WO2018143564A1 - Variable vane pump - Google Patents

Variable vane pump Download PDF

Info

Publication number
WO2018143564A1
WO2018143564A1 PCT/KR2017/015308 KR2017015308W WO2018143564A1 WO 2018143564 A1 WO2018143564 A1 WO 2018143564A1 KR 2017015308 W KR2017015308 W KR 2017015308W WO 2018143564 A1 WO2018143564 A1 WO 2018143564A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
cam ring
space
pump
circumferential surface
Prior art date
Application number
PCT/KR2017/015308
Other languages
French (fr)
Korean (ko)
Inventor
조봉현
조영준
조영진
Original Assignee
조봉현
조영준
조영진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조봉현, 조영준, 조영진 filed Critical 조봉현
Publication of WO2018143564A1 publication Critical patent/WO2018143564A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • F04C14/223Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C15/064Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston machines or pumps

Definitions

  • the present invention relates to a variable vane pump, and more particularly, to a variable vane pump using the pressure of the oil discharged to reduce or reduce the discharge flow rate per rotation of the pump.
  • variable vane pump When the variable vane pump is subjected to high pressure on the external use mechanism, the cylinder ring is fixed and the stable flow rate can be discharged even if the pressure inside the pump and the pressure chamber of the first and second pressure chambers of the control valve for moving the cylinder ring are equal.
  • Conventional variable vane pump is integrally connected to the rotor shaft in the body, the rotor is fitted with a vane for each forward movement along the plurality of vane grooves distributed in the circumferential direction, and is formed wrapped around the outer circumference to eccentric to the rotor And a third elastic member support guide which is rotated by the carriage force in contact with the tip of the vane, and is provided to support the cylinder ring to maintain the eccentricity on one side of the outer circumferential surface of the cylinder ring, which is installed eccentrically with sliding tolerances. And a control valve supporting the cylinder ring on the other side of the outer circumferential surface of the cylinder ring.
  • control valve is located on one side of the valve piston moving horizontally in the side wall surrounding the side of the valve hole, a first elastic member supporting the valve piston, a first valve cap covering the side wall, and a valve piston in the side wall. And a pressure chamber that reduces wear caused by friction between the control valve and the valve hole, and between the first pressure chamber and the second pressure chamber.
  • the valve piston is moved by the pressure difference of.
  • the conventional variable vane pump has a U-shaped recess in the upper portion, a guide body having a through hole through which the upper and lower portions pass, an adjustment bolt for connecting the through hole through the lower portion, and the valve having the through hole formed therein. It further includes a guide member having a tapered tapered nut screwed to the end of the adjustment bolt coupled through the through holes when one side of the piston is located in the U-shaped recess to correspond to the through hole of the guide body.
  • the U-shaped recess is connected to one side of the valve piston, and the guide member supports the cylinder ring by the movement of the valve piston in a guide member moving space formed at a central portion of the control valve in a direction perpendicular to the control valve. Will be moved. That is, the pressure of the third elastic member and the pressure of the eccentric cross-sectional area difference of the cylinder ring act on the guide member having the inclination angle to move the cylinder ring.
  • the present invention was devised to improve the above problems, and forms an inflow space through which some of the oil discharged from the pump flows between the cam ring and the housing, and uses the pressure of the discharged oil to reduce the discharge flow rate per rotation of the pump. It is an object to provide a variable vane pump to be adjusted.
  • variable vane pump for achieving the above object is a suction port and a discharge port are formed in a position facing each other, the inner space is provided therein, and the relative space is installed in the housing, the inner space, A cam ring partitioning the pump into a pump space communicating with the suction port and the discharge port, a rotating shaft installed in the housing to be introduced into the pump space, a rotor provided on the rotating shaft and rotating together with the rotating shaft, and retractable to the rotor.
  • a plurality of vanes installed in close contact with the inner circumferential surface of the cam ring, installed in the housing, and an elastic member configured to provide an elastic force to the cam ring in the direction of the center of rotation of the rotation shaft so that the cam ring is eccentric with respect to the rotation shaft, the suction port and It is installed in the housing between the discharge port, the rotational speed of the rotating shaft Accordingly, a separation control unit is formed between the outer circumferential surface of the cam ring and the inner circumferential surface of the housing so that the eccentric position of the cam ring with respect to the rotation shaft is adjusted to form an inflow space into which some of the oil discharged through the discharge port flows.
  • the spacing control unit is positioned to be spaced apart from each other in the circumferential direction on the inner circumferential surface of the housing so that the inlet space is formed, a plurality of partition members are installed to be drawn out and retractable in the rotation axis direction from the inner circumferential surface of the housing; It is provided with a plurality of support springs to provide an elastic force to the partition member so that the end of the partition member is in contact with the outer peripheral surface of the cam ring.
  • the housing is formed with an inflow passage communicating with the discharge port and the inflow space so that a portion of the oil discharged from the discharge port is introduced into the inflow space, and the inflow passage is for throttling oil injected into the inflow space.
  • An orifice portion is formed.
  • the partition members are installed in the housing such that the mutual separation distance decreases as the cam members are closer to the cam ring from the inner circumferential surface of the housing.
  • the partition member is formed to have a circular cross section
  • the housing is formed on the inner circumferential surface of the position adjacent to each other along the circumferential direction
  • each inlet is formed so that the partition member can be inserted, the inlet is to the inner peripheral surface of the housing It is preferably formed to be pulled in a direction away from the rotation axis, extending so as to be spaced apart from each other as the distance from the inner peripheral surface of the housing increases, it is formed to be curved at a predetermined curvature.
  • the housing is formed on the inner peripheral surface of the position adjacent to each other along the circumferential direction, each inlet is formed so that the partition member can be introduced, the inlet is formed to be drawn in a direction away from the rotation axis with respect to the inner peripheral surface of the housing
  • the distance from the inner circumferential surface of the housing is extended to increase the mutual separation distance, is formed to be curved to a predetermined curvature, the partition member may be formed to be curved to a curvature corresponding to the curvature of the inlet.
  • the housing has a discharge passage formed in communication with the inlet space and the suction port so that the oil in the inlet space is introduced into the pump chamber, and is installed in the housing on the discharge passage so that the hydraulic pressure of the inlet space is higher than a predetermined pressure. It is preferable to further include a relief valve for opening and closing the discharge passage so that the oil in the inlet space can be discharged to the suction port.
  • variable vane pump according to the present invention is formed to surround the outer circumferential surface of the cam ring, and further comprises a metal bearing to reduce the friction between the cam ring and the housing.
  • variable vane pump according to the present invention is installed in the rotor, it is preferable to further include an elastic ring for providing an elastic force to the vanes so that the end of the vanes in contact with the inner peripheral surface of the cam ring.
  • variable vane pump forms an inlet space through which some of the oil discharged from the pump flows between the cam ring and the housing, thereby reducing the discharge flow rate per rotation of the pump using the pressure of the discharged oil, and thus the structure is relatively simple. As the friction of the valve does not occur, the durability is improved and the service life is increased.
  • variable vane pump can adjust the flow rate of the oil discharged according to the steering wheel steering as well as the rotational speed of the rotary shaft when applied to the power steering.
  • FIG. 1 is a cross-sectional view of a variable vane pump according to the present invention.
  • Figure 2 is an enlarged partial cross-sectional view of the separation control of the variable vane pump of Figure 1;
  • FIG. 3 is a partial cross-sectional view of the housing of the variable vane pump of FIG.
  • FIG. 4 is a cross-sectional view showing a high speed rotation state of the rotating shaft of the variable vane pump of FIG.
  • Figure 5 is a partial cross-sectional view of the separation control unit of the variable vane pump according to another embodiment of the present invention.
  • Figure 6 is a partial cross-sectional view of the separation control part of the variable vane pump according to another embodiment of the present invention.
  • Figure 7 is a plan sectional view of a variable vane pump according to another embodiment of the present invention.
  • variable vane pump a suction port and a discharge port are formed at positions facing each other, and a housing having an internal space provided therein and a relative movable inside the housing, wherein the internal space is provided at the suction port and the discharge port.
  • the image relative to the rotary shaft in accordance with the rotational speed of the rotary shaft it characterized in that it comprises a spacing control portion between the outer circumferential surface of the cam ring and the inner circumferential surface of the housing so that the eccentric position of the cam ring is adjusted, forming an inlet space in which some of the oil discharged through the discharge port is introduced.
  • variable vane pump according to an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings.
  • inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
  • similar reference numerals are used for similar elements.
  • the dimensions of the structures are shown in an enlarged scale than actual for clarity of the invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 to 4 illustrate a variable vane pump 100 according to the present invention.
  • variable vane pump 100 includes a housing 200 having an inlet 201 and an outlet 202 formed at positions facing each other, an inner space 203 provided therein, and the housing 200.
  • Cam ring 310 and the pump space 311 partitioning the inner space 203 into a pump space 311 communicated with the suction port 201 and the discharge port 202, which is installed to be movable relative to the inside.
  • a rotary shaft 320 installed in the housing 200 to be inserted into the rotor, a rotor 330 installed on the rotary shaft 320 to rotate together with the rotary shaft 320, and a retractable installation on the rotor 330.
  • a plurality of vanes 340 in close contact with the inner circumferential surface of the cam ring 310, and installed in the housing 200, so that the cam ring 310 is eccentric with respect to the rotation shaft 320.
  • An elastic member 350 which provides an elastic force in the direction of the center of rotation of the rotary shaft 320, the suction port 201 and Installed in the housing 200 between the outlet 202, the cam ring 310 of the cam ring 310 is adjusted so that the eccentric position of the cam ring 310 with respect to the rotation shaft 320 in accordance with the rotation speed of the rotation shaft 320
  • a separation control unit 360 for forming an inlet space 363, a portion of the oil discharged through the discharge port 202 is introduced.
  • the housing 200 has a suction port 201 and a discharge port 202 formed on either side of the front or rear surface.
  • the suction port 201 and the discharge port 202 are formed at positions opposite to each other with respect to the center of the inner space 203.
  • the inner space 203 formed inside the housing 200 is formed in a circular shape, and is preferably formed in communication with the suction port 201 and the discharge port 202.
  • the housing 200 is in communication with the discharge port 202 is formed with a first internal flow path 204 through which the oil discharged through the discharge port 202 flows.
  • a first connector 205 is connected to the device using the discharged oil, such as a worm gear cylinder, the first inner passage 204 is formed in the first connector 205 It is formed in communication.
  • the housing 200 is formed with a second internal flow passage 206 communicating with the suction port 201.
  • a second connector 207 is connected to the oil supply means, such as an oil tank, the second internal flow path 206 is formed in communication with the second connector 207.
  • the housing 200 is not shown in the figure, the front and rear surfaces of the body ring so as to close the front and rear of the annular body ring provided with the inner space 203, the front and rear surfaces are opened. And a plurality of body plates each having a suction port 201 and a discharge port 202 formed therein.
  • the housing 200 is installed on the open front and rear surfaces of the cam ring 310, a plurality of fixing plates (not shown) formed with the first and second communication ports communicated with the suction port 201 and the discharge port 202. It may be further provided.
  • the cam ring 310 is formed in an annular shape in which the pump space 311 is provided, and has an outer diameter smaller than the inner diameter of the housing 200 so that the cam ring 310 can be installed to be movable relative to the inside of the housing 200. At this time, the front and rear surfaces of the cam ring 310 is opened so that the pump space 311 can communicate with the suction port 201 and the discharge port 202, the housing 200 is in contact with the inner surface of the housing 200, respectively. It is preferably formed to have a front and rear width corresponding to the front and rear width of the inner space (203).
  • the outer circumferential surface of the cam ring 310 is provided with a metal bearing 312 to reduce the friction between the cam ring 310 and the housing 200.
  • the metal bearing 312 is formed in an annular shape provided with a hollow so that the inner circumferential surface is in contact with the outer circumferential surface of the cam ring 310.
  • the metal bearing 312 rotatably supports the cam ring 310, and a bearing such as an oilless bearing, a needle bearing, or a ball bearing is preferably applied.
  • the rotating shaft 320 extends in the front-rear direction and is installed in the housing 200 to penetrate the inner space 203. At this time, the rotating shaft 320 is rotatably supported by the housing 200, it is preferably installed to pass through the center of the inner space (203).
  • the driving means for generating a rotational force such as an engine or a motor of the vehicle is connected to the end.
  • the rotor 330 is installed on the rotating shaft 320 exposed to the pump space 311, it is preferable to extend a predetermined length in the front and rear direction.
  • the rotor 330 is formed so that the plurality of vane grooves are spaced apart from each other along the circumferential direction so that the vanes 340 can pass through the outer circumferential surface.
  • the vane groove extends along the radial direction of the rotor 330 or the rotating shaft 320. That is, the vane groove is formed so as to be penetrated a predetermined depth in the direction of the center of rotation of the rotor 330 from the outer peripheral surface of the rotor 330.
  • the mounting grooves are formed in an annular shape so that the elastic ring 330 may be installed on the front or rear surface, respectively.
  • the installation groove is formed in an annular shape having a predetermined radius with respect to the rotation center of the rotor 330, it is formed to pass through the vane grooves.
  • a plurality of elastic rings 333 are respectively installed on the front or rear of the rotor 330, it is formed of a metallic material having a predetermined elasticity.
  • the elastic ring 333 is formed in an annular shape having an outer diameter smaller than the inner diameter of the body ring of the housing 300 and larger than the outer diameter of the rotating shaft 320, although not shown in the figure, one side is cut out.
  • Elastic rings 333 are installed in the installation grooves formed on the front and rear surfaces of the rotor 330, it is installed in the vanes through the vane groove communicated with the installation groove.
  • the elastic ring 333 is formed with a plurality of irregularities along the outer circumferential surface.
  • a plurality of vanes 340 are inserted into the vane grooves of the rotor 330, one end of which is in contact with the inner circumferential surface of the cam ring 310, and the other end of the vane 340 is inserted into the vane grooves of the rotor 330.
  • the front and rear edges of the other end of the vane 340 is provided with an insertion groove (not shown) so that the elastic rings 333 are respectively inserted to elastically support the vane 340.
  • the insertion groove may extend a predetermined length from one end of the vane 340 toward the other end.
  • the elastic ring 333 is inserted into the insertion groove formed at the front and rear edges of the vane 340, and the elastic ring 333 provides an elastic force so that one end of the vane 340 contacts the inner circumferential surface of the cam ring 310. Since the state in which one end of the vane 340 is in contact with the inner circumferential surface of the cam ring 310 is maintained by the elastic ring 333, the variable vane pump 100 may pump oil even if the rotating shaft 320 rotates at a low speed. .
  • the elastic member 350 is installed on the inner circumferential surface of the housing 200 between the discharge port 202 and the suction port 201, and the one end is supported on the outer circumferential surface of the cam ring 310, and the other end is supported on the housing 200. do.
  • the elastic member 350 is applied to the coil spring having a predetermined elasticity to provide the cam ring 310 in the direction of the center of rotation of the rotation axis 320 from the inner peripheral surface of the housing 200.
  • the cam ring 310 is eccentrically supported with respect to the rotor 330 by the elastic force of the elastic member 350.
  • the space adjusting part 360 includes a plurality of partition members 361 provided on the inner circumferential surface of the housing 200 at a position adjacent to the elastic member 350, and end portions of the partition members 361 abut on the outer circumferential surface of the cam ring 310. And a plurality of support springs 362 providing an elastic force.
  • the partition member 361 is formed to have a front and rear width corresponding to the front and rear width of the inner space 203 so as to partition the inflow space 363 in the space between the cam ring 310 and the housing 200.
  • the predetermined length extends in the radial direction of 320.
  • an inlet 364 is formed on the inner circumferential surface of the housing 200 to allow the partition members 361 to be introduced therein.
  • the inlet 364 has a front and rear width corresponding to the front and rear width of the partition member 361, and is formed to be pulled in a direction away from the rotation shaft 320 with respect to the inner circumferential surface of the housing 200.
  • the inlet 364 is formed on the inner circumferential surface of the housing 200 to be spaced apart from each other along the circumferential direction.
  • the inlet openings 364 are rotated on the shaft 320 so that the partition members 361 may be installed in the housing 200 such that the separation distances decrease from the inner circumferential surface of the housing 200 to the cam ring 310. It is preferable to extend linearly so as to be farther away from each other.
  • the space between the partition members 361, the inner surface of the housing 200, and the outer circumferential surface of the cam ring 310 forms the inflow space 363.
  • the cam ring 310 is eccentric with respect to the rotating shaft 320 Therefore, an area difference between an upper portion and a lower portion of the discharge chamber occurs based on the rotation shaft 320.
  • the lower portion of the discharge chamber has a larger volume than the upper portion of the discharge chamber. Accordingly, the inner surface of the cam ring 310 corresponding to the lower portion of the discharge chamber is larger than the inner surface of the cam ring 310 corresponding to the upper portion of the discharge chamber, and the cam ring 310 corresponding to the lower portion of the discharge chamber.
  • the partition members 361 are installed in the housing 200 such that the area between the partition members 361 is smaller than the eccentric cross-sectional area.
  • the partition members 361 are preferably installed in the housing 200 at a position adjacent to a portion having a larger area among the upper portion or the lower portion of the discharge chamber based on the rotation shaft 320. That is, referring to FIG. 1, the partition members 361 are provided on the lower inner side surface of the housing adjacent to the lower portion of the larger discharge chamber.
  • the support springs 362 are respectively installed at the inlets 364 to provide elastic force so that the partition member 361 protrudes from the inner circumferential surface of the housing 200. Meanwhile, in the illustrated example, the support spring 362 has a structure in which a leaf spring is applied, but the support spring 362 is not limited thereto, but a coil spring may be applied.
  • the housing 200 has an inflow passage 208 which communicates with the outlet 202 and the inlet space 363 so that some of the oil discharged from the outlet 202 can flow into the inlet space 363. Is formed.
  • one end of the inflow passage 208 communicates with the inflow space 363 between the partition members 361, and the other end thereof is formed to communicate with the first internal passage 204.
  • an orifice portion 211 for throttling oil injected into the inflow space 363 is formed in the housing 200 on the inflow passage 208.
  • the orifice portion 211 is formed at one end of the inflow passage 208.
  • the orifice portion 211 is provided with a chamber having a larger cross-sectional area than that of the inflow passage 208.
  • the oil introduced through the inflow passage 208 decreases in flow velocity as it flows into the chamber of the orifice portion 211, but friction occurs between the chamber inner wall surface of the orifice portion 211 and the oil, and the pressure is generated by the generated friction. Losses occur and the oil pressure decreases.
  • the orifice portion 211 is not limited thereto, and any structure can be used to reduce the pressure of oil.
  • the housing 200 has a discharge passage 209 is formed in communication with the inlet space 363 and the suction port 201 so that the oil in the inlet space 363 can be introduced into the pump chamber.
  • the hydraulic pressure of the inflow space 363 is greater than or equal to a predetermined pressure
  • the oil in the inflow space 363 may be discharged to the suction port 201 in the housing 200 on the discharge flow path 209.
  • a relief valve 212 for opening and closing the discharge passage 209 is provided.
  • the relief valve 212 is a safety valve generally used in the prior art and a detailed description thereof will be omitted.
  • the relief valve 212 prevents the hydraulic pressure in the inflow space 363 from being higher than a predetermined pressure, thereby preventing damage to the pump and occurrence of defects due to a sudden increase in hydraulic pressure.
  • variable vane pump 100 Referring to the operation of the variable vane pump 100 according to the present invention configured as described above in detail.
  • the cam ring 310 is eccentrically set from the rotation shaft 320 by the elastic force of the elastic member 350.
  • the rotating shaft 320 is rotated, the rotor 330 installed on the rotating shaft 320 is also rotated, and the oil is pumped to the pump space 311 through the suction port 201 by the vanes 340 installed on the rotor 330. It is introduced and discharged to the outside through the discharge port 202.
  • the oil flowing into the inflow space 363 is decompressed through the orifice portion 211.
  • the outer surface of the cam ring 310 corresponding to the inflow space 363 has an area smaller than the eccentric cross-sectional area, the force acting on the inner surface of the cam ring 310, that is, the eccentric cross-sectional area, is the oil in the inflow space 363. Greater than the force generated by
  • the discharge chamber volume which is a part of the pump space 311 communicated with the discharge port 202 is reduced. That is, when the discharge pressure is increased, the cam ring 30 is moved to the lower side based on the drawing. In this case, the discharge chamber is reduced in the upper region but increased in the lower region to increase the eccentric cross-sectional area.
  • the volume of the suction chamber, which is a part of the pump space 311 communicated with the suction port 201 decreases, and thus the discharge flow rate discharged to the outside of the pump decreases.
  • the partition members 361 are supported to be inclined to each other, the area of the outer circumferential surface of the cam ring 310 between the partition members 361, that is, the inflow space 363 is closer to the inner surface of the housing 200.
  • the hydraulic working area of the oil introduced into the tank increases. Therefore, as the cam ring 310 is adjacent to the inner side of the housing 200, the force acting on the cam ring 310 by the oil filled in the inflow space 363 increases, so that the oil according to the speed increase of the rotation shaft 320 is increased.
  • the rate of reduction of the discharge flow rate can be adjusted.
  • the rate of decrease of the discharge flow rate due to the increase of the speed of the rotary shaft 320 in the low speed rotation state of the rotary shaft 320 is greater than the rate of decrease of the discharge flow rate due to the increase of the speed of the rotary shaft 320 in the high speed rotation state of the rotary shaft 320.
  • variable vane pump 100 when the variable vane pump 100 according to the present invention is applied to a vehicle power steering device, the oil discharged from the variable vane pump 100 according to the steering or non-steering of the handle for the same rotational speed of the rotary shaft 320 The discharge amount of is adjusted. That is, when steering the handle, the oil discharged from the housing 200 is supplied to the cylinder installed on the steering shaft of the vehicle, the variable vane pump 100 is in a constant pressure state. At this time, since the pressure of the pump space 311 inside the cam ring 310 and the pressure of the inflow space 363 of the separation control unit 360 are not relatively large, the cam ring 310 is rotated by the elastic member 350. ), A relatively large amount of oil is discharged per rotation of the rotating shaft 320 by maintaining the eccentric state. Since a relatively large amount of oil is pumped from the variable vane pump 100, the driver can steer the handle more easily.
  • the oil discharged from the variable vane pump 100 is in a dynamic pressure state because the oil is bypassed in a state in which the flow to the cylinder installed on the drive shaft of the vehicle is blocked, where the cam ring 310 Pressure inside the pump space 311 is greater than the pressure of the inlet space 363 of the separation control unit 360.
  • the pressure difference between the pressure of the pump space 311 in the cam ring 310 and the inflow space 363 of the separation control unit 360 is greater than when steering the handle. Therefore, the cam ring 310 is moved in the direction in which the elastic member 350 is compressed by the pressure difference.
  • the volume of the pump space 311, that is, the suction chamber, between the suction port 201 and the discharge port 202 decreases, and the flow rate of oil discharged per revolution of the rotating shaft 320 decreases. do.
  • variable vane pump 100 may adjust the discharge flow rate of oil according to steering and non-steering of the handle even if the rotation speed of the rotating shaft 320 does not change. There is an advantage to save the power to drive 100).
  • variable vane pump 100 is provided with an elastic ring 333 inside the rotor 330 to provide elastic force to the vanes 340, even if the rotating shaft 320 rotates at a low speed vane 340
  • the end of the field can be in close contact with the inner circumferential surface of the cam ring 310, the operation reliability is relatively high.
  • the cam ring 310 is provided with a metal bearing 312 on the outer circumferential surface of the cam ring 310, even if the rotating shaft 320 rotates at a high speed, the cam ring 310 is caused by friction between the inner contact surface of the cam ring 310 and one end of the vane 340. By rotating at a constant speed in the metal bearing 312, the frictional speed between the cam ring 310 internal surface and the upper end of the vane 340 is reduced.
  • Figure 5 shows a partition member 410 according to another embodiment of the present invention.
  • the partition member 410 is formed to have a circular cross section.
  • the inlet 412 is formed to be drawn in the direction away from the rotation axis 320 with respect to the inner peripheral surface of the housing 200, and extends so as to increase the mutual separation distance away from the inner peripheral surface of the housing 200, It is formed to bend to a predetermined curvature.
  • variable vane pump 100 when the variable vane pump 100 is applied to a vehicle power steering device, in the high speed rotation state of the rotation shaft 320, the reduction rate of the discharge flow rate according to the increase in speed is more than in the case of the partition member shown in the embodiment of FIG. 1. Since it is small, the steering steering of the vehicle according to the speed of the vehicle is prevented from being changed suddenly, thereby providing the driver with a more comfortable driving feeling at high speed.
  • the restraining member 361 may not be formed to have a circular cross section, but may be formed to have a curvature corresponding to the curvature of the inlet 362.
  • Figure 7 shows a variable vane pump 500 according to another embodiment of the present invention.
  • variable vane pump 500 further includes a leakage preventing unit 510 for preventing oil from leaking between the housing 200 and the rotation shaft 320.
  • the housing 200 has a recess 505 is formed at both ends in the longitudinal direction of the rotor 330, that is, the inner surfaces of the rotor 330 opposite to the front and rear surfaces thereof.
  • the recess groove 505 is formed on the inner surface of the body plate 210 of the housing 200, extends in an annular shape having a predetermined radius around the rotation axis 320, from the inner surface of the body plate 210 It is preferably formed to be drawn in a predetermined depth along the longitudinal direction of the rotary shaft (320).
  • the leakage preventing member 511 is formed on the inner surface of the body plate 210 between the vane groove and the rotation shaft 320 of the rotor 330 to be installed between the vane groove and the rotation shaft 320 of the rotor 330. It is.
  • fixing keys 506 are provided in the interior recesses 505 of the body plate 210 to prevent rotation of the leakage preventing member 511 of the leakage preventing unit 510 to be described later.
  • the fixing key 506 extends a predetermined length along the longitudinal direction of the rotation shaft 320, one end is fixed to the body plate 210, the other end is introduced into the advance groove 505.
  • the fixing is performed.
  • the recess groove 505 is formed on the inner surface of the plate.
  • the leakage preventing part 510 is provided at the longitudinal end of the rotor 330, that is, the front and rear surfaces of the rotor 330 to prevent the oil in the pump space from leaking between the rotation shaft 320 and the housing 200.
  • a plurality of oil leakage preventing members 511 which are installed on the inner surface of the housing 200 facing each other in a longitudinal direction of the rotation shaft 320 and are hollowed so that the rotation shaft 320 can be inserted therein;
  • a plurality of contact springs provided on the leakage preventing member 511 to provide an elastic force to the leakage preventing member 511 such that the leakage preventing member 511 may be in close contact with the longitudinal end of the rotor 330. 512).
  • the leakage preventing member 511 is inserted into the recesses 505 of the body plate 210, respectively, and is formed in an annular shape in which the hollow is provided. One end of the leakage preventing member 511 is inserted into the advance groove 505, the other end is installed on the body plate 210 to be in contact with the front or rear of the rotor 330.
  • the leakage preventing member 511 is preferably formed of a metallic or non-metallic material having a predetermined wear resistance and strength.
  • a fixing groove is formed at one end of the leakage preventing member 511 so that the fixing key 506 installed on the body plate 210 may be inserted.
  • the fixing groove extends a predetermined length from one end of the leakage preventing member 511 toward the other end.
  • a plurality of contact springs 512 are installed between the body plate 210 and the leakage preventing member 511 to provide an elastic force so that the other end of the leakage preventing member 511 is in close contact with the front or rear of the rotor 330.
  • the contact spring 512 is preferably a plate spring is applied.
  • variable vane pump 500 configured as described above is prevented from leaking between the housing 200 and the rotating shaft 320 by the leak preventing unit 510, even if the rotation speed of the rotating shaft 320 is slow. There is an advantage that it is possible to discharge a certain amount stably.
  • variable vane pump forms an inlet space through which some of the oil discharged from the pump flows between the cam ring and the housing, thereby reducing the discharge flow rate per rotation of the pump using the pressure of the discharged oil, and thus the structure is relatively simple. As the friction of the valve does not occur, the durability is improved and the service life is increased.
  • variable vane pump can adjust the flow rate of the oil discharged according to the steering wheel steering as well as the rotational speed of the rotary shaft when applied to the power steering.

