WO2018143294A1 - Energy conversion film and energy conversion element using same - Google Patents

Energy conversion film and energy conversion element using same Download PDF

Info

Publication number
WO2018143294A1
WO2018143294A1 PCT/JP2018/003271 JP2018003271W WO2018143294A1 WO 2018143294 A1 WO2018143294 A1 WO 2018143294A1 JP 2018003271 W JP2018003271 W JP 2018003271W WO 2018143294 A1 WO2018143294 A1 WO 2018143294A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
energy conversion
film
resin
conversion element
Prior art date
Application number
PCT/JP2018/003271
Other languages
French (fr)
Japanese (ja)
Inventor
小池 弘
祐太郎 菅俣
誠一郎 飯田
Original Assignee
株式会社ユポ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユポ・コーポレーション filed Critical 株式会社ユポ・コーポレーション
Priority to CA3051662A priority Critical patent/CA3051662A1/en
Priority to EP18747414.3A priority patent/EP3579258A4/en
Priority to JP2018565619A priority patent/JP6771591B2/en
Priority to CN201880008235.1A priority patent/CN110214358B/en
Priority to US16/481,983 priority patent/US11515810B2/en
Publication of WO2018143294A1 publication Critical patent/WO2018143294A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/02Electrets, i.e. having a permanently-polarised dielectric
    • H01G7/028Electrets, i.e. having a permanently-polarised dielectric having a heterogeneous dielectric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/02Electrets, i.e. having a permanently-polarised dielectric
    • H01G7/021Electrets, i.e. having a permanently-polarised dielectric having an organic dielectric
    • H01G7/023Electrets, i.e. having a permanently-polarised dielectric having an organic dielectric of macromolecular compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/02Electrets, i.e. having a permanently-polarised dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/02Electrets, i.e. having a permanently-polarised dielectric
    • H01G7/021Electrets, i.e. having a permanently-polarised dielectric having an organic dielectric

