WO2018143326A1 - Ventilation port hood - Google Patents

Ventilation port hood Download PDF

Info

Publication number
WO2018143326A1
WO2018143326A1 PCT/JP2018/003370 JP2018003370W WO2018143326A1 WO 2018143326 A1 WO2018143326 A1 WO 2018143326A1 JP 2018003370 W JP2018003370 W JP 2018003370W WO 2018143326 A1 WO2018143326 A1 WO 2018143326A1
Authority
WO
WIPO (PCT)
Prior art keywords
swirl chamber
air supply
supply port
cover
dividing plate
Prior art date
Application number
PCT/JP2018/003370
Other languages
French (fr)
Japanese (ja)
Inventor
健吾 中原
訓央 清本
耕次 飯尾
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017019179A external-priority patent/JP6814933B2/en
Priority claimed from JP2017078619A external-priority patent/JP6906135B2/en
Priority claimed from JP2017146163A external-priority patent/JP6906139B2/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018143326A1 publication Critical patent/WO2018143326A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation

Definitions

  • the present invention relates to a vent hood that is attached to an air intake port of a building outdoor wall that arranges a blower on the downstream side of an air flow and takes outdoor air into the room in order to ventilate the room.
  • Patent Document 1 Conventionally, as this type of vent opening hood, for example, the one of Patent Document 1 is known.
  • the ventilation hood is installed for the purpose of preventing the inflow of rain and wind from the ventilation opening, which is the air intake on the outdoor wall of the building.
  • the vent hood has a cover to prevent rain and wind, an inlet for taking in air, a cylindrical outlet that protrudes to the back of the vent hood to connect to the ventilation duct, small animals and large flying objects It consists of a gallery to prevent inflow.
  • FIG. 17 is a cross-sectional view showing a conventional cyclone separator.
  • the cyclone separation device includes an inflow port 101, a swirl chamber 102, an inner tube 103, an inner tube tip 104, and a deposition unit 105.
  • the air containing the foreign matter flows into the apparatus from the inlet 101 and flows in the swirl chamber 102 as a swirling airflow.
  • the foreign matter is separated to the outer peripheral side of the swirl chamber 102 by centrifugal force.
  • the separated foreign matter accumulates in the accumulation portion 105, and the air flows from the inner cylindrical tube tip 104 into the inner cylindrical tube 103 and flows out of the apparatus.
  • JP 2011-242081 Japanese Patent Laid-Open No. 2000-128591 JP 2008-36579 A
  • a collar-like ring is provided on the outer peripheral surface side of the inner tube near the tip of the inner tube, or the cross section is circular along the outer wall circumferential direction of the inner tube at the end of the inner tube.
  • the present invention solves the above-described conventional problems, and an object thereof is to provide a vent hood that can separate small insects, water droplets and the like (hereinafter, foreign matter) and does not require maintenance work. .
  • the vent hood includes a cover having a rotating body shape in which an airflow flows in from a side surface portion and flows out from a bottom surface portion, and includes a central axis of the cover.
  • a cylindrical tube provided so that the inside of the cover can be made negative pressure through the bottom surface of the cover, and a space for the first swirl chamber and the second swirl chamber on the outer peripheral side of the cylindrical tube and the inner peripheral side of the cover, respectively.
  • the cover has a top surface facing the bottom surface portion, a first air supply port is provided on the bottom surface side of the side surface portion, and a second air supply port is provided on the top surface side of the side surface portion.
  • the first air supply port is a plurality of openings formed by a plurality of fixed blades arranged so as to go around the side surface portion.
  • the second air supply port is an opening that is vertically long along the central axis direction and can be positioned at the lowermost portion of the side surface portion in a state where the central axis is horizontally disposed.
  • the space dividing plate has a through hole that communicates the first swirl chamber and the second swirl chamber. The position of the through hole is such that the distance in the flow direction of the airflow swirling in the first swirl chamber is longer than the distance in the counterflow direction when the second air supply port is the base point around the central axis. is there. This achieves the intended purpose.
  • the outdoor air that has entered through the first air supply port flows into the first swirl chamber as a swirling airflow.
  • the foreign matter contained in the swirling airflow receives centrifugal force, circulates in the vicinity of the space dividing plate, and moves to the second swirling chamber through a through hole provided in the space dividing plate.
  • a natural wind is flowing around the vent hood, the static pressure decreases outside the second air supply port, a flow toward the outside occurs, and the foreign matter stored in the second air supply port, which is the separation chamber Is discharged to the outside from the second air supply port. That is, the effect that the foreign matter can be separated without providing a filtering device is obtained, the occurrence of clogging is eliminated, and the separated foreign matter does not continue to accumulate, so that maintenance work is not required. The effect that can be obtained.
  • FIG. 1 is an external perspective view from above of a vent hood according to Embodiment 1 of the present invention.
  • FIG. 2 is an external perspective view from below of the vent hood according to the first embodiment.
  • FIG. 3 is a cross-sectional view taken along the central axis, showing the internal structure of the vent hood in the first embodiment.
  • FIG. 4 is a rear view of the first embodiment with the base of the vent hood removed.
  • FIG. 5 is a front view of the first embodiment with the cover of the vent hood removed.
  • FIG. 6 is a diagram showing the shape of the water shielding member of the vent hood in the second embodiment.
  • FIG. 7 is a view showing notches provided in the water shielding member of the vent hood in the third embodiment.
  • FIG. 8 is an external perspective view of the vent hood according to the fourth embodiment as viewed from the front side.
  • FIG. 9 is an external perspective view of the vent hood according to the fourth embodiment as viewed from the back side.
  • FIG. 10 is a cross-sectional view along the central axis of the vent hood according to the fourth embodiment.
  • FIG. 11 is a cross-sectional view of the inner tube of the vent hood in the fourth embodiment.
  • FIG. 12 is an external perspective view of the airflow conversion member according to the fourth embodiment.
  • FIG. 13 is a diagram showing the flow of the airflow when the inner tube in the description of the fourth embodiment does not change the axial sectional area.
  • FIG. 14 is an external view of the vent hood according to the fifth embodiment as viewed from the top side.
  • FIG. 15 is a cross-sectional view along the central axis of the vent hood according to the fifth embodiment.
  • FIG. 16 is a partially enlarged view of a portion A in FIG. 14 of the ventilation hood according to the fifth embodiment.
  • FIG. 17 is a cross-sectional view showing a conventional cyclone separator.
  • a vent hood includes a cover having a rotating body shape in which an airflow flows in from a side surface portion and flows out from a bottom surface portion, and includes a central axis of the cover and penetrates the bottom surface portion from the inside of the cover.
  • a cylindrical tube provided so that the inside of the cover can be under negative pressure, and a space dividing plate that forms a space for a first swirl chamber and a second swirl chamber on the outer peripheral side of the cylindrical tube and the inner peripheral side of the cover, respectively
  • a columnar member provided to face the end face of the cylindrical tube in the first swirl chamber.
  • the cover has a top surface facing the bottom surface portion, the first air supply port is provided on the bottom surface side of the side surface portion, the second air supply port is provided on the top surface side of the side surface portion, and the first air supply port is provided.
  • the mouth is a plurality of openings formed by a plurality of fixed blades arranged so as to circulate around the side surface portion, and the second air supply port extends along the central axis direction in a state where the central axis is horizontally arranged.
  • the opening is vertically long and can be positioned at the lowermost portion of the side surface.
  • the space dividing plate has a through hole that communicates the first swirl chamber and the second swirl chamber, and the position of the through hole is the first swirl when the second supply port is the base point around the central axis. It has a configuration in which the distance in the flow direction of the airflow swirling through the chamber is longer than the distance in the counterflow direction.
  • the blower communicating with the cylindrical tube can make the inside of the cover have a negative pressure, so that outdoor air that has entered through the first air supply port flows into the first swirl chamber as a swirling airflow.
  • the foreign matter contained in the swirling airflow receives centrifugal force, circulates in the vicinity of the space dividing plate, and moves to the second swirling chamber from the through hole provided in the space dividing plate.
  • the second swirl chamber is a separation chamber for receiving the separated foreign matter.
  • the foreign matter moves under the second swirl chamber, which has become a separation chamber, due to gravity and near the second air supply port.
  • the foreign matter that has moved to the second air supply port is discharged from the second air supply port to the outside due to the influence of outdoor natural wind.
  • the airflow in the second swirl chamber is in the same swirling direction as the airflow in the first swirl chamber, and The airflow flowing in from the air mouth turns on the swirling airflow.
  • foreign matter that has moved from the first swirl chamber to the second swirl chamber and foreign matter that has flowed into the second swirl chamber from the second air supply port can be moved to the outer peripheral side of the second swirl chamber. Since movement from the through hole to the first swirl chamber can be suppressed, a decrease in separation performance can be suppressed.
  • the space dividing plate has a cylindrical shape or a truncated cone shape arranged on the top surface side of the first air supply port in the central axis direction. You may have the structure by which the end surface of the cylindrical tube was extended in the axial direction at the inner peripheral side of the space division
  • the ventilation opening hood which concerns on Claim 3 of this invention is the 1st shielding member standingly arranged so that a part of flow path of the airflow in a 2nd swirl chamber might be interrupted
  • the first shielding member may be provided on the through hole side from the line connecting the central axis and the second air supply port, and may extend from the central axis side to the outer peripheral side of the space dividing plate. Good.
  • the vent hood according to claim 4 of the present invention is a second shielding member that is erected on the space dividing plate so as to block a part of the flow path of the airflow in the second swirl chamber in the second swirl chamber.
  • the second shielding member is provided above the central axis when the second air supply port is positioned at the lowest position, and has a configuration extending from the central axis side to the outer peripheral side of the space dividing plate. You may do it.
  • the upper part of the second swirl chamber has a flow in the same direction as the flow direction of the airflow swirling in the first swirl chamber.
  • one opening of the first air supply port is formed at the upper and lower portions of the cover.
  • a blind plate may be arranged between the other openings.
  • the columnar member in the first swirl chamber, is erected from the wall surface on the top surface side, and a ring-shaped water shielding member surrounding the outer periphery of the columnar member is provided on the wall surface. You may have the structure comprised.
  • vent hood according to claim 8 of the present invention may have a configuration in which the water shielding member has a notch at the lowest position in a state where the central axis is horizontally disposed.
  • the cylindrical tube includes an inner tube extending from the outlet provided in the bottom surface portion into the first swirl chamber, and is an inner tube that is a tip of the inner tube.
  • the end portion of the cylindrical wall that forms the tip opening has a flow path that reverses the traveling direction of the swirling airflow flowing in from the first air supply opening on the outside and inside of the inner tube, and is perpendicular to the central axis of the inner tube.
  • the cross-sectional area on the surface changes in the direction of the central axis, and the cross-sectional area is minimized at the end of the cylindrical wall from the middle position of the entire length of the inner tube, and the minimum cross-sectional area of the inner tube You may have the structure which was made to become large gradually toward the cylindrical wall edge part side from this position.
  • the vent hood according to claim 10 is provided with an R-shaped portion that bulges out toward the outside of the inner tube at the end of the cylindrical wall, and the inner and outer surfaces of the inner tube are R You may have the structure that it connects with the circular arc continuously along the shape part.
  • an R-shaped portion that bulges out toward the outside of the inner tube is provided at the end of the cylindrical wall, and the outer surface of the inner tube is formed on the surface of the R-shaped portion.
  • the groove may be formed over the entire circumference.
  • water droplets that have entered from the first air supply port which is an inflow port, are prevented from flowing into the inner peripheral surface of the inner cylindrical tube through the outer peripheral surface of the inner cylindrical tube without increasing pressure loss. can do.
  • water droplets When water droplets are transmitted through the R-shaped part, they are trapped in the groove part, moved downward by gravity, and dropped downward from the lowermost part of the groove part, so that water droplets are prevented from flowing into the inner peripheral surface of the inner tube. Can do.
  • the diameter of the tip end of the inner tube is ⁇ in
  • the diameter of the minimum cross-sectional area of the inner tube is ⁇ min
  • the diameter of the end on the outlet side of the inner tube is ⁇ out.
  • the vent hood according to claim 13 of the present invention is a cover having a rotating body shape in which airflow flows in from a side surface portion and flows out from a bottom surface portion, an opening that closes the bottom surface portion and is an airflow outlet in the center portion.
  • a base plate, a space dividing plate that divides the inside of the cover into a first swirl chamber on the inner periphery side and a second swirl chamber on the outer periphery side, and penetrates the base plate, and the first swirl chamber and the outside A cylindrical tube provided in communication therewith.
  • the cover has a top surface facing the bottom surface portion, and a first air supply port having a structure capable of generating a swirling airflow in the first swirl chamber is provided on the bottom surface portion side of the side surface portion.
  • a second air supply port that communicates the second swirl chamber and the outside is provided on the surface side.
  • the first air supply port is connected to the bottom surface side of the cover.
  • the cylindrical tube extends from the base plate into the first swirl chamber, and has an inner cylindrical tube front end through which air flows into the first swirl chamber, and an outlet through which air flows into the bottom surface.
  • the space dividing plate has a through hole for communicating the first swirl chamber and the second swirl chamber, and a ring-shaped contact surface on the outer peripheral portion on the bottom surface portion side.
  • the contact surface is a conical surface whose diameter decreases toward the top surface, and the contact surface and the inner peripheral surface of the cover are in close contact with each other through packing.
  • the second swirl chamber which is a space surrounded by the space dividing plate and the cover
  • a gap is filled between the contact surface and the cover by the packing, so that outside air is generated between the space dividing plate and the cover. Inflow into the second swirl chamber is suppressed, and a decrease in separation performance can be suppressed.
  • the contact surface is a conical surface, that is, an inclined surface whose diameter on the top surface side is reduced, so that the contact area with the packing is increased, and the outside air is reliably prevented from flowing into the separation chamber. be able to.
  • the space dividing plate is inserted into the cover after the packing is attached to either the cover or the contact surface.
  • the packing is smoothly fitted by the effect of the inclination, and the sealing property can be easily obtained.
  • the packing is affixed to the inner side surface of the cover, and a flange portion projecting to the outer peripheral side is provided on the bottom surface side of the space dividing plate.
  • a plurality of fixed blades are erected on the bottom surface side of the flange portion, the fixed blades are integrated with the space dividing plate, and the outer peripheral end of the flange portion is provided with a contact rib protruding to the top surface side,
  • the outer peripheral surface of the contact rib may be a contact surface.
  • the gap between the fixed blade and the space dividing plate can be eliminated by integrating the fixed blade and the space dividing plate. If there is a gap between the fixed vane and the space dividing plate, an airflow passing through the gap is generated without passing through the fixed vane for swirling the airflow. Becomes weaker, the centrifugal force applied to the foreign matter is weakened, and the separation performance of the foreign matter is lowered.
  • the fixed blade and the space dividing plate are integrated, the extra space can be reduced compared to the case of using separate members, which leads to downsizing of the vent hood.
  • the space dividing plate may have a truncated cone shape whose diameter decreases toward the top surface so as to be in the same inclination direction as the contact surface.
  • the inside of the first swirl chamber moves toward the top surface away from the first air supply port.
  • the diameter is smaller. Therefore, the fall of the centrifugal force concerning a foreign material can be suppressed. Thereby, the fall of separation performance can be controlled.
  • FIG. 1 is an external perspective view from above of a vent hood according to Embodiment 1 of the present invention.
  • FIG. 1 is the external appearance (perspective view from diagonally above) when looking down from the upper side of the outdoor side when attached to the outer wall of the house on the front side of the vent hood 1.
  • the central axis 4 is horizontal.
  • FIG. 2 is an external perspective view from below of the vent hood according to the first embodiment.
  • FIG. 2 is the external appearance (perspective view from diagonally below) seen when looking up from the lower part of the outdoor side.
  • FIG. 3 is a cross-sectional view taken along the central axis of the vent hood in the first embodiment.
  • FIG. 4 is a rear view of the first embodiment with the base of the vent hood removed.
  • FIG. 5 is a front view of the first embodiment with the cover of the vent hood removed.
  • the ventilation hood 1 is attached to an air supply opening that is an air intake provided on the outer wall of the house when outdoor air is taken into the house. And the ventilation opening hood 1 is connected to the air blower installed in the house through a ventilation duct, takes in outdoor air, and supplies it indoors.
  • the vent hood 1 includes a cover 2 having a rotating body shape at least on the inside, a base plate 3 that forms the bottom surface of the cover 2, and a central axis 4 of the cover 2. And a cylindrical tube 5 fixed so as to penetrate therethrough.
  • the rotating body shape is a shape formed by rotating around the central axis 4. Further, the airflow flows from the side surface portion 7 of the cover 2 and flows out from the bottom surface portion of the cover 2.
  • a dome-shaped top surface 6 for projecting the cover 2 outward is provided on the front side of the vent hood 1, that is, on the surface opposite to the base plate 3 that is the bottom surface portion. Further, the most protruding portion of the top surface 6 coincides with the central axis 4. Note that the shape of the cover 2 is not limited to the dome shape, and may be a cylindrical shape. That is, the top surface 6 may be flat.
  • the side surface portion 7 of the cover 2 is provided with a first air supply port 8, a blind plate 9 that covers a part of the first air supply port 8, and a second air supply port 10.
  • the first air supply port 8 is a plurality of openings formed by a plurality of fixed blades 11 arranged at predetermined intervals so as to circulate around the side surface portion 7.
  • 20 fixed blades 11 are provided and all face the same angle with respect to the central axis 4. Thereby, the airflow that has passed through the fixed blade 11 becomes a swirling airflow.
  • the first air supply port 8 is provided in the side surface portion 7 and particularly at a position close to the base plate 3 side. That is, the first air supply port 8 is provided on the bottom surface side of the ventilation port hood 1.
  • the upstream end 12 of the fixed blade 11 is arranged on the same surface as the side surface 7 of the cover 2 in FIG. May be arranged.
  • the blind plate 9 is to suppress the inflow of airflow at the upper and lower portions of the first air supply port 8.
  • the cover 2 does not have the fixed blades 11 provided on the blind plate 9, but the fixed blades 11 may also be provided on the inner side of the blind plate 9.
  • the blind plate 9 is configured to be disposed between one opening of the first air supply port 8 and the other opening.
  • the blind plate 9 also has a role of connecting the base plate 3 and the cover 2. Thereby, since the base plate 3, the cylindrical tube 5, and the cover 2 are integrated, the ventilation port hood 1 can be fixed to the building outer wall by inserting the cylindrical tube 5 into the ventilation port of the building outer wall.
  • the cylindrical tube 5 is provided so that the inside of the cover 2 can be made negative pressure outside the vent hood 1.
  • a blower (not shown) to the cylindrical tube 5
  • the inside of the cover 2 that is, the inside of the vent hood 1 can be set to a negative pressure.
  • the cylindrical tube 5 includes the central axis 4 of the cover 2 and is provided so as to penetrate the bottom surface from the inside of the cover 2.
  • the second air supply port 10 is provided at the lowermost portion of the side surface portion 7 on the top surface 6 side as shown in FIG.
  • the shape of the second air supply port 10 is a vertically long shape in the direction along the central axis 4.
  • the second air supply port 10 is provided in the side surface portion 7 at a position adjacent to the lower blind plate 9 in the direction along the central axis 4.
  • the second air supply port 10 may not be completely adjacent to the blind plate 9, and there may be a gap between the second air supply port 10 and the blind plate 9.
  • the second air supply port with respect to the opening area of the first air supply port 8 (the opening area here is calculated from the circumferential length of the side surface portion 7 and the opening width in the direction of the central axis 4).
  • the opening area of 10 is about 0.6%, which is very small with respect to the first air inlet 8.
  • a space dividing plate 13 and a cylindrical member 14 are provided inside the cover 2.
  • the space dividing plate 13 forms spaces for forming the first swirl chamber 15 and the second swirl chamber 19 on the outer peripheral side of the cylindrical tube 5 and the inner peripheral side of the cover 2, respectively.
  • the space dividing plate 13 divides the inside of the cover 2 into an inner circumferential first swirl chamber 15 and an outer circumferential second swirl chamber 19.
  • the columnar member 14 is a columnar body having the same axis as the central axis 4 of the cover 2 in the first swirl chamber 15, and is provided at a position facing the end surface of the cylindrical tube 5 using the fixed plate 16.
  • the fixing plate 16 is provided on the top surface 6 side in the cover 2.
  • the columnar member 14 is supported using the fixed plate 16, but the columnar member 14 may be directly fixed to the inner wall of the cover 2 without using the fixed plate 16.
  • cylindrical blades 17 that are curved in an arc shape in a cross section perpendicular to the central axis 4 are arranged uniformly and radially on the cylindrical tube 5 side of the cylindrical member 14.
  • the cylindrical tube end surface 18 which is an end surface located inside the cover 2 of the cylindrical tube 5 extends into the space dividing plate 13 as shown in FIG.
  • the space dividing plate 13 is a cylinder that extends further in the direction of the central axis 4 from the position sandwiching the fixed blade 11 with respect to the base plate 3 in the direction of the central axis 4.
  • the fixed plate 16 is arrange
  • the space dividing plate 13 may be cylindrical. In this case, the swirl diameter of the swirl flow swirling in the first swirl chamber 15 is the same at any location.
  • the space dividing plate 13 is provided with a through hole 21 that communicates the first swirl chamber 15 and the second swirl chamber 19.
  • the space dividing plate 13 includes a first shielding member 22 and a second shielding member 23 arranged on the second swirl chamber 19 side.
  • the through-hole 21 is a distance in the flow direction (arrow in FIG. 4) of the airflow that swirls around the first swirl chamber 15 around the central axis 4 when the second air supply port 10 is the starting point. Is longer than the distance in the counter-flow direction, and is provided close to the fixed plate 16 side above the central axis 4.
  • the through hole 21 does not overlap with the cylindrical tube 5, but the through hole 21 may be extended in the direction of the central axis 4 to an overlapping position. Further, the through hole 21 may be opened over the entire region of the space dividing plate 13 in the direction of the central axis 4.
  • the first shielding member 22 extends in the vicinity of the second air inlet 10 in the second swirl chamber 19 from the center side to the outer peripheral side on the through hole 21 side from the line connecting the central shaft 4 and the second air inlet 10. This is a plate-like body. As shown in FIG. 3, a gap is provided between the first shielding member 22 and the cover 2 so that a part of the flow path in the second swirl chamber 19 is shielded.
  • the second shielding member 23 is a plate-like member extending from the center side to the outer peripheral side at the uppermost part in the second swirl chamber 19 in the state where the second air inlet 10 shown in FIG. . Similar to the first shielding member 22, a part of the flow path in the second swirl chamber 19 is shielded, and a gap is provided between the second shielding member 23 and the cover 2. In addition, the 2nd shielding member 23 does not need to be provided in the uppermost part in the 2nd turning chamber 19. FIG. Specifically, the second shielding member 23 only needs to be provided above the central axis 4.
  • the fixing plate 16 is provided with a water shielding member 25.
  • the water-impervious member 25 is a rib-like member that surrounds the cylindrical member 14 with a gap from the side surface of the cylindrical member 14.
  • the water-impervious member 25 in the present embodiment is a ring shape having a continuous circumferential shape, and its side surface is parallel to the columnar member 14.
  • the water shielding member 25 is preferably arranged at a position smaller than the average diameter of the end of the space dividing plate 13 on the top surface 6 side of the cover 2 and the diameter of the cylindrical member 14. That is, the diameter of the water shielding member 25 is preferably smaller than the average diameter of the end of the space dividing plate 13 on the top surface 6 side and the diameter of the columnar member 14.
  • the vent hood 1 is attached to the air supply port portion of the outdoor outer wall when supplying the outdoor air into the house or the like using a blower, and the airflow flows by the downstream blower.
  • Outdoor air flows into the vent hood 1 from the first air inlet 8 and the second air inlet 10.
  • the air flowing in from the first air supply port 8 becomes a swirling airflow swirling around the central axis 4 by a plurality of obliquely arranged fixed blades 11, passes through the first swirling chamber 15, and is ventilated from the cylindrical tube 5. It flows out of the mouth hood 1.
  • the air flowing in from the second air supply port 10 flows into the second swirl chamber 19, but the flow of the airflow is suppressed by the first shielding member 22 shown in FIG. Therefore, most of the air that flows in from the second air supply port 10 flows toward the side opposite to the first shielding member 22, passes through the annular second swirl chamber 19, and passes through the through hole 21 to form the first swirl chamber. Flow into. Thereafter, the air flowing into the first swirl chamber 15 flows out of the vent hood 1 from the cylindrical tube 5. A part of the swirl flow in the first swirl chamber 15 flows into the second swirl chamber 19 from the through hole 21.
  • the foreign matter that flows in with the air from the first air supply port 8 receives centrifugal force due to the swirling flow in the first swirling chamber 15 and moves to the outer peripheral side of the first swirling chamber 15.
  • the foreign matter that has moved to the outer peripheral side of the first swirl chamber 15 moves to the second swirl chamber 19 through the through hole 21 and is temporarily stored in the second swirl chamber 19.
  • the water droplets flowing in along with the air from the first air supply port 8 move to the outer peripheral side in the first swirl chamber 15 like the foreign matter. Then, it collides with the wall surface of the space dividing plate 13 and adheres to the wall surface. The adhering water droplets gather together and become larger, and sag due to gravity.
  • the foreign matter and water droplets that have flowed in from the second air supply port 10 are swirled by the swirling flow in the second swirl chamber 19, receive centrifugal force, and move to the outer peripheral side.
  • the air in the second swirl chamber 19 flows from the through hole 21 to the first swirl chamber 15, but the foreign matter swirls on the outer peripheral side, so that it is difficult to flow into the first swirl chamber 15 from the through hole 21.
  • the water droplets adhere to the wall surface of the second swirl chamber 19, drop downward due to gravity, and are discharged from the second air inlet 10.
  • the foreign matter is stored in the second swirl chamber 19, but is discharged from the second air supply port 10 by natural wind flowing outside the vent hood. That is, when natural wind flows outside the second air inlet 10, the static pressure decreases according to Bernoulli's theorem. At this time, when the pressure falls below the static pressure in the ventilation port hood 1 near the second air supply port 10, the foreign matter is pulled out and is discharged from the second air supply port 10 to the outside of the ventilation port hood 1.
  • the characteristic structure of the vent hood 1 in the present embodiment is that the vent hood 1 has a double structure consisting of a first swirl chamber 15 and a second swirl chamber 19 by a space dividing plate 13. It is.
  • the second swirl chamber 19 serves as a separation chamber that temporarily stores the foreign matter separated by the centrifugal force in the first swirl chamber 15. Since the general cyclone structure has a separation chamber (dust collection chamber) below the swirl chamber, it becomes longer vertically, but the vent hood 1 in the present embodiment is a first swirl that is a swirl chamber. By providing the second swirl chamber 19 which is a separation chamber around the chamber 15, a compact structure is obtained.
  • the separation chamber of the vent hood 1 in the present embodiment has a structure that swirls the airflow by the inflow of swirl flow from the through hole 21 and the first shielding member 22. .
  • the foreign material in the second swirl chamber 19 moves to the outer peripheral side, the foreign material rarely returns from the through hole 21 to the first swirl chamber 15.
  • a large foreign object that cannot move to the outer peripheral side it moves while being pushed by the swirling flow along the space dividing plate 13.
  • it collides with the second shielding member 23 at the upper part of the second swirling chamber 19 It cannot proceed further and does not flow to the through hole 21 side. That is, it is possible to prevent a large foreign object that is difficult to work with centrifugal force from flowing into the first swirl chamber 15.
  • the position of the through hole 21 is arranged at a suitable position in the present embodiment in order to enhance the separation performance of the foreign material and prevent the foreign material from flowing into the first swirl chamber 15 from the second swirl chamber 19.
  • the foreign matter swirls within the first swirl chamber 15 and receives a force that moves to the outer peripheral side due to centrifugal force.
  • the force by gravity is also combined.
  • the through hole 21 is disposed above the central axis 4. is doing.
  • the second shielding member 23 is desirably arranged at the uppermost part of the second swirl chamber 19. Since the uppermost portion is the uppermost portion of the frustoconical space dividing plate 13, the space dividing plate 13 is inclined downwardly on either surface of the second shielding member 23, and foreign matter accumulates. It becomes difficult.
  • first swirl chamber 15 If foreign matter enters the first swirl chamber 15 from the second swirl chamber 19 through the through hole 21, it collides with the side surface of the cylindrical member 14 when moving from the through hole 21 toward the central axis 4 direction. To do. Therefore, it is difficult for foreign matter to flow directly into the cylindrical tube 5.
  • the vicinity of the central axis 4 in the first swirl chamber 15 is a swirl flow toward the cylindrical tube 5, but the columnar member 14 is a barrier. Therefore, the foreign matter flowing in from the through hole 21 is prevented from directly entering the swirling flow in the vicinity of the central axis 4, and the foreign matter is prevented from scattering downstream.
  • vent hood 1 can discharge the separated foreign matter again to the outdoors, no maintenance is required. As described above, the foreign matter once separated and stored in the second swirl chamber 19 is discharged to the outside from the second air supply port 10 by natural wind, so that the foreign matter continues to accumulate in the vent hood 1. There is no.
  • the cylindrical tube 5 is arranged such that the end surface 18 of the cylindrical tube extends into the space dividing plate 13. That is, the cylindrical tube 5 that is an outlet, the first swirl chamber 15 that is a swirl chamber, and the second swirl chamber 19 that is a separation chamber (dust collection chamber) are simultaneously overlapped. According to this structure, the ventilation opening hood 1 can be made into a compact structure.
  • the cylindrical member 14 prevents foreign matter flowing into the first swirl chamber 15 from the second swirl chamber 19 through the through-hole 21 and into the cylindrical tube 5 and suppresses a decrease in separation performance.
  • the flow of airflow in the through-hole 21 includes both a flow from the first swirl chamber 15 to the second swirl chamber 19 and a flow in the opposite direction, but the flow flowing into the first swirl chamber 15 side is mainly. This occurs near the fixed plate 16 side. Therefore, even if the foreign matter flows into the first swirl chamber 15 side, it rebounds by colliding with the cylindrical member 14. The bounced foreign matter flows in the swirl flow in the first swirl chamber 15, receives centrifugal force by swirling, and can be moved again from the through hole 21 to the second swirl chamber 19, thus reducing the separation performance. Can be suppressed.
  • the cylindrical blade 17 swells to receive the swirling flow in the first swirling chamber 15 indicated by the arrow in FIG. As a result, the swirl flow is converted into a flow in the downstream direction by the cylindrical blades 17 and air flows smoothly downstream, so that the pressure loss is reduced. That is, the cylindrical blade 17 has an effect of reducing the pressure loss of the vent hood 1.
  • the flow of the swirling flow toward the downstream is grasped, and the cylindrical member 14 has a diameter substantially equal to the diameter of the swirling flow toward the cylindrical tube 5. The diameter was determined.
  • the diameter of the swirling flow toward the cylindrical tube 5 correlates with the inner diameter of the cylindrical tube 5, and the diameter of the swirling flow toward the cylindrical tube 5 is about 70 to 80% of the inner diameter of the cylindrical tube 5. It is.
  • the blind plate 9 is located above and below the first air inlet 8, and the upper blind plate 9 prevents rain falling from above or foreign matter falling from flowing into the first air inlet 8. effective.
  • the lower blind plate 9 has an effect of preventing foreign matter discharged from the nearby second air inlet 10 from flowing again from the first air inlet 8.
  • both of the blind plates 9 also serve as support plates that connect the base plate 3 and the cover 2.
  • the cover 2 has a dome shape on the front side of the vent hood 1.
  • the inside of the second swirl chamber 19 is inclined, and the separated foreign matter moves along the inclination and easily collects in the vicinity of the second air inlet 10.
  • the shape of the second air supply port 10 is a vertically long shape that is long in the central axis direction, an opening is provided in the direction of the central axis 4 of the second swirl chamber 19.
  • Ventilation hood 1 is required to play a role in preventing water from entering the room when it rains.
  • the cylindrical pipe end surface 18 that is the end of the cylindrical pipe 5 connected to the room and the first air supply port 8 are not directly connected as described above. Inflow of water droplets is suppressed. Further, in the first swirl chamber 15, the water droplets move to the outer peripheral side due to the swirl flow and adhere to the wall surface of the space dividing plate 13. By these actions, the ventilation hood has a structure in which rain does not easily enter.
  • a water shielding member 25 is provided around the cylindrical member 14 in order to prevent water from entering.
  • the water droplets adhering to the wall surface of the space dividing plate 13 move downward along the fixed plate 16 due to gravity.
  • the water droplets colliding with the water shielding member 25 move downward along the water shielding member 25, so that the dripping water droplets do not reach the cylindrical member 14. Since a flow toward the cylindrical tube 5 is generated in the vicinity of the cylindrical member 14, water droplets attached to the cylindrical member 14 are likely to be scattered into the cylindrical tube 5.
  • the water-impervious member 25 can suppress a drop in water droplet separation performance by preventing such water droplets from being scattered.
  • the front of the vent hood 1 is covered with the cover 2 and there is no opening on the front side, so that the wind does not flow directly into the room.
  • the vent hood 1 has a foreign matter separation function using centrifugal force, and has a compact configuration and low pressure loss. Furthermore, in the vent hood 1, the separated foreign matter is discharged to the outside by the force of natural wind, and there is no narrow gap that causes clogging, so that the maintenance work of removing the foreign matter becomes unnecessary.
  • FIG. 6 is a diagram showing the shape of the water shielding member of the vent hood according to the second embodiment.
  • FIG. 6 is a partially enlarged cross-sectional view of the water shielding member 125 in the second embodiment.
  • the water-impervious member 125 in the present embodiment has an inclined surface so that the side surface on the central axis 4 side widens toward the cylindrical tube 5 side.
  • FIG. 7 is a front view showing the shape of the water-impervious member in the third embodiment.
  • a notch 226 is provided at a position located at the lowest part in the direction of gravity.
  • FIG. 8 is an external perspective view of the vent hood according to the fourth embodiment as viewed from the front side.
  • FIG. 8 is the external appearance which looks when it looks down from upper direction of the outdoor side, when it attaches to a house outer wall in the front side of the ventilation opening hood 300.
  • FIG. 9 is an external perspective view of the vent hood according to the fourth embodiment as viewed from the back side.
  • FIG. 9 is a view of the rear side of the vent hood 300 as viewed from the outer wall side of the house.
  • FIG. 10 is a cross-sectional view along the central axis of the vent hood according to the fourth embodiment.
  • the cylindrical tube 5 includes an inner tube 330 that extends from the base plate 3 to the inside of the vent hood 300 and a connection tube 331 that extends to the outside of the vent hood 300.
  • the features of the inner tube 330 extending inward from the base plate 3 will be described. Details of the inner tube 330 will be described later.
  • the vent hood 300 can be connected to a ventilation duct embedded in the outer wall of the house using a connecting pipe 331 indicated by a dotted line.
  • the ventilation port hood 300 includes a cover 2 and a base plate 3 that is a bottom surface of the cover 2.
  • the vent hood 300 is provided with a slat 9 on the side surface of the cover 2 so as to bend along the circular shape of the cover 2.
  • the cover 2 and the base plate 3 are connected via a blind plate 9. As a result, a gap is provided between the cover 2 and the base plate 3 to form the first air supply port 8.
  • the first air inlet 8 is configured to be in contact with the base plate 3 on the side surface of the vent hood 300 and is formed over 360 degrees, but air does not flow into the blind plate 9 portion.
  • the first air supply port 8 is provided with a plurality of fixed blades 11 arranged obliquely toward the central axis 4 so that the inflowing air turns.
  • a second air inlet 10 is provided in a portion located at the lower part of the cover 2.
  • a circular opening is provided in the center of the base plate 3, and this opening serves as an air outlet 332.
  • the inner side of the cover 2 is divided into a first swirl chamber 15 and a second swirl chamber 19 by a space dividing plate 13.
  • the second swirl chamber 19 is annular and surrounds the first swirl chamber 15. That is, the inner periphery side of the cover 2 is the first swirl chamber 15, and the outer periphery side of the cover 2 is the second swirl chamber 19.
  • a through hole 21 is provided in the space dividing plate 13, and the first swirl chamber 15 and the second swirl chamber 19 are spatially connected via the through hole 21.
  • An outlet 332 is provided at the center of the base plate 3.
  • the outlet 332 has a circular shape, and its center overlaps the central axis 4.
  • the inner tube 330 is provided so as to extend from the outlet 332 into the first swirl chamber 15. In the cross-sectional view of FIG. 10, the inner cylindrical tube 330 overlaps the fixed blade 11, and the inner cylindrical tube distal end 333 of the inner cylindrical tube 330 into which the air in the first swirl chamber 15 flows further overlaps the space dividing plate 13. It is extended to.
  • the columnar member 14 is provided at a position facing the inner tube 330 on the top surface 6 side in the first swirl chamber 15.
  • a ring-shaped water shielding member 25 is provided around the cylindrical member 14 on the top surface 6 side in the first swirl chamber 15.
  • the space dividing plate 13 has a cross-sectional area of the first swirl chamber 15 (from the end of the first air supply port 8, that is, the end of the fixed blade 11 toward the top surface 6 of the cover 2).
  • the central axis 4 and the vertical plane are inclined so as to be small.
  • the second swirl chamber 19 is a space formed in the gap between the space dividing plate 13 and the cover 2.
  • the second air supply port 10 is an opening provided on the side surface of the cover 2 so as to be positioned at the lower part in the gravity direction.
  • the second air supply port 10 is a rectangular opening that is long in the direction of the central axis 4, and the outside and the second swirl chamber 19 are spatially connected.
  • the connecting pipe 331 is fixed to the base plate 3 and has a cylindrical shape having an inner diameter approximately the same size as the outflow port 332 (diameter). Moreover, the center of the connecting pipe 331 overlaps the central axis 4.
  • FIG. 11 is a cross-sectional view of the inner tube of the vent hood in the present embodiment.
  • FIG. 11 is a cross-sectional view of the inner cylindrical tube 330 cut in the axial direction along a plane including the central axis 4.
  • the shape of the inner tube 330 is such that the cross-sectional area obtained by cutting the inner tube 330 along a plane perpendicular to the central axis 4 changes in the axial direction.
  • the inner diameter of the inner tube 330 that overlaps the outlet 332 has the same size as the diameter of the outlet 332.
  • the diameter of this portion, that is, the outlet 332 is defined as a diameter ⁇ out.
  • the diameter at the position where the cross-sectional area of the inner tube 330 is minimum is defined as the minimum diameter ⁇ min.
  • the diameter of the inner cylindrical tube tip 333 located on the cylindrical tube end face 18), which is the inlet through which air first flows into the inner cylindrical tube 330, that is, the diameter of the inlet is defined as the diameter ⁇ in.
  • the position of the minimum diameter ⁇ min in the direction of the central axis 4 is located between the intermediate position of the entire length (in the axial direction) of the inner cylindrical tube 330 and the distal end port 333 of the inner cylindrical tube.
  • the diameter ⁇ in of the inner cylindrical tube distal end 333 is the largest, and the relationship of diameter ⁇ in> diameter ⁇ out> minimum diameter ⁇ min is established.
  • a cylindrical wall end 334 that forms the inner tube pipe distal end 333 is an R-shaped portion 335 in which the outer side of the inner tube 330 bulges out roundly. Are connected.
  • a groove 337 is formed on the surface of the R-shaped portion 335 over 360 degrees with the central axis 4 as the center.
  • the width of the groove 337 is 1/3 to 1/5 of the depth.
  • a flange 338 for fixing the base plate 3 is provided at the diameter ⁇ out portion of the inner cylindrical tube 330, that is, the peripheral portion of the outflow port 332. ing.
  • FIG. 12 is an external perspective view of the cylindrical member in the present embodiment.
  • the cover 2 side of the columnar member 314 is configured by a cylindrical columnar body 339 as shown in FIG.
  • the cylindrical member 314 has a conical shape on the inner cylinder tube 330 side of the cylindrical body 339 with the inner cylinder tube 330 side as an apex, and an arc blade 340 (corresponding to the cylindrical blade 17) is provided on the outer periphery of the conical shape. Four pieces are equally arranged in a circular shape.
  • the outdoor air containing foreign matter flows into the vent hood 300 from the first air inlet 8, turns into a swirling airflow by the fixed vanes 11, and swirls in the first swirl chamber 15 toward the front side of the vent hood 300.
  • the foreign matter moves to the space dividing plate 13 side by centrifugal force, and moves to the second swirl chamber 19 through the through hole 21.
  • the air from which the foreign matter is separated flows into the inner tube 330 from the inner tube end 333 and flows out of the apparatus through the outlet 332. That is, the swirling airflow that has flowed in from the first air supply port 8 at the inner tube pipe front end port 333 has its traveling direction reversed.
  • the swirling airflow that flows in from the first air supply port 8 can reverse the traveling direction between the outside and the inside of the inner tube 330.
  • the foreign matter moved to the second swirl chamber 19 is temporarily stored in the second swirl chamber 19. Since the inside of the ventilation opening hood 300 has a negative pressure by the blower, air flows into the second swirl chamber 19 from the second air supply opening 10. The inflowing air passes through the through hole 21 and flows into the first swirl chamber 15 and merges with the swirling airflow in the first swirl chamber 15.
  • FIG. 13 is a view for explaining the flow of the airflow when the axial sectional area of the inner tube does not change.
  • the white arrow indicates the direction of airflow, and the black arrow indicates the airflow vector.
  • the black line inside the black arrow is a line (stream line) indicating the flow direction of the airflow.
  • the inner tube 330 shown in FIG. 11 of the present invention is provided with a wall surface slightly smaller along the outer surface of the vortex. As shown in FIG. 13, the position where the thickness of the eddy current becomes maximum is between the inner cylindrical tube front end 433 and the intermediate position of the entire length of the inner cylindrical tube 330. Therefore, the inner tube 330 of the present embodiment includes a minimum cross-sectional area portion corresponding to a portion where the thickness of the eddy current is maximum, that is, a portion having a minimum diameter ⁇ min.
  • the minimum diameter ⁇ min is provided between the inner tube pipe tip 333 and the intermediate position of the entire length of the inner tube 330.
  • the minimum diameter ⁇ min is smaller than 0.77 times the diameter ⁇ in, which is the diameter of the inner tube end 333, the air passage area is reduced, so that the ventilation resistance is increased and the pressure loss is increased. Also, if the minimum diameter ⁇ min is larger than 0.87 times the diameter ⁇ in, which is the diameter of the inner tube end 333, the vortex generated from the cylindrical wall end 334 cannot be completely eliminated, and the pressure loss is sufficiently reduced. It cannot be reduced.
  • the inner peripheral surface 336 is provided slightly smaller along the outer surface of the vortex flow. Become. According to this configuration, due to the airflow attracting effect on the inner peripheral surface 336, the effective area in which the airflow flows in the original traveling direction can be expanded. As a result, the airflow resistance can be reduced and the pressure loss can be reduced.
  • the cross-sectional area of the inner tube 330 is gradually increased so as not to disturb the air flow, and the diameter of the outlet 332 is increased to the same size as the outlet 332. Is the diameter ⁇ out.
  • the cylindrical wall end 334 is provided with an R-shaped portion 335 that bulges outwardly from the inner tube 330.
  • the inner peripheral surface 336 and the outer peripheral surface 341 of the inner tube 330 are continuously connected along an arc shape along the R-shaped portion 335.
  • a groove 337 is provided on the surface of the maximum diameter portion 342 of the R-shaped portion 335 around the entire center axis 4.
  • the width of the groove 337 provided in the R-shaped portion 335 is as narrow as 1/3 to 1/5 of the depth and does not affect the air flow, so that the pressure loss due to the groove 337 does not increase. .
  • the groove 337 is for preventing water droplets that have entered from the first air supply port 8 from flowing into the inner tube 330 through the outer peripheral surface 341 of the inner tube 330.
  • the shape of the inner tube 330 of the present invention has three effects.
  • Third, the cross-sectional area can then be gradually increased to reduce the flow velocity.
  • the structure of the inner tube 330 according to the present embodiment does not affect the separation of foreign matter, the pressure loss can be reduced while maintaining the separation performance.
  • the cylindrical member 14 can receive the swirling airflow with the arc blade 340 and collect it at the center.
  • the root portion of the arc blade 340 has a conical shape with the inner tube 330 side as a vertex. According to this configuration, the airflow received by the arc blade 340 is gathered at the center and is directed toward the apex side, that is, the inner tube 330 side along the conical surface, so that air tends to flow smoothly downstream. Under the influence of this flow, the airflow flowing in the vicinity of the inner peripheral surface 336 of the inner tube 330, particularly the airflow flowing along the wall surface near the minimum diameter ⁇ min, tends to flow smoothly downstream. That is, the cylindrical member 14 and the shape of the inner cylindrical tube 330 which is the shape of the present embodiment are combined to further reduce the pressure loss.
  • FIG. 14 is an external perspective view of the vent hood according to the fifth embodiment as viewed from the front side.
  • FIG. 14 is the external appearance which looks when it looks down from the outdoor side upper direction, when it attaches to a house outer wall by the front side of the ventilation opening hood 500 similarly to FIG.
  • FIG. 15 is a cross-sectional view along the central axis of the vent hood according to the fifth embodiment. As shown in FIG. 15, an exhaust duct is connected to the connection pipe 531, and a blower is connected to the downstream side of the exhaust duct.
  • the vent hood 500 of the present embodiment is attached to the outer wall surface of the house with the central axis 4 substantially horizontal.
  • the left side in FIG. 15 is the top surface side of the ventilation hood 500 (the top surface 6 side of the cover 2), and the cover 2 is provided to cover.
  • the right side in FIG. 15 is the bottom side of the vent hood 500 (the bottom side of the cover 2), and the base plate 3 is provided.
  • the upper and lower portions of the cover 2 are each provided with a blank 9 for bending along the arc shape of the cover 2, thereby connecting the cover 2 and the base plate 3.
  • the internal space that can be formed by connection is cylindrical.
  • the cover 2 and the base plate 3 are connected via a blind plate 9. As a result, a gap is provided between the cover 2 and the base plate 3 to form the first air supply port 8.
  • the first air supply port 8 is configured to contact the base plate 3 on the side surface of the ventilation port hood 500 so that air can flow in approximately 360 degrees around the central axis 4.
  • the blanking board 9 part is a shielding part, and air does not flow in.
  • the first air supply port 8 is provided with a plurality of fixed blades 11 that are plate-like members arranged obliquely toward the central axis 4 so that the inflowing air turns.
  • the fixed blade 11 is provided at a predetermined angle in the same direction with respect to the tangent of the arc centered on the central axis 4 in a cross section orthogonal to the central axis 4.
  • a second air inlet 10 is provided in a portion located at the lower part of the cover 2.
  • the inside of the cover 2 is divided into a first swirl chamber 15 and a second swirl chamber 19 by a space dividing plate 13, and the second swirl chamber 19 has an annular shape and surrounds the first swirl chamber 15.
  • a through hole 21 is provided in the space dividing plate 13, and the first swirl chamber 15 and the second swirl chamber 19 are spatially connected via the through hole 21.
  • the space dividing plate 13 is a cross-sectional area (center) of the first swirl chamber 15 from the end on the first air supply port 8 side, that is, the end on the fixed blade 11 side toward the top surface 6 side of the cover 2. It has a truncated cone shape that is inclined so that the surface perpendicular to the axis 4 becomes smaller.
  • a space formed by disposing the space dividing plate 13 that is a truncated cone inside the cover 2 that is a cylinder is a second swirl chamber 19.
  • the base plate 3 is provided with a circular opening 532 in the center so as to be coaxial with the central axis 4.
  • a cylindrical tube 5 is provided so as to penetrate through the opening 532.
  • the inner side portion of the ventilation hood 500 of the cylindrical tube 5, that is, the inner cylindrical tube 530 is provided with a cylindrical wall end portion 534 through which air flows.
  • the outside of the ventilation hood 500 of the cylindrical tube 5 is a connection tube 531 to which a ventilation duct can be connected.
  • the cylindrical wall end portion 534 extends in the direction of the central axis 4 to a position overlapping the space dividing plate 13 in FIG.
  • the second air supply port 10 is an opening provided on the side surface of the cover 2 so that the central axis 4 is positioned at the lower part in the gravitational direction in a horizontal state.
  • the second air supply port 10 is a rectangular opening that is long in the direction of the central axis 4 and spatially connects the second swirl chamber 19 and the outdoors.
  • a lower shielding plate 545 and an upper shielding plate 546 are provided in the second swirl chamber 19.
  • a plurality of lower shielding plates 545 are provided on the through hole 21 side in the vicinity of the second air inlet 10.
  • the upper shielding plate 546 is provided so as to be positioned at the upper part in the gravity direction with the second air supply port 10 at the lowest position.
  • the lower shielding plate 545 and the upper shielding plate 546 are provided in the second swirl chamber 19 radially about the central axis 4.
  • the lower shielding plate 545 and the upper shielding plate 546 do not completely block the second swirl chamber 19 as a separation chamber, and a gap is formed between the lower shielding plate 545 and the upper shielding plate 546 and the cover 2.
  • a plurality of lower shielding plates 545 are provided between the second air supply port 10 and the through hole 21.
  • the space dividing plate 13, the plurality of fixed blades 11, the lower shielding plate 545, and the upper shielding plate 546 are integrated.
  • the outdoor air containing foreign matter flows into the ventilation hood 500 from the first air supply port 8 and becomes a swirling airflow by the fixed blade 11.
  • the outdoor air containing foreign matter swirls in the first swirl chamber 15 while heading toward the top side of the vent hood 500.
  • the foreign substance moves to the outer peripheral side of the first swirl chamber 15 by centrifugal force, that is, to the space dividing plate 13 side, and moves to the second swirl chamber 19 through the through hole 21 by centrifugal force.
  • the air from which the foreign matter has been separated flows into the inner tube 530 and out of the apparatus through the connection tube 531.
  • the foreign matter moved to the second swirl chamber 19 is temporarily stored in the second swirl chamber 19. Since the ventilation port hood 500 has a negative pressure by the blower, air flows into the second swirl chamber 19 from the second air supply port 10. The air that flows into the second swirl chamber 19 from the outside tends to go to the through hole 21 provided in the space dividing plate 13, but is blocked by the lower shielding plate 545 and the upper shielding plate 546. Therefore, a small amount of air flows into the first swirl chamber 15 from the second air supply port 10 through the through hole 21. The slight air flows from the second swirl chamber 19 through the through hole 21 to the first swirl chamber 15, and merges with the swirl airflow in the first swirl chamber 15.
  • FIG. 16 is an enlarged view of a portion A in FIG. FIG. 16 is a view in which the space dividing plate 13 is to be fitted into the cover 2 to which the packing 547 is attached.
  • the space dividing plate 13 is provided with fixed blades 11, an upper shielding plate 546, and a lower shielding plate 545. If these are formed integrally, handling during assembly becomes easy.
  • the space dividing plate 13 includes a flange portion 548 that protrudes toward the outer peripheral side on the base plate 3 side.
  • the fixed blade 11 is erected from the flange portion 548 to the base plate 3 side.
  • a ring-shaped contact rib 549 is provided at the outer peripheral end of the flange portion 548 so as to stand up toward the top surface side of the ventilation port hood 500.
  • the outer peripheral surface of the contact rib 549 is a contact surface 550 that comes into contact with a packing 547 described later.
  • the contact surface 550 is a conical surface whose diameter decreases toward the top surface of the vent hood 500.
  • the inclination direction of the contact surface 550 is the same as the inclination direction of the truncated conical space dividing plate 13.
  • a packing 547 is attached to the inside of the cover 2.
  • the packing 547 has an inner diameter that is smaller than the outer diameter of the contact rib 549.
  • the space dividing plate 13 is inserted into the cover 2 and the upper and lower blind plates 9 and the base plate 3 are fixed.
  • the outer diameter of the contact rib 549 on the tip side (the top surface side of the vent hood 500) is slightly larger than the inner diameter of the attached packing 547 (it may be the same as or smaller than the inner diameter of the packing 547), the space When the dividing plate 13 is fixed to the cover 2, the space dividing plate 13 is easily fitted into the cover 2. When the space dividing plate 13 is further inserted, the contact rib 549 gradually crushes the packing 547 along the inclination of the contact surface 550. For this reason, the space dividing plate 13 can smoothly squeeze the packing 547 to keep the cover 2 firmly sealed.
  • a wire net or the like may be provided in the first air supply port 8 in order to prevent large insects from entering from the first air supply port 8. That is, a cylindrical wire mesh may be provided so as to cover the first air supply port 8.
  • the wire mesh provided in the first air supply port 8 has substantially the same diameter as the inner diameter of the cover 2, and the space dividing plate 13 may be inserted after the wire mesh is connected in advance to the cover 2 side.
  • the packing 547 may be attached to the inner peripheral side of the cover 2. That is, when the packing 547 is attached to the space dividing plate 13 side, the packing 547 needs to have a thickness that makes the outer diameter of the packing 547 larger than the inner diameter of the cover 2.
  • the packing 547 may be attached to the cover 2 side.
  • the abutment surface 550 is an inclined surface when the space dividing plate 13 is inserted, so that the packing 547 can be gradually crushed, which facilitates assembly.
  • the communication portion between the second swirl chamber 19 and the outside can be limited to the portion of the second air inlet 10. . That is, the outside air directly flowing into the second swirl chamber 19 is only from the second air supply port 10, thereby increasing the flow from the second swirl chamber 19 to the first swirl chamber 15 through the through hole 21. Can be prevented. Therefore, the movement of the foreign matter from the first swirl chamber 15 to the second swirl chamber 19 can be prevented from being hindered, so that a decrease in separation performance can be suppressed. Moreover, since the outside air flowing in from the second air supply port 10 suppresses the flow toward the through hole 21 by the lower shielding plate 545 and the upper shielding plate 546, it does not affect the separation performance.
  • the contact surface 550 that contacts the packing 547 is a conical surface, the packing 547 can be gradually crushed during the assembly, so that the assembly is facilitated and the inclined contact surface 550 is inclined. Since the packing 547 is pressed down firmly, the sealing performance is also improved.
  • the cyclone separation device is configured to reduce the size of the device and reduce the size and to improve the design, while separating the foreign matter and returning it to the outdoors, and also preventing the entry of wind and rain. Therefore, it is useful as an outdoor hood or the like attached to the ventilation opening (supply side) of the building.