Abstract

The present invention relates to a variable vane pump comprising: a housing which has a suction port and a discharge port positioned so as to face each other, and has an inner space provided therein; a cam ring which is installed in the housing so as to be capable of relative movement, and partitions the inner space into a pump space communicating with the suction port and the discharge port; a rotational shaft which is installed in the housing so as to be led into the pump space; a rotor which is installed on the rotational shaft so as to rotate therewith; a plurality of vanes which are provided to the rotor so as to be capable of advancing and retreating, thereby making close contact with the inner circumferential surface of the cam ring; an elastic member which is provided to the housing and applies elastic force to the cam ring in the direction of the center-of-rotation of the rotational shaft so as to enable the cam ring to be eccentric with respect to the rotational shaft; and a spacing adjustment part which is provided to the housing between the suction port and the discharge port, and has, formed between the outer circumferential surface of the cam ring and the inner circumferential surface of the housing, an inflow space into which a portion of oil discharged through the discharge port flows so as to enable the adjustment of the eccentric position of the cam ring with respect to the rotational shaft according to the rotational speed of the rotational shaft. The variable vane pump, according to the present invention, has, formed between the cam ring and the housing, the inflow space into which a portion of oil discharged from the pump flows, and thus the discharge flow rate per rotation of the pump may be increased/decreased by using the pressure of the discharged oil, and thus the pump has a relatively simple structure and has a merit of a longer service life by having enhanced durability since friction at a valve does not occur.

