WO2018143543A1 - 고전압 측정회로 - Google Patents

고전압 측정회로 Download PDF

Info

Publication number
WO2018143543A1
WO2018143543A1 PCT/KR2017/012471 KR2017012471W WO2018143543A1 WO 2018143543 A1 WO2018143543 A1 WO 2018143543A1 KR 2017012471 W KR2017012471 W KR 2017012471W WO 2018143543 A1 WO2018143543 A1 WO 2018143543A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
node
terminal
capacitor
high voltage
Prior art date
Application number
PCT/KR2017/012471
Other languages
English (en)
French (fr)
Inventor
김재성
김동현
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2018143543A1 publication Critical patent/WO2018143543A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only

Definitions

  • the present disclosure relates to a high voltage measurement circuit.
  • the isolation method using a capacitor is difficult to measure voltage accurately due to poor measurement accuracy. Further, rather than measuring the voltage at the high voltage stage, only the presence of a high voltage can be determined.
  • the high voltage measuring circuit may include: a relay unit measuring and transferring a voltage between a first high voltage terminal and a second high voltage terminal, a voltage divider converting a voltage transferred from the relay unit into a sensing voltage, and the detection voltage. And a holding circuit for sampling and holding at every sampling period to generate a peak voltage of the detection voltage as a detection voltage.
  • the holding circuit may include a diode to which the detection voltage is input, and a capacitor connected between the cathode and the ground of the diode.
  • the holding circuit includes a first amplifier including a non-inverting terminal to which the detection voltage is input, and an inverting terminal connected to an output terminal, a non-inverting terminal connected to the capacitor and the cathode of the diode, and an output terminal. It may further include a second amplifier including a reverse terminal.
  • the holding circuit may further include a resistor connected between the non-inverting terminal of the first amplifier and the voltage divider.
  • the holding circuit may further include a resistor connected between the output terminal of the second amplifier and the ground.
  • the holding circuit may further include a resistor connected in parallel with the capacitor.
  • the relay unit may include a first relay connected between the first high voltage terminal and a first node, a second relay connected between the second high voltage terminal and a second node, and a connection between the first node and the second node. And a third relay connected between the first node and the third node, and a fourth relay connected between the second node and the fourth node.
  • the capacitors are charged, the third and fourth relays are turned on, and the first and second relays are charged during a charging period in which the first and second relays are turned on, and the third and fourth relays are turned off.
  • the capacitor may be separated from the first and second high voltage terminals during the measurement period in which the relay is turned off.
  • the voltage divider may divide the voltage between the third node and the fourth node to generate the detection voltage.
  • FIG. 1 is a diagram illustrating a high voltage measuring circuit according to an embodiment.
  • FIG. 1 is a diagram illustrating a high voltage measuring circuit according to an embodiment.
  • the high voltage measuring circuit 1 includes a holding circuit 10, a relay unit 20, a voltage divider 30, and a controller 40.
  • the holding circuit 10 may provide an accurate sensing voltage VSENSE without being affected by the voltage drop caused by the discharge of the capacitor C1.
  • the relay unit 20 is connected to two high voltage terminals TE1 and TE2, and transfers the voltage between the two high voltage terminals TE to the voltage divider 30.
  • the voltage of the high voltage terminal TE1 may be higher than the voltage of the high voltage terminal TE2.
  • the relay unit 20 includes four photo relays 21-24 and a capacitor C1. Each of the four photo relays 21-24 switches according to a corresponding control signal among the plurality of control signals S1-S4, and includes a phototransistor PT and a photodiode PD.
  • the bias voltage VCC is supplied to the anode of the photodiode PD, and the corresponding control signal is supplied to the cathode of the photodiode PT.
  • the control signal S1 is supplied to the cathode of the photo relay 21.
  • the photodiode PD of the photorelay 21 is turned on so that a current flows, and the phototransistor PT is turned on.
  • the photodiode PD of the photo relay 21 is turned off so that no current flows. Then, the photo transistor PT is turned off.
  • the photo relay 21 is connected between the high voltage terminal TE1 and the node N1, the photo relay 22 is connected between the high voltage terminal TE2 and the node N2, and the photo relay 23 is It is connected between the node N1 and the node N3, and the photo relay 24 is connected between the node N2 and the ground.