Abstract

A ventilation port hood (1) comprises: a cover (2) where an air current flows in from a side surface part (7) and flows out from a bottom surface part; a cylindrical tube (5) penetrating from the inner side of the cover (2) through the bottom surface part; a space dividing plate that respectively forms a first turning chamber and a second turning chamber in the outer peripheral side of the cylindrical tube (5) and the inner peripheral side of the cover (2); and a columnar member provided so as to face the end surface of the cylindrical tube (5) in the first turning chamber. The cover (2) has a top surface (6) facing the bottom surface part, is provided with a first air supply port (8) in the side surface part (7) at the bottom surface part side thereof, and is provided with a second air supply port in the side surface part (7) at the top surface (6) side thereof. The space dividing plate has a through hole by which the first turning chamber and the second turning chamber communicate, and when the second air supply port is the base point around the center axis, the through hole is positioned such that a distance in the flow direction of the air current going around the first turning chamber is longer than a distance in the reverse flow direction.

Description

換気口フードVentilation hood
 本発明は、室内の換気を行うために、送風機を気流の下流側に配置して屋外の空気を室内に取り込む建屋外壁の空気取入口に取り付ける換気口フードに関するものである。 The present invention relates to a vent hood that is attached to an air intake port of a building outdoor wall that arranges a blower on the downstream side of an air flow and takes outdoor air into the room in order to ventilate the room.
 従来、この種の換気口フードとして、例えば特許文献1のものが知られている。 Conventionally, as this type of vent opening hood, for example, the one of Patent Document 1 is known.
 換気口フードは建屋外壁の空気取入口である換気口から、雨や風の流入を防ぐ目的で設置される。そして、換気口フードは、雨や風を防ぐためのカバー、空気を取り入れるための流入口、換気ダクトに接続するため換気口フード背面側に突出した円筒状の流出口、小動物や大きめの飛散物の流入を防ぐためのガラリから構成されている。 The ventilation hood is installed for the purpose of preventing the inflow of rain and wind from the ventilation opening, which is the air intake on the outdoor wall of the building. The vent hood has a cover to prevent rain and wind, an inlet for taking in air, a cylindrical outlet that protrudes to the back of the vent hood to connect to the ventilation duct, small animals and large flying objects It consists of a gallery to prevent inflow.
 また、空気に混入している小動物や大きめの飛散物を分離する装置としてサイクロン分離装置がある。例えば特許文献2のものが知られている。 Also, there is a cyclone separation device as a device for separating small animals and large scattered matter mixed in the air. For example, the thing of patent document 2 is known.
 図17は、従来のサイクロン分離装置を示す断面図である。図17に示すように、サイクロン分離装置は、流入口101、旋回室102、内筒管103、内筒管先端104、堆積部105から構成される。異物を含んだ空気は、流入口101から装置内へ流入し、旋回気流となって旋回室102内を流れる。この際に、異物は遠心力により旋回室102の外周側へ分離される。分離された異物は堆積部105に堆積し、空気は内筒管先端104から内筒管103へ流入し装置外へ流出する。 FIG. 17 is a cross-sectional view showing a conventional cyclone separator. As shown in FIG. 17, the cyclone separation device includes an inflow port 101, a swirl chamber 102, an inner tube 103, an inner tube tip 104, and a deposition unit 105. The air containing the foreign matter flows into the apparatus from the inlet 101 and flows in the swirl chamber 102 as a swirling airflow. At this time, the foreign matter is separated to the outer peripheral side of the swirl chamber 102 by centrifugal force. The separated foreign matter accumulates in the accumulation portion 105, and the air flows from the inner cylindrical tube tip 104 into the inner cylindrical tube 103 and flows out of the apparatus.
 また、流入口に網等を使用すると、異物により目詰まりを起こし、メンテナンスを行わないと換気風量が低下する場合がある。そのため、特許文献3のような目詰まりの恐れのないサイクロン技術を応用した換気口フードもある。これは、流入口から流入した外気を、流入口に設けた固定羽根によって旋回気流にし、旋回室の壁面に、分離室と貫通する貫通孔を設けて、旋回による遠心力によって貫通孔より異物を分離室に移動・堆積させるものである。その結果、異物が除去された空気は流出口から流出し、室内に供給される。 Also, if a net or the like is used at the inlet, clogging may occur due to foreign matter, and the ventilation air flow may decrease unless maintenance is performed. For this reason, there is a vent hood that uses the cyclone technology that does not cause clogging as in Patent Document 3. This is because the outside air that has flowed in from the inflow port is turned into a swirling airflow by fixed blades provided at the inflow port, and a through-hole that penetrates the separation chamber is provided on the wall surface of the swirl chamber. It is moved and deposited in the separation chamber. As a result, the air from which the foreign matter has been removed flows out from the outlet and is supplied to the room.
特開2011-242081号公報JP 2011-242081 A 特開2000-128591号公報Japanese Patent Laid-Open No. 2000-128591 特開2008-36579号公報JP 2008-36579 A
 このような従来の換気口フードにおいては、ガラリでは隙間が広く、蛾や蚊、ハエ類などの小昆虫が流入する。そのため換気口フード内にろ過装置として網を設置し、ろ過方式でそれら小昆虫を捕集し、室内への流入を防いでいた。 In such a conventional vent hood, there are wide gaps in the louver, and small insects such as moths, mosquitoes and flies flow in. Therefore, a net was installed as a filtration device in the vent hood, and these small insects were collected by the filtration method to prevent inflow into the room.
 しかし、網にそれら小昆虫が堆積していき、目詰まりを起こし、空気の取り入れが出来なくなり、所定の換気量を確保できなくなるため、目詰まりを除去するメンテナンス作業が発生するという課題を有していた。 However, these small insects accumulate on the net, causing clogging, making it impossible to take in air and securing a predetermined ventilation rate, and there is a problem that maintenance work to remove clogging occurs. It was.
 また、サイクロン分離装置においては、内筒管の外側と内側で旋回気流の進行方向が反転しており、内筒管先端付近で空気の乱れが大きくなり、圧力損失が大きくなっていた。空気の乱れを抑制するために、内筒管先端付近の内筒管外周面側にツバ状リングを設けたり、内筒管先端の端部に内筒管の外壁周方向に沿って断面が円形状となるリングを設けたりする方法がある。これにより、旋回気流の進行方向を内筒管の外側と内側で反転さる場合の端部における空気の乱れを抑制し、圧力損失を低減していた。しかしながら、これらの方法は換気口フードとしては実用化が困難であった。 Also, in the cyclone separation device, the traveling direction of the swirling airflow was reversed on the outside and inside of the inner tube, and the air turbulence increased near the end of the inner tube, and the pressure loss increased. In order to suppress the turbulence of the air, a collar-like ring is provided on the outer peripheral surface side of the inner tube near the tip of the inner tube, or the cross section is circular along the outer wall circumferential direction of the inner tube at the end of the inner tube There is a method of providing a ring having a shape. Thereby, the turbulence of the air at the end when the traveling direction of the swirling airflow is reversed between the outside and the inside of the inner tube is suppressed, and the pressure loss is reduced. However, these methods have been difficult to put into practical use as ventilation hoods.
 上記特許文献3のようなサイクロン技術を用いて異物を分離する機能の付加させた換気口フードにおいて、異物を分離する分離室に多くの隙間があると、そこから外気が内部へ侵入し、隙間を通って流出口へ向かう流れが発生する。この流れは、異物が旋回室から分離室へ移動する向きと逆方向のため、異物が分離室に移動するのを妨げてしまい、分離されずに異物が流出口から室内へ侵入してしまうこともあった。 In the vent hood with the function of separating foreign matter using the cyclone technology as in the above-mentioned Patent Document 3, if there are many gaps in the separation chamber for separating foreign matters, the outside air enters the inside from the gap, and the gap A flow toward the outlet is generated. Since this flow is in the opposite direction to the direction in which the foreign matter moves from the swirl chamber to the separation chamber, the foreign matter prevents the foreign matter from moving into the separation chamber, and the foreign matter enters the room from the outlet without being separated. There was also.
 そこで本発明は、上記従来の課題を解決するものであり、小昆虫や水滴等(以下、異物)を分離することが可能で、メンテナンス作業の不要な換気口フードを提供することを目的とする。 SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a vent hood that can separate small insects, water droplets and the like (hereinafter, foreign matter) and does not require maintenance work. .
 そして、この目的を達成するために、本発明に係る換気口フードは、気流が側面部から流入し、底面部から流出する回転体形状を有したカバーと、カバーの中心軸を含みカバーの内側から底面部を貫通してカバーの内側を負圧にできるように設けられた円筒管と、円筒管の外周側とカバーの内周側にそれぞれ第一旋回室と第二旋回室となる空間を形成する空間分割板と、第一旋回室内において円筒管の端面に対向させて設けた円柱部材とを備える。カバーは、底面部に対向する頂面を有し、側面部の底面部側に第一給気口が設けられ、側面部の頂面側に第二給気口が設けられている。第一給気口は、側面部を周回するように配置された複数の固定羽根で形成された複数の開口である。また、第二給気口は、中心軸を水平に配置した状態において、中心軸方向に沿って縦長であり、側面部の最下部に位置させることができる開口である。そして、空間分割板は、第一旋回室と第二旋回室とを連通する貫通孔を有する。貫通孔の位置は、中心軸周りで第二給気口を基点としたときに第一旋回室を旋回する気流の流れ方向の距離が反流れ方向の距離に比べて長くなるようにしたものである。これにより所期の目的を達成するものである。 In order to achieve this object, the vent hood according to the present invention includes a cover having a rotating body shape in which an airflow flows in from a side surface portion and flows out from a bottom surface portion, and includes a central axis of the cover. A cylindrical tube provided so that the inside of the cover can be made negative pressure through the bottom surface of the cover, and a space for the first swirl chamber and the second swirl chamber on the outer peripheral side of the cylindrical tube and the inner peripheral side of the cover, respectively. A space dividing plate to be formed; and a columnar member provided to face the end surface of the cylindrical tube in the first swirl chamber. The cover has a top surface facing the bottom surface portion, a first air supply port is provided on the bottom surface side of the side surface portion, and a second air supply port is provided on the top surface side of the side surface portion. The first air supply port is a plurality of openings formed by a plurality of fixed blades arranged so as to go around the side surface portion. The second air supply port is an opening that is vertically long along the central axis direction and can be positioned at the lowermost portion of the side surface portion in a state where the central axis is horizontally disposed. The space dividing plate has a through hole that communicates the first swirl chamber and the second swirl chamber. The position of the through hole is such that the distance in the flow direction of the airflow swirling in the first swirl chamber is longer than the distance in the counterflow direction when the second air supply port is the base point around the central axis. is there. This achieves the intended purpose.
 第一給気口から入った屋外の空気は、旋回気流となって第一旋回室へ流入する。旋回気流中に含まれる異物は遠心力を受け、空間分割板近傍を周回し、空間分割板に設けられた貫通孔より第二旋回室へ移動する。換気口フード周囲には自然風が流れており、第二給気口の外側で静圧が低下し、屋外へ向かう流れが発生し、分離室である第二給気口に貯留されていた異物は、第二給気口から屋外へ排出されることになる。つまり、ろ過装置を設けなくても異物を分離することができるという効果が得られ、目詰まりの発生がなくなり、分離した異物は溜まり続けないので、メンテナンス作業が不要になる。という効果も得ることができる。 The outdoor air that has entered through the first air supply port flows into the first swirl chamber as a swirling airflow. The foreign matter contained in the swirling airflow receives centrifugal force, circulates in the vicinity of the space dividing plate, and moves to the second swirling chamber through a through hole provided in the space dividing plate. A natural wind is flowing around the vent hood, the static pressure decreases outside the second air supply port, a flow toward the outside occurs, and the foreign matter stored in the second air supply port, which is the separation chamber Is discharged to the outside from the second air supply port. That is, the effect that the foreign matter can be separated without providing a filtering device is obtained, the occurrence of clogging is eliminated, and the separated foreign matter does not continue to accumulate, so that maintenance work is not required. The effect that can be obtained.
図1は、本発明の実施の形態1における換気口フード上方からの外観斜視図である。FIG. 1 is an external perspective view from above of a vent hood according to Embodiment 1 of the present invention. 図2は、実施の形態1における換気口フード下方からの外観斜視図である。FIG. 2 is an external perspective view from below of the vent hood according to the first embodiment. 図3は、実施の形態1における換気口フードの内部構造を示す、中心軸に沿って切断した断面図である。FIG. 3 is a cross-sectional view taken along the central axis, showing the internal structure of the vent hood in the first embodiment. 図4は、実施の形態1における換気口フードのベースを除いた状態での背面図である。FIG. 4 is a rear view of the first embodiment with the base of the vent hood removed. 図5は、実施の形態1における換気口フードのカバーを除いた状態での正面図である。FIG. 5 is a front view of the first embodiment with the cover of the vent hood removed. 図6は、実施の形態2における換気口フードの遮水部材の形状を示す図である。FIG. 6 is a diagram showing the shape of the water shielding member of the vent hood in the second embodiment. 図7は、実施の形態3における換気口フードの遮水部材に設けた切り欠きを示す図である。FIG. 7 is a view showing notches provided in the water shielding member of the vent hood in the third embodiment. 図8は、実施の形態4における換気口フードを正面側から見た外観斜視図である。FIG. 8 is an external perspective view of the vent hood according to the fourth embodiment as viewed from the front side. 図9は、実施の形態4における換気口フードを裏側から見た外観斜視図である。FIG. 9 is an external perspective view of the vent hood according to the fourth embodiment as viewed from the back side. 図10は、実施の形態4における換気口フードの中心軸に沿った断面図である。FIG. 10 is a cross-sectional view along the central axis of the vent hood according to the fourth embodiment. 図11は、実施の形態4における換気口フードの内筒管の断面図である。FIG. 11 is a cross-sectional view of the inner tube of the vent hood in the fourth embodiment. 図12は、実施の形態4における気流変換部材の外観斜視図である。FIG. 12 is an external perspective view of the airflow conversion member according to the fourth embodiment. 図13は、実施の形態4における説明における内筒管が軸方向の断面積が変わらない場合の気流の流れを示した図である。FIG. 13 is a diagram showing the flow of the airflow when the inner tube in the description of the fourth embodiment does not change the axial sectional area. 図14は、実施の形態5における換気口フードを天面側から見た外観図である。FIG. 14 is an external view of the vent hood according to the fifth embodiment as viewed from the top side. 図15は、実施の形態5における換気口フードの中心軸に沿った断面図である。FIG. 15 is a cross-sectional view along the central axis of the vent hood according to the fifth embodiment. 図16は、実施の形態5における換気口フードの図14におけるA部の部分拡大図である。FIG. 16 is a partially enlarged view of a portion A in FIG. 14 of the ventilation hood according to the fifth embodiment. 図17は、従来のサイクロン分離装置を示す断面図である。FIG. 17 is a cross-sectional view showing a conventional cyclone separator.
 本発明の請求項1に係る換気口フードは、気流が側面部から流入し、底面部から流出する回転体形状を有したカバーと、カバーの中心軸を含みカバーの内側から底面部を貫通してカバーの内側を負圧にできるように設けられた円筒管と、円筒管の外周側とカバーの内周側にそれぞれ第一旋回室と第二旋回室となる空間を形成する空間分割板と、第一旋回室内において円筒管の端面に対向させて設けた円柱部材とを備える。カバーは、底面部に対向する頂面を有し、側面部の底面部側に第一給気口が設けられ、側面部の頂面側に第二給気口が設けられ、第一給気口は、側面部を周回するように配置された複数の固定羽根で形成された複数の開口であって、第二給気口は、中心軸を水平に配置した状態において、中心軸方向に沿って縦長であり、側面部の最下部に位置させることができる開口である。そして、空間分割板は、第一旋回室と第二旋回室とを連通する貫通孔を有し、貫通孔の位置は、中心軸周りで第二給気口を基点としたときに第一旋回室を旋回する気流の流れ方向の距離が反流れ方向の距離に比べて長くなるようにした構成を有する。 A vent hood according to claim 1 of the present invention includes a cover having a rotating body shape in which an airflow flows in from a side surface portion and flows out from a bottom surface portion, and includes a central axis of the cover and penetrates the bottom surface portion from the inside of the cover. A cylindrical tube provided so that the inside of the cover can be under negative pressure, and a space dividing plate that forms a space for a first swirl chamber and a second swirl chamber on the outer peripheral side of the cylindrical tube and the inner peripheral side of the cover, respectively And a columnar member provided to face the end face of the cylindrical tube in the first swirl chamber. The cover has a top surface facing the bottom surface portion, the first air supply port is provided on the bottom surface side of the side surface portion, the second air supply port is provided on the top surface side of the side surface portion, and the first air supply port is provided. The mouth is a plurality of openings formed by a plurality of fixed blades arranged so as to circulate around the side surface portion, and the second air supply port extends along the central axis direction in a state where the central axis is horizontally arranged. The opening is vertically long and can be positioned at the lowermost portion of the side surface. The space dividing plate has a through hole that communicates the first swirl chamber and the second swirl chamber, and the position of the through hole is the first swirl when the second supply port is the base point around the central axis. It has a configuration in which the distance in the flow direction of the airflow swirling through the chamber is longer than the distance in the counterflow direction.
 これにより、例えば円筒管と連通する送風機により、カバーの内側は負圧とすることができるため、第一給気口から入った屋外の空気は、旋回気流となって第一旋回室へ流入する。ここで旋回気流中に含まれる異物が遠心力を受け、空間分割板近傍を周回し、空間分割板に設けた貫通孔より第二旋回室へ移動する。つまり第二旋回室が分離した異物を受け入れる分離室となっている。異物は重力により分離室となった第二旋回室の下方、第二給気口付近へ移動する。第二給気口へ移動した異物は屋外の自然風の影響を受けて第二給気口から屋外へ排出される。 As a result, for example, the blower communicating with the cylindrical tube can make the inside of the cover have a negative pressure, so that outdoor air that has entered through the first air supply port flows into the first swirl chamber as a swirling airflow. . Here, the foreign matter contained in the swirling airflow receives centrifugal force, circulates in the vicinity of the space dividing plate, and moves to the second swirling chamber from the through hole provided in the space dividing plate. That is, the second swirl chamber is a separation chamber for receiving the separated foreign matter. The foreign matter moves under the second swirl chamber, which has become a separation chamber, due to gravity and near the second air supply port. The foreign matter that has moved to the second air supply port is discharged from the second air supply port to the outside due to the influence of outdoor natural wind.
 また、カバーの内側は負圧となっているため、通常は第二給気口からも空気は流入している。 Also, since the inside of the cover is under negative pressure, air usually flows from the second air supply port.
 第一旋回室の旋回気流の一部は指向性を持って貫通孔より第二旋回室に流入するため、第二旋回室内の気流は第一旋回室の気流と同じ旋回方向となり、第二給気口から流入した気流はその旋回気流に乗って旋回する。これにより、第一旋回室から第二旋回室に移動してきた異物や、第二給気口から第二旋回室へ流入した異物を第二旋回室の外周側へ移動させることができ、異物が貫通孔から第一旋回室へ移動することを抑制できるため、分離性能の低下を抑えることができる。 Since a part of the swirling airflow in the first swirl chamber flows into the second swirl chamber through the through hole with directivity, the airflow in the second swirl chamber is in the same swirling direction as the airflow in the first swirl chamber, and The airflow flowing in from the air mouth turns on the swirling airflow. As a result, foreign matter that has moved from the first swirl chamber to the second swirl chamber and foreign matter that has flowed into the second swirl chamber from the second air supply port can be moved to the outer peripheral side of the second swirl chamber. Since movement from the through hole to the first swirl chamber can be suppressed, a decrease in separation performance can be suppressed.
 また、本発明の請求項2に係る換気口フードは、空間分割板が、中心軸方向において、第一給気口よりも頂面側に配置された円筒形状もしくは円錐台形状を成し、中心軸方向において空間分割板の内周側に円筒管の端面が延設された構成を有していてもよい。 In the vent hood according to claim 2 of the present invention, the space dividing plate has a cylindrical shape or a truncated cone shape arranged on the top surface side of the first air supply port in the central axis direction. You may have the structure by which the end surface of the cylindrical tube was extended in the axial direction at the inner peripheral side of the space division | segmentation board.
 これにより、第一給気口より流入した空気と異物は旋回しながら、その進行方向は一旦カバーの頂面側方向となり、頂面側で旋回流の進行方向が反転し、円筒管内へ向かう流れとなる。これにより旋回流の進行方向の距離を稼ぐことができるため、異物を遠心力により十分に外周側へ移動させることが可能となり、分離性能を向上させることができる。 As a result, while the air and foreign matter flowing in from the first air supply port swirl, the traveling direction once becomes the top surface side direction of the cover, and the traveling direction of the swirling flow is reversed on the top surface side and flows into the cylindrical tube. It becomes. Thereby, since the distance in the traveling direction of the swirl flow can be earned, the foreign matter can be sufficiently moved to the outer peripheral side by the centrifugal force, and the separation performance can be improved.
 また、本発明の請求項3に係る換気口フードは、第二旋回室内において、空間分割板上に、第二旋回室内の気流の流路の一部を遮るように立設した第一遮蔽部材が設けられ、第一遮蔽部材は、中心軸と第二給気口を結んだ線より貫通孔側に設けられ中心軸側から空間分割板の外周側へ延設した構成を有していてもよい。 Moreover, the ventilation opening hood which concerns on Claim 3 of this invention is the 1st shielding member standingly arranged so that a part of flow path of the airflow in a 2nd swirl chamber might be interrupted | blocked on the space division board in the 2nd swirl chamber. The first shielding member may be provided on the through hole side from the line connecting the central axis and the second air supply port, and may extend from the central axis side to the outer peripheral side of the space dividing plate. Good.
 これにより、異物の分離性能の低下を抑制できる。つまり、第二旋回室に分離された異物は、重力により第二給気口付近に移動するが、第二給気口から流入する空気により舞い上がる。しかし、舞い上がった異物は、第一遮蔽部材に衝突し、勢いを失うため、異物が貫通孔側へ移動して貫通孔から第一旋回室に流入し、下流へ飛散することを防いでいる。また、第一遮蔽部材を設けることで、第二給気口から流入した空気を、第一遮蔽部材とは反対の方向に向かわせることが出来る。そのため、第二旋回室の旋回流を強めることができ、第二旋回室内の異物が貫通孔から第一旋回室へ流入することを防ぎ、分離性能の低下を抑制することができる。 This can suppress a decrease in the separation performance of foreign matter. That is, the foreign matter separated into the second swirl chamber moves to the vicinity of the second air supply port due to gravity, but rises by the air flowing in from the second air supply port. However, since the soaring foreign matter collides with the first shielding member and loses momentum, the foreign matter is prevented from moving toward the through hole side, flowing into the first swirl chamber from the through hole, and scattering downstream. Further, by providing the first shielding member, the air flowing in from the second air supply port can be directed in the direction opposite to the first shielding member. Therefore, the swirl flow in the second swirl chamber can be strengthened, foreign matter in the second swirl chamber can be prevented from flowing into the first swirl chamber from the through hole, and the reduction in separation performance can be suppressed.
 また、本発明の請求項4に係る換気口フードは、第二旋回室内において、空間分割板上に、第二旋回室内の気流の流路の一部を遮るように立設した第二遮蔽部材が設けられ、第二遮蔽部材は、第二給気口を最下部に位置させたときに、中心軸より上方に設けられ、中心軸側から空間分割板の外周側へ延設した構成を有していてもよい。 The vent hood according to claim 4 of the present invention is a second shielding member that is erected on the space dividing plate so as to block a part of the flow path of the airflow in the second swirl chamber in the second swirl chamber. The second shielding member is provided above the central axis when the second air supply port is positioned at the lowest position, and has a configuration extending from the central axis side to the outer peripheral side of the space dividing plate. You may do it.
 これにより、異物の分離性能の低下を抑制できる。 This can suppress a decrease in the separation performance of foreign matter.
 第二旋回室内上部は第一旋回室を旋回する気流の流れ方向と同方向の流れが生じている。第二遮蔽部材がない場合には、第二旋回室内の流れに乗って移動する異物のうち、空間分割板の表面を伝わって移動する異物が、そのまま貫通孔から第一旋回室へ流入して、下流側へ飛散してしまい、分離性能の低下を引き起こしていた。そこで、第二遮蔽部材により、空間分割板の表面での異物の移動を阻止でき、貫通孔から第一旋回室へ流入することを防ぎ、分離性能の低下を抑制できる。 The upper part of the second swirl chamber has a flow in the same direction as the flow direction of the airflow swirling in the first swirl chamber. When there is no second shielding member, among the foreign substances that move along the flow in the second swirl chamber, the foreign substances that move along the surface of the space dividing plate flow into the first swirl chamber as they are through the through hole. , Scattered to the downstream side, causing a reduction in separation performance. Therefore, the second shielding member can prevent the movement of the foreign matter on the surface of the space dividing plate, prevent the inflow from the through hole to the first swirl chamber, and suppress the decrease in the separation performance.
 また、本発明の請求項5に係る換気口フードは、第二給気口をカバーの側面部の最下部に位置させた状態において、カバーの上部と下部において第一給気口の1つの開口と他の開口との間にめくら板が配置された構成を有していてもよい。 In the vent hood according to claim 5 of the present invention, in the state where the second air supply port is positioned at the lowermost part of the side surface of the cover, one opening of the first air supply port is formed at the upper and lower portions of the cover. And a blind plate may be arranged between the other openings.