Description

가변 베인 펌프Variable vane pump
본 발명은 가변 베인 펌프에 관한 것으로서, 더욱 상세하게는 토출되는 오일의 압력을 이용하여 펌프의 회전당 토출유량을 가감시키는 가변 베인 펌프에 관한 것이다.The present invention relates to a variable vane pump, and more particularly, to a variable vane pump using the pressure of the oil discharged to reduce or reduce the discharge flow rate per rotation of the pump.
가변 베인 펌프는 외부 사용 기구에 높은 압력이 걸릴 때, 펌프 내압과 실린더 링을 이동시키는 컨트롤 밸브의 제1압력실과 제2압력실의 압력이 동알히게 되어도 실린더 링이 고정되어 안정된 유량을 토출할 수 있도록 한다.When the variable vane pump is subjected to high pressure on the external use mechanism, the cylinder ring is fixed and the stable flow rate can be discharged even if the pressure inside the pump and the pressure chamber of the first and second pressure chambers of the control valve for moving the cylinder ring are equal. Make sure
종래의 가변 베인펌프는 바디 내에서 로터축과 일체로 연결되며, 원주방향으로 분산 배치된 복수의 베인 홈 내를 다라 각각 진선운동을 하는 베인이 끼워져 있는 로터와, 로터에 편심지도록 외주를 감싸 형성됨과 아울러 베인의 선단부에 접촉되는 마차력에 의해 회전되며, 슬라이딩 공차로 편심되어 설치되어 있는 실린더 링과, 실린더 링의 외주면 일측에는 편심을 유지하기 위해 실린더 링을 지지하도록 형성된 제3탄성 부재 지지 가이드와, 실린더 링의 외주면 타측에는, 실린더 링을 지지하는 컨트롤 밸브를 포함한다.Conventional variable vane pump is integrally connected to the rotor shaft in the body, the rotor is fitted with a vane for each forward movement along the plurality of vane grooves distributed in the circumferential direction, and is formed wrapped around the outer circumference to eccentric to the rotor And a third elastic member support guide which is rotated by the carriage force in contact with the tip of the vane, and is provided to support the cylinder ring to maintain the eccentricity on one side of the outer circumferential surface of the cylinder ring, which is installed eccentrically with sliding tolerances. And a control valve supporting the cylinder ring on the other side of the outer circumferential surface of the cylinder ring.
또한, 컨트롤 밸브는 밸브 홀의 측면을 둘러싸는 측벽 내에서 수평으로 이동하는 밸브 피스톤과, 밸브 피스톤을 지지하는 제1탄성부재와, 측벽을 덮는 제1밸브캡과, 측벽 내의 밸브 피스톤의 일측에 위치하는 제1압력실과, 측벽 배의 밸브 피스톤의 타측에 위치하는 제2압력실과, 컨트롤 밸브와 밸브 홀 사이의 마찰에 의한 마모를 감소시키는 압력실로 이루어지며, 제1압력실 및 제2압력실 사이의 압력차에 의해 밸브 피스톤이 이동하게 된다.Further, the control valve is located on one side of the valve piston moving horizontally in the side wall surrounding the side of the valve hole, a first elastic member supporting the valve piston, a first valve cap covering the side wall, and a valve piston in the side wall. And a pressure chamber that reduces wear caused by friction between the control valve and the valve hole, and between the first pressure chamber and the second pressure chamber. The valve piston is moved by the pressure difference of.
여기서, 종래의 가변 베인 펌프는 상부가 U자 형상의 오목부를 가지며, 상부와 하부가 관통된 관통공을 갖는 가이드 바디와, 관통공을 하부로부터 관통하여 결합하는 조정 볼트와, 관통공이 형성된 상기 밸브 피스톤의 일측이 가이드 바디의 관통공에 대응하도록 U자 형상의 오목부에 위치시 관통공들을 관통하여 결합된 조정 볼트의 단부에 나사결합되는 테이퍼 형상의 테이퍼 너트를 갖는 가이드 부재를 더 포함한다.Here, the conventional variable vane pump has a U-shaped recess in the upper portion, a guide body having a through hole through which the upper and lower portions pass, an adjustment bolt for connecting the through hole through the lower portion, and the valve having the through hole formed therein. It further includes a guide member having a tapered tapered nut screwed to the end of the adjustment bolt coupled through the through holes when one side of the piston is located in the U-shaped recess to correspond to the through hole of the guide body.
이러한 가이드 부재는 U자 형상의 오목부가 밸브 피스톤의 일측과 연결되며, 컨트롤 밸브의 중앙 부위에 컨트롤 밸브와 수직방향으로 형성된 가이드 부재 이동 공간에서, 가이드 부재가 밸브 피스톤의 이동에 의해 실린더 링을 지지하며 이동시키게 된다. 즉, 경사각을 형성한 가이드 부재에는 제3탄성부재의 압력과 실린더 링의 편심된 단면적 차이의 압력이 작용하여 실린더 링이 이동하게 된다.In the guide member, the U-shaped recess is connected to one side of the valve piston, and the guide member supports the cylinder ring by the movement of the valve piston in a guide member moving space formed at a central portion of the control valve in a direction perpendicular to the control valve. Will be moved. That is, the pressure of the third elastic member and the pressure of the eccentric cross-sectional area difference of the cylinder ring act on the guide member having the inclination angle to move the cylinder ring.
그러나, 종래의 가변 베인 펌프는 실린더 링의 편심 단면적 압력이 가이드 부재를 통하여 감압 밸브의 하단에 작용함으로써 높은 마찰력이 발생하고, 이러한 높은 마찰력으로 인해 감압 밸브의 내구성이 약화되어 펌프의 사용수명이 감소되는 단점이 있다.However, in the conventional variable vane pump, a high friction force is generated by the eccentric cross-sectional pressure of the cylinder ring acting on the lower end of the pressure reducing valve through the guide member, and the high friction force reduces the durability of the pressure reducing valve, thereby reducing the service life of the pump. There is a disadvantage.
본 발명은 상기와 같은 문제점을 개선하기 위해 창안된 것으로서, 캠링과 하우징 사이에 펌프로부터 토출되는 오일 중 일부가 유입되는 유입공간을 형성하여 토출되는 오일의 압력을 이용하여 펌프의 회전당 토출유량을 가감시키는 가변 베인 펌프를 제공하는데 그 목적이 있다.The present invention was devised to improve the above problems, and forms an inflow space through which some of the oil discharged from the pump flows between the cam ring and the housing, and uses the pressure of the discharged oil to reduce the discharge flow rate per rotation of the pump. It is an object to provide a variable vane pump to be adjusted.
상기 목적을 달성하기 위한 본 발명에 따른 가변 베인 펌프는 서로 대향하는 위치에 흡입구 및 토출구가 형성되고, 내부에 내부공간이 마련된 하우징과, 상기 하우징 내부에 상대이동 가능하게 설치되는 것으로서, 상기 내부공간을 상기 흡입구 및 토출구에 연통되는 펌프공간으로 구획하는 캠링과, 상기 펌프공간에 인입되게 상기 하우징에 설치되는 회전축과, 상기 회전축에 설치되어 상기 회전축과 함께 회전하는 로터와, 상기 로터에 진퇴가능하게 설치되어 상기 캠링의 내주면에 밀착되는 다수의 베인과, 상기 하우징에 설치되며, 상기 회전축에 대해 상기 캠링이 편심되도록 상기 캠링에 상기 회전축의 회전중심 방향으로 탄성력을 제공하는 탄성부재와, 상기 흡입구 및 토출구 사이의 상기 하우징에 설치되는 것으로서, 상기 회전축의 회전속도에 따라 상기 회전축에 대한 상기 캠링의 편심위치가 조절되도록 상기 캠링의 외주면과 상기 하우징의 내주면 사이에, 상기 토출구를 통해 토출된 오일 중 일부가 유입되는 유입공간을 형성하는 이격조절부를 구비한다.The variable vane pump according to the present invention for achieving the above object is a suction port and a discharge port are formed in a position facing each other, the inner space is provided therein, and the relative space is installed in the housing, the inner space, A cam ring partitioning the pump into a pump space communicating with the suction port and the discharge port, a rotating shaft installed in the housing to be introduced into the pump space, a rotor provided on the rotating shaft and rotating together with the rotating shaft, and retractable to the rotor. A plurality of vanes installed in close contact with the inner circumferential surface of the cam ring, installed in the housing, and an elastic member configured to provide an elastic force to the cam ring in the direction of the center of rotation of the rotation shaft so that the cam ring is eccentric with respect to the rotation shaft, the suction port and It is installed in the housing between the discharge port, the rotational speed of the rotating shaft Accordingly, a separation control unit is formed between the outer circumferential surface of the cam ring and the inner circumferential surface of the housing so that the eccentric position of the cam ring with respect to the rotation shaft is adjusted to form an inflow space into which some of the oil discharged through the discharge port flows.
상기 이격조절부는 상기 유입공간이 형성될 수 있도록 상기 하우징의 내주면에 원주방향을 따라 상호 이격되게 위치되는 것으로서, 상기 하우징의 내주면에서 상기 회전축 방향으로 인출 및 인입가능하게 설치되는 복수의 구획부재와, 상기 구획부재의 단부가 상기 캠링의 외주면에 접하도록 상기 구획부재에 탄성력을 제공하는 복수의 지지스프링을 구비한다.The spacing control unit is positioned to be spaced apart from each other in the circumferential direction on the inner circumferential surface of the housing so that the inlet space is formed, a plurality of partition members are installed to be drawn out and retractable in the rotation axis direction from the inner circumferential surface of the housing; It is provided with a plurality of support springs to provide an elastic force to the partition member so that the end of the partition member is in contact with the outer peripheral surface of the cam ring.
상기 하우징은 상기 토출구로부터 토출되는 상기 오일 중 일부가 상기 유입공간으로 유입될 수 있도록 상기 토출구 및 유입공간에 연통되는 유입유로가 형성되고, 상기 유입유로에는 상기 유입공간으로 주입되는 오일을 교축시키기 위한 오리피스부가 형성된다.The housing is formed with an inflow passage communicating with the discharge port and the inflow space so that a portion of the oil discharged from the discharge port is introduced into the inflow space, and the inflow passage is for throttling oil injected into the inflow space. An orifice portion is formed.
상기 구획부재들은 상기 하우징의 내주면으로부터 상기 캠링에 인접될수록 상호 이격거리가 감소하게 상기 하우징에 설치된다.The partition members are installed in the housing such that the mutual separation distance decreases as the cam members are closer to the cam ring from the inner circumferential surface of the housing.
상기 구획부재는 원형의 단면을 갖도록 형성되고, 상기 하우징은 원주방향을 따라 상호 인접된 위치의 내주면에, 상기 구획부재가 인입될 수 있도록 각각 인입구가 형성되고, 상기 인입구들은 상기 하우징의 내주면에 대해 상기 회전축으로부터 멀어지는 방향으로 인입되게 형성되고, 상기 하우징의 내주면으로부터 멀어질수록 상호 이격거리가 증가하도록 연장되되, 소정의 곡률로 만곡되게 형성된 것이 바람직하다.The partition member is formed to have a circular cross section, the housing is formed on the inner circumferential surface of the position adjacent to each other along the circumferential direction, each inlet is formed so that the partition member can be inserted, the inlet is to the inner peripheral surface of the housing It is preferably formed to be pulled in a direction away from the rotation axis, extending so as to be spaced apart from each other as the distance from the inner peripheral surface of the housing increases, it is formed to be curved at a predetermined curvature.
한편, 상기 하우징은 원주방향을 따라 상호 인접된 위치의 내주면에, 상기 구획부재가 인입될 수 있도록 각각 인입구가 형성되고, 상기 인입구들은 상기 하우징의 내주면에 대해 상기 회전축으로부터 멀어지는 방향으로 인입되게 형성되고, 상기 하우징의 내주면으로부터 멀어질수록 상호 이격거리가 증가하도록 연장되되, 소정의 곡률로 만곡되게 형성되고, 상기 구획부재는 상기 인입구의 곡률에 대응되는 곡률로 만곡되게 형성될 수도 있다.On the other hand, the housing is formed on the inner peripheral surface of the position adjacent to each other along the circumferential direction, each inlet is formed so that the partition member can be introduced, the inlet is formed to be drawn in a direction away from the rotation axis with respect to the inner peripheral surface of the housing The distance from the inner circumferential surface of the housing is extended to increase the mutual separation distance, is formed to be curved to a predetermined curvature, the partition member may be formed to be curved to a curvature corresponding to the curvature of the inlet.
상기 하우징은 상기 유입공간의 오일이 상기 펌프실로 유입될 수 있도록 상기 유입공간 및 흡입구에 연통되게 배출유로가 형성되고, 상기 배출유로 상의 상기 하우징에 설치되어 상기 유입공간의 유압이 기설정된 압력 이상일 경우, 상기 유입공간의 오일이 상기 흡입구로 배출될 수 있도록 상기 배출유로를 개폐하는 릴리프 밸브를 더 구비하는 것이 바람직하다.The housing has a discharge passage formed in communication with the inlet space and the suction port so that the oil in the inlet space is introduced into the pump chamber, and is installed in the housing on the discharge passage so that the hydraulic pressure of the inlet space is higher than a predetermined pressure. It is preferable to further include a relief valve for opening and closing the discharge passage so that the oil in the inlet space can be discharged to the suction port.
한편, 본 발명에 따른 가변 베인 펌프는 상기 캠링의 외주면을 감싸도록 형성되며, 상기 캠링과 하우징 사이의 마찰을 감소시키는 메탈 베어링을 더 구비한다.On the other hand, the variable vane pump according to the present invention is formed to surround the outer circumferential surface of the cam ring, and further comprises a metal bearing to reduce the friction between the cam ring and the housing.
또한, 본 발명에 따른 가변 베인 펌프는 상기 로터에 설치되는 것으로서, 상기 베인들의 단부가 상기 캠링의 내주면에 접할 수 있도록 상기 베인들에 탄성력을 제공하는 탄성링을 더 구비하는 것이 바람직하다.In addition, the variable vane pump according to the present invention is installed in the rotor, it is preferable to further include an elastic ring for providing an elastic force to the vanes so that the end of the vanes in contact with the inner peripheral surface of the cam ring.
본 발명에 따른 가변 베인 펌프는 캠링과 하우징 사이에 펌프로부터 토출되는 오일 중 일부가 유입되는 유입공간을 형성하여 토출되는 오일의 압력을 이용하여 펌프의 회전당 토출유량을 가감시키므로 구조가 비교적 단순하며, 밸브의 마찰이 발생되지 않아 내구성이 향상되어 사용수명이 증가하는 장점이 있다.The variable vane pump according to the present invention forms an inlet space through which some of the oil discharged from the pump flows between the cam ring and the housing, thereby reducing the discharge flow rate per rotation of the pump using the pressure of the discharged oil, and thus the structure is relatively simple. As the friction of the valve does not occur, the durability is improved and the service life is increased.
또한, 상기 가변 베인 펌프는 파워스티어링에 적용시 회전축의 회전속도 뿐 아니라 핸들의 조향 유무에 따라 토출되는 오일의 유량을 조절할 수 있다.In addition, the variable vane pump can adjust the flow rate of the oil discharged according to the steering wheel steering as well as the rotational speed of the rotary shaft when applied to the power steering.
도 1은 본 발명에 따른 가변 베인 펌프에 대한 단면도.1 is a cross-sectional view of a variable vane pump according to the present invention.
도 2는 도 1의 가변 베인 펌프의 이격조절부에 대한 부분 확대 단면도.Figure 2 is an enlarged partial cross-sectional view of the separation control of the variable vane pump of Figure 1;
도 3은 도 1의 가변 베인 펌프의 하우징에 대한 부분 단면도.3 is a partial cross-sectional view of the housing of the variable vane pump of FIG.
도 4는 도 1의 가변 베인 펌프의 회전축의 고속 회전상태를 나타낸 단면도.4 is a cross-sectional view showing a high speed rotation state of the rotating shaft of the variable vane pump of FIG.
도 5는 본 발명의 또 다른 실시 예에 따른 가변 베인 펌프의 이격조절부에 대한 부분 단면도.Figure 5 is a partial cross-sectional view of the separation control unit of the variable vane pump according to another embodiment of the present invention.
도 6은 본 발명의 또 다른 실시 예에 다른 가변 베인 펌프의 이격조절부에 대한 부분 단면도.Figure 6 is a partial cross-sectional view of the separation control part of the variable vane pump according to another embodiment of the present invention.
도 7은 본 발명의 또 다른 실시 예에 따른 가변 베인 펌프의 평단면도.Figure 7 is a plan sectional view of a variable vane pump according to another embodiment of the present invention.
