 팽창밸브(25) 및 냉매 유량 조절 밸브(26)의 개도가 제어된다. In the supercooling degree control, the opening degree of the intermediate expansion valve 25 and the refrigerant flow rate control valve 26 are controlled so that the supercooling degree of the refrigerant on the outlet side of the heat exchanger 22 is maintained within a set range. That is, in the subcooling degree control, the opening degree of the intermediate expansion valve 25 and the refrigerant flow rate control valve 26 are controlled so that the subcooling degree becomes the value of the set target subcooling degree.
보다 구체적으로는, 가열 냉매관(P6-2)에 배치된 가열 냉매 온도센서(T3)에 의해 냉매의 온도가 검출되고, 가열 냉매관(P6-2)에 배치된 가열 냉매 압력센서(PS2)에 의해, 냉매의 압력이 검출된다. 또한, 검출된 냉매의 압력은 냉매의 응축 온도에 대응하는 포화 온도로 환산된다. 냉매의 포화 온도와 온도센서(T3)에 의해 검출된 냉매의 온도의 차이를 통해 과냉각도는 계산된다. 계산된 과냉각도가 설정된 범위 내의 값이 되도록, 중간 팽창밸브(25) 및 냉매 유량 조절 밸브(26)의 개도가 제어된다. More specifically, the temperature of the refrigerant is detected by the heating refrigerant temperature sensor T3 arranged in the heating refrigerant pipe P6-2, and the heating refrigerant pressure sensor PS2 arranged in the heating refrigerant pipe P6-2. By this, the pressure of the refrigerant is detected. In addition, the detected pressure of the refrigerant is converted into a saturation temperature corresponding to the condensation temperature of the refrigerant. The subcooling degree is calculated based on the difference between the saturation temperature of the refrigerant and the temperature of the refrigerant detected by the temperature sensor T3. The opening degree of the intermediate expansion valve 25 and the refrigerant flow rate control valve 26 is controlled so that the calculated subcooling degree is within a set range.
추가로 설명하면, 과냉각도가 설정된 범위 보다 클 경우에는 중간 팽창밸브(25)를 열어서 냉매 유량 조절 밸브(26)의 유로를 폐쇄하도록 제어된다. 다시 말하면 과냉각도가 설정된 범위 보다 클 경우에는 중간 팽창밸브(25)의 개도는 커지도록 하고 냉매 유량 조절 밸브(26)의 개도는 작아지도록 제어된다. In further detail, when the subcooling degree is larger than the set range, the intermediate expansion valve 25 is opened to close the flow path of the refrigerant flow rate control valve 26. In other words, when the subcooling degree is larger than the set range, the opening degree of the intermediate expansion valve 25 is increased and the opening degree of the refrigerant flow rate control valve 26 is controlled to be small.
과냉각도(SC)가 설정된 범위 보다 낮을 경우, 중간 팽창밸브(25)의 유로를 폐쇄하고 냉매 유량 조절 밸브(26)는 유로를 개방하도록록 제어된다. 다시 말하면, 과냉각도가 설정된 범위 보다 낮을 경우에는 중간 팽창밸브(25)의 개도는 작아지도록 하고, 냉매 유량 조절 밸브(26)의 개도는 커지도록 제어된다. When the subcooling degree SC is lower than the set range, the flow path of the intermediate expansion valve 25 is closed and the refrigerant flow rate control valve 26 is controlled to open the flow path. In other words, when the subcooling degree is lower than the set range, the opening degree of the intermediate expansion valve 25 is made small, and the opening degree of the refrigerant flow rate regulating valve 26 is controlled to be large.
히팅 모드가 수행되고 있는 상태에서 냉매 회로에 충전된 냉매량이 과잉일 경우, 가열 열교환기(22)의 출구측 냉매의 과냉각도는 상승한다. 따라서, 과냉각도가 설정된 범위를 넘은 경우, 중간 프로세서(C2)는 냉매 회로 냉매량이 과잉이라고 판단하여, 중간 팽창밸브(25)의 개도가 커지도록 함과 동시에 냉매 유량 조절 밸브(26)의 개도가 작아지도록 한다. 이와 같은 제어에 따라 냉매 회로의 냉매는 히팅 모드에서 열교환기로서 이용하지 않는 냉각 열교환기(21)에 저장된다. 냉매 회로의 과잉 냉매가 냉각 열교환기(21)에 저류되면, 과냉각도(SC)는 저하되고, 설정된 범위 내로 유지된다. When the amount of refrigerant charged into the refrigerant circuit in the heating mode is being performed, the degree of overcooling of the refrigerant on the outlet side of the heating heat exchanger 22 increases. Therefore, when the subcooling degree exceeds the set range, the intermediate processor C2 determines that the amount of refrigerant circuit refrigerant is excessive, thereby increasing the opening degree of the intermediate expansion valve 25 and at the same time opening the refrigerant flow rate control valve 26. Make it smaller. Under such control, the refrigerant in the refrigerant circuit is stored in the cooling heat exchanger 21 which is not used as the heat exchanger in the heating mode. When the excess refrigerant in the refrigerant circuit is stored in the cooling heat exchanger 21, the subcooling degree SC is lowered and maintained within the set range.