 これにより、カバー上部に配置されためくら板は、換気口フード真上から落下する異物や水滴の流入を抑制することができる。また、カバー下部に配置されためくら板は、第二給気口から屋外へ排出された異物が再び第一給気口から流入するのを抑制することができ、分離性能の低下を抑制できる。 This makes it possible to suppress the inflow of foreign matter and water droplets falling from directly above the vent hood because the slats are arranged on the top of the cover. In addition, since the slab is disposed at the lower part of the cover, the foreign matter discharged from the second air supply port to the outside can be prevented from flowing again from the first air supply port, and the decrease in separation performance can be suppressed.
 また、本発明の請求項6に係る換気口フードは、第一旋回室内において、円柱部材は頂面側の壁面から立設し、壁面に円柱部材の外周を囲むリング形状の遮水部材が設けられた構成を有していてもよい。 In the vent hood according to claim 6 of the present invention, in the first swirl chamber, the columnar member is erected from the wall surface on the top surface side, and a ring-shaped water shielding member surrounding the outer periphery of the columnar member is provided on the wall surface. You may have the structure comprised.
 これにより、第一給気口より流入した水滴が換気口フード下流へ飛散することを抑制することができる。水滴は異物と同様に第一旋回室内の旋回流に乗って旋回し遠心力を受ける。外周側に移動した水滴は空間分割板に衝突するとその表面に付着する。付着した水滴は重力により下方向へ移動し、その一部は円柱部材に衝突し、円柱部材表面を伝って円筒管内へ飛散するものがある。そこで、円柱部材の周囲を囲むようにリング形状の遮水部材を設けることで、水滴が円柱部材に伝わるのを抑制することができ、水滴の分離性能の低下を抑制することができる。 Thereby, it is possible to suppress water droplets flowing from the first air supply port from being scattered downstream of the ventilation port hood. The water droplets swirl on the swirl flow in the first swirl chamber and receive centrifugal force like the foreign matter. When the water droplets moved to the outer peripheral side collide with the space dividing plate, they adhere to the surface. Some of the attached water droplets move downward due to gravity, and some of them collide with the cylindrical member and scatter along the cylindrical member surface into the cylindrical tube. Therefore, by providing a ring-shaped water-impervious member so as to surround the periphery of the cylindrical member, it is possible to suppress water droplets from being transmitted to the cylindrical member, and it is possible to suppress deterioration of water droplet separation performance.
 また、本発明の請求項7に係る換気口フードは、遮水部材が、遮水部材の内側から外側に水が流れ出るように円柱部材側の側面に傾斜を設けた構成を有していてもよい。 Moreover, even if the ventilation opening hood which concerns on Claim 7 of this invention has a structure which provided the inclination in the side surface by the side of a cylindrical member so that water might flow out from the inner side of a water-impervious member to the outer side. Good.
 これにより、遮水部材の内側に入った水滴が重力により下方向へ移動した後、遮水部材の内側側面に設けた傾斜により、外側へ移動しやすくなり、水滴が円柱部材に伝わるのを抑制することができ、水滴の分離性能の低下を抑制することができる。 This makes it easier for the water droplets that have entered the inside of the water-impervious member to move downward due to gravity and then move outward due to the inclination provided on the inner side surface of the water-impervious member, thereby preventing the water droplets from being transmitted to the cylindrical member It is possible to suppress a drop in water droplet separation performance.
 また、本発明の請求項8に係る換気口フードは、遮水部材が、中心軸を水平に配置した状態で最下部の位置に切り欠きを設けた構成を有していてもよい。 Further, the vent hood according to claim 8 of the present invention may have a configuration in which the water shielding member has a notch at the lowest position in a state where the central axis is horizontally disposed.
 これにより、遮水部材の内側に入った水滴が重力により下方向へ移動した後、切り欠きから水滴が遮水部材の外側へ移動しやすくなり、水滴が円柱部材に伝わるのを抑制することができ、水滴の分離性能の低下を抑制することができる。 This makes it easier for water droplets that enter the inside of the water-impervious member to move downward due to gravity and then move from the notch to the outer side of the water-impervious member, thereby preventing the water droplets from being transmitted to the cylindrical member. It is possible to suppress a drop in water droplet separation performance.
 また、請求項9に係る換気口フードは、円筒管は、底面部に設けられた流出口から第一旋回室内へ延設された内筒管を含み、内筒管の先端である内筒管先端口を形成する円筒壁端部は、第一給気口から流入した旋回気流の進行方向を内筒管の外側と内側で反転させる流路を有し、内筒管の中心軸に垂直な面における断面積は、中心軸方向で変化しており、断面積は、内筒管の全長の中間位置よりも円筒壁端部側で最小となるようにし、かつ、内筒管の最小断面積の位置から円筒壁端部側に向かって、徐々に大きくなるようにしたという構成を有していてもよい。 Further, in the vent hood according to claim 9, the cylindrical tube includes an inner tube extending from the outlet provided in the bottom surface portion into the first swirl chamber, and is an inner tube that is a tip of the inner tube. The end portion of the cylindrical wall that forms the tip opening has a flow path that reverses the traveling direction of the swirling airflow flowing in from the first air supply opening on the outside and inside of the inner tube, and is perpendicular to the central axis of the inner tube. The cross-sectional area on the surface changes in the direction of the central axis, and the cross-sectional area is minimized at the end of the cylindrical wall from the middle position of the entire length of the inner tube, and the minimum cross-sectional area of the inner tube You may have the structure which was made to become large gradually toward the cylindrical wall edge part side from this position.
 これにより、内筒管先端口の端部を発端として下流側へ向かって発生する空気の剥離現象を抑制することができ、内筒管先端口から下流側へ流れる空気のエネルギー損失を抑制することができるため、装置の圧力損失を低減することができる。 As a result, it is possible to suppress the phenomenon of air separation that occurs toward the downstream side starting from the end portion of the inner cylindrical tube front end port, and to suppress energy loss of air flowing from the inner cylindrical tube front end port to the downstream side. Therefore, the pressure loss of the apparatus can be reduced.
 また、請求項10に係る換気口フードは、円筒壁端部には、内筒管の外側へ向けて丸く膨らんだR形状部が設けられ、内筒管の内周面と外周面は、R形状部に沿って連続して円弧で繋がっているという構成を有していてもよい。 The vent hood according to claim 10 is provided with an R-shaped portion that bulges out toward the outside of the inner tube at the end of the cylindrical wall, and the inner and outer surfaces of the inner tube are R You may have the structure that it connects with the circular arc continuously along the shape part.
 これにより、内筒管の外側と内側で旋回気流の方向が異なっていても、円筒壁端部で発生する空気の剥離を抑制することができ、内筒管へ流入しようとする空気のエネルギー損失を抑制することができるため、装置の圧力損失を低減することができる。 Thereby, even if the direction of the swirling airflow is different between the outside and the inside of the inner tube, it is possible to suppress the separation of the air generated at the end of the cylindrical wall, and the energy loss of the air that tends to flow into the inner tube Therefore, the pressure loss of the apparatus can be reduced.
 また、請求項11に係る換気口フードは、円筒壁端部には、内筒管の外側へ向けて丸く膨らんだR形状部が設けられ、内筒管の外周面でR形状部の表面に、全周に渡って溝が形成されたという構成を有していてもよい。 In the vent hood according to claim 11, an R-shaped portion that bulges out toward the outside of the inner tube is provided at the end of the cylindrical wall, and the outer surface of the inner tube is formed on the surface of the R-shaped portion. The groove may be formed over the entire circumference.
 これにより、圧力損失を増大させずに、流入口である第一給気口から侵入した水滴が、内筒管の外周面を伝って水滴が内筒管の内周面へ流入することを抑制することができる。R形状部を水滴が伝わる時に溝部分にトラップされ、重力により下方へ移動し、溝部分の最下部から下方へ落下するため、水滴が内筒管の内周面へ流入することを抑制することができる。 As a result, water droplets that have entered from the first air supply port, which is an inflow port, are prevented from flowing into the inner peripheral surface of the inner cylindrical tube through the outer peripheral surface of the inner cylindrical tube without increasing pressure loss. can do. When water droplets are transmitted through the R-shaped part, they are trapped in the groove part, moved downward by gravity, and dropped downward from the lowermost part of the groove part, so that water droplets are prevented from flowing into the inner peripheral surface of the inner tube. Can do.
 また、請求項12に係る換気口フードは、内筒管先端口の直径をφin、内筒管の最小断面積部分の直径をφmin、内筒管で流出口側端部の直径をφoutとした場合、φin>φout>φminの関係にあり、φmin=(0.75~0.85)×φinであるという構成を有していてもよい。 In the vent hood according to claim 12, the diameter of the tip end of the inner tube is φin, the diameter of the minimum cross-sectional area of the inner tube is φmin, and the diameter of the end on the outlet side of the inner tube is φout. In this case, a relationship of φin> φout> φmin may be established, and φmin = (0.75 to 0.85) × φin may be provided.
 これにより、圧力損失を低減する内筒管の最適形状を決定することができ、最大限に圧力損失を低減することができる。 This makes it possible to determine the optimum shape of the inner tube that reduces the pressure loss, and to reduce the pressure loss to the maximum.
 本発明の請求項13に係る換気口フードは、気流が側面部から流入し、底面部から流出する回転体形状を有したカバーと、底面部を塞ぎ、中央部に気流の流出口である開口が設けられたベース板と、カバー内を内周側の第一旋回室と、外周側の第二旋回室とに分割する空間分割板と、ベース板を貫通し、第一旋回室と外部とを連通して設けられる円筒管と、を備える。カバーは、底面部に対向する頂面を有し、側面部の底面部側に第一旋回室に旋回気流を発生させることができる構造を有する第一給気口が設けられ、側面部の頂面側に第二旋回室と外部とを連通する第二給気口が設けられている。第一給気口は、カバーの底面部側と連接している。円筒管は、ベース板から第一旋回室内へ延設され、第一旋回室側に空気が流入する内筒管先端口と、底面部側に空気が流入する流出口を有する。空間分割板は、第一旋回室と第二旋回室とを連通させる貫通孔と、底面部側の外周部にリング状の当接面を有する。当接面は、頂面側に向かって径が小さくなる円錐面とし、当接面とカバーの内周面とがパッキンを介して密着している。 The vent hood according to claim 13 of the present invention is a cover having a rotating body shape in which airflow flows in from a side surface portion and flows out from a bottom surface portion, an opening that closes the bottom surface portion and is an airflow outlet in the center portion. A base plate, a space dividing plate that divides the inside of the cover into a first swirl chamber on the inner periphery side and a second swirl chamber on the outer periphery side, and penetrates the base plate, and the first swirl chamber and the outside A cylindrical tube provided in communication therewith. The cover has a top surface facing the bottom surface portion, and a first air supply port having a structure capable of generating a swirling airflow in the first swirl chamber is provided on the bottom surface portion side of the side surface portion. A second air supply port that communicates the second swirl chamber and the outside is provided on the surface side. The first air supply port is connected to the bottom surface side of the cover. The cylindrical tube extends from the base plate into the first swirl chamber, and has an inner cylindrical tube front end through which air flows into the first swirl chamber, and an outlet through which air flows into the bottom surface. The space dividing plate has a through hole for communicating the first swirl chamber and the second swirl chamber, and a ring-shaped contact surface on the outer peripheral portion on the bottom surface portion side. The contact surface is a conical surface whose diameter decreases toward the top surface, and the contact surface and the inner peripheral surface of the cover are in close contact with each other through packing.
 これにより、空間分割板とカバーとで囲まれた空間である第二旋回室において、当接面とカバーの間にはパッキンによって隙間が埋められるため、空間分割板とカバーとの間から外気が第二旋回室内へ流入することが抑制され、分離性能の低下を抑制することができる。 As a result, in the second swirl chamber, which is a space surrounded by the space dividing plate and the cover, a gap is filled between the contact surface and the cover by the packing, so that outside air is generated between the space dividing plate and the cover. Inflow into the second swirl chamber is suppressed, and a decrease in separation performance can be suppressed.
 また、当接面が頂面側の径が小さくなるような円錐面すなわち傾斜面となっていることで、パッキンとの接触面積が増加し、確実に外気が分離室内へ流入することを抑制することができる。 Further, the contact surface is a conical surface, that is, an inclined surface whose diameter on the top surface side is reduced, so that the contact area with the packing is increased, and the outside air is reliably prevented from flowing into the separation chamber. be able to.
 また、当接面が傾斜していることは、換気口フードを組み立てる際に、パッキンをカバーか、当接面かのどちらかに貼り付けてからカバー内に空間分割板を挿入することとなるが、どちらに貼り付けた場合においても、傾斜の効果によってパッキンの嵌合がスムーズに行われ、簡単に密閉性を得ることができる。 In addition, when the contact surface is inclined, when assembling the ventilation hood, the space dividing plate is inserted into the cover after the packing is attached to either the cover or the contact surface. However, in either case, the packing is smoothly fitted by the effect of the inclination, and the sealing property can be easily obtained.
 また、請求項14に係る換気口フードでは、パッキンは、カバーの内側面に貼り付けられ、空間分割板の底面部側には、外周側に張り出したフランジ部が設けられ、第一給気口には、複数の固定羽根がフランジ部の底面部側に立設され、固定羽根は空間分割板と一体構成とし、フランジ部の外周端には、頂面側へ突出する接触リブが設けられ、接触リブの外周面を当接面となる構成としてもよい。 In the vent hood according to claim 14, the packing is affixed to the inner side surface of the cover, and a flange portion projecting to the outer peripheral side is provided on the bottom surface side of the space dividing plate. A plurality of fixed blades are erected on the bottom surface side of the flange portion, the fixed blades are integrated with the space dividing plate, and the outer peripheral end of the flange portion is provided with a contact rib protruding to the top surface side, The outer peripheral surface of the contact rib may be a contact surface.
 これにより、固定羽根と空間分割板を一体構成とすることで、固定羽根と空間分割板との隙間をなくすことができる。もし固定羽根と空間分割板との間に隙間があると、気流を旋回させるための固定羽根の部分を通過せずに、隙間を通過する気流が発生してしまい、旋回室内部での旋回気流が弱くなり、異物にかかる遠心力が弱まり、異物の分離性能が低下する。 Thereby, the gap between the fixed blade and the space dividing plate can be eliminated by integrating the fixed blade and the space dividing plate. If there is a gap between the fixed vane and the space dividing plate, an airflow passing through the gap is generated without passing through the fixed vane for swirling the airflow. Becomes weaker, the centrifugal force applied to the foreign matter is weakened, and the separation performance of the foreign matter is lowered.
 また、固定羽根と空間分割板が一体構成とすることで、別部材で構成する時と比べて余分なスペースを削減できるため、換気口フードの小型化につながる。 Also, since the fixed blade and the space dividing plate are integrated, the extra space can be reduced compared to the case of using separate members, which leads to downsizing of the vent hood.
 そしてこのような構成においても、カバーに固定羽根と一体となった空間分割板を組み込む際に、接触リブが円錐面となって傾斜していることで、カバー内側面に貼り付けたパッキンを徐々に押さえつけることとなる。そのため、スムーズにパッキンの嵌合が行われ、簡単に密閉性を得ることができ、分離性能の低下を抑制することができる。 Even in such a configuration, when the space dividing plate integrated with the fixed blade is incorporated into the cover, the contact rib is inclined as a conical surface, so that the packing attached to the inner surface of the cover is gradually removed. Will be pressed against. Therefore, the packing can be smoothly fitted, sealing can be easily obtained, and a decrease in separation performance can be suppressed.
 また、請求項15に係る換気口フードでは、空間分割板は、当接面と同じ傾斜方向となるように、頂面側に向かって径が小さくなる円錐台形状となる構成としてもよい。 In the vent hood according to claim 15, the space dividing plate may have a truncated cone shape whose diameter decreases toward the top surface so as to be in the same inclination direction as the contact surface.
 これにより、第一旋回室内での旋回気流が第一給気口から遠ざかって、旋回気流の流速が低下しても、第一給気口から遠ざかる頂面側に向かって、第一旋回室内部の径が小さくなっている。そのため、異物にかかる遠心力の低下を抑制することができる。それにより、分離性能の低下を抑制することができる。 Thereby, even if the swirling airflow in the first swirl chamber moves away from the first air supply port, and the flow velocity of the swirling airflow decreases, the inside of the first swirl chamber moves toward the top surface away from the first air supply port. The diameter is smaller. Therefore, the fall of the centrifugal force concerning a foreign material can be suppressed. Thereby, the fall of separation performance can be controlled.
 以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施の形態1)
 図1は、本発明の実施の形態1における換気口フードの上方からの外観斜視図である。なお、図1は、換気口フード1の正面側で、住宅外壁に取り付けた場合、屋外側の上方から見下ろしたときに見える外観(斜め上からの斜視図)である。また、中心軸4は水平である。
(Embodiment 1)
FIG. 1 is an external perspective view from above of a vent hood according to Embodiment 1 of the present invention. In addition, FIG. 1 is the external appearance (perspective view from diagonally above) when looking down from the upper side of the outdoor side when attached to the outer wall of the house on the front side of the vent hood 1. The central axis 4 is horizontal.
 図2は、実施の形態1における換気口フードの下方からの外観斜視図である。なお、図2は、屋外側の下方から見上げたときに見える外観(斜め下からの斜視図)である。図3は、実施の形態1における換気口フードの中心軸に沿って切断した断面図である。図4は、実施の形態1における換気口フードのベースを除いた状態での背面図である。図5は、実施の形態1における換気口フードのカバーを除いた状態での正面図である。 FIG. 2 is an external perspective view from below of the vent hood according to the first embodiment. In addition, FIG. 2 is the external appearance (perspective view from diagonally below) seen when looking up from the lower part of the outdoor side. FIG. 3 is a cross-sectional view taken along the central axis of the vent hood in the first embodiment. FIG. 4 is a rear view of the first embodiment with the base of the vent hood removed. FIG. 5 is a front view of the first embodiment with the cover of the vent hood removed.
 換気口フード1は、屋外の空気を住宅に取り込む際に、住宅外壁に設けられた空気の取り入れ口である給気口に取り付けられる。そして、換気口フード1は、住宅内に設置された送風機に換気ダクトを介して接続され、屋外の空気を取り入れて室内へ供給するものである。 The ventilation hood 1 is attached to an air supply opening that is an air intake provided on the outer wall of the house when outdoor air is taken into the house. And the ventilation opening hood 1 is connected to the air blower installed in the house through a ventilation duct, takes in outdoor air, and supplies it indoors.
 図1、2に示すように換気口フード1は、少なくとも内側が回転体形状を有したカバー2と、カバー2の底面部を成すベース板3と、カバー2の中心軸4を含みベース板3を貫通して固定された円筒管5とを備えている。ここで、回転体形状とは、中心軸4を中心として回転させてできる形状である。また、気流は、カバー2の側面部7から流入し、カバー2の底面部から流出する。 As shown in FIGS. 1 and 2, the vent hood 1 includes a cover 2 having a rotating body shape at least on the inside, a base plate 3 that forms the bottom surface of the cover 2, and a central axis 4 of the cover 2. And a cylindrical tube 5 fixed so as to penetrate therethrough. Here, the rotating body shape is a shape formed by rotating around the central axis 4. Further, the airflow flows from the side surface portion 7 of the cover 2 and flows out from the bottom surface portion of the cover 2.
 換気口フード1の正面側、つまり、底面部であるベース板3とは反対側の面には、カバー2を外側に突出させるドーム型の頂面6が設けられている。また、頂面6の最も突出した所と中心軸4とは一致している。なお、カバー2の形状は、ドーム形状に限らず円筒形状であってもよい。つまり、頂面6は、平らなものでも良い。 A dome-shaped top surface 6 for projecting the cover 2 outward is provided on the front side of the vent hood 1, that is, on the surface opposite to the base plate 3 that is the bottom surface portion. Further, the most protruding portion of the top surface 6 coincides with the central axis 4. Note that the shape of the cover 2 is not limited to the dome shape, and may be a cylindrical shape. That is, the top surface 6 may be flat.
 カバー2の側面部7には、第一給気口8と、第一給気口8の一部を塞いだめくら板9と、第二給気口10とが設けられている。 The side surface portion 7 of the cover 2 is provided with a first air supply port 8, a blind plate 9 that covers a part of the first air supply port 8, and a second air supply port 10.
 第一給気口8は、側面部7を周回するように所定の間隔を空けて配置された複数の固定羽根11で形成された複数の開口である。固定羽根11は、本実施の形態では20枚設けられ、中心軸4に対して全て同じ角度を向いている。これにより、固定羽根11を通過した気流は旋回気流となる。第一給気口8は、側面部7にあって、特にベース板3側に寄せた位置に設けられている。つまり、第一給気口8は、換気口フード1の底面部側に設けられている。 The first air supply port 8 is a plurality of openings formed by a plurality of fixed blades 11 arranged at predetermined intervals so as to circulate around the side surface portion 7. In the present embodiment, 20 fixed blades 11 are provided and all face the same angle with respect to the central axis 4. Thereby, the airflow that has passed through the fixed blade 11 becomes a swirling airflow. The first air supply port 8 is provided in the side surface portion 7 and particularly at a position close to the base plate 3 side. That is, the first air supply port 8 is provided on the bottom surface side of the ventilation port hood 1.
 なお、固定羽根11の上流側端部12は、図3において、カバー2の側面部7と同一面に配置しているが、側面部7より内周側に配置しても、外周側へ飛び出して配置してもよい。 The upstream end 12 of the fixed blade 11 is arranged on the same surface as the side surface 7 of the cover 2 in FIG. May be arranged.
 めくら板9は、第一給気口8の上部と下部で気流の流入を抑止するものである。カバー2は、めくら板9部分に固定羽根11を設けていないが、めくら板9の内側にも固定羽根11を設けても良い。めくら板9は、第一給気口8の1つの開口と他の開口との間に配置された構成となっている。 The blind plate 9 is to suppress the inflow of airflow at the upper and lower portions of the first air supply port 8. The cover 2 does not have the fixed blades 11 provided on the blind plate 9, but the fixed blades 11 may also be provided on the inner side of the blind plate 9. The blind plate 9 is configured to be disposed between one opening of the first air supply port 8 and the other opening.
 めくら板9は、さらにベース板3とカバー2を接続する役割も持っている。これにより、ベース板3、円筒管5、カバー2が一体となるので、円筒管5を建物外壁の換気口に差し込むことで換気口フード1を建物外壁に固定することができる。 The blind plate 9 also has a role of connecting the base plate 3 and the cover 2. Thereby, since the base plate 3, the cylindrical tube 5, and the cover 2 are integrated, the ventilation port hood 1 can be fixed to the building outer wall by inserting the cylindrical tube 5 into the ventilation port of the building outer wall.
 円筒管5は、換気口フード1の外部においてカバー2の内側を負圧にできるように設けられたものである。例えば、円筒管5に送風機(図示せず)を接続することで、カバー2の内側、つまり換気口フード1の内側を負圧にすることができる。このようにカバー2の内側を負圧にすることで、空気はカバー2の側面部7から流入し、円筒管5から流出するものである。また、円筒管5は、図3に示すように、カバー2の中心軸4を含み、カバー2の内側から底面部を貫通するように設けられている。 The cylindrical tube 5 is provided so that the inside of the cover 2 can be made negative pressure outside the vent hood 1. For example, by connecting a blower (not shown) to the cylindrical tube 5, the inside of the cover 2, that is, the inside of the vent hood 1 can be set to a negative pressure. Thus, by making the inside of the cover 2 have a negative pressure, air flows in from the side surface portion 7 of the cover 2 and flows out of the cylindrical tube 5. As shown in FIG. 3, the cylindrical tube 5 includes the central axis 4 of the cover 2 and is provided so as to penetrate the bottom surface from the inside of the cover 2.
 第二給気口10は、図2に示すように側面部7の頂面6側の最下部に設けられている。本実施の形態では、第二給気口10の形状は、中心軸4に沿った方向に縦長の形状となっている。また、第二給気口10は、側面部7において、下部側のめくら板9に対して中心軸4に沿った方向で隣接した位置に設けられている。なお、第二給気口10は、めくら板9と完全に隣接せずともよく、第二給気口10とめくら板9との間に隙間があってもよい。本実施の形態では、第一給気口8の開口面積(ここでの開口面積は、側面部7の円周長さと中心軸4方向の開口幅から計算)に対して、第二給気口10の開口面積は約0.6%と、第一給気口8に対して、非常に小さい。 The second air supply port 10 is provided at the lowermost portion of the side surface portion 7 on the top surface 6 side as shown in FIG. In the present embodiment, the shape of the second air supply port 10 is a vertically long shape in the direction along the central axis 4. The second air supply port 10 is provided in the side surface portion 7 at a position adjacent to the lower blind plate 9 in the direction along the central axis 4. The second air supply port 10 may not be completely adjacent to the blind plate 9, and there may be a gap between the second air supply port 10 and the blind plate 9. In the present embodiment, the second air supply port with respect to the opening area of the first air supply port 8 (the opening area here is calculated from the circumferential length of the side surface portion 7 and the opening width in the direction of the central axis 4). The opening area of 10 is about 0.6%, which is very small with respect to the first air inlet 8.
 次に、本実施の形態における換気口フード1の内部構造を説明する。 Next, the internal structure of the vent hood 1 in the present embodiment will be described.
 図3に示すようにカバー2の内側には、空間分割板13と円柱部材14とが設けられている。 As shown in FIG. 3, a space dividing plate 13 and a cylindrical member 14 are provided inside the cover 2.
 空間分割板13は、円筒管5の外周側とカバー2の内周側にそれぞれ第一旋回室15と第二旋回室19となる空間を形成するものである。 The space dividing plate 13 forms spaces for forming the first swirl chamber 15 and the second swirl chamber 19 on the outer peripheral side of the cylindrical tube 5 and the inner peripheral side of the cover 2, respectively.
 また、空間分割板13は、カバー2内を内周側の第一旋回室15と外周側の第二旋回室19とに分割するものであるとも言える。 It can also be said that the space dividing plate 13 divides the inside of the cover 2 into an inner circumferential first swirl chamber 15 and an outer circumferential second swirl chamber 19.
 円柱部材14は、第一旋回室15内においてカバー2の中心軸4と軸を同じにした円柱体であって、固定板16を用いて円筒管5の端面と対向した位置に設けられている。ここで、固定板16は、カバー2内部における頂面6側に設けられている。なお、本実施の形態では、円柱部材14は固定板16を用いて支持されているが、固定板16を使用せず円柱部材14を直接、カバー2の内壁に固定しても良い。 The columnar member 14 is a columnar body having the same axis as the central axis 4 of the cover 2 in the first swirl chamber 15, and is provided at a position facing the end surface of the cylindrical tube 5 using the fixed plate 16. . Here, the fixing plate 16 is provided on the top surface 6 side in the cover 2. In this embodiment, the columnar member 14 is supported using the fixed plate 16, but the columnar member 14 may be directly fixed to the inner wall of the cover 2 without using the fixed plate 16.