Definitions

  • the present invention is an electrical-mechanical energy conversion that converts mechanical energy such as vibration and pressure changes into electrical energy, an electrical-thermal energy conversion that converts thermal energy such as infrared rays and temperature changes into electrical energy, and mechanical energy into thermal energy.
  • the present invention relates to an energy conversion film that can be used for mechanical-thermal energy conversion and the like, and an energy conversion element using the same.
  • the energy conversion film of the present invention is an electret having excellent heat resistance and excellent electro-mechanical energy conversion performance.
  • An electret is a polymer material that forms an electric field to the outside (which exerts an electric force) by semipermanently holding the electric polarization inside even when there is no electric field outside, and is inherently difficult to conduct electricity.
  • it is a material in which a part of the material is semipermanently polarized (macroscopically charged, holding electric charges) by thermally or electrically treating inorganic materials or the like.
  • electrets made of a polymer material are used in various forms such as a film, a sheet, a fiber, a woven fabric, and a non-woven fabric, depending on the use mode.
  • electret filters formed by molding electrets made of polymer materials have been widely used in applications such as air filters that efficiently adsorb minute dust, allergens, and the like by an electric field.
  • electrets made of polymer materials are widely used in various applications as materials for electro-mechanical energy conversion such as speakers, headphones, microphones, ultrasonic sensors, pressure sensors, acceleration sensors, vibration control devices, and the like.
  • a porous resin film is known to exhibit a piezoelectric effect, and can be used for sound detection, sound generation, vibration measurement, vibration control, and the like.
  • a foamed film is proposed in which a foamable thermoplastic resin is extruded into a film and foamed at the same time to obtain a porous film having a large number of internal pores, and then the film is stretched two-dimensionally. (Patent Document 1).
  • Patent Document 1 discloses a method in which heat treatment is performed at the stage where the foamed film is expanded, and the shape is fixed by promoting crystallization of the thermoplastic resin.
  • the heat treatment is performed at a temperature higher than the phase transition temperature or glass transition temperature of the thermoplastic resin, the gas permeability of the thermoplastic resin is increased, so that the gas easily escapes from the internal pores of the foamed film.
  • the piezoelectric performance deteriorates.
  • thermoplastic resin and an inorganic fine powder or organic filler having a specific volume average particle size as a piezoelectric material having high energy conversion performance, and a film for energy conversion having a certain pore size.
  • Patent Document 4 there is an electret sheet in which a positively chargeable charge control agent such as a specific azine derivative or a quaternary ammonium salt compound and a negatively chargeable charge control agent such as a specific salicylic acid derivative metal salt or an azochrome compound are used in combination.
  • a positively chargeable charge control agent such as a specific azine derivative or a quaternary ammonium salt compound
  • a negatively chargeable charge control agent such as a specific salicylic acid derivative metal salt or an azochrome compound
  • Patent Document 4 The present inventors studied application of the technology of Patent Document 4 to an energy conversion film and an energy conversion element.
  • the charge control agent described in Patent Document 4 has insufficient heat resistance, and the energy conversion film and the energy conversion element using this charge control agent still have insufficient piezoelectric performance in a high temperature environment. It has been found. Therefore, in order to enhance the piezoelectric performance in a high temperature environment, there is a demand for an additive used for an energy conversion film that enhances charging properties and has heat resistance.
  • An object of the present invention is to provide an energy conversion film, an energy conversion element using the same, and the like that are excellent in charge retention performance and suppressed in deterioration of piezoelectric performance even when exposed to a high temperature environment.
  • the present invention is not limited to the purpose described here, and is an operational effect derived from each configuration shown in the embodiment for carrying out the invention described later, and can also exhibit an operational effect that cannot be obtained by the conventional technology. It can be positioned as another purpose.
  • the inventors of the present invention have excellent charge retention performance even when a specific energy conversion film is exposed to a high temperature environment. As a result, the inventors have found that the decrease in the thickness is suppressed, and have completed the present invention.
  • An energy conversion film including at least a charged resin film made of a resin film containing at least a thermoplastic resin and a metal soap, and an electrode provided on at least one surface of the energy conversion film, Energy conversion element.
  • the energy conversion element was left standing on a horizontal surface at a temperature of 23 ° C. and a relative humidity of 50%, and a diameter of 9.5 mm from a height of 8 mm in the vertical direction.
  • the energy conversion element according to any one of [1] to [8], wherein a maximum voltage generated by an impact when a 3.5 g iron ball is naturally dropped is 5 mV or more .
  • An energy conversion film comprising at least a charged resin film made of a resin film containing at least a thermoplastic resin and a metal soap.
  • the energy conversion film further includes at least one of the technical features of [2] to [9].
  • the energy conversion film of the present invention and the energy conversion element using the same have a metal soap in the film, so that the charge retention performance is enhanced, and the piezoelectric performance is hardly degraded even when exposed to a high temperature environment. Therefore, speakers, headphones, ultrasonic transducers, ultrasonic motors, vibration control devices, microphones, ultrasonic sensors, pressure sensors, acceleration sensors, strain sensors, fatigue / It is particularly useful as a module member used in crack sensors, medical sensors, measuring instruments, control devices, abnormality diagnosis systems, security devices, stabilizers, robots, percussion instruments, game machines, power generation devices and the like.
  • the energy conversion film of the present invention includes at least a charged resin film made of a resin film containing at least a thermoplastic resin and a metal soap.
  • the charged resin film is one in which electric charge is injected into the resin film. That is, the energy conversion film and the charged resin film in the present invention are the “charged” resin film, in which charges are intentionally injected into the resin film, and a larger amount than the resin film. Charged.
  • the energy conversion element of this invention provides the electrode in the at least one surface of this energy conversion film.
  • the energy conversion film 1 includes a charged resin film in which charges are injected into a resin film 2 (core layer) containing at least a thermoplastic resin and metal soap, and skin layers 3 and 4 are provided on both front and back surfaces of the resin film 2 as necessary. (Resin film containing at least a thermoplastic resin) is provided.
  • the energy conversion element 5 is configured by providing electrodes 6 and 7 on at least one surface of the energy conversion film 1.
  • the energy conversion film (charged resin film) of the present invention can be obtained by injecting a charge into a resin film containing a thermoplastic resin and metal soap and charging it.
  • the resin film into which charges are injected is preferably a porous resin film having a large number of pores (hereinafter also referred to as “internal pores”).
  • the one before electretization treatment (uncharged) described later in this specification is referred to as “resin film” or “porous resin film”, and after electretization treatment.
  • the one (charged one) is referred to as “energy conversion film”, “charged resin film” or “charged porous resin film”.
  • the electro-mechanical energy conversion performance includes not only the ability to convert mechanical energy (kinetic energy) into electrical energy, but also the ability to convert electrical energy into mechanical energy (kinetic energy). Including.
  • the resin film is obtained by molding a resin composition containing at least a thermoplastic resin described later and a metal soap described later into a thin film by a molding method described later.
  • the resin film is preferably a porous resin film having a large number of pores inside.
  • a resin film is a multilayer resin film (laminated resin film) containing a core layer and a skin layer.
  • the surface of the resin film may be subjected to a surface treatment described later, and an anchor coat layer is provided on the surface of the resin film. May be.
  • the energy conversion element having an anchor coat layer has a laminated structure of energy conversion film / anchor coat layer / electrode.
  • the porous resin film contains at least a thermoplastic resin and a metal soap, preferably a resin composition further containing a pore-forming nucleating agent, which will be described later, and is formed into a thin film by a molding method described later. A hole is formed.
  • the porous resin film is preferably a multilayer resin film having a core layer and a skin layer, and has a skin layer made of a stretched resin film on at least one side of a core layer made of a stretched resin film having pores therein.
  • a multilayer resin film is more preferable, and a multilayer resin film having skin layers made of a stretched resin film on both surfaces of a core layer made of a stretched resin film having pores therein is more preferred.
  • the porous resin film has a non-reactive gas infiltrated into the resin film under pressure, then opened under non-pressurization to cause gas foaming to moderate the porosity, and then under non-pressure. Heat treatment may be performed to fix the pores.
  • the porous resin film includes a stretched resin film having pores therein as in the core layer
  • the stretched resin film contains at least a thermoplastic resin, a metal soap, and a pore-forming nucleating agent. Is preferably formed by stretching pores under a temperature condition equal to or lower than the melting point of the thermoplastic resin.
  • pores having a shape suitable for accumulating electric charges inside and a shape that provides high compression recovery to the porous resin film can be formed.
  • the shape and size of the pores of the porous resin film may be appropriately set according to the required performance and the like, and are not particularly limited.
  • the energy conversion film it is considered that different charges are held in pairs on the inner surfaces of the individual pores inside the porous resin film, like a capacitor.
  • the pores of the porous resin film require a certain area and height as in the case of the single plate capacitor in order to accumulate electric charges therein. If there is no area above a certain level, sufficient electrostatic capacity cannot be obtained, and it is difficult to obtain an electret with excellent performance. Further, if there is no height (distance) above a certain level, discharge (short circuit) occurs inside the hole, and it is difficult to accumulate charges.
  • the porous resin film preferably has a specific amount of pores of a specific size (effective for charge accumulation) from the viewpoint of stably storing more charges.
  • a specific amount of pores of a specific size effective for charge accumulation
  • the porous resin film preferably has a specific amount of pores of a specific size (effective for charge accumulation) from the viewpoint of stably storing more charges.
  • / Mm 2 or more preferably 150 pieces / mm 2 or more, more preferably 200 pieces / mm 2 or more, and particularly preferably 300 pieces / mm 2 or more.
  • holes having a height of 3 to 30 ⁇ m in the thickness direction of the film and a diameter of 50 to 500 ⁇ m in the surface direction of the film are provided.
  • the porous resin film is obtained by, for example, melting and kneading a resin composition containing a pore-forming nucleating agent in a thermoplastic resin, which is a polymer material having excellent insulating properties, to form a sheet, and then heating the resin composition.
  • a resin composition containing a pore-forming nucleating agent in a thermoplastic resin which is a polymer material having excellent insulating properties
  • thermoplastic resin which is a polymer material having excellent insulating properties
  • the porosity of such a porous resin film may be appropriately set according to required performance and the like, and is not particularly limited, but is preferably 20 to 80%. Such a porosity is correlated with the number of effective holes.
  • the porosity of a porous resin film means the ratio (volume ratio) of the volume which the void
  • the porosity of the porous resin film is equal to the ratio (area ratio) of the area occupied by the pores to the cross section of the same material on the assumption that the pores are uniformly distributed throughout the same material.
  • the porosity of the porous resin film is determined by observing the cross-section of the same material with a scanning electron microscope, capturing the observation image in an image analysis device, and analyzing the image of the observation area to determine the area ratio of the pores on the cross-section. It can be obtained as a value obtained by calculation.
  • a sample for cross-sectional observation is created so that the pores are not crushed by a technique such as a gallium focused ion beam from a porous resin film or an energy conversion film, and a scanning electron microscope (manufactured by JEOL Ltd., Using a product name: JSM-6490) or the like, cross-sectional observation of the sample obtained at an appropriate magnification (for example, 2000 times) is performed, and the observation area of the obtained cross-sectional photograph is image analysis apparatus (manufactured by Nireco Corporation) , Trade name: LUZEX AP) or the like can be used to calculate the ratio (area ratio) of the area occupied by the vacancies in the sample cross section, and this can be used as the vacancy ratio.
  • a technique such as a gallium focused ion beam from a porous resin film or an energy conversion film
  • a scanning electron microscope manufactured by JEOL Ltd., Using a product name: JSM-6490
  • image analysis apparatus manufactured by Nireco Corporation
  • the porosity of the porous resin film is calculated based on the following formula 1. Can also be calculated.
  • the porosity of the porous resin film is preferably 20% or more, 25 % Or more, more preferably 30% or more, and particularly preferably 35% or more.
  • the porosity of the porous resin film is preferably 80% or less, more preferably 70% or less, further preferably 60% or less, and particularly preferably 55% or less.
  • the resin film or the porous resin film may be generally referred to as “resin film”.
  • the thickness of the porous resin film is preferably in the same range as the thickness of the resin film.
  • the porous resin film constituting the energy conversion film preferably contains a pore-forming nucleating agent in addition to the thermoplastic resin and the metal soap.
  • the thermoplastic resin is 50 to 98 mass% and the metal soap is 0.02 mass.
  • % To 20% by mass, preferably 1.98 to 49.98% by mass of a pore-forming nucleating agent, 60 to 97% by mass of a thermoplastic resin, 0.03% to 10% by mass of a metal soap, More preferably, it contains 2.97 to 39.97% by mass of a pore-forming nucleating agent, 65 to 96% by mass of a thermoplastic resin, 0.05% to 5% by mass of a metal soap, and a pore-forming nucleating agent. Is more preferably 3.95 to 34.95% by mass, thermoplastic resin is 70 to 85% by mass, metal soap is 0.1% by mass to 3% by mass, and pore-forming nucleating agent is 14.9 to Most preferably, it contains 29.9% by weight.
  • the single layer porous resin film includes other components described later in addition to the three components of the thermoplastic resin, the metal soap, and the pore-forming nucleating agent, the total content of the three components is less than 100%. It may be.
  • an energy conversion film is provided with the laminated structure which has a core layer, a skin layer, etc. so that it may mention later, on the basis of the total mass of the laminated structure (it may be called "laminated film reference
  • thermoplastic resin is 65 to 96% by mass, More preferably, it contains 0.05% to 5% by weight of metal soap, 3.95 to 34.95% by weight of a pore-forming nucleating agent, 70 to 85% by weight of thermoplastic resin, and 0.8% of metal soap.
  • pore formation Agent most preferably contains 14.9 to 29.9 wt%.
  • the laminated film includes other materials described later in addition to the three components of the thermoplastic resin, the metal soap, and the pore forming nucleating agent, the total content of the three components may be less than 100%.
  • thermoplastic resin used for the resin film is a matrix resin that forms the resin film itself, and imparts a piezoelectric effect and restorability to the energy conversion film.
  • the thermoplastic resin suitable for use as an energy conversion film is preferably an insulating polymer material that is difficult to conduct electricity.
  • polyolefin resins such as high-density polyethylene, medium-density polyethylene, low-density polyethylene-containing ethylene resins, propylene resins, polymethyl-1-pentene, and cyclic polyolefins; ethylene / vinyl acetate copolymers, ethylene / acrylic acid copolymers Polymers, functional group-containing polyolefin resins such as maleic acid-modified polyethylene and maleic acid-modified polypropylene; polyamide resins such as nylon-6 and nylon-6,6; polyethylene terephthalate and copolymers thereof, polybutylene terephthalate, polybutylene Polyester resins such as succinate and polylactic acid; polycarbonate, atactic polystyrene, syndiotactic polystyrene and the like are exemplified, but not limited thereto.
  • thermoplastic resins polyolefin resins and functional group-containing polyolefin resins having low hygroscopicity and high insulation properties are preferably used, and polyolefin resins are more preferably used.
  • a thermoplastic resin can be used individually by 1 type or in combination of 2 or more types.
  • polyolefin resins examples include olefins such as ethylene, propylene, butene, pentene, hexene, octene, butylene, butadiene, isoprene, chloroprene, methylpentene, cyclobutenes, cyclopentenes, cyclohexenes, norbornenes, and tricyclo-3-decenes. Homopolymers of these types, and copolymers composed of two or more types of these olefins, but are not particularly limited thereto.
  • polyolefin resins include high density polyethylene, medium density polyethylene, propylene resins, copolymers of ethylene and other olefins, copolymers of propylene and other olefins, and the like. However, it is not particularly limited to these.
  • ethylene resins and propylene resins are preferable, isotactic or syndiotactic and propylene homopolymers having various degrees of stereoregularity, or propylene as a main component, and ethylene and Propylene resin containing a propylene copolymer copolymerized with ⁇ -olefin such as 1-butene, 1-hexene, 1-heptene, 4-methyl-1-pentene, etc. is non-hygroscopic and insulating.
  • ⁇ -olefin such as 1-butene, 1-hexene, 1-heptene, 4-methyl-1-pentene, etc.
  • the propylene copolymer may be a binary system or a ternary or higher multi-element system, and may be a random copolymer or a block copolymer.
  • the functional group-containing polyolefin resin include a copolymer with a functional group-containing monomer copolymerizable with the olefins.
  • functional group-containing monomers include styrenes such as styrene and ⁇ -methylstyrene; vinyl acetate, vinyl alcohol, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl caproate, vinyl laurate, vinyl stearate, vinyl benzoate.
  • Carboxylic acid vinyl esters such as vinyl butylbenzoate and vinyl cyclohexanecarboxylate; (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl ( (Meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) Acrylic esters such as acrylate, (meth) acrylamide, N-metalol (meth) acrylamide; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, cyclopentyl vinyl vinyl est
  • polyolefin-based resins and functional group-containing polyolefin-based resins that are graft-modified as necessary.
  • a known technique can be used for graft modification, and specific examples include graft modification with an unsaturated carboxylic acid or a derivative thereof.
  • the unsaturated carboxylic acid include (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid and the like.
  • an acid anhydride, ester, amide, imide, metal salt or the like can be used as the derivative of the unsaturated carboxylic acid.
  • the graft monomer is generally graft modified by adding 0.005 to 10% by mass, preferably 0.01 to 5% by mass, based on at least one of the polyolefin resin and the functional group-containing polyolefin resin. Things.
  • thermoplastic resin suitable for use in the porous resin film one of the above thermoplastic resins may be selected and used alone, or two or more may be selected and used in combination. May be.
  • the content (content rate) of the thermoplastic resin in the resin film is not particularly limited.
  • a sufficient pore interface is formed in the film as a matrix resin of the porous resin film, and communication between the pores is suppressed.
  • the thermoplastic resin is preferably contained in an amount of 50% by mass or more, more preferably 60% by mass or more, further preferably 65% by mass or more, and more preferably 70% by mass based on the total mass of the resin film. It is particularly preferable to include the above.
  • Metal soap Conventionally, when the resin film contains metal soap, it has been considered that the resin film has a higher dielectric constant and lowers charge retention performance and lowers heat resistance as compared with the case of containing a charge control agent. However, as a result of studies by the present inventors, it has been found that when metal soap is included, it has the same level of chargeability as a charge control agent and is excellent in heat resistance. In other words, the resin film contains metal soap, so that the charge retention performance of the resin film is enhanced, and the energy conversion film obtained by electretizing it has its piezoelectric performance even when stored and used in a high temperature environment. Becomes difficult to decrease.
  • the melting point of the metal soap is preferably in the range of 50 ° C. or more and 50 ° C. or more higher than the melting point of the thermoplastic resin, and 70 ° C. or more and 40 ° C. or less higher than the melting point of the thermoplastic resin. It is more preferable to be within the range, and it is further preferable to be within a range of 100 ° C.
  • thermoplastic resin a polypropylene resin (melting point: 160 to 170 ° C.)
  • a metal soap having a melting point of 50 ° C. to 220 ° C. it is preferable to use a metal soap having a melting point of 50 ° C. to 220 ° C., and a metal soap having a melting point of 70 ° C. to 210 ° C. It is more preferable to use a metal soap having a melting point of 100 ° C. to 200 ° C.
  • the metal soap Since the metal soap has a melting point within the above-mentioned preferred temperature range, it is melted and uniformly dispersed in the thermoplastic resin during the production of the resin film, and the dispersion state is maintained in the thermoplastic resin after the resin film is formed. It solidifies as it is and is difficult to flow. At the time of electret treatment, it is presumed that the metal soap is oriented by the dipoles in the molecule, and the charge retention performance of the energy conversion film is enhanced by the orientation of the metal soap.
  • the metal soap is preferably a metal salt of a fatty acid, and more preferably a metal salt of a higher fatty acid.
  • fatty acid saturated fatty acid and unsaturated fatty acid having 5 to 30 carbon atoms, preferably 6 to 28 carbon atoms, more preferably 8 to 24 carbon atoms, and further preferably 10 to 20 carbon atoms, and These structural isomers are mentioned. In addition, these carbon numbers show the quantity per molecule of fatty acid.
  • saturated fatty acids include pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, and 12-hydroxyoctadecane Examples include acid, icosanoic acid, docosanoic acid, tetracosanoic acid, hexacosanoic acid, and octacosanoic acid, but are not particularly limited thereto.
  • unsaturated fatty acids include trans-2-butenoic acid, 9-tetradecenoic acid, 9-hexadecenoic acid, cis-6-hexadecenoic acid, cis-9-octadecenoic acid, trans-9-octadecenoic acid, cis -9-icosenoic acid, cis-13-docosenoic acid, cis-15-tetracosenoic acid, cis, cis-9,12-octadecadienoic acid, 9,11,13-octadecatrienoic acid, cis, cis, cis- 9,12,15-octadecatrienoic acid, cis, cis, cis-8,11,14-icosatrienoic acid, 6,9,12,15-octadecatetraenoic acid, 5,8,10,12,14- Examples thereof include octadecapentaeno
  • the saturated fatty acid metal salt tends to have a high melting point, and it is easy to obtain an energy conversion film with improved heat resistance. Therefore, it is preferable to use a saturated fatty acid.
  • the metal element of the metal soap is not particularly limited as long as it is a metal that forms a stable salt with a fatty acid. However, from the viewpoint of the melting point and charge retention performance of the obtained metal soap, it is usually monovalent, divalent, or trivalent. It is preferable to use at least one metal element belonging to Group 1 to Group 13 of the Periodic Table (old group number belonging to Group IA to Group IIIB), which is a divalent or trivalent metal. It is more preferable to use at least one metal element belonging to Group 2 to Group 13 of the periodic table (old group number belonging to Group IIA to Group IIIB). It is more preferable to use at least one metal element of Group 13 (old group number IIA, IIB and IIIB).
  • at least one of calcium, zinc and aluminum it is particularly preferable to use at least one of calcium, zinc and aluminum, and from the viewpoint of further improving the charge retention performance, it is particularly preferable to use calcium or aluminum.
  • aluminum is used.
  • the metal soap may be a basic salt.
  • the metal soap most preferably used in the energy conversion film of the present invention is a saturated higher fatty acid aluminum salt.
  • the saturated higher fatty acid aluminum salt include dihydroxyaluminum octadecanoate, hydroxyaluminum dioctadecanoate, aluminum trioctadecanoate, dihydroxyaluminum dodecanoate, hydroxyaluminum dododecanoate, aluminum tridodecanoate, and dihydroxyaluminum 2-ethylhexanoate.
  • Hydroxy aluminum di-2-ethylhexanoate, aluminum tri-2-ethylhexanoate and the like are not particularly limited thereto.
  • the metal soaps as described above are generally used as various additives (for example, stabilizers, lubricants, filler dispersants, anti-spot agents, fluidity improvers, nucleating agents, or antiblocking agents) in the plastics industry.
  • the metal soap in the energy conversion film of the present invention is added to increase the chargeability of the film, and is added as a functional agent that suppresses the deterioration of the piezoelectric performance of the conventional energy conversion film in a high temperature environment. To do. Therefore, in the present invention that suppresses the deterioration of the piezoelectric performance of the energy conversion element, the amount is relatively larger than the blending amount (for example, 0.01% by mass) when used as the above-described conventional general various additives. It is preferable to add a metal soap.
  • the content of the metal soap in the resin film is based on 100% by mass of the composition comprising the thermoplastic resin and the metal soap constituting the single-layer resin film (hereinafter referred to as “composition standard” of the single-layer resin film and From the viewpoint of charge retention ability, it is preferably 0.02% by mass or more, more preferably 0.03% by mass or more, further preferably 0.05% by mass or more.
  • composition standard of the single-layer resin film and From the viewpoint of charge retention ability, it is preferably 0.02% by mass or more, more preferably 0.03% by mass or more, further preferably 0.05% by mass or more.
  • the content is particularly preferably 1% by mass or more, and most preferably 0.2% by mass or more.
  • the metal soap has a peak effect even if added excessively with respect to 100% by mass of the composition comprising the thermoplastic resin and the metal soap constituting the single-layer resin film, and adverse effects such as bleed out are increased.
  • 20% by mass or less preferably 10% by mass with respect to 100% by mass of the composition comprising the thermoplastic resin and the metal soap (hereinafter, sometimes referred to as “composition standard” of the single-layer resin film).
  • composition standard of the single-layer resin film.
  • % More preferably 5% by mass or less, still more preferably 3% by mass or less, and most preferably 0.7% by mass or less.
  • the pore-forming nucleating agent used for the porous resin film is added to form pores in the film using this as a nucleus.
  • the pore-forming nucleating agent suitable for use in the porous resin film include inorganic fine powders and organic fillers.
  • the content of the pore-forming nucleating agent may include 2% by mass or more based on the total amount of the resin film from the viewpoint of forming sufficient pores in the resin film.
  • 4% by mass or more is included, more preferably 10% by mass or more, still more preferably 14% by mass or more.
  • the content is preferably 50% by mass or less, more preferably 40% by mass or less, and more preferably 30% by mass or less, based on the total amount of the resin film. More preferably, it is particularly preferably 25% by mass or less.
  • an inorganic fine powder alone, an organic filler alone, or a combination of an inorganic fine powder and an organic filler can be used with the above content.
  • Each content ratio in the case of using combining inorganic fine powder and an organic filler is not specifically limited. For example, those containing 10 to 99% by mass of the inorganic fine powder, 20 to 90% by mass, or 30 to 80% by mass of the inorganic fine powder can be used with respect to the total amount of the pore-forming nucleating agent. Can be used.
  • the content rate of the vacancy-forming nucleating agent is as described above, but if the content rate of the vacancy-forming nucleating agent is equal to or higher than the lower limit of the above preferred range, a sufficient number of charges are accumulated in the stretching step described later. Therefore, it is easy to obtain holes having a size suitable for the purpose, and it is easy to obtain desired piezoelectric performance.
  • the content of the pore-forming nucleating agent is less than or equal to the upper limit of the above preferred range, a decrease in film strength due to excessive pore formation is likely to be suppressed, and repeated compressive force is applied to the obtained electret material. However, it can be expected that sufficient compression recovery properties are easily exhibited and that the piezoelectric performance is stabilized.
  • inorganic fine powder Among the pore-forming nucleating agents, inorganic fine powders are low in cost, and many products with different particle sizes are commercially available. Specific examples of usable inorganic fine powder include calcium carbonate, calcined clay, silica, diatomaceous earth, white clay, talc, titanium oxide, barium sulfate, alumina, zeolite, mica, sericite, bentonite, sepiolite, vermiculite, dolomite. , Wollastonite, glass fiber and the like, but are not particularly limited thereto. An inorganic fine powder can be used individually by 1 type or in combination of 2 or more types.
  • the volume average particle diameter of the inorganic fine powder should be selected appropriately in consideration of forming pores of a size suitable for accumulating charges.
  • the volume average particle size of the inorganic fine powder is preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, and more preferably 5 ⁇ m or more. More preferably it is.
  • the formation of coarse pores prevents adjacent pores from communicating with each other to short-circuit the charge, making it difficult for the charge to accumulate, and suppressing the decrease in film strength due to the pores being too large.
  • the volume average particle size of the inorganic fine powder may be 30 ⁇ m or less from the standpoint that sufficient compression recovery can be achieved even when repeated compressive force is applied and the piezoelectric performance can be expected to be stable. Preferably, it is 20 ⁇ m or less, and more preferably 15 ⁇ m or less.
  • the organic filler is available as spherical particles having a uniform particle diameter, and the pores formed in the porous resin film can be easily obtained in a uniform size and shape. .
  • the organic filler can function as a support in the pores even after the formation of the pores, the pores are not easily crushed, and the obtained electret exhibits sufficient compression recovery properties even when repeated compression force is applied.
  • it can be expected that the piezoelectric performance is stabilized (pillar effect).
  • the organic filler it is preferable to select resin particles of a different type from the thermoplastic resin that is the main component of the porous resin film.
  • the thermoplastic resin is a polyolefin resin
  • preferred organic fillers include those that are incompatible with polyolefin and do not have fluidity during kneading and stretching of the polyolefin resin. More specific examples include, but are not limited to, a crosslinked acrylic resin, a crosslinked methacrylic resin, a crosslinked styrene resin, and a crosslinked urethane resin. Resin particles made of these cross-linked resins are particularly preferably used because they can be obtained as spherical particles having a predetermined particle diameter and can easily adjust the size of the pores.
  • the organic filler is incompatible with the thermoplastic resin that is the main component of the porous resin film, but is melt-kneaded with the thermoplastic resin to form a sea-island structure.
  • a desired hole may be formed by forming a hole core at the time of stretch molding.
  • the thermoplastic resin is a polyolefin resin
  • specific examples of the organic filler include polyethylene terephthalate, polybutylene terephthalate, polycarbonate, nylon-6, nylon-6,6, cyclic olefin polymer, polystyrene, polymethacrylate, etc.
  • An organic filler can be used individually by 1 type or in combination of 2 or more types. Moreover, said inorganic fine powder and said organic filler can also be used together as a void
  • the volume average particle size of the organic filler (median diameter (D 50 ) measured with a particle size distribution meter by laser diffraction) can be selected as appropriate in consideration of forming pores of a size suitable for accumulating charges. Yes, it is not particularly limited. From the viewpoint of easily forming the desired pore size and obtaining desired piezoelectric performance, the volume average particle diameter of the organic filler is preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, and more preferably 5 ⁇ m or more. More preferably. On the other hand, the formation of coarse pores prevents adjacent pores from communicating with each other to short-circuit the charge, making it difficult for the charge to accumulate, and suppressing the decrease in film strength due to the pores being too large.
  • the volume average particle size of the organic filler is 30 ⁇ m or less from the viewpoint that sufficient compressive recovery property can be expressed even when repeated compressive force is applied and the piezoelectric performance can be expected to be stable. More preferably, it is 20 ⁇ m or less, and further preferably 15 ⁇ m or less.
  • the inorganic fine powder and the organic filler are used in combination as the pore-forming nucleating agent, one or more of the inorganic fine powders listed above are used in combination with one or more of the organic fillers listed above. be able to.
  • the volume average particle size of the mixture is preferably in the range of 3 to 30 ⁇ m, more preferably in the range of 4 to 20 ⁇ m, and in the range of 5 to 15 ⁇ m. More preferably.
  • the volume average particle size may be used by combining the inorganic fine powder and the organic filler having a particle size within the same range individually.
  • a mixture having a volume average particle diameter measured by a particle size distribution meter by laser diffraction in the same range may be used.
  • additives such as a dispersant, a heat stabilizer (antioxidant), and a light stabilizer can be arbitrarily added to the resin film.
  • 0.01% by mass or more is included based on the total mass of the resin film.
  • the content is preferably 0.03% by mass or more, more preferably 0.05% by mass or more.
  • it is preferably contained in an amount of 10% by mass or less, more preferably 5% by mass or less, and more preferably 2% by mass or less based on the total mass of the resin film. preferable.
  • dispersant examples include dispersants such as fatty acid, glycerin fatty acid, polyglycerin fatty acid ester, sorbitan fatty acid ester, silane coupling agent, poly (meth) acrylic acid or salts thereof, and the like. There is no particular limitation.
  • the heat stabilizer When the heat stabilizer is added, it is usually added in the range of 0.001 to 1% by mass based on the total mass of the resin film.
  • Specific examples of the heat stabilizer include sterically hindered phenol-based, phosphorus-based, and amine-based heat stabilizers, but are not particularly limited thereto. Although these heat stabilizers do not reach metal soaps, they are considered to have charge retention performance. In particular, metal soaps are used in combination with sterically hindered phenols and phosphorus heat stabilizers to maintain charge. There is a tendency to improve performance.
  • the heat stabilizer preferably has a high melting point from the viewpoint of charge retention performance, but in order to uniformly disperse the heat stabilizer in the energy conversion film, the heat stabilizer preferably has a low melting point. Accordingly, the melting point of the heat stabilizer is preferably in the same melting point range as that of the metal soap.
  • the compounding ratio of the metal soap to the total amount of the heat stabilizer is preferably 1: 0.2 to 1: 100, more preferably 1: 0.5 to 1:50.
  • 1: 1 to 1:10 is more preferable, and 1: 2 to 1: 5 is most preferable.
  • a light stabilizer When adding a light stabilizer, it is usually added within a range of 0.001 to 1% by mass based on the total mass of the resin film.
  • Specific examples of the light stabilizer include sterically hindered amine-based, benzotriazole-based, and benzophenone-based light stabilizers, but are not particularly limited thereto.
  • the resin film or porous resin film may be a single-layer film made of the resin composition having the above composition, or may be a multi-layered resin film having at least one layer of the film.
  • the resin film or porous resin film is preferably a resin film having a multilayered structure (laminated resin film) having at least a core layer and a skin layer, and has a three-layer structure of skin layer / core layer / skin layer. More preferred.
  • the resin film has a laminated structure having a core layer and a skin layer
  • the above resin film or porous resin film may be used as a core layer, and a skin layer may be further provided on the core layer.
  • the resin film or the porous resin film may be referred to as a core layer.
  • the thickness of the core layer measured by the method described later is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, further preferably 30 ⁇ m or more, and particularly preferably 40 ⁇ m or more. This makes it easy to secure the volume necessary for accumulating internal charges that function effectively for energy conversion, and in the case of a porous resin film, the number of pores of an appropriate size for accumulating internal charges is uniform in the desired quantity. Easy to form.
  • the thickness of the core layer is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, further preferably 150 ⁇ m or less, and particularly preferably 120 ⁇ m or less.
  • the skin layer is laminated on at least one surface of a resin film or a porous resin film (core layer).
  • the skin layer is preferably laminated on at least one side of the core layer as a layer protecting the core layer, and more preferably laminated on both sides of the core layer.
  • the skin layer is also preferably made of a film containing a thermoplastic resin.
  • a thermoplastic resin which comprises a skin layer what was enumerated by the term of the thermoplastic resin used for a resin film can be used.
  • the skin layer may or may not contain a metal soap like the core layer.
  • the skin layer preferably contains no metal soap.
  • a skin layer contains a metal soap, it is preferable to make the compounding quantity smaller than that in a core layer.
  • the skin layer preferably has a composition that is less likely to form vacancies than the core layer, or a structure having a lower porosity than the core layer.
  • the formation of such a skin layer can be achieved by using a technique in which the content of the pore-forming nucleating agent is less than that of the core layer, or by using the volume average particle size of the pore-forming nucleating agent used in the skin layer in the core layer. This can be achieved by a technique of making the volume average particle size of the nucleating agent smaller than the volume average particle diameter, a technique of forming a core layer by biaxial stretching and a skin layer by uniaxial stretching, or the like, and making a difference between the stretching ratios.
  • the skin layer may or may not contain a pore-forming nucleating agent. From the viewpoint of improving the physical strength of the skin layer and improving the durability of the core layer, it is preferable not to contain a pore-forming nucleating agent. Further, from the viewpoint of improving the dielectric constant of the skin layer and modifying the electrical characteristics of the core layer, it is preferable to contain a pore-forming nucleating agent.
  • the skin layer contains a pore-forming nucleating agent, those listed in the section of the pore-forming nucleating agent used for the porous resin film can be used.
  • the pore-forming nucleating agent for the skin layer the same or different types of pore-forming nucleating agent for the porous resin film may be used.
  • organic fillers are generally suitable for modifying the electrical properties of the skin layer because they have a dielectric constant generally higher than that of thermoplastic resins used for porous resin films.
  • a resin having a relatively low dielectric constant such as a polyolefin resin
  • the dielectric can be applied when a high voltage is applied during electretization. Due to the effect, the charge can easily reach the inside of the resin film (inside the core layer).
  • an effect of retaining the electric charge inside the resin film without escaping can be obtained due to the low dielectric properties of the polyolefin resin as the main component.
  • the pore forming nucleating agent is contained in the skin layer, it is preferable to use the same dispersing agents as those listed in the section of the dispersing agent used for the porous resin film.
  • the skin layer is preferably stretched.
  • the stretching process described in detail below can improve the uniformity of the thickness (film thickness) of the skin layer and the uniformity of electrical characteristics such as the withstand voltage. If the thickness of the skin layer is not uniform, local discharge concentration is likely to occur in the thin portion of the skin layer during charge injection using a high voltage, so high voltage application for effective charge injection is performed. It tends to be difficult.
  • the skin layer may have not only a single layer structure but also a multi-layer structure having two or more layers.
  • a multilayer laminated structure a porous resin having a multilayer laminated structure having higher charge retention performance by changing the type and content of the thermoplastic resin, pore-forming nucleating agent and dispersant used in each layer The film design becomes easy.
  • the composition, configuration, thickness, etc. of the front and back skin layers may be the same or different.
  • the thickness of the skin layer is not particularly limited, but is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, and 0.5 ⁇ m or more. Is more preferable, and 0.7 ⁇ m or more is particularly preferable. As a result, it becomes easy to provide the skin layer uniformly, and uniform charge injection and improvement in dielectric strength can be expected.
  • the thickness of the skin layer is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, further preferably 30 ⁇ m or less, and particularly preferably 10 ⁇ m or less. Thereby, when injecting electric charge into the porous resin film having a multilayer laminated structure, the electric charge tends to easily reach the core layer inside the film.
  • the skin layer is preferably thinner than the core layer. Since the skin layer is a layer that is less likely to undergo elastic deformation in the thickness direction than the core layer, by suppressing the thickness of the skin layer, the compression elastic modulus of the porous resin film or the like does not decrease, and the energy conversion efficiency is improved. Easy to maintain.
  • the ratio of the thickness of the core layer to the thickness of the skin layer is preferably 1.1 to 1000, more preferably 2 to 300, and more preferably 5 to 150. More preferred is 10-50.
  • the equivalent value is converted from the total value when there are multiple skin layers.
  • the resin film is a single-layer film
  • the resin composition containing the above raw materials may be melt-kneaded, extruded from a single die, and stretched as necessary.
  • the resin film has a multilayer laminated structure having a core layer and a skin layer, both of them can be obtained by a co-extrusion method using a multilayer die using a feed block or a multi-manifold or an extrusion lamination method using a plurality of dies.
  • a laminated multilayer resin film can be produced.
  • a resin film can also be produced by a method combining a coextrusion method using a multilayer die and an extrusion lamination method.
  • the uniformity of the thickness of the resin film is important because the electric charge injection efficiency is improved because the withstand voltage is improved, and the piezoelectric efficiency of the resulting energy conversion film is improved.
  • the resin film is preferably a stretched film stretched in at least one direction. By stretching, the uniformity of the thickness of the resin film is improved. In the case of a porous resin film, a large number of pores are formed inside by stretching. In the case of a resin film having a multilayer laminated structure having a core layer and a skin layer, it is preferable that the skin layer is laminated on the core layer and then stretched in at least one axial direction. By stretching after laminating the skin layer on the core layer, the uniformity of the film thickness is improved as compared with laminating stretched films, and as a result, the electrical characteristics are improved.
  • the pores formed in the porous resin film by stretching have a relatively large individual volume, a relatively large number, and shapes independent from each other, from the viewpoint of maintaining electric charge.
  • the size of the holes is easier to extend in the biaxial direction than in one direction.
  • the film stretched in the biaxial direction of the width direction and the flow direction can form a disk-like hole extending in the plane direction around the hole-forming nucleating agent. Therefore, positively and negatively polarized charges are easily stored, and the charge holding performance is excellent. Therefore, the porous resin film is preferably a biaxially stretched film.
  • the stretching of the resin film can be performed by various known methods. Specifically, a longitudinal stretching method using the peripheral speed difference of the roll group, a lateral stretching method using a tenter oven, a sequential biaxial stretching method in which the longitudinal stretching and the lateral stretching are performed in the normal order or reverse order, a rolling method, Examples thereof include a simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor, and a simultaneous biaxial stretching method using a combination of a tenter oven and a pantograph. Moreover, the simultaneous biaxial stretching method by the tubular method which is a stretching method of an inflation film can be mentioned.
  • the temperature at the time of stretching is preferably 1 to 70 ° C. lower than the melting point of the crystal part of the main thermoplastic resin from the glass transition temperature of the main thermoplastic resin (used most by mass ratio) used for the resin film.
  • the thermoplastic resin is a propylene homopolymer (melting point 155 to 167 ° C.)
  • it is preferably within the range of 100 to 166 ° C.
  • it is a high density polyethylene (melting point 121 to 136 ° C.). Is preferably in the range of 70 to 135 ° C.
  • the stretching temperature is determined by using thermoplastic resins having different melting points or glass transition points for the core layer and the skin layer of the resin film, the porosity of each layer can be adjusted.
  • the stretching ratio is not particularly limited, and may be appropriately determined in consideration of the stretching characteristics of the thermoplastic resin used for the resin film, the set porosity described above, and the like.
  • the stretching ratio is preferably 1.2 times or more, more preferably 2 times or more when stretching in a uniaxial direction.
  • the upper limit side is preferably 12 times or less, and more preferably 10 times or less.
  • the upper limit side is preferably 60 times or less, and more preferably 50 times or less.
  • the draw ratio is preferably 1.2 times or more and more preferably 2 times or more when uniaxially drawn. On the other hand, 10 times or less is preferable and 5 times or less is more preferable. Moreover, when extending
  • the ratio of the vertical magnification and the horizontal magnification is preferably 0.4 or more, more preferably 0.5 or more, and further preferably 0.7 or more. Preferably, it is 0.8 or more.
  • the upper limit side is preferably 2.5 or less, more preferably 2.0 or less, further preferably 1.5 or less, and particularly preferably 1.3 or less.
  • the stretching speed is preferably in the range of 20 to 350 m / min from the viewpoint of stable stretch molding.
  • the resin film can be subjected to a surface treatment by a known method on one side or both sides in order to enhance adhesion with other materials such as electrodes described later.
  • Specific examples of the surface treatment include techniques such as corona discharge treatment, flame plasma treatment, and atmospheric pressure plasma treatment.
  • the adhesiveness of a resin film can be improved more by substituting the processing environment of these surface treatments, and the generation source of a plasma with desired gas.
  • the adhesion can be improved by washing the resin film surface with an acid such as hydrochloric acid, nitric acid, sulfuric acid or the like.
  • the resin film may be provided with an anchor coat layer on one side or both sides in order to improve adhesion to the electrode described later.
  • the anchor coat layer it is preferable to use a polymer binder from the viewpoint of improving the adhesion between the resin film and the electrode.
  • the polymer binder include polyethyleneimine, polyethylenimine-based polymers such as C1-C12 alkyl-modified polyethyleneimine, poly (ethyleneimine-urea); polyamine polyamide ethyleneimine adduct, and polyamine Polyamine polyamide polymers such as polyamide epichlorohydrin adducts; acrylic amide-acrylic ester copolymers, acrylic amide-acrylic ester-methacrylic ester copolymers, polyacrylamide derivatives, oxazoline group-containing acrylic esters Acrylic ester polymers such as polymer based polymers; polyvinyl alcohol polymers including polyvinyl alcohol and modified products thereof; water soluble resins such as polyvinyl pyrrolidone and polyethylene glycol; and chlorinated polypropylene Modified polypropylene polymers such as ethylene, maleic acid modified poly
  • a method of providing an anchor coat layer on a resin film various conventionally known methods can be used, and are not particularly limited.
  • a method of coating a coating liquid containing the above polymer binder on a resin film is preferable. Specifically, it can be formed by forming a coating film of the coating solution on a resin film using a known coating apparatus and drying the coating film.
  • the coating liquid is an aqueous solution or water dispersion.
  • the polymer binder is known as an organic solvent solution or water dispersion. It is prepared so that it can be applied by a method.
  • coating equipment examples include die coaters, bar coaters, comma coaters, lip coaters, roll coaters, curtain coaters, gravure coaters, squeeze coaters, spray coaters, blade coaters, reverse coaters, air knife coaters, and size presses. Although a coater etc. are mentioned, it is not specifically limited to these.
  • the basis weight is not particularly limited, but is preferably 0.001 g / m 2 or more in terms of solid content from the viewpoint of improving the adhesion between the resin film and the electrode. .005g / m 2 or more preferably, 0.01 g / m 2 or more is particularly preferable.
  • the basis weight is preferably 5 g / m 2 or less in terms of solid content, more preferably not more than 3g / m 2, 1g / m 2
  • the film thickness of the anchor coat layer that is the coating layer cannot be kept uniform, the uniformity in the surface direction of the electrical characteristics of the resin film is impaired due to the fluctuation of the film thickness, or the anchor coat layer itself has insufficient cohesive strength. Because the adhesion between the resin film and the electrode is reduced, or the surface resistance value of the anchor coat layer is reduced to less than 1 ⁇ 10 13 ⁇ , and the charge easily escapes through the surface when the resin film is electretized. In addition, it may be difficult for charges to be injected into the resin film, and the charge may not reach the inside of the resin film, and the desired performance of the present invention may be difficult to be exhibited.
  • the timing at which the anchor coat layer is provided on the resin film may be before or after the electret treatment described in detail later.
  • the porous resin film can further expand the internal pores by pressure treatment.
  • Pressurization treatment places a porous resin film in a pressure vessel, pressurizes the inside of the vessel with a non-reactive gas, so that the non-reactive gas penetrates into the pores, and then releases the porous resin film under no pressure. To do.
  • the non-reactive gas to be used include nitrogen, carbon dioxide, an inert gas such as argon and helium, or a mixed gas or air thereof. Even when a gas other than the non-reactive gas is used, the expansion effect can be obtained, but it is desirable to use the non-reactive gas from the viewpoint of safety during the pressurizing process and safety of the obtained porous resin film.
  • the treatment pressure during the pressure treatment is not particularly limited, but is preferably in the range of 0.2 to 10 MPa, more preferably 0.3 to 8 MPa, and still more preferably 0.4 to 6 MPa. If the pressure is less than 0.2 MPa, the pressure is low, so that a sufficient expansion effect tends not to be obtained.
  • the treatment time of the pressure treatment is not particularly limited, but is preferably 1 hour or more, more preferably 1 to 50 hours. In the case of a porous resin film in which the treatment time is less than 1 hour, it is difficult to sufficiently fill the nonreactive gas in the pores, or the pores are sufficiently filled with the nonreactive gas in less than 1 hour. During the heat treatment, the non-reactive gas is dissipated and it is difficult to obtain a stable expansion effect.
  • a roll wound together with the buffer sheet is prepared in advance so that the non-reactive gas can easily penetrate into the winding roll. It is desirable to process.
  • a foamed polystyrene sheet, a foamed polyethylene sheet, a foamed polypropylene sheet, a nonwoven fabric, a woven fabric, a paper or the like having a continuous void can be used.
  • Heat treatment In the porous resin film subjected to the pressure treatment, it is preferable to perform a heat treatment in order to maintain the expansion effect.
  • This heat treatment can be performed within a temperature range from the glass transition temperature of the thermoplastic resin mainly used for the porous resin film to the melting point of the crystal part.
  • the temperature is in the range of 80 to 160 ° C.
  • a well-known method can be used for the heating method. Specific examples include hot air heating with hot air from a nozzle, radiation heating with an infrared heater, contact heating with a roll having a temperature control function, and the like, but are not particularly limited thereto.
  • the elastic modulus of the porous resin film is reduced during the heat treatment, and the load is applied, the pores are apt to be crushed. There is a tendency.
  • the electretization method (electroelectretization method) using DC high-voltage discharge has a small apparatus and a small burden on workers and the environment, and is a high-molecular material such as a porous resin film. It is suitable for electretization treatment and is preferred.
  • an electret apparatus using DC high-voltage discharge is shown in FIG.
  • this electretization apparatus is a device in which a resin film 13 is fixed and a predetermined voltage is applied between a needle electrode 11 and a ground electrode 12 connected to a DC high voltage power source 10.
  • the resin film 13 can accumulate
  • the applied voltage during electret treatment is the thickness of the resin film, the porosity, the material of the thermoplastic resin and pore forming nucleating agent used in the resin film, the processing speed, the shape, material and size of the electrode used, and finally
  • the energy conversion film to be obtained can be changed depending on the desired charge amount and the like, and may be appropriately set in consideration of these, and is not particularly limited, but is preferably 5 kV or more, more preferably 6 kV or more, and further 7 kV or more. preferable. As a result, a sufficient amount of charge can be injected and desirable piezoelectric performance tends to be exhibited.
  • the applied voltage for electretization is preferably 100 kV or less, more preferably 70 kV or less, and even more preferably 50 kV or less.
  • a local spark discharge occurs during the electretization process, causing a partial destruction such as pinholes in the resin film, and a current is transmitted from the surface of the resin film to the end face through the end surface during the electretization process. It tends to be easy to avoid a phenomenon of flowing and deteriorating the efficiency of electretization.
  • the treatment temperature at the electretization treatment may be set as appropriate, and is not particularly limited. However, it is desirable that the treatment temperature be higher than the glass transition temperature of the main thermoplastic resin used for the resin film and lower than the melting point of the crystal part. If the treatment temperature is equal to or higher than the glass transition point, the molecular motion of the amorphous portion of the thermoplastic resin is active, and a molecular arrangement suitable for a given charge is formed, so that an efficient electretization process is possible. Further, when the treatment temperature is equal to or higher than the melting point of the metal soap, the metal soap molecules also have an arrangement suitable for the given charge, and therefore, more efficient electretization can be performed. On the other hand, if the processing temperature exceeds the melting point of the main thermoplastic resin used for the resin film, the resin film itself cannot maintain its structure, making it difficult to obtain the desired performance of the present invention. There is a tendency.
  • an excessive charge may be injected into the resin film intentionally or unintentionally.
  • the energy conversion film may discharge after processing and cause inconvenience in the post-processing process, the charge removal of the charged resin film may be performed after the electret processing.
  • this charge removal treatment a known method using a voltage application type charge remover (ionizer), a self-discharge type charge remover, or the like can be used.
  • the neutralization treatment using these general static eliminators can remove the surface charge of the charged resin film, but cannot completely remove the charge accumulated inside the charge resin film, particularly in the pores of the core layer. . Accordingly, the performance of the electret material is not greatly reduced by the charge removal process. Therefore, the discharge phenomenon of the electret can be prevented by performing such a charge removal process to remove excess charges on the surface of the charged resin film.
  • Electrode conversion element By providing an electrode to be described later on at least one surface of the above-described energy conversion film, an energy conversion element that inputs and outputs power and electric signals can be obtained.
  • the energy conversion element preferably includes electrodes on both front and back surfaces of the energy conversion film in order to more efficiently input and output electrical signals.
  • the installation timing of the electrode is not particularly limited, and may be performed, for example, on the resin film before the electret treatment or on the charged resin film (energy conversion film) after the electret treatment. If an electrode is installed in the energy conversion film after the electretization treatment, it is possible to prevent part of the injected charge from being released through the electrode during the electretization treatment. However, when a load such as heat is applied to the charged resin film during the subsequent electrode installation, a part of the injected charge is dissipated, and the piezoelectric performance may be slightly deteriorated. At present, it is preferable that an electrode is previously provided on the resin film before the electretization process, and then the above electretization process is performed based on the performance of the finally obtained energy conversion element.
  • Electrode By providing an electrode on at least one surface of an energy conversion film obtained by electretizing a resin film, an energy conversion element capable of inputting and outputting electric power can be obtained.
  • a pair of electrodes is provided on both surfaces (front surface and back surface) of the energy conversion film.
  • the electrode include a thin film formed of a known conductive material such as metal particles, conductive metal oxide particles, carbon-based particles, or conductive resin.
  • the coating film by printing or coating of a conductive paint, a metal vapor deposition film, etc. are mentioned.
  • Examples of conductive materials include metal particles such as gold, silver, platinum, copper, silicon; tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide, etc.
  • Conductive metal oxide particles carbon particles such as graphite, carbon black, ketjen black, carbon nanofiller, carbon nanotubes, acrylic resins, urethane resins, ether resins, ester resins, epoxy resins , Vinyl acetate resin, vinyl chloride resin, vinyl chloride-vinyl acetate copolymer, amide resin, melamine resin, phenol resin, vinyl alcohol resin, modified polyolefin resin, etc. It is done.
  • the solution or dispersion liquid of conductive resins such as a polyaniline type, a polypyrrole type, and a polythiophene type, are mentioned.
  • Specific examples of printing methods in the case where a conductive paint is used as ink and provided by printing include screen printing, flexographic printing, gravure printing, inkjet printing, letterpress printing, offset printing, and the like.
  • specific examples of coating apparatuses that use conductive paint as a paint and are provided by coating include die coaters, bar coaters, comma coaters, lip coaters, roll coaters, curtain coaters, gravure coaters, and spray coaters. , Blade coater, reverse coater, air knife coater and the like.
  • metal such as aluminum, zinc, gold, silver, platinum, nickel is vaporized under reduced pressure and vapor deposited on the surface of the resin film, and a metal thin film is directly formed on the surface of the resin film.
  • a metal thin film formed by vapor-depositing a metal such as aluminum, zinc, gold, silver, platinum, nickel on a carrier such as a polyethylene terephthalate (PET) film, etc. can be mentioned.
  • the electrode is a resin film or energy formed by previously forming a conductive paint film or metal vapor deposition film on a dielectric film such as a polyethylene terephthalate film or a polypropylene film so that the conductive surface is on the outside. It may be provided by pasting with a conversion film. Specific examples of the bonding method include known methods such as dry lamination, wet lamination, and extrusion lamination.
  • Electrode from the spirit easily make power input and output, JIS K7194: 1994 a surface resistivity measured by the four-terminal method in accordance with the "resistivity test method by a four probe method of conductive plastic" is 1 ⁇ 10 - It is preferably 3 ⁇ / ⁇ to 9 ⁇ 10 7 ⁇ / ⁇ , and more preferably 1 ⁇ 10 ⁇ 1 ⁇ / ⁇ to 9 ⁇ 10 4 ⁇ / ⁇ .
  • the resistance value of the electrode exceeds 9 ⁇ 10 7 ⁇ / ⁇ , the electric signal transmission efficiency is poor, and the performance as a material for an electric / electronic input / output device tends to be lowered.
  • the electrode when an electrode of less than 1 ⁇ 10 ⁇ 3 ⁇ / ⁇ is provided, and the electrode is provided by coating, it is necessary to provide a thick electrode. In some cases, the pores of the porous resin film are crushed or the resin film is thermally contracted. Also, when the electrodes are provided by metal vapor deposition, the resin film may be similarly deformed by the heat of the metal deposited.
  • the thickness of the electrode is not particularly limited, but is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 5 ⁇ m or more.
  • the thickness of the electrode is preferably 200 ⁇ m or less, more preferably 50 ⁇ m or less, and further preferably 20 ⁇ m or less.
  • the thickness of the resin film is a value obtained by measuring the total film thickness using a thickness meter based on JIS K7130: 1999 “Plastics—Film and Sheet—Thickness Measurement Method”. Further, when the resin film is a resin film having a multilayer laminated structure, the thickness of each layer constituting the resin film is determined by cooling the sample to be measured with liquid nitrogen to a temperature of ⁇ 60 ° C. or lower and placing the sample on a glass plate. A razor blade is applied at a right angle and cut to create a sample for cross-section measurement, and the resulting sample is observed using a scanning electron microscope to determine the boundary line of each layer from the hole shape and composition appearance. And the ratio which each layer thickness calculated
  • the surface resistivity of the resin film is determined under the conditions of a temperature of 23 ° C. and a relative humidity of 50% using a double ring electrode according to JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. It is set as the value calculated based on the following formula 2 from the surface resistance measured in (1).
  • the resin film is preferably insulative, and the surface resistivity of at least one surface is preferably 1 ⁇ 10 13 ⁇ / ⁇ or more, and more preferably 5 ⁇ 10 13 ⁇ / ⁇ or more.
  • the surface resistance of at least one surface of the resin film is preferably 9 ⁇ 10 17 ⁇ / ⁇ or less, and more preferably 5 ⁇ 10 16 ⁇ / ⁇ or less. This prevents dust and dirt from adhering to the resin film, and it is easy to suppress the phenomenon that local discharge occurs along the dust and dust during the electretization process and the efficient electretization process is hindered.
  • the energy conversion film and the energy conversion element of the present invention use the charged resin film as described above, they are relatively low-cost unlike semiconductor materials that have been widely used as electro-mechanical energy conversion materials. For example, it is easy to increase the area of about 10 to 50,000 cm 2 in a plan view of the film. In the case of constituting a large area energy conversion film and energy conversion element, the area in plan view may be appropriately set in consideration of the desired performance, physical restrictions on the installation location, etc., and is not particularly limited. 30,000 cm 2 is preferable, and 50 to 25,000 cm 2 is more preferable.
  • the maximum voltage (average value) generated by impact after heat treatment is preferably 5 mV or more, more preferably 10 mV or more, and more preferably 20 mV or more in terms of practical performance of the energy conversion element. Is more preferable, and 30 mV or more is particularly preferable. Although an upper limit is not specifically limited, It is preferable that it is 300 mV or less, It is more preferable that it is 200 mV or less, It is further more preferable that it is 100 mV or more, It is especially preferable that it is 50 mV or less.
  • the heat treatment before the measurement of the maximum voltage is performed by holding the energy conversion element at 85 ° C. for 14 days.
  • the maximum voltage is an iron ball having a diameter of 9.5 mm and a mass of 3.5 g from a height of 8 mm in a vertical direction on an energy conversion element placed on a horizontal plane at a temperature of 23 ° C. and a relative humidity of 50%.
  • the maximum voltage generated by the impact when it is naturally dropped is measured 10 times, and the average value of the maximum voltage is calculated.
  • thermoplastic resin propylene homopolymer and high-density polyethylene listed in Table 1, metal soap, heat stabilizer, and pore-forming nucleating agent (heavy calcium carbonate powder) are mixed in the proportions shown in Table 1 (units). : Mass%), melt kneaded with a twin-screw kneader set at 210 ° C., then extruded into a strand with an extruder set at 230 ° C., cooled and cut with a strand cutter, and resin composition Pellets of items ah, j, k, and mr were made.
  • a uniaxially stretched sheet was obtained by stretching at a magnification of.
  • the obtained uniaxially stretched sheet was cooled to 60 ° C., reheated to the temperature in the transverse direction described in Table 2 using an oven, and transversely (TD direction) described in Table 2 using a tenter. After stretching at a direction magnification, it was further heated to 160 ° C. using an oven for annealing treatment to obtain a biaxially stretched sheet.
  • the obtained biaxially stretched sheet was cooled to 60 ° C., the ears were slit, the corona surface discharge treatment was performed on both sides, and the resin films of Production Examples 1 to 14 and 16 having the physical properties shown in Table 2 (whichever Also obtained a porous resin film having pores inside.
  • the surface resistivity of the obtained resin film was all 10 14 ⁇ / ⁇ or more on both sides.
  • Examples 1 to 12, 17, 18, Comparative Examples 1 and 2 Using a roll-to-roll vacuum deposition device on a PET film (trade name: E5200, manufactured by Toyobo Co., Ltd.) having a thickness of 12 ⁇ m, aluminum deposition is performed so that the thickness of the deposited film is 30 nm under a vacuum condition of 1 ⁇ 10 ⁇ 2 Pa. The metal vapor deposition film whose surface resistivity of a vapor deposition surface is 1 ohm / square was created.
  • a polyether adhesive (trade name: TM-317, manufactured by Toyo Morton) and an isocyanate curing agent (trade name: CAT-11B, manufactured by Toyo Morton) were mixed at a mass ratio of 50:50 to obtain ethyl acetate.
  • the metal vapor-deposited film is cut into a square of 10 cm in length and 10 cm in width, and the entire surface is coated with a bar coater so that the coating thickness after drying the adhesive paint is 2 ⁇ m on the surface where the metal is not deposited. And dried in an oven at 40 ° C. for 1 minute to provide an adhesive layer on one side of the metal deposited film.
  • the resin films obtained in Production Examples 1 to 14, 16, and 17 were cut into squares of 20 cm in length and 20 cm in width, and metal deposition was performed on the front and back center portions of the obtained cut films through an adhesive layer. After pasting the film so that the deposited film was the outermost layer, the adhesive was cured in an oven at 40 ° C. for 24 hours to obtain a resin film having electrodes on both sides.
  • the obtained resin film provided with electrodes on both sides is placed on the 12 ground electrodes of the electretization apparatus shown in FIG. 3 in which the distance between the needles of the needle electrodes is 10 mm and the distance between the needle electrodes and the ground electrode is 10 mm.
  • Example 13 Using a roll-to-roll vacuum deposition device on a PET film (trade name: E5200, manufactured by Toyobo Co., Ltd.) having a thickness of 12 ⁇ m, aluminum deposition is performed so that the thickness of the deposited film is 30 nm under a vacuum condition of 1 ⁇ 10 ⁇ 2 Pa. The metal vapor deposition film whose surface resistivity of a vapor deposition surface is 1 ohm / square was created.
  • a polyether adhesive (trade name: TM-317, manufactured by Toyo Morton) and an isocyanate curing agent (trade name: CAT-11B, manufactured by Toyo Morton) were mixed at a mass ratio of 50:50 to obtain ethyl acetate.
  • the metal vapor-deposited film is cut into a square of 10 cm in length and 10 cm in width, and the entire surface is coated with a bar coater so that the coating thickness after drying the adhesive paint is 2 ⁇ m on the surface where the metal is not deposited. And dried in an oven at 40 ° C. for 1 minute to provide an adhesive layer on one side of the metal deposited film.
  • the resin film obtained in Production Example 15 was cut into a square of 20 cm in length and 20 cm in width, and a metal vapor-deposited film was formed as an outermost layer through an adhesive layer at the center of the back surface of the obtained cut film. Pasted to be.
  • an aluminum foil having a thickness of 12 ⁇ m (trade name: My foil, manufactured by UACJ Foil Co., Ltd., surface resistivity: 3 ⁇ 10 ⁇ 3 ⁇ / ⁇ ) is cut into a 10 cm long ⁇ 10 cm wide square, and the above-mentioned surface is provided on a low gloss surface
  • the adhesive coating was applied to the entire surface using a bar coater so that the coating thickness after drying was 2 ⁇ m, dried in an oven at 40 ° C.
  • Example 14 The resin film obtained in Production Example 15 was cut into a square of 20 cm in length and 20 cm in width, and silver ink (trade name: Doutite D-500, manufactured by Fujikura Kasei Co., Ltd., solid content was formed on the center of the back side of the obtained cut film. Concentration: 77% by mass) using a multipurpose printing tester (trade name: K303 Multicoater, manufactured by RK Print Coat Instruments) and a 400-line gravure plate, solid-printed on a 10 cm x 10 cm square, 80 ° C In an oven for 1 hour.
  • a multipurpose printing tester trade name: K303 Multicoater, manufactured by RK Print Coat Instruments
  • the same silver ink is applied to the center portion of the surface of the cut film, using the same multipurpose printing tester and the same gravure plate, in a square of 10 cm in length and 10 cm in width so that the front and back printing positions are the same.
  • Solid printing was performed and drying was performed in an oven at 80 ° C. for 24 hours to obtain a resin film having electrodes on both sides.
  • the thickness of the obtained electrode was 2 ⁇ m on both sides, and the surface resistivity was 1 ⁇ / ⁇ on both sides.
  • the obtained resin film provided with electrodes on both sides is placed on the 12 ground electrodes of the electretization apparatus shown in FIG. 3 in which the distance between the needles of the needle electrodes is 10 mm and the distance between the needle electrodes and the ground electrode is 10 mm.
  • the surface is set to face the main electrode side, and the electret treatment is performed by applying a -10 KV DC voltage to the needle electrode for 5 seconds.
  • Example 15 The resin film obtained in Production Example 15 was cut into a 20 cm long ⁇ 20 cm wide square, and a carbon ink (trade name: Dotite XC-3050, manufactured by Fujikura Kasei Co., Ltd. Using a screen printer (trade name: SSA-TF150E, manufactured by Ceria Corporation) and a 200-line screen plate, a solid is printed in a square of 10 cm in length and 10 cm in width, using an oven at 80 ° C. Dried for 1 hour. Thereafter, the carbon ink is applied to the center portion of the surface of the cut film using a screen printer and a screen plate so that the printing positions on the front and back sides are the same.
  • a carbon ink trade name: Dotite XC-3050, manufactured by Fujikura Kasei Co., Ltd.
  • SSA-TF150E trade name: SSA-TF150E
  • the obtained resin film provided with electrodes on both sides is placed on the 12 ground electrodes of the electretization apparatus shown in FIG. 3 in which the distance between the needles of the needle electrodes is 10 mm and the distance between the needle electrodes and the ground electrode is 10 mm.
  • the surface is set to face the main electrode side, and the electret treatment is performed by applying a -10 KV DC voltage to the needle electrode for 5 seconds.
  • Example 16 The resin film obtained in Production Example 15 was cut into a square of 20 cm in length and 20 cm in width, and a polythiophene-based ink (trade name: Olgacon ICP1050, manufactured by Agphagewald, solid content concentration) was formed at the center of the back surface of the obtained cut film. : 1.1% by mass) using a multipurpose printing tester (trade name: K303 Multicoater, manufactured by RK Print Coat Instruments Co., Ltd.) and a 100-line gravure plate, solid-printed on a 10 cm x 10 cm square, 80 It was dried in an oven at 0 ° C. for 1 hour.
  • a multipurpose printing tester trade name: K303 Multicoater, manufactured by RK Print Coat Instruments Co., Ltd.
  • the polythiophene-based ink is applied to the center portion of the surface of the cut film, and the square of 10 cm in length and 10 cm in width is used so that the printing positions on the front and back are the same using the multipurpose printing tester and the gravure plate.
  • the thickness of the obtained electrode was 0.2 ⁇ m on both sides, and the surface resistivity was 4 ⁇ 10 4 ⁇ / ⁇ on both the front and back sides.
  • the obtained resin film provided with electrodes on both sides is placed on the 12 ground electrodes of the electretization apparatus shown in FIG.
  • ⁇ Test example> From the obtained energy conversion elements of Examples 1 to 17 and Comparative Example 1, portions having electrodes were cut out to prepare samples each having a length of 10 cm and a width of 10 cm. And the maximum voltage was measured with the following method using each obtained sample. Next, each sample produced in the same manner was heat-treated in an oven set at 85 ° C. under severe conditions for 14 days, and the maximum voltage was measured by the following method using each sample after the heat treatment.
  • the heat treatment is performed for the purpose of promoting in a high temperature environment in order to evaluate the heat resistance of the obtained energy conversion element, unlike the heat treatment described above.
  • lead wires 17 and 18 are formed using conductive tape (trade name: AL-25BT, manufactured by Sumitomo 3M) on the front and back electrodes of a sample 20 (energy conversion film 5) 10 cm long ⁇ 10 cm wide.
  • the other ends of the lead wires 17 and 18 are connected to a high-speed recorder 19 (trade name: GR-7000, manufactured by Keyence Corporation), and the insulating sheet 15 (soft chloride) of the falling ball test apparatus shown in FIG.
  • a sample 20 is placed on a vinyl sheet (thickness 1 mm) so that the surface is on top, a glass plate 14 (thickness 8 mm) is placed on the upper surface of the sample 20, and a diameter of 9.5 mm and a mass is placed on the glass plate 14.
  • a 3.5 g iron ball 16 was placed thereon.
  • the iron ball 16 is naturally dropped from the glass plate 14 onto the sample 20 from a height of 8 mm in the vertical direction, the voltage signal from the sample 20 is taken into the high-speed recorder 19, and the maximum voltage generated by the impact of the falling ball is 10 times. The average value of the maximum voltage was calculated.
  • the ratio of the maximum voltage (average value) before and after the heat treatment calculated by the above method was obtained as a percentage and used as the maintenance rate after the heat treatment.
  • Table 3 shows the calculated retention rate after heat treatment.
  • the maintenance rate after heat treatment is preferably 1% or more, more preferably 2% or more, further preferably 3% or more, and particularly preferably 5% or more from the viewpoint of heat resistance. From the data on the maintenance rate after heat treatment shown in Table 3, in the energy conversion film and the energy conversion element of the present invention, even when heat treatment was performed under severe conditions, the maintenance rate of the generated voltage reached about 140 to 800% of the comparative example. Furthermore, it was confirmed that the preferred embodiment has a particularly remarkable effect that cannot be achieved by the conventional product. From this, it can be inferred that the product of the present invention also has a considerably higher level of maintenance of the generated voltage at room temperature or at a higher temperature of about 40 to 60 ° C., which is a milder use condition.
  • the energy conversion film and energy conversion element of the present invention exhibit piezoelectricity at a temperature higher than the phase transition temperature of the energy conversion film material, and there is little deterioration in the piezoelectric performance even when exposed to a high temperature environment. Therefore, the energy conversion film and the energy conversion element of the present invention are electro-mechanical energy of speakers, headphones, microphones, ultrasonic sensors, pressure sensors, acceleration sensors, vibration control devices, etc. that may be used under high temperature conditions. It can be used widely and effectively as a module member for conversion. In particular, it can be used particularly effectively as a module member such as an acoustic sensor, a vibration sensor, and an impact sensor.
  • the present invention provides a measuring instrument, a control device, an abnormality diagnosis system, a security device, a stabilizer, It can be widely used as robots, percussion instruments, gaming machines, power generators, etc., and makes a great contribution to these industrial fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are: an energy conversion film which exhibits excellent charge-holding performance and in which deterioration of the piezoelectric performance is suppressed even when the film is exposed to a high-temperature environment; and an energy conversion element or the like using said energy conversion film. The energy conversion element is characterized by being provided with: an energy conversion film which includes at least a charged resin film formed of a resin film including at least a thermoplastic resin and a metal soap; and an electrode provided on at least one surface of the energy conversion film.