또한 히팅 모드가 수행되고 있는 상태에서 냉매 회로에 충전된 냉매량이 부족하면, 가열 열교환기(22)의 출구측 냉매의 과냉각도가 낮아진다. 따라서, 과냉각도가 설정된 범위 보다 낮을 경우, 중간 프로세서(C2)는 냉매 회로의 냉매량이 부족하다고 판단하여, 중간 팽창밸브(25)의 개도가 작아지도록 함과 동시에 냉매 유량 조절 밸브(26)의 개도가 커지도록 한다. 이와 같은 제어에 의해 냉각 열교환기(21)에 저장되었던 냉매가 냉매 회로에 공급된다. 냉각 열교환기(21)의 냉매가 냉매 회로에 공급되면 과냉각도는 상승하여 설정된 범위 내로 유지된다. In addition, when the amount of refrigerant charged into the refrigerant circuit is insufficient while the heating mode is being performed, the supercooling degree of the refrigerant at the outlet side of the heating heat exchanger 22 is lowered. Therefore, when the subcooling degree is lower than the set range, the intermediate processor C2 determines that the amount of refrigerant in the refrigerant circuit is insufficient, thereby reducing the opening degree of the intermediate expansion valve 25 and simultaneously opening the refrigerant flow rate control valve 26. To increase. By such control, the refrigerant stored in the cooling heat exchanger 21 is supplied to the refrigerant circuit. When the refrigerant of the cooling heat exchanger 21 is supplied to the refrigerant circuit, the supercooling degree rises and is maintained within the set range.
상기와 같이 히트 펌프 시스템(1)은 가열 열교환기(22)의 출구측 냉매의 과냉각도(SC)를 산출하고, 산출한 과냉각도가 설정된 범위 내로 유지되도록 중간 팽창밸브(25) 및 냉매 유량 조절 밸브(26)의 개도를 제어한다. 과냉각도를 기초로 중간 팽창밸브(25) 및 냉매 유량 조절 밸브(26)의 개도를 제어함으로써, 냉매 회로의 냉매 유량이 조절되고, 히팅 유닛(30H)에 대하여 온기가 안정되게 공급되게 된다. As described above, the heat pump system 1 calculates the supercooling degree SC of the outlet refrigerant of the heating heat exchanger 22, and adjusts the intermediate expansion valve 25 and the refrigerant flow rate so that the calculated supercooling degree is maintained within a set range. The opening degree of the valve 26 is controlled. By controlling the opening degree of the intermediate expansion valve 25 and the refrigerant flow rate control valve 26 on the basis of the subcooling degree, the refrigerant flow rate of the refrigerant circuit is adjusted, and the warmth is stably supplied to the heating unit 30H.
상기의 실시예들에서 실외 유닛(10)과 중간 유닛(20)을 별도의 하우징에 수용되나, 실외 유닛(10)과 중간 유닛(20)이 하나의 하우징에 수용되도록 하는 것도 가능하다. In the above embodiments, the outdoor unit 10 and the intermediate unit 20 are housed in separate housings, but it is also possible for the outdoor unit 10 and the intermediate unit 20 to be housed in one housing.
또한 본 발명의 실시예를 실현하는 프로그램은 통신 수단에 의해 제공될 수있을 뿐만 아니라, CD-ROM 등과 같은 각종 기록 매체에 저장되어 제공되는 것도 가능하다. In addition, the program for realizing the embodiments of the present invention can be provided not only by the communication means but also stored and provided in various recording media such as a CD-ROM.
본 발명의 권리범위는 상기 설명한 특정 실시예들에 한정되는 것은 아니다. 특허청구범위에 명시된 본 발명의 기술적 사상으로서의 요지를 벗어나지 아니하는 범위 안에서 당 분야에서 통상의 지식을 가진 자에 의하여 수정 또는 변형 가능한 다양한 다른 실시예들도 본 발명의 권리범위에 속한다 할 것이다.The scope of the present invention is not limited to the specific embodiments described above. Various other embodiments which can be modified or modified by those skilled in the art without departing from the gist of the technical spirit of the present invention specified in the claims will also belong to the scope of the present invention.