  • Capacitor C1 is connected between node N1 and node N2. The voltage between the node N3 and both ends of the ground may be a voltage transferred through the relay unit 20.
  • the voltage divider 30 distributes the voltage transmitted through the relay unit 20 to generate the detection voltage VD.
  • the voltage divider 30 includes a resistor R1 connected between the node N3 and the node N4 and a resistor R2 connected between the node N4 and the ground.
  • the detection voltage VD is a voltage of the node N4, and the voltage charged in the capacitor C1 may be divided by a voltage divider 30 to a level detectable by the holding circuit 10.
  • the holding circuit 10 receives the detection voltage VD, and generates the detection voltage VS by sampling and holding the peak of the detection voltage VD in units of sampling periods.
  • the holding circuit 10 includes two amplifiers 11 and 12, three resistors R3-R5, a capacitor C2, a reset switch 13, and a diode D1.
  • the configuration of the holding circuit 10 shown in FIG. 1 is one example and the invention is not limited thereto.
  • Each of the amplifier 11 and the amplifier 12 is connected to the output terminal and the inverting terminal (-), and operates as a buffer for outputting the input of the non-inverting terminal (+) through the output terminal.
  • Amplifier 11 and amplifier 12 are biased by voltage VCC and are connected to ground.
  • the output terminal of the amplifier 11 is connected to the node N5 and the resistor R3 is connected to the node N4 and the non-inverting terminal (+) of the amplifier 11.
  • the detection voltage VD is input to the non-inverting terminal + of the amplifier 11 through the resistor R3.
  • the amplifier 11 outputs the detection voltage VD.
  • the anode of diode D1 is connected to node N5 and the cathode of diode D1 is connected to node N6.
  • the reset switch 13, the resistor R4, and the capacitor C2 are connected between the node N6 and ground.
  • the diode D1 When the voltage of the node N5 is higher than the voltage of the node N6, the diode D1 is turned on so that the voltage of the capacitor C2 is changed in accordance with the detection voltage VD. On the contrary, when the voltage of the node N5 is not higher than the voltage of the node N6, since the diode D1 is in an off state, the voltage of the capacitor C2 remains unchanged.
  • the drain of the reset switch 13 is connected to the node N6, the reset signal RS is input to the gate of the reset switch 13, and the source of the reset switch 13 is connected to the ground. Therefore, when the reset switch 13 is turned on by the high level reset signal RS, the capacitor C2 is discharged and the voltage of the node N6 is reset to the ground level.
  • the non-inverting terminal (+) of the amplifier 12 is connected to the node N6, the output terminal of the amplifier 12 is connected to the node N7, and the resistor R5 is connected between the node N7 and ground. It is connected.
  • the amplifier 12 outputs the voltage of the node N6 through the output terminal.
  • the voltage output from the amplifier 12 is the sensing voltage VS.
  • the controller 40 may generate signals necessary for the operation of the high voltage detection circuit 1. For example, the controller 40 may generate the control signals S1-S4 and the reset signal RS.
  • the relays 21 and 22 are turned on and the relays 23 and 24 are turned off. Then, the capacitor C1 is charged by the voltage difference between the high voltage terminal TE1 and the high voltage terminal TE2.
  • the relays 21 and 22 are turned on and the relays 23 and 24 are turned on. Is off. Then, the high voltage terminal TE1, the high voltage terminal TE2, and the capacitor C1 are electrically separated, and the voltage of the capacitor C1 is distributed to the detection voltage VD by the voltage divider 30, thereby maintaining the holding circuit ( 10) is delivered.
  • the diode D1 is conducted so that the voltage of the capacitor C2 is applied to the detection voltage VD. Increases accordingly.
  • the detection voltage VD is not higher than the voltage of the node N6, the voltage of the capacitor C2 is maintained as it is.
  • the holding circuit 10 may receive the detection voltage VD and sample and hold the peak voltage of the detection voltage VD.
  • the sampling period of the sustain circuit 10 may be a sum of the charge period and the discharge period.
  • the reset switch 13 may be turned on to reset the voltage of the capacitor C2. Then, after the reset time, the holding circuit 10 samples and holds the peak of the detection voltage VD.
  • Capacitors can be reduced to achieve full discharge while sensing periodic primary voltages. In this case, however, self-discharge occurs in the capacitor during the time that the primary side switch and the secondary side switch are on / off, making accurate voltage measurement difficult. This causes a drop in the voltage measurement accuracy.
  • the self-discharge of the capacitor C1 is not affected, and thus the high voltage measurement precision can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