Description

エネルギー変換フィルム、及びこれを用いたエネルギー変換素子Energy conversion film and energy conversion element using the same
 本発明は、振動や圧力変化等の機械エネルギーを電気エネルギーに変換する電気-機械エネルギー変換、赤外線や温度変化等の熱エネルギーを電気エネルギーに変換する電気-熱エネルギー変換、機械エネルギーを熱エネルギーに変換する機械-熱エネルギー変換等に利用できるエネルギー変換フィルム、及びこれを用いたエネルギー変換素子に関する。本発明のエネルギー変換フィルムは、耐熱性に優れ、且つ電気-機械エネルギー変換性能に優れたエレクトレットである。 The present invention is an electrical-mechanical energy conversion that converts mechanical energy such as vibration and pressure changes into electrical energy, an electrical-thermal energy conversion that converts thermal energy such as infrared rays and temperature changes into electrical energy, and mechanical energy into thermal energy. The present invention relates to an energy conversion film that can be used for mechanical-thermal energy conversion and the like, and an energy conversion element using the same. The energy conversion film of the present invention is an electret having excellent heat resistance and excellent electro-mechanical energy conversion performance.
 エレクトレットとは、外部に電界が存在しない状態でも内部に半永久的に電気分極を保持して外部に対して電界を形成する(電気力を及ぼす)素材であって、本来電気を通しにくい高分子材料や無機質材料等を熱的・電気的に処理することで、その材料の一部を半永久的に分極した(巨視的には静電気を帯びさせた、電荷を保持した)ものを指す。
 従来から高分子材料よりなるエレクトレットは、その使用態様に応じて、フィルム、シート、繊維、織布、不織布等の様々な形態で用いられている。特に高分子材料よりなるエレクトレットを成形加工してなるエレクトレットフィルターは、電界により微小な埃やアレルゲン等を効率的に吸着するエアーフィルター等の用途に広く使用されてきた。また高分子材料よりなるエレクトレットは、スピーカー、ヘッドフォン、マイクロフォン、超音波センサー、圧力センサー、加速度センサー、振動制御装置等の電気-機械エネルギー変換用の材料として各種用途への利用が広がってきている。
An electret is a polymer material that forms an electric field to the outside (which exerts an electric force) by semipermanently holding the electric polarization inside even when there is no electric field outside, and is inherently difficult to conduct electricity. In addition, it is a material in which a part of the material is semipermanently polarized (macroscopically charged, holding electric charges) by thermally or electrically treating inorganic materials or the like.
Conventionally, electrets made of a polymer material are used in various forms such as a film, a sheet, a fiber, a woven fabric, and a non-woven fabric, depending on the use mode. In particular, electret filters formed by molding electrets made of polymer materials have been widely used in applications such as air filters that efficiently adsorb minute dust, allergens, and the like by an electric field. In addition, electrets made of polymer materials are widely used in various applications as materials for electro-mechanical energy conversion such as speakers, headphones, microphones, ultrasonic sensors, pressure sensors, acceleration sensors, vibration control devices, and the like.
 また、多孔質樹脂フィルムを用いたエレクトレットは、圧電効果を示すことが知られており、音の検出、音の発生、振動測定、振動制御等に使用することができる。例えば、発泡可能な熱可塑性樹脂をフィルム状に押し出すと同時に発泡させることにより多数の内部空孔を有する多孔質構造のフィルムを得、続いて同フィルムを二次元に延伸してなる発泡フィルムが提案されている(特許文献1)。 Also, electrets using a porous resin film are known to exhibit a piezoelectric effect, and can be used for sound detection, sound generation, vibration measurement, vibration control, and the like. For example, a foamed film is proposed in which a foamable thermoplastic resin is extruded into a film and foamed at the same time to obtain a porous film having a large number of internal pores, and then the film is stretched two-dimensionally. (Patent Document 1).
 ところが、このような発泡フィルムは、経時的に或いは減圧下に曝されたりすると、次第に内部空孔からガスが抜けて萎んでしまうために、一定の空孔形状、発泡倍率、空孔率を保つことが困難である。そこで特許文献1には、発泡フィルムが膨張している段階で加熱処理を施して、熱可塑性樹脂の結晶化を促して形状固定化する方法が開示されている。しかしながら、前記加熱処理を熱可塑性樹脂の相転移温度又はガラス転移温度より高い温度で行うと、熱可塑性樹脂の気体透過性が上がるため、発泡フィルムの内部空孔からガスが抜けやすくなり、結果的に圧電性能が低下してしまう欠点がある。 However, when such a foamed film is exposed over time or under reduced pressure, the gas gradually escapes from the internal pores and becomes deflated, so that a certain pore shape, expansion ratio, and porosity are maintained. Is difficult. Therefore, Patent Document 1 discloses a method in which heat treatment is performed at the stage where the foamed film is expanded, and the shape is fixed by promoting crystallization of the thermoplastic resin. However, if the heat treatment is performed at a temperature higher than the phase transition temperature or glass transition temperature of the thermoplastic resin, the gas permeability of the thermoplastic resin is increased, so that the gas easily escapes from the internal pores of the foamed film. However, there is a drawback that the piezoelectric performance deteriorates.
 一方、本発明者らは高いエネルギー変換性能を持つ圧電材料として、熱可塑性樹脂と特定の体積平均粒径を有する無機微細粉末又は有機フィラーを使用して一定の空孔サイズを有するエネルギー変換用フィルムを提案している(特許文献2、特許文献3)。 On the other hand, the present inventors use a thermoplastic resin and an inorganic fine powder or organic filler having a specific volume average particle size as a piezoelectric material having high energy conversion performance, and a film for energy conversion having a certain pore size. (Patent Document 2 and Patent Document 3).
 しかしながら、これらの従来のエネルギー変換用フィルムを、例えば車のエンジンルームのような高温環境下で使用する場合は、同フィルムに用いる熱可塑性樹脂の相転移温度又はガラス転移温度よりも高温に晒される可能性がある。このような高温環境下で、従来のエネルギー変換用フィルムを長期間保管や使用する場合は、電荷の保持性能が低下し、圧電性能が低下してしまう欠点があった。 However, when these conventional energy conversion films are used in a high temperature environment such as an engine room of a car, they are exposed to a temperature higher than the phase transition temperature or glass transition temperature of the thermoplastic resin used in the film. there is a possibility. When the conventional energy conversion film is stored or used for a long period of time in such a high temperature environment, there is a drawback that the charge holding performance is lowered and the piezoelectric performance is lowered.
 これに対して、特定のアジン誘導体又は4級アンモニウム塩化合物等の正帯電性荷電制御剤と、特定のサリチル酸誘導体金属塩又はアゾクロム系化合物等の負帯電性荷電制御剤とを併用するエレクトレットシートが開示されている(特許文献4)。特許文献4のエレクトレットシートによれば、添加剤として上述した荷電制御剤を樹脂フィルムに含有することにより、高温条件下でも優れた圧電性能を維持することが可能になるとされている。 On the other hand, there is an electret sheet in which a positively chargeable charge control agent such as a specific azine derivative or a quaternary ammonium salt compound and a negatively chargeable charge control agent such as a specific salicylic acid derivative metal salt or an azochrome compound are used in combination. (Patent Document 4). According to the electret sheet of Patent Document 4, it is said that excellent piezoelectric performance can be maintained even under high temperature conditions by containing the above-described charge control agent as an additive in the resin film.
特開昭61-148044号公報JP-A-61-148044 特開2011-084735号公報JP 2011-084735 A 特開2011-086924号公報JP 2011-086924 A 特開2014-074104号公報JP 2014-074104 A
 本発明者らは、特許文献4の技術についてエネルギー変換フィルム及びエネルギー変換素子への応用検討を図った。しかしながら、特許文献4に記載の荷電制御剤は耐熱性が不十分であり、この荷電制御剤を用いたエネルギー変換フィルム及びエネルギー変換素子は、高温環境下での圧電性能が依然として十分とはいえないことが判明した。したがって、高温環境下での圧電性能を高めるにあたり、エネルギー変換フィルムに用いられる添加剤として、帯電性を増補するとともに耐熱性を兼ね備えるものが求められている。 The present inventors studied application of the technology of Patent Document 4 to an energy conversion film and an energy conversion element. However, the charge control agent described in Patent Document 4 has insufficient heat resistance, and the energy conversion film and the energy conversion element using this charge control agent still have insufficient piezoelectric performance in a high temperature environment. It has been found. Therefore, in order to enhance the piezoelectric performance in a high temperature environment, there is a demand for an additive used for an energy conversion film that enhances charging properties and has heat resistance.
 本発明は、かかる背景技術に鑑みてなされたものである。その目的は、高温環境下に曝されても、電荷の保持性能に優れ、圧電性能の低下が抑制された、エネルギー変換フィルム及びこれを用いたエネルギー変換素子等を提供することにある。 The present invention has been made in view of such background art. An object of the present invention is to provide an energy conversion film, an energy conversion element using the same, and the like that are excellent in charge retention performance and suppressed in deterioration of piezoelectric performance even when exposed to a high temperature environment.
 なお、ここでいう目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも、本発明の他の目的として位置づけることができる。 Note that the present invention is not limited to the purpose described here, and is an operational effect derived from each configuration shown in the embodiment for carrying out the invention described later, and can also exhibit an operational effect that cannot be obtained by the conventional technology. It can be positioned as another purpose.
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定のエネルギー変換フィルムが、高温環境下に曝されても電荷の保持性能に優れ、これを用いたエネルギー変換素子は圧電性能の低下が抑制されたものとなることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have excellent charge retention performance even when a specific energy conversion film is exposed to a high temperature environment. As a result, the inventors have found that the decrease in the thickness is suppressed, and have completed the present invention.
 すなわち、本発明は、以下に示す種々の具体的態様を提供する。
[1]熱可塑性樹脂及び金属石鹸を少なくとも含む樹脂フィルムよりなる帯電樹脂フィルムを少なくとも備えるエネルギー変換フィルムと、前記エネルギー変換フィルムの少なくとも一方の面に設けられた電極とを備えることを特徴とする、エネルギー変換素子。
[2]前記熱可塑性樹脂がポリオレフィン系樹脂を含み、前記金属石鹸が50℃~220℃に融点を有することを特徴とする[1]に記載のエネルギー変換素子。
[3]前記金属石鹸が、炭素数5~30の脂肪酸と金属との塩であることを特徴とする[1]又は[2]に記載のエネルギー変換素子。
[4]前記金属石鹸が、脂肪酸と周期表の第2族から第13族に属する金属との塩であることを特徴とする[1]~[3]の何れか一項に記載のエネルギー変換素子。
[5]前記金属が、亜鉛、カルシウム、及びアルミニウムからなる群から選ばれる少なくとも一種であることを特徴とする[3]又は[4]に記載のエネルギー変換素子。
That is, the present invention provides various specific modes shown below.
[1] An energy conversion film including at least a charged resin film made of a resin film containing at least a thermoplastic resin and a metal soap, and an electrode provided on at least one surface of the energy conversion film, Energy conversion element.
[2] The energy conversion element according to [1], wherein the thermoplastic resin contains a polyolefin resin, and the metal soap has a melting point of 50 ° C. to 220 ° C.
[3] The energy conversion element according to [1] or [2], wherein the metal soap is a salt of a fatty acid having 5 to 30 carbon atoms and a metal.
[4] The energy conversion according to any one of [1] to [3], wherein the metal soap is a salt of a fatty acid and a metal belonging to Group 2 to Group 13 of the periodic table. element.
[5] The energy conversion element according to [3] or [4], wherein the metal is at least one selected from the group consisting of zinc, calcium, and aluminum.
[6]前記樹脂フィルムが、内部に空孔を有する多孔質樹脂フィルムであることを特徴とする[1]~[5]の何れか一項に記載のエネルギー変換素子。
[7]前記エネルギー変換フィルムが、直流コロナ放電処理により前記樹脂フィルムに電荷が注入された帯電樹脂フィルムを少なくとも備えることを特徴とする[1]~[6]の何れか一項に記載のエネルギー変換素子。
[8]前記電極が、1×10-3Ω/□~9×10Ω/□の表面抵抗率を有することを特徴とする[1]~[7]の何れか一項に記載のエネルギー変換素子。
[9]前記エネルギー変換素子を85℃で14日間の熱処理した後に、温度23℃、相対湿度50%環境下で、水平面上に静置した上に、垂直方向8mmの高さから直径9.5mm、質量3.5gの鉄球を自然落下させたときの衝撃により発生する最大電圧が、5mV以上であることを特徴とする[1]~[8]の何れか一項に記載のエネルギー変換素子。
[10]熱可塑性樹脂及び金属石鹸を少なくとも含む樹脂フィルムよりなる帯電樹脂フィルムを少なくとも備えることを特徴とする、エネルギー変換フィルム。ここで、このエネルギー変換フィルムは、上記[2]~[9]の技術的特徴の少なくとも1以上をさらに備えるものが好ましい。
[6] The energy conversion element according to any one of [1] to [5], wherein the resin film is a porous resin film having pores therein.
[7] The energy according to any one of [1] to [6], wherein the energy conversion film includes at least a charged resin film in which charges are injected into the resin film by a direct current corona discharge treatment. Conversion element.
[8] The energy according to any one of [1] to [7], wherein the electrode has a surface resistivity of 1 × 10 −3 Ω / □ to 9 × 10 7 Ω / □. Conversion element.
[9] After heat-treating the energy conversion element at 85 ° C. for 14 days, the energy conversion element was left standing on a horizontal surface at a temperature of 23 ° C. and a relative humidity of 50%, and a diameter of 9.5 mm from a height of 8 mm in the vertical direction. The energy conversion element according to any one of [1] to [8], wherein a maximum voltage generated by an impact when a 3.5 g iron ball is naturally dropped is 5 mV or more .
[10] An energy conversion film comprising at least a charged resin film made of a resin film containing at least a thermoplastic resin and a metal soap. Here, it is preferable that the energy conversion film further includes at least one of the technical features of [2] to [9].
 本発明のエネルギー変換フィルム及びこれを用いたエネルギー変換素子は、フィルム内部に金属石鹸を有することで電荷の保持性能が高められており、高温環境下に曝されても圧電性能の低下が少ない。そのため、高温環境下で使用や保管される可能性がある、スピーカー、ヘッドフォン、超音波振動子、超音波モーター、振動制御装置、マイクロフォン、超音波センサー、圧力センサー、加速度センサー、歪センサー、疲労・亀裂センサー、医療センサー、計測器、制御装置、異常診断システム、防犯装置、スタビライザー、ロボット、打楽器、遊技機、発電装置等において用いるモジュール部材として殊に有用である。 The energy conversion film of the present invention and the energy conversion element using the same have a metal soap in the film, so that the charge retention performance is enhanced, and the piezoelectric performance is hardly degraded even when exposed to a high temperature environment. Therefore, speakers, headphones, ultrasonic transducers, ultrasonic motors, vibration control devices, microphones, ultrasonic sensors, pressure sensors, acceleration sensors, strain sensors, fatigue / It is particularly useful as a module member used in crack sensors, medical sensors, measuring instruments, control devices, abnormality diagnosis systems, security devices, stabilizers, robots, percussion instruments, game machines, power generation devices and the like.
本発明のエネルギー変換フィルム1の一態様を示す概略断面図である。It is a schematic sectional drawing which shows the one aspect | mode of the energy conversion film 1 of this invention. 本発明のエネルギー変換素子5の一態様を示す概略断面図である。It is a schematic sectional drawing which shows the one aspect | mode of the energy conversion element 5 of this invention. エレクトレット化装置の一例を示す模式図である。It is a schematic diagram which shows an example of an electretization apparatus. 本発明の試験例で使用した落球試験装置を示す模式図である。It is a schematic diagram which shows the falling ball test apparatus used by the test example of this invention.
 以下、本発明の各実施形態を、図面を参照して説明する。なお、以下の各実施形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されるものではない。また、以降においては特に断らない限り、上下左右等の位置関係は、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限定されるものではない。なお、本明細書において、例えば「1~100」との数値範囲の表記は、その下限値「1」及び上限値「100」の双方を包含するものとする。また、他の数値範囲の表記も同様である。 Hereinafter, each embodiment of the present invention will be described with reference to the drawings. The following embodiments are examples for explaining the present invention, and the present invention is not limited only to the embodiments. In the following, unless otherwise specified, positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios. In the present specification, for example, the description of a numerical range of “1 to 100” includes both the lower limit value “1” and the upper limit value “100”. This also applies to other numerical range notations.
 本発明のエネルギー変換フィルムは、熱可塑性樹脂及び金属石鹸を少なくとも含む樹脂フィルムよりなる帯電樹脂フィルムを少なくとも備えている。ここで、帯電樹脂フィルムとは、前記樹脂フィルムに電荷が注入されたものである。すなわち、本発明におけるエネルギー変換フィルム及び帯電樹脂フィルムは、「帯電した」前記樹脂フィルムであって、意図して前記樹脂フィルムに電荷が注入されたものであり、前記樹脂フィルムに比して多量の電荷を帯びている。また、本発明のエネルギー変換素子は、このエネルギー変換フィルムの少なくとも一方の面に電極を設けたものである。以下、本発明のエネルギー変換フィルム及びこれを用いたエネルギー変換素子を構成する各部材や、その製造方法について詳述する。 The energy conversion film of the present invention includes at least a charged resin film made of a resin film containing at least a thermoplastic resin and a metal soap. Here, the charged resin film is one in which electric charge is injected into the resin film. That is, the energy conversion film and the charged resin film in the present invention are the “charged” resin film, in which charges are intentionally injected into the resin film, and a larger amount than the resin film. Charged. Moreover, the energy conversion element of this invention provides the electrode in the at least one surface of this energy conversion film. Hereinafter, each member which comprises the energy conversion film of this invention and the energy conversion element using the same, and its manufacturing method are explained in full detail.
 図1及び図2に、本発明のエネルギー変換フィルム及びエネルギー変換素子の好適な実施態様を示す。エネルギー変換フィルム1は、熱可塑性樹脂及び金属石鹸を少なくとも含む樹脂フィルム2(コア層)に電荷が注入された帯電樹脂フィルムを備え、必要に応じて樹脂フィルム2の表裏両面にスキン層3,4(熱可塑性樹脂を少なくとも含む樹脂フィルム)が設けられるものである。また、エネルギー変換素子5は、かかるエネルギー変換フィルム1の少なくとも一方の面に電極6,7を設けることで構成されるものである。 1 and 2 show preferred embodiments of the energy conversion film and the energy conversion element of the present invention. The energy conversion film 1 includes a charged resin film in which charges are injected into a resin film 2 (core layer) containing at least a thermoplastic resin and metal soap, and skin layers 3 and 4 are provided on both front and back surfaces of the resin film 2 as necessary. (Resin film containing at least a thermoplastic resin) is provided. The energy conversion element 5 is configured by providing electrodes 6 and 7 on at least one surface of the energy conversion film 1.
[エネルギー変換フィルム]
 本発明のエネルギー変換フィルム(帯電樹脂フィルム)は、熱可塑性樹脂と金属石鹸を含む樹脂フィルムに電荷を注入して帯電させることにより得ることができる。ここで、電荷注入される樹脂フィルムは、内部に多数の空孔(以降において、「内部空孔」とも称する。)を有する多孔質樹脂フィルムであることが好ましい。
[Energy conversion film]
The energy conversion film (charged resin film) of the present invention can be obtained by injecting a charge into a resin film containing a thermoplastic resin and metal soap and charging it. Here, the resin film into which charges are injected is preferably a porous resin film having a large number of pores (hereinafter also referred to as “internal pores”).
 なお、本発明のエネルギー変換フィルムに関し、本明細書では後述するエレクトレット化処理前のもの(帯電させていないもの)を、「樹脂フィルム」或いは「多孔質樹脂フィルム」と称し、エレクトレット化処理後のもの(帯電させたもの)を、「エネルギー変換フィルム」、「帯電樹脂フィルム」或いは「帯電多孔質樹脂フィルム」と称する。また、本発明のエネルギー変換フィルムにおいて、電気-機械エネルギー変換性能とは、機械エネルギー(運動エネルギー)を電気エネルギーに変換する能力のみならず、電気エネルギーを機械エネルギー(運動エネルギー)に変換する能力も含む。 In addition, regarding the energy conversion film of the present invention, the one before electretization treatment (uncharged) described later in this specification is referred to as “resin film” or “porous resin film”, and after electretization treatment. The one (charged one) is referred to as “energy conversion film”, “charged resin film” or “charged porous resin film”. In the energy conversion film of the present invention, the electro-mechanical energy conversion performance includes not only the ability to convert mechanical energy (kinetic energy) into electrical energy, but also the ability to convert electrical energy into mechanical energy (kinetic energy). Including.
[樹脂フィルム]
 樹脂フィルムは、後述する熱可塑性樹脂と後述する金属石鹸とを少なくとも含む樹脂組成物を、後述する成形方法により薄膜状に成形したものである。樹脂フィルムは、内部に多数の空孔を有する多孔質樹脂フィルムであることが好ましい。また、樹脂フィルムは、コア層及びスキン層を含む多層樹脂フィルム(積層樹脂フィルム)であることが好ましい。
[Resin film]
The resin film is obtained by molding a resin composition containing at least a thermoplastic resin described later and a metal soap described later into a thin film by a molding method described later. The resin film is preferably a porous resin film having a large number of pores inside. Moreover, it is preferable that a resin film is a multilayer resin film (laminated resin film) containing a core layer and a skin layer.
 さらに、エネルギー変換素子を構成するために設けられる電極との密着性を向上するために、樹脂フィルムの表面に後述する表面処理を施してもよく、また、樹脂フィルムの表面にアンカーコート層を設けてもよい。アンカーコート層を備える場合のエネルギー変換素子は、エネルギー変換フィルム/アンカーコート層/電極の積層構造を有する。 Furthermore, in order to improve the adhesion with the electrode provided for constituting the energy conversion element, the surface of the resin film may be subjected to a surface treatment described later, and an anchor coat layer is provided on the surface of the resin film. May be. The energy conversion element having an anchor coat layer has a laminated structure of energy conversion film / anchor coat layer / electrode.
[多孔質樹脂フィルム]
 多孔質樹脂フィルムは、熱可塑性樹脂と、金属石鹸とを少なくとも含み、好ましくは後述する空孔形成核剤をさらに含む樹脂組成物を、後述する成形方法により薄膜状に成形し、内部に多数の空孔を形成したものである。
[Porous resin film]
The porous resin film contains at least a thermoplastic resin and a metal soap, preferably a resin composition further containing a pore-forming nucleating agent, which will be described later, and is formed into a thin film by a molding method described later. A hole is formed.
 多孔質樹脂フィルムは、コア層及びスキン層を備えた多層樹脂フィルムであることが好ましく、内部に空孔を有する延伸樹脂フィルムからなるコア層の少なくとも片面に延伸樹脂フィルムからなるスキン層を備えた多層樹脂フィルムであることがより好ましく、内部に空孔を有する延伸樹脂フィルムからなるコア層の両面に延伸樹脂フィルムからなるスキン層を備えた多層樹脂フィルムであることがさらに好ましい。また、多孔質樹脂フィルムは、加圧下で非反応性ガスを樹脂フィルム中に浸透させた後、非加圧下に開放してガス発泡させて空孔率を適度なものとし、次いで非加圧下で加熱処理を施して空孔を固定化したものであってもよい。 The porous resin film is preferably a multilayer resin film having a core layer and a skin layer, and has a skin layer made of a stretched resin film on at least one side of a core layer made of a stretched resin film having pores therein. A multilayer resin film is more preferable, and a multilayer resin film having skin layers made of a stretched resin film on both surfaces of a core layer made of a stretched resin film having pores therein is more preferred. In addition, the porous resin film has a non-reactive gas infiltrated into the resin film under pressure, then opened under non-pressurization to cause gas foaming to moderate the porosity, and then under non-pressure. Heat treatment may be performed to fix the pores.
 多孔質樹脂フィルムが上記のコア層の如く内部に空孔を有する延伸樹脂フィルムを含む場合、その延伸樹脂フィルムは、熱可塑性樹脂、金属石鹸及び空孔形成核剤を少なくとも含有する熱可塑性樹脂シートを、熱可塑性樹脂の融点以下の温度条件下で延伸することにより内部に空孔を形成したものが好ましい。 When the porous resin film includes a stretched resin film having pores therein as in the core layer, the stretched resin film contains at least a thermoplastic resin, a metal soap, and a pore-forming nucleating agent. Is preferably formed by stretching pores under a temperature condition equal to or lower than the melting point of the thermoplastic resin.
 多孔質樹脂フィルムには、内部に電荷を蓄積することに適した形状と、多孔質樹脂フィルムに高い圧縮回復性をもたらす形状とを併せもった空孔が形成され得る。 In the porous resin film, pores having a shape suitable for accumulating electric charges inside and a shape that provides high compression recovery to the porous resin film can be formed.
 多孔質樹脂フィルムの空孔の形状やサイズ等は、要求性能等に応じて適宜設定すればよく、特に限定されない。なお、エネルギー変換フィルムにおいて、多孔質樹脂フィルム内部の個々の空孔には、コンデンサの如く、その相対する内面に異なる電荷が対で保持されると考えられる。そのため多孔質樹脂フィルムの空孔は、その内部に電荷を蓄積するために、単板型コンデンサと同様に、一定以上の面積と高さが必要になる。一定以上の面積がなければ十分な静電容量が得られず性能の優れたエレクトレットを得難い。また、一定以上の高さ(距離)がなければ空孔内部で放電(短絡)が発生してしまい電荷を蓄積しづらい。その一方で、高さ(距離)が大きすぎては電荷の分極に不利であり、安定性に優れたエレクトレットを得難い。そのため、多孔質樹脂フィルム内部の個々の空孔のサイズ(面積)は大きいほど有効に機能するものと考えられた。しかしながら、空孔のサイズが過剰に大きいと、隣接する空孔同士が連通してしまい、隣接空孔間で放電(短絡)が発生して、却って電荷を蓄積しにくくなる。 The shape and size of the pores of the porous resin film may be appropriately set according to the required performance and the like, and are not particularly limited. In the energy conversion film, it is considered that different charges are held in pairs on the inner surfaces of the individual pores inside the porous resin film, like a capacitor. For this reason, the pores of the porous resin film require a certain area and height as in the case of the single plate capacitor in order to accumulate electric charges therein. If there is no area above a certain level, sufficient electrostatic capacity cannot be obtained, and it is difficult to obtain an electret with excellent performance. Further, if there is no height (distance) above a certain level, discharge (short circuit) occurs inside the hole, and it is difficult to accumulate charges. On the other hand, if the height (distance) is too large, it is disadvantageous for polarization of charges, and it is difficult to obtain an electret with excellent stability. Therefore, it was considered that the larger the size (area) of the individual pores inside the porous resin film, the more effectively it functions. However, if the size of the vacancies is excessively large, adjacent vacancies communicate with each other, and a discharge (short circuit) occurs between adjacent vacancies, making it difficult to accumulate charges.
 これらの観点から、多孔質樹脂フィルムは、より多くの電荷を安定して蓄積する観点から、特定サイズの(電荷の蓄積に有効な)空孔を特定量有することが好ましく、詳しくは多孔質樹脂フィルムを任意の断面で観察をした場合の観察像上において、同フィルムの厚み方向に3~30μmの高さを有し且つフィルムの面方向に50~500μmの径を有する空孔を、100個/mm以上有することが好ましく、150個/mm以上有することがより好ましく、200個/mm以上有することがさらに好ましく、300個/mm以上有することが特に好ましい。一方、隣接する空孔同士の短絡抑制や基材強度等の観点から、同フィルムの厚み方向に3~30μmの高さを有し且つフィルムの面方向に50~500μmの径を有する空孔を、3,000個/mm以下有することが好ましく、2,500個/mm以下有することがより好ましく、2,000個/mm以下有することがさらに好ましく、1,500個/mm以下有することが特に好ましい。多孔質樹脂フィルム中に有効な空孔の数が増えるほど、電荷の蓄積能力が向上し、エネルギー変換効率が向上する傾向にあるが、フィルム中にある一定サイズの空孔の数が増えすぎると、隣接する空孔同士が連通して隣接空孔間で放電(短絡)が発生してしまう可能性が高まり、さらにはフィルム自体の強度が低下して圧縮等の外部応力に対する復元力が低下する傾向にある。そして、圧縮回復性の不足は、圧縮と復元を繰り返して行っているうちに復元率が低下する等の弊害を招くため、機械エネルギーを電気エネルギーに変換する圧電素子として用いる場合には、製品寿命の短命化等の不都合が生じる恐れがある。そのため、これらのバランスを考慮して多孔質樹脂フィルムの空孔の形状やサイズ等を調整することが好ましい。 From these viewpoints, the porous resin film preferably has a specific amount of pores of a specific size (effective for charge accumulation) from the viewpoint of stably storing more charges. On the observation image when the film is observed in an arbitrary cross section, there are 100 holes having a height of 3 to 30 μm in the thickness direction of the film and a diameter of 50 to 500 μm in the surface direction of the film. / Mm 2 or more, preferably 150 pieces / mm 2 or more, more preferably 200 pieces / mm 2 or more, and particularly preferably 300 pieces / mm 2 or more. On the other hand, from the viewpoint of short-circuit suppression between adjacent holes and the strength of the substrate, holes having a height of 3 to 30 μm in the thickness direction of the film and a diameter of 50 to 500 μm in the surface direction of the film are provided. 3,000 / mm 2 or less, preferably 2,500 / mm 2 or less, more preferably 2,000 / mm 2 or less, more preferably 1,500 / mm 2 or less. It is particularly preferable to have it. As the number of effective vacancies in the porous resin film increases, the charge storage capacity tends to improve and the energy conversion efficiency tends to improve, but if the number of vacancy of a certain size in the film increases too much In addition, there is an increased possibility that adjacent holes communicate with each other and discharge (short circuit) occurs between adjacent holes, and further, the strength of the film itself is reduced and the restoring force against external stress such as compression is reduced. There is a tendency. Insufficient compression recovery results in adverse effects such as a decrease in the recovery rate during repeated compression and decompression, so when used as a piezoelectric element that converts mechanical energy into electrical energy, the product life Inconveniences such as shortening of life may occur. Therefore, it is preferable to adjust the shape and size of the pores of the porous resin film in consideration of these balances.
 多孔質樹脂フィルムは、例えば、絶縁性に優れる高分子材料である熱可塑性樹脂に空孔形成核剤を含有させた樹脂組成物を溶融混練して、これをシート状にした後、これを熱可塑性樹脂のガラス転移点より高く且つ熱可塑性樹脂の融点よりも低い温度で延伸成形することにより、フィルム内部に空孔形成核剤を始点(核)とした空孔を形成することで、容易に得ることができる。 The porous resin film is obtained by, for example, melting and kneading a resin composition containing a pore-forming nucleating agent in a thermoplastic resin, which is a polymer material having excellent insulating properties, to form a sheet, and then heating the resin composition. By forming the pores with the pore-forming nucleating agent as the starting point (core) inside the film by stretching at a temperature higher than the glass transition point of the plastic resin and lower than the melting point of the thermoplastic resin, Obtainable.
 かかる多孔質樹脂フィルムの空孔率は、要求性能等に応じて適宜設定すればよく、特に限定されないが、20~80%であることが好ましい。このような空孔率は上記の有効な空孔の数と相関がある。なお、多孔質樹脂フィルムの空孔率とは、同材料全体の全体積に対して同材料中の空孔が占める体積の割合(体積率)を意味する。多孔質樹脂フィルムの空孔率は、空孔が同材料全体に均一に分布している前提で、同材料の断面に対して空孔が占める面積の割合(面積率)と等しい。 The porosity of such a porous resin film may be appropriately set according to required performance and the like, and is not particularly limited, but is preferably 20 to 80%. Such a porosity is correlated with the number of effective holes. In addition, the porosity of a porous resin film means the ratio (volume ratio) of the volume which the void | hole in the same material occupies with respect to the total volume of the whole same material. The porosity of the porous resin film is equal to the ratio (area ratio) of the area occupied by the pores to the cross section of the same material on the assumption that the pores are uniformly distributed throughout the same material.
 そのため多孔質樹脂フィルムの空孔率は、同材料の断面を走査型電子顕微鏡により観察し、画像解析装置に観察画像を取り込み、同観察領域を画像解析することによって、断面上の空孔の面積率を算出して得られる値として得ることができる。具体的には、多孔質樹脂フィルム又はエネルギー変換フィルムからガリウム収束イオンビーム等の手法によって空孔が潰れないように断面観察用の試料を作成し、走査型電子顕微鏡(日本電子(株)製、商品名:JSM-6490)等を使用して適切な倍率(例えば2000倍等)で得られた試料の断面観察を行い、得られた断面写真の観察領域を画像解析装置((株)ニレコ製、商品名:LUZEX AP)等を使用して、試料断面中の空孔が占める面積の割合(面積率)を算出し、これを空孔率とすることができる。 Therefore, the porosity of the porous resin film is determined by observing the cross-section of the same material with a scanning electron microscope, capturing the observation image in an image analysis device, and analyzing the image of the observation area to determine the area ratio of the pores on the cross-section. It can be obtained as a value obtained by calculation. Specifically, a sample for cross-sectional observation is created so that the pores are not crushed by a technique such as a gallium focused ion beam from a porous resin film or an energy conversion film, and a scanning electron microscope (manufactured by JEOL Ltd., Using a product name: JSM-6490) or the like, cross-sectional observation of the sample obtained at an appropriate magnification (for example, 2000 times) is performed, and the observation area of the obtained cross-sectional photograph is image analysis apparatus (manufactured by Nireco Corporation) , Trade name: LUZEX AP) or the like can be used to calculate the ratio (area ratio) of the area occupied by the vacancies in the sample cross section, and this can be used as the vacancy ratio.
 一方、かかる多孔質樹脂フィルムの使用原料が判明しているか、又は空孔が形成されていない樹脂組成物を入手可能な場合には、下記式1に基づいて、多孔質樹脂フィルムの空孔率を算出することもできる。
Figure JPOXMLDOC01-appb-M000001
On the other hand, when the raw material used for the porous resin film is known or a resin composition in which no pores are formed is available, the porosity of the porous resin film is calculated based on the following formula 1. Can also be calculated.
Figure JPOXMLDOC01-appb-M000001