Claims (14)

  1. 실외 공간에 배치되는 실외 유닛과, An outdoor unit disposed in an outdoor space,
    냉기 및 온기를 공급받는 복수의 열부하 유닛들과, A plurality of heat load units supplied with cold and warm air,
    상기 실외 유닛과 상기 복수의 열부하 유닛들 사이에 배치되는 중간 유닛을 포함하며, An intermediate unit disposed between the outdoor unit and the plurality of thermal load units,
    상기 중간 유닛은 냉매가 통과하는 냉매관을 통해 상기 실외 유닛과 연결되고, 열매체가 통과하는 열매체관을 통해 상기 복수의 열부하 유닛들과 연결되는 히트 펌프 시스템.And the intermediate unit is connected to the outdoor unit through a refrigerant pipe through which a refrigerant passes, and is connected to the plurality of heat load units through a heat medium pipe through which a heat medium passes.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 복수의 열부하 유닛들은 냉기를 전달받아 사용하는 쿨링 유닛과, 온기를 전달받아 사용하는 히팅 유닛을 포함하는 히트 펌프 시스템.The plurality of heat load units includes a cooling unit that receives and uses cold air and a heating unit that receives and uses warm air.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 실외 유닛은 냉매를 압축하는 압축기와, 냉매가 실외 공기와 열교환하도록 하는 실외 열교환기와, 상기 압축기에서 토출된 냉매를 상기 실외 열교환기와 상기 중간 유닛 중 어느 하나로 안내하는 사방밸브와, 냉매를 감압 팽창시키는 실외 팽창밸브를 포함하는 히트 펌프 시스템.The outdoor unit includes a compressor for compressing a refrigerant, an outdoor heat exchanger for allowing the refrigerant to heat exchange with outdoor air, a four-way valve for guiding the refrigerant discharged from the compressor to one of the outdoor heat exchanger and the intermediate unit, and the refrigerant to be decompressed and expanded. And an outdoor expansion valve.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 중간 유닛은 상기 쿨링 유닛에서 전달된 열매체와 냉매가 열교환하도록 하는 냉각 열교환기와, 상기 히팅 유닛에서 전달된 열매체와 냉매가 열교환하도록 하는 가열 열교환기와, 냉매를 감압 팽창시키는 중간 팽창밸브를 포함하는 히트 펌프 시스템.The intermediate unit may include a heat exchanger for allowing heat exchange between the heat medium and the refrigerant transferred from the cooling unit, a heat exchanger for heat exchange between the heat medium and the refrigerant transferred from the heating unit, and an intermediate expansion valve for expanding the refrigerant under reduced pressure. Pump system.
  5. 제 4 항에 있어서, The method of claim 4, wherein
    상기 압축기에서 토출된 냉매를 상기 사방밸브로 안내하는 제 1 냉매관과, A first refrigerant pipe guiding the refrigerant discharged from the compressor to the four-way valve;
    냉매를 상기 사방 밸브에서 상기 실외 열교환기로 안내하는 제 2 냉매관과, A second refrigerant pipe guiding a refrigerant from the four-way valve to the outdoor heat exchanger;
    냉매를 상기 사방 밸브에서 상기 가열 열교환기로 안내하는 제 3 냉매관과, A third refrigerant pipe guiding a refrigerant from the four-way valve to the heating heat exchanger;
    냉매를 상기 사방 밸브에서 상기 압축기의 흡입측으로 제 4 냉매관과, A fourth refrigerant pipe from the four-way valve to the suction side of the compressor;