 円柱部材14の円筒管5側には、図4に示すように、中心軸4に垂直な断面において円弧状にカーブした円柱羽根17が4枚、均等かつ放射状に配置されている。 As shown in FIG. 4, four cylindrical blades 17 that are curved in an arc shape in a cross section perpendicular to the central axis 4 are arranged uniformly and radially on the cylindrical tube 5 side of the cylindrical member 14.
 円筒管5のカバー2の内側に位置する端面である円筒管端面18は、図3に示す通り、空間分割板13内にまで延設されている。 The cylindrical tube end surface 18 which is an end surface located inside the cover 2 of the cylindrical tube 5 extends into the space dividing plate 13 as shown in FIG.
 空間分割板13は、図3に示すように、中心軸4の方向においてベース板3に対して固定羽根11を挟む位置からさらに中心軸4の方向に延設した円筒である。そして、延設した終端に位置する頂面6に固定板16が配置されている。つまり、空間分割板13は、カバー2の内側において中心軸4の方向における断面が台形状となる、すなわち円錐台形状の筒体である。円錐台形状により、第一旋回室15を旋回する旋回流の旋回径は第一給気口8側から中心軸4方向に遠ざかるにつれて小さくなっている。なお、空間分割板13は円筒形状であってもよい。この場合、第一旋回室15を旋回する旋回流の旋回径はいずれの場所においても同一径となる。 As shown in FIG. 3, the space dividing plate 13 is a cylinder that extends further in the direction of the central axis 4 from the position sandwiching the fixed blade 11 with respect to the base plate 3 in the direction of the central axis 4. And the fixed plate 16 is arrange | positioned at the top surface 6 located in the extended termination | terminus. That is, the space dividing plate 13 is a cylindrical body having a trapezoidal cross section in the direction of the central axis 4 inside the cover 2. Due to the shape of the truncated cone, the swirling diameter of the swirling flow swirling in the first swirling chamber 15 decreases as the distance from the first air supply port 8 side increases in the direction of the central axis 4. The space dividing plate 13 may be cylindrical. In this case, the swirl diameter of the swirl flow swirling in the first swirl chamber 15 is the same at any location.
 空間分割板13には、図5に示すように、第一旋回室15と第二旋回室19とを連通する貫通孔21が設けられている。また、空間分割板13は、第二旋回室19側に配置された第一遮蔽部材22と第二遮蔽部材23とを備えている。 As shown in FIG. 5, the space dividing plate 13 is provided with a through hole 21 that communicates the first swirl chamber 15 and the second swirl chamber 19. The space dividing plate 13 includes a first shielding member 22 and a second shielding member 23 arranged on the second swirl chamber 19 side.
 貫通孔21は、図4に示すように、中心軸4の周りで第二給気口10を基点としたときに第一旋回室15を旋回する気流の流れ方向(図4の矢印)の距離が反流れ方向の距離に比べて長く、中心軸4よりも上側で、固定板16側に寄せて設けられている。図3において、貫通孔21は円筒管5と重なっていないが、重なる位置まで貫通孔21を中心軸4方向に広げても良い。また、貫通孔21を空間分割板13の中心軸4方向全域に渡って開口させてもよい。 As shown in FIG. 4, the through-hole 21 is a distance in the flow direction (arrow in FIG. 4) of the airflow that swirls around the first swirl chamber 15 around the central axis 4 when the second air supply port 10 is the starting point. Is longer than the distance in the counter-flow direction, and is provided close to the fixed plate 16 side above the central axis 4. In FIG. 3, the through hole 21 does not overlap with the cylindrical tube 5, but the through hole 21 may be extended in the direction of the central axis 4 to an overlapping position. Further, the through hole 21 may be opened over the entire region of the space dividing plate 13 in the direction of the central axis 4.
 第一遮蔽部材22は、第二旋回室19内の第二給気口10近傍で、中心軸4と第二給気口10を結んだ線より貫通孔21側で中心側から外周側へ延設した板状体である。図3に示すように、第一遮蔽部材22とカバー2との間には隙間が設けられており、第二旋回室19内の流路の一部を遮蔽した構造となっている。 The first shielding member 22 extends in the vicinity of the second air inlet 10 in the second swirl chamber 19 from the center side to the outer peripheral side on the through hole 21 side from the line connecting the central shaft 4 and the second air inlet 10. This is a plate-like body. As shown in FIG. 3, a gap is provided between the first shielding member 22 and the cover 2 so that a part of the flow path in the second swirl chamber 19 is shielded.
 第二遮蔽部材23は、図3に示す第二給気口10を最下部にした状態において、第二旋回室19内の最上部で、中心側から外周側へ延設した板状体である。第一遮蔽部材22と同様に、第二旋回室19内の流路の一部を遮蔽した構造となっており、第二遮蔽部材23とカバー2との間には隙間が設けられている。なお、第二遮蔽部材23は、第二旋回室19内で、最上部に設けられていなくてもよい。具体的には、第二遮蔽部材23は、中心軸4よりも上方に設けられていればよい。 The second shielding member 23 is a plate-like member extending from the center side to the outer peripheral side at the uppermost part in the second swirl chamber 19 in the state where the second air inlet 10 shown in FIG. . Similar to the first shielding member 22, a part of the flow path in the second swirl chamber 19 is shielded, and a gap is provided between the second shielding member 23 and the cover 2. In addition, the 2nd shielding member 23 does not need to be provided in the uppermost part in the 2nd turning chamber 19. FIG. Specifically, the second shielding member 23 only needs to be provided above the central axis 4.
 また、固定板16には、遮水部材25が設けられている。 Further, the fixing plate 16 is provided with a water shielding member 25.
 遮水部材25は、円柱部材14の側面と間隔をあけて、円柱部材14を取り囲むリブ状のものである。本実施の形態における遮水部材25は、円周状に切れ目がないリング状で、その側面は円柱部材14と平行である。なお、円柱部材14の側面と遮水部材25との間隔は開けすぎると、遮水効果が小さくなる。そのため、遮水部材25は、カバー2の頂面6側の空間分割板13端部の直径と円柱部材14の直径の平均直径よりも小さくなる位置に配置した方が良い。つまり、遮水部材25の直径は、頂面6側の空間分割板13端部の直径と円柱部材14の直径の平均直径よりも小さい方が良い。 The water-impervious member 25 is a rib-like member that surrounds the cylindrical member 14 with a gap from the side surface of the cylindrical member 14. The water-impervious member 25 in the present embodiment is a ring shape having a continuous circumferential shape, and its side surface is parallel to the columnar member 14. In addition, if the space | interval of the side surface of the cylindrical member 14 and the water shielding member 25 is opened too much, the water shielding effect will become small. Therefore, the water shielding member 25 is preferably arranged at a position smaller than the average diameter of the end of the space dividing plate 13 on the top surface 6 side of the cover 2 and the diameter of the cylindrical member 14. That is, the diameter of the water shielding member 25 is preferably smaller than the average diameter of the end of the space dividing plate 13 on the top surface 6 side and the diameter of the columnar member 14.
 次に気流の流れを説明する。 Next, the flow of the airflow will be explained.
 上記構成において、換気口フード1は送風機を用いて住宅等室内へ屋外空気を供給する際に、屋外外壁の給気口部分に取り付けられるものであり、下流の送風機により気流が流れる。屋外空気は第一給気口8と第二給気口10から換気口フード1内に流入する。なお、前述したように第一給気口8の開口面積の方が第二給気口10の開口面積よりもはるかに大きいため、流入空気の大半は第一給気口8から流入する。第一給気口8から流入した空気は、斜めに配置された複数の固定羽根11によって、中心軸4周りを旋回する旋回気流となって、第一旋回室15を通り、円筒管5から換気口フード1外へ流出する。 In the above configuration, the vent hood 1 is attached to the air supply port portion of the outdoor outer wall when supplying the outdoor air into the house or the like using a blower, and the airflow flows by the downstream blower. Outdoor air flows into the vent hood 1 from the first air inlet 8 and the second air inlet 10. As described above, since the opening area of the first air supply port 8 is much larger than the opening area of the second air supply port 10, most of the inflow air flows from the first air supply port 8. The air flowing in from the first air supply port 8 becomes a swirling airflow swirling around the central axis 4 by a plurality of obliquely arranged fixed blades 11, passes through the first swirling chamber 15, and is ventilated from the cylindrical tube 5. It flows out of the mouth hood 1.
 第二給気口10から流入した空気は、第二旋回室19に流入するが、図5に示す第一遮蔽部材22により気流の流れが抑制される。そのため、第二給気口10から流入した空気の大半は第一遮蔽部材22とは反対側に向かって流れ、環状となった第二旋回室19内を通り、貫通孔21より第一旋回室に流入する。その後、第一旋回室15に流入した空気は、円筒管5より換気口フード1の外へ流出する。また、第一旋回室15の旋回流の一部は貫通孔21より第二旋回室19へ流入する。この第一旋回室15から第二旋回室19へ流入する指向性を持った気流と、前述した第一遮蔽部材22により第二旋回室19から第一旋回室15に流入する指向性を持った気流により、第二旋回室19内の空気は、第一旋回室15内の空気と同方向に旋回する。 The air flowing in from the second air supply port 10 flows into the second swirl chamber 19, but the flow of the airflow is suppressed by the first shielding member 22 shown in FIG. Therefore, most of the air that flows in from the second air supply port 10 flows toward the side opposite to the first shielding member 22, passes through the annular second swirl chamber 19, and passes through the through hole 21 to form the first swirl chamber. Flow into. Thereafter, the air flowing into the first swirl chamber 15 flows out of the vent hood 1 from the cylindrical tube 5. A part of the swirl flow in the first swirl chamber 15 flows into the second swirl chamber 19 from the through hole 21. The directional airflow flowing from the first swirl chamber 15 to the second swirl chamber 19 and the directivity flowing from the second swirl chamber 19 to the first swirl chamber 15 by the first shielding member 22 described above. Due to the air flow, the air in the second swirl chamber 19 swirls in the same direction as the air in the first swirl chamber 15.
 次に空気と共に換気口フード1内に流入する異物(例えば、蚊やショウジョウバエ、キノコバエ、蛾などの小昆虫)や水滴の動きについて説明する。 Next, the movement of foreign matter (for example, small insects such as mosquitoes, fruit flies, mushrooms, and moths) and water droplets flowing into the vent hood 1 together with air will be described.
 第一給気口8から空気と共に流入する異物は、第一旋回室15内の旋回流によって、遠心力を受け、第一旋回室15の外周側へ移動する。第一旋回室15の外周側へ移動した異物は、貫通孔21を介して第二旋回室19へ移動し、一旦、第二旋回室19内に貯留される。 The foreign matter that flows in with the air from the first air supply port 8 receives centrifugal force due to the swirling flow in the first swirling chamber 15 and moves to the outer peripheral side of the first swirling chamber 15. The foreign matter that has moved to the outer peripheral side of the first swirl chamber 15 moves to the second swirl chamber 19 through the through hole 21 and is temporarily stored in the second swirl chamber 19.
 また、第一給気口8から空気と共に流入する水滴は、異物と同様に、第一旋回室15内の外周側へ移動する。そして、空間分割板13の壁面に衝突し、壁面に付着する。付着した水滴は水滴同士が集まって大きくなり、重力によって垂れ落ちる。 Further, the water droplets flowing in along with the air from the first air supply port 8 move to the outer peripheral side in the first swirl chamber 15 like the foreign matter. Then, it collides with the wall surface of the space dividing plate 13 and adheres to the wall surface. The adhering water droplets gather together and become larger, and sag due to gravity.
 第二給気口10から流入した異物や水滴は、第二旋回室19内の旋回流により旋回し、遠心力を受け、外周側へ移動する。第二旋回室19内の空気は貫通孔21より第一旋回室15へ流れるが、異物は外周側を旋回しているため、貫通孔21から第一旋回室15へ流入しづらくなっている。水滴は、第二旋回室19の壁面に付着し、重力により下方へ垂れ落ち、第二給気口10から排出される。 The foreign matter and water droplets that have flowed in from the second air supply port 10 are swirled by the swirling flow in the second swirl chamber 19, receive centrifugal force, and move to the outer peripheral side. The air in the second swirl chamber 19 flows from the through hole 21 to the first swirl chamber 15, but the foreign matter swirls on the outer peripheral side, so that it is difficult to flow into the first swirl chamber 15 from the through hole 21. The water droplets adhere to the wall surface of the second swirl chamber 19, drop downward due to gravity, and are discharged from the second air inlet 10.
 以上のように異物は、第二旋回室19内に貯留されることになるが、換気口フード外を流れる自然風により、第二給気口10から排出されるようになっている。つまり、第二給気口10の外側を自然風が流れると、ベルヌーイの定理により静圧が低下する。この時、第二給気口10近傍の換気口フード1内の静圧より低下すると、異物が外に引っ張られるようになり、第二給気口10から換気口フード1外へ排出される。 As described above, the foreign matter is stored in the second swirl chamber 19, but is discharged from the second air supply port 10 by natural wind flowing outside the vent hood. That is, when natural wind flows outside the second air inlet 10, the static pressure decreases according to Bernoulli's theorem. At this time, when the pressure falls below the static pressure in the ventilation port hood 1 near the second air supply port 10, the foreign matter is pulled out and is discharged from the second air supply port 10 to the outside of the ventilation port hood 1.
 次に本実施の形態における効果・作用を説明する。 Next, effects and operations in this embodiment will be described.
 本実施の形態における換気口フード1の特徴的な構造は、換気口フード1内が空間分割板13によって、第一旋回室15と第二旋回室19とからなる二重構造となっていることである。前述したように、第二旋回室19は第一旋回室15で遠心力によって分離した異物を一旦貯留する分離室の役割を果たしている。一般的なサイクロン構造は、旋回室の下方に分離室(集塵室)を備えているため、上下に長くなってしまうが、本実施の形態における換気口フード1は旋回室である第一旋回室15の周囲に分離室である第二旋回室19を備えることで、コンパクトな構造となる。 The characteristic structure of the vent hood 1 in the present embodiment is that the vent hood 1 has a double structure consisting of a first swirl chamber 15 and a second swirl chamber 19 by a space dividing plate 13. It is. As described above, the second swirl chamber 19 serves as a separation chamber that temporarily stores the foreign matter separated by the centrifugal force in the first swirl chamber 15. Since the general cyclone structure has a separation chamber (dust collection chamber) below the swirl chamber, it becomes longer vertically, but the vent hood 1 in the present embodiment is a first swirl that is a swirl chamber. By providing the second swirl chamber 19 which is a separation chamber around the chamber 15, a compact structure is obtained.
 本実施の形態における換気口フード1の分離室は、第二旋回室19という名前の通り、貫通孔21からの旋回流の流入や第一遮蔽部材22により、気流を旋回させる構造となっている。これにより、第二旋回室19内の異物は外周側に移動するため、異物が貫通孔21から第一旋回室15に戻ることが少ない。外周側へ移動できない大きな異物の場合は、空間分割板13に沿って旋回流に押されて移動するが、この場合、第二旋回室19上部で、第二遮蔽部材23に衝突するため、それ以上先に進むことができず、貫通孔21側へ流れていかない。つまり、遠心力の働きにくい大きな異物も第一旋回室15へ流入するのを防ぐことが出来る。 As the name of the second swirl chamber 19, the separation chamber of the vent hood 1 in the present embodiment has a structure that swirls the airflow by the inflow of swirl flow from the through hole 21 and the first shielding member 22. . Thereby, since the foreign material in the second swirl chamber 19 moves to the outer peripheral side, the foreign material rarely returns from the through hole 21 to the first swirl chamber 15. In the case of a large foreign object that cannot move to the outer peripheral side, it moves while being pushed by the swirling flow along the space dividing plate 13. In this case, since it collides with the second shielding member 23 at the upper part of the second swirling chamber 19, It cannot proceed further and does not flow to the through hole 21 side. That is, it is possible to prevent a large foreign object that is difficult to work with centrifugal force from flowing into the first swirl chamber 15.
 貫通孔21の位置は、異物の分離性能を高めることと、異物の第二旋回室19から第一旋回室15への流入を防ぐために、本実施の形態では適した位置に配置されている。異物は第一旋回室15内で旋回し遠心力を受けて外周側へ移動する力を受けているが、異物が第一旋回室15の上部から下方向へ旋回する間に第二旋回室19へ移動させると、重力による力も合わさる。これにより、異物が第二旋回室19へ移動後も旋回による慣性力と重力により、第二旋回室19の下部へ素早く移動させることができる。この効果が最も表れるのが、本実施の形態における位置である。さらに第二旋回室19内で多くの異物を貯留できるようにするため、貫通孔21の位置を上部側にした方が良いということもあるため、貫通孔21を中心軸4よりも上側に配置している。 The position of the through hole 21 is arranged at a suitable position in the present embodiment in order to enhance the separation performance of the foreign material and prevent the foreign material from flowing into the first swirl chamber 15 from the second swirl chamber 19. The foreign matter swirls within the first swirl chamber 15 and receives a force that moves to the outer peripheral side due to centrifugal force. However, while the foreign matter swirls downward from the upper part of the first swirl chamber 15, the second swirl chamber 19. When you move to, the force by gravity is also combined. Thereby, even after the foreign matter moves to the second swirl chamber 19, it can be quickly moved to the lower part of the second swirl chamber 19 by the inertial force and gravity due to the swirl. This effect is most apparent at the position in the present embodiment. Furthermore, in order to allow a large amount of foreign matter to be stored in the second swirl chamber 19, it may be better to position the through hole 21 on the upper side, so the through hole 21 is disposed above the central axis 4. is doing.
 第二遮蔽部材23は、図5に示すように、第二旋回室19の最上部に配置するのが望ましい。最上部であれば、円錐台形の空間分割板13の最上部となるので、第二遮蔽部材23のどちらの面においても、空間分割板13に下方向への傾斜がついており、異物が堆積しづらくなる。 As shown in FIG. 5, the second shielding member 23 is desirably arranged at the uppermost part of the second swirl chamber 19. Since the uppermost portion is the uppermost portion of the frustoconical space dividing plate 13, the space dividing plate 13 is inclined downwardly on either surface of the second shielding member 23, and foreign matter accumulates. It becomes difficult.
 もし異物が、第二旋回室19から貫通孔21を通って第一旋回室15へ入ってきた場合、異物が貫通孔21から中心軸4方面へ移動する際に、円柱部材14の側面に衝突する。そのため、直接、異物が円筒管5へ流れ込みにくくなっている。第一旋回室15内の中心軸4付近は円筒管5へ向かう旋回流となっているが、円柱部材14が障壁となっている。そのため、貫通孔21から流入してきた異物が直接中心軸4付近の旋回流へ入り込むことを防いで、異物が下流へ飛散するのを抑制している。 If foreign matter enters the first swirl chamber 15 from the second swirl chamber 19 through the through hole 21, it collides with the side surface of the cylindrical member 14 when moving from the through hole 21 toward the central axis 4 direction. To do. Therefore, it is difficult for foreign matter to flow directly into the cylindrical tube 5. The vicinity of the central axis 4 in the first swirl chamber 15 is a swirl flow toward the cylindrical tube 5, but the columnar member 14 is a barrier. Therefore, the foreign matter flowing in from the through hole 21 is prevented from directly entering the swirling flow in the vicinity of the central axis 4, and the foreign matter is prevented from scattering downstream.
 また、第二旋回室19内の異物は、重力により第二給気口10付近に存在することが多い。そのため、第二給気口10から空気が流入すると、異物は舞い上がる。しかし、その際、貫通孔21側(図5で左側)に異物が移動して、貫通孔21から第一旋回室15へ流入しないよう、第一遮蔽部材22によって、異物の移動を制限している。これにより、第二給気口10から流入する空気によって舞い上がった異物が、貫通孔21から第一旋回室15へ流入するのを防いでいる。 Further, foreign matter in the second swirl chamber 19 often exists near the second air inlet 10 due to gravity. For this reason, when air flows in from the second air supply port 10, the foreign matter soars. However, at that time, the movement of the foreign matter is limited by the first shielding member 22 so that the foreign matter does not move to the through hole 21 side (left side in FIG. 5) and flow into the first swirl chamber 15 from the through hole 21. Yes. As a result, foreign matter that has been swollen by the air flowing in from the second air supply port 10 is prevented from flowing into the first swirl chamber 15 from the through hole 21.
 換気口フード1は分離した異物を再び屋外へ排出することができるので、メンテナンスが不要となる。これは、前述した通り、第二旋回室19に一旦分離・貯留された異物は、自然風により第二給気口10から屋外へ排出されるため、換気口フード1内に異物が溜まり続けることがない。 Since the vent hood 1 can discharge the separated foreign matter again to the outdoors, no maintenance is required. As described above, the foreign matter once separated and stored in the second swirl chamber 19 is discharged to the outside from the second air supply port 10 by natural wind, so that the foreign matter continues to accumulate in the vent hood 1. There is no.
 円筒管5は、図3に示すように、円筒管端面18が空間分割板13内にまで延設するように配置されている。つまり、流出口である円筒管5と旋回室である第一旋回室15と分離室(集塵室)である第二旋回室19とが同時に重なっている。この構成によれば、換気口フード1をコンパクトな構成とすることができる。 As shown in FIG. 3, the cylindrical tube 5 is arranged such that the end surface 18 of the cylindrical tube extends into the space dividing plate 13. That is, the cylindrical tube 5 that is an outlet, the first swirl chamber 15 that is a swirl chamber, and the second swirl chamber 19 that is a separation chamber (dust collection chamber) are simultaneously overlapped. According to this structure, the ventilation opening hood 1 can be made into a compact structure.
 また、異物や水滴が第一給気口8から直接円筒管5内へ流入することができないので、異物や水滴を換気口フード1の下流に飛散させにくい、つまりコンパクトで分離性能が良いものとなる。 In addition, since foreign matter and water droplets cannot flow directly into the cylindrical tube 5 from the first air supply port 8, it is difficult for the foreign matter and water droplets to be scattered downstream of the ventilation port hood 1, that is, compact and has good separation performance. Become.
 円柱部材14は、第二旋回室19から貫通孔21を通って第一旋回室15へ流入する異物が円筒管5内へ流入するのを防ぎ、分離性能の低下を抑制している。貫通孔21での気流の流れは、第一旋回室15から第二旋回室19へ向かう流れとその逆向きの流れの両方が混在するが、第一旋回室15側へ流入する流れは主に、固定板16側寄りで発生している。そこで、異物が第一旋回室15側へ流入してきたとしても、円柱部材14に衝突することにより跳ね返る。跳ね返った異物は、第一旋回室15内の旋回流に流され、旋回することで遠心力を受け、再び貫通孔21から第二旋回室19へ移動させることができるので、分離性能の低下を抑制することができる。 The cylindrical member 14 prevents foreign matter flowing into the first swirl chamber 15 from the second swirl chamber 19 through the through-hole 21 and into the cylindrical tube 5 and suppresses a decrease in separation performance. The flow of airflow in the through-hole 21 includes both a flow from the first swirl chamber 15 to the second swirl chamber 19 and a flow in the opposite direction, but the flow flowing into the first swirl chamber 15 side is mainly. This occurs near the fixed plate 16 side. Therefore, even if the foreign matter flows into the first swirl chamber 15 side, it rebounds by colliding with the cylindrical member 14. The bounced foreign matter flows in the swirl flow in the first swirl chamber 15, receives centrifugal force by swirling, and can be moved again from the through hole 21 to the second swirl chamber 19, thus reducing the separation performance. Can be suppressed.
 さらに本実施の形態では、円柱部材14の上面側(円筒管5側)には、円弧状の4枚の円柱羽根17が設けられている。円柱羽根17は図4の矢印で示した第一旋回室15内の旋回流を受け止めるように膨らんでいる。これにより、旋回流は円柱羽根17によって、下流方向への流れに変換され、下流へスムーズに空気が流れるようになるので、圧力損失が低下する。つまり、円柱羽根17には、換気口フード1の圧力損失低減効果がある。なお、流体解析による流れの可視化によって、下流(円筒管5方向)へ向かう旋回流の流れを把握し、円筒管5方向へ向かう旋回流の流れの直径とほぼ同じになるように円柱部材14の直径を決定した。なお、円筒管5方向へ向かう旋回流の流れの直径は円筒管5の内径と相関があり、円筒管5方向へ向かう旋回流の流れの直径は、円筒管5の内径の7~8割程度である。 Furthermore, in the present embodiment, four circular arc-shaped cylindrical blades 17 are provided on the upper surface side (cylindrical tube 5 side) of the columnar member 14. The cylindrical blade 17 swells to receive the swirling flow in the first swirling chamber 15 indicated by the arrow in FIG. As a result, the swirl flow is converted into a flow in the downstream direction by the cylindrical blades 17 and air flows smoothly downstream, so that the pressure loss is reduced. That is, the cylindrical blade 17 has an effect of reducing the pressure loss of the vent hood 1. In addition, by visualization of the flow by fluid analysis, the flow of the swirling flow toward the downstream (in the direction of the cylindrical tube 5) is grasped, and the cylindrical member 14 has a diameter substantially equal to the diameter of the swirling flow toward the cylindrical tube 5. The diameter was determined. The diameter of the swirling flow toward the cylindrical tube 5 correlates with the inner diameter of the cylindrical tube 5, and the diameter of the swirling flow toward the cylindrical tube 5 is about 70 to 80% of the inner diameter of the cylindrical tube 5. It is.
 めくら板9は、第一給気口8の上部と下部にあり、上部のめくら板9は、上方から降ってくる雨や落下してくる異物の第一給気口8への流入を抑止する効果がある。下部のめくら板9は、近傍の第二給気口10から排出された異物が再び第一給気口8から流入するのを防ぐ効果がある。本実施の形態では、どちらのめくら板9もベース板3とカバー2を接続する支持板の役割も持っている。 The blind plate 9 is located above and below the first air inlet 8, and the upper blind plate 9 prevents rain falling from above or foreign matter falling from flowing into the first air inlet 8. effective. The lower blind plate 9 has an effect of preventing foreign matter discharged from the nearby second air inlet 10 from flowing again from the first air inlet 8. In this embodiment, both of the blind plates 9 also serve as support plates that connect the base plate 3 and the cover 2.
 カバー2は、換気口フード1の正面側がドーム型の形状となっている。これにより、第二旋回室19の内部に傾斜ができ、分離された異物が傾斜に沿って移動し、第二給気口10付近に集まりやすくなる。また、第二給気口10の形状が中心軸方向に長い縦長形状のため、第二旋回室19の中心軸4方向に渡って開口が設けられることとなる。これらの作用により、第二給気口10から異物の排出が効率よく行える。 The cover 2 has a dome shape on the front side of the vent hood 1. As a result, the inside of the second swirl chamber 19 is inclined, and the separated foreign matter moves along the inclination and easily collects in the vicinity of the second air inlet 10. Further, since the shape of the second air supply port 10 is a vertically long shape that is long in the central axis direction, an opening is provided in the direction of the central axis 4 of the second swirl chamber 19. By these actions, foreign matter can be efficiently discharged from the second air supply port 10.