고전압 측정회로는, 제1 고전압단 및 제2 고전압단 사이의 전압을 측정하여 전달하는 릴레이부, 상기 릴레이부로부터 전달되는 전압을 감지 전압으로 변환하는 전압 분배부, 및 상기 검출전압을 샘플링 주기마다 샘플링 및 홀딩하여 상기 검출 전압의 피크전압을 감지 전압으로 생성하는 유지 회로를 포함한다.

Description

고전압 측정회로
본 개시는 고전압 측정 회로에 관한 것이다.
커패시터를 이용하여 고전압단을 센싱하는 경우, 고전압부(또는 1차측)와 저전압부(또는2차측) 사이에 커패시터(capacitor)를 이용하여 전기적인 절연을 유지한다. 그러나, 커패시터를 이용한 절연방식은 측정 정밀도가 떨어져 정확한 전압측정이 어렵다. 또한, 고전압단의 전압이 측정되기 보다, 고전압 유무만이 판단될 수 있다.
고전압 측정정밀도를 높이고자 한다.
실시 예에 따른 고전압 측정회로는, 제1 고전압단 및 제2 고전압단 사이의 전압을 측정하여 전달하는 릴레이부, 상기 릴레이부로부터 전달되는 전압을 감지 전압으로 변환하는 전압 분배부, 및 상기 검출전압을 샘플링 주기마다 샘플링 및 홀딩하여 상기 검출전압의 피크 전압을 감지 전압으로 생성하는 유지 회로를 포함한다.
상기 유지 회로는, 상기 검출 전압이 입력되는 다이오드, 및 상기 다이오드의 캐소드와 그라운드 사이에 연결되어 있는 커패시터를 포함할 수 있다.
상기 유지 회로는, 상기 검출 전압이 입력되는 비반전 단자, 및 출력단과 연결되어 있는 반전 단자를 포함하는 제1 증폭기, 및 상기 커패시터와 상기다이오드의 캐소드에 연결되어 있는 비반전 단자, 및 출력단과 연결되어 있는 반전 단자를 포함하는 제2 증폭기를 더 포함할 수 있다.
상기 유지 회로는, 상기 제1 증폭기의 비반전 단자와 상기 전압분배부 사이에 연결되어 있는 저항을 더 포함할 수 있다.
상기 유지 회로는, 상기 제2 증폭기의 출력단과 그라운드 사이에 연결되어 있는 저항을 더 포함할 수 있다.
상기 유지 회로는, 상기 커패시터에 병렬연결되어 있는 저항을 더 포함할 수 있다.
상기 릴레이부는, 상기제1 고전압단과 제1 노드 사이에 연결되어 있는 제1 릴레이, 상기 제2 고전압단과 제2 노드 사이에 연결되어 있는 제2 릴레이, 상기 제1 노드와 상기 제2 노드 사이에 연결되어 있는 커패시터, 상기제1 노드와 제3 노드 사이에 연결되어 있는 제3 릴레이, 및 상기 제2 노드와 제4 노드 사이에 연결되어 있는 제4 릴레이를 포함할 수 있다. 상기제1 및 제2 릴레이가 턴 온 되고, 상기제3 및 제4 릴레이가 턴 오프 되는충전 기간 동안상기 커패시터가 충전되고, 상기 제3 및 제4 릴레이가 턴 온 되고, 상기 제1 및 제2 릴레이가 턴 오프 되는측정 기간 동안상기 커패시터가 상기제1 및 제2 고전압단과 분리될 수 있다.
상기 전압 분배부는, 상기 제3 노드와 상기제4 노드 사이의 전압을 저항 분배하여 상기 검출 전압을 생성할 수 있다.
고전압 측정정밀도를 향상시킬 수 있다.
도 1은 실시 예에 따른 고전압 측정 회로를 나타낸 도면이다.
아래에서는 첨부한 도면을 참고로 하여본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 1은 실시 예에 따른 고전압 측정 회로를 나타낸 도면이다.
도 1에 도시된 바와 같이, 실시 예에 따른 고전압 측정 회로(1)는 유지 회로(10), 릴레이부(20), 전압 분배부(30), 및 제어부(40)를 포함한다. 유지 회로(10)는 커패시터(C1)의 방전에 의한 전압강하의 영향 없이 정확한 감지 전압(VSENSE)을 제공할 수 있다.