    냉매를 상기 냉각 열교환기에서 상기 압축기의 흡입측으로 안내하는 제 5 냉매관과, A fifth refrigerant pipe guiding the refrigerant from the cooling heat exchanger to the suction side of the compressor;
    상기 실외 열교환기와 연결되며 둘로 분기되어 그 하나가 상기 냉각 열교환기와 연결되는 냉각 냉매관을 형성하고 다른 하나가 상기 가열 열교환기와 연결되는 가열 냉매관을 형성하는 제 6 냉매관과, A sixth refrigerant pipe connected to the outdoor heat exchanger and branched in two to form a cooling refrigerant pipe connected to the cooling heat exchanger and the other to form a heating refrigerant pipe connected to the heating heat exchanger;
    상기 제 2 냉매관과 상기 제 3 냉매관을 연결하는 제 7 냉매관과, A seventh refrigerant pipe connecting the second refrigerant pipe and the third refrigerant pipe;
    상기 제 7 냉매관에 배치되어 상기 제 7 냉매관을 통해 선택적으로 냉매가 유동하도록 하는 개폐밸브를 더 포함하는 히트 펌프 시스템.And an opening / closing valve disposed in the seventh refrigerant pipe to selectively flow the refrigerant through the seventh refrigerant pipe.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    냉매를 상기 냉각 열교환기에서 상기 압축기의 흡입측으로 안내하는 제 5 냉매관과, A fifth refrigerant pipe guiding the refrigerant from the cooling heat exchanger to the suction side of the compressor;
    상기 냉각 열교환기의 냉매 출구측의 압력을 검출하는 압력센서와, A pressure sensor for detecting a pressure at a refrigerant outlet side of the cooling heat exchanger;
    상기 제 5 냉매관에 배치되어 상기 압력센서에 의해 검출된 압력이 설정 범위 내의 값이 되도록 개도가 제어되는 냉매 유량 조절 밸브를 더 포함하는 히트 펌프 시스템.And a refrigerant flow rate control valve disposed in the fifth refrigerant pipe and controlled to have an opening degree such that the pressure detected by the pressure sensor becomes a value within a setting range.
  7. 제 4 항에 있어서, The method of claim 4, wherein
    냉매를 상기 냉각 열교환기에서 상기 압축기의 흡입측으로 안내하는 제 5 냉매관과, A fifth refrigerant pipe guiding the refrigerant from the cooling heat exchanger to the suction side of the compressor;
    상기 냉각 열교환기를 통해 냉각된 열매체의 온도를 검출하는 냉각 온도센서와, A cooling temperature sensor detecting a temperature of the heat medium cooled by the cooling heat exchanger;
    상기 냉각 냉매관으로부터 분기되어 상기 제 5 냉매관에 연결되는 냉매 바이패스관과, A refrigerant bypass pipe branched from the cooling refrigerant pipe and connected to the fifth refrigerant pipe;
    상기 냉매 바이패스관에 배치되어 상기 냉각 온도센서에 의해 검출된 열매체의 온도가 설정된 임계값 보다 낮을 경우에 상기 냉매 바이패스관의 유로를 개방하는 바이패스 팽창밸브를 더 포함하는 히트 펌프 시스템.And a bypass expansion valve disposed in the refrigerant bypass pipe to open a flow path of the refrigerant bypass pipe when the temperature of the heat medium detected by the cooling temperature sensor is lower than a predetermined threshold value.
  8. 제 4 항에 있어서, The method of claim 4, wherein
    일단이 냉매를 상기 사방 밸브에서 상기 가열 열교환기로 냉매를 안내하는 제 3 냉매관에 연결되고 타단이 상기 압축기의 흡입측을 제 5 냉매관에 연결되는 제상 바이패스관과, A defrost bypass tube having one end connected to a third refrigerant pipe guiding the refrigerant from the four-way valve to the heating heat exchanger and the other end connected to a fifth refrigerant pipe at the suction side of the compressor;