 換気口フード1は、雨が降った際に、室内側への浸水を抑える役割が必要である。本実施の形態における換気口フード1は、前述したように室内へつながる円筒管5の端部である円筒管端面18と第一給気口8とが直接結ばれていないため、室内側への水滴の流入が抑制される。さらに、第一旋回室15内では、旋回流により水滴が外周側へ移動し、空間分割板13の壁面に付着する。これらの作用により、雨が侵入しづらい構成の換気口フードとなっている。 換 気 Ventilation hood 1 is required to play a role in preventing water from entering the room when it rains. In the vent hood 1 in the present embodiment, the cylindrical pipe end surface 18 that is the end of the cylindrical pipe 5 connected to the room and the first air supply port 8 are not directly connected as described above. Inflow of water droplets is suppressed. Further, in the first swirl chamber 15, the water droplets move to the outer peripheral side due to the swirl flow and adhere to the wall surface of the space dividing plate 13. By these actions, the ventilation hood has a structure in which rain does not easily enter.
 さらに、水の浸入を防ぐために、円柱部材14の周囲に遮水部材25が設けられている。空間分割板13の壁面に付着した水滴は、重力により固定板16を伝って下方へ移動する。この時、遮水部材25に衝突した水滴は、遮水部材25に沿って下方へ移動するため、垂れてきた水滴が円柱部材14に到達することはない。円柱部材14付近では円筒管5へ向かう流れが発生しているため、円柱部材14に付着した水滴は円筒管5内へ飛散しやすい。遮水部材25は、そのような水滴の飛散を防ぐことで、水滴の分離性能の低下を抑制できる。 Furthermore, a water shielding member 25 is provided around the cylindrical member 14 in order to prevent water from entering. The water droplets adhering to the wall surface of the space dividing plate 13 move downward along the fixed plate 16 due to gravity. At this time, the water droplets colliding with the water shielding member 25 move downward along the water shielding member 25, so that the dripping water droplets do not reach the cylindrical member 14. Since a flow toward the cylindrical tube 5 is generated in the vicinity of the cylindrical member 14, water droplets attached to the cylindrical member 14 are likely to be scattered into the cylindrical tube 5. The water-impervious member 25 can suppress a drop in water droplet separation performance by preventing such water droplets from being scattered.
 また、換気口フード1の正面はカバー2で覆われており、正面側に開口がないため、直接風が室内へ流入することがない。 Also, the front of the vent hood 1 is covered with the cover 2 and there is no opening on the front side, so that the wind does not flow directly into the room.
 以上のように、換気口フード1は、遠心力を用いた異物分離機能を備え、コンパクトな構成で圧力損失も低い。さらに、換気口フード1において、分離した異物は自然風の力で屋外へ排出され、目詰まりを生じさせる狭小隙間がないため、異物を除去するというメンテナンス作業が不要となる。 As described above, the vent hood 1 has a foreign matter separation function using centrifugal force, and has a compact configuration and low pressure loss. Furthermore, in the vent hood 1, the separated foreign matter is discharged to the outside by the force of natural wind, and there is no narrow gap that causes clogging, so that the maintenance work of removing the foreign matter becomes unnecessary.
 (実施の形態2)
 次に、遮水部材の他の構成例について説明する。
(Embodiment 2)
Next, another configuration example of the water shielding member will be described.
 実施の形態1と構成・作用が同じ部分については説明を省略する。 Description of parts having the same configuration and operation as the first embodiment will be omitted.
 図6は、実施の形態2における換気口フードの遮水部材の形状を示す図である。なお、図6は、実施の形態2における遮水部材125の部分拡大断面図である。本実施の形態における遮水部材125は、中心軸4側の側面が円筒管5側に向かって広がるように傾斜面となっている。これにより、遮水部材125の内周側に入り込んだ水滴は、重力によって下方へ移動した際に、遮水部材125内部に溜められずに、傾斜面に沿って遮水部材125の外側へ排出される。そのため、水滴が下流へ飛散することを防ぐことができるため、分離性能の低下を抑制できる。 FIG. 6 is a diagram showing the shape of the water shielding member of the vent hood according to the second embodiment. FIG. 6 is a partially enlarged cross-sectional view of the water shielding member 125 in the second embodiment. The water-impervious member 125 in the present embodiment has an inclined surface so that the side surface on the central axis 4 side widens toward the cylindrical tube 5 side. As a result, when the water droplets that have entered the inner peripheral side of the water-impervious member 125 move downward due to gravity, the water droplets are not collected inside the water-impervious member 125 but are discharged outside the water-impervious member 125 along the inclined surface. Is done. Therefore, it is possible to prevent water droplets from being scattered downstream, so that it is possible to suppress a decrease in separation performance.
 (実施の形態3)
 実施の形態1と構成・作用が同じ部分については説明を省略する。
(Embodiment 3)
A description of portions having the same configuration and operation as those of the first embodiment will be omitted.
 図7は、実施の形態3における遮水部材の形状を表す正面図である。本実施の形態における遮水部材225には、重力方向の最下部に位置する箇所に切り欠き226が設けられている。これにより、遮水部材225の内周側に入り込んだ水滴は、重力によって下方へ移動した際に、遮水部材225内部に溜められずに、切り欠き226から遮水部材225の外側へ排出される。そのため、水滴が下流へ飛散することを防ぐことができるため、分離性能の低下を抑制できる。 FIG. 7 is a front view showing the shape of the water-impervious member in the third embodiment. In the water-impervious member 225 in the present embodiment, a notch 226 is provided at a position located at the lowest part in the direction of gravity. Thus, when the water droplets that have entered the inner peripheral side of the water-impervious member 225 move downward due to gravity, the water droplets are not collected inside the water-impervious member 225 and are discharged from the notch 226 to the outside of the water-impervious member 225 The Therefore, it is possible to prevent water droplets from being scattered downstream, so that it is possible to suppress a decrease in separation performance.
 (実施の形態4)
 次に、本実施の形態において、装置を大型化することなく、異物の分離性能を低下させずに、圧力損失をさらに低減することができる形態について説明をする。なお、実施の形態1から3の説明においてすでに説明した構成については、重複をさけるために同一符号を付して詳細な説明は省略する。
(Embodiment 4)
Next, in the present embodiment, a mode in which pressure loss can be further reduced without increasing the size of the apparatus and without reducing the separation performance of foreign matters will be described. In addition, about the structure already demonstrated in description of Embodiment 1-3, in order to avoid duplication, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 図8は、実施の形態4における換気口フードを正面側から見た外観斜視図である。なお、図8は、換気口フード300の正面側で、住宅外壁に取り付けた場合、屋外側の上方から見下ろしたときに見える外観である。図9は、実施の形態4における換気口フードを裏面側から見た外観斜視図である。なお、図9は、換気口フード300の裏側で、住宅の外壁側から見た場合の図である。図10は、実施の形態4における換気口フードの中心軸に沿った断面図である。 FIG. 8 is an external perspective view of the vent hood according to the fourth embodiment as viewed from the front side. In addition, FIG. 8 is the external appearance which looks when it looks down from upper direction of the outdoor side, when it attaches to a house outer wall in the front side of the ventilation opening hood 300. FIG. FIG. 9 is an external perspective view of the vent hood according to the fourth embodiment as viewed from the back side. FIG. 9 is a view of the rear side of the vent hood 300 as viewed from the outer wall side of the house. FIG. 10 is a cross-sectional view along the central axis of the vent hood according to the fourth embodiment.
 円筒管5は、図10に示すように、ベース板3から換気口フード300の内側に延設された内筒管330と換気口フード300の外側に延設された接続管331を含む。本実施の形態では、ベース板3から内側に延設された内筒管330の特徴を説明する。内筒管330の詳細については後述する。 As shown in FIG. 10, the cylindrical tube 5 includes an inner tube 330 that extends from the base plate 3 to the inside of the vent hood 300 and a connection tube 331 that extends to the outside of the vent hood 300. In the present embodiment, the features of the inner tube 330 extending inward from the base plate 3 will be described. Details of the inner tube 330 will be described later.
 図10において、換気口フード300は、点線で記した接続管331を用いて、住宅外壁内に埋め込まれた換気ダクトと接続することができる。 10, the vent hood 300 can be connected to a ventilation duct embedded in the outer wall of the house using a connecting pipe 331 indicated by a dotted line.
 換気口フード300は、図8、図9に示すように、カバー2と、カバー2の底面部であるベース板3とで構成される。また、換気口フード300は、カバー2の側面部に、カバー2の円形形状に沿って湾曲させためくら板9を備えている。 As shown in FIGS. 8 and 9, the ventilation port hood 300 includes a cover 2 and a base plate 3 that is a bottom surface of the cover 2. The vent hood 300 is provided with a slat 9 on the side surface of the cover 2 so as to bend along the circular shape of the cover 2.
 カバー2とベース板3は、めくら板9を介して接続されている。これにより、カバー2とベース板3との間に隙間を設けて第一給気口8を形成している。第一給気口8は、換気口フード300の側面でベース板3に接するように構成され、360度に渡って形成されているが、めくら板9部分には空気が流入しない。 The cover 2 and the base plate 3 are connected via a blind plate 9. As a result, a gap is provided between the cover 2 and the base plate 3 to form the first air supply port 8. The first air inlet 8 is configured to be in contact with the base plate 3 on the side surface of the vent hood 300 and is formed over 360 degrees, but air does not flow into the blind plate 9 portion.
 そして第一給気口8には、流入空気が旋回するように、中心軸4に向けて斜めに配置した固定羽根11を複数設けている。 The first air supply port 8 is provided with a plurality of fixed blades 11 arranged obliquely toward the central axis 4 so that the inflowing air turns.
 図8に示すように、カバー2の下部に位置する部分には、第二給気口10が設けられている。 As shown in FIG. 8, a second air inlet 10 is provided in a portion located at the lower part of the cover 2.
 また図9に示すように、ベース板3の中央部には円形の開口が設けられており、この開口が空気の流出口332となる。 As shown in FIG. 9, a circular opening is provided in the center of the base plate 3, and this opening serves as an air outlet 332.
 次に図10を用いて本実施の形態の換気口フード300の内部の構成を説明する。 Next, the internal configuration of the vent hood 300 according to the present embodiment will be described with reference to FIG.
 カバー2の内側は、空間分割板13によって第一旋回室15と第二旋回室19に区切られている。中心軸4を横切る断面において、第二旋回室19は円環状で第一旋回室15を取り囲む構成である。つまり、カバー2内の内周側が第一旋回室15、カバー2の外周側が第二旋回室19となる。空間分割板13には貫通孔21が設けられ、貫通孔21を介して第一旋回室15と第二旋回室19が空間的につながっている。 The inner side of the cover 2 is divided into a first swirl chamber 15 and a second swirl chamber 19 by a space dividing plate 13. In the cross section crossing the central axis 4, the second swirl chamber 19 is annular and surrounds the first swirl chamber 15. That is, the inner periphery side of the cover 2 is the first swirl chamber 15, and the outer periphery side of the cover 2 is the second swirl chamber 19. A through hole 21 is provided in the space dividing plate 13, and the first swirl chamber 15 and the second swirl chamber 19 are spatially connected via the through hole 21.
 ベース板3の中心には、流出口332が設けられている。流出口332は円形状で、その中心は中心軸4と重なる。そして、内筒管330が流出口332から第一旋回室15内へ延設するように設けられている。内筒管330は、図10の断面図において、固定羽根11と重なり、さらに第一旋回室15内の空気が流入する内筒管330の内筒管先端口333は空間分割板13と重なる位置まで延設している。 An outlet 332 is provided at the center of the base plate 3. The outlet 332 has a circular shape, and its center overlaps the central axis 4. The inner tube 330 is provided so as to extend from the outlet 332 into the first swirl chamber 15. In the cross-sectional view of FIG. 10, the inner cylindrical tube 330 overlaps the fixed blade 11, and the inner cylindrical tube distal end 333 of the inner cylindrical tube 330 into which the air in the first swirl chamber 15 flows further overlaps the space dividing plate 13. It is extended to.
 そして、第一旋回室15内の頂面6側において内筒管330と対向する位置には、円柱部材14が設けられている。そして、第一旋回室15内の頂面6側において円柱部材14の周囲にはリング形状の遮水部材25が設けられている。 The columnar member 14 is provided at a position facing the inner tube 330 on the top surface 6 side in the first swirl chamber 15. A ring-shaped water shielding member 25 is provided around the cylindrical member 14 on the top surface 6 side in the first swirl chamber 15.
 図10に示すように、空間分割板13は、第一給気口8の端部つまり固定羽根11の端部からカバー2の頂面6側に向かって、第一旋回室15の断面積(中心軸4と垂直面)が小さくなるように傾斜している。第二旋回室19は空間分割板13とカバー2の隙間に出来た空間である。 As shown in FIG. 10, the space dividing plate 13 has a cross-sectional area of the first swirl chamber 15 (from the end of the first air supply port 8, that is, the end of the fixed blade 11 toward the top surface 6 of the cover 2). The central axis 4 and the vertical plane are inclined so as to be small. The second swirl chamber 19 is a space formed in the gap between the space dividing plate 13 and the cover 2.
 中心軸4が水平状態において、第二給気口10は重力方向下部に位置するようにカバー2の側面部に設けられた開口である。また、第二給気口10は中心軸4方向に長い長方形状の開口で、屋外と第二旋回室19が空間的に接続される。 When the central shaft 4 is in a horizontal state, the second air supply port 10 is an opening provided on the side surface of the cover 2 so as to be positioned at the lower part in the gravity direction. The second air supply port 10 is a rectangular opening that is long in the direction of the central axis 4, and the outside and the second swirl chamber 19 are spatially connected.
 接続管331はベース板3に固定され、流出口332のサイズ(直径)と概同サイズの内径を有する円筒形状である。また 、接続管331の中心は中心軸4と重なる。 The connecting pipe 331 is fixed to the base plate 3 and has a cylindrical shape having an inner diameter approximately the same size as the outflow port 332 (diameter). Moreover, the center of the connecting pipe 331 overlaps the central axis 4.
 図11は、本実施の形態における換気口フードの内筒管の断面図である。なお、図11は、内筒管330を中心軸4を含む面で軸方向に切断した断面図である。 FIG. 11 is a cross-sectional view of the inner tube of the vent hood in the present embodiment. FIG. 11 is a cross-sectional view of the inner cylindrical tube 330 cut in the axial direction along a plane including the central axis 4.
 内筒管330の形状は、内筒管330を中心軸4に垂直な面で切った断面積がその軸方向で変化している形状である。なお、流出口332と重なる部分の内筒管330の内径は、流出口332の直径と同じサイズとなる。この部分、すなわち流出口332の直径を直径φoutとする。また、内筒管330の断面積が最小となる位置の直径、すなわち最小直径を最小直径φminとする。そして、内筒管330に最初に空気が流入する入り口である内筒管先端口333(円筒管端面18に位置する)の直径、すなわち流入口の直径を直径φinとする。 The shape of the inner tube 330 is such that the cross-sectional area obtained by cutting the inner tube 330 along a plane perpendicular to the central axis 4 changes in the axial direction. Note that the inner diameter of the inner tube 330 that overlaps the outlet 332 has the same size as the diameter of the outlet 332. The diameter of this portion, that is, the outlet 332 is defined as a diameter φout. Further, the diameter at the position where the cross-sectional area of the inner tube 330 is minimum, that is, the minimum diameter is defined as the minimum diameter φmin. Then, the diameter of the inner cylindrical tube tip 333 (located on the cylindrical tube end face 18), which is the inlet through which air first flows into the inner cylindrical tube 330, that is, the diameter of the inlet is defined as the diameter φin.
 最小直径φminの中心軸4方向の位置は、内筒管330の全長(軸方向)の中間位置と内筒管先端口333との間に位置している。また、内筒管先端口333の直径φinは最も大きく、直径φin>直径φout>最小直径φminの関係である。 The position of the minimum diameter φmin in the direction of the central axis 4 is located between the intermediate position of the entire length (in the axial direction) of the inner cylindrical tube 330 and the distal end port 333 of the inner cylindrical tube. In addition, the diameter φin of the inner cylindrical tube distal end 333 is the largest, and the relationship of diameter φin> diameter φout> minimum diameter φmin is established.
 内筒管先端口333を形成する円筒壁端部334は、内筒管330の外側が丸く膨らんだR形状部335となっており、内筒管330の内周面336から滑らかに連続した円弧で繋がっている。 A cylindrical wall end 334 that forms the inner tube pipe distal end 333 is an R-shaped portion 335 in which the outer side of the inner tube 330 bulges out roundly. Are connected.
 R形状部335の表面には、中心軸4を中心として、360度に渡って溝337が形成されている。なお、溝337の幅は、その深さの1/3~1/5である。 A groove 337 is formed on the surface of the R-shaped portion 335 over 360 degrees with the central axis 4 as the center. The width of the groove 337 is 1/3 to 1/5 of the depth.
 本実施の形態では、内筒管330をベース板3に取り付けるため、内筒管330の直径φout部、つまり、流出口332の周縁部にはベース板3を固定するためのフランジ338が設けられている。 In the present embodiment, in order to attach the inner cylindrical tube 330 to the base plate 3, a flange 338 for fixing the base plate 3 is provided at the diameter φout portion of the inner cylindrical tube 330, that is, the peripheral portion of the outflow port 332. ing.
 図12は、本実施の形態における円柱部材の外観斜視図である。 FIG. 12 is an external perspective view of the cylindrical member in the present embodiment.
 円柱部材314のカバー2側は、図12に示すように、円筒形状の円柱体339で構成されている。また、円柱部材314の円柱体339よりも内筒管330側は、内筒管330側を頂点とする円錐形状となっており、円錐形状の外周に円弧羽根340(円柱羽根17に相当)が4枚円形状に均等配置されている。 The cover 2 side of the columnar member 314 is configured by a cylindrical columnar body 339 as shown in FIG. The cylindrical member 314 has a conical shape on the inner cylinder tube 330 side of the cylindrical body 339 with the inner cylinder tube 330 side as an apex, and an arc blade 340 (corresponding to the cylindrical blade 17) is provided on the outer periphery of the conical shape. Four pieces are equally arranged in a circular shape.
 次に、換気口フード300における異物の分離機構について説明する。 Next, a foreign matter separation mechanism in the vent hood 300 will be described.
 異物を含んだ屋外空気は、第一給気口8より換気口フード300内に流入し、固定羽根11により旋回気流となり、換気口フード300の正面側へ向かいながら第一旋回室15内を旋回する。ここで、異物は遠心力により空間分割板13側に移動し、貫通孔21を介して第二旋回室19へ移動する。異物が分離された空気は、内筒管先端口333から内筒管330に流入し、流出口332より装置外へ流出する。つまり、内筒管先端口333で、第一給気口8から流入した旋回気流は進行方向を反転させられることとなる。また、第一給気口8から流入した旋回気流は、内筒管330の外側と内側とで進行方向を反転させられるとも言える。 The outdoor air containing foreign matter flows into the vent hood 300 from the first air inlet 8, turns into a swirling airflow by the fixed vanes 11, and swirls in the first swirl chamber 15 toward the front side of the vent hood 300. To do. Here, the foreign matter moves to the space dividing plate 13 side by centrifugal force, and moves to the second swirl chamber 19 through the through hole 21. The air from which the foreign matter is separated flows into the inner tube 330 from the inner tube end 333 and flows out of the apparatus through the outlet 332. That is, the swirling airflow that has flowed in from the first air supply port 8 at the inner tube pipe front end port 333 has its traveling direction reversed. In addition, it can be said that the swirling airflow that flows in from the first air supply port 8 can reverse the traveling direction between the outside and the inside of the inner tube 330.
 第二旋回室19に移動した異物は、一旦、第二旋回室19内に貯留される。送風機により換気口フード300内は負圧となっているため、第二給気口10から第二旋回室19内に空気が流入する。その流入した空気は、貫通孔21を通り、第一旋回室15へ流入し、第一旋回室15内の旋回気流と合流する。 The foreign matter moved to the second swirl chamber 19 is temporarily stored in the second swirl chamber 19. Since the inside of the ventilation opening hood 300 has a negative pressure by the blower, air flows into the second swirl chamber 19 from the second air supply opening 10. The inflowing air passes through the through hole 21 and flows into the first swirl chamber 15 and merges with the swirling airflow in the first swirl chamber 15.
 なお、第二給気口10の屋外側で、自然風が吹くと、第二給気口10の屋外側で静圧が下がる。第二給気口10の屋外側の静圧が第二旋回室19側の静圧よりも低くなったときに、分離されている異物が屋外へ引っ張り出される。これにより、異物が自動的に屋外へ排出されるため、第二旋回室19内に異物が貯まり続けることがなく、貯留物を除去するメンテナンスを不要とすることができる。 In addition, when natural wind blows on the outdoor side of the second air supply port 10, the static pressure decreases on the outdoor side of the second air supply port 10. When the static pressure on the outdoor side of the second air supply port 10 becomes lower than the static pressure on the second swirl chamber 19 side, the separated foreign matter is pulled out outdoors. As a result, the foreign matter is automatically discharged to the outside, so that the foreign matter does not continue to be stored in the second swirl chamber 19 and the maintenance for removing the stored matter can be made unnecessary.
 図13は、内筒管の軸方向の断面積が変わらない場合の気流の流れを説明するための図である。白矢印は気流の流れ方向を表しており、黒矢印は気流のベクトルを示している。また黒矢印の内側の黒線は気流の流れ方向を示す線(流線)である。 FIG. 13 is a view for explaining the flow of the airflow when the axial sectional area of the inner tube does not change. The white arrow indicates the direction of airflow, and the black arrow indicates the airflow vector. The black line inside the black arrow is a line (stream line) indicating the flow direction of the airflow.
 内筒管が図13の形状の場合、送風機を駆動させると、黒矢印で示したように、内筒管の外側の気流が進行方向を変化させながら内筒管先端口433から流入する。この際、内筒管先端口433の円筒壁端部434を発端として、流線で示したような渦流が発生する。この渦流が気流の流れを阻害することで、圧力損失が増加する。つまり、内筒管内に発生する渦流が圧力損失の原因となっていた。 When the inner tube is in the shape of FIG. 13, when the blower is driven, the airflow outside the inner tube flows from the inner tube end 433 while changing the traveling direction, as indicated by the black arrows. At this time, a vortex as shown by a streamline is generated starting from the cylindrical wall end 434 of the inner tube pipe front end 433. This eddy current impedes the flow of the air flow, thereby increasing the pressure loss. That is, the vortex generated in the inner cylindrical tube has caused the pressure loss.
 そこで、この渦流の外面に沿って若干小さめに壁面を設けたのが、本発明の図11に記載の内筒管330である。図13に示すように、渦流の厚みが最大となる位置は、内筒管先端口433と内筒管330の全長の中間位置との間である。そのため、本実施の形態の内筒管330は、渦流の厚みが最大となる部分に対応させた最小断面積部分、すなわち最小直径φminなる部分を備えている。 Therefore, the inner tube 330 shown in FIG. 11 of the present invention is provided with a wall surface slightly smaller along the outer surface of the vortex. As shown in FIG. 13, the position where the thickness of the eddy current becomes maximum is between the inner cylindrical tube front end 433 and the intermediate position of the entire length of the inner cylindrical tube 330. Therefore, the inner tube 330 of the present embodiment includes a minimum cross-sectional area portion corresponding to a portion where the thickness of the eddy current is maximum, that is, a portion having a minimum diameter φmin.
 最小直径φminは、内筒管先端口333と内筒管330の全長の中間位置との間に設けられている。最小直径φminは、φmin=(0.77~0.87)×φinが望ましい。なお、本実施の形態では、φmin=0.82×φinである。 The minimum diameter φmin is provided between the inner tube pipe tip 333 and the intermediate position of the entire length of the inner tube 330. The minimum diameter φmin is preferably φmin = (0.77 to 0.87) × φin. In the present embodiment, φmin = 0.82 × φin.
 最小直径φminは、内筒管先端口333の直径である直径φinの0.77倍より小さいと空気の通過面積が小さくなるため、通気抵抗が上がり、圧力損失が増加してしまう。また、最小直径φminが内筒管先端口333の直径である直径φinの0.87倍より大きいと、円筒壁端部334から生じる渦流を完全に消失させることができず、圧力損失を十分に低減することができない。なお、最小直径φminを内筒管先端口333の直径である直径φinの0.77~0.82倍とすることで内周面336は、渦流の外面に沿って若干小さめに設けられることとなる。この構成によれば、内周面336における気流の誘引効果により、気流が本来の進行方向に流れる有効領域を拡大することができ、その結果通気抵抗が減り、圧力損失を低減することができる。 When the minimum diameter φmin is smaller than 0.77 times the diameter φin, which is the diameter of the inner tube end 333, the air passage area is reduced, so that the ventilation resistance is increased and the pressure loss is increased. Also, if the minimum diameter φmin is larger than 0.87 times the diameter φin, which is the diameter of the inner tube end 333, the vortex generated from the cylindrical wall end 334 cannot be completely eliminated, and the pressure loss is sufficiently reduced. It cannot be reduced. By setting the minimum diameter φmin to 0.77 to 0.82 times the diameter φin, which is the diameter of the inner tube end 333, the inner peripheral surface 336 is provided slightly smaller along the outer surface of the vortex flow. Become. According to this configuration, due to the airflow attracting effect on the inner peripheral surface 336, the effective area in which the airflow flows in the original traveling direction can be expanded. As a result, the airflow resistance can be reduced and the pressure loss can be reduced.
 最小断面積部分を通過した後は、流速を下げるために、気流を乱さないよう徐々に内筒管330の断面積を広げていき、流出口332と同じサイズにまで広げて流出口332の直径を直径φoutとしている。 After passing through the minimum cross-sectional area portion, in order to reduce the flow velocity, the cross-sectional area of the inner tube 330 is gradually increased so as not to disturb the air flow, and the diameter of the outlet 332 is increased to the same size as the outlet 332. Is the diameter φout.
 さらに、図11に示すように、円筒壁端部334には、内筒管330の外側へ丸く膨らんだR形状部335が設けられている。内筒管330の内周面336と外周面341とは、R形状部335に沿って連続して円弧でつながっている。そしてR形状部335の最大直径部342の表面には中心軸4を中心として、全周に渡って溝337が設けられている。円筒壁端部334を上記のような形状とすることで、内筒管330の外周面341を流れる気流の剥離現象の発生を抑制しつつ、R形状部335に沿ってスムーズに気流の向きを変えることができる。そのため、内筒管330へ流入する際の流入損失を低減でき、圧力損失を低減することができる。 Furthermore, as shown in FIG. 11, the cylindrical wall end 334 is provided with an R-shaped portion 335 that bulges outwardly from the inner tube 330. The inner peripheral surface 336 and the outer peripheral surface 341 of the inner tube 330 are continuously connected along an arc shape along the R-shaped portion 335. A groove 337 is provided on the surface of the maximum diameter portion 342 of the R-shaped portion 335 around the entire center axis 4. By forming the cylindrical wall end portion 334 as described above, the direction of the airflow is smoothly changed along the R-shaped portion 335 while suppressing the occurrence of the separation phenomenon of the airflow flowing through the outer peripheral surface 341 of the inner tube 330. Can be changed. Therefore, the inflow loss when flowing into the inner cylindrical tube 330 can be reduced, and the pressure loss can be reduced.