 フィルム内部に電荷を蓄積するのに適したサイズの空孔を数多く設けて、電荷の蓄積容量を確保する観点から、多孔質樹脂フィルムの空孔率は、20%以上であることが好ましく、25%以上であることがより好ましく、30%以上であることがさらに好ましく、35%以上であることが特に好ましい。一方、空孔が連通して電荷が短絡することを抑制したり、多孔質樹脂フィルムの弾性率が極端に劣り、厚み方向の復元性が低下し、耐久性に劣ることを抑制したりする観点から、多孔質樹脂フィルムの空孔率は80%以下であることが好ましく、70%以下であることがより好ましく、60%以下であることがさらに好ましく、55%以下であることが特に好ましい。 From the viewpoint of providing a large number of pores of a size suitable for accumulating charges inside the film and ensuring the charge accumulation capacity, the porosity of the porous resin film is preferably 20% or more, 25 % Or more, more preferably 30% or more, and particularly preferably 35% or more. On the other hand, it is possible to suppress the short circuit of the charge due to the communication of the pores, the extremely low elastic modulus of the porous resin film, the decrease in the restoring property in the thickness direction, and the suppression of the poor durability. Therefore, the porosity of the porous resin film is preferably 80% or less, more preferably 70% or less, further preferably 60% or less, and particularly preferably 55% or less.
 以後、樹脂フィルム乃至多孔質樹脂フィルムを、総じて「樹脂フィルム」と称する場合がある。多孔質樹脂フィルムの厚みは、上記の樹脂フィルムの厚みと同様の範囲であることが好ましい。 Hereinafter, the resin film or the porous resin film may be generally referred to as “resin film”. The thickness of the porous resin film is preferably in the same range as the thickness of the resin film.
[多孔質樹脂フィルムの使用原料]
 エネルギー変換フィルムを構成する多孔質樹脂フィルムは、熱可塑性樹脂及び金属石鹸に加えて、空孔形成核剤を含むことが好ましい。詳しくは単層の多孔質樹脂フィルムの総質量を基準として(以降において、「単層フィルム基準」と称することがある。)、熱可塑性樹脂を50~98質量%、金属石鹸を0.02質量%~20質量%、空孔形成核剤を1.98~49.98質量%を含むことが好ましく、熱可塑性樹脂を60~97質量%、金属石鹸を0.03質量%~10質量%、空孔形成核剤を2.97~39.97質量%を含むことがより好ましく、熱可塑性樹脂を65~96質量%、金属石鹸を0.05質量%~5質量%、空孔形成核剤を3.95~34.95質量%を含むことがさらに好ましく、熱可塑性樹脂を70~85質量%、金属石鹸を0.1質量%~3質量%、空孔形成核剤を14.9~29.9質量%を含むことが最も好ましい。なお、単層の多孔質樹脂フィルムが熱可塑性樹脂と金属石鹸と空孔形成核剤の3成分以外に、後述するその他の材料も含む場合は、同3成分の含有率の合計は100%未満であってよい。
[Raw material of porous resin film]
The porous resin film constituting the energy conversion film preferably contains a pore-forming nucleating agent in addition to the thermoplastic resin and the metal soap. Specifically, based on the total mass of the single-layer porous resin film (hereinafter sometimes referred to as “single-layer film standard”), the thermoplastic resin is 50 to 98 mass% and the metal soap is 0.02 mass. % To 20% by mass, preferably 1.98 to 49.98% by mass of a pore-forming nucleating agent, 60 to 97% by mass of a thermoplastic resin, 0.03% to 10% by mass of a metal soap, More preferably, it contains 2.97 to 39.97% by mass of a pore-forming nucleating agent, 65 to 96% by mass of a thermoplastic resin, 0.05% to 5% by mass of a metal soap, and a pore-forming nucleating agent. Is more preferably 3.95 to 34.95% by mass, thermoplastic resin is 70 to 85% by mass, metal soap is 0.1% by mass to 3% by mass, and pore-forming nucleating agent is 14.9 to Most preferably, it contains 29.9% by weight. In addition, when the single layer porous resin film includes other components described later in addition to the three components of the thermoplastic resin, the metal soap, and the pore-forming nucleating agent, the total content of the three components is less than 100%. It may be.
 また、エネルギー変換フィルムが後述する様にコア層及びスキン層等を有する積層構造を備える場合、その積層構造体の総質量を基準として(以降において、「積層フィルム基準」と称することがある。)、熱可塑性樹脂を50~98質量%、金属石鹸を0.02質量%~20質量%、空孔形成核剤を1.98~49.98質量%を含むことが好ましく、熱可塑性樹脂を60~97質量%、金属石鹸を0.03質量%~10質量%、空孔形成核剤を2.97~39.97質量%を含むことがより好ましく、熱可塑性樹脂を65~96質量%、金属石鹸を0.05質量%~5質量%、空孔形成核剤を3.95~34.95質量%を含むことがさらに好ましく、熱可塑性樹脂を70~85質量%、金属石鹸を0.1質量%~3質量%、空孔形成核剤を14.9~29.9質量%を含むことが最も好ましい。なお、積層フィルムが熱可塑性樹脂と金属石鹸と空孔形成核剤の3成分以外に、後述するその他の材料も含む場合は、同3成分の含有率の合計は100%未満であってよい。 Moreover, when an energy conversion film is provided with the laminated structure which has a core layer, a skin layer, etc. so that it may mention later, on the basis of the total mass of the laminated structure (it may be called "laminated film reference | standard" hereafter). Further, it preferably contains 50 to 98% by mass of thermoplastic resin, 0.02% to 20% by mass of metal soap, 1.98 to 49.98% by mass of a pore-forming nucleating agent, and 60% of thermoplastic resin. More preferably, it contains ~ 97% by mass, metal soap is 0.03% by mass to 10% by mass, pore-forming nucleating agent is 2.97 to 39.97% by mass, thermoplastic resin is 65 to 96% by mass, More preferably, it contains 0.05% to 5% by weight of metal soap, 3.95 to 34.95% by weight of a pore-forming nucleating agent, 70 to 85% by weight of thermoplastic resin, and 0.8% of metal soap. 1% to 3% by mass, pore formation Agent most preferably contains 14.9 to 29.9 wt%. In addition, when the laminated film includes other materials described later in addition to the three components of the thermoplastic resin, the metal soap, and the pore forming nucleating agent, the total content of the three components may be less than 100%.
[熱可塑性樹脂]
 樹脂フィルムに用いられる熱可塑性樹脂は、樹脂フィルム自体を形作るマトリクス樹脂であり、エネルギー変換フィルムに圧電効果や復元性を付与するものである。エネルギー変換フィルムとしての使用に適した熱可塑性樹脂としては、電気を通しにくい絶縁性の高分子材料であることが好ましい。例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレンを含むエチレン系樹脂、プロピレン系樹脂、ポリメチル-1-ペンテン、環状ポリオレフィン等のポリオレフィン系樹脂;エチレン・酢酸ビニル共重合体、エチレン・アクリル酸共重合体、マレイン酸変性ポリエチレン、マレイン酸変性ポリプロピレン等の官能基含有ポリオレフィン系樹脂;ナイロン-6、ナイロン-6,6等のポリアミド系樹脂;ポリエチレンテレフタレートやその共重合体、ポリブチレンテレフタレート、ポリブチレンサクシネート、ポリ乳酸等のポリエステル系樹脂;ポリカーボネート、アタクティックポリスチレン、シンジオタクティックポリスチレン等が挙げられるが、これらに特に限定されない。これらの熱可塑性樹脂の中でも、吸湿性が低く、絶縁性が高いポリオレフィン系樹脂、官能基含有ポリオレフィン系樹脂を用いることが好ましく、ポリオレフィン系樹脂を用いることがより好ましい。熱可塑性樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。
[Thermoplastic resin]
The thermoplastic resin used for the resin film is a matrix resin that forms the resin film itself, and imparts a piezoelectric effect and restorability to the energy conversion film. The thermoplastic resin suitable for use as an energy conversion film is preferably an insulating polymer material that is difficult to conduct electricity. For example, polyolefin resins such as high-density polyethylene, medium-density polyethylene, low-density polyethylene-containing ethylene resins, propylene resins, polymethyl-1-pentene, and cyclic polyolefins; ethylene / vinyl acetate copolymers, ethylene / acrylic acid copolymers Polymers, functional group-containing polyolefin resins such as maleic acid-modified polyethylene and maleic acid-modified polypropylene; polyamide resins such as nylon-6 and nylon-6,6; polyethylene terephthalate and copolymers thereof, polybutylene terephthalate, polybutylene Polyester resins such as succinate and polylactic acid; polycarbonate, atactic polystyrene, syndiotactic polystyrene and the like are exemplified, but not limited thereto. Among these thermoplastic resins, polyolefin resins and functional group-containing polyolefin resins having low hygroscopicity and high insulation properties are preferably used, and polyolefin resins are more preferably used. A thermoplastic resin can be used individually by 1 type or in combination of 2 or more types.
 ポリオレフィン系樹脂としては、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、オクテン、ブチレン、ブタジエン、イソプレン、クロロプレン、メチルペンテン、シクロブテン類、シクロペンテン類、シクロヘキセン類、ノルボルネン類、トリシクロ-3-デセン類等のオレフィン類の単独重合体、及びこれらオレフィン類の2種類以上からなる共重合体等が挙げられるが、これらに特に限定されない。ポリオレフィン系樹脂の具体的な例としては、高密度ポリエチレン、中密度ポリエチレン、プロピレン系樹脂、エチレンと他のオレフィン類との共重合体、プロピレンと他のオレフィン類との共重合体等が挙げられるが、これらに特に限定されない。 Examples of polyolefin resins include olefins such as ethylene, propylene, butene, pentene, hexene, octene, butylene, butadiene, isoprene, chloroprene, methylpentene, cyclobutenes, cyclopentenes, cyclohexenes, norbornenes, and tricyclo-3-decenes. Homopolymers of these types, and copolymers composed of two or more types of these olefins, but are not particularly limited thereto. Specific examples of polyolefin resins include high density polyethylene, medium density polyethylene, propylene resins, copolymers of ethylene and other olefins, copolymers of propylene and other olefins, and the like. However, it is not particularly limited to these.
 これらポリオレフィン系樹脂の中でも、エチレン系樹脂、プロピレン系樹脂が好ましく、アイソタクティック乃至はシンジオタクティック及び種々の程度の立体規則性を示すプロピレン単独重合体、又はプロピレンを主成分とし、これとエチレン、1-ブテン、1-ヘキセン、1-ヘプテン、4-メチル-1-ペンテン等のα-オレフィンとを共重合させたプロピレン系共重合体を含むプロピレン系樹脂が、非吸湿性、絶縁性に加えて、帯電性、加工性、ヤング率、耐久性、コスト等の観点からさらに好ましい。上記プロピレン系共重合体については、2元系でも3元系以上の多元系でもよく、またランダム共重合体でもブロック共重合体でもよい。 Among these polyolefin resins, ethylene resins and propylene resins are preferable, isotactic or syndiotactic and propylene homopolymers having various degrees of stereoregularity, or propylene as a main component, and ethylene and Propylene resin containing a propylene copolymer copolymerized with α-olefin such as 1-butene, 1-hexene, 1-heptene, 4-methyl-1-pentene, etc. is non-hygroscopic and insulating. In addition, it is more preferable from the viewpoint of chargeability, workability, Young's modulus, durability, cost, and the like. The propylene copolymer may be a binary system or a ternary or higher multi-element system, and may be a random copolymer or a block copolymer.
 また官能基含有ポリオレフィン系樹脂の具体的な例としては、上記オレフィン類と共重合可能な官能基含有モノマーとの共重合体が挙げられる。官能基含有モノマーとしては、スチレン、α-メチルスチレン等のスチレン類;酢酸ビニル、ビニルアルコール、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ブチル安息香酸ビニル、シクロヘキサンカルボン酸ビニル等のカルボン酸ビニルエステル類;(メタ)アクリル酸;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、(メタ)アクリルアミド、N-メタロール(メタ)アクリルアミド等のアクリル酸エステル類;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、シクロペンチルビニルエーテル、シクロヘキシルビニルエーテル、ベンジルビニルエーテル、フェニルビニルエーテル等のビニルエーテル類等が挙げられるが、これらに特に限定されない。これら官能基含有モノマーの中から必要に応じ1種類もしくは2種類以上を適宜選択し重合したものを用いることができる。 Further, specific examples of the functional group-containing polyolefin resin include a copolymer with a functional group-containing monomer copolymerizable with the olefins. Examples of functional group-containing monomers include styrenes such as styrene and α-methylstyrene; vinyl acetate, vinyl alcohol, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl caproate, vinyl laurate, vinyl stearate, vinyl benzoate. , Carboxylic acid vinyl esters such as vinyl butylbenzoate and vinyl cyclohexanecarboxylate; (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl ( (Meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) Acrylic esters such as acrylate, (meth) acrylamide, N-metalol (meth) acrylamide; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, cyclopentyl vinyl ether, cyclohexyl vinyl ether, benzyl vinyl ether, and phenyl vinyl ether Although it is mentioned, it is not specifically limited to these. From these functional group-containing monomers, one or two or more types appropriately selected and polymerized can be used as necessary.
 さらにこれらポリオレフィン系樹脂及び官能基含有ポリオレフィン系樹脂を必要によりグラフト変性したものを使用することも可能である。グラフト変性には公知の手法を用いることができ、具体的な例としては、不飽和カルボン酸又はその誘導体によるグラフト変性を挙げることができる。不飽和カルボン酸としては、例えば、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸等を挙げることができる。また不飽和カルボン酸の誘導体としては、酸無水物、エステル、アミド、イミド、金属塩等が使用可能である。具体的には無水マレイン酸、無水イタコン酸、無水シトラコン酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸グリシジル、マレイン酸モノエチルエステル、マレイン酸ジエチルエステル、フマル酸モノメチルエステル、フマル酸ジメチルエステル、イタコン酸モノメチルエステル、イタコン酸ジエチルエステル、(メタ)アクリルアミド、マレイン酸モノアミド、マレイン酸ジアミド、マレイン酸-N-モノエチルアミド、マレイン酸-N,N-ジエチルアミド、マレイン酸-N-モノブチルアミド、マレイン酸-N,N-ジブチルアミド、フマル酸モノアミド、フマル酸ジアミド、フマル酸-N-モノエチルアミド、フマル酸-N,N-ジエチルアミド、フマル酸-N-モノブチルアミド、フマル酸-N,N-ジブチルアミド、マレイミド、N-ブチルマレイミド、N-フェニルマレイミド、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸カリウム等が挙げられるが、これらに特に限定されない。 Furthermore, it is also possible to use those polyolefin-based resins and functional group-containing polyolefin-based resins that are graft-modified as necessary. A known technique can be used for graft modification, and specific examples include graft modification with an unsaturated carboxylic acid or a derivative thereof. Examples of the unsaturated carboxylic acid include (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid and the like. As the derivative of the unsaturated carboxylic acid, an acid anhydride, ester, amide, imide, metal salt or the like can be used. Specifically, maleic anhydride, itaconic anhydride, citraconic anhydride, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, glycidyl (meth) acrylate, monoethyl maleate, Maleic acid diethyl ester, fumaric acid monomethyl ester, fumaric acid dimethyl ester, itaconic acid monomethyl ester, itaconic acid diethyl ester, (meth) acrylamide, maleic acid monoamide, maleic acid diamide, maleic acid-N-monoethylamide, maleic acid- N, N-diethylamide, maleic acid-N-monobutylamide, maleic acid-N, N-dibutylamide, fumaric acid monoamide, fumaric acid diamide, fumaric acid-N-monoethylamide, fumaric acid-N, N-diethylamide , Fumaric acid-N-mono Chiruamido, fumaric acid -N, N- dibutylamide, maleimide, N- butyl maleimide, N- phenylmaleimide, (meth) sodium acrylate, there may be mentioned (meth) potassium acrylate is not particularly limited thereto.
 グラフト変性物としては、グラフトモノマーをポリオレフィン系樹脂及び官能基含有ポリオレフィン系樹脂の少なくとも一方に対して一般に0.005~10質量%、好ましくは0.01~5質量%を加えて、グラフト変性したものが挙げられる。 As the graft modified product, the graft monomer is generally graft modified by adding 0.005 to 10% by mass, preferably 0.01 to 5% by mass, based on at least one of the polyolefin resin and the functional group-containing polyolefin resin. Things.
 多孔質樹脂フィルムに使用するに適した熱可塑性樹脂としては、上記の熱可塑性樹脂の中から1種を選択して単独で使用してもよいし、2種以上を選択して組み合わせて使用してもよい。 As a thermoplastic resin suitable for use in the porous resin film, one of the above thermoplastic resins may be selected and used alone, or two or more may be selected and used in combination. May be.
 樹脂フィルムにおける熱可塑性樹脂の含有量(含有率)は、特に限定されず、例えば多孔質樹脂フィルムのマトリクス樹脂として同フィルム中に十分な空孔界面を形成しつつ、空孔間の連通を抑え、多孔質樹脂フィルムの機械強度を確保する等の観点から、適宜設定すればよい。具体的には、樹脂フィルムの総質量を基準として、熱可塑性樹脂を50質量%以上含むことが好ましく、60質量%以上含むことがより好ましく、65質量%以上含むことがさらに好ましく、70質量%以上含むことが特に好ましい。一方、熱可塑性樹脂を98質量%以下含むことが好ましく、97質量%以下含むことがより好ましく、96質量%以下含むことがさらに好ましく、85質量%以下含むことが特に好ましい。 The content (content rate) of the thermoplastic resin in the resin film is not particularly limited. For example, a sufficient pore interface is formed in the film as a matrix resin of the porous resin film, and communication between the pores is suppressed. From the standpoint of ensuring the mechanical strength of the porous resin film, it may be set as appropriate. Specifically, the thermoplastic resin is preferably contained in an amount of 50% by mass or more, more preferably 60% by mass or more, further preferably 65% by mass or more, and more preferably 70% by mass based on the total mass of the resin film. It is particularly preferable to include the above. On the other hand, it is preferable to contain 98% by mass or less of the thermoplastic resin, more preferably 97% by mass or less, still more preferably 96% by mass or less, and particularly preferably 85% by mass or less.
[金属石鹸]
 従来、樹脂フィルムが金属石鹸を含む場合には、荷電制御剤を含む場合と比して樹脂フィルムの誘電率が高くなり電荷保持性能が低下すると共に、耐熱性が低くなると考えられていた。ところが、本発明者らの検討により、金属石鹸を含む場合に荷電制御剤と同程度の帯電性を有し、さらには耐熱性に優れることを見出した。すなわち、樹脂フィルムが金属石鹸を含むことで、樹脂フィルムの電荷保持性能が高められ、これをエレクトレット化処理して得られるエネルギー変換フィルムは、高温環境下で保管や使用されても、その圧電性能が低下し難くなる。
[Metal soap]
Conventionally, when the resin film contains metal soap, it has been considered that the resin film has a higher dielectric constant and lowers charge retention performance and lowers heat resistance as compared with the case of containing a charge control agent. However, as a result of studies by the present inventors, it has been found that when metal soap is included, it has the same level of chargeability as a charge control agent and is excellent in heat resistance. In other words, the resin film contains metal soap, so that the charge retention performance of the resin film is enhanced, and the energy conversion film obtained by electretizing it has its piezoelectric performance even when stored and used in a high temperature environment. Becomes difficult to decrease.
 エネルギー変換フィルムとしての使用に適した金属石鹸としては、樹脂フィルムの原料の混練段階では溶融して熱可塑性樹脂中に均一に分散し、エネルギー変換フィルム及びこれを用いたエネルギー変換素子の使用環境温度や保管温度では固体であるものが、高い電荷保持性能を発揮し易いため好ましく用いられる。そのため、金属石鹸の融点は、50℃以上、熱可塑性樹脂の融点よりも50℃高い温度以下の範囲内であることが好ましく、70℃以上、熱可塑性樹脂の融点よりも40℃高い温度以下の範囲内であることがより好ましく、100℃以上、熱可塑性樹脂の融点よりも30℃高い温度以下の範囲内であることがさらに好ましい。例えば熱可塑性樹脂としてポリプロピレン樹脂(融点160~170℃)を用いる場合は、融点が50℃~220℃である金属石鹸を用いることが好ましく、融点が70℃~210℃である金属石鹸を用いることがより好ましく、融点が100℃~200℃である金属石鹸を用いることがさらに好ましい。 As a metal soap suitable for use as an energy conversion film, it is melted and uniformly dispersed in a thermoplastic resin in the kneading stage of the resin film raw material, and the environment temperature of the energy conversion film and the energy conversion element using the energy conversion film In addition, those that are solid at the storage temperature are preferably used because they easily exhibit high charge retention performance. Therefore, the melting point of the metal soap is preferably in the range of 50 ° C. or more and 50 ° C. or more higher than the melting point of the thermoplastic resin, and 70 ° C. or more and 40 ° C. or less higher than the melting point of the thermoplastic resin. It is more preferable to be within the range, and it is further preferable to be within a range of 100 ° C. or higher and 30 ° C. or higher than the melting point of the thermoplastic resin. For example, when a polypropylene resin (melting point: 160 to 170 ° C.) is used as the thermoplastic resin, it is preferable to use a metal soap having a melting point of 50 ° C. to 220 ° C., and a metal soap having a melting point of 70 ° C. to 210 ° C. It is more preferable to use a metal soap having a melting point of 100 ° C. to 200 ° C.
 金属石鹸が上述した好ましい温度範囲内に融点を有することで、樹脂フィルムの製造時には溶融して熱可塑性樹脂中に均一に分散し、樹脂フィルムの成形後には熱可塑性樹脂中でその分散状態を保ったまま固化して流動しにくくなっている。そしてエレクトレット処理時には、その分子内の双極子によって金属石鹸が配向し、この金属石鹸の配向によってエネルギー変換フィルムの電荷保持性能が高められているものと推定される。 Since the metal soap has a melting point within the above-mentioned preferred temperature range, it is melted and uniformly dispersed in the thermoplastic resin during the production of the resin film, and the dispersion state is maintained in the thermoplastic resin after the resin film is formed. It solidifies as it is and is difficult to flow. At the time of electret treatment, it is presumed that the metal soap is oriented by the dipoles in the molecule, and the charge retention performance of the energy conversion film is enhanced by the orientation of the metal soap.
 金属石鹸は、脂肪酸の金属塩であることが好ましく、高級脂肪酸の金属塩であることがより好ましい。ここで脂肪酸としては、炭素数5~30の、好ましくは炭素数6~28の、より好ましくは炭素数8~24の、さらに好ましくは炭素数10~20の、飽和脂肪酸と不飽和脂肪酸、及びこれらの構造異性体が挙げられる。なおこれらの炭素数は、脂肪酸一分子当たりの量を示すものである。 The metal soap is preferably a metal salt of a fatty acid, and more preferably a metal salt of a higher fatty acid. Here, as the fatty acid, saturated fatty acid and unsaturated fatty acid having 5 to 30 carbon atoms, preferably 6 to 28 carbon atoms, more preferably 8 to 24 carbon atoms, and further preferably 10 to 20 carbon atoms, and These structural isomers are mentioned. In addition, these carbon numbers show the quantity per molecule of fatty acid.
 飽和脂肪酸の具体的な例としては、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、12-ヒドロキシオクタデカン酸、イコサン酸、ドコサン酸、テトラコサン酸、ヘキサコサン酸、オクタコサン酸等が挙げられるが、これらに特に限定されない。 Specific examples of saturated fatty acids include pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, and 12-hydroxyoctadecane Examples include acid, icosanoic acid, docosanoic acid, tetracosanoic acid, hexacosanoic acid, and octacosanoic acid, but are not particularly limited thereto.
 不飽和脂肪酸の具体的な例としては、トランス-2-ブテン酸、9-テトラデセン酸、9-ヘキサデセン酸、シス-6-ヘキサデセン酸、シス-9-オクタデセン酸、トランス-9-オクタデセン酸、シス-9-イコセン酸、シス-13-ドコセン酸、シス-15-テトラコセン酸、シス,シス-9,12-オクタデカジエン酸、9,11,13-オクタデカトリエン酸、シス,シス,シス-9,12,15-オクタデカトリエン酸、シス,シス,シス-8,11,14-イコサトリエン酸、6,9,12,15-オクタデカテトラエン酸、5,8,10,12,14-オクタデカペンタエン酸、4,7,10,13,16,19-ドコサヘキサエン酸等が挙げられるが、これらに特に限定されない。 Specific examples of unsaturated fatty acids include trans-2-butenoic acid, 9-tetradecenoic acid, 9-hexadecenoic acid, cis-6-hexadecenoic acid, cis-9-octadecenoic acid, trans-9-octadecenoic acid, cis -9-icosenoic acid, cis-13-docosenoic acid, cis-15-tetracosenoic acid, cis, cis-9,12-octadecadienoic acid, 9,11,13-octadecatrienoic acid, cis, cis, cis- 9,12,15-octadecatrienoic acid, cis, cis, cis-8,11,14-icosatrienoic acid, 6,9,12,15-octadecatetraenoic acid, 5,8,10,12,14- Examples thereof include octadecapentaenoic acid, 4,7,10,13,16,19-docosahexaenoic acid, but are not particularly limited thereto.
 これらの脂肪酸の中でも、飽和脂肪酸の金属塩はその融点が高くなる傾向があり、耐熱性が向上したエネルギー変換フィルムが得られ易い傾向があることから、飽和脂肪酸を用いることが好ましい。 Among these fatty acids, the saturated fatty acid metal salt tends to have a high melting point, and it is easy to obtain an energy conversion film with improved heat resistance. Therefore, it is preferable to use a saturated fatty acid.
 また、金属石鹸の金属元素は、脂肪酸と安定な塩を形成する金属であれば特に限定されないが、得られる金属石鹸の融点と電荷保持性能の観点から、通常は一価、二価又は三価の金属であって、周期表の第1族から第13族に属する(旧族番号でIA族からIIIB族に属する)金属元素の少なくとも一種を用いることが好ましく、二価又は三価の金属であって、周期表の第2族から第13族の(旧族番号でIIA族からIIIB族に属する)金属元素の少なくとも一種を用いることがより好ましく、周期表の第2族、第12族及び第13族の(旧族番号でIIA族、IIB族及びIIIB族の)金属元素の少なくとも一種を用いることがさらに好ましい。より具体的には、ナトリウム(第1族)、マグネシウム(第2族)、カルシウム(第2族)、バリウム(第2族)、亜鉛(第12族)及びアルミニウム(第13族)の少なくとも一種を用いることがさらに好ましく、中でも、安全性の観点から、カルシウム、亜鉛及びアルミニウムの少なくとも一種を用いることが特に好ましく、電荷の保持性能をより高める観点から、カルシウム又はアルミニウムを用いることが特に好ましく、アルミニウムを用いることが最も好ましい。また、金属石鹸は塩基性塩であってもよい。 The metal element of the metal soap is not particularly limited as long as it is a metal that forms a stable salt with a fatty acid. However, from the viewpoint of the melting point and charge retention performance of the obtained metal soap, it is usually monovalent, divalent, or trivalent. It is preferable to use at least one metal element belonging to Group 1 to Group 13 of the Periodic Table (old group number belonging to Group IA to Group IIIB), which is a divalent or trivalent metal. It is more preferable to use at least one metal element belonging to Group 2 to Group 13 of the periodic table (old group number belonging to Group IIA to Group IIIB). It is more preferable to use at least one metal element of Group 13 (old group number IIA, IIB and IIIB). More specifically, at least one of sodium (Group 1), magnesium (Group 2), calcium (Group 2), barium (Group 2), zinc (Group 12) and aluminum (Group 13). In particular, from the viewpoint of safety, it is particularly preferable to use at least one of calcium, zinc and aluminum, and from the viewpoint of further improving the charge retention performance, it is particularly preferable to use calcium or aluminum. Most preferably, aluminum is used. The metal soap may be a basic salt.
 本発明のエネルギー変換フィルムにおいて最も好ましく用いられる金属石鹸は、飽和高級脂肪酸アルミニウム塩である。飽和高級脂肪酸アルミニウム塩の具体的な例としては、オクタデカン酸ジヒドロキシアルミニウム、ジオクタデカン酸ヒドロキシアルミニウム、トリオクタデカン酸アルミニウム、ドデカン酸ジヒドロキシアルミニウム、ジドデカン酸ヒドロキシアルミニウム、トリドデカン酸アルミニウム、2-エチルヘキサン酸ジヒドロキシアルミニウム、ジ-2-エチルヘキサン酸ヒドロキシアルミニウム、トリ-2-エチルヘキサン酸アルミニウム等が挙げられるが、これらに特に限定されない。 The metal soap most preferably used in the energy conversion film of the present invention is a saturated higher fatty acid aluminum salt. Specific examples of the saturated higher fatty acid aluminum salt include dihydroxyaluminum octadecanoate, hydroxyaluminum dioctadecanoate, aluminum trioctadecanoate, dihydroxyaluminum dodecanoate, hydroxyaluminum dododecanoate, aluminum tridodecanoate, and dihydroxyaluminum 2-ethylhexanoate. , Hydroxy aluminum di-2-ethylhexanoate, aluminum tri-2-ethylhexanoate and the like, but are not particularly limited thereto.
 上記のような金属石鹸は、プラスチック業界において各種添加剤(例えば、安定剤、滑剤、フィラー分散剤、メヤニ防止剤、流動性改善剤、造核剤、又はアンチブロッキング剤)として、一般的に利用されている。しかしながら、本発明のエネルギー変換フィルムにおける金属石鹸は、フィルムの帯電性を増補するために添加するものであって、特に従来のエネルギー変換フィルムの高温環境下における圧電性能低下を抑制する機能剤として添加するものである。したがって、エネルギー変換素子の圧電性能低下を抑制する本発明においては、上述した従来の一般的な各種添加剤として使用する場合の配合量(例えば、0.01質量%)よりも比較的多い量の金属石鹸を添加することが好ましい。 The metal soaps as described above are generally used as various additives (for example, stabilizers, lubricants, filler dispersants, anti-spot agents, fluidity improvers, nucleating agents, or antiblocking agents) in the plastics industry. Has been. However, the metal soap in the energy conversion film of the present invention is added to increase the chargeability of the film, and is added as a functional agent that suppresses the deterioration of the piezoelectric performance of the conventional energy conversion film in a high temperature environment. To do. Therefore, in the present invention that suppresses the deterioration of the piezoelectric performance of the energy conversion element, the amount is relatively larger than the blending amount (for example, 0.01% by mass) when used as the above-described conventional general various additives. It is preferable to add a metal soap.
 樹脂フィルム中における金属石鹸の含有量は、単層の樹脂フィルムを構成する熱可塑性樹脂と金属石鹸よりなる組成物100質量%に対して(以降において、単層樹脂フィルムの「組成物基準」と称することがある。)、電荷保持能力の観点から0.02質量%以上含むことが好ましく、0.03質量%以上含むことがより好ましく、0.05質量%以上含むことがさらに好ましく、0.1質量%以上含むことが特に好ましく、0.2質量%以上含むことが最も好ましい。 The content of the metal soap in the resin film is based on 100% by mass of the composition comprising the thermoplastic resin and the metal soap constituting the single-layer resin film (hereinafter referred to as “composition standard” of the single-layer resin film and From the viewpoint of charge retention ability, it is preferably 0.02% by mass or more, more preferably 0.03% by mass or more, further preferably 0.05% by mass or more. The content is particularly preferably 1% by mass or more, and most preferably 0.2% by mass or more.
 また金属石鹸は、単層の樹脂フィルムを構成する熱可塑性樹脂と金属石鹸よりなる組成物100質量%に対して、過剰に添加しても効果が頭打ちとなりブリードアウト等の悪影響が大きくなることから、熱可塑性樹脂と金属石鹸よりなる組成物100質量%に対して(以降において、単層樹脂フィルムの「組成物基準」と称することがある。)、20質量%以下含むことが好ましく、10質量%以下含むことがより好ましく、5質量%以下含むことがさらに好ましく、3質量%以下含むことが特に好ましく、0.7質量%以下含むことが最も好ましい。 In addition, the metal soap has a peak effect even if added excessively with respect to 100% by mass of the composition comprising the thermoplastic resin and the metal soap constituting the single-layer resin film, and adverse effects such as bleed out are increased. , Preferably 20% by mass or less, preferably 10% by mass with respect to 100% by mass of the composition comprising the thermoplastic resin and the metal soap (hereinafter, sometimes referred to as “composition standard” of the single-layer resin film). %, More preferably 5% by mass or less, still more preferably 3% by mass or less, and most preferably 0.7% by mass or less.
[空孔形成核剤]
 多孔質樹脂フィルムに用いられる空孔形成核剤は、これを核としてフィルムに空孔を形成するために添加するものである。多孔質樹脂フィルムに使用するに適した空孔形成核剤としては、無機微細粉末及び有機フィラーが挙げられる。これら空孔形成核剤の添加及び後述する延伸工程により、フィルムの内部に空孔を形成することが可能となる。空孔形成核剤の含有量を制御することによって、空孔の頻度を制御することが可能であり、また、空孔形成核剤の粒子径を制御することによって、空孔の大きさ(高さ及び径)を制御することが可能である。
[Void-forming nucleating agent]
The pore-forming nucleating agent used for the porous resin film is added to form pores in the film using this as a nucleus. Examples of the pore-forming nucleating agent suitable for use in the porous resin film include inorganic fine powders and organic fillers. By the addition of these pore-forming nucleating agents and the stretching step described later, it becomes possible to form pores in the film. It is possible to control the frequency of pores by controlling the content of the pore-forming nucleating agent, and by controlling the particle size of the pore-forming nucleating agent, the size of the pores (high And the diameter) can be controlled.
 樹脂フィルムが空孔形成核剤を含む場合の空孔形成核剤の含有量は、樹脂フィルムに十分な空孔を形成する観点から、樹脂フィルムの総量に対して、2質量%以上含むことが好ましく、4質量%以上含むことがより好ましく、10質量%以上含むことがさらに好ましく、14質量%以上含むことが特に好ましい。一方、同フィルム中の空孔間の連通を抑える観点から、樹脂フィルムの総量に対して、50質量%以下含むことが好ましく、40質量%以下含むことがより好ましく、30質量%以下含むことがさらに好ましく、25質量%以下含むことが特に好ましい。 When the resin film contains a pore-forming nucleating agent, the content of the pore-forming nucleating agent may include 2% by mass or more based on the total amount of the resin film from the viewpoint of forming sufficient pores in the resin film. Preferably, 4% by mass or more is included, more preferably 10% by mass or more, still more preferably 14% by mass or more. On the other hand, from the viewpoint of suppressing communication between pores in the film, the content is preferably 50% by mass or less, more preferably 40% by mass or less, and more preferably 30% by mass or less, based on the total amount of the resin film. More preferably, it is particularly preferably 25% by mass or less.
 空孔形成核剤としては、無機微細粉末を単独で、または有機フィラーを単独で、または無機微細粉末と有機フィラーを組み合せたものを、上記の含有量で用いることができる。無機微細粉末と有機フィラーを組み合せて用いる場合の各々の含有比率は、特に限定されない。例えば空孔形成核剤の総量に対して、無機微細粉末を10~99質量%含むものを用いることができ、20~90質量%含むものを用いることができ、30~80質量%含むものを用いることができる。 As the pore-forming nucleating agent, an inorganic fine powder alone, an organic filler alone, or a combination of an inorganic fine powder and an organic filler can be used with the above content. Each content ratio in the case of using combining inorganic fine powder and an organic filler is not specifically limited. For example, those containing 10 to 99% by mass of the inorganic fine powder, 20 to 90% by mass, or 30 to 80% by mass of the inorganic fine powder can be used with respect to the total amount of the pore-forming nucleating agent. Can be used.
 空孔形成核剤の含有率は上述のとおりであるが、空孔形成核剤の含有率が上記の好ましい範囲の下限値以上であれば、後述する延伸工程で、十分な数の電荷を蓄積するのに適したサイズの空孔が得られ易く、所望の圧電性能が得られ易い。一方、空孔形成核剤の含有率が上記の好ましい範囲の上限値以下であれば、過多な空孔形成によるフィルム強度の低下が抑制され易く、得られるエレクトレット材料においては繰り返し圧縮力を作用させても十分な圧縮回復性が発現され易く、さらには圧電性能が安定することが期待できる。 The content rate of the vacancy-forming nucleating agent is as described above, but if the content rate of the vacancy-forming nucleating agent is equal to or higher than the lower limit of the above preferred range, a sufficient number of charges are accumulated in the stretching step described later. Therefore, it is easy to obtain holes having a size suitable for the purpose, and it is easy to obtain desired piezoelectric performance. On the other hand, if the content of the pore-forming nucleating agent is less than or equal to the upper limit of the above preferred range, a decrease in film strength due to excessive pore formation is likely to be suppressed, and repeated compressive force is applied to the obtained electret material. However, it can be expected that sufficient compression recovery properties are easily exhibited and that the piezoelectric performance is stabilized.
[無機微細粉末]
 空孔形成核剤の中でも、無機微細粉末はコストが低く、粒子径が異なる多数の製品が商業的に入手可能である。使用可能な無機微細粉末の具体例としては、炭酸カルシウム、焼成クレー、シリカ、けいそう土、白土、タルク、酸化チタン、硫酸バリウム、アルミナ、ゼオライト、マイカ、セリサイト、ベントナイト、セピオライト、バーミキュライト、ドロマイト、ワラストナイト、ガラスファイバー等が挙げられるが、これらに特に限定されない。無機微細粉末は、1種を単独で又は2種以上を組み合わせて使用することができる。
[Inorganic fine powder]