본 발명에 따른 가변 베인 펌프는 서로 대향하는 위치에 흡입구 및 토출구가 형성되고, 내부에 내부공간이 마련된 하우징과, 상기 하우징 내부에 상대이동 가능하게 설치되는 것으로서, 상기 내부공간을 상기 흡입구 및 토출구에 연통되는 펌프공간으로 구획하는 캠링과, 상기 펌프공간에 인입되게 상기 하우징에 설치되는 회전축과, 상기 회전축에 설치되어 상기 회전축과 함께 회전하는 로터와, 상기 로터에 진퇴가능하게 설치되어 상기 캠링의 내주면에 밀착되는 다수의 베인과, 상기 하우징에 설치되며, 상기 회전축에 대해 상기 캠링이 편심되도록 상기 캠링에 상기 회전축의 회전중심 방향으로 탄성력을 제공하는 탄성부재와, 상기 흡입구 및 토출구 사이의 상기 하우징에 설치되는 것으로서, 상기 회전축의 회전속도에 따라 상기 회전축에 대한 상기 캠링의 편심위치가 조절되도록 상기 캠링의 외주면과 상기 하우징의 내주면 사이에, 상기 토출구를 통해 토출된 오일 중 일부가 유입되는 유입공간을 형성하는 이격조절부를 구비하는 것을 특징으로 한다.In the variable vane pump according to the present invention, a suction port and a discharge port are formed at positions facing each other, and a housing having an internal space provided therein and a relative movable inside the housing, wherein the internal space is provided at the suction port and the discharge port. A cam ring partitioned into a communicating pump space, a rotation shaft installed in the housing to be introduced into the pump space, a rotor provided on the rotation shaft and rotating together with the rotation shaft, and an inner circumferential surface of the cam ring removably installed A plurality of vanes in close contact with each other, an elastic member installed in the housing and providing an elastic force to the cam ring in a direction of the center of rotation of the rotation shaft so that the cam ring is eccentric with respect to the rotation shaft, and in the housing between the suction port and the discharge port. As installed, the image relative to the rotary shaft in accordance with the rotational speed of the rotary shaft It characterized in that it comprises a spacing control portion between the outer circumferential surface of the cam ring and the inner circumferential surface of the housing so that the eccentric position of the cam ring is adjusted, forming an inlet space in which some of the oil discharged through the discharge port is introduced.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 가변 베인 펌프에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.Hereinafter, a variable vane pump according to an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings. As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements. In the accompanying drawings, the dimensions of the structures are shown in an enlarged scale than actual for clarity of the invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
도 1 내지 도 4에는 본 발명에 따른 가변 베인 펌프(100)가 도시되어 있다.1 to 4 illustrate a variable vane pump 100 according to the present invention.
도면을 참조하면, 가변 베인 펌프(100)는 서로 대향하는 위치에 흡입구(201) 및 토출구(202)가 형성되고, 내부에 내부공간(203)이 마련된 하우징(200)과, 상기 하우징(200) 내부에 상대이동 가능하게 설치되는 것으로서, 상기 내부공간(203)을 상기 흡입구(201) 및 토출구(202)에 연통되는 펌프공간(311)으로 구획하는 캠링(310)과, 상기 펌프공간(311)에 인입되게 상기 하우징(200)에 설치되는 회전축(320)과, 상기 회전축(320)에 설치되어 상기 회전축(320)과 함께 회전하는 로터(330)와, 상기 로터(330)에 진퇴가능하게 설치되어 상기 캠링(310)의 내주면에 밀착되는 다수의 베인(340)과, 상기 하우징(200)에 설치되며, 상기 회전축(320)에 대해 상기 캠링(310)이 편심되도록 상기 캠링(310)에 상기 회전축(320)의 회전중심 방향으로 탄성력을 제공하는 탄성부재(350)와, 상기 흡입구(201) 및 토출구(202) 사이의 상기 하우징(200)에 설치되는 것으로서, 상기 회전축(320)의 회전속도에 따라 상기 회전축(320)에 대한 상기 캠링(310)의 편심위치가 조절되도록 상기 캠링(310)의 외주면과 상기 하우징(200)의 내주면 사이에, 상기 토출구(202)를 통해 토출된 오일 중 일부가 유입되는 유입공간(363)을 형성하는 이격조절부(360)를 구비한다.Referring to the drawings, the variable vane pump 100 includes a housing 200 having an inlet 201 and an outlet 202 formed at positions facing each other, an inner space 203 provided therein, and the housing 200. Cam ring 310 and the pump space 311 partitioning the inner space 203 into a pump space 311 communicated with the suction port 201 and the discharge port 202, which is installed to be movable relative to the inside. A rotary shaft 320 installed in the housing 200 to be inserted into the rotor, a rotor 330 installed on the rotary shaft 320 to rotate together with the rotary shaft 320, and a retractable installation on the rotor 330. And a plurality of vanes 340 in close contact with the inner circumferential surface of the cam ring 310, and installed in the housing 200, so that the cam ring 310 is eccentric with respect to the rotation shaft 320. An elastic member 350 which provides an elastic force in the direction of the center of rotation of the rotary shaft 320, the suction port 201 and Installed in the housing 200 between the outlet 202, the cam ring 310 of the cam ring 310 is adjusted so that the eccentric position of the cam ring 310 with respect to the rotation shaft 320 in accordance with the rotation speed of the rotation shaft 320 Between the outer circumferential surface and the inner circumferential surface of the housing 200, there is provided a separation control unit 360 for forming an inlet space 363, a portion of the oil discharged through the discharge port 202 is introduced.
하우징(200)은 전면 또는 후면 중 어느 일측면에 흡입구(201) 및 토출구(202)가 형성되어 있다. 이때, 상기 흡입구(201) 및 토출구(202)는 내부공간(203)의 중심을 기준으로 상호 대향된 위치에 각각 형성된다. 하우징(200) 내부에 형성된 내부공간(203)은 원형으로 형성되며, 흡입구(201) 및 토출구(202)에 연통되게 형성된 것이 바람직하다.The housing 200 has a suction port 201 and a discharge port 202 formed on either side of the front or rear surface. In this case, the suction port 201 and the discharge port 202 are formed at positions opposite to each other with respect to the center of the inner space 203. The inner space 203 formed inside the housing 200 is formed in a circular shape, and is preferably formed in communication with the suction port 201 and the discharge port 202.
한편, 하우징(200)은 토출구(202)에 연통되어 토출구(202)를 통해 토출된 오일이 유동하는 제1내부유로(204)가 형성되어 있다. 이때, 하우징(200)의 일측에는 웜기어 실린더와 같은 토출된 오일이 이용되는 장치가 연결되는 제1연결구(205)가 형성되고, 상기 제1내부유로(204)는 상기 제1연결구(205)에 연통되게 형성된다.On the other hand, the housing 200 is in communication with the discharge port 202 is formed with a first internal flow path 204 through which the oil discharged through the discharge port 202 flows. At this time, one side of the housing 200 is formed with a first connector 205 is connected to the device using the discharged oil, such as a worm gear cylinder, the first inner passage 204 is formed in the first connector 205 It is formed in communication.
또한, 하우징(200)은 흡입구(201)에 연통되는 제2내부유로(206)가 형성되어 있다. 하우징(200)의 타측에는 오일탱크와 같이 오일 공급수단이 연결되는 제2연결구(207)가 형성되고, 제2내부유로(206)는 제2연결구(207)에 연통되게 형성된다.In addition, the housing 200 is formed with a second internal flow passage 206 communicating with the suction port 201. On the other side of the housing 200 is formed a second connector 207 is connected to the oil supply means, such as an oil tank, the second internal flow path 206 is formed in communication with the second connector 207.
한편, 하우징(200)은 도면에 도시되진 않았지만, 전후면이 개방된 내부공간(203)이 마련된 환형의 바디 링과, 상기 내부공간(203)의 전후방을 폐쇄할 수 있도록 상기 바디 링의 전후면에 각각 설치되며, 흡입구(201), 토출구(202)가 형성된 복수의 바디 플레이트를 구비한다.On the other hand, although the housing 200 is not shown in the figure, the front and rear surfaces of the body ring so as to close the front and rear of the annular body ring provided with the inner space 203, the front and rear surfaces are opened. And a plurality of body plates each having a suction port 201 and a discharge port 202 formed therein.
또한, 하우징(200)은 캠링(310)의 개방된 전후면에 설치되며, 상기 흡입구(201) 및 토출구(202)에 연통되는 제1 및 제2연통구가 형성된 복수의 고정플레이트(미도시)를 더 구비할 수도 있다.In addition, the housing 200 is installed on the open front and rear surfaces of the cam ring 310, a plurality of fixing plates (not shown) formed with the first and second communication ports communicated with the suction port 201 and the discharge port 202. It may be further provided.
캠링(310)은 내부에 펌프공간(311)이 마련된 환형으로 형성되며, 하우징(200) 내부에 상대이동 가능하게 설치될 수 있도록 하우징(200)의 내경보다 작은 외경을 갖도록 형성된다. 이때, 캠링(310)은 흡입구(201) 및 토출구(202)에 펌프공간(311)이 연통될 수 있도록 전후면이 개방되되, 전후면이 각각 하우징(200)의 내측면에 접하도록 하우징(200)의 내부공간(203)의 전후폭에 대응되는 전후 폭을 갖도록 형성되는 것이 바람직하다.The cam ring 310 is formed in an annular shape in which the pump space 311 is provided, and has an outer diameter smaller than the inner diameter of the housing 200 so that the cam ring 310 can be installed to be movable relative to the inside of the housing 200. At this time, the front and rear surfaces of the cam ring 310 is opened so that the pump space 311 can communicate with the suction port 201 and the discharge port 202, the housing 200 is in contact with the inner surface of the housing 200, respectively. It is preferably formed to have a front and rear width corresponding to the front and rear width of the inner space (203).
한편, 캠링(310)의 외주면에는 캠링(310)과 하우징(200) 사이의 마찰을 감소시키기 위해 메탈 베어링(312)이 설치되어 있다. 상기 메탈 베어링(312)은 내주면이 상기 캠링(310)의 외주면에 접하도록 중공이 마련된 환형으로 형성된다. 상기 메탈 베어링(312)은 캠링(310)을 회전가능하게 지지하는 것으로서, 오일리스 베어링, 니들 베어링 또는 볼 베어링과 같은 베어링이 적용되는 것이 바람직하다.On the other hand, the outer circumferential surface of the cam ring 310 is provided with a metal bearing 312 to reduce the friction between the cam ring 310 and the housing 200. The metal bearing 312 is formed in an annular shape provided with a hollow so that the inner circumferential surface is in contact with the outer circumferential surface of the cam ring 310. The metal bearing 312 rotatably supports the cam ring 310, and a bearing such as an oilless bearing, a needle bearing, or a ball bearing is preferably applied.
회전축(320)은 전후방향으로 연장되며, 내부공간(203)에 관통되게 하우징(200)에 설치된다. 이때, 회전축(320)은 하우징(200)에 회전가능하게 지지되며, 내부공간(203)의 중심을 통과하도록 설치되는 것이 바람직하다. 또한, 회전축(320)은 도면에 도시되진 않았지만, 단부에는 차량의 엔진이나 모터와 같이 회전력을 발생시키는 구동수단이 연결되어 있다.The rotating shaft 320 extends in the front-rear direction and is installed in the housing 200 to penetrate the inner space 203. At this time, the rotating shaft 320 is rotatably supported by the housing 200, it is preferably installed to pass through the center of the inner space (203). In addition, although the rotation shaft 320 is not shown in the drawing, the driving means for generating a rotational force, such as an engine or a motor of the vehicle is connected to the end.
로터(330)는 펌프공간(311)에 노출된 회전축(320)에 설치되며, 전후방향으로 소정길이 연장되는 것이 바람직하다. 또한, 로터(330)는 외주면에 상기 베인(340)들이 관통될 수 있도록 다수의 베인홈이 원주방향을 따라 상호 이격되게 형성되어 있다. 상기 베인홈은 로터(330) 또는 회전축(320)의 반경방향을 따라 연장된다. 즉, 상기 베인홈은 로터(330)의 외주면으로부터 로터(330)의 회전중심 방향으로 소정깊이 인입되게 형성된다.The rotor 330 is installed on the rotating shaft 320 exposed to the pump space 311, it is preferable to extend a predetermined length in the front and rear direction. In addition, the rotor 330 is formed so that the plurality of vane grooves are spaced apart from each other along the circumferential direction so that the vanes 340 can pass through the outer circumferential surface. The vane groove extends along the radial direction of the rotor 330 or the rotating shaft 320. That is, the vane groove is formed so as to be penetrated a predetermined depth in the direction of the center of rotation of the rotor 330 from the outer peripheral surface of the rotor 330.
또한, 로터(330)는 도면에 도시되진 않았지만, 전면 또는 후면에 탄성링(330)이 각각 설치될 수 있도록 환형으로 설치홈들이 형성되어 있다. 상기 설치홈은 로터(330)의 회전중심을 기준으로 소정의 반경을 갖는 환형으로 형성되되, 베인홈들을 통과하도록 형성된다.In addition, although the rotor 330 is not shown in the drawing, the mounting grooves are formed in an annular shape so that the elastic ring 330 may be installed on the front or rear surface, respectively. The installation groove is formed in an annular shape having a predetermined radius with respect to the rotation center of the rotor 330, it is formed to pass through the vane grooves.
탄성링(333)은 복수개가 로터(330)의 전면 또는 후면에 각각 설치되는 것으로서, 소정의 탄성을 갖는 금속성 소재로 형성된다. 상기 탄성링(333)은 하우징(300)의 바디 링의 내경보다 작고, 회전축(320)의 외경보다 큰 외경을 갖는 환형으로 형성되며, 도면에 도시되진 않았지만, 일측이 절개되어 있다. 탄성링(333)들은 로터(330)의 전후면에 형성된 설치홈들에 설치되며, 설치홈에 연통된 베인홈을 통해 베인들에 설치된다. 또한, 탄성링(333)은 외주면을 따라 다수의 요철이 형성되어 있다.A plurality of elastic rings 333 are respectively installed on the front or rear of the rotor 330, it is formed of a metallic material having a predetermined elasticity. The elastic ring 333 is formed in an annular shape having an outer diameter smaller than the inner diameter of the body ring of the housing 300 and larger than the outer diameter of the rotating shaft 320, although not shown in the figure, one side is cut out. Elastic rings 333 are installed in the installation grooves formed on the front and rear surfaces of the rotor 330, it is installed in the vanes through the vane groove communicated with the installation groove. In addition, the elastic ring 333 is formed with a plurality of irregularities along the outer circumferential surface.
베인(340)은 다수개가 로터(330)의 베인홈들에 각각 삽입되는 것으로서, 일단부는 캠링(310)의 내주면에 접하고, 타단부는 로터(330)의 베인홈들에 인입되도록 설치된다. 이때, 도면에 도시되진 않았지만, 베인(340)의 타단부 전후방 가장자리에는 탄성링(333)들이 각각 삽입되어 상기 베인(340)을 탄성지지할 수 있도록 삽입홈(미도시)이 각각 형성되어 있다. 상기 삽입홈은 베인(340)의 일단부에서 타단부 방향으로 소정길이 연장될 수도 있다.A plurality of vanes 340 are inserted into the vane grooves of the rotor 330, one end of which is in contact with the inner circumferential surface of the cam ring 310, and the other end of the vane 340 is inserted into the vane grooves of the rotor 330. At this time, although not shown in the drawings, the front and rear edges of the other end of the vane 340 is provided with an insertion groove (not shown) so that the elastic rings 333 are respectively inserted to elastically support the vane 340. The insertion groove may extend a predetermined length from one end of the vane 340 toward the other end.
베인(340)의 전후방 가장자리에 형성된 삽입홈에 탄성링(333)이 삽입되고, 탄성링(333)은 베인(340)의 일단부가 캠링(310)의 내주면에 접하도록 탄성력을 제공한다. 상기 탄성링(333)에 의해 베인(340)의 일단부가 캠링(310)의 내주면에 접촉된 상태가 유지되므로 회전축(320)이 저속으로 회전하더라도 가변 베인 펌프(100)는 오일의 펌핑이 가능하다.The elastic ring 333 is inserted into the insertion groove formed at the front and rear edges of the vane 340, and the elastic ring 333 provides an elastic force so that one end of the vane 340 contacts the inner circumferential surface of the cam ring 310. Since the state in which one end of the vane 340 is in contact with the inner circumferential surface of the cam ring 310 is maintained by the elastic ring 333, the variable vane pump 100 may pump oil even if the rotating shaft 320 rotates at a low speed. .
탄성부재(350)는 토출구(202) 및 흡입구(201) 사이의 하우징(200) 내주면에 설치되는 것으로서, 일단부가 캠링(310)의 외주면에 지지되고, 타단부는 하우징(200)에 지지되도록 설치된다. 상기 탄성부재(350)는 캠링(310)을 하우징(200)의 내주면으로부터 회전축(320)의 회전중심 방향으로 탄성력을 제공할 수 있도록 소정의 탄성을 갖는 코일 스프링이 적용된다. 상기 탄성부재(350)의 탄성력에 의해 캠링(310)은 로터(330)에 대해 편심되게 지지된다.The elastic member 350 is installed on the inner circumferential surface of the housing 200 between the discharge port 202 and the suction port 201, and the one end is supported on the outer circumferential surface of the cam ring 310, and the other end is supported on the housing 200. do. The elastic member 350 is applied to the coil spring having a predetermined elasticity to provide the cam ring 310 in the direction of the center of rotation of the rotation axis 320 from the inner peripheral surface of the housing 200. The cam ring 310 is eccentrically supported with respect to the rotor 330 by the elastic force of the elastic member 350.
이격조절부(360)는 탄성부재(350)에 인접된 위치의 하우징(200) 내주면에 설치된 복수의 구획부재(361)와, 상기 구획부재(361)의 단부가 캠링(310)의 외주면에 접하도록 탄성력을 제공하는 복수의 지지스프링(362)을 구비한다.The space adjusting part 360 includes a plurality of partition members 361 provided on the inner circumferential surface of the housing 200 at a position adjacent to the elastic member 350, and end portions of the partition members 361 abut on the outer circumferential surface of the cam ring 310. And a plurality of support springs 362 providing an elastic force.