 R形状部335に設けられた溝337の幅は前述したようにその深さに対して1/3~1/5と狭く、気流に影響を与えないので、溝337による圧力損失の増加はない。 As described above, the width of the groove 337 provided in the R-shaped portion 335 is as narrow as 1/3 to 1/5 of the depth and does not affect the air flow, so that the pressure loss due to the groove 337 does not increase. .
 この溝337は、第一給気口8から侵入した水滴が内筒管330の外周面341を伝って内筒管330内に流入するのを防ぐためのものである。 The groove 337 is for preventing water droplets that have entered from the first air supply port 8 from flowing into the inner tube 330 through the outer peripheral surface 341 of the inner tube 330.
 このように、本発明の内筒管330の形状には三つの効果がある。第一に、円筒壁端部334に設けたR形状部335によって、内筒管330へ流入する空気の流入損失を低減できる。第二に、内筒管330の断面積を縮小することで、内筒管330の端部、すなわち円筒壁端部334から発生する渦流の影響を消失させることができる。第三に、その後ゆるやかに断面積を広げて流速を減少させることができる。これら3つの効果で圧力損失を大幅に低減することが可能となる。また、R形状部335に溝337を設けることで、圧力損失を上昇させずに、水滴の侵入も防止することもできる。 Thus, the shape of the inner tube 330 of the present invention has three effects. First, the inflow loss of the air flowing into the inner tube 330 can be reduced by the R-shaped portion 335 provided at the cylindrical wall end 334. Second, by reducing the cross-sectional area of the inner cylindrical tube 330, the influence of the vortex generated from the end of the inner cylindrical tube 330, that is, the cylindrical wall end 334 can be eliminated. Third, the cross-sectional area can then be gradually increased to reduce the flow velocity. These three effects can significantly reduce pressure loss. Further, by providing the groove 337 in the R-shaped portion 335, it is possible to prevent water droplets from entering without increasing the pressure loss.
 なお、先行文献(特開2000-128591号公報)では、流入損失のみの低減であるため、圧力損失の低減効果は限定的である。 In the prior art document (Japanese Patent Laid-Open No. 2000-128591), only the inflow loss is reduced, so that the effect of reducing the pressure loss is limited.
 また、円筒壁端部334を空間分割板13と重なる位置にまで延設させることにより、第一給気口8から侵入した水滴が内筒管先端口333から内筒管330内へ直接侵入することを防ぐことができる。 Further, by extending the cylindrical wall end portion 334 to a position overlapping the space dividing plate 13, water droplets that have entered from the first air supply port 8 directly enter the inner cylindrical tube 330 from the inner cylindrical tube distal end port 333. Can be prevented.
 また、本実施の形態の内筒管330の構造は、異物の分離に影響を与えることがないので、分離性能を維持したまま圧力損失を低減することができる。 Further, since the structure of the inner tube 330 according to the present embodiment does not affect the separation of foreign matter, the pressure loss can be reduced while maintaining the separation performance.
 円柱部材14は、旋回気流を円弧羽根340で受け、中心に集めることができる。また、円弧羽根340の根元部分は内筒管330側を頂点とした円錐形状となっている。この構成によれば、円弧羽根340で受けた気流は中心に集まりつつ、円錐面に沿って頂点側つまり内筒管330側へ向かうこととなるので、空気はスムーズに下流へ流れようとする。この流れに影響され、内筒管330の内周面336近傍を流れる気流、特に最小直径φmin付近の壁面沿いを流れる気流もスムーズに下流へ流れようとする。つまり、円柱部材14と本実施の形態の形状である内筒管330の形状とが相まって、さらなる圧力損失の低減につながる。 The cylindrical member 14 can receive the swirling airflow with the arc blade 340 and collect it at the center. The root portion of the arc blade 340 has a conical shape with the inner tube 330 side as a vertex. According to this configuration, the airflow received by the arc blade 340 is gathered at the center and is directed toward the apex side, that is, the inner tube 330 side along the conical surface, so that air tends to flow smoothly downstream. Under the influence of this flow, the airflow flowing in the vicinity of the inner peripheral surface 336 of the inner tube 330, particularly the airflow flowing along the wall surface near the minimum diameter φmin, tends to flow smoothly downstream. That is, the cylindrical member 14 and the shape of the inner cylindrical tube 330 which is the shape of the present embodiment are combined to further reduce the pressure loss.
 (実施の形態5)
 本実施の形態では、組立性が容易であって、外気が分離室へ流入するのを防いで、分離性能の低下を抑制できる換気口フードの構成について説明する。
(Embodiment 5)
In the present embodiment, a configuration of a vent hood that is easy to assemble, prevents outside air from flowing into the separation chamber, and can suppress a decrease in separation performance will be described.
 なお、実施の形態1から4の説明においてすでに説明した構成については、重複を避けるために同一符号を付して詳細な説明は省略する。 In addition, about the structure already demonstrated in description of Embodiment 1-4, in order to avoid duplication, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 図14は、実施の形態5における換気口フードを正面側から見た外観斜視図である。なお、図14は、図1と同様に、換気口フード500の正面側で、住宅外壁に取り付けた場合、屋外側の上方から見下ろしたときに見える外観である。 FIG. 14 is an external perspective view of the vent hood according to the fifth embodiment as viewed from the front side. In addition, FIG. 14 is the external appearance which looks when it looks down from the outdoor side upper direction, when it attaches to a house outer wall by the front side of the ventilation opening hood 500 similarly to FIG.
 図15は、実施の形態5における換気口フードの中心軸に沿った断面図である。図15に示すように、接続管531に排気ダクトが接続され、排気ダクトの下流側には送風機が接続される。 FIG. 15 is a cross-sectional view along the central axis of the vent hood according to the fifth embodiment. As shown in FIG. 15, an exhaust duct is connected to the connection pipe 531, and a blower is connected to the downstream side of the exhaust duct.
 次に換気口フード500の外観構成について説明する。 Next, the external configuration of the vent hood 500 will be described.
 本実施の形態の換気口フード500は、図14に示すように、中心軸4をほぼ水平にして住宅の外壁面に取り付けられる。そして、本実施の形態では、図15における左側を換気口フード500の天面側(カバー2の頂面6側)とし、カバー2が被さるように設けられている。一方、図15における右側を換気口フード500の底面側(カバー2の底面側)とし、ベース板3が設けられている。カバー2の上部と下部には、カバー2の円孤形状に沿って湾曲させためくら板9がそれぞれ設けられており、これによりカバー2とベース板3とを接続している。接続したことでできる内部空間は円筒形状となっている。 As shown in FIG. 14, the vent hood 500 of the present embodiment is attached to the outer wall surface of the house with the central axis 4 substantially horizontal. In the present embodiment, the left side in FIG. 15 is the top surface side of the ventilation hood 500 (the top surface 6 side of the cover 2), and the cover 2 is provided to cover. On the other hand, the right side in FIG. 15 is the bottom side of the vent hood 500 (the bottom side of the cover 2), and the base plate 3 is provided. The upper and lower portions of the cover 2 are each provided with a blank 9 for bending along the arc shape of the cover 2, thereby connecting the cover 2 and the base plate 3. The internal space that can be formed by connection is cylindrical.
 カバー2とベース板3は、めくら板9を介して接続されている。これにより、カバー2とベース板3との間に隙間を設けて第一給気口8を形成している。第一給気口8は、換気口フード500の側面でベース板3に接するように構成され、中心軸4を中心にほぼ全周360度に渡って空気を流入できるようになっている。なお、めくら板9部分は、遮蔽部となっており、空気が流入しない。 The cover 2 and the base plate 3 are connected via a blind plate 9. As a result, a gap is provided between the cover 2 and the base plate 3 to form the first air supply port 8. The first air supply port 8 is configured to contact the base plate 3 on the side surface of the ventilation port hood 500 so that air can flow in approximately 360 degrees around the central axis 4. In addition, the blanking board 9 part is a shielding part, and air does not flow in.
 そして第一給気口8には、流入空気が旋回するように、中心軸4に向けて斜めに配置した板状部材である固定羽根11を複数設けている。言い換えると、固定羽根11は、中心軸4に直交する断面において、中心軸4を中心とした円弧の接線に対し、同一方向に所定の角度で傾斜させて設けられている。 The first air supply port 8 is provided with a plurality of fixed blades 11 that are plate-like members arranged obliquely toward the central axis 4 so that the inflowing air turns. In other words, the fixed blade 11 is provided at a predetermined angle in the same direction with respect to the tangent of the arc centered on the central axis 4 in a cross section orthogonal to the central axis 4.
 図14に示すように、カバー2の下部に位置する部分には、第二給気口10が設けられている。 As shown in FIG. 14, a second air inlet 10 is provided in a portion located at the lower part of the cover 2.
 次に図15を用いて換気口フード500の内部の構成を説明する。 Next, the internal structure of the vent hood 500 will be described with reference to FIG.
 カバー2の内側は、空間分割板13によって第一旋回室15と第二旋回室19に区切られており、第二旋回室19は円環状で第一旋回室15を取り囲む構成である。空間分割板13には貫通孔21が設けられ、貫通孔21を介して第一旋回室15と第二旋回室19が空間的につながっている。 The inside of the cover 2 is divided into a first swirl chamber 15 and a second swirl chamber 19 by a space dividing plate 13, and the second swirl chamber 19 has an annular shape and surrounds the first swirl chamber 15. A through hole 21 is provided in the space dividing plate 13, and the first swirl chamber 15 and the second swirl chamber 19 are spatially connected via the through hole 21.
 図15において、空間分割板13は第一給気口8側の端部、つまり固定羽根11側の端部からカバー2の頂面6側に向かって、第一旋回室15の断面積(中心軸4に対して垂直な面)が小さくなるように傾斜した円錐台形状となっている。そして、円筒であるカバー2の内側に円錐台である空間分割板13を配置して形成した空間が第二旋回室19である。 In FIG. 15, the space dividing plate 13 is a cross-sectional area (center) of the first swirl chamber 15 from the end on the first air supply port 8 side, that is, the end on the fixed blade 11 side toward the top surface 6 side of the cover 2. It has a truncated cone shape that is inclined so that the surface perpendicular to the axis 4 becomes smaller. A space formed by disposing the space dividing plate 13 that is a truncated cone inside the cover 2 that is a cylinder is a second swirl chamber 19.
 また、図15に示すように、ベース板3には中心軸4と同軸となるように中央部に円形の開口532が設けられている。この開口532を貫通させるように、円筒状の円筒管5が設けられている。円筒管5の換気口フード500の内部側部分、すなわち内筒管530は、内側に空気を流入させる円筒壁端部534を備えている。また、円筒管5の換気口フード500の外部側は、換気ダクトを接続できる接続管531となっている。円筒壁端部534は、図15において、空間分割板13と重なる位置まで中心軸4方向に延設されている。 Further, as shown in FIG. 15, the base plate 3 is provided with a circular opening 532 in the center so as to be coaxial with the central axis 4. A cylindrical tube 5 is provided so as to penetrate through the opening 532. The inner side portion of the ventilation hood 500 of the cylindrical tube 5, that is, the inner cylindrical tube 530 is provided with a cylindrical wall end portion 534 through which air flows. Further, the outside of the ventilation hood 500 of the cylindrical tube 5 is a connection tube 531 to which a ventilation duct can be connected. The cylindrical wall end portion 534 extends in the direction of the central axis 4 to a position overlapping the space dividing plate 13 in FIG.
 第二給気口10は、図14に示すように、中心軸4が水平状態において、重力方向下部に位置するようにカバー2側面に設けられた開口である。この第二給気口10は、中心軸4方向に長い長方形状の開口で、第二旋回室19と屋外とを空間的に接続している。 As shown in FIG. 14, the second air supply port 10 is an opening provided on the side surface of the cover 2 so that the central axis 4 is positioned at the lower part in the gravitational direction in a horizontal state. The second air supply port 10 is a rectangular opening that is long in the direction of the central axis 4 and spatially connects the second swirl chamber 19 and the outdoors.
 図15に示すように、第二旋回室19内には、下部遮蔽板545と上部遮蔽板546が設けられている。下部遮蔽板545は第二給気口10の近傍で、貫通孔21側に複数設けられている。第二給気口10を最下部にした状態で、上部遮蔽板546は重力方向の上部に位置するように設けられている。下部遮蔽板545、上部遮蔽板546は、中心軸4を中心に放射状に第二旋回室19内に設けられている。なお下部遮蔽板545と上部遮蔽板546は、分離室である第二旋回室19を完全に遮断しているわけではなく、下部遮蔽板545、上部遮蔽板546ともカバー2との間に隙間を残しており、異物や空気が行き来することは可能である。そして、下部遮蔽板545は、第二給気口10と貫通孔21の間に複数枚設けられている。本実施の形態では、空間分割板13と複数の固定羽根11と下部遮蔽板545と上部遮蔽板546は一体構成となっている。 As shown in FIG. 15, a lower shielding plate 545 and an upper shielding plate 546 are provided in the second swirl chamber 19. A plurality of lower shielding plates 545 are provided on the through hole 21 side in the vicinity of the second air inlet 10. The upper shielding plate 546 is provided so as to be positioned at the upper part in the gravity direction with the second air supply port 10 at the lowest position. The lower shielding plate 545 and the upper shielding plate 546 are provided in the second swirl chamber 19 radially about the central axis 4. The lower shielding plate 545 and the upper shielding plate 546 do not completely block the second swirl chamber 19 as a separation chamber, and a gap is formed between the lower shielding plate 545 and the upper shielding plate 546 and the cover 2. It is left and foreign objects and air can come and go. A plurality of lower shielding plates 545 are provided between the second air supply port 10 and the through hole 21. In the present embodiment, the space dividing plate 13, the plurality of fixed blades 11, the lower shielding plate 545, and the upper shielding plate 546 are integrated.
 次に、分離機構について説明する。 Next, the separation mechanism will be described.
 異物を含んだ屋外空気は、第一給気口8より換気口フード500内に流入し、固定羽根11により旋回気流となる。これにより異物を含んだ屋外空気は、換気口フード500の天面側へ向かいながら第一旋回室15内を旋回する。ここで、異物は遠心力により第一旋回室15の外周側、すなわち、空間分割板13側に移動し、遠心力により貫通孔21を介して第二旋回室19へ移動する。異物が分離された空気は、内筒管530に流入し、接続管531より装置外へ流出する。 The outdoor air containing foreign matter flows into the ventilation hood 500 from the first air supply port 8 and becomes a swirling airflow by the fixed blade 11. As a result, the outdoor air containing foreign matter swirls in the first swirl chamber 15 while heading toward the top side of the vent hood 500. Here, the foreign substance moves to the outer peripheral side of the first swirl chamber 15 by centrifugal force, that is, to the space dividing plate 13 side, and moves to the second swirl chamber 19 through the through hole 21 by centrifugal force. The air from which the foreign matter has been separated flows into the inner tube 530 and out of the apparatus through the connection tube 531.
 第二旋回室19に移動した異物は、一旦、第二旋回室19内に貯留される。送風機により換気口フード500内は負圧となっているため、第二給気口10から第二旋回室19内に空気が流入する。屋外から第二旋回室19内に流入した空気は、空間分割板13に設けられた貫通孔21へ向かおうとするが、下部遮蔽板545や上部遮蔽板546によって遮られる。そのため、第二給気口10から貫通孔21を介して第一旋回室15に流入する空気は僅かな量となる。その僅かな空気は、第二旋回室19から貫通孔21を通り、第一旋回室15へ流入し、第一旋回室15内の旋回気流と合流する。 The foreign matter moved to the second swirl chamber 19 is temporarily stored in the second swirl chamber 19. Since the ventilation port hood 500 has a negative pressure by the blower, air flows into the second swirl chamber 19 from the second air supply port 10. The air that flows into the second swirl chamber 19 from the outside tends to go to the through hole 21 provided in the space dividing plate 13, but is blocked by the lower shielding plate 545 and the upper shielding plate 546. Therefore, a small amount of air flows into the first swirl chamber 15 from the second air supply port 10 through the through hole 21. The slight air flows from the second swirl chamber 19 through the through hole 21 to the first swirl chamber 15, and merges with the swirl airflow in the first swirl chamber 15.
 一方で、第二給気口10の屋外側で、自然風が吹くと、第二給気口10部の屋外側の静圧が下がる。そして、第二給気口10の屋外側の静圧が、第二旋回室19側の静圧よりも低くなったときに、分離されている異物が屋外へ引っ張り出される。これにより、異物が自動的に屋外へ排出されるため、第二旋回室19内に異物が貯まり続けることがなく、貯留物を除去するメンテナンスを不要とすることができる。 On the other hand, when natural wind blows on the outdoor side of the second air supply port 10, the static pressure on the outdoor side of the second air supply port 10 decreases. When the static pressure on the outdoor side of the second air supply port 10 becomes lower than the static pressure on the second swirl chamber 19 side, the separated foreign matter is pulled out outdoors. As a result, the foreign matter is automatically discharged to the outside, so that the foreign matter does not continue to be stored in the second swirl chamber 19 and the maintenance for removing the stored matter can be made unnecessary.
 次に本実施の形態における特徴部分について説明する。 Next, features of the present embodiment will be described.
 図16は、図15の部分Aの拡大図である。なお、図16は、空間分割板13を、パッキン547を貼り付けたカバー2にはめ込もうとしている図である。 FIG. 16 is an enlarged view of a portion A in FIG. FIG. 16 is a view in which the space dividing plate 13 is to be fitted into the cover 2 to which the packing 547 is attached.
 空間分割板13には、固定羽根11と上部遮蔽板546、下部遮蔽板545が設けられている。これらを一体に成形すると組み立て時の扱いが容易になる。空間分割板13は、ベース板3側に外周側に張り出したフランジ部548を備えている。固定羽根11はそのフランジ部548からベース板3側に立設している。さらに、フランジ部548の外周端には、換気口フード500の天面側に向かって立設したリング状の接触リブ549が設けられている。 The space dividing plate 13 is provided with fixed blades 11, an upper shielding plate 546, and a lower shielding plate 545. If these are formed integrally, handling during assembly becomes easy. The space dividing plate 13 includes a flange portion 548 that protrudes toward the outer peripheral side on the base plate 3 side. The fixed blade 11 is erected from the flange portion 548 to the base plate 3 side. Furthermore, a ring-shaped contact rib 549 is provided at the outer peripheral end of the flange portion 548 so as to stand up toward the top surface side of the ventilation port hood 500.
 接触リブ549の外周面は、後述するパッキン547と接触する当接面550となっている。当接面550は換気口フード500の天面側に向かって径が小さくなる円錐面となっている。当接面550の傾斜方向は、円錐台形状の空間分割板13の傾斜方向と同方向である。 The outer peripheral surface of the contact rib 549 is a contact surface 550 that comes into contact with a packing 547 described later. The contact surface 550 is a conical surface whose diameter decreases toward the top surface of the vent hood 500. The inclination direction of the contact surface 550 is the same as the inclination direction of the truncated conical space dividing plate 13.
 そして、図15、図16に示すように、カバー2の内側にはパッキン547を貼り付けている。パッキン547の内径は接触リブ549の外径よりも小さくなるような厚みにしている。 15 and FIG. 16, a packing 547 is attached to the inside of the cover 2. The packing 547 has an inner diameter that is smaller than the outer diameter of the contact rib 549.
 本実施の形態の換気口フード500を組み立てる際は、カバー2内に空間分割板13を挿入し、上下のめくら板9とベース板3とを固定する構造となっている。 When assembling the vent hood 500 of the present embodiment, the space dividing plate 13 is inserted into the cover 2 and the upper and lower blind plates 9 and the base plate 3 are fixed.
 接触リブ549の先端側(換気口フード500の天面側)の外径は、貼り付けたパッキン547の内径より若干大きい程度なので(パッキン547の内径と同じか、小さくしてもよい)、空間分割板13をカバー2に固定する場合には、空間分割板13をカバー2内に嵌め易くなっている。そして、空間分割板13をさらに挿入していくと、接触リブ549が当接面550の傾斜に沿って徐々にパッキン547を押しつぶしていく。そのため、空間分割板13は、スムーズにパッキン547を押しつぶして、しっかりとカバー2との密閉を保つことができる。 Since the outer diameter of the contact rib 549 on the tip side (the top surface side of the vent hood 500) is slightly larger than the inner diameter of the attached packing 547 (it may be the same as or smaller than the inner diameter of the packing 547), the space When the dividing plate 13 is fixed to the cover 2, the space dividing plate 13 is easily fitted into the cover 2. When the space dividing plate 13 is further inserted, the contact rib 549 gradually crushes the packing 547 along the inclination of the contact surface 550. For this reason, the space dividing plate 13 can smoothly squeeze the packing 547 to keep the cover 2 firmly sealed.
 図面には記載していないが、第一給気口8から大型の虫が侵入することを防止するために、第一給気口8部分に金網などを設けてもよい。すなわち、第一給気口8を覆うように円筒状の金網を設けても良い。第一給気口8に設ける金網は、カバー2の内径とほぼ同径となっており、この金網を予めカバー2側に接続させてから、空間分割板13を挿入してもよい。この場合には、カバー2の内周側にパッキン547を貼り付けると良い。すなわち、空間分割板13側にパッキン547を貼り付けると、パッキン547はカバー2の内径よりもパッキン547の外径が大きくなる厚みにする必要がある。そして、この状態で、空間分割板13をカバー2に挿入しようとすると、外周側に膨らむように設けられたパッキン547が金網の先端に引っ掛かり、組立が非常に難しくなる。そのため、パッキン547はカバー2側に貼り付けるとよい。カバー2側にパッキン547を貼り付けていると、空間分割板13を挿入する際、当接面550は傾斜面となっているので、パッキン547を徐々に押しつぶすことができるので、組立が容易となる。 Although not shown in the drawing, a wire net or the like may be provided in the first air supply port 8 in order to prevent large insects from entering from the first air supply port 8. That is, a cylindrical wire mesh may be provided so as to cover the first air supply port 8. The wire mesh provided in the first air supply port 8 has substantially the same diameter as the inner diameter of the cover 2, and the space dividing plate 13 may be inserted after the wire mesh is connected in advance to the cover 2 side. In this case, the packing 547 may be attached to the inner peripheral side of the cover 2. That is, when the packing 547 is attached to the space dividing plate 13 side, the packing 547 needs to have a thickness that makes the outer diameter of the packing 547 larger than the inner diameter of the cover 2. In this state, if the space dividing plate 13 is to be inserted into the cover 2, the packing 547 provided so as to swell toward the outer peripheral side is caught by the tip of the wire mesh, making assembly very difficult. Therefore, the packing 547 may be attached to the cover 2 side. When the packing 547 is attached to the cover 2 side, the abutment surface 550 is an inclined surface when the space dividing plate 13 is inserted, so that the packing 547 can be gradually crushed, which facilitates assembly. Become.
 このように、第二旋回室19とカバー2の間をパッキン547によって密閉することにより、第二旋回室19と屋外との連通部分は、第二給気口10の部分のみとすることができる。すなわち、第二旋回室19内に直接流入する外気は第二給気口10からのみとすることで、貫通孔21を介して第二旋回室19から第一旋回室15に向かう流れの増加を防ぐことができる。よって、第一旋回室15から第二旋回室19への異物の移動を妨げないようにすることができるため分離性能の低下が抑制できる。また、第二給気口10から流入する外気は下部遮蔽板545と上部遮蔽板546で貫通孔21に向かう流れを抑制しているので、分離性能に影響を及ぼすほどではない。 In this way, by sealing the space between the second swirl chamber 19 and the cover 2 with the packing 547, the communication portion between the second swirl chamber 19 and the outside can be limited to the portion of the second air inlet 10. . That is, the outside air directly flowing into the second swirl chamber 19 is only from the second air supply port 10, thereby increasing the flow from the second swirl chamber 19 to the first swirl chamber 15 through the through hole 21. Can be prevented. Therefore, the movement of the foreign matter from the first swirl chamber 15 to the second swirl chamber 19 can be prevented from being hindered, so that a decrease in separation performance can be suppressed. Moreover, since the outside air flowing in from the second air supply port 10 suppresses the flow toward the through hole 21 by the lower shielding plate 545 and the upper shielding plate 546, it does not affect the separation performance.
 つまり、空間分割板13とカバー2との隙間から外気が第二旋回室19に流入することを抑えることができるため、分離性能の低下を抑制することができる。そして、パッキン547と接触する当接面550が円錐面となっていることで、組み立ての際、パッキン547を徐々に押しつぶすことができるので、組み立てが容易になるうえに、傾斜した当接面550でパッキン547をしっかりと押さえ込むので、密閉性も向上する。 That is, since it is possible to suppress the outside air from flowing into the second swirl chamber 19 from the gap between the space dividing plate 13 and the cover 2, it is possible to suppress a decrease in separation performance. Since the contact surface 550 that contacts the packing 547 is a conical surface, the packing 547 can be gradually crushed during the assembly, so that the assembly is facilitated and the inclined contact surface 550 is inclined. Since the packing 547 is pressed down firmly, the sealing performance is also improved.
 本発明に係るサイクロン分離装置は、装置をコンパクトに構成し小型化することと、意匠性を高めることを可能としながら、異物を分離し屋外へ戻すとともに、風雨の進入の防止を可能とするものであるので、建屋の換気口(給気側)に取り付ける屋外フード等として有用である。 The cyclone separation device according to the present invention is configured to reduce the size of the device and reduce the size and to improve the design, while separating the foreign matter and returning it to the outdoors, and also preventing the entry of wind and rain. Therefore, it is useful as an outdoor hood or the like attached to the ventilation opening (supply side) of the building.
 1,300,500  換気口フード
 2  カバー
 3  ベース板
 4  中心軸
 5  円筒管
 6  頂面
 7  側面部
 8  第一給気口
 9  めくら板
 10  第二給気口
 11  固定羽根
 12  上流側端部
 13  空間分割板
 14,314  円柱部材
 15  第一旋回室
 16  固定板
 17  円柱羽根
 18  円筒管端面
 19  第二旋回室
 21  貫通孔
 22  第一遮蔽部材
 23  第二遮蔽部材
 25,125,225  遮水部材
 226  切り欠き
 103,330,530  内筒管
 331,531  接続管
 332  流出口
 333,433  内筒管先端口
 334,434,534  円筒壁端部
 335  R形状部
 336  内周面
 337  溝
 338  フランジ
 339  円柱体
 340  円弧羽根
 341  外周面
 342  最大直径部
 545  下部遮蔽板
 546  上部遮蔽板
 547  パッキン
 548  フランジ部
 549  接触リブ
 550  当接面
1,300,500 Ventilation hood 2 Cover 3 Base plate 4 Center shaft 5 Cylindrical tube 6 Top surface 7 Side surface 8 First air supply port 9 Blind plate 10 Second air supply port 11 Fixed vane 12 Upstream end portion 13 Space Dividing plate 14,314 Column member 15 First swirl chamber 16 Fixed plate 17 Cylindrical blade 18 End surface of cylindrical tube 19 Second swirl chamber 21 Through hole 22 First shielding member 23 Second shielding member 25, 125, 225 Water shielding member 226 Cutting Notch 103, 330, 530 Inner tube 331, 531 Connection tube 332 Outflow port 333, 433 Inner tube end 334, 434, 534 Cylindrical wall end 335 R-shaped portion 336 Inner peripheral surface 337 Groove 338 Flange 339 Cylinder 340 Arc blade 341 Outer peripheral surface 342 Maximum diameter portion 545 Lower shielding plate 546 Upper shielding plate 547 Packing 548 flange portion 549 contacts the rib 550 abutting surface