Among the pore-forming nucleating agents, inorganic fine powders are low in cost, and many products with different particle sizes are commercially available. Specific examples of usable inorganic fine powder include calcium carbonate, calcined clay, silica, diatomaceous earth, white clay, talc, titanium oxide, barium sulfate, alumina, zeolite, mica, sericite, bentonite, sepiolite, vermiculite, dolomite. , Wollastonite, glass fiber and the like, but are not particularly limited thereto. An inorganic fine powder can be used individually by 1 type or in combination of 2 or more types.
 無機微細粉末の体積平均粒径(レーザー回折による粒度分布計で測定したメディアン径(D50))は、電荷を蓄積するのに適したサイズの空孔を成形すること考慮して適宜選択することができ、特に限定されない。形成される空孔が適切なサイズとなり所望の圧電性能が得られ易い観点から、無機微細粉末の体積平均粒径は3μm以上であることが好ましく、4μm以上であることがより好ましく、5μm以上であることがさらに好ましい。一方、粗大空孔の形成により隣接する空孔同士が連通して電荷が短絡して電荷が蓄積しにくくなることを抑制し、空孔が大きすぎることによるフィルム強度の低下を抑制し、得られるエレクトレットにおいては繰り返し圧縮力を作用させても十分な圧縮回復性を発現させ、圧電性能が安定することが期待できる等の観点から、無機微細粉末の体積平均粒径は、30μm以下であることが好ましく、20μm以下であることがより好ましく、15μm以下であることがさらに好ましい。 The volume average particle diameter of the inorganic fine powder (median diameter (D 50 ) measured with a particle size distribution meter by laser diffraction) should be selected appropriately in consideration of forming pores of a size suitable for accumulating charges. There is no particular limitation. From the viewpoint that the formed pores have an appropriate size and desired piezoelectric performance can be easily obtained, the volume average particle size of the inorganic fine powder is preferably 3 μm or more, more preferably 4 μm or more, and more preferably 5 μm or more. More preferably it is. On the other hand, the formation of coarse pores prevents adjacent pores from communicating with each other to short-circuit the charge, making it difficult for the charge to accumulate, and suppressing the decrease in film strength due to the pores being too large. In the electret, the volume average particle size of the inorganic fine powder may be 30 μm or less from the standpoint that sufficient compression recovery can be achieved even when repeated compressive force is applied and the piezoelectric performance can be expected to be stable. Preferably, it is 20 μm or less, and more preferably 15 μm or less.
[有機フィラー]
 空孔形成核剤の中でも、有機フィラーは粒子径の整った球状の粒子として入手可能であり、多孔質樹脂フィルム中に形成される空孔もサイズや形状が均一に整ったものが得られ易い。加えて、空孔形成後も有機フィラーが空孔の中で支柱として機能し得るため、空孔が潰れにくく、得られるエレクトレットにおいては繰り返し圧縮力を作用させても十分な圧縮回復性が発現され易く、さらには圧電性能が安定すること(ピラー効果)が期待できる。
[Organic filler]
Among the pore-forming nucleating agents, the organic filler is available as spherical particles having a uniform particle diameter, and the pores formed in the porous resin film can be easily obtained in a uniform size and shape. . In addition, since the organic filler can function as a support in the pores even after the formation of the pores, the pores are not easily crushed, and the obtained electret exhibits sufficient compression recovery properties even when repeated compression force is applied. In addition, it can be expected that the piezoelectric performance is stabilized (pillar effect).
 有機フィラーとしては、多孔質樹脂フィルムの主成分である熱可塑性樹脂とは異なる種類の樹脂粒子を選択することが好ましい。例えば、熱可塑性樹脂がポリオレフィン系樹脂である場合、好ましい有機フィラーとしては、ポリオレフィンとは非相溶であり、ポリオレフィン系樹脂の混練、延伸成形の際に流動性を有しないものが挙げられる。より具体例には、架橋アクリル樹脂、架橋メタクリル樹脂、架橋スチレン樹脂、架橋ウレタン樹脂等が挙げられるが、これらに特に限定されない。これらの架橋樹脂からなる樹脂粒子は、予め粒子径の整った球状の粒子として入手可能であり、空孔のサイズを調整し易いことから、特に好ましく用いられる。 As the organic filler, it is preferable to select resin particles of a different type from the thermoplastic resin that is the main component of the porous resin film. For example, when the thermoplastic resin is a polyolefin resin, preferred organic fillers include those that are incompatible with polyolefin and do not have fluidity during kneading and stretching of the polyolefin resin. More specific examples include, but are not limited to, a crosslinked acrylic resin, a crosslinked methacrylic resin, a crosslinked styrene resin, and a crosslinked urethane resin. Resin particles made of these cross-linked resins are particularly preferably used because they can be obtained as spherical particles having a predetermined particle diameter and can easily adjust the size of the pores.
 また、有機フィラーは、多孔質樹脂フィルムの主成分である熱可塑性樹脂に非相溶であるが、熱可塑性樹脂とともに溶融混練されて海島構造を形成するものであって、島である有機フィラーが延伸成形時に空孔の核となって、所望の空孔を成形するものであってもよい。例えば、熱可塑性樹脂がポリオレフィン系樹脂である場合、有機フィラーの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ナイロン-6,ナイロン-6,6、環状オレフィン重合体、ポリスチレン、ポリメタクリレート等の重合体であって、ポリオレフィン系樹脂の融点よりも高い融点(例えば170~300℃)ないしはガラス転移温度(例えば170~280℃)を有し、溶融混練によりマトリクス樹脂であるポリオレフィン系樹脂中に微分散させることができるものが挙げられる。有機フィラーは、1種を単独で又は2種以上を組み合わせて使用することができる。また、空孔形成核剤として上記の無機微細粉末と上記の有機フィラーとを併用することもできる。 The organic filler is incompatible with the thermoplastic resin that is the main component of the porous resin film, but is melt-kneaded with the thermoplastic resin to form a sea-island structure. A desired hole may be formed by forming a hole core at the time of stretch molding. For example, when the thermoplastic resin is a polyolefin resin, specific examples of the organic filler include polyethylene terephthalate, polybutylene terephthalate, polycarbonate, nylon-6, nylon-6,6, cyclic olefin polymer, polystyrene, polymethacrylate, etc. Which has a melting point higher than that of the polyolefin resin (for example, 170 to 300 ° C.) or glass transition temperature (for example, 170 to 280 ° C.), and is melt-kneaded in the polyolefin resin that is a matrix resin. The thing which can be finely dispersed is mentioned. An organic filler can be used individually by 1 type or in combination of 2 or more types. Moreover, said inorganic fine powder and said organic filler can also be used together as a void | hole formation nucleating agent.
 有機フィラーの体積平均粒径(レーザー回折による粒度分布計で測定したメディアン径(D50))は、電荷を蓄積するのに適したサイズの空孔を成形すること考慮して適宜選択することができ、特に限定されない。形成される空孔が適切なサイズとなり所望の圧電性能が得られ易い観点から、有機フィラーの体積平均粒径は3μm以上であることが好ましく、4μm以上であることがより好ましく、5μm以上であることがさらに好ましい。一方、粗大空孔の形成により隣接する空孔同士が連通して電荷が短絡して電荷が蓄積しにくくなることを抑制し、空孔が大きすぎることによるフィルム強度の低下を抑制し、得られるエレクトレットにおいては繰り返し圧縮力を作用させても十分な圧縮回復性を発現させ、圧電性能が安定することが期待できる等の観点から、有機フィラーの体積平均粒径は、30μm以下であることが好ましく、20μm以下であることがより好ましく、15μm以下であることがさらに好ましい。 The volume average particle size of the organic filler (median diameter (D 50 ) measured with a particle size distribution meter by laser diffraction) can be selected as appropriate in consideration of forming pores of a size suitable for accumulating charges. Yes, it is not particularly limited. From the viewpoint of easily forming the desired pore size and obtaining desired piezoelectric performance, the volume average particle diameter of the organic filler is preferably 3 μm or more, more preferably 4 μm or more, and more preferably 5 μm or more. More preferably. On the other hand, the formation of coarse pores prevents adjacent pores from communicating with each other to short-circuit the charge, making it difficult for the charge to accumulate, and suppressing the decrease in film strength due to the pores being too large. In the electret, it is preferable that the volume average particle size of the organic filler is 30 μm or less from the viewpoint that sufficient compressive recovery property can be expressed even when repeated compressive force is applied and the piezoelectric performance can be expected to be stable. More preferably, it is 20 μm or less, and further preferably 15 μm or less.
 空孔形成核剤として無機微細粉末と有機フィラーとを併用する場合は、上記列挙した無機微細粉末の中から1種以上と、上記列挙した有機フィラーの中から1種以上とを組み合わせて使用することができる。この場合もまた、上記同様の趣旨から混合物の体積平均粒径が3~30μmの範囲内であることが好ましく、4~20μmの範囲内であることがより好ましく、5~15μmの範囲内であることがさらに好ましい。 When the inorganic fine powder and the organic filler are used in combination as the pore-forming nucleating agent, one or more of the inorganic fine powders listed above are used in combination with one or more of the organic fillers listed above. be able to. Also in this case, for the same purpose as described above, the volume average particle size of the mixture is preferably in the range of 3 to 30 μm, more preferably in the range of 4 to 20 μm, and in the range of 5 to 15 μm. More preferably.
 無機微細粉末と有機フィラーとを併用する場合の体積平均粒径は、個別に同範囲内の粒径を有する無機微細粉末と有機フィラーとを組み合わせて使用してもよく、無機微細粉末と有機フィラーとを混合した状態をレーザー回折による粒度分布計で測定した体積平均粒径が同範囲のものを使用してもよい。 When the inorganic fine powder and the organic filler are used in combination, the volume average particle size may be used by combining the inorganic fine powder and the organic filler having a particle size within the same range individually. A mixture having a volume average particle diameter measured by a particle size distribution meter by laser diffraction in the same range may be used.
[その他の材料]
 樹脂フィルムには必要に応じて、分散剤、熱安定剤(酸化防止剤)、光安定剤等の添加剤を任意に添加することができる。
[Other materials]
If necessary, additives such as a dispersant, a heat stabilizer (antioxidant), and a light stabilizer can be arbitrarily added to the resin film.
 分散剤を添加する場合は、空孔形成核剤の分散不良による意図しない粗大空孔又は連通空孔の発生を抑制する観点から、樹脂フィルムの総質量を基準として、0.01質量%以上含むことが好ましく、0.03質量%以上含むことがより好ましく、0.05質量%以上含むことがさらに好ましい。一方、樹脂フィルムの成形性や電荷保持の観点から、樹脂フィルムの総質量を基準として、10質量%以下含むことが好ましく、5質量%以下含むことがより好ましく、2質量%以下含むことがさらに好ましい。分散剤の具体的な例としては、脂肪酸、グリセリン脂肪酸、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、シランカップリング剤、ポリ(メタ)アクリル酸ないしはそれらの塩等の分散剤が挙げられるが、これらに特に限定されない。 In the case of adding a dispersant, from the viewpoint of suppressing the generation of unintended coarse pores or continuous pores due to poor dispersion of the pore-forming nucleating agent, 0.01% by mass or more is included based on the total mass of the resin film. The content is preferably 0.03% by mass or more, more preferably 0.05% by mass or more. On the other hand, from the viewpoint of moldability and charge retention of the resin film, it is preferably contained in an amount of 10% by mass or less, more preferably 5% by mass or less, and more preferably 2% by mass or less based on the total mass of the resin film. preferable. Specific examples of the dispersant include dispersants such as fatty acid, glycerin fatty acid, polyglycerin fatty acid ester, sorbitan fatty acid ester, silane coupling agent, poly (meth) acrylic acid or salts thereof, and the like. There is no particular limitation.
 熱安定剤を添加する場合は、樹脂フィルムの総質量を基準として、通常0.001~1質量%の範囲内で添加する。熱安定剤の具体例としては、立体障害フェノール系、リン系、アミン系等の熱安定剤が挙げられるが、これらに特に限定されない。これらの熱安定剤は、金属石鹸には及ばないものの、電荷の保持性能を有すると考えられており、特に金属石鹸は立体障害フェノールやリン系の熱安定剤と併用することにより、電荷の保持性能が向上する傾向がある。
 本来、熱安定剤は電荷保持性能の観点から融点は高い方が好ましいが、エネルギー変換フィルム中に熱安定剤を均一に分散させるためには、熱安定剤の融点が低い方が好ましい。従って、熱安定剤の融点は、金属石鹸と同様の融点の範囲であることが好ましい。
 金属石鹸の電荷保持性能を十分に発揮させるためには、熱安定剤の総量に対する金属石鹸の配合比は1:0.2~1:100が好ましく、1:0.5~1:50がより好ましく、1:1~1:10が更に好ましく、1:2~1:5が最も好ましい。
When the heat stabilizer is added, it is usually added in the range of 0.001 to 1% by mass based on the total mass of the resin film. Specific examples of the heat stabilizer include sterically hindered phenol-based, phosphorus-based, and amine-based heat stabilizers, but are not particularly limited thereto. Although these heat stabilizers do not reach metal soaps, they are considered to have charge retention performance. In particular, metal soaps are used in combination with sterically hindered phenols and phosphorus heat stabilizers to maintain charge. There is a tendency to improve performance.
Originally, the heat stabilizer preferably has a high melting point from the viewpoint of charge retention performance, but in order to uniformly disperse the heat stabilizer in the energy conversion film, the heat stabilizer preferably has a low melting point. Accordingly, the melting point of the heat stabilizer is preferably in the same melting point range as that of the metal soap.
In order to sufficiently exhibit the charge retention performance of the metal soap, the compounding ratio of the metal soap to the total amount of the heat stabilizer is preferably 1: 0.2 to 1: 100, more preferably 1: 0.5 to 1:50. Preferably, 1: 1 to 1:10 is more preferable, and 1: 2 to 1: 5 is most preferable.
 光安定剤を添加する場合は、樹脂フィルムの総質量を基準として、通常0.001~1質量%の範囲内で添加する。光安定剤の具体例としては、立体障害アミン系、ベンゾトリアゾール系、ベンゾフェノン系等の光安定剤が挙げられるが、これらに特に限定されない。 When adding a light stabilizer, it is usually added within a range of 0.001 to 1% by mass based on the total mass of the resin film. Specific examples of the light stabilizer include sterically hindered amine-based, benzotriazole-based, and benzophenone-based light stabilizers, but are not particularly limited thereto.
[樹脂フィルム乃至多孔質樹脂フィルムの層構造]
 樹脂フィルム乃至多孔質樹脂フィルムは、上記組成を有する樹脂組成物からなる単層構造のフィルムであってもよいし、同フィルムを少なくとも一層有する多層積層構造の樹脂フィルムであってもよい。樹脂フィルム乃至多孔質樹脂フィルムは、少なくともコア層とスキン層を有する多層積層構造の樹脂フィルム(積層樹脂フィルム)であることが好ましく、スキン層/コア層/スキン層の3層構造であることがより好ましい。
[Layer structure of resin film or porous resin film]
The resin film or porous resin film may be a single-layer film made of the resin composition having the above composition, or may be a multi-layered resin film having at least one layer of the film. The resin film or porous resin film is preferably a resin film having a multilayered structure (laminated resin film) having at least a core layer and a skin layer, and has a three-layer structure of skin layer / core layer / skin layer. More preferred.
[コア層]
 樹脂フィルムがコア層とスキン層を有する積層構造である場合、上記の樹脂フィルム乃至多孔質樹脂フィルムをコア層とし、このコア層にスキン層をさらに設ければよい。以下、樹脂フィルム乃至多孔質樹脂フィルムをコア層と称する場合がある。
[Core layer]
When the resin film has a laminated structure having a core layer and a skin layer, the above resin film or porous resin film may be used as a core layer, and a skin layer may be further provided on the core layer. Hereinafter, the resin film or the porous resin film may be referred to as a core layer.
 後述する方法で測定されるコア層の厚みは、10μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以上であることがさらに好ましく、40μm以上であることが特に好ましい。これにより、エネルギー変換に有効に機能する内部電荷の蓄積に必要な容積を確保しやすく、特に多孔質樹脂フィルムである場合に内部電荷の蓄積に適切な大きさの空孔を所望の数量で均一に形成し易い。一方、コア層の厚みは、500μm以下であることが好ましく、300μm以下であることがより好ましく、150μm以下であることがさらに好ましく、120μm以下であることが特に好ましい。これにより、後述するエレクトレット化(電荷注入処理、直流高電圧放電処理)を施して樹脂フィルムをエレクトレット化してエネルギー変換フィルムとする際に、層内部まで電荷を到達させることが可能となり、本発明の所期の性能を発揮し易い。 The thickness of the core layer measured by the method described later is preferably 10 μm or more, more preferably 20 μm or more, further preferably 30 μm or more, and particularly preferably 40 μm or more. This makes it easy to secure the volume necessary for accumulating internal charges that function effectively for energy conversion, and in the case of a porous resin film, the number of pores of an appropriate size for accumulating internal charges is uniform in the desired quantity. Easy to form. On the other hand, the thickness of the core layer is preferably 500 μm or less, more preferably 300 μm or less, further preferably 150 μm or less, and particularly preferably 120 μm or less. As a result, when electretization (charge injection treatment, direct current high-voltage discharge treatment) described later is performed to electret the resin film to form an energy conversion film, it is possible to cause charges to reach the inside of the layer. It is easy to demonstrate the expected performance.
[スキン層]
 スキン層は樹脂フィルム乃至多孔質樹脂フィルム(コア層)の少なくとも片面上に積層される。スキン層は、上記のコア層を保護する層として、コア層の少なくとも片面上に積層することが好ましく、コア層の両面上に積層することがより好ましい。コア層の表面にスキン層を設けることにより、樹脂フィルム中より系外にブリードアウトする恐れがある金属石鹸をバリアーすることができ、多孔質樹脂フィルムに形成した空孔が外部と通じて内部に蓄えた電荷が大気放電してしまうことを防ぎやすくでき、多孔質樹脂フィルムの表面強度を向上させることができ、表面を平滑にすることで電極との接着性を向上させることができる。
[Skin layer]
The skin layer is laminated on at least one surface of a resin film or a porous resin film (core layer). The skin layer is preferably laminated on at least one side of the core layer as a layer protecting the core layer, and more preferably laminated on both sides of the core layer. By providing a skin layer on the surface of the core layer, it is possible to barrier metal soap that may bleed out from the resin film, and the pores formed in the porous resin film communicate with the outside. The stored charge can be easily prevented from being discharged into the atmosphere, the surface strength of the porous resin film can be improved, and the adhesion to the electrode can be improved by smoothing the surface.
 スキン層もまた、熱可塑性樹脂を含むフィルムよりなることが好ましい。スキン層を構成する熱可塑性樹脂としては、樹脂フィルムに使用する熱可塑性樹脂の項で列挙したものを用いることができる。 The skin layer is also preferably made of a film containing a thermoplastic resin. As a thermoplastic resin which comprises a skin layer, what was enumerated by the term of the thermoplastic resin used for a resin film can be used.
 ここで、スキン層は、コア層と同様に金属石鹸を含んでいてもよく、含んでいなくてもよい。スキン層をコア層の保護層とする趣旨からは、スキン層は金属石鹸を含まないことが好ましい。スキン層が金属石鹸を含む場合は、その配合量をコア層におけるそれよりも少なくすることが好ましい。 Here, the skin layer may or may not contain a metal soap like the core layer. In order to make the skin layer a protective layer for the core layer, the skin layer preferably contains no metal soap. When a skin layer contains a metal soap, it is preferable to make the compounding quantity smaller than that in a core layer.
 スキン層は、コア層よりも空孔を形成し難い組成を有するか、コア層よりも空孔率が低い構造であることが好ましい。この様なスキン層の形成は、空孔形成核剤の含有量をコア層よりも少なくする手法や、スキン層に使用する空孔形成核剤の体積平均粒径をコア層に使用する空孔形成核剤の体積平均粒径より小さくする手法や、コア層を2軸延伸により形成し且つスキン層を1軸延伸で形成する等して両者の延伸倍率に差異をつける手法等により達成できる。 The skin layer preferably has a composition that is less likely to form vacancies than the core layer, or a structure having a lower porosity than the core layer. The formation of such a skin layer can be achieved by using a technique in which the content of the pore-forming nucleating agent is less than that of the core layer, or by using the volume average particle size of the pore-forming nucleating agent used in the skin layer in the core layer. This can be achieved by a technique of making the volume average particle size of the nucleating agent smaller than the volume average particle diameter, a technique of forming a core layer by biaxial stretching and a skin layer by uniaxial stretching, or the like, and making a difference between the stretching ratios.
 また、スキン層は空孔形成核剤を含有していても、含有していなくてもよい。スキン層の物理的強度を向上し、コア層の耐久性を向上させるという観点からは、空孔形成核剤を含有していない方が好ましい。また、スキン層の誘電率を向上させ、コア層の電気的特性を改質するという観点からは、空孔形成核剤を含有している方が好ましい。スキン層が空孔形成核剤を含有する場合は、多孔質樹脂フィルムに使用する空孔形成核剤の項で列挙したものと同様のものを用いることができる。ここで、スキン層の空孔形成核剤としては、多孔質樹脂フィルムの空孔形成核剤とは同種のものを用いてもよいし、異種のものを用いてもよい。 The skin layer may or may not contain a pore-forming nucleating agent. From the viewpoint of improving the physical strength of the skin layer and improving the durability of the core layer, it is preferable not to contain a pore-forming nucleating agent. Further, from the viewpoint of improving the dielectric constant of the skin layer and modifying the electrical characteristics of the core layer, it is preferable to contain a pore-forming nucleating agent. When the skin layer contains a pore-forming nucleating agent, those listed in the section of the pore-forming nucleating agent used for the porous resin film can be used. Here, as the pore-forming nucleating agent for the skin layer, the same or different types of pore-forming nucleating agent for the porous resin film may be used.
 特に有機フィラーは、多孔質樹脂フィルムに使用する熱可塑性樹脂よりも一般的に誘電率が高いため、スキン層の電気特性の改質に向いている。特にスキン層の熱可塑性樹脂としてポリオレフィン系樹脂等の誘電率が比較的に低い樹脂を使用する場合は、スキン層に有機フィラーを含有させることにより、エレクトレット化処理時の高電圧印加時に、その誘電効果により樹脂フィルム内部(コア層内部)まで電荷を到達させ易い。逆にエレクトレット化処理後は、主成分であるポリオレフィン系樹脂の低い誘電特性により、樹脂フィルム内部の電荷を逃がさず保持する効果が得られる。 Particularly, organic fillers are generally suitable for modifying the electrical properties of the skin layer because they have a dielectric constant generally higher than that of thermoplastic resins used for porous resin films. In particular, when a resin having a relatively low dielectric constant, such as a polyolefin resin, is used as the thermoplastic resin for the skin layer, by adding an organic filler to the skin layer, the dielectric can be applied when a high voltage is applied during electretization. Due to the effect, the charge can easily reach the inside of the resin film (inside the core layer). On the other hand, after the electretization treatment, an effect of retaining the electric charge inside the resin film without escaping can be obtained due to the low dielectric properties of the polyolefin resin as the main component.
 スキン層に空孔形成核剤を含有させる場合は、多孔質樹脂フィルムに使用する分散剤の項で列挙したものと同様の分散剤を使用することが好ましい。 When the pore forming nucleating agent is contained in the skin layer, it is preferable to use the same dispersing agents as those listed in the section of the dispersing agent used for the porous resin film.
 スキン層は延伸されていることが好ましい。詳細後述する延伸工程によって、スキン層の厚み(膜厚)の均一性や絶縁耐圧性等の電気特性の均一性を向上することができる。スキン層の厚みが不均一であると、高電圧を用いた電荷注入時に、スキン層の薄い部分で局所的な放電集中が発生し易いため、効果的に電荷注入するための高電圧印加を行うことが困難になり易い。 The skin layer is preferably stretched. The stretching process described in detail below can improve the uniformity of the thickness (film thickness) of the skin layer and the uniformity of electrical characteristics such as the withstand voltage. If the thickness of the skin layer is not uniform, local discharge concentration is likely to occur in the thin portion of the skin layer during charge injection using a high voltage, so high voltage application for effective charge injection is performed. It tends to be difficult.
 なお、スキン層は単層構造のみならず、2層構造以上の多層積層構造のものであってもよい。多層積層構造とする場合は、各層に使用する熱可塑性樹脂、空孔形成核剤、分散剤の種類や含有量を変更することにより、より高い電荷保持性能を備えた多層積層構造の多孔質樹脂フィルムの設計が容易となる。 Note that the skin layer may have not only a single layer structure but also a multi-layer structure having two or more layers. In the case of a multilayer laminated structure, a porous resin having a multilayer laminated structure having higher charge retention performance by changing the type and content of the thermoplastic resin, pore-forming nucleating agent and dispersant used in each layer The film design becomes easy.
 スキン層をコア層の表裏両面に設ける場合は、表裏のスキン層のそれぞれの組成、構成、厚み等は同一でもよいし、異なっていてもよい。 When providing the skin layer on both the front and back surfaces of the core layer, the composition, configuration, thickness, etc. of the front and back skin layers may be the same or different.
 コア層の表面にスキン層を設ける場合、スキン層の厚みは、特に限定されないが、0.1μm以上であることが好ましく、0.3μm以上であることがより好ましく、0.5μm以上であることがさらに好ましく、0.7μm以上であることが特に好ましい。これにより、スキン層を均一に設けることが容易になり、均一な電荷注入や絶縁耐圧性の向上が期待できる。一方、スキン層の厚みは100μm以下であることが好ましく、50μm以下であることがより好ましく、30μm以下であることがさらに好ましく、10μm以下であることが特に好ましい。これにより、多層積層構造の多孔質樹脂フィルムに電荷注入する際に、フィルム内部のコア層にまで電荷を到達させ易くなる傾向がある。 When the skin layer is provided on the surface of the core layer, the thickness of the skin layer is not particularly limited, but is preferably 0.1 μm or more, more preferably 0.3 μm or more, and 0.5 μm or more. Is more preferable, and 0.7 μm or more is particularly preferable. As a result, it becomes easy to provide the skin layer uniformly, and uniform charge injection and improvement in dielectric strength can be expected. On the other hand, the thickness of the skin layer is preferably 100 μm or less, more preferably 50 μm or less, further preferably 30 μm or less, and particularly preferably 10 μm or less. Thereby, when injecting electric charge into the porous resin film having a multilayer laminated structure, the electric charge tends to easily reach the core layer inside the film.
 また、スキン層は、コア層よりも薄いことが好ましい。スキン層はコア層よりも相対的に厚み方向の弾性変形がしにくい層であるため、スキン層の厚みを抑えることで、多孔質樹脂フィルム等の圧縮弾性率が低下せず、エネルギー変換効率を維持しやすくなる。 The skin layer is preferably thinner than the core layer. Since the skin layer is a layer that is less likely to undergo elastic deformation in the thickness direction than the core layer, by suppressing the thickness of the skin layer, the compression elastic modulus of the porous resin film or the like does not decrease, and the energy conversion efficiency is improved. Easy to maintain.
 そのため、コア層の厚みとスキン層の厚みの比率(コア層/スキン層)は、1.1~1000であることが好ましく、2~300であることがより好ましく、5~150であることがさらに好ましく、10~50であることが特に好ましい。なお同値は、スキン層が複数層の場合はその合計値から換算する。 Therefore, the ratio of the thickness of the core layer to the thickness of the skin layer (core layer / skin layer) is preferably 1.1 to 1000, more preferably 2 to 300, and more preferably 5 to 150. More preferred is 10-50. The equivalent value is converted from the total value when there are multiple skin layers.
[樹脂フィルムの形成]
 樹脂フィルムの製造には、従来公知の種々の方法が使用できる。例えば、樹脂フィルムが単層のフィルムである場合は、上記原料を含む樹脂組成物を溶融混練し単一のダイスから押し出して、必要に応じて延伸すればよい。また、コア層とスキン層を有する多層積層構造の樹脂フィルムである場合は、フィードブロックやマルチマニホールドを使用した多層ダイスを用いる共押出方式や、複数のダイスを使用する押出ラミネーション方式等により両者が積層した多層樹脂フィルムを製造することができる。さらに多層ダイスによる共押出方式と押出ラミネーション方式を組み合わせる方法により樹脂フィルムを製造することもできる。
[Formation of resin film]
Various conventionally known methods can be used for the production of the resin film. For example, when the resin film is a single-layer film, the resin composition containing the above raw materials may be melt-kneaded, extruded from a single die, and stretched as necessary. In addition, when the resin film has a multilayer laminated structure having a core layer and a skin layer, both of them can be obtained by a co-extrusion method using a multilayer die using a feed block or a multi-manifold or an extrusion lamination method using a plurality of dies. A laminated multilayer resin film can be produced. Furthermore, a resin film can also be produced by a method combining a coextrusion method using a multilayer die and an extrusion lamination method.
 樹脂フィルムの厚みの均一性は、絶縁耐圧性が向上するため電荷注入効率が向上し、結果的に得られるエネルギー変換フィルムの圧電効率が向上するため重要である。 The uniformity of the thickness of the resin film is important because the electric charge injection efficiency is improved because the withstand voltage is improved, and the piezoelectric efficiency of the resulting energy conversion film is improved.
 樹脂フィルムは、少なくとも1方向に延伸された延伸フィルムであることが好ましい。延伸により、樹脂フィルムの厚みの均一性は向上する。また、多孔質樹脂フィルムの場合には、延伸により内部に空孔が多数形成される。また、コア層とスキン層を有する多層積層構造の樹脂フィルムである場合は、スキン層をコア層上に積層した後に、少なくとも1軸方向に延伸することが好ましい。スキン層をコア層上に積層した後に延伸することによって、延伸フィルム同士を積層するよりも、膜厚の均一性が向上し、結果的に電気特性が向上する。 The resin film is preferably a stretched film stretched in at least one direction. By stretching, the uniformity of the thickness of the resin film is improved. In the case of a porous resin film, a large number of pores are formed inside by stretching. In the case of a resin film having a multilayer laminated structure having a core layer and a skin layer, it is preferable that the skin layer is laminated on the core layer and then stretched in at least one axial direction. By stretching after laminating the skin layer on the core layer, the uniformity of the film thickness is improved as compared with laminating stretched films, and as a result, the electrical characteristics are improved.
 延伸により多孔質樹脂フィルム中に形成される空孔は、電荷を保持する観点から個々の体積が比較的大きく、その数が比較的多く、且つ互いに独立した形状であることが望ましい。空孔の大きさは、1方向のみ延伸するよりも、2軸方向に延伸した方が大きくし易い。特にフィルムの幅方向及び流れ方向の2軸方向に延伸したものは、空孔形成核剤を中心に面方向に引き延ばされた円盤状の空孔を形成できるので、エレクトレット化により空孔内に正負分極した電荷を蓄積し易く、電荷の保持性能が優れたものとなる。したがって、多孔質樹脂フィルムは、2軸延伸フィルムであることが好ましい。 It is desirable that the pores formed in the porous resin film by stretching have a relatively large individual volume, a relatively large number, and shapes independent from each other, from the viewpoint of maintaining electric charge. The size of the holes is easier to extend in the biaxial direction than in one direction. In particular, the film stretched in the biaxial direction of the width direction and the flow direction can form a disk-like hole extending in the plane direction around the hole-forming nucleating agent. Therefore, positively and negatively polarized charges are easily stored, and the charge holding performance is excellent. Therefore, the porous resin film is preferably a biaxially stretched film.
 樹脂フィルムの延伸は、公知の種々の方法によって行うことができる。具体的には、ロール群の周速差を利用した縦延伸方法、テンターオーブンを使用した横延伸方法、上記縦延伸と横延伸とを正順又は逆順に行う逐次二軸延伸方法、圧延方法、テンターオーブンとリニアモーターの組み合わせによる同時二軸延伸方法、テンターオーブンとパンタグラフの組み合わせによる同時二軸延伸方法等を挙げることができる。また、インフレーションフィルムの延伸方法であるチューブラー法による同時二軸延伸方法を挙げることができる。 The stretching of the resin film can be performed by various known methods. Specifically, a longitudinal stretching method using the peripheral speed difference of the roll group, a lateral stretching method using a tenter oven, a sequential biaxial stretching method in which the longitudinal stretching and the lateral stretching are performed in the normal order or reverse order, a rolling method, Examples thereof include a simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor, and a simultaneous biaxial stretching method using a combination of a tenter oven and a pantograph. Moreover, the simultaneous biaxial stretching method by the tubular method which is a stretching method of an inflation film can be mentioned.
 延伸時の温度は、樹脂フィルムに用いる主要な(質量比で最も多く用いる)熱可塑性樹脂のガラス転移点温度から、主要な熱可塑性樹脂の結晶部の融点より1~70℃低い温度が好ましい。具体的には、熱可塑性樹脂がプロピレン単独重合体(融点155~167℃)である場合は100~166℃の範囲内であることが好ましく、高密度ポリエチレン(融点121~136℃)である場合は70~135℃の範囲内であることが好ましい。また、多層積層構造の樹脂フィルムを延伸する場合は、設定坪量の最も多い層(通常はコア層)又は設定空孔率の最も高い層(通常はコア層)の延伸効率を考慮して、延伸温度を設定するのが好ましい。勿論、樹脂フィルムのコア層とスキン層にそれぞれ融点又はガラス転移点の異なる熱可塑性樹脂を用いて延伸温度を決定すれば、それぞれの層の空孔率を調整することが可能である。 The temperature at the time of stretching is preferably 1 to 70 ° C. lower than the melting point of the crystal part of the main thermoplastic resin from the glass transition temperature of the main thermoplastic resin (used most by mass ratio) used for the resin film. Specifically, when the thermoplastic resin is a propylene homopolymer (melting point 155 to 167 ° C.), it is preferably within the range of 100 to 166 ° C., and when it is a high density polyethylene (melting point 121 to 136 ° C.). Is preferably in the range of 70 to 135 ° C. In addition, when stretching a resin film having a multilayer laminated structure, considering the stretching efficiency of the layer with the largest set basis weight (usually the core layer) or the layer with the highest set porosity (usually the core layer), It is preferable to set the stretching temperature. Of course, if the stretching temperature is determined by using thermoplastic resins having different melting points or glass transition points for the core layer and the skin layer of the resin film, the porosity of each layer can be adjusted.