릴레이부(20)는 두 개의 고전압단(TE1,TE2)에 연결되어 있고, 두 고전압단() 사이의 전압을 전압 분배부(30)로 전달한다. 고전압단(TE1)의 전압이 고전압단(TE2)의 전압 보다 높을 수 있다.
릴레이부(20)는 4 개의 포토릴레이(21-24), 및 커패시터(C1)를 포함한다. 4 개의포토 릴레이(21-24) 각각은 복수의 제어신호(S1-S4) 중 대응하는 제어 신호에 따라 스위칭하고, 포토트랜지스터(PT) 및 포토 다이오드(PD)를 포함한다.
포토 다이오드(PD)의 애노드에는 바이어스 전압(VCC)이 공급되고, 포토다이오드(PT)의 캐소드에는 대응하는 제어신호가 공급된다. 예를 들어, 포토 릴레이(21)의 캐소드에는 제어신호(S1)이 공급된다. 제어신호(S1)가 로우 레벨인 기간 동안 포토릴레이(21)의 포토 다이오드(PD)가 도통되어 전류가 흐르고, 포토 트랜지스터(PT)가 턴 온 된다. 반대로 제어 신호(S1)가 하이 레벨인 기간 동안 포토릴레이(21)의 포토 다이오드(PD)는 오프되어 전류가 흐르지 않는다. 그러면, 포토 트랜지스터(PT)는 턴 오프 된다.
포토 릴레이(21)는 고전압단(TE1)과 노드(N1) 사이에 연결되어 있고, 포토릴레이(22)는 고전압단(TE2)과 노드(N2) 사이에 연결되어 있으며, 포토 릴레이(23)는 노드(N1)와 노드(N3) 사이에 연결되어 있고, 포토 릴레이(24)는 노드(N2)와 그라운드 사이에 연결되어 있다. 커패시터(C1)는 노드(N1)와 노드(N2) 사이에 연결되어 있다. 노드(N3)와 그라운드 양단 사이의 전압이 릴레이부(20)를 통해 전달되는 전압일 수 있다.
전압분배부(30)는 릴레이부(20)를 통해 전달되는 전압을 분배하여 검출 전압(VD)을 생성한다. 전압분배부(30)는 노드(N3)와 노드(N4) 사이에 연결되어 있는 저항(R1)과 노드(N4)와 그라운드 사이에 연결되어 있는 저항(R2)을 포함한다. 검출 전압(VD)은 노드(N4)의 전압으로, 커패시터(C1)에 충전된 전압은 전압분배부(30)에 의해 유지회로(10)에서 감지할 수 있는 레벨로 분압될 수 있다.
유지 회로(10)는 검출 전압(VD)을 입력받고, 샘플링 주기 단위로 검출전압(VD)의 피크를 샘플링 및 홀딩하여 감지전압(VS)을 생성한다.
유지 회로(10)는 두 개의 증폭기(11, 12), 3 개의저항(R3-R5), 커패시터(C2), 리셋스위치(13), 및 다이오드(D1)를 포함한다. 도 1에 도시된 유지 회로(10)의 구성은 하나의 예시로 발명이 이에 한정되는 것은 아니다.
증폭기(11) 및 증폭기(12) 각각은 출력단과 반전 단자(-)가 연결되어 있어, 비반전 단자(+)의 입력을 출력단을 통해 출력하는 버퍼로 동작한다. 증폭기(11) 및 증폭기(12)는 전압(VCC)에 의해 바이어스 되고, 그라운드에 연결되어 있다.
증폭기(11)의 출력단은 노드(N5)에 연결되어 있고, 저항(R3)은 노드(N4)와 증폭기(11)의 비반전 단자(+)에 연결되어 있다. 검출 전압(VD)은 저항(R3)을 통해 증폭기(11)의 비반전 단자(+)에 입력된다. 증폭기(11)는 검출 전압(VD)을 출력한다.
다이오드(D1)의 애노드는 노드(N5)에 연결되어 있고, 다이오드(D1)의 캐소드는 노드(N6)에 연결되어 있다. 리셋 스위치(13), 저항(R4), 및 커패시터(C2)는 노드(N6)와 그라운드 사이에 연결되어 있다.