Claims (15)

  1. 気流が側面部から流入し、底面部から流出する回転体形状を有したカバーと、
    前記カバーの中心軸を含み前記カバーの内側から前記底面部を貫通して前記カバーの内側を負圧にできるように設けられた円筒管と、
    前記円筒管の外周側と前記カバーの内周側にそれぞれ第一旋回室と第二旋回室となる空間を形成する空間分割板と、
    前記第一旋回室内において前記円筒管の端面に対向させて設けた円柱部材と、を備え
    前記カバーは、前記底面部に対向する頂面を有し、前記側面部の前記底面部側に第一給気口が設けられ、前記側面部の前記頂面側に第二給気口が設けられ、
    前記第一給気口は、前記側面部を周回するように配置された複数の固定羽根で形成された複数の開口であって、
    前記第二給気口は、前記中心軸を水平に配置した状態において、前記中心軸方向に沿って縦長であり、前記側面部の最下部に位置させることができる開口であって、
    前記空間分割板は、前記第一旋回室と前記第二旋回室とを連通する貫通孔を有し、前記貫通孔の位置は、前記中心軸周りで前記第二給気口を基点としたときに前記第一旋回室を旋回する気流の流れ方向の距離が反流れ方向の距離に比べて長くなるようにした換気口フード。
    A cover having a rotating body shape in which airflow flows in from the side surface and flows out from the bottom surface;
    A cylindrical tube that includes the central axis of the cover and that is provided so as to pass through the bottom surface from the inside of the cover and make the inside of the cover negative pressure;
    A space dividing plate for forming a space that becomes a first swirl chamber and a second swirl chamber on the outer peripheral side of the cylindrical tube and the inner peripheral side of the cover, respectively;
    A cylindrical member provided to face the end surface of the cylindrical tube in the first swirl chamber, and the cover has a top surface facing the bottom surface portion, and a first surface on the bottom surface portion side of the side surface portion. An air supply port is provided, and a second air supply port is provided on the top surface side of the side surface portion,
    The first air supply port is a plurality of openings formed by a plurality of fixed blades arranged so as to go around the side surface portion,
    The second air supply port is an opening that is vertically long along the direction of the central axis in a state where the central axis is horizontally disposed, and can be positioned at the lowermost portion of the side surface portion,
    The space dividing plate has a through hole that communicates the first swirl chamber and the second swirl chamber, and the position of the through hole is based on the second air supply port around the central axis. A vent hood in which the distance in the flow direction of the airflow swirling in the first swirl chamber is longer than the distance in the counterflow direction.
  2. 前記空間分割板は、前記中心軸方向において、前記第一給気口よりも前記頂面側に配置された円筒形状もしくは円錐台形状を成し、前記中心軸方向において前記空間分割板の内周側に前記円筒管の端面が延設されている請求項1に記載の換気口フード。 The space dividing plate has a cylindrical shape or a truncated cone shape arranged on the top surface side of the first air supply port in the central axis direction, and an inner periphery of the space dividing plate in the central axis direction. The ventilating hood according to claim 1, wherein an end surface of the cylindrical tube extends on a side.
  3. 前記第二旋回室内において、前記空間分割板上に、前記第二旋回室内の気流の流路の一部を遮るように立設した第一遮蔽部材が設けられ、
    前記第一遮蔽部材は、前記中心軸と前記第二給気口を結んだ線より前記貫通孔側に設けられ、前記中心軸側から前記空間分割板の外周側へ延設した請求項2に記載の換気口フード。
    In the second swirl chamber, a first shielding member is provided on the space dividing plate so as to stand upright so as to block a part of the flow path of the air flow in the second swirl chamber,
    The said 1st shielding member is provided in the said through-hole side from the line | wire which connected the said center axis | shaft and the said 2nd air supply port, It extended to the outer peripheral side of the said space division board from the said center axis | shaft side. Ventilation hood as described.
  4. 前記第二旋回室内において、前記空間分割板上に、前記第二旋回室内の気流の流路の一部を遮るように立設した第二遮蔽部材が設けられ、前記第二遮蔽部材は、前記第二給気口を最下部に位置させたときに、前記中心軸より上方に設けられ、前記中心軸側から前記空間分割板の外周側へ延設した請求項2または3に記載の換気口フード。 In the second swirl chamber, a second shielding member is provided on the space dividing plate so as to block a part of the flow path of the airflow in the second swirl chamber, and the second shielding member is 4. The ventilation port according to claim 2, wherein when the second air supply port is positioned at a lowermost part, the ventilation port is provided above the central axis and extends from the central axis side to the outer peripheral side of the space dividing plate. hood.
  5. 前記第二給気口を前記側面部の最下部に位置させた状態において、
    前記カバーの上部と下部において前記第一給気口の1つの開口と他の開口との間にめくら板が配置されている請求項1に記載の換気口フード。
    In the state where the second air supply port is located at the lowermost portion of the side surface portion,
    The ventilating hood according to claim 1, wherein a blind plate is disposed between one opening and the other opening of the first air supply opening at an upper part and a lower part of the cover.
  6. 前記第一旋回室内において、前記円柱部材は前記頂面側の壁面から立設し、前記壁面に前記円柱部材の外周を囲むリング形状の遮水部材が設けられた請求項1に記載の換気口フード。 2. The ventilation port according to claim 1, wherein in the first swirl chamber, the columnar member is erected from a wall surface on the top surface side, and a ring-shaped water-impervious member surrounding the outer periphery of the columnar member is provided on the wall surface. hood.
  7. 前記遮水部材は、前記遮水部材の内側から外側に水が流れ出るように前記円柱部材側の側面に傾斜を設けた請求項6記載の換気口フード。 The ventilation opening hood according to claim 6, wherein the water shielding member is provided with an inclination on a side surface on the cylindrical member side so that water flows from the inside to the outside of the water shielding member.
  8. 前記遮水部材は、前記中心軸を水平に配置した状態で最下部の位置に切り欠きを設けた請求項6または7に記載の換気口フード。 The ventilation hood according to claim 6 or 7, wherein the water shielding member is provided with a notch at a lowermost position in a state where the central axis is horizontally arranged.
  9. 前記円筒管は、前記底面部に設けられた流出口から前記第一旋回室内へ延設された内筒管を含み、前記内筒管の先端である内筒管先端口を形成する円筒壁端部は、前記第一給気口から流入した旋回気流の進行方向を前記内筒管の外側と内側で反転させる流路を有し、
    前記内筒管の前記中心軸に垂直な面における断面積は、前記中心軸方向で変化しており、
    前記断面積は、前記内筒管の全長の中間位置よりも前記円筒壁端部側で最小となるようにし、かつ、前記内筒管の最小断面積の位置から前記円筒壁端部側に向かって、徐々に大きくなるようにした請求項1に記載の換気口フード。
    The cylindrical tube includes an inner tube extending from the outlet provided in the bottom surface portion into the first swirl chamber, and a cylindrical wall end that forms an inner tube tube distal end that is a tip of the inner tube The portion has a flow path that reverses the traveling direction of the swirling airflow flowing in from the first air supply port between the outside and the inside of the inner tube,
    The cross-sectional area in a plane perpendicular to the central axis of the inner tube is changing in the central axis direction,
    The cross-sectional area is minimized on the cylindrical wall end side with respect to the intermediate position of the entire length of the inner cylindrical tube, and from the position of the minimum cross-sectional area of the inner cylindrical tube toward the cylindrical wall end side. The vent hood according to claim 1, wherein the hood is gradually enlarged.
  10. 前記円筒壁端部には、前記内筒管の外側へ向けて丸く膨らんだR形状部が設けられ、前記内筒管の内周面と外周面は、前記R形状部に沿って連続して円弧で繋がっている請求項9に記載の換気口フード。 The cylindrical wall end portion is provided with an R-shaped portion that bulges out toward the outside of the inner tube, and the inner and outer peripheral surfaces of the inner tube are continuously along the R-shaped portion. The ventilation opening hood of Claim 9 connected with the circular arc.
  11. 前記円筒壁端部には、前記内筒管の外側へ向けて丸く膨らんだR形状部が設けられ、前記内筒管の外周面で前記R形状部の表面に、全周に渡って溝が形成された請求項9に記載の換気口フード。 The cylindrical wall end portion is provided with an R-shaped portion that bulges out toward the outside of the inner cylindrical tube, and a groove is formed on the outer peripheral surface of the inner cylindrical tube on the surface of the R-shaped portion over the entire circumference. The ventilation opening hood of Claim 9 formed.
  12. 前記内筒管先端口の直径をφin、前記内筒管の最小断面積部分の直径をφmin、前記内筒管で前記流出口側端部の直径をφoutとした場合、φin>φout>φminの関係にあり、φmin=(0.75~0.85)×φinである請求項9に記載の換気口フード。 When the diameter of the front end of the inner tube is φin, the diameter of the minimum cross-sectional area of the inner tube is φmin, and the diameter of the end on the outlet side of the inner tube is φout, φin> φout> φmin The ventilating hood according to claim 9, which is related and φmin = (0.75 to 0.85) × φin.
  13. 気流が側面部から流入し、底面部から流出する回転体形状を有したカバーと、
    前記底面部を塞ぎ、中央部に前記気流の流出口である開口が設けられたベース板と、
    前記カバー内を内周側の第一旋回室と、外周側の第二旋回室とに分割する空間分割板と、
    前記ベース板を貫通し、前記第一旋回室と外部とを連通して設けられる円筒管と、を備え、
    前記カバーは、前記底面部に対向する頂面を有し、前記側面部の底面部側に前記第一旋回室に旋回気流を発生させることができる構造を有する第一給気口が設けられ、
    前記側面部の前記頂面側に前記第二旋回室と外部とを連通する第二給気口が設けられ、
    前記第一給気口は、前記カバーの前記底面部側と連接しており、
    前記円筒管は、前記ベース板から前記第一旋回室内へ延設され、前記第一旋回室側に空気が流入する内筒管先端口と、前記底面部側に前記空気が流出する流出口を有し、
    前記空間分割板は、前記第一旋回室と前記第二旋回室とを連通させる貫通孔と、前記底面部側の外周部にリング状の当接面を有し、
    前記当接面は、前記頂面側に向かって径が小さくなる円錐面とし、前記当接面と前記カバーの内周面とがパッキンを介して密着した換気口フード。
    A cover having a rotating body shape in which airflow flows in from the side surface and flows out from the bottom surface;
    A base plate that closes the bottom surface and is provided with an opening that is an outlet of the airflow at the center;
    A space dividing plate for dividing the inside of the cover into a first swirl chamber on the inner peripheral side and a second swirl chamber on the outer peripheral side;
    A cylindrical tube penetrating the base plate and provided to communicate with the first swirl chamber and the outside,
    The cover has a top surface facing the bottom surface portion, and a first air supply port having a structure capable of generating a swirling airflow in the first swirl chamber is provided on the bottom surface portion side of the side surface portion,
    A second air supply port that communicates the second swirl chamber and the outside is provided on the top surface side of the side surface portion;
    The first air supply port is connected to the bottom surface side of the cover,
    The cylindrical tube extends from the base plate into the first swirl chamber, and has a front end opening of the inner tube that allows air to flow into the first swirl chamber side, and an outlet through which the air flows out to the bottom surface side. Have
    The space dividing plate has a through hole for communicating the first swirl chamber and the second swirl chamber, and a ring-shaped contact surface on an outer peripheral portion on the bottom surface portion side,
    The contact surface is a conical surface whose diameter decreases toward the top surface, and the contact surface and the inner peripheral surface of the cover are in close contact with each other through packing.
  14. 前記パッキンは、前記カバーの内側面に貼り付けられ、
    前記空間分割板の前記底面部側には、外周側に張り出したフランジ部が設けられ、
    前記第一給気口には、複数の固定羽根が前記フランジ部の前記底面部側に立設され、前記固定羽根は前記空間分割板と一体構成とし、
    前記フランジ部の外周端には、前記頂面側へ突出する接触リブが設けられ、前記接触リブの外周面を前記当接面とした請求項13に記載の換気口フード。
    The packing is affixed to the inner surface of the cover,
    On the bottom surface portion side of the space dividing plate, a flange portion protruding to the outer peripheral side is provided,
    In the first air supply port, a plurality of fixed blades are erected on the bottom surface portion side of the flange portion, and the fixed blades are integrated with the space dividing plate,
    The ventilation port hood according to claim 13, wherein a contact rib projecting toward the top surface is provided at an outer peripheral end of the flange portion, and the outer peripheral surface of the contact rib is the contact surface.
  15. 前記空間分割板は、前記当接面と同じ傾斜方向となるように、前記頂面側に向かって径が小さくなる円錐台形状とした請求項14に記載の換気口フード。 The ventilating hood according to claim 14, wherein the space dividing plate has a truncated cone shape whose diameter decreases toward the top surface side so as to be in the same inclination direction as the contact surface.
PCT/JP2018/003370 2017-02-06 2018-02-01 Ventilation port hood WO2018143326A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017019179A JP6814933B2 (en) 2017-02-06 2017-02-06 Ventilation port hood
JP2017-019179 2017-02-06
JP2017078619A JP6906135B2 (en) 2017-04-12 2017-04-12 Cyclone separator
JP2017-078619 2017-04-12
JP2017-146163 2017-07-28
JP2017146163A JP6906139B2 (en) 2017-07-28 2017-07-28 Ventilation port hood