 延伸倍率は、特に限定されず、樹脂フィルムに用いる熱可塑性樹脂の延伸特性や上述の設定空孔率等を考慮して適宜決定すればよい。例えば熱可塑性樹脂としてプロピレン単独重合体ないしはその共重合体を使用する場合の延伸倍率は、一軸方向に延伸する場合は1.2倍以上が好ましく、2倍以上がより好ましい。一方、その上限側は、12倍以下が好ましく、10倍以下がより好ましい。また、二軸方向に延伸する場合には、面積延伸倍率(縦倍率と横倍率の積)で1.5倍以上が好ましく、4倍以上がより好ましい。一方、その上限側は、60倍以下が好ましく、50倍以下がより好ましい。 The stretching ratio is not particularly limited, and may be appropriately determined in consideration of the stretching characteristics of the thermoplastic resin used for the resin film, the set porosity described above, and the like. For example, when a propylene homopolymer or a copolymer thereof is used as the thermoplastic resin, the stretching ratio is preferably 1.2 times or more, more preferably 2 times or more when stretching in a uniaxial direction. On the other hand, the upper limit side is preferably 12 times or less, and more preferably 10 times or less. Moreover, when extending | stretching to a biaxial direction, 1.5 times or more are preferable by area stretch ratio (product of a vertical magnification and a horizontal magnification), and 4 times or more are more preferable. On the other hand, the upper limit side is preferably 60 times or less, and more preferably 50 times or less.
 その他の熱可塑性樹脂を使用する場合の延伸倍率は、一軸方向に延伸する場合は1.2倍以上が好ましく、2倍以上がより好ましい。一方、10倍以下が好ましく、5倍以下がより好ましい。また、二軸方向に延伸する場合には面積延伸倍率で1.5倍以上が好ましく、4倍以上がより好ましい。一方、その上限側は、20倍以下が好ましく、12倍以下がより好ましい。 When using other thermoplastic resins, the draw ratio is preferably 1.2 times or more and more preferably 2 times or more when uniaxially drawn. On the other hand, 10 times or less is preferable and 5 times or less is more preferable. Moreover, when extending | stretching to a biaxial direction, 1.5 times or more are preferable by area stretch ratio, and 4 times or more are more preferable. On the other hand, the upper limit side is preferably 20 times or less, and more preferably 12 times or less.
 多孔質樹脂フィルムにおいて二軸方向に延伸する場合には、縦倍率と横倍率をできる限り同倍率に設定することが、電荷の蓄積をし易い円盤状の空孔を形成し、任意方向の断面で観察した空孔の形状や頻度を本発明の好ましい範囲に調整し易い。そのため二軸方向に延伸する場合には、縦倍率と横倍率との比が0.4以上であることが好ましく、0.5以上であることがより好ましく、0.7以上であることがさらに好ましく、0.8以上であることが特に好ましい。一方、その上限側は、2.5以下であることが好ましく、2.0以下であることがより好ましく、1.5以下であることがさらに好ましく、1.3以下であることが特に好ましい。また延伸速度は、安定な延伸成形の観点から、20~350m/分の範囲内とするのが好ましい。 When the porous resin film is stretched in the biaxial direction, it is possible to set the vertical and horizontal magnifications to the same magnification as much as possible to form disk-like pores that are easy to accumulate charges, and to cross sections in any direction. It is easy to adjust the shape and frequency of the holes observed in the above to the preferable range of the present invention. Therefore, when stretching in the biaxial direction, the ratio of the vertical magnification and the horizontal magnification is preferably 0.4 or more, more preferably 0.5 or more, and further preferably 0.7 or more. Preferably, it is 0.8 or more. On the other hand, the upper limit side is preferably 2.5 or less, more preferably 2.0 or less, further preferably 1.5 or less, and particularly preferably 1.3 or less. The stretching speed is preferably in the range of 20 to 350 m / min from the viewpoint of stable stretch molding.
[表面処理]
 樹脂フィルムには、後述する電極等の他素材との密着性を高めるために、その片面もしくは両面に公知の手法による表面処理を施すことができる。表面処理の具体的な例としては、コロナ放電処理、フレームプラズマ処理、大気圧プラズマ処理等の手法を挙げることができる。また、これら表面処理の処理環境やプラズマの発生源を所望の気体で置換することにより、樹脂フィルムの密着性をより高めることができる。さらに、塩酸、硝酸、硫酸等の酸により樹脂フィルム表面を洗浄することにより、密着性を改善することも可能である。
[surface treatment]
The resin film can be subjected to a surface treatment by a known method on one side or both sides in order to enhance adhesion with other materials such as electrodes described later. Specific examples of the surface treatment include techniques such as corona discharge treatment, flame plasma treatment, and atmospheric pressure plasma treatment. Moreover, the adhesiveness of a resin film can be improved more by substituting the processing environment of these surface treatments, and the generation source of a plasma with desired gas. Furthermore, the adhesion can be improved by washing the resin film surface with an acid such as hydrochloric acid, nitric acid, sulfuric acid or the like.
[アンカーコート層]
 樹脂フィルムには、後述する電極との密着性を高めるために、その片面もしくは両面にアンカーコート層を設けてもよい。
[Anchor coat layer]
The resin film may be provided with an anchor coat layer on one side or both sides in order to improve adhesion to the electrode described later.
 アンカーコート層には、樹脂フィルムと電極との密着性を高める観点から、高分子バインダーを用いることが好ましい。高分子バインダーの具体的な例としては、ポリエチレンイミン、炭素数1~12のアルキル変性ポリエチレンイミン、ポリ(エチレンイミン-尿素)等のポリエチレンイミン系重合体;ポリアミンポリアミドのエチレンイミン付加物、及びポリアミンポリアミドのエピクロルヒドリン付加物等のポリアミンポリアミド系重合体;アクリル酸アミド-アクリル酸エステル共重合体、アクリル酸アミド-アクリル酸エステル-メタクリル酸エステル共重合体、ポリアクリルアミドの誘導体、オキサゾリン基含有アクリル酸エステル系重合体等のアクリル酸エステル系重合体;ポリビニルアルコールやその変性体を含むポリビニルアルコール系重合体;ポリビニルピロリドン、及びポリエチレングリコール等の水溶性樹脂;並びに塩素化ポリプロピレン、マレイン酸変性ポリプロピレン、アクリル酸変性ポリプロピレン等の変性ポリプロピレン系重合体;等の他、ポリ酢酸ビニル、ポリウレタン、エチレン-酢酸ビニル共重合体、ポリ塩化ビニリデン、アクリルニトリル-ブタジエン共重合体、及びポリエステル等の非水溶性樹脂;等が挙げられるが、これらに特に限定されない。これらの中でも、ポリエチレンイミン系重合体、ポリアミンポリアミド系重合体、ポリビニルアルコール系重合体、及び変性ポリプロピレン系重合体が、樹脂フィルムとの密着性に優れるため好ましい。 In the anchor coat layer, it is preferable to use a polymer binder from the viewpoint of improving the adhesion between the resin film and the electrode. Specific examples of the polymer binder include polyethyleneimine, polyethylenimine-based polymers such as C1-C12 alkyl-modified polyethyleneimine, poly (ethyleneimine-urea); polyamine polyamide ethyleneimine adduct, and polyamine Polyamine polyamide polymers such as polyamide epichlorohydrin adducts; acrylic amide-acrylic ester copolymers, acrylic amide-acrylic ester-methacrylic ester copolymers, polyacrylamide derivatives, oxazoline group-containing acrylic esters Acrylic ester polymers such as polymer based polymers; polyvinyl alcohol polymers including polyvinyl alcohol and modified products thereof; water soluble resins such as polyvinyl pyrrolidone and polyethylene glycol; and chlorinated polypropylene Modified polypropylene polymers such as ethylene, maleic acid modified polypropylene, acrylic acid modified polypropylene; and the like; polyvinyl acetate, polyurethane, ethylene-vinyl acetate copolymer, polyvinylidene chloride, acrylonitrile-butadiene copolymer, and Non-water-soluble resin such as polyester; Among these, a polyethyleneimine polymer, a polyamine polyamide polymer, a polyvinyl alcohol polymer, and a modified polypropylene polymer are preferable because of excellent adhesion to a resin film.
 樹脂フィルム上にアンカーコート層を設ける方法としては、従来公知の種々の方法が使用でき、特に限定されないが、上記の高分子バインダーを含む塗工液を樹脂フィルム上に塗工する方法が好ましい。具体的には、樹脂フィルム上に公知の塗工装置を用いて上記塗工液の塗膜を形成し、これを乾燥することにより形成することができる。 As a method of providing an anchor coat layer on a resin film, various conventionally known methods can be used, and are not particularly limited. However, a method of coating a coating liquid containing the above polymer binder on a resin film is preferable. Specifically, it can be formed by forming a coating film of the coating solution on a resin film using a known coating apparatus and drying the coating film.
 塗工液は、高分子バインダーが水溶性樹脂の場合は水溶液又は水分散液として、高分子バインダーが非水溶性樹脂の場合は有機溶剤溶液又は水分散液の状態として、高分子バインダーを公知の方法で塗工可能に調製したものである。 When the polymer binder is a water-soluble resin, the coating liquid is an aqueous solution or water dispersion. When the polymer binder is a water-insoluble resin, the polymer binder is known as an organic solvent solution or water dispersion. It is prepared so that it can be applied by a method.
 塗工装置の具体的な例としては、ダイコーター、バーコーター、コンマコーター、リップコーター、ロールコーター、カーテンコーター、グラビアコーター、スクイズコーター、スプレーコーター、ブレードコーター、リバースコーター、エアーナイフコーター、サイズプレスコーター等が挙げられるが、これらに特に限定されない。 Specific examples of coating equipment include die coaters, bar coaters, comma coaters, lip coaters, roll coaters, curtain coaters, gravure coaters, squeeze coaters, spray coaters, blade coaters, reverse coaters, air knife coaters, and size presses. Although a coater etc. are mentioned, it is not specifically limited to these.
 樹脂フィルム上にアンカーコート層を設ける場合、その坪量は、特に限定されないが、樹脂フィルムと電極との密着性を向上させる観点から、固形分換算で0.001g/m以上が好ましく、0.005g/m以上がより好ましく、0.01g/m以上が特に好ましい。一方、塗工層であるアンカーコート層の膜厚を均一に保つ観点から、その坪量は、固形分換算で5g/m以下が好ましく、3g/m以下がより好ましく、1g/m以下が特に好ましい。なお、塗工層であるアンカーコート層の膜厚を均一に保てない場合、膜厚の振れによって樹脂フィルムの電気特性の面方向均一性が損なわれたり、アンカーコート層自体の凝集力不足から樹脂フィルムと電極との密着性が低下したり、アンカーコート層の表面抵抗値が低下して1×1013Ω未満となり、樹脂フィルムのエレクトレット化の際に電荷が表面を伝って逃げやすくなるために、樹脂フィルム内部に電荷が注入されにくくなり、樹脂フィルム内部まで電荷が到達できずに本発明の所期の性能を発現しにくくなることがある。 When the anchor coat layer is provided on the resin film, the basis weight is not particularly limited, but is preferably 0.001 g / m 2 or more in terms of solid content from the viewpoint of improving the adhesion between the resin film and the electrode. .005g / m 2 or more preferably, 0.01 g / m 2 or more is particularly preferable. On the other hand, from the viewpoint of maintaining the film thickness of the anchor coat layer is a coating layer uniformly, its basis weight is preferably 5 g / m 2 or less in terms of solid content, more preferably not more than 3g / m 2, 1g / m 2 The following are particularly preferred: In addition, when the film thickness of the anchor coat layer that is the coating layer cannot be kept uniform, the uniformity in the surface direction of the electrical characteristics of the resin film is impaired due to the fluctuation of the film thickness, or the anchor coat layer itself has insufficient cohesive strength. Because the adhesion between the resin film and the electrode is reduced, or the surface resistance value of the anchor coat layer is reduced to less than 1 × 10 13 Ω, and the charge easily escapes through the surface when the resin film is electretized. In addition, it may be difficult for charges to be injected into the resin film, and the charge may not reach the inside of the resin film, and the desired performance of the present invention may be difficult to be exhibited.
 樹脂フィルム上にアンカーコート層を設けるタイミングは、詳細後述するエレクトレット化処理の前でも後でも差し支えない。 The timing at which the anchor coat layer is provided on the resin film may be before or after the electret treatment described in detail later.
[加圧処理]
 多孔質樹脂フィルムは加圧処理によって、内部の空孔をさらに膨張させることが可能である。加圧処理は多孔質樹脂フィルムを圧力容器に入れて、容器内を非反応性ガスで加圧することにより空孔内に非反応性ガスを浸透させ、その後多孔質樹脂フィルムを非加圧下に解放することで行う。
[Pressure treatment]
The porous resin film can further expand the internal pores by pressure treatment. Pressurization treatment places a porous resin film in a pressure vessel, pressurizes the inside of the vessel with a non-reactive gas, so that the non-reactive gas penetrates into the pores, and then releases the porous resin film under no pressure. To do.
 使用する非反応性ガスの具体的な例としては、窒素、二酸化炭素、アルゴンやヘリウム等の不活性ガス、又はこれらの混合ガスや空気が挙げられる。非反応性ガス以外の気体を使用した場合でも膨張効果は得られるが、加圧処理中の安全性や得られる多孔質樹脂フィルムの安全性の観点から、非反応性ガスを用いることが望ましい。加圧処理時の処理圧力は、特に限定されないが、好ましくは0.2~10MPa、より好ましくは0.3~8MPa、さらに好ましくは0.4~6MPaの範囲である。0.2MPa未満では圧力が低いため、充分な膨張効果が得られにくい傾向にある。一方、10MPaを超えてしまうと非加圧下に解放する際に空孔壁が内圧に耐え切れず破断して空孔が独立孔の状態を保ち難くなる傾向にある。加圧処理の処理時間は、特に限定されないが、好ましくは1時間以上、より好ましくは1~50時間の範囲である。処理時間が1時間未満では空孔内に非反応性ガスを充分に充満し難く、或いは、1時間未満で空孔内に非反応性ガスが充分に充満するような多孔質樹脂フィルムでは、後述の加熱処理を施している間に非反応性ガスが散逸してしまい安定した膨張効果が得られ難い傾向にある。 Specific examples of the non-reactive gas to be used include nitrogen, carbon dioxide, an inert gas such as argon and helium, or a mixed gas or air thereof. Even when a gas other than the non-reactive gas is used, the expansion effect can be obtained, but it is desirable to use the non-reactive gas from the viewpoint of safety during the pressurizing process and safety of the obtained porous resin film. The treatment pressure during the pressure treatment is not particularly limited, but is preferably in the range of 0.2 to 10 MPa, more preferably 0.3 to 8 MPa, and still more preferably 0.4 to 6 MPa. If the pressure is less than 0.2 MPa, the pressure is low, so that a sufficient expansion effect tends not to be obtained. On the other hand, when the pressure exceeds 10 MPa, the pore walls cannot withstand the internal pressure when released under non-pressurization, and the pores tend to be broken, making it difficult to maintain the pores as independent holes. The treatment time of the pressure treatment is not particularly limited, but is preferably 1 hour or more, more preferably 1 to 50 hours. In the case of a porous resin film in which the treatment time is less than 1 hour, it is difficult to sufficiently fill the nonreactive gas in the pores, or the pores are sufficiently filled with the nonreactive gas in less than 1 hour. During the heat treatment, the non-reactive gas is dissipated and it is difficult to obtain a stable expansion effect.
 また、多孔質樹脂フィルムの巻取りロールを加圧処理する場合は、非反応性ガスが巻取りロール内部まで浸透し易いように、緩衝シートと一緒に巻取ったものを予め準備して加圧処理することが望ましい。緩衝シートの具体的な例としては、発泡ポリスチレンシート、発泡ポリエチレンシート、発泡ポリプロピレンシート、不織布、織布、紙等の連通した空隙を持つ物を用いることができる。 In addition, when pressurizing the winding roll of the porous resin film, a roll wound together with the buffer sheet is prepared in advance so that the non-reactive gas can easily penetrate into the winding roll. It is desirable to process. As a specific example of the buffer sheet, a foamed polystyrene sheet, a foamed polyethylene sheet, a foamed polypropylene sheet, a nonwoven fabric, a woven fabric, a paper or the like having a continuous void can be used.
[加熱処理]
 加圧処理を施した多孔質樹脂フィルムにおいてはその膨張効果を維持するために、加熱処理を施すことが好ましい。加圧処理を行い非加圧下に解放することにより多孔質樹脂フィルムは膨張する。しかしながら、そのまま放置すると、空孔内に浸透した非反応性ガスが次第に抜けてしまい、多孔質樹脂フィルムは元の厚みに戻ってしまう場合がある。そこで、膨張した多孔質樹脂フィルムに加熱処理を行って熱可塑性樹脂の結晶化を促進することにより、空孔内部が大気圧に下がった後でも、その膨張効果を維持することが望ましい。この加熱処理は、多孔質樹脂フィルムに主に用いる熱可塑性樹脂のガラス転移点温度以上から結晶部の融点以下の温度範囲内で行うことができる。具体的には、例えば熱可塑性樹脂がプロピレン単独重合体(融点155~167℃)の場合は80~160℃の範囲内である。また、加熱方法は、公知の手法を用いることができる。具体的な例としては、ノズルからの熱風による熱風加熱、赤外線ヒーターによる輻射加熱、温調機能付きのロールによる接触加熱等が挙げられるが、これらに特に限定されない。なお、加熱処理中は多孔質樹脂フィルムの弾性率が低下し加重がかかると空孔が潰れ易いことから、熱風加熱や輻射加熱等の非接触方式の加熱処理が、高い膨張倍率を維持し易い傾向にある。
[Heat treatment]
In the porous resin film subjected to the pressure treatment, it is preferable to perform a heat treatment in order to maintain the expansion effect. A porous resin film expand | swells by performing a pressurization process and releasing under non-pressurization. However, if left as it is, the non-reactive gas that has penetrated into the pores gradually escapes, and the porous resin film may return to its original thickness. Therefore, it is desirable to maintain the expansion effect even after the inside of the pores has been reduced to atmospheric pressure by performing heat treatment on the expanded porous resin film to promote crystallization of the thermoplastic resin. This heat treatment can be performed within a temperature range from the glass transition temperature of the thermoplastic resin mainly used for the porous resin film to the melting point of the crystal part. Specifically, for example, when the thermoplastic resin is a propylene homopolymer (melting point: 155 to 167 ° C.), the temperature is in the range of 80 to 160 ° C. Moreover, a well-known method can be used for the heating method. Specific examples include hot air heating with hot air from a nozzle, radiation heating with an infrared heater, contact heating with a roll having a temperature control function, and the like, but are not particularly limited thereto. In addition, since the elastic modulus of the porous resin film is reduced during the heat treatment, and the load is applied, the pores are apt to be crushed. There is a tendency.
[エネルギー変換フィルム]
 上記の樹脂フィルム乃至多孔質樹脂フィルムに電荷注入する処理(エレクトレット化処理)を施しエレクトレット化することで、同フィルム内部に電荷を保持した帯電樹脂フィルム、すなわちエネルギー変換フィルムが得られる。
[Energy conversion film]
By carrying out the process (electretization process) of injecting charges into the resin film or the porous resin film, and making it into an electret, a charged resin film holding an electric charge inside the film, that is, an energy conversion film is obtained.
[エレクトレット化]
 エレクトレット化処理としては、幾つかの処理方法が挙げられる。例えば、樹脂フィルムの両面を導電体で保持し、直流高電圧やパルス状高電圧を加える方法(エレクトロエレクトレット化法)や、樹脂フィルムにγ線や電子線を照射してエレクトレット化する方法(ラジオエレクトレット化法)等が公知である。
[Electretization]
As an electret process, several processing methods are mentioned. For example, a method of holding both surfaces of a resin film with a conductor and applying a DC high voltage or a pulsed high voltage (electroelectretization method), or a method of electretization by irradiating a resin film with γ rays or electron beams (radio) An electret method) is known.
 これらの中でも、直流高電圧放電を用いたエレクトレット化処理法(エレクトロエレクトレット化法)は装置が小型であり、且つ作業者や環境への負荷が小さく、多孔質樹脂フィルムの様な高分子材料のエレクトレット化処理に適しており、好ましい。 Among these, the electretization method (electroelectretization method) using DC high-voltage discharge has a small apparatus and a small burden on workers and the environment, and is a high-molecular material such as a porous resin film. It is suitable for electretization treatment and is preferred.
 ここで用い得るエレクトレット化装置の一例として、直流高電圧放電によるエレクトレット化装置を図3に示す。図3に示す様に、このエレクトレット化装置は、直流高圧電源10に繋がった針状電極11とアース電極12の間に、樹脂フィルム13を固定し所定の電圧を印加するものである。この直流高電圧放電によるエレクトレット化処理により、樹脂フィルム13は、フィルム内部に多くの電荷を蓄積することができる。 As an example of an electret apparatus that can be used here, an electret apparatus using DC high-voltage discharge is shown in FIG. As shown in FIG. 3, this electretization apparatus is a device in which a resin film 13 is fixed and a predetermined voltage is applied between a needle electrode 11 and a ground electrode 12 connected to a DC high voltage power source 10. By the electretization process by this direct current high voltage discharge, the resin film 13 can accumulate | store many electric charges inside a film.
 エレクトレット化処理時の印加電圧は、樹脂フィルムの厚み、空孔率、樹脂フィルムに用いる熱可塑性樹脂や空孔形成核剤の材質、処理速度、用いる電極の形状や材質、大きさ、最終的に得るべきエネルギー変換フィルムにおいて所望する帯電量等により変更し得るものであり、これらを考慮して適宜設定すればよく、特に限定されないが、5kV以上が好ましく、6kV以上がより好ましく、7kV以上がさらに好ましい。これにより、十分な電荷量が注入でき、望ましい圧電性能が発揮され易い傾向にある。一方、エレクトレット化処理の印加電圧は、100kV以下が好ましく、70kV以下がより好ましく、50kV以下がさらに好ましい。これにより、エレクトレット化処理時に局所的な火花放電が発生して樹脂フィルムにピンホール等の部分的な破壊が発生する現象や、エレクトレット化処理時に樹脂フィルムの表面から端面を伝いアース電極へ電流が流れてエレクトレット化処理の効率が悪化する現象を回避し易い傾向にある。 The applied voltage during electret treatment is the thickness of the resin film, the porosity, the material of the thermoplastic resin and pore forming nucleating agent used in the resin film, the processing speed, the shape, material and size of the electrode used, and finally The energy conversion film to be obtained can be changed depending on the desired charge amount and the like, and may be appropriately set in consideration of these, and is not particularly limited, but is preferably 5 kV or more, more preferably 6 kV or more, and further 7 kV or more. preferable. As a result, a sufficient amount of charge can be injected and desirable piezoelectric performance tends to be exhibited. On the other hand, the applied voltage for electretization is preferably 100 kV or less, more preferably 70 kV or less, and even more preferably 50 kV or less. As a result, a local spark discharge occurs during the electretization process, causing a partial destruction such as pinholes in the resin film, and a current is transmitted from the surface of the resin film to the end face through the end surface during the electretization process. It tends to be easy to avoid a phenomenon of flowing and deteriorating the efficiency of electretization.
 エレクトレット化処理時の処理温度は、適宜設定すればよく、特に限定されないが、樹脂フィルムに用いる主な熱可塑性樹脂のガラス転移点温度以上から結晶部の融点以下で行うことが望ましい。処理温度がガラス転移点以上であれば熱可塑性樹脂の非晶質部分の分子運動が活発であり、与えられた電荷に適した分子配列をなすため、効率が良いエレクトレット化処理が可能となる。また、処理温度が金属石鹸の融点以上であれば、金属石鹸分子もまた与えられた電荷に適した配列をなすため、より効率が良いエレクトレット化処理が可能となる。一方、処理温度が樹脂フィルムに用いる主な熱可塑性樹脂の融点を超えてしまうと、樹脂フィルム自体がその構造を維持できなくなってしまうため、本発明の所期の性能を得ることが困難になる傾向にある。 The treatment temperature at the electretization treatment may be set as appropriate, and is not particularly limited. However, it is desirable that the treatment temperature be higher than the glass transition temperature of the main thermoplastic resin used for the resin film and lower than the melting point of the crystal part. If the treatment temperature is equal to or higher than the glass transition point, the molecular motion of the amorphous portion of the thermoplastic resin is active, and a molecular arrangement suitable for a given charge is formed, so that an efficient electretization process is possible. Further, when the treatment temperature is equal to or higher than the melting point of the metal soap, the metal soap molecules also have an arrangement suitable for the given charge, and therefore, more efficient electretization can be performed. On the other hand, if the processing temperature exceeds the melting point of the main thermoplastic resin used for the resin film, the resin film itself cannot maintain its structure, making it difficult to obtain the desired performance of the present invention. There is a tendency.
 エレクトレット化処理においては、意図して或いは意図せずに、樹脂フィルムに過剰の電荷を注入する場合がある。この場合は、処理後にエネルギー変換フィルムが放電を起こし後加工プロセスで不都合を引き起こすことがあるため、エレクトレット化処理後に、帯電樹脂フィルムの余剰電荷の除電処理を行ってもよい。 In the electretization process, an excessive charge may be injected into the resin film intentionally or unintentionally. In this case, since the energy conversion film may discharge after processing and cause inconvenience in the post-processing process, the charge removal of the charged resin film may be performed after the electret processing.
 かかる除電処理としては、電圧印加式除電器(イオナイザ)や自己放電式除電器等を利用した公知の手法を用いることができる。これら一般的な除電器を用いた除電処理では、帯電樹脂フィルムの表面電荷の除去はできるが、帯電樹脂フィルム内部、特にコア層の空孔内に蓄積した電荷までは完全に除去することはできない。したがって、除電処理によりエレクトレット材料の性能が大きく低下することはない。そのため、このような除電処理を行なって帯電樹脂フィルム表面の余剰電荷を除去することにより、エレクトレットの放電現象の防止が可能となる。 As this charge removal treatment, a known method using a voltage application type charge remover (ionizer), a self-discharge type charge remover, or the like can be used. The neutralization treatment using these general static eliminators can remove the surface charge of the charged resin film, but cannot completely remove the charge accumulated inside the charge resin film, particularly in the pores of the core layer. . Accordingly, the performance of the electret material is not greatly reduced by the charge removal process. Therefore, the discharge phenomenon of the electret can be prevented by performing such a charge removal process to remove excess charges on the surface of the charged resin film.
[エネルギー変換素子]
 上述したエネルギー変換フィルムの少なくとも一方の面に後述する電極を設けることで、電力や電気信号を入出力するエネルギー変換素子が得られる。エネルギー変換素子は、電気信号の入出力をより効率的に行うために、エネルギー変換フィルムの表裏両面に電極を備えることが好ましい。
[Energy conversion element]
By providing an electrode to be described later on at least one surface of the above-described energy conversion film, an energy conversion element that inputs and outputs power and electric signals can be obtained. The energy conversion element preferably includes electrodes on both front and back surfaces of the energy conversion film in order to more efficiently input and output electrical signals.
 電極の設置タイミングは、特に限定されず、例えばエレクトレット化処理前の樹脂フィルムに対して行ってもよく、エレクトレット化処理後の帯電樹脂フィルム(エネルギー変換フィルム)に対して行ってもよい。エレクトレット化処理後のエネルギー変換フィルムに電極を設置すれば、エレクトレット化処理時の、電極を介した注入電荷の一部放散を防ぐことが可能である。しかしながら、その後の電極設置の際に、帯電樹脂フィルムに熱等の負荷が印加されると注入電荷の一部が放散してしまい、圧電性能が若干低下する場合がある。現状では最終的に得られるエネルギー変換素子の性能から判断して、エレクトレット化処理前の樹脂フィルム上に予め電極を設けて、その後に上述のエレクトレット化処理を行うことが好ましい。 The installation timing of the electrode is not particularly limited, and may be performed, for example, on the resin film before the electret treatment or on the charged resin film (energy conversion film) after the electret treatment. If an electrode is installed in the energy conversion film after the electretization treatment, it is possible to prevent part of the injected charge from being released through the electrode during the electretization treatment. However, when a load such as heat is applied to the charged resin film during the subsequent electrode installation, a part of the injected charge is dissipated, and the piezoelectric performance may be slightly deteriorated. At present, it is preferable that an electrode is previously provided on the resin film before the electretization process, and then the above electretization process is performed based on the performance of the finally obtained energy conversion element.
[電極]
 樹脂フィルムをエレクトレット化したエネルギー変換フィルムの少なくとも一方の面に電極を設けることにより、電力の入出力を可能としたエネルギー変換素子とすることができる。通常、エネルギー変換フィルムの両面(表面と裏面)に一対の電極が設けられる。電極としては、金属粒子、導電性金属酸化物粒子、カーボン系粒子、又は導電性樹脂等の公知の導電性材料によって形成された薄膜が挙げられる。また、電極としては、導電性塗料の印刷や塗工による塗膜や、金属蒸着膜等が挙げられる。
[electrode]
By providing an electrode on at least one surface of an energy conversion film obtained by electretizing a resin film, an energy conversion element capable of inputting and outputting electric power can be obtained. Usually, a pair of electrodes is provided on both surfaces (front surface and back surface) of the energy conversion film. Examples of the electrode include a thin film formed of a known conductive material such as metal particles, conductive metal oxide particles, carbon-based particles, or conductive resin. Moreover, as an electrode, the coating film by printing or coating of a conductive paint, a metal vapor deposition film, etc. are mentioned.
 導電性材料の例としては、金、銀、白金、銅、ケイ素等の金属粒子;スズドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)、アルミニウムドープ酸化亜鉛等の導電性金属酸化物粒子;グラファイト、カーボンブラック、ケッチェンブラック、カーボンナノフィラー、カーボンナノチューブ等のカーボン系粒子等を、アクリル系樹脂、ウレタン系樹脂、エーテル系樹脂、エステル系樹脂、エポキシ系樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、塩化ビニル-酢酸ビニル共重合体、アミド樹脂、メラミン樹脂、フェノール樹脂、ビニルアルコール樹脂、変性ポリオレフィン樹脂等のバインダー樹脂成分の溶液又は分散液に混合したものが挙げられる。また、ポリアニリン系、ポリピロール系、ポリチオフェン系等の導電性樹脂の溶液又は分散液等が挙げられる。 Examples of conductive materials include metal particles such as gold, silver, platinum, copper, silicon; tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide, etc. Conductive metal oxide particles: carbon particles such as graphite, carbon black, ketjen black, carbon nanofiller, carbon nanotubes, acrylic resins, urethane resins, ether resins, ester resins, epoxy resins , Vinyl acetate resin, vinyl chloride resin, vinyl chloride-vinyl acetate copolymer, amide resin, melamine resin, phenol resin, vinyl alcohol resin, modified polyolefin resin, etc. It is done. Moreover, the solution or dispersion liquid of conductive resins, such as a polyaniline type, a polypyrrole type, and a polythiophene type, are mentioned.
 導電性塗料をインクとして用い、印刷により設ける場合の印刷方式の具体的な例としては、スクリーン印刷、フレキソ印刷、グラビア印刷、インクジェット印刷、凸版印刷、オフセット印刷等が挙げられる。また、導電性塗料を塗料として用い、塗工により設ける場合の塗工装置の具体的な例としては、ダイコーター、バーコーター、コンマコーター、リップコーター、ロールコーター、カーテンコーター、グラビアコーター、スプレーコーター、ブレードコーター、リバースコーター、エアーナイフコーター等が挙げられる。 Specific examples of printing methods in the case where a conductive paint is used as ink and provided by printing include screen printing, flexographic printing, gravure printing, inkjet printing, letterpress printing, offset printing, and the like. In addition, specific examples of coating apparatuses that use conductive paint as a paint and are provided by coating include die coaters, bar coaters, comma coaters, lip coaters, roll coaters, curtain coaters, gravure coaters, and spray coaters. , Blade coater, reverse coater, air knife coater and the like.
 金属蒸着膜の具体的な例としては、アルミニウム、亜鉛、金、銀、白金、ニッケル等の金属を減圧下で気化して樹脂フィルムの表面に蒸着させ、樹脂フィルムの表面に金属薄膜を直接形成したもの、又は、ポリエチレンテレフタレート(PET)フィルム等の担体上にアルミニウム、亜鉛、金、銀、白金、ニッケル等の金属を蒸着して形成した金属薄膜を、樹脂フィルムの表面に転写したもの等が挙げられる。 As a specific example of a metal vapor deposition film, metal such as aluminum, zinc, gold, silver, platinum, nickel is vaporized under reduced pressure and vapor deposited on the surface of the resin film, and a metal thin film is directly formed on the surface of the resin film. Or a metal thin film formed by vapor-depositing a metal such as aluminum, zinc, gold, silver, platinum, nickel on a carrier such as a polyethylene terephthalate (PET) film, etc. Can be mentioned.
 電極は、予めポリエチレンテレフタレートフィルムやポリプロピレンフィルム等の誘電体フィルム上に上記の導電性塗料の塗膜や金属蒸着膜を形成したものを、導電性がある面が外側となる様に樹脂フィルム乃至エネルギー変換フィルムと貼合することによって設けたものであってもよい。貼合方式の具体的な例としては、ドライラミネート、ウエットラミネート、押出しラミネート等の公知の方法が挙げられる。 The electrode is a resin film or energy formed by previously forming a conductive paint film or metal vapor deposition film on a dielectric film such as a polyethylene terephthalate film or a polypropylene film so that the conductive surface is on the outside. It may be provided by pasting with a conversion film. Specific examples of the bonding method include known methods such as dry lamination, wet lamination, and extrusion lamination.
 電極は、電力の入出力を容易に行う趣旨から、JIS K7194:1994「導電性プラスチックの4探針法による抵抗率試験方法」にしたがって4端子法により測定したその表面抵抗率が1×10-3Ω/□~9×10Ω/□であることが好ましく、1×10-1Ω/□~9×10Ω/□であることがより好ましい。電極の抵抗値が9×10Ω/□を超えると電気信号の伝達効率が悪く、電気・電子入出力装置用材料としての性能が低下する傾向にある。一方、1×10-3Ω/□未満の電極を設ける場合であって、電極を塗工で設ける場合は、電極を厚く設ける必要があり、塗工した後の乾燥、焼結時の熱によって多孔質樹脂フィルムの空孔が潰れたり、樹脂フィルムが熱収縮したりする変形を起こすことがある。また、電極を金属蒸着で設ける場合も、蒸着される金属の熱により同様に樹脂フィルムが変形を起こすことがある。 Electrode from the spirit easily make power input and output, JIS K7194: 1994 a surface resistivity measured by the four-terminal method in accordance with the "resistivity test method by a four probe method of conductive plastic" is 1 × 10 - It is preferably 3 Ω / □ to 9 × 10 7 Ω / □, and more preferably 1 × 10 −1 Ω / □ to 9 × 10 4 Ω / □. When the resistance value of the electrode exceeds 9 × 10 7 Ω / □, the electric signal transmission efficiency is poor, and the performance as a material for an electric / electronic input / output device tends to be lowered. On the other hand, when an electrode of less than 1 × 10 −3 Ω / □ is provided, and the electrode is provided by coating, it is necessary to provide a thick electrode. In some cases, the pores of the porous resin film are crushed or the resin film is thermally contracted. Also, when the electrodes are provided by metal vapor deposition, the resin film may be similarly deformed by the heat of the metal deposited.
 電極の厚みは、特に限定されないが、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、5μm以上であることがさらに好ましい。また、電極の厚みは、200μm以下であることが好ましく、50μm以下であることがより好ましく、20μm以下であることさらに好ましい。 The thickness of the electrode is not particularly limited, but is preferably 0.1 μm or more, more preferably 1 μm or more, and further preferably 5 μm or more. The thickness of the electrode is preferably 200 μm or less, more preferably 50 μm or less, and further preferably 20 μm or less.
[樹脂フィルムの厚み]
 本明細書において、樹脂フィルムの厚みは、JIS K7130:1999「プラスチック-フィルム及びシート-厚み測定方法」に基づいて、厚み計を用いてフィルム総厚みを測定した値とする。また、樹脂フィルムが多層積層構造の樹脂フィルムである場合、これを構成する各層の厚みは、測定対象試料を液体窒素にて-60℃以下の温度に冷却し、ガラス板上に置いた試料に対してカミソリ刃を直角に当て切断し断面測定用の試料を作成し、得られた試料を走査型電子顕微鏡を使用して断面観察を行い、空孔形状や組成外観から各層の境界線を判別して、観察像から求められる各層厚みが樹脂フィルムの総厚みに占める割合を決定し、さらに厚み計を用いて求めた上記フィルム総厚みに各層厚みの上記割合を乗じて算出した値とする。
[Thickness of resin film]