노드(N5)의 전압이 노드(N6)의 전압보다 높을 때, 다이오드(D1)가 도통되어 커패시터(C2)의 전압이 검출 전압(VD)에 따라 변경된다. 반대로, 노드(N5)의 전압이 노드(N6)의 전압보다 높지 않을 때, 다이오드(D1)는 오프 상태이므로, 커패시터(C2)의 전압은 변하지 않고, 유지된다.
리셋 스위치(13)의 드레인은 노드(N6)에 연결되어 있고, 리셋스위치(13)의 게이트에는 리셋신호(RS)가 입력되며, 리셋스위치(13)의 소스는 그라운드에 연결되어 있다. 따라서, 하이 레벨의 리셋신호(RS)에 의해 리셋스위치(13)가 턴 온 되면, 커패시터(C2)가 방전되어 노드(N6)의 전압은 그라운드 레벨로 리셋된다.
증폭기(12)의 비반전 단자(+)는 노드(N6)에 연결되어 있고, 증폭기(12)의 출력단은 노드(N7)에 연결되어 있으며, 저항(R5)는 노드(N7)와 그라운드 사이에 연결되어 있다.
증폭기(12)는 노드(N6)의 전압을 출력단을 통해출력한다. 증폭기(12)로부터 출력되는 전압이 감지전압(VS)이다.
제어부(40)는 고전압 검출회로(1)의 동작에 필요한 신호들을 생성할 수 있다. 예를 들어, 제어부(40)는 제어신호(S1-S4) 및 리셋 신호(RS)를 생성할 수 있다.
제어신호(S1, S2)가 로우 레벨이고, 제어신호(S3, S4)가 하이 레벨인 충전 기간 동안, 릴레이(21, 22)가 턴 온 되고, 릴레이(23, 24)가 턴 오프 된다. 그러면, 고전압단(TE1) 및 고전압단(TE2) 사이의 전압차에 의해 커패시터(C1)가 충전된다.
충전 기간 후, 제어신호(S3, S4)가 로우 레벨이고, 제어신호(S1, S2)가 하이 레벨인 측정 기간 동안, 릴레이(21, 22)가 턴 온 되고, 릴레이(23, 24)가 턴 오프 된다. 그러면, 고전압단(TE1) 및 고전압단(TE2)과 커패시터(C1)가 전기적으로 분리되고, 커패시터(C1)의 전압이 전압분배부(30)에 의해 검출전압(VD)으로 분배되어 유지 회로(10)에 전달된다.
측정 기간에서, 검출전압(VD)이 커패시터(C2)에 충전된 전압 즉, 노드(N6)의 전압보다 높을때, 다이오드(D1)가 도통되어 커패시터(C2)의 전압이 검출 전압(VD)에 따라 증가한다. 반대로 검출 전압(VD)이 노드(N6)의 전압보다 높지 않을때, 커패시터(C2)의 전압은 그대로 유지된다.
이와 같은 방식으로, 유지 회로(10)는 검출 전압(VD)을 입력받고, 검출 전압(VD)의 피크 전압을 샘플링 및 홀딩할 수 있다. 유지 회로(10)의 샘플링 주기는 충전 기간과 방전기간을 합한 기간일 수 있다.
리셋 스위치(13)가 턴 온 되어 커패시터(C2)의 전압이 리셋될 수 있다. 그러면, 리셋 시점 이후부터, 유지 회로(10)는 검출 전압(VD)의 피크를 샘플링 및 홀딩한다.
종래 1차측 회로와 2차측 회로 사이에 있는 커패시터의 용량이 클 경우, 주기적으로 1차측 전압을 측정하는 경우 완전방전이 이루어지지 않을 수 있다. 그러면, 전압측정 오차 발생가 발생할 수 있다.
주기적인 1차측 전압을 센싱하면서 완전 방전을 구현하기 위해, 커패시터의 용량을 줄일 수 있다. 그러나 이 경우에는 경우, 1차측 스위치와 2차측 스위치가 On/Off하는 시간 동안 커패시터에 자가방전이 발생하여 정확한 전압 측정이 어렵다. 이는 전압측정 정밀도 하락의 원인이 된다.
실시 예에 따르면 검출 전압(VD)의 피크를 샘플링 및 홀딩하므로 커패시터(C1)의 자가 방전에 영향을 받지 않아, 고전압 측정 정밀도를 높일 수 있다.
이상에서 복수의 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (8)