    상기 제상 바이패스관에 배치되어 상기 실외 열교환기에서의 제상 요구가 발생하면 상기 제상 바이패스관의 유로를 개방하는 냉매 유로 전환 밸브를 더 포함하는 히트 펌프 시스템.And a refrigerant flow path switching valve disposed in the defrost bypass pipe to open a flow path of the defrost bypass pipe when a defrost demand occurs in the outdoor heat exchanger.
  9. 제 4 항에 있어서, The method of claim 4, wherein
    상기 냉각 열교환기에서 냉각된 열매체를 상기 쿨링 유닛에 공급하는 냉각 열매체 공급관과, A cooling heat medium supply pipe for supplying the heat medium cooled by the cooling heat exchanger to the cooling unit;
    상기 쿨링 유닛을 통과하며 열을 흡수한 열매체를 상기 냉각 열교환기에 전달하는 냉각 열매체 회수관과, A cooling heat medium recovery pipe passing through the cooling unit and transferring the heat medium having absorbed heat to the cooling heat exchanger;
    상기 가열 열교환기에서 냉각된 열매체를 상기 히팅 유닛에 공급하는 가열 열매체 공급관과, A heating heating medium supply pipe for supplying the heating medium cooled by the heating heat exchanger to the heating unit;
    상기 히팅 유닛을 통과하며 열을 방출한 열매체를 상기 가열 열교환기에 전달하는 가열 열매체 회수관을 더 포함하는 히트 펌프 시스템.And a heating heat medium recovery pipe passing through the heating unit and dissipating heat to the heating heat exchanger.
  10. 제 9 항에 있어서, The method of claim 9,
    상기 냉각 열매체 회수관에 배치된 냉각 펌프와,A cooling pump disposed in the cooling heat medium recovery pipe;
    상기 가열 열매체 회수관에 배치된 가열 펌프를 더 포함하는 히트 펌프 시스템.And a heat pump disposed in said heated heat medium recovery pipe.
  11. 제 9 항에 있어서, The method of claim 9,
    그 일단이 상기 냉각 열매체 공급관에 연결되고 타단이 상기 냉각 열매체 회수관에 연결된 냉각 열매체 바이패스관과, A cooling heat medium bypass pipe having one end connected to the cooling heat medium supply pipe and the other end connected to the cooling heat medium recovery pipe,
    그 일단이 가열 열매체 공급관에 연결되고 타단이 가열 열매체 회수관에 연결된 가열 열매체 바이패스관과, A heating heat medium bypass pipe having one end connected to the heating heat medium supply pipe and the other end connected to the heating heat medium recovery pipe,
    상기 냉각 열매체 바이패스관에 배치되어 상기 냉각 열매체 바이패스관의 유로를 개폐하는 냉각 열매체 바이패스 밸브와, A cooling heat medium bypass valve disposed in the cooling heat medium bypass pipe to open and close a flow path of the cooling heat medium bypass pipe;
    상기 가열 열매체 바이패스관에 배치되어 상기 가열 열매체 바이패스관의 유로를 개폐하는 가열 열매체 바이패스 밸브를 더 포함하는 히트 펌프 시스템.And a heating heating medium bypass valve disposed in the heating heating medium bypass pipe to open and close a flow path of the heating heating medium bypass pipe.
  12. 제 9 항에 있어서, The method of claim 9,
    그 일단이 상기 가열 열매체 공급관에 연결되고 타단이 상기 냉각 열매체 회수관에 연결되는 제 1 연결 바이패스관과, A first connecting bypass pipe having one end connected to the heating heat medium supply pipe and the other end connected to the cooling heat medium recovery pipe;