In this specification, the thickness of the resin film is a value obtained by measuring the total film thickness using a thickness meter based on JIS K7130: 1999 “Plastics—Film and Sheet—Thickness Measurement Method”. Further, when the resin film is a resin film having a multilayer laminated structure, the thickness of each layer constituting the resin film is determined by cooling the sample to be measured with liquid nitrogen to a temperature of −60 ° C. or lower and placing the sample on a glass plate. A razor blade is applied at a right angle and cut to create a sample for cross-section measurement, and the resulting sample is observed using a scanning electron microscope to determine the boundary line of each layer from the hole shape and composition appearance. And the ratio which each layer thickness calculated | required from an observation image occupies for the total thickness of a resin film is set to the value calculated by multiplying the said film total thickness calculated | required using the thickness meter by the said ratio of each layer thickness.
[樹脂フィルムの表面抵抗率]
 本明細書において、樹脂フィルムの表面抵抗率は、JIS K6911:1995「熱硬化性プラスチック一般試験方法」にしたがって、2重リング法の電極を用いて、温度23℃、相対湿度50%の条件下にて測定した表面抵抗から下記式2に基づいて算出した値とする。
Figure JPOXMLDOC01-appb-M000002
[Surface resistivity of resin film]
In this specification, the surface resistivity of the resin film is determined under the conditions of a temperature of 23 ° C. and a relative humidity of 50% using a double ring electrode according to JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. It is set as the value calculated based on the following formula 2 from the surface resistance measured in (1).
Figure JPOXMLDOC01-appb-M000002
 樹脂フィルムは絶縁性であることが好ましく、少なくとも片方の表面の表面抵抗率が1×1013Ω/□以上であることが好ましく、5×1013Ω/□以上であることがより好ましい。これによりエレクトレット化処理を施す際に、注入した電荷が表面を伝って逃げにくく、効率的な電荷注入を行い易い。一方、樹脂フィルムは、少なくとも片方の表面の表面抵抗が9×1017Ω/□以下であることが好ましく、5×1016Ω/□以下であることがより好ましい。これにより樹脂フィルムにゴミや埃が付着することを防止し、エレクトレット化処理の際にゴミや埃を伝って局所放電が起こり、効率的なエレクトレット化処理が阻害される現象を抑制し易い。 The resin film is preferably insulative, and the surface resistivity of at least one surface is preferably 1 × 10 13 Ω / □ or more, and more preferably 5 × 10 13 Ω / □ or more. As a result, when the electretization process is performed, the injected charge is difficult to escape through the surface, and efficient charge injection is easy to perform. On the other hand, the surface resistance of at least one surface of the resin film is preferably 9 × 10 17 Ω / □ or less, and more preferably 5 × 10 16 Ω / □ or less. This prevents dust and dirt from adhering to the resin film, and it is easy to suppress the phenomenon that local discharge occurs along the dust and dust during the electretization process and the efficient electretization process is hindered.
[電極の表面抵抗率]
 本明細書において、電極の表面抵抗率は、JIS K7194:1994「導電性プラスチックの4探針法による抵抗率試験方法」にしたがって、4端子法により測定した抵抗値から下記式3に基づいて算出した値とする。
Figure JPOXMLDOC01-appb-M000003
[Surface resistivity of electrode]
In this specification, the surface resistivity of the electrode is calculated based on the following equation 3 from the resistance value measured by the four-terminal method in accordance with JIS K7194: 1994 “Resistivity Test Method by Conductive Plastic Four-Probe Method”. Value.
Figure JPOXMLDOC01-appb-M000003
[エネルギー変換フィルム及びエネルギー変換素子の平面視面積]
 本発明のエネルギー変換フィルム及びエネルギー変換素子は、上述したとおり帯電樹脂フィルムを用いているため、電気-機械エネルギー変換用材料として従来から汎用されている半導体材料等とは異なり、比較的に低コストであり、例えばフィルムの平面視で10~50,000cm程度の大面積化も容易である。大面積なエネルギー変換フィルム及びエネルギー変換素子を構成する場合、その平面視面積は、所望する性能や設置箇所の物理的な制約等を考慮して適宜設定すればよく、特に限定されないが、20~30,000cmが好ましく、50~25,000cmがより好ましい。
[Plane view area of energy conversion film and energy conversion element]
Since the energy conversion film and the energy conversion element of the present invention use the charged resin film as described above, they are relatively low-cost unlike semiconductor materials that have been widely used as electro-mechanical energy conversion materials. For example, it is easy to increase the area of about 10 to 50,000 cm 2 in a plan view of the film. In the case of constituting a large area energy conversion film and energy conversion element, the area in plan view may be appropriately set in consideration of the desired performance, physical restrictions on the installation location, etc., and is not particularly limited. 30,000 cm 2 is preferable, and 50 to 25,000 cm 2 is more preferable.
[最大電圧]
 エネルギー変換素子は、熱処理した後に衝撃により発生する最大電圧(平均値)が、エネルギー変換素子の実用性能面から5mV以上であることが好ましく、10mV以上であることがより好ましく、20mV以上であることがさらに好ましく、30mV以上であることが特に好ましい。上限値は特に限定されないが、300mV以下であることが好ましく、200mV以下であることがより好ましく、100mV以上であることがさらに好ましく、50mV以下であることが特に好ましい。本明細書において、最大電圧の測定前の熱処理は、エネルギー変換素子を85℃で14日間の条件下で保持することで行う。そして、最大電圧は、温度23℃、相対湿度50%環境下で、水平面上に静置したエネルギー変換素子上に、垂直方向8mmの高さから直径9.5mm、質量3.5gの鉄球を自然落下させたときの衝撃により発生する最大電圧を10回測定して、その最大電圧の平均値を算出した値とする。
[Maximum voltage]
In the energy conversion element, the maximum voltage (average value) generated by impact after heat treatment is preferably 5 mV or more, more preferably 10 mV or more, and more preferably 20 mV or more in terms of practical performance of the energy conversion element. Is more preferable, and 30 mV or more is particularly preferable. Although an upper limit is not specifically limited, It is preferable that it is 300 mV or less, It is more preferable that it is 200 mV or less, It is further more preferable that it is 100 mV or more, It is especially preferable that it is 50 mV or less. In this specification, the heat treatment before the measurement of the maximum voltage is performed by holding the energy conversion element at 85 ° C. for 14 days. The maximum voltage is an iron ball having a diameter of 9.5 mm and a mass of 3.5 g from a height of 8 mm in a vertical direction on an energy conversion element placed on a horizontal plane at a temperature of 23 ° C. and a relative humidity of 50%. The maximum voltage generated by the impact when it is naturally dropped is measured 10 times, and the average value of the maximum voltage is calculated.
 以下に、製造例、実施例、比較例及び試験例を用いて、本発明をさらに具体的に説明する。以下に示す材料、使用量、割合、操作等は、本発明の精神から逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例に制限されるものではない。なお、以下に記載される%は、特記しない限り質量%を表す。 Hereinafter, the present invention will be described in more detail using production examples, examples, comparative examples, and test examples. The materials, amounts used, ratios, operations, and the like shown below can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below. In addition,% described below represents mass% unless otherwise specified.
[樹脂組成物の調製例]
 表1に記載の熱可塑性樹脂(プロピレン単独重合体及び高密度ポリエチレン)、金属石鹸、熱安定剤、及び空孔形成核剤(重質炭酸カルシウム粉末)を、表1に記載の配合割合(単位:質量%)で混合し、210℃に設定した2軸混練機にて溶融混練し、次いで230℃に設定した押出機にてストランド状に押し出し、冷却後にストランドカッターにて切断して、樹脂組成物a~h、j、k、及びm~rのペレットを作成した。
[Preparation Example of Resin Composition]
The thermoplastic resin (propylene homopolymer and high-density polyethylene) listed in Table 1, metal soap, heat stabilizer, and pore-forming nucleating agent (heavy calcium carbonate powder) are mixed in the proportions shown in Table 1 (units). : Mass%), melt kneaded with a twin-screw kneader set at 210 ° C., then extruded into a strand with an extruder set at 230 ° C., cooled and cut with a strand cutter, and resin composition Pellets of items ah, j, k, and mr were made.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[製造例1~14,16]
 表2に記載の表スキン層用の樹脂組成物、コア層用の樹脂組成物、裏スキン層用の樹脂組成物を、230℃に設定した3台の押出機にてそれぞれ溶融混練した後、250℃に設定したフィードブロック式多層ダイスに供給して、表2に記載の積層順となる様にダイス内で積層してシート状に押し出し、これを冷却装置により60℃まで冷却して3層構成の無延伸シートを得た。
 得られた無延伸シートを、加熱ロールを用いて表2に記載の縦方向の温度に加熱し、ロール群の周速差を利用して縦方向(MD方向)に表2に記載の縦方向の倍率で延伸して一軸延伸シートを得た。次いで、得られた一軸延伸シートを60℃まで冷却し、オーブンを用いて表2に記載の横方向の温度に再加熱し、テンターを用いて横方向(TD方向)に表2に記載の横方向の倍率で延伸した後、さらにオーブンを用いて160℃まで加熱してアニーリング処理を行い、二軸延伸シートを得た。
 得られた二軸延伸シートを60℃まで冷却し、耳部をスリットした後、両面にコロナ表面放電処理を施し、表2に記載の物性を有する製造例1~14,16の樹脂フィルム(何れも内部に空孔を有する多孔質樹脂フィルム)を得た。得られた樹脂フィルムの表面抵抗率は、全て表裏ともに1014Ω/□以上であった。
[Production Examples 1 to 14, 16]
After melt kneading each of the resin composition for the front skin layer, the resin composition for the core layer, and the resin composition for the back skin layer described in Table 2 with three extruders set at 230 ° C., It is supplied to a feed block type multi-layer die set at 250 ° C., laminated in the die so as to be in the stacking order shown in Table 2, and extruded into a sheet shape. An unstretched sheet having a constitution was obtained.
The obtained unstretched sheet is heated to the longitudinal temperature described in Table 2 using a heating roll, and the longitudinal direction described in Table 2 is used in the longitudinal direction (MD direction) using the peripheral speed difference of the roll group. A uniaxially stretched sheet was obtained by stretching at a magnification of. Next, the obtained uniaxially stretched sheet was cooled to 60 ° C., reheated to the temperature in the transverse direction described in Table 2 using an oven, and transversely (TD direction) described in Table 2 using a tenter. After stretching at a direction magnification, it was further heated to 160 ° C. using an oven for annealing treatment to obtain a biaxially stretched sheet.
The obtained biaxially stretched sheet was cooled to 60 ° C., the ears were slit, the corona surface discharge treatment was performed on both sides, and the resin films of Production Examples 1 to 14 and 16 having the physical properties shown in Table 2 (whichever Also obtained a porous resin film having pores inside. The surface resistivity of the obtained resin film was all 10 14 Ω / □ or more on both sides.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[製造例15]
 得られた製造例3の樹脂フィルムの両面に、アンカーコート剤としてポリアミンポリアミドのエピクロルヒドリン付加物溶液(商品名:WS4024、星光PMC社製、固形分濃度25質量%)を水/2-プロパノール=9/1の混合液で25倍希釈して得た溶液を用いて、これをスクイズコーターを用いて乾燥後の塗工量がそれぞれ0.02g/mとなるように塗工し、80℃のオーブンで乾燥してアンカーコート層を設け、製造例15の樹脂フィルムを得た。得られた樹脂フィルムの表面抵抗率は表裏ともに1014Ω/□台であった。
[Production Example 15]
A polyamine polyamide epichlorohydrin adduct solution (trade name: WS4024, manufactured by Seiko PMC Co., Ltd., solid content concentration: 25% by mass) as an anchor coating agent on both surfaces of the obtained resin film of Production Example 3 was water / 2-propanol = 9. Using a solution obtained by diluting 25 times with a mixed solution of 1/1, this was applied using a squeeze coater so that the coating amount after drying was 0.02 g / m 2 , respectively. An anchor coat layer was provided by drying in an oven to obtain a resin film of Production Example 15. The surface resistivity of the obtained resin film was 10 14 Ω / □ on both sides.
[製造例17]
 特開2014-074104号公報の段落0051~0053に記載の実施例3の合成樹脂発泡シートの製造方法に従って、製造例17の樹脂フィルムを得た。得られた樹脂フィルムの表面抵抗率は表裏ともに1014Ω/□台であった。
[Production Example 17]
According to the method for producing a synthetic resin foam sheet of Example 3 described in paragraphs 0051 to 0053 of JP-A-2014-074104, a resin film of Production Example 17 was obtained. The surface resistivity of the obtained resin film was 10 14 Ω / □ on both sides.
[実施例1~12,17,18、比較例1,2]
 厚みが12μmのPETフィルム(商品名:E5200、東洋紡社製)にロールトゥロール真空蒸着装置を用いて、1×10-2Paの真空条件で、蒸着膜の厚みが30nmになる様にアルミニウム蒸着を行い、蒸着面の表面抵抗率が1Ω/□の金属蒸着フィルムを作成した。
 次いで、ポリエーテル系接着剤(商品名:TM-317、東洋モートン社製)とイソシアネート系硬化剤(商品名:CAT-11B、東洋モートン社製)を質量比50:50で混合し、酢酸エチルで希釈して、固形分濃度が25%の接着剤塗料を作成した。
 次いで、上記金属蒸着フィルムを縦10cm×横10cmの正方形に断裁し、金属蒸着がされていない面に、接着剤塗料を乾燥後の塗工厚みが2μmとなる様に、バーコーターを用いて全面に塗工し、40℃のオーブンで1分間乾燥して、金属蒸着フィルムの片面に接着剤層を設けた。
 次いで、製造例1~14,16,17で得た樹脂フィルムを縦20cm×横20cmの正方形に断裁し、得られた裁断フィルムの表面と裏面の中央部分に、接着剤層を介して金属蒸着フィルムを蒸着膜が最外層となるように貼り付けた後、40℃のオーブンで24時間、接着剤を硬化させて、両面に電極を備えた樹脂フィルムを得た。
 得られた両面に電極を備えた樹脂フィルムを、針状電極の針間距離10mm、針状電極-アース電極間距離10mmに設定した図3に記載のエレクトレット化装置の、アース電極12盤上に表面が主電極側に向く様に設置し、針状電極に-10KVの直流電圧を5秒間印加してエレクトレット処理を実施し、表3に記載の実施例1~12,17,18及び比較例1,2のエネルギー変換フィルム、並びに、実施例1~12,17,18及び比較例1,2のエネルギー変換素子を得た。
[Examples 1 to 12, 17, 18, Comparative Examples 1 and 2]
Using a roll-to-roll vacuum deposition device on a PET film (trade name: E5200, manufactured by Toyobo Co., Ltd.) having a thickness of 12 μm, aluminum deposition is performed so that the thickness of the deposited film is 30 nm under a vacuum condition of 1 × 10 −2 Pa. The metal vapor deposition film whose surface resistivity of a vapor deposition surface is 1 ohm / square was created.
Next, a polyether adhesive (trade name: TM-317, manufactured by Toyo Morton) and an isocyanate curing agent (trade name: CAT-11B, manufactured by Toyo Morton) were mixed at a mass ratio of 50:50 to obtain ethyl acetate. Was diluted to produce an adhesive paint having a solid content concentration of 25%.
Next, the metal vapor-deposited film is cut into a square of 10 cm in length and 10 cm in width, and the entire surface is coated with a bar coater so that the coating thickness after drying the adhesive paint is 2 μm on the surface where the metal is not deposited. And dried in an oven at 40 ° C. for 1 minute to provide an adhesive layer on one side of the metal deposited film.
Next, the resin films obtained in Production Examples 1 to 14, 16, and 17 were cut into squares of 20 cm in length and 20 cm in width, and metal deposition was performed on the front and back center portions of the obtained cut films through an adhesive layer. After pasting the film so that the deposited film was the outermost layer, the adhesive was cured in an oven at 40 ° C. for 24 hours to obtain a resin film having electrodes on both sides.
The obtained resin film provided with electrodes on both sides is placed on the 12 ground electrodes of the electretization apparatus shown in FIG. 3 in which the distance between the needles of the needle electrodes is 10 mm and the distance between the needle electrodes and the ground electrode is 10 mm. Installed so that the surface faces the main electrode side, applying -10 KV DC voltage to the needle electrode for 5 seconds to carry out electret treatment, and Examples 1 to 12, 17, 18 and Comparative Examples shown in Table 3 The energy conversion films 1 and 2 and the energy conversion elements of Examples 1 to 12, 17, 18 and Comparative Examples 1 and 2 were obtained.
[実施例13]
 厚みが12μmのPETフィルム(商品名:E5200、東洋紡社製)にロールトゥロール真空蒸着装置を用いて、1×10-2Paの真空条件で、蒸着膜の厚みが30nmになる様にアルミニウム蒸着を行い、蒸着面の表面抵抗率が1Ω/□の金属蒸着フィルムを作成した。
 次いで、ポリエーテル系接着剤(商品名:TM-317、東洋モートン社製)とイソシアネート系硬化剤(商品名:CAT-11B、東洋モートン社製)を質量比50:50で混合し、酢酸エチルで希釈して、固形分濃度が25%の接着剤塗料を作成した。
 次いで、上記金属蒸着フィルムを縦10cm×横10cmの正方形に断裁し、金属蒸着がされていない面に、接着剤塗料を乾燥後の塗工厚みが2μmとなる様に、バーコーターを用いて全面に塗工し、40℃のオーブンで1分間乾燥して、金属蒸着フィルムの片面に接着剤層を設けた。
 次いで、製造例15で得た樹脂フィルムを縦20cm×横20cmの正方形に断裁し、得られた裁断フィルムの裏面の中央部分に、接着剤層を介して金属蒸着フィルムを蒸着膜が最外層となるように貼り付けた。
 次いで、厚み12μmのアルミニウム箔(商品名:マイホイル、UACJ製箔社製、表面抵抗率:3×10-3Ω/□)を縦10cm×横10cmの正方形に断裁し、光沢の低い面に上記接着剤塗料を乾燥後の塗工厚みが2μmとなる様にバーコーターを用いて全面に塗工し、40℃のオーブンで1分間乾燥後、上記のとおり金属蒸着フィルムを貼り付けた裁断フィルムの表面の中央部分に貼り付けた後、40℃のオーブンで24時間、接着剤を硬化させて、両面に電極を備えた樹脂フィルムを得た。
 得られた両面に電極を備えた樹脂フィルムを、針状電極の針間距離10mm、針状電極-アース電極間距離10mmに設定した図3に記載のエレクトレット化装置の、アース電極12盤上に表面が主電極側に向く様に設置し、針状電極に-10KVの直流電圧を5秒間印加してエレクトレット処理を実施し、実施例13のエネルギー変換フィルム、及び、実施例13のエネルギー変換素子を得た。
[Example 13]
Using a roll-to-roll vacuum deposition device on a PET film (trade name: E5200, manufactured by Toyobo Co., Ltd.) having a thickness of 12 μm, aluminum deposition is performed so that the thickness of the deposited film is 30 nm under a vacuum condition of 1 × 10 −2 Pa. The metal vapor deposition film whose surface resistivity of a vapor deposition surface is 1 ohm / square was created.
Next, a polyether adhesive (trade name: TM-317, manufactured by Toyo Morton) and an isocyanate curing agent (trade name: CAT-11B, manufactured by Toyo Morton) were mixed at a mass ratio of 50:50 to obtain ethyl acetate. Was diluted to produce an adhesive paint having a solid content concentration of 25%.
Next, the metal vapor-deposited film is cut into a square of 10 cm in length and 10 cm in width, and the entire surface is coated with a bar coater so that the coating thickness after drying the adhesive paint is 2 μm on the surface where the metal is not deposited. And dried in an oven at 40 ° C. for 1 minute to provide an adhesive layer on one side of the metal deposited film.
Next, the resin film obtained in Production Example 15 was cut into a square of 20 cm in length and 20 cm in width, and a metal vapor-deposited film was formed as an outermost layer through an adhesive layer at the center of the back surface of the obtained cut film. Pasted to be.
Next, an aluminum foil having a thickness of 12 μm (trade name: My foil, manufactured by UACJ Foil Co., Ltd., surface resistivity: 3 × 10 −3 Ω / □) is cut into a 10 cm long × 10 cm wide square, and the above-mentioned surface is provided on a low gloss surface The adhesive coating was applied to the entire surface using a bar coater so that the coating thickness after drying was 2 μm, dried in an oven at 40 ° C. for 1 minute, and then a cut film with a metal vapor deposited film attached as described above. After pasting on the center part of the surface, the adhesive was cured in an oven at 40 ° C. for 24 hours to obtain a resin film provided with electrodes on both sides.
The obtained resin film provided with electrodes on both sides is placed on the 12 ground electrodes of the electretization apparatus shown in FIG. 3 in which the distance between the needles of the needle electrodes is 10 mm and the distance between the needle electrodes and the ground electrode is 10 mm. Installed so that the surface faces the main electrode side, and applies an electret treatment by applying a -10 KV DC voltage to the needle electrode for 5 seconds. The energy conversion film of Example 13 and the energy conversion element of Example 13 Got.
[実施例14]
 製造例15で得た樹脂フィルムを縦20cm×横20cmの正方形に断裁し、得られた裁断フィルムの裏面の中央部分に、銀インキ(商品名:ドータイトD-500、藤倉化成社製、固形分濃度:77質量%)を多目的印刷試験機(商品名:K303マルチコーター、RKプリントコートインスツルメンツ社製)及び400線のグラビア版を用いて、縦10cm×横10cmの正方形にベタ印刷し、80℃のオーブンで1時間乾燥した。その後さらに、この裁断フィルムの表面の中央部分に、同銀インキを、同多目的印刷試験機及び同グラビア版を用いて、表裏の印刷位置が同じ位置となる様に縦10cm×横10cmの正方形にベタ印刷し、80℃のオーブンで24時間乾燥して、両面に電極を備えた樹脂フィルムを得た。得られた電極の厚みは、表裏ともに2μmで、表面抵抗率は表裏ともに1Ω/□であった。
 得られた両面に電極を備えた樹脂フィルムを、針状電極の針間距離10mm、針状電極-アース電極間距離10mmに設定した図3に記載のエレクトレット化装置の、アース電極12盤上に表面が主電極側に向く様に設置し、針状電極に-10KVの直流電圧を5秒間印加してエレクトレット処理を実施し、実施例14のエネルギー変換フィルム、及び、実施例14のエネルギー変換素子を得た。
[Example 14]
The resin film obtained in Production Example 15 was cut into a square of 20 cm in length and 20 cm in width, and silver ink (trade name: Doutite D-500, manufactured by Fujikura Kasei Co., Ltd., solid content was formed on the center of the back side of the obtained cut film. Concentration: 77% by mass) using a multipurpose printing tester (trade name: K303 Multicoater, manufactured by RK Print Coat Instruments) and a 400-line gravure plate, solid-printed on a 10 cm x 10 cm square, 80 ° C In an oven for 1 hour. Thereafter, the same silver ink is applied to the center portion of the surface of the cut film, using the same multipurpose printing tester and the same gravure plate, in a square of 10 cm in length and 10 cm in width so that the front and back printing positions are the same. Solid printing was performed and drying was performed in an oven at 80 ° C. for 24 hours to obtain a resin film having electrodes on both sides. The thickness of the obtained electrode was 2 μm on both sides, and the surface resistivity was 1Ω / □ on both sides.
The obtained resin film provided with electrodes on both sides is placed on the 12 ground electrodes of the electretization apparatus shown in FIG. 3 in which the distance between the needles of the needle electrodes is 10 mm and the distance between the needle electrodes and the ground electrode is 10 mm. The surface is set to face the main electrode side, and the electret treatment is performed by applying a -10 KV DC voltage to the needle electrode for 5 seconds. The energy conversion film of Example 14 and the energy conversion element of Example 14 Got.
[実施例15]
 製造例15で得た樹脂フィルムを縦20cm×横20cmの正方形に断裁し、得られた裁断フィルムの裏面の中央部分に、カーボンインキ(商品名:ドータイトXC-3050、藤倉化成社製、固形分濃度:50質量%)をスクリーン印刷機(商品名:SSA-TF150E、セリアコーポレーション社製)及び200線のスクリーン版を用いて、縦10cm×横10cmの正方形にベタ印刷し、80℃のオーブンで1時間乾燥した。その後さらに、この裁断フィルムの表面の中央部分に、同カーボンインキを、同スクリーン印刷機及び同スクリーン版を用いて、表裏の印刷位置が同じ位置となる様に縦10cm×横10cmの正方形にベタ印刷し、80℃のオーブンで24時間乾燥して、両面に電極を備えた樹脂フィルムを得た。得られた電極の厚みは、表裏ともに10μmで、表面抵抗率は表裏ともに120Ω/□であった。
 得られた両面に電極を備えた樹脂フィルムを、針状電極の針間距離10mm、針状電極-アース電極間距離10mmに設定した図3に記載のエレクトレット化装置の、アース電極12盤上に表面が主電極側に向く様に設置し、針状電極に-10KVの直流電圧を5秒間印加してエレクトレット処理を実施し、実施例15のエネルギー変換フィルム、及び、実施例15のエネルギー変換素子を得た。
[Example 15]
The resin film obtained in Production Example 15 was cut into a 20 cm long × 20 cm wide square, and a carbon ink (trade name: Dotite XC-3050, manufactured by Fujikura Kasei Co., Ltd. Using a screen printer (trade name: SSA-TF150E, manufactured by Ceria Corporation) and a 200-line screen plate, a solid is printed in a square of 10 cm in length and 10 cm in width, using an oven at 80 ° C. Dried for 1 hour. Thereafter, the carbon ink is applied to the center portion of the surface of the cut film using a screen printer and a screen plate so that the printing positions on the front and back sides are the same. It printed and dried in 80 degreeC oven for 24 hours, and the resin film provided with the electrode on both surfaces was obtained. The thickness of the obtained electrode was 10 μm on both sides, and the surface resistivity was 120Ω / □ on both sides.
The obtained resin film provided with electrodes on both sides is placed on the 12 ground electrodes of the electretization apparatus shown in FIG. 3 in which the distance between the needles of the needle electrodes is 10 mm and the distance between the needle electrodes and the ground electrode is 10 mm. The surface is set to face the main electrode side, and the electret treatment is performed by applying a -10 KV DC voltage to the needle electrode for 5 seconds. The energy conversion film of Example 15 and the energy conversion element of Example 15 Got.
[実施例16]
 製造例15で得た樹脂フィルムを縦20cm×横20cmの正方形に断裁し、得られた裁断フィルムの裏面の中央部分に、ポリチオフェン系インキ(商品名:オルガコン ICP1050、アグファゲバルト社製、固形分濃度:1.1質量%)を多目的印刷試験機(商品名:K303マルチコーター、RKプリントコートインスツルメンツ社製)及び100線のグラビア版を用いて、縦10cm×横10cmの正方形にベタ印刷し、80℃のオーブンで1時間乾燥した。その後さらに、この裁断フィルムの表面の中央部分に、同ポリチオフェン系インクを、同多目的印刷試験機及び同グラビア版を用いて、表裏の印刷位置が同じ位置となる様に縦10cm×横10cmの正方形にベタ印刷し、80℃のオーブンで24時間乾燥して、両面に電極を備えた樹脂フィルムを得た。得られた電極の厚みは、表裏ともに0.2μmで、表面抵抗率は表裏ともに4×10Ω/□であった。
 得られた両面に電極を備えた樹脂フィルムを、針状電極の針間距離10mm、針状電極-アース電極間距離10mmに設定した図3に記載のエレクトレット化装置の、アース電極12盤上に表面が主電極側に向く様に設置し、針状電極に-10KVの直流電圧を5秒間印加してエレクトレット処理を実施し、実施例16のエネルギー変換フィルム、及び、実施例16のエネルギー変換素子を得た。
[Example 16]
The resin film obtained in Production Example 15 was cut into a square of 20 cm in length and 20 cm in width, and a polythiophene-based ink (trade name: Olgacon ICP1050, manufactured by Agphagewald, solid content concentration) was formed at the center of the back surface of the obtained cut film. : 1.1% by mass) using a multipurpose printing tester (trade name: K303 Multicoater, manufactured by RK Print Coat Instruments Co., Ltd.) and a 100-line gravure plate, solid-printed on a 10 cm x 10 cm square, 80 It was dried in an oven at 0 ° C. for 1 hour. Thereafter, the polythiophene-based ink is applied to the center portion of the surface of the cut film, and the square of 10 cm in length and 10 cm in width is used so that the printing positions on the front and back are the same using the multipurpose printing tester and the gravure plate. Was solid-printed and dried in an oven at 80 ° C. for 24 hours to obtain a resin film having electrodes on both sides. The thickness of the obtained electrode was 0.2 μm on both sides, and the surface resistivity was 4 × 10 4 Ω / □ on both the front and back sides.
The obtained resin film provided with electrodes on both sides is placed on the 12 ground electrodes of the electretization apparatus shown in FIG. 3 in which the distance between the needles of the needle electrodes is 10 mm and the distance between the needle electrodes and the ground electrode is 10 mm. Installed so that the surface faces the main electrode side, and applies an electret treatment by applying a -10 KV DC voltage to the needle-like electrode for 5 seconds. The energy conversion film of Example 16 and the energy conversion element of Example 16 Got.
<試験例>
 得られた実施例1~17及び比較例1のエネルギー変換素子から、電極を有する部分を切り出して、縦10cm×横10cmの試料をそれぞれ作製した。
 そして、得られた各試料を用いて、下記の方法で最大電圧を測定した。
 次いで、同様に作製した各試料を、85℃に設定したオーブン内で14日間の苛酷条件下で熱処理し、この熱処理後の各試料を用いて、下記の方法で最大電圧を測定した。ここで熱処理とは、上述した加熱処理とは異なり、得られたエネルギー変換素子の耐熱性を評価するために、高温環境下で促進させることを目的に行うものである。
<Test example>
From the obtained energy conversion elements of Examples 1 to 17 and Comparative Example 1, portions having electrodes were cut out to prepare samples each having a length of 10 cm and a width of 10 cm.
And the maximum voltage was measured with the following method using each obtained sample.
Next, each sample produced in the same manner was heat-treated in an oven set at 85 ° C. under severe conditions for 14 days, and the maximum voltage was measured by the following method using each sample after the heat treatment. Here, the heat treatment is performed for the purpose of promoting in a high temperature environment in order to evaluate the heat resistance of the obtained energy conversion element, unlike the heat treatment described above.
[最大電圧]
 図4に示す落球試験装置を用いて、温度23℃、相対湿度50%環境下で、最大電圧を測定した。ここではまず、縦10cm×横10cmの試料20(エネルギー変換フィルム5)の表裏面の電極に、導電性テープ(商品名:AL-25BT、住友スリーエム社製)を使用してリード線17,18の一端をそれぞれ貼り付け、リード線17,18の他端は高速レコーダー19(商品名:GR-7000、キーエンス社製)に接続し、図4に示す落球試験装置の絶縁性シート15(軟質塩化ビニルシート、厚み1mm)の上に試料20を表面が上になる様に設置し、同試料20の上面にガラス板14(厚み8mm)を乗せ、同ガラス板14上に直径9.5mm、質量3.5gの鉄球16を乗せた。
 次いでガラス板14上から鉄球16を試料20上に垂直方向8mmの高さから自然落下させ、同試料20からの電圧信号を高速レコーダー19に取り込み、落球の衝撃により発生した最大電圧を10回測定して、その最大電圧の平均値を算出した。
[Maximum voltage]
The maximum voltage was measured under a temperature 23 ° C. and relative humidity 50% environment using the falling ball test apparatus shown in FIG. Here, first, lead wires 17 and 18 are formed using conductive tape (trade name: AL-25BT, manufactured by Sumitomo 3M) on the front and back electrodes of a sample 20 (energy conversion film 5) 10 cm long × 10 cm wide. The other ends of the lead wires 17 and 18 are connected to a high-speed recorder 19 (trade name: GR-7000, manufactured by Keyence Corporation), and the insulating sheet 15 (soft chloride) of the falling ball test apparatus shown in FIG. A sample 20 is placed on a vinyl sheet (thickness 1 mm) so that the surface is on top, a glass plate 14 (thickness 8 mm) is placed on the upper surface of the sample 20, and a diameter of 9.5 mm and a mass is placed on the glass plate 14. A 3.5 g iron ball 16 was placed thereon.
Next, the iron ball 16 is naturally dropped from the glass plate 14 onto the sample 20 from a height of 8 mm in the vertical direction, the voltage signal from the sample 20 is taken into the high-speed recorder 19, and the maximum voltage generated by the impact of the falling ball is 10 times. The average value of the maximum voltage was calculated.
[熱処理後維持率]
 上記の方法で算出した熱処理前後の最大電圧(平均値)の比を百分率で求めて、熱処理後維持率とした。算出された熱処理後維持率を表3に示す。熱処理後維持率は、耐熱性の観点から1%以上であることが好ましく、2%以上であることがより好ましく、3%以上であることがさらに好ましく、5%以上であることが特に好ましい。
 表3に示す熱処理後維持率のデータから、本発明のエネルギー変換フィルム及びエネルギー変換素子においては、苛酷条件下で熱処理した場合でも、発電電圧の維持率が比較例の140~800%程度に達しており、さらに好適態様では従来品では到達し得なかった格別顕著な効果を奏することが裏付けられた。このことから、常温や、より穏やかな使用条件である40~60℃程度の高温における発電電圧の維持率もまた、本発明品は、従来品よりも相当レベル高いことが推察される。
[Maintenance rate after heat treatment]
The ratio of the maximum voltage (average value) before and after the heat treatment calculated by the above method was obtained as a percentage and used as the maintenance rate after the heat treatment. Table 3 shows the calculated retention rate after heat treatment. The maintenance rate after heat treatment is preferably 1% or more, more preferably 2% or more, further preferably 3% or more, and particularly preferably 5% or more from the viewpoint of heat resistance.
From the data on the maintenance rate after heat treatment shown in Table 3, in the energy conversion film and the energy conversion element of the present invention, even when heat treatment was performed under severe conditions, the maintenance rate of the generated voltage reached about 140 to 800% of the comparative example. Furthermore, it was confirmed that the preferred embodiment has a particularly remarkable effect that cannot be achieved by the conventional product. From this, it can be inferred that the product of the present invention also has a considerably higher level of maintenance of the generated voltage at room temperature or at a higher temperature of about 40 to 60 ° C., which is a milder use condition.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明のエネルギー変換フィルム及びエネルギー変換素子は、該エネルギー変換フィルム材料の相転移温度より高い温度において圧電性を示し、高温環境下に曝されてもその圧電性能の低下が少ない。このことから、本発明のエネルギー変換フィルム及びエネルギー変換素子は、高温条件で使用する可能性があるスピーカー、ヘッドフォン、マイクロフォン、超音波センサー、圧力センサー、加速度センサー、振動制御装置等の電気-機械エネルギー変換用のモジュール部材として広く且つ有効に利用可能である。とりわけ、音響センサー、振動センサー、衝撃センサー等のモジュール部材として殊に有効に利用可能であり、そのため本発明は、これらのセンサーを搭載した計測器、制御装置、異常診断システム、防犯装置、スタビライザー、ロボット、打楽器、遊技機、発電装置等として幅広く利用可能であり、これらの産業分野に多大な寄与を与える。 The energy conversion film and energy conversion element of the present invention exhibit piezoelectricity at a temperature higher than the phase transition temperature of the energy conversion film material, and there is little deterioration in the piezoelectric performance even when exposed to a high temperature environment. Therefore, the energy conversion film and the energy conversion element of the present invention are electro-mechanical energy of speakers, headphones, microphones, ultrasonic sensors, pressure sensors, acceleration sensors, vibration control devices, etc. that may be used under high temperature conditions. It can be used widely and effectively as a module member for conversion. In particular, it can be used particularly effectively as a module member such as an acoustic sensor, a vibration sensor, and an impact sensor. Therefore, the present invention provides a measuring instrument, a control device, an abnormality diagnosis system, a security device, a stabilizer, It can be widely used as robots, percussion instruments, gaming machines, power generators, etc., and makes a great contribution to these industrial fields.
  1  エネルギー変換フィルム
  2  樹脂フィルム(コア層)
  3  表スキン層
  4  裏スキン層
  5  エネルギー変換素子
  6  表電極
  7  裏電極
 10  直流高圧電源
 11  針状電極
 12  アース電極
 13  樹脂フィルム又は電極を備えた樹脂フィルム
 14  ガラス板
 15  絶縁性シート
 16  鉄球
 17  リード線
 18  リード線
 19  高速レコーダー
 20  試料(エネルギー変換素子)
 