  1. 제1 고전압단 및 제2 고전압단 사이의 전압을 측정하여 전달하는 릴레이부;
    상기 릴레이부로부터 전달되는 전압을 감지 전압으로 변환하는 전압 분배부; 및
    상기 검출 전압을 샘플링 주기 마다 샘플링 및 홀딩하여 상기검출 전압의 피크 전압을 감지 전압으로 생성하는 유지 회로를 포함하는 고전압 측정회로.
  2. 제1항에 있어서,
    상기 유지 회로는,
    상기 검출 전압이 입력되는 다이오드; 및
    상기 다이오드의 캐소드와 그라운드 사이에 연결되어 있는 커패시터를 포함하는 고전압 측정 회로.
  3. 제2항에 있어서,
    상기 유지 회로는,
    상기 검출 전압이 입력되는 비반전 단자, 및 출력단과 연결되어 있는 반전 단자를 포함하는 제1 증폭기; 및
    상기 커패시터와 상기다이오드의 캐소드에 연결되어 있는 비반전 단자, 및 출력단과 연결되어 있는 반전 단자를 포함하는 제2 증폭기를 더 포함하는 고전압 측정회로.
  4. 제3항에 있어서,
    상기 유지 회로는,
    상기 제1 증폭기의 비반전 단자와 상기 전압분배부 사이에 연결되어 있는 저항을 더 포함하는 고전압 측정회로.
  5. 제3항에 있어서,
    상기 유지 회로는,
    상기 제2 증폭기의 출력단과 그라운드 사이에 연결되어 있는 저항을 더 포함하는 고전압 측정회로.
  6. 제2항에 있어서,
    상기 유지 회로는,
    상기 커패시터에 병렬연결되어 있는 저항을 더 포함하는 고전압 측정 회로.
  7. 제1항에 있어서,
    상기 릴레이부는,
    상기 제1 고전압단과 제1 노드 사이에 연결되어 있는 제1 릴레이;
    상기 제2 고전압단과 제2 노드 사이에 연결되어 있는 제2 릴레이;
    상기 제1 노드와 상기제2 노드 사이에 연결되어 있는 커패시터;
    상기 제1 노드와 제3 노드 사이에 연결되어 있는 제3 릴레이; 및
    상기 제2 노드와 제4 노드 사이에 연결되어 있는 제4 릴레이를 포함하고,
    상기 제1 및 제2 릴레이가 턴 온 되고, 상기 제3 및 제4 릴레이가 턴 오프 되는 충전 기간 동안 상기 커패시터가 충전되고,
    상기 제3 및 제4 릴레이가 턴 온 되고, 상기 제1 및 제2 릴레이가 턴 오프 되는 측정 기간 동안 상기 커패시터가 상기 제1 및 제2 고전압단과 분리되는 고전압 측정 회로.
  8. 제7항에 있어서,
    상기 전압 분배부는,
    상기 제3 노드와 상기 제4 노드 사이의 전압을 저항 분배하여 상기 검출 전압을 생성하는 고전압 측정회로.
PCT/KR2017/012471 2017-02-01 2017-11-06 고전압 측정회로 WO2018143543A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170014631A KR102235280B1 (ko) 2017-02-01 2017-02-01 고전압 측정회로
KR10-2017-0014631 2017-02-01