구획부재(361)는 캠링(310)과 하우징(200) 사이의 공간에 상기 유입공간(363)을 구획할 수 있도록 내부공간(203)의 전후폭에 대응되는 전후 폭을 갖도록 형성되며, 회전축(320)의 반경방향으로 소정길이 연장된다. 이때, 하우징(200)의 내주면에는 구획부재(361)들이 인입될 수 있도록 인입구(364)가 형성되어 있다. 상기 인입구(364)는 구획부재(361)의 전후 폭에 대응되는 전후 폭을 갖고, 하우징(200)의 내주면에 대해 회전축(320)으로부터 멀어지는 방향으로 인입되게 형성된다. 상기 인입구(364)는 복수개가 하우징(200)의 내주면에 원주방향을 따라 상호 이격되게 형성된다.The partition member 361 is formed to have a front and rear width corresponding to the front and rear width of the inner space 203 so as to partition the inflow space 363 in the space between the cam ring 310 and the housing 200. The predetermined length extends in the radial direction of 320. In this case, an inlet 364 is formed on the inner circumferential surface of the housing 200 to allow the partition members 361 to be introduced therein. The inlet 364 has a front and rear width corresponding to the front and rear width of the partition member 361, and is formed to be pulled in a direction away from the rotation shaft 320 with respect to the inner circumferential surface of the housing 200. The inlet 364 is formed on the inner circumferential surface of the housing 200 to be spaced apart from each other along the circumferential direction.
이때, 상기 구획부재(361)들이 상기 하우징(200)의 내주면으로부터 상기 캠링(310)에 인접될수록 상호 이격거리가 감소하게 상기 하우징(200)에 설치될 수 있도록 상기 인입구(364)들은 회전축(320)으로부터 멀어질수록 상호 이격거리가 멀어지도록 선형으로 연장형성되는 것이 바람직하다. 상기 구획부재(361)들, 하우징(200)의 내측면 및 캠링(310)의 외주면 사이의 공간이 상기 유입공간(363)을 형성한다.In this case, the inlet openings 364 are rotated on the shaft 320 so that the partition members 361 may be installed in the housing 200 such that the separation distances decrease from the inner circumferential surface of the housing 200 to the cam ring 310. It is preferable to extend linearly so as to be farther away from each other. The space between the partition members 361, the inner surface of the housing 200, and the outer circumferential surface of the cam ring 310 forms the inflow space 363.
한편, 토출구(202)를 통해 오일의 토출이 진행되면 펌프공간(311) 중 토출구에 연통되는 공간에 오일이 토출되는 토출실이 생성되는데, 회전축(320)에 대해 캠링(310)이 편심되어 있기 때문에 회전축(320)을 기준으로 상기 토출실의 상측 부분과 하측 부분의 면적 차이가 발생한다. 도 1에 도시된 도면을 기준으로, 상기 토출실의 하측부분은 토출실의 상측 부분보다 더 큰 체적을 갖는다. 따라서, 상기 토출실의 하측부분에 대응되는 캠링(310)의 내측면은 토출실의 상측 부분에 대응되는 캠링(310)의 내측면보다 크며, 상기 토출실의 하측부분에 대응되는 캠링(310)의 내측면 면적에서 토출실의 상측 부분에 대응되는 캠링(310)의 내측면 면적을 뺀 면적을 편심 단면적으로 정의한다. 이때, 구획부재(361)들은 사이 면적이 상기 편심 단면적보다 작도록 상기 하우징(200)에 설치된다. 또한, 구획부재(361)들은 회전축(320)을 기준으로 상기 토출실의 상측 부분 또는 하측 부분 중 보다 큰 면적을 갖는 부분에 인접된 위치의 하우징(200)에 설치되는 것이 바람직하다. 즉, 도 1을 참조하면, 면적이 보다 큰 토출실의 하측부분에 인접되는 하우징의 하측 내측면에 상기 구획부재(361)들이 설치된다.On the other hand, when the discharge of the oil proceeds through the discharge port 202, the discharge chamber in which the oil is discharged is generated in the space communicating with the discharge port of the pump space 311, the cam ring 310 is eccentric with respect to the rotating shaft 320 Therefore, an area difference between an upper portion and a lower portion of the discharge chamber occurs based on the rotation shaft 320. Based on the drawing shown in FIG. 1, the lower portion of the discharge chamber has a larger volume than the upper portion of the discharge chamber. Accordingly, the inner surface of the cam ring 310 corresponding to the lower portion of the discharge chamber is larger than the inner surface of the cam ring 310 corresponding to the upper portion of the discharge chamber, and the cam ring 310 corresponding to the lower portion of the discharge chamber. An area obtained by subtracting the inner surface area of the cam ring 310 corresponding to the upper portion of the discharge chamber from the inner surface area of the eccentric cross section is defined. In this case, the partition members 361 are installed in the housing 200 such that the area between the partition members 361 is smaller than the eccentric cross-sectional area. In addition, the partition members 361 are preferably installed in the housing 200 at a position adjacent to a portion having a larger area among the upper portion or the lower portion of the discharge chamber based on the rotation shaft 320. That is, referring to FIG. 1, the partition members 361 are provided on the lower inner side surface of the housing adjacent to the lower portion of the larger discharge chamber.
지지스프링(362)은 인입구(364)들에 각각 설치되어 구획부재(361)가 하우징(200)의 내주면으로부터 돌출되도록 탄성력을 제공한다. 한편, 도시된 예에서는 지지스프링(362)은 판스프링이 적용된 구조가 도시되어 있으나, 지지스프링(362)은 이에 한정하는 것이 아니라 코일 스프링이 적용될 수도 있다.The support springs 362 are respectively installed at the inlets 364 to provide elastic force so that the partition member 361 protrudes from the inner circumferential surface of the housing 200. Meanwhile, in the illustrated example, the support spring 362 has a structure in which a leaf spring is applied, but the support spring 362 is not limited thereto, but a coil spring may be applied.
이때, 하우징(200)은 상기 토출구(202)로부터 토출되는 상기 오일 중 일부가 상기 유입공간(363)으로 유입될 수 있도록 상기 토출구(202) 및 유입공간(363)에 연통되는 유입유로(208)가 형성되어 있다. 이때, 유입유로(208)는 일단이 구획부재(361)들 사이의 유입공간(363)에 연통되며, 타단은 제1내부유로(204)에 연통되게 형성되는 것이 바람직하다. 또한, 유입유로(208) 상의 하우징(200)에는 상기 유입공간(363)으로 주입되는 오일을 교축시키기 위한 오리피스부(211)가 형성되어 있다. 오리피스부(211)는 유입유로(208)의 일단부에 형성된다. 제1내부유로(204)를 통해 토출되는 오일 중 일부는 오리피스부(211)를 통해 유입유로(208)로 유입된다.In this case, the housing 200 has an inflow passage 208 which communicates with the outlet 202 and the inlet space 363 so that some of the oil discharged from the outlet 202 can flow into the inlet space 363. Is formed. In this case, one end of the inflow passage 208 communicates with the inflow space 363 between the partition members 361, and the other end thereof is formed to communicate with the first internal passage 204. In addition, an orifice portion 211 for throttling oil injected into the inflow space 363 is formed in the housing 200 on the inflow passage 208. The orifice portion 211 is formed at one end of the inflow passage 208. Some of the oil discharged through the first internal passage 204 flows into the inflow passage 208 through the orifice portion 211.
오리피스부(211)는 도면에 도시되진 않았지만, 유입유로(208)의 단면적보다 더 큰 단면적을 갖는 챔버가 마련되어 있다. 유입유로(208)를 통해 유입된 오일은 오리피스부(211)의 챔버 내로 유입되면서 유속이 감소하나, 오리피스부(211)의 챔버 내벽면과 오일 사이에 마찰이 발생하고, 발생된 마찰에 의해 압력손실이 발생되어 오일의 유압이 감소한다. 한편, 오리피스부(211)는 이에 한정하는 것이 아니라 오일의 압력을 감압시킬 수 있는 구조이면 무엇이든 가능하다.Although not shown in the figure, the orifice portion 211 is provided with a chamber having a larger cross-sectional area than that of the inflow passage 208. The oil introduced through the inflow passage 208 decreases in flow velocity as it flows into the chamber of the orifice portion 211, but friction occurs between the chamber inner wall surface of the orifice portion 211 and the oil, and the pressure is generated by the generated friction. Losses occur and the oil pressure decreases. On the other hand, the orifice portion 211 is not limited thereto, and any structure can be used to reduce the pressure of oil.
또한, 하우징(200)은 상기 유입공간(363)의 오일이 상기 펌프실로 유입될 수 있도록 상기 유입공간(363) 및 흡입구(201)에 연통되게 배출유로(209)가 형성되어 있다. 이때, 상기 배출유로(209) 상의 상기 하우징(200)에, 상기 유입공간(363)의 유압이 기설정된 압력 이상일 경우, 상기 유입공간(363)의 오일이 상기 흡입구(201)로 배출될 수 있도록 상기 배출유로(209)를 개폐하는 릴리프 밸브(212)가 설치되어 있다. 상기 릴리프 밸브(212)는 종래에 일반적으로 사용되는 안전밸브로서 상세한 설명은 생략한다. 릴리프 밸브(212)에 의해 유입공간(363) 내의 유압이 기설정된 압력 이상이 되는 것이 방지되어 급격한 유압상승으로 인한 펌프의 파손 및 결함발생을 방지한다.In addition, the housing 200 has a discharge passage 209 is formed in communication with the inlet space 363 and the suction port 201 so that the oil in the inlet space 363 can be introduced into the pump chamber. In this case, when the hydraulic pressure of the inflow space 363 is greater than or equal to a predetermined pressure, the oil in the inflow space 363 may be discharged to the suction port 201 in the housing 200 on the discharge flow path 209. A relief valve 212 for opening and closing the discharge passage 209 is provided. The relief valve 212 is a safety valve generally used in the prior art and a detailed description thereof will be omitted. The relief valve 212 prevents the hydraulic pressure in the inflow space 363 from being higher than a predetermined pressure, thereby preventing damage to the pump and occurrence of defects due to a sudden increase in hydraulic pressure.
상술된 바와 같이 구성된 본 발명에 따른 가변 베인 펌프(100)의 작동을 상세히 설명하면 다음과 같다.Referring to the operation of the variable vane pump 100 according to the present invention configured as described above in detail.
캠링(310)은 탄성부재(350)의 탄성력에 의해 회전축(320)으로부터 편심되게 세팅되어 있다. 회전축(320)이 회전하면, 회전축(320)에 설치된 로터(330)도 함께 회전되는데, 로터(330)에 설치된 베인(340)들에 의해 오일은 흡입구(201)를 통해 펌프공간(311)로 유입되고, 토출구(202)를 통해 외부로 배출된다.The cam ring 310 is eccentrically set from the rotation shaft 320 by the elastic force of the elastic member 350. When the rotating shaft 320 is rotated, the rotor 330 installed on the rotating shaft 320 is also rotated, and the oil is pumped to the pump space 311 through the suction port 201 by the vanes 340 installed on the rotor 330. It is introduced and discharged to the outside through the discharge port 202.
토출구(202)를 통해 오일의 토출이 진행되면 토출구에 연통되는 펌프공간(311)의 일부분인 토출실에 토출압력이 발생되고, 상기 토출압력이 토출실에 대응되는 캠링(310)의 내측면에 작용한다. 이때, 회전축(320)을 기준으로 토출실의 하측부분이 토출실의 상측부분보다 더 큰 면적을 가지고 있으므로 도면을 기준으로 캠링(310)에 하측으로 힘이 작용한다.When the oil is discharged through the discharge port 202, discharge pressure is generated in the discharge chamber, which is a part of the pump space 311 communicated with the discharge port, and the discharge pressure is applied to the inner surface of the cam ring 310 corresponding to the discharge chamber. Works. At this time, since the lower portion of the discharge chamber has a larger area than the upper portion of the discharge chamber based on the rotation shaft 320, the force acts downward on the cam ring 310 based on the drawing.
이때, 이격조절부(360)에 의해 형성된 유입공간(363)에도 토출되는 오일 중 일부가 유입되는데, 유입공간(363)으로 유입되는 오일은 오리피스부(211)를 통과하여 감압된 상태이다. 그리고, 유입공간(363)에 대응되는 캠링(310)의 외측면은 상기 편심 단면적보다 작은 면적을 갖기 때문에 캠링(310)의 내측면 즉, 편심 단면적에 작용하는 힘이 유입공간(363)의 오일에 의해 발생하는 힘보다 크다.At this time, some of the oil discharged into the inflow space 363 formed by the separation control unit 360 is introduced, the oil flowing into the inflow space 363 is decompressed through the orifice portion 211. In addition, since the outer surface of the cam ring 310 corresponding to the inflow space 363 has an area smaller than the eccentric cross-sectional area, the force acting on the inner surface of the cam ring 310, that is, the eccentric cross-sectional area, is the oil in the inflow space 363. Greater than the force generated by
이에 따라 캠링(310) 내부의 토출실의 편심단면적과 유입공간(363) 사이에 압력차가 발생하고, 이 압력차에 의해 캠링(310)은 하우징의 내측면으로 인접되는 방향으로 힘이 작용하는데, 탄성부재(350)의 장력에 의해 상기 캠링(310)은 초기 편심 위치가 유지되도록 하우징(200)에 대해 지지된다.As a result, a pressure difference is generated between the eccentric cross-sectional area of the discharge chamber inside the cam ring 310 and the inflow space 363, and the force acts in the direction adjacent to the inner surface of the housing by the pressure difference. The cam ring 310 is supported relative to the housing 200 so that the initial eccentric position is maintained by the tension of the elastic member 350.
이때, 회전축(320)의 회전속도가 증가할 경우, 증가된 회전속도에 비례하여 펌프공간(311) 외부로 토출되는 오일의 압력이 증가한다. 이에 따라 이격조절부(360)의 유입공간(363)과 캠링(310) 내부의 펌프공간(311) 사이의 압력차이가 비교적 크게 발생된다. 즉, 토출실에 대응되는 캠링(310)의 내측면에 작용하는 압력과 유입공간(363)에 대응되는 캠링(310)의 외측면에 작용하는 압력 사이의 차이가 보다 커지고, 캠링(310)은 탄성부재(350)를 압축시키는 방향으로 이동된다. 이때, 도 4에 도시된 바와 같이 캠링(310)은 하측으로 이동된다.At this time, when the rotation speed of the rotary shaft 320 increases, the pressure of the oil discharged to the outside of the pump space 311 increases in proportion to the increased rotation speed. Accordingly, a pressure difference between the inflow space 363 of the separation controller 360 and the pump space 311 inside the cam ring 310 is relatively large. That is, the difference between the pressure acting on the inner surface of the cam ring 310 corresponding to the discharge chamber and the pressure acting on the outer surface of the cam ring 310 corresponding to the inflow space 363 is greater, and the cam ring 310 The elastic member 350 is moved in the compression direction. At this time, the cam ring 310 is moved to the lower side as shown in FIG.
상술된 캠링(310)의 이동에 따라, 토출구(202)에 연통되는 펌프공간(311)의 일부분인 토출실 체적이 감소된다. 즉, 토출압력이 증가하면, 도면을 기준으로 캠링(30)은 하측으로 이동되는데, 이때, 토출실은 상측영역이 감소하나 하측영역이 증가하여 상기 편심 단면적이 증가한다. 그러나, 상술된 캠링(310)의 이동에 따라 흡입구(201)에 연통되는 펌프공간(311)의 일부분인 흡입실의 체적은 감소하고, 이에 따라 펌프 외부로 토출되는 토출유량은 감소된다.According to the movement of the cam ring 310 described above, the discharge chamber volume which is a part of the pump space 311 communicated with the discharge port 202 is reduced. That is, when the discharge pressure is increased, the cam ring 30 is moved to the lower side based on the drawing. In this case, the discharge chamber is reduced in the upper region but increased in the lower region to increase the eccentric cross-sectional area. However, as the cam ring 310 moves, the volume of the suction chamber, which is a part of the pump space 311 communicated with the suction port 201, decreases, and thus the discharge flow rate discharged to the outside of the pump decreases.
이때, 구획부재(361)들이 상호 경사지게 지지되어 있으므로 캠링(310)이 하우징(200)의 내측면에 인접될수록 구획부재(361)들 사이의 캠링(310) 외주면의 면적 즉, 유입공간(363)에 유입된 오일의 유압 작용면적이 증가한다. 따라서, 캠링(310)이 하우징(200)의 내측면에 인접될수록 유입공간(363)에 충진된 오일에 의해 상기 캠링(310)에 작용하는 힘이 증가하므로 회전축(320)의 속도 증가에 따른 오일 토출유량의 감소율을 조절할 수 있다. 즉, 회전축(320)의 저속 회전 상태에서 회전축(320)의 속도 증가에 따른 토출유량의 감소율이 회전축(320)의 고속 회전 상태에서 회전축(320)의 속도 증가에 따른 토출유량의 감소율보다 더 크므로 상기 가변 베인 펌프(100)를 차랑용 파워 스티어링 장치에 적용시 차량이 고속상태에서, 차량의 속도에 따른 핸들의 조향감이 급격하게 변화되는 것이 방지된다.At this time, since the partition members 361 are supported to be inclined to each other, the area of the outer circumferential surface of the cam ring 310 between the partition members 361, that is, the inflow space 363 is closer to the inner surface of the housing 200. The hydraulic working area of the oil introduced into the tank increases. Therefore, as the cam ring 310 is adjacent to the inner side of the housing 200, the force acting on the cam ring 310 by the oil filled in the inflow space 363 increases, so that the oil according to the speed increase of the rotation shaft 320 is increased. The rate of reduction of the discharge flow rate can be adjusted. That is, the rate of decrease of the discharge flow rate due to the increase of the speed of the rotary shaft 320 in the low speed rotation state of the rotary shaft 320 is greater than the rate of decrease of the discharge flow rate due to the increase of the speed of the rotary shaft 320 in the high speed rotation state of the rotary shaft 320. When the variable vane pump 100 is applied to a power steering apparatus for a lane, the steering feeling of the steering wheel according to the speed of the vehicle may be prevented from being changed rapidly in a high speed state of the vehicle.