    그 일단이 상기 냉각 열매체 공급관에 연결되고 타단이 상기 가열 열매체 회수관에 연결된 제 2 연결 바이패스관과,A second connecting bypass pipe having one end connected to the cooling heat medium supply pipe and the other end connected to the heating heat medium recovery pipe;
    상기 제 1 연결 바이패스관에 배치되어 상기 제 1 연결 바이패스관의 유로를 개폐하는 제 1 연결 바이패스 밸브와, A first connection bypass valve disposed in the first connection bypass pipe and configured to open and close a flow path of the first connection bypass pipe;
    상기 제 2 연결 바이패스관에 배치되어 상기 제 2 연결 바이패스관의 유로를 개폐하는 제 2 연결 바이패스 밸브를 더 포함하는 히트 펌프 시스템.And a second connection bypass valve disposed in the second connection bypass pipe to open and close a flow path of the second connection bypass pipe.
  13. 제 9 항에 있어서, The method of claim 9,
    상기 냉각 열매체 공급관에 배치되어 상기 쿨링 유닛으로 공급되는 열매체의 양을 조절하는 냉각 열매체 공급 밸브와, A cooling heat medium supply valve disposed in the cooling heat medium supply pipe to adjust an amount of the heat medium supplied to the cooling unit;
    상기 냉각 열매체 회수관에 배치되어 상기 쿨링 유닛으로부터 회수되는 열매체의 양을 조절하는 냉각 열매체 회수 밸브와,A cooling heat medium recovery valve disposed in the cooling heat medium recovery pipe to adjust an amount of the heat medium recovered from the cooling unit;
    상기 가열 열매체 공급관에 배치되어 상기 히팅 유닛으로 공급되는 열매체의 양을 조절하는 가열 열매체 공급 밸브와, A heating heat medium supply valve disposed in the heating heat medium supply pipe to adjust an amount of the heat medium supplied to the heating unit;
    상기 가열 열매체 회수관에 배치되어 상기 히팅 유닛으로부터 회수되는 열매체의 양을 조절하는 가열 열매체 회수 밸브를 더 포함하는 히트 펌프 시스템.And a heating heat medium recovery valve disposed in the heating heat medium recovery pipe to adjust an amount of the heat medium recovered from the heating unit.
  14. 제 5 항에 있어서, The method of claim 5, wherein
    상기 가열 열교환기의 냉매 토출측에 배치되어 냉매의 온도를 검출하는 가열 냉매 온도센서와, A heating refrigerant temperature sensor disposed at a refrigerant discharge side of the heating heat exchanger and detecting a temperature of the refrigerant;
    상기 가열 열교환기의 냉매 토출측에 배치되어 냉매의 압력을 검출하는 가열 냉매 압력센서와, A heating refrigerant pressure sensor disposed at a refrigerant discharge side of the heating heat exchanger to detect a pressure of the refrigerant;
    상기 제 5 냉매관에 배치되어 상기 가열 열교환기의 냉매 출구측 과냉각도에 따라 개도가 조절되는 냉매 유량 조절 밸브를 더 포함하는 히트 펌프 시스템.And a refrigerant flow rate control valve disposed in the fifth refrigerant pipe and configured to adjust an opening degree according to a supercooling degree of the refrigerant outlet side of the heating heat exchanger.
PCT/KR2018/001455 2017-02-03 2018-02-02 Heat pump system WO2018143726A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197011307A KR102487265B1 (en) 2017-02-03 2018-02-02 heat pump system
US16/483,378 US11629891B2 (en) 2017-02-03 2018-02-02 Heat pump system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-018636 2017-02-03
JP2017018636 2017-02-03
JP2017110668A JP6910210B2 (en) 2017-02-03 2017-06-05 Air conditioner
JP2017-110668 2017-06-05