Publications (1)

Publication Number Publication Date
WO2018143543A1 true WO2018143543A1 (ko) 2018-08-09

Family

ID=63039887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012471 WO2018143543A1 (ko) 2017-02-01 2017-11-06 고전압 측정회로

Country Status (2)

Country Link
KR (1) KR102235280B1 (ko)
WO (1) WO2018143543A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102264996B1 (ko) * 2020-08-18 2021-06-16 한국단자공업 주식회사 전기자동차 급속충전 고전압 센싱장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003618A (ja) * 2003-06-13 2005-01-06 Honda Motor Co Ltd 電源電圧測定装置
KR20090015334A (ko) * 2007-08-08 2009-02-12 주식회사 엘지화학 절연 캐패시터를 이용한 배터리 셀 전압 측정 장치 및 방법
KR101071939B1 (ko) * 2009-11-27 2011-10-10 주식회사 케피코 절연 캐패시터를 이용한 연료전지 스택의 고전압 측정장치
KR20150047367A (ko) * 2013-10-24 2015-05-04 엘에스산전 주식회사 고전압 릴레이 고장 진단 장치 및 이의 방법
KR20170002327A (ko) * 2015-06-29 2017-01-06 페어차일드코리아반도체 주식회사 입력전압 검출회로 및 이를 포함하는 전력 공급 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3791767B2 (ja) 2001-03-27 2006-06-28 株式会社デンソー フライングキャパシタ式電圧検出回路
JP5432034B2 (ja) * 2010-03-31 2014-03-05 プライムアースEvエナジー株式会社 二次電池の電流電圧検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003618A (ja) * 2003-06-13 2005-01-06 Honda Motor Co Ltd 電源電圧測定装置
KR20090015334A (ko) * 2007-08-08 2009-02-12 주식회사 엘지화학 절연 캐패시터를 이용한 배터리 셀 전압 측정 장치 및 방법
KR101071939B1 (ko) * 2009-11-27 2011-10-10 주식회사 케피코 절연 캐패시터를 이용한 연료전지 스택의 고전압 측정장치
KR20150047367A (ko) * 2013-10-24 2015-05-04 엘에스산전 주식회사 고전압 릴레이 고장 진단 장치 및 이의 방법
KR20170002327A (ko) * 2015-06-29 2017-01-06 페어차일드코리아반도체 주식회사 입력전압 검출회로 및 이를 포함하는 전력 공급 장치

Also Published As

Publication number Publication date
KR20180089820A (ko) 2018-08-09
KR102235280B1 (ko) 2021-04-01

Similar Documents

Publication Publication Date Title
US4833459A (en) Circuit arrangement for continually monitoring the quality of a multicell battery
US20130342214A1 (en) Battery management system
US20020070733A1 (en) Voltage measurement apparatus
TWI774792B (zh) 光學感測器配置及用於光線感測的方法
US11022487B2 (en) Optical sensor arrangement and method for light sensing
US20080297175A1 (en) Apparatus and method for measuring capacitance to ground of conductor
WO2018143543A1 (ko) 고전압 측정회로
WO2014148706A1 (ko) 아날로그 센서의 종류 판별 장치
JPH07114335B2 (ja) 緩衝回路
WO2010050673A2 (ko) 저항 측정장치 및 측정방법
US4694277A (en) A/D converter
CN101331405A (zh) 测试装置和插脚电子卡
WO2018135769A1 (ko) Dc-dc 전압 컨버터 내의 불평형 전류 상태 및 과전류 상태를 결정하기 위한 전원 공급 시스템 및 검출 시스템
KR101067180B1 (ko) 아날로그 입력 장치
US5450014A (en) Test apparatus for detecting reverse insertion of a capacitor on a test board
WO2022039402A1 (ko) 전기자동차 급속충전 고전압 센싱장치
WO2012070777A2 (ko) 출력채널수가 감소된 다채널 검출기
CN115993493A (zh) 连接器检测电路及连接器测试设备
CN113064524A (zh) 一种触控检测系统及其方法和一种显示模组
US4695751A (en) Sampling-data integrator with commutated capacitance utilizing a unitary-gain amplifier
US20190128971A1 (en) Modification of test measurement signals for protective devices for electric power networks
WO2010044609A2 (ko) 절연파괴 측정회로
WO2023080559A1 (ko) 배터리 팩 전압 측정 회로와 그의 동작 방법
WO2023132502A1 (ko) 외부 단락 진단 방법 및 이를 적용한 배터리 시스템
JP5719527B2 (ja) 測定装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894814

Country of ref document: EP

Kind code of ref document: A1