한편, 본 발명에 따른 가변 베인 펌프(100)를 차량용 파워 스티어링 장치에 적용할 경우, 회전축(320)의 동일 회전속도에 대해 핸들의 조향 또는 비조향에 따른 가변 베인 펌프(100)로부터 토출되는 오일의 토출량이 조절된다. 즉, 핸들을 조향할 경우, 하우징(200)으로부터 토출된 오일은 차량의 조향축에 설치된 실린더에 공급되는데, 가변 베인 펌프(100)는 정압 상태가 된다. 이때, 캠링(310) 내부의 펌프공간(311)의 압력과 이격조절부(360)의 유입공간(363)의 압력이 비교적 크지 않기 때문에 캠링(310)은 탄성부재(350)에 의해 회전축(320)에 대한 편심상태를 유지하여 회전축(320)의 1회전당 비교적 많은 양의 오일이 토출된다. 가변 베인 펌프(100)로부터 비교적 많은 양의 오일이 펌핑되므로 운전자는 보다 손쉽게 핸들을 조향할 수 있다.On the other hand, when the variable vane pump 100 according to the present invention is applied to a vehicle power steering device, the oil discharged from the variable vane pump 100 according to the steering or non-steering of the handle for the same rotational speed of the rotary shaft 320 The discharge amount of is adjusted. That is, when steering the handle, the oil discharged from the housing 200 is supplied to the cylinder installed on the steering shaft of the vehicle, the variable vane pump 100 is in a constant pressure state. At this time, since the pressure of the pump space 311 inside the cam ring 310 and the pressure of the inflow space 363 of the separation control unit 360 are not relatively large, the cam ring 310 is rotated by the elastic member 350. ), A relatively large amount of oil is discharged per rotation of the rotating shaft 320 by maintaining the eccentric state. Since a relatively large amount of oil is pumped from the variable vane pump 100, the driver can steer the handle more easily.
또한, 운전자가 핸들을 비조향할 경우, 가변 베인 펌프(100)로부터 토출된 오일은 차량의 구동축에 설치된 실린더로의 유동이 차단된 상태에서 오일이 바이패스되므로 동압상태가 되는데, 여기서 캠링(310) 내부의 펌프공간(311)의 압력이 이격조절부(360)의 유입공간(363)의 압력보다 더 크게 된다. 이때, 캠링(310) 내부의 펌프공간(311)의 압력과 이격조절부(360)의 유입공간(363)의 압력 차이는 핸들을 조향할 경우보다 더 크게 나타나게 된다. 따라서, 상기 압력차이에 의해 캠링(310)은 탄성부재(350)가 압축되는 방향으로 이동된다. 캠링(310)의 이동에 따라 흡입구(201) 및 토출구(202) 사이의 펌프공간(311) 즉, 흡입실의 체적이 감소하게 되고, 회전축(320)의 1회전당 토출되는 오일의 유량이 감소된다.In addition, when the driver does not steer the handle, the oil discharged from the variable vane pump 100 is in a dynamic pressure state because the oil is bypassed in a state in which the flow to the cylinder installed on the drive shaft of the vehicle is blocked, where the cam ring 310 Pressure inside the pump space 311 is greater than the pressure of the inlet space 363 of the separation control unit 360. At this time, the pressure difference between the pressure of the pump space 311 in the cam ring 310 and the inflow space 363 of the separation control unit 360 is greater than when steering the handle. Therefore, the cam ring 310 is moved in the direction in which the elastic member 350 is compressed by the pressure difference. As the cam ring 310 moves, the volume of the pump space 311, that is, the suction chamber, between the suction port 201 and the discharge port 202 decreases, and the flow rate of oil discharged per revolution of the rotating shaft 320 decreases. do.
상술된 바와 같이 본 발명에 따른 가변 베인 펌프(100)는 회전축(320)의 회전속도가 변하지 않더라도 핸들의 조향 및 비조향에 따라 오일의 토출 유량을 조절할 수 있으므로 핸들의 비조향시 가변 베인 펌프(100)를 구동하는 동력을 절약할 수 있는 장점이 있다.As described above, the variable vane pump 100 according to the present invention may adjust the discharge flow rate of oil according to steering and non-steering of the handle even if the rotation speed of the rotating shaft 320 does not change. There is an advantage to save the power to drive 100).
한편, 본 발명에 따른 가변 베인 펌프(100)는 로터(330) 내부에 탄성링(333)이 설치되어 베인(340)들에 탄성력을 제공하므로 회전축(320)이 저속으로 회전하더라도 베인(340)들의 단부가 캠링(310)의 내주면에 밀착될 수 있어 작동 신뢰성이 비교적 높다. 또한, 캠링(310)은 외주면에 메탈 베어링(312)이 설치되어 있으므로 회전축(320)이 고속회전하더라도 캠링(310)의 내접면과 베인(340) 일단부 사이의 마찰력에 의해 캠링(310)이 메탈베이링(312) 내에서 일정속도로 회전을 함으로써 캠링(310) 내접면과 베인(340) 상단부 사이의 마찰 속도가 감소한다.On the other hand, the variable vane pump 100 according to the present invention is provided with an elastic ring 333 inside the rotor 330 to provide elastic force to the vanes 340, even if the rotating shaft 320 rotates at a low speed vane 340 The end of the field can be in close contact with the inner circumferential surface of the cam ring 310, the operation reliability is relatively high. In addition, since the cam ring 310 is provided with a metal bearing 312 on the outer circumferential surface of the cam ring 310, even if the rotating shaft 320 rotates at a high speed, the cam ring 310 is caused by friction between the inner contact surface of the cam ring 310 and one end of the vane 340. By rotating at a constant speed in the metal bearing 312, the frictional speed between the cam ring 310 internal surface and the upper end of the vane 340 is reduced.
한편, 도 5에는 본 발명의 또 다른 실시 예에 따른 구획부재(410)가 도시되어 있다.On the other hand, Figure 5 shows a partition member 410 according to another embodiment of the present invention.
앞서 도시된 도면에서와 동일한 기능을 하는 요소는 동일 참조부호로 표기한다.Elements having the same function as in the above-described drawings are denoted by the same reference numerals.
도면을 참조하면, 구획부재(410)는 원형의 단면을 갖도록 형성된다. 이때, 인입구(412)들은 상기 하우징(200)의 내주면에 대해 상기 회전축(320)으로부터 멀어지는 방향으로 인입되게 형성되고, 상기 하우징(200)의 내주면으로부터 멀어질수록 상호 이격거리가 증가하도록 연장되되, 소정의 곡률로 만곡되게 형성되어 있다.Referring to the drawings, the partition member 410 is formed to have a circular cross section. At this time, the inlet 412 is formed to be drawn in the direction away from the rotation axis 320 with respect to the inner peripheral surface of the housing 200, and extends so as to increase the mutual separation distance away from the inner peripheral surface of the housing 200, It is formed to bend to a predetermined curvature.
상술된 구획부재(410)들에 의해 캠링(310)이 하우징(200)의 내측면에 인접될수록 구획부재(410)들 사이의 캠링(310) 외주면 면적이 증가한다. 이때, 구획부재(410)들은 인입구(412)에 의해 만곡되게 지지되어 있으므로 회전축(320)의 속도에 따라 구획부재(410)들 사이의 캠링(310) 외주면 면적의 변화가 정비례하는 것이 아니라 캠링(310)이 하우징(200)의 내측면에 인접될수록 구획부재(410)들 사이의 캠링(310) 외주면 면적의 변화율이 증가한다.As the cam ring 310 is adjacent to the inner surface of the housing 200 by the partition members 410 described above, an area of the outer circumferential surface of the cam ring 310 between the partition members 410 increases. At this time, since the partition members 410 are bent and supported by the inlet 412, the change in the outer circumferential surface area of the cam ring 310 between the partition members 410 according to the speed of the rotation shaft 320 is not directly proportional to the cam ring ( As the 310 is adjacent to the inner surface of the housing 200, the rate of change of the outer surface of the cam ring 310 between the partition members 410 increases.
따라서, 상기 가변 베인 펌프(100)를 차량용 파워 스티어링 장치에 적용시 회전축(320)의 고속 회전 상태에서, 속도 증가에 따른 토출유량의 감소율이 도 1의 실시 예에 도시된 구획부재의 경우보다 더욱 작으므로 차량의 속도에 따른 핸들의 조향감이 급격하게 변화되는 것이 방지되어 고속에서 보다 편안한 주행감을 운전자에게 제공한다.Therefore, when the variable vane pump 100 is applied to a vehicle power steering device, in the high speed rotation state of the rotation shaft 320, the reduction rate of the discharge flow rate according to the increase in speed is more than in the case of the partition member shown in the embodiment of FIG. 1. Since it is small, the steering steering of the vehicle according to the speed of the vehicle is prevented from being changed suddenly, thereby providing the driver with a more comfortable driving feeling at high speed.
한편, 도 6에 도시된 바와 같이 구속부재(361)는 원형의 단면을 갖도록 형성된 것이 아니라 인입구(362)의 곡률에 대응되는 곡률로 만곡되게 형성될 수도 있다.Meanwhile, as illustrated in FIG. 6, the restraining member 361 may not be formed to have a circular cross section, but may be formed to have a curvature corresponding to the curvature of the inlet 362.
한편, 도 7에는 본 발명의 또 다른 실시 예에 따른 가변 베인 펌프(500)가 도시되어 있다.On the other hand, Figure 7 shows a variable vane pump 500 according to another embodiment of the present invention.
도면을 참조하면, 가변 베인 펌프(500)는 하우징(200)과 회전축(320) 사이에 오일이 누유되는 것을 방지하기 위한 누유방지부(510)를 더 구비한다. 이때, 하우징(200)은 로터(330)의 길이방향 양단부 즉, 로터(330)의 전면 및 후면에 대향되는 내측면에 각각 진퇴홈(505)이 형성되어 있다. 이때, 상기 진퇴홈(505)은 하우징(200)의 바디 플레이트(210) 내측면에 형성되며, 회전축(320)을 중심으로 소정의 반경을 갖는 환형으로 연장되고, 바디 플레이트(210) 내측면으로부터 회전축(320)의 길이방향을 따라 소정 깊이 인입되게 형성되는 것이 바람직하다. 이때, 누유방지부재(511)가 로터(330)의 베인홈과 회전축(320) 사이에 설치될 수 있도록 로터(330)의 베인홈과 회전축(320) 사이의 바디 플레이트(210) 내측면에 형성되어 있다.Referring to the drawings, the variable vane pump 500 further includes a leakage preventing unit 510 for preventing oil from leaking between the housing 200 and the rotation shaft 320. In this case, the housing 200 has a recess 505 is formed at both ends in the longitudinal direction of the rotor 330, that is, the inner surfaces of the rotor 330 opposite to the front and rear surfaces thereof. At this time, the recess groove 505 is formed on the inner surface of the body plate 210 of the housing 200, extends in an annular shape having a predetermined radius around the rotation axis 320, from the inner surface of the body plate 210 It is preferably formed to be drawn in a predetermined depth along the longitudinal direction of the rotary shaft (320). At this time, the leakage preventing member 511 is formed on the inner surface of the body plate 210 between the vane groove and the rotation shaft 320 of the rotor 330 to be installed between the vane groove and the rotation shaft 320 of the rotor 330. It is.
또한, 바디 플레이트(210)의 진퇴홈(505)들의 내부에는 후술되는 누유방지부(510)의 누유방지부재(511)의 회전을 방지할 수 있도록 고정키(506)가 각각 설치되어 있다. 상기 고정키(506)는 회전축(320)의 길이방향을 따라 소정길이 연장되며, 일단부가 바디 플레이트(210)에 고정되고, 타단부는 진퇴홈(505) 내부로 인입된다.In addition, fixing keys 506 are provided in the interior recesses 505 of the body plate 210 to prevent rotation of the leakage preventing member 511 of the leakage preventing unit 510 to be described later. The fixing key 506 extends a predetermined length along the longitudinal direction of the rotation shaft 320, one end is fixed to the body plate 210, the other end is introduced into the advance groove 505.
한편, 하우징(200)에 캠링(310)의 개방된 전후면에 상기 흡입구(201) 및 토출구(202)에 연통되는 제1 및 제2연통구가 형성된 복수의 고정플레이트가 설치될 경우, 상기 고정플레이트의 내측면에 상기 진퇴홈(505)이 형성되는 것이 바람직하다.Meanwhile, when a plurality of fixing plates having first and second communication holes communicating with the suction port 201 and the discharge port 202 are installed on the front and rear surfaces of the cam ring 310 in the housing 200, the fixing is performed. Preferably, the recess groove 505 is formed on the inner surface of the plate.
상기 누유방지부(510)는 상기 펌프공간의 오일이 상기 회전축(320)과 하우징(200) 사이로 누유되는 것을 방지하기 위해 상기 로터(330)의 길이방향 단부 즉, 로터(330)의 전후면에 각각 대향되는 상기 하우징(200)의 내측면에 상기 회전축(320)의 길이방향을 따라 진퇴가능하게 설치되며, 상기 회전축(320)가 삽입될 수 있도록 중공이 형성된 복수의 누유방지부재(511)와, 상기 누유방지부재(511)에 설치되어 상기 누유방지부재(511)가 상기 로터(330)의 길이방향 단부에 밀착될 수 있도록 상기 누유방지부재(511)에 탄성력을 제공하는 복수의 밀착 스프링(512)을 구비한다.The leakage preventing part 510 is provided at the longitudinal end of the rotor 330, that is, the front and rear surfaces of the rotor 330 to prevent the oil in the pump space from leaking between the rotation shaft 320 and the housing 200. A plurality of oil leakage preventing members 511 which are installed on the inner surface of the housing 200 facing each other in a longitudinal direction of the rotation shaft 320 and are hollowed so that the rotation shaft 320 can be inserted therein; A plurality of contact springs provided on the leakage preventing member 511 to provide an elastic force to the leakage preventing member 511 such that the leakage preventing member 511 may be in close contact with the longitudinal end of the rotor 330. 512).
누유방지부재(511)는 바디 플레이트(210)의 진퇴홈(505)들에 각각 삽입되며, 상기 중공이 마련된 환형으로 형성된다. 누유방지부재(511)는 일단이 진퇴홈(505)에 삽입되고, 타단은 로터(330)의 전면 또는 후면에 접하도록 상기 바디 플레이트(210)에 설치된다. 또한, 상기 누유방지부재(511)는 소정의 내마모성 및 강도를 갖는 금속성 또는 비금속성 소재로 형성되는 것이 바람직하다.The leakage preventing member 511 is inserted into the recesses 505 of the body plate 210, respectively, and is formed in an annular shape in which the hollow is provided. One end of the leakage preventing member 511 is inserted into the advance groove 505, the other end is installed on the body plate 210 to be in contact with the front or rear of the rotor 330. In addition, the leakage preventing member 511 is preferably formed of a metallic or non-metallic material having a predetermined wear resistance and strength.
또한, 누유방지부재(511)의 일단부에는 바디 플레이트(210)에 설치된 고정키(506)가 삽입될 수 있도록 고정홈이 형성되어 있다. 고정홈은 누유방지부재(511)의 일단부로부터 타단부 방향으로 소정길이 인입된다.In addition, a fixing groove is formed at one end of the leakage preventing member 511 so that the fixing key 506 installed on the body plate 210 may be inserted. The fixing groove extends a predetermined length from one end of the leakage preventing member 511 toward the other end.
밀착 스프링(512)은 다수개가 바디 플레이트(210)와 누유방지부재(511) 사이에 설치되어 누유방지부재(511)의 타단부가 로터(330)의 전면 또는 후면에 밀착되도록 탄성력을 제공한다. 이때, 상기 밀착 스프링(512)은 판 스프링이 적용되는 것이 바람직하다.A plurality of contact springs 512 are installed between the body plate 210 and the leakage preventing member 511 to provide an elastic force so that the other end of the leakage preventing member 511 is in close contact with the front or rear of the rotor 330. At this time, the contact spring 512 is preferably a plate spring is applied.
상술된 바와 같이 구성된 본 발명에 따른 가변 베인 펌프(500)는 누유방지부(510)에 의해 하우징(200)과 회전축(320) 사이의 누유가 방지되므로 회전축(320)의 회전속도가 느리더라도 보다 안정적으로 일정한 양을 토출할 수 있다는 장점이 있다.The variable vane pump 500 according to the present invention configured as described above is prevented from leaking between the housing 200 and the rotating shaft 320 by the leak preventing unit 510, even if the rotation speed of the rotating shaft 320 is slow. There is an advantage that it is possible to discharge a certain amount stably.
제시된 실시예들에 대한 설명은 임의의 본 발명의 기술분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.The description of the presented embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the invention. Thus, the present invention should not be limited to the embodiments set forth herein but should be construed in the broadest scope consistent with the principles and novel features set forth herein.
본 발명에 따른 가변 베인 펌프는 캠링과 하우징 사이에 펌프로부터 토출되는 오일 중 일부가 유입되는 유입공간을 형성하여 토출되는 오일의 압력을 이용하여 펌프의 회전당 토출유량을 가감시키므로 구조가 비교적 단순하며, 밸브의 마찰이 발생되지 않아 내구성이 향상되어 사용수명이 증가하는 장점이 있다.The variable vane pump according to the present invention forms an inlet space through which some of the oil discharged from the pump flows between the cam ring and the housing, thereby reducing the discharge flow rate per rotation of the pump using the pressure of the discharged oil, and thus the structure is relatively simple. As the friction of the valve does not occur, the durability is improved and the service life is increased.
또한, 상기 가변 베인 펌프는 파워스티어링에 적용시 회전축의 회전속도 뿐 아니라 핸들의 조향 유무에 따라 토출되는 오일의 유량을 조절할 수 있다.In addition, the variable vane pump can adjust the flow rate of the oil discharged according to the steering wheel steering as well as the rotational speed of the rotary shaft when applied to the power steering.
(없음)(none)