Publications (1)

Publication Number Publication Date
WO2018143326A1 true WO2018143326A1 (en) 2018-08-09

Family

ID=63040613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003370 WO2018143326A1 (en) 2017-02-06 2018-02-01 Ventilation port hood

Country Status (1)

Country Link
WO (1) WO2018143326A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351484B2 (en) 2019-12-23 2023-09-27 国立大学法人神戸大学 dust removal duct

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969096A (en) * 1974-10-16 1976-07-13 E. I. Du Pont De Nemours And Company Cyclone separator having multiple-vaned gas inlets
JP2016217613A (en) * 2015-05-20 2016-12-22 日本化学産業株式会社 Ventilation hood
JP2016539801A (en) * 2013-11-11 2016-12-22 アンドーヴァー プロテクション システムズ、エルエルシー Centripetal separation system for purifying air or gas filled with particulates
JP2018034146A (en) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 Cyclone separator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969096A (en) * 1974-10-16 1976-07-13 E. I. Du Pont De Nemours And Company Cyclone separator having multiple-vaned gas inlets
JP2016539801A (en) * 2013-11-11 2016-12-22 アンドーヴァー プロテクション システムズ、エルエルシー Centripetal separation system for purifying air or gas filled with particulates
JP2016217613A (en) * 2015-05-20 2016-12-22 日本化学産業株式会社 Ventilation hood
JP2018034146A (en) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 Cyclone separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351484B2 (en) 2019-12-23 2023-09-27 国立大学法人神戸大学 dust removal duct

Similar Documents

Publication Publication Date Title
WO2018061513A1 (en) Cyclone separation device
JP6387535B2 (en) Cyclone separator
KR101625828B1 (en) Vantilator module with swilrer fan
JP6906150B2 (en) Cyclone separator
JPS5953955B2 (en) Pulp sieving equipment
JP6721362B2 (en) Cyclone separator and air supply hood for house ventilation
JP2019098318A5 (en)
JP2023052954A (en) Cyclone separation device
KR20160069500A (en) Vantilator module with swilrer fan
WO2018143326A1 (en) Ventilation port hood
JP6499009B2 (en) Ventilation hood
JP6814933B2 (en) Ventilation port hood
JP2021016386A (en) Insect trapping device
JP2018128145A5 (en)
JP5109847B2 (en) Dust collector
JP6906139B2 (en) Ventilation port hood
JP5503212B2 (en) Socket member and piping structure using it
JP6928794B2 (en) Cyclone separator
WO2020213242A1 (en) Cyclone separation device
CN112128916A (en) Outdoor rain-proof cap for fresh air system and fresh air pipeline applying rain-proof cap
WO2019111773A1 (en) Cyclone separation device
JP2021164924A (en) Cyclone separator
JP6906135B2 (en) Cyclone separator
CN214249967U (en) Outdoor rain-proof cap for fresh air system and fresh air pipeline applying rain-proof cap
CN111296377B (en) Air curtain closed type mosquito isolator and working method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748522

Country of ref document: EP

Kind code of ref document: A1