1 Energy conversion film 2 Resin film (core layer)
DESCRIPTION OF SYMBOLS 3 Front skin layer 4 Back skin layer 5 Energy conversion element 6 Front electrode 7 Back electrode 10 DC high voltage power supply 11 Needle electrode 12 Ground electrode 13 Resin film or resin film provided with electrode 14 Glass plate 15 Insulating sheet 16 Iron ball 17 Lead wire 18 Lead wire 19 High-speed recorder 20 Sample (energy conversion element)

Claims (10)

  1.  熱可塑性樹脂及び金属石鹸を少なくとも含む樹脂フィルムよりなる帯電樹脂フィルムを少なくとも備えるエネルギー変換フィルムと、
     前記エネルギー変換フィルムの少なくとも一方の面に設けられた電極と
    を備えることを特徴とする、エネルギー変換素子。
    An energy conversion film comprising at least a charged resin film made of a resin film containing at least a thermoplastic resin and a metal soap;
    An energy conversion element comprising: an electrode provided on at least one surface of the energy conversion film.
  2.  前記熱可塑性樹脂がポリオレフィン系樹脂を含み、前記金属石鹸が50℃~220℃に融点を有することを特徴とする
    請求項1に記載のエネルギー変換素子。
    2. The energy conversion element according to claim 1, wherein the thermoplastic resin includes a polyolefin-based resin, and the metal soap has a melting point of 50 ° C. to 220 ° C.
  3.  前記金属石鹸が、炭素数5~30の脂肪酸と金属との塩であることを特徴とする
    請求項1又は2に記載のエネルギー変換素子。
    The energy conversion element according to claim 1 or 2, wherein the metal soap is a salt of a fatty acid having 5 to 30 carbon atoms and a metal.
  4.  前記金属石鹸が、脂肪酸と周期表の第2族から第13族に属する金属との塩であることを特徴とする
    請求項1~3の何れか一項に記載のエネルギー変換素子。
    4. The energy conversion element according to claim 1, wherein the metal soap is a salt of a fatty acid and a metal belonging to Group 2 to Group 13 of the periodic table.
  5.  前記金属が、亜鉛、カルシウム及びアルミニウムの少なくとも一種であることを特徴とする
    請求項3又は4に記載のエネルギー変換素子。
    The energy conversion element according to claim 3 or 4, wherein the metal is at least one of zinc, calcium, and aluminum.
  6.  前記樹脂フィルムが、内部に空孔を有する多孔質樹脂フィルムであることを特徴とする請求項1~5の何れか一項に記載のエネルギー変換素子。 The energy conversion element according to any one of claims 1 to 5, wherein the resin film is a porous resin film having pores therein.
  7.  前記エネルギー変換フィルムが、直流コロナ放電処理により前記樹脂フィルムに電荷が注入された帯電樹脂フィルムを少なくとも備えることを特徴とする
    請求項1~6の何れか一項に記載のエネルギー変換素子。
    The energy conversion element according to any one of claims 1 to 6, wherein the energy conversion film includes at least a charged resin film in which charges are injected into the resin film by a direct current corona discharge treatment.
  8.  前記電極が、1×10-3Ω/□~9×10Ω/□の表面抵抗率を有することを特徴とする
    請求項1~7の何れか一項に記載のエネルギー変換素子。
    8. The energy conversion element according to claim 1, wherein the electrode has a surface resistivity of 1 × 10 −3 Ω / □ to 9 × 10 7 Ω / □.
  9.  前記エネルギー変換素子を85℃で14日間の熱処理した後に、温度23℃、相対湿度50%環境下で、水平面上に静置した上に、垂直方向8mmの高さから直径9.5mm、質量3.5gの鉄球を自然落下させたときの衝撃により発生する最大電圧が、5mV以上であることを特徴とする
    請求項1~8の何れか一項に記載のエネルギー変換素子。
    The energy conversion element was heat-treated at 85 ° C. for 14 days, and then left standing on a horizontal surface at a temperature of 23 ° C. and a relative humidity of 50%, and a height of 9.5 mm and a mass of 3 mm from a height of 8 mm in the vertical direction. The energy conversion element according to any one of claims 1 to 8, wherein a maximum voltage generated by an impact when a 5 g iron ball is naturally dropped is 5 mV or more.
  10.  熱可塑性樹脂及び金属石鹸を少なくとも含む樹脂フィルムよりなる帯電樹脂フィルムを少なくとも備えることを特徴とする、
    エネルギー変換フィルム。
    It is characterized by comprising at least a charged resin film made of a resin film containing at least a thermoplastic resin and a metal soap,
    Energy conversion film.
PCT/JP2018/003271 2017-02-01 2018-01-31 Energy conversion film and energy conversion element using same WO2018143294A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3051662A CA3051662A1 (en) 2017-02-01 2018-01-31 Energy conversion film and energy conversion element using same
EP18747414.3A EP3579258A4 (en) 2017-02-01 2018-01-31 Energy conversion film and energy conversion element using same
JP2018565619A JP6771591B2 (en) 2017-02-01 2018-01-31 Energy conversion film and energy conversion element using it
CN201880008235.1A CN110214358B (en) 2017-02-01 2018-01-31 Energy conversion film and energy conversion element using same
US16/481,983 US11515810B2 (en) 2017-02-01 2018-01-31 Energy conversion film and energy conversion element using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-017081 2017-02-01
JP2017017081 2017-02-01

Publications (1)

Publication Number Publication Date
WO2018143294A1 true WO2018143294A1 (en) 2018-08-09

Family

ID=63039811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003271 WO2018143294A1 (en) 2017-02-01 2018-01-31 Energy conversion film and energy conversion element using same

Country Status (6)

Country Link
US (1) US11515810B2 (en)
EP (1) EP3579258A4 (en)
JP (1) JP6771591B2 (en)
CN (1) CN110214358B (en)
CA (1) CA3051662A1 (en)
WO (1) WO2018143294A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162305A (en) * 2019-03-27 2020-10-01 三井化学株式会社 Electret element and electronic apparatus
WO2021020427A1 (en) * 2019-07-31 2021-02-04 株式会社ユポ・コーポレーション Energy conversion film, energy conversion element and method for producing energy conversion film
WO2023188400A1 (en) * 2022-03-31 2023-10-05 花王株式会社 Porous film, method for producing same, and absorbent article that is provided with same
JP7428044B2 (en) 2020-03-26 2024-02-06 三菱ケミカル株式会社 piezoelectric sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11176918B2 (en) * 2016-11-30 2021-11-16 Yupo Corporation Piezoelectric element and musical instrument
JP2023170944A (en) * 2022-05-20 2023-12-01 キヤノン株式会社 Vibration type actuator, electronic device, and optical device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196922A (en) * 1984-03-19 1985-10-05 東洋紡績株式会社 Method of producing electreted material
JPS61148044A (en) 1984-11-20 1986-07-05 カリ・キルヤヴアイネン Dielectric film and manufacture thereof
JPS6261311A (en) * 1985-09-11 1987-03-18 三井化学株式会社 High performance electret
JP2008221074A (en) * 2007-03-09 2008-09-25 Toyobo Co Ltd Electret filter medium and its manufacturing method
JP2011084735A (en) 2009-09-17 2011-04-28 Yupo Corp Energy conversion film
JP2014074104A (en) 2012-10-03 2014-04-24 Sekisui Chem Co Ltd Electret sheet
JP2016039275A (en) * 2014-08-08 2016-03-22 株式会社ユポ・コーポレーション Electret material and using method thereof, and sensor and using method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3509857C2 (en) * 1984-03-19 1994-04-28 Toyo Boseki Electretized dust filter and its manufacture
JP5318751B2 (en) * 2006-04-11 2013-10-16 チバ ホールディング インコーポレーテッド Electret material
JP2011018897A (en) * 2009-06-11 2011-01-27 Nitto Denko Corp Porous resin sheet for piezoelectric/pyroelectric element, and process for production thereof
EP2509126A1 (en) * 2011-04-07 2012-10-10 Bayer Material Science AG Use of thermoplastic polyurethanes for generating electrical energy from wave energy
CN204011486U (en) * 2014-08-06 2014-12-10 贝骨新材料科技(上海)有限公司 Micropore piezo-electric electret thin film assembly volume to volume continuous polarization device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196922A (en) * 1984-03-19 1985-10-05 東洋紡績株式会社 Method of producing electreted material
JPS61148044A (en) 1984-11-20 1986-07-05 カリ・キルヤヴアイネン Dielectric film and manufacture thereof
JPS6261311A (en) * 1985-09-11 1987-03-18 三井化学株式会社 High performance electret
JP2008221074A (en) * 2007-03-09 2008-09-25 Toyobo Co Ltd Electret filter medium and its manufacturing method
JP2011084735A (en) 2009-09-17 2011-04-28 Yupo Corp Energy conversion film
JP2011086924A (en) 2009-09-17 2011-04-28 Yupo Corp Energy conversion film
JP2014074104A (en) 2012-10-03 2014-04-24 Sekisui Chem Co Ltd Electret sheet
JP2016039275A (en) * 2014-08-08 2016-03-22 株式会社ユポ・コーポレーション Electret material and using method thereof, and sensor and using method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3579258A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162305A (en) * 2019-03-27 2020-10-01 三井化学株式会社 Electret element and electronic apparatus
JP7264348B2 (en) 2019-03-27 2023-04-25 三井化学株式会社 Electret elements and electronic devices
WO2021020427A1 (en) * 2019-07-31 2021-02-04 株式会社ユポ・コーポレーション Energy conversion film, energy conversion element and method for producing energy conversion film
JPWO2021020427A1 (en) * 2019-07-31 2021-02-04
JP7203979B2 (en) 2019-07-31 2023-01-13 株式会社ユポ・コーポレーション Energy conversion film, energy conversion element, and method for producing energy conversion film
JP7428044B2 (en) 2020-03-26 2024-02-06 三菱ケミカル株式会社 piezoelectric sheet
WO2023188400A1 (en) * 2022-03-31 2023-10-05 花王株式会社 Porous film, method for producing same, and absorbent article that is provided with same
JP7457213B2 (en) 2022-03-31 2024-03-27 花王株式会社 Porous film, manufacturing method thereof, and absorbent article equipped with the same

Also Published As

Publication number Publication date
CN110214358A (en) 2019-09-06
JPWO2018143294A1 (en) 2019-11-07
CA3051662A1 (en) 2018-08-09
EP3579258A1 (en) 2019-12-11
EP3579258A4 (en) 2020-12-02
US20190393806A1 (en) 2019-12-26
JP6771591B2 (en) 2020-10-21
CN110214358B (en) 2022-03-22
US11515810B2 (en) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2018143294A1 (en) Energy conversion film and energy conversion element using same
JP5638326B2 (en) Energy conversion film
JP5638212B2 (en) Electret with conductive layer
JP6931660B2 (en) Piezoelectric elements and musical instruments
JP5506298B2 (en) Electret film
JP5638211B2 (en) Electret film
CN102150225B (en) Electret film and electret comprising same
KR102107364B1 (en) Laminated porous film, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR101483836B1 (en) Laminated porous film, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2013146342A1 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2016039275A (en) Electret material and using method thereof, and sensor and using method thereof
WO2010030011A1 (en) Electret film and electret comprising same
JP6318919B2 (en) Laminated porous film, method for producing laminated porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5848193B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2021020427A1 (en) Energy conversion film, energy conversion element and method for producing energy conversion film
JP7240504B2 (en) ENERGY CONVERSION FILM, METHOD FOR MANUFACTURING THE SAME, AND METHOD FOR MANUFACTURING ENERGY CONVERSION DEVICE
KR20220024793A (en) Reticulated Carbon Composite
JP2023094422A (en) Electret-converted film and piezoelectric film
JP2022133991A (en) Electret film manufacturing method and manufacturing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565619

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3051662

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018747414

Country of ref document: EP

Effective date: 20190902