Claims (9)

  1. 서로 대향하는 위치에 흡입구 및 토출구가 형성되고, 내부에 내부공간이 마련된 하우징과;A housing having a suction port and a discharge port formed at positions facing each other, and having an internal space provided therein;
    상기 하우징 내부에 상대이동 가능하게 설치되는 것으로서, 상기 내부공간을 상기 흡입구 및 토출구에 연통되는 펌프공간으로 구획하는 캠링과;A cam ring which is installed to be movable relative to the inside of the housing and divides the internal space into a pump space communicating with the suction and discharge ports;
    상기 펌프공간에 인입되게 상기 하우징에 설치되는 회전축과;A rotating shaft installed in the housing to be drawn into the pump space;
    상기 회전축에 설치되어 상기 회전축과 함께 회전하는 로터와;A rotor installed on the rotating shaft and rotating together with the rotating shaft;
    상기 로터에 진퇴가능하게 설치되어 상기 캠링의 내주면에 밀착되는 다수의 베인과;A plurality of vanes mounted on the rotor so as to be able to move forward and close to the inner circumferential surface of the cam ring;
    상기 하우징에 설치되며, 상기 회전축에 대해 상기 캠링이 편심되도록 상기 캠링에 상기 회전축의 회전중심 방향으로 탄성력을 제공하는 탄성부재와;An elastic member installed in the housing and providing an elastic force to the cam ring in the direction of the center of rotation of the rotation shaft such that the cam ring is eccentric with respect to the rotation shaft;
    상기 흡입구 및 토출구 사이의 상기 하우징에 설치되는 것으로서, 상기 회전축의 회전속도에 따라 상기 회전축에 대한 상기 캠링의 편심위치가 조절되도록 상기 캠링의 외주면과 상기 하우징의 내주면 사이에, 상기 토출구를 통해 토출된 오일 중 일부가 유입되는 유입공간을 형성하는 이격조절부;를 구비하며,Installed in the housing between the suction port and the discharge port, and discharged through the discharge port between the outer peripheral surface of the cam ring and the inner peripheral surface of the housing so that the eccentric position of the cam ring with respect to the rotating shaft is adjusted according to the rotational speed of the rotary shaft And a spacing control unit forming an inflow space into which some of the oil is introduced.
    상기 이격조절부는The spacing control unit
    상기 유입공간이 형성될 수 있도록 상기 하우징의 내주면에 원주방향을 따라 상호 이격되게 위치되는 것으로서, 상기 하우징의 내주면에서 상기 회전축 방향으로 인출 및 인입가능하게 설치되는 복수의 구획부재와,A plurality of partition members disposed on the inner circumferential surface of the housing so as to be spaced apart from each other along the circumferential direction, the plurality of partition members installed to be pulled out and retractable from the inner circumferential surface of the housing;
    상기 구획부재의 단부가 상기 캠링의 외주면에 접하도록 상기 구획부재에 탄성력을 제공하는 복수의 지지스프링을 구비하는 가변 베인 펌프.And a plurality of support springs providing elastic force to the partition member such that an end portion of the partition member contacts an outer circumferential surface of the cam ring.
  2. 제1항에 있어서,The method of claim 1,
    상기 하우징은 상기 토출구로부터 토출되는 상기 오일 중 일부가 상기 유입공간으로 유입될 수 있도록 상기 토출구 및 유입공간에 연통되는 유입유로가 형성되고, 상기 유입유로에는 상기 유입공간으로 주입되는 오일의 압력을 감소시키기 위한 오리피스부가 형성된 가변 베인 펌프.The housing has an inlet flow passage communicating with the outlet and the inlet space so that some of the oil discharged from the outlet can be introduced into the inlet space, and the inlet flow path reduces the pressure of the oil injected into the inlet space. Variable vane pump having an orifice portion for making.
  3. 제1항에 있어서,The method of claim 1,
    상기 구획부재들은 상기 하우징의 내주면으로부터 상기 캠링에 인접될수록 상호 이격거리가 감소하게 상기 하우징에 설치된 가변 베인 펌프.The partition member is a variable vane pump is installed in the housing so that the mutual separation distance is reduced closer to the cam ring from the inner peripheral surface of the housing.
  4. 제1항에 있어서,The method of claim 1,
    상기 구획부재는 원형의 단면을 갖도록 형성되고,The partition member is formed to have a circular cross section,
    상기 하우징은 원주방향을 따라 상호 인접된 위치의 내주면에, 상기 구획부재가 인입될 수 있도록 각각 인입구가 형성되고,The housings each have an inlet opening on the inner circumferential surface of the position adjacent to each other along the circumferential direction so that the partition member can be retracted,
    상기 인입구들은 상기 하우징의 내주면에 대해 상기 회전축으로부터 멀어지는 방향으로 인입되게 형성되고, 상기 하우징의 내주면으로부터 멀어질수록 상호 이격거리가 증가하도록 연장되되, 소정의 곡률로 만곡되게 형성된 가변 베인 펌프.The inlet is formed to be drawn in the direction away from the axis of rotation with respect to the inner peripheral surface of the housing, the variable vane pump is formed so as to be extended at a predetermined curvature, so as to extend the mutual separation distance away from the inner peripheral surface of the housing.
  5. 제1항에 있어서,The method of claim 1,
    상기 하우징은 원주방향을 따라 상호 인접된 위치의 내주면에, 상기 구획부재가 인입될 수 있도록 각각 인입구가 형성되고,The housings each have an inlet opening on the inner circumferential surface of the position adjacent to each other along the circumferential direction so that the partition member can be retracted,
    상기 인입구들은 상기 하우징의 내주면에 대해 상기 회전축으로부터 멀어지는 방향으로 인입되게 형성되고, 상기 하우징의 내주면으로부터 멀어질수록 상호 이격거리가 증가하도록 연장되되, 소정의 곡률로 만곡되게 형성되고,The inlets are formed to be drawn in a direction away from the rotation axis with respect to the inner circumferential surface of the housing, extended to increase the mutual separation distance as the distance from the inner circumferential surface of the housing is increased, is formed to be curved at a predetermined curvature,
    상기 구획부재는 상기 인입구의 곡률에 대응되는 곡률로 만곡되게 형성된 가변 베인 펌프.The partition member is a variable vane pump formed to be curved to the curvature corresponding to the curvature of the inlet.
  6. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 하우징은 상기 유입공간의 오일이 펌프실로 유입될 수 있도록 상기 유입공간 및 흡입구에 연통되게 배출유로가 형성되고,The housing has a discharge passage formed in communication with the inlet space and the suction port so that the oil in the inlet space can be introduced into the pump chamber,
    상기 배출유로 상의 상기 하우징에 설치되어 상기 유입공간의 유압이 기설정된 압력 이상일 경우, 상기 유입공간의 오일이 상기 흡입구로 배출될 수 있도록 상기 배출유로를 개폐하는 릴리프 밸브;를 더 구비하는 가변 베인 펌프.And a relief valve installed in the housing on the discharge passage to open and close the discharge passage so that the oil in the inlet space can be discharged to the suction port when the hydraulic pressure of the inlet space is higher than a predetermined pressure. .
  7. 제1항에 있어서,The method of claim 1,
    상기 캠링의 외주면을 감싸도록 형성되며, 상기 캠링과 하우징 사이의 마찰을 감소시키는 메탈 베어링;을 더 구비하는 가변 베인 펌프.And a metal bearing formed to surround an outer circumferential surface of the cam ring and reducing friction between the cam ring and the housing.
  8. 제1항에 있어서,The method of claim 1,
    상기 베인들에 설치되는 것으로서, 상기 베인들의 단부가 상기 캠링의 내주면에 접할 수 있도록 상기 베인들에 탄성력을 제공하는 탄성링;을 더 구비하는 가변 베인 펌프.And an elastic ring installed on the vanes, the elastic ring providing elastic force to the vanes so that the end portions of the vanes may contact the inner circumferential surface of the cam ring.
  9. 제1항에 있어서,The method of claim 1,
    상기 펌프공간의 오일이 상기 회전축과 하우징 사이로 누유되는 것을 방지하기 위해 상기 로터의 길이방향 단부에 대향되는 상기 하우징의 내측면에 상기 회전축의 길이방향을 따라 진퇴가능하게 설치되며, 상기 회전축이 삽입될 수 있도록 중공이 형성된 누유방지부재와;In order to prevent oil in the pump space from leaking between the rotating shaft and the housing, the pump may be retractably installed along the longitudinal direction of the rotating shaft on an inner side surface of the housing opposite to the longitudinal end of the rotor. Leakage preventing member is formed so that the hollow;
    상기 누유방지부재에 설치되어 상기 누유방지부재가 상기 로터의 길이방향 단부에 밀착될 수 있도록 상기 누유방지부재에 탄성력을 제공하는 밀착 스프링;을 더 구비하는 가변 베인 펌프.And a close contact spring installed on the leak preventing member and providing an elastic force to the leak preventing member so that the leak preventing member is in close contact with the longitudinal end of the rotor.
PCT/KR2017/015308 2017-02-02 2017-12-22 Variable vane pump WO2018143564A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170015087A KR101797537B1 (en) 2017-02-02 2017-02-02 Variable vane pump
KR10-2017-0015087 2017-02-02