Publications (1)

Publication Number Publication Date
WO2018143726A1 true WO2018143726A1 (en) 2018-08-09

Family

ID=63040836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001455 WO2018143726A1 (en) 2017-02-03 2018-02-02 Heat pump system

Country Status (1)

Country Link
WO (1) WO2018143726A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194537A (en) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd Heat pump device
KR20120083139A (en) * 2011-01-17 2012-07-25 엘지전자 주식회사 Heat pump type speed heating apparatus
JP5241923B2 (en) * 2009-09-18 2013-07-17 三菱電機株式会社 Air conditioner
KR101548416B1 (en) * 2012-03-07 2015-08-28 린나이코리아 주식회사 Heat pump type hot water supply heater
KR101605981B1 (en) * 2011-11-24 2016-03-23 미츠비시 쥬고교 가부시키가이샤 Defrosting operation method for heat pump system, and heat pump system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194537A (en) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd Heat pump device
JP5241923B2 (en) * 2009-09-18 2013-07-17 三菱電機株式会社 Air conditioner
KR20120083139A (en) * 2011-01-17 2012-07-25 엘지전자 주식회사 Heat pump type speed heating apparatus
KR101605981B1 (en) * 2011-11-24 2016-03-23 미츠비시 쥬고교 가부시키가이샤 Defrosting operation method for heat pump system, and heat pump system
KR101548416B1 (en) * 2012-03-07 2015-08-28 린나이코리아 주식회사 Heat pump type hot water supply heater

Similar Documents

Publication Publication Date Title
WO2011149152A1 (en) Hot water supply device associated with heat pump
WO2015111847A1 (en) Heat pump system for vehicle
WO2011062348A1 (en) Heat pump
WO2017069472A1 (en) Air conditioner and control method therefor
WO2020145527A1 (en) Thermal management system
WO2016013798A1 (en) Refrigerator and control method thereof
WO2011145779A1 (en) Hot water supply device associated with heat pump
WO2011149151A1 (en) Hot water supply device associated with heat pump
WO2022131660A1 (en) Heat pump assembly with a chiller for battery-powered vehicles and methods of operating the heat pump assembly
WO2016017939A1 (en) Automotive heat pump system
WO2021172752A1 (en) Vapor injection module and heat pump system using same
WO2020080760A1 (en) Heat management system
WO2018080150A1 (en) Air conditioner
WO2011145780A1 (en) Hot water supply device associated with heat pump
WO2017164711A1 (en) Control method for refrigerator
WO2021015483A1 (en) Heat management device for vehicle, and heat management method for vehicle
WO2020071803A1 (en) Heat management system
WO2020040418A1 (en) Heat management system
WO2019143195A1 (en) Multi-type air conditioner
EP3516305A1 (en) Air conditioner
WO2018117399A1 (en) Heat pump system for producing steam by using recuperator
WO2011062349A1 (en) Heat pump
WO2022124680A1 (en) Thermal system of a motor vehicle and method of operating the thermal system
WO2020197044A1 (en) Air conditioning apparatus
WO2016163771A1 (en) Vehicle air-conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197011307

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747860

Country of ref document: EP

Kind code of ref document: A1