Publications (1)

Publication Number Publication Date
WO2018143564A1 true WO2018143564A1 (en) 2018-08-09

Family

ID=60387375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015308 WO2018143564A1 (en) 2017-02-02 2017-12-22 Variable vane pump

Country Status (2)

Country Link
KR (1) KR101797537B1 (en)
WO (1) WO2018143564A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189961A1 (en) * 2018-03-29 2019-10-03 조봉현 Variable vane pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100201995B1 (en) * 1996-04-08 1999-06-15 요시다 도시오 Variable capacity pump
JP2006046273A (en) * 2004-08-06 2006-02-16 Hitachi Ltd Internal gear pump
JP3866449B2 (en) * 1999-02-01 2007-01-10 ユニシア ジェーケーシー ステアリングシステム株式会社 Variable displacement pump
JP2015203359A (en) * 2014-04-14 2015-11-16 大豊工業株式会社 Internal gear pump
JP2016156367A (en) * 2015-02-26 2016-09-01 日立オートモティブシステムズ株式会社 Variable capacity type vane pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100201995B1 (en) * 1996-04-08 1999-06-15 요시다 도시오 Variable capacity pump
JP3866449B2 (en) * 1999-02-01 2007-01-10 ユニシア ジェーケーシー ステアリングシステム株式会社 Variable displacement pump
JP2006046273A (en) * 2004-08-06 2006-02-16 Hitachi Ltd Internal gear pump
JP2015203359A (en) * 2014-04-14 2015-11-16 大豊工業株式会社 Internal gear pump
JP2016156367A (en) * 2015-02-26 2016-09-01 日立オートモティブシステムズ株式会社 Variable capacity type vane pump

Also Published As

Publication number Publication date
KR101797537B1 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
US3682044A (en) Balanced hydraulic device
WO2017222347A1 (en) Vane-type air motor
US2621607A (en) Pump
SE456517B (en) HYDRAULIC RADIAL PISTON ENGINE
JPH04272489A (en) Variable capacity vane pump
FI104014B (en) Radial piston hydraulic motor and method for adjusting radial hydraulic motor
WO2018143564A1 (en) Variable vane pump
US8087915B2 (en) Rotary pump with vane support divided into two half shells
JPH05157043A (en) Radial piston machine
US6149409A (en) Cartridge vane pump with dual side fluid feed and single side inlet
US7614337B2 (en) Rotary radial piston machine
KR20180044699A (en) Variable vane pump
US3289606A (en) Axial piston pump or motor arrangement
KR850000877B1 (en) Oil pump
JPS6047478B2 (en) compression device
US7484944B2 (en) Rotary vane pump seal
WO2017188702A1 (en) Means for controlling back pressure in scroll compressor
US11767831B2 (en) Hydraulic radial piston device
KR20170027953A (en) Variable vane oil pump for powersteering and automatic transmission of vehicle
CN1128932C (en) Rotary machine
US5961307A (en) Pressure proportioning regulator valve and vane machine including same
US3695147A (en) Hydraulic pump or motor
WO2019189961A1 (en) Variable vane pump
WO2018106003A2 (en) Engine oil pump
WO2018135893A1 (en) Adapter for roller tappet of engine and engine roller tappet assembly including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895029

Country of ref document: EP

Kind code of ref document: A1