WO2010030011A1 - Electret film and electret comprising same - Google Patents

Electret film and electret comprising same Download PDF

Info

Publication number
WO2010030011A1
WO2010030011A1 PCT/JP2009/065961 JP2009065961W WO2010030011A1 WO 2010030011 A1 WO2010030011 A1 WO 2010030011A1 JP 2009065961 W JP2009065961 W JP 2009065961W WO 2010030011 A1 WO2010030011 A1 WO 2010030011A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
electret
layer
resin film
stretched
Prior art date
Application number
PCT/JP2009/065961
Other languages
French (fr)
Japanese (ja)
Inventor
弘 小池
誠一郎 飯田
Original Assignee
株式会社ユポ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009200198A external-priority patent/JP5638212B2/en
Priority claimed from JP2009200197A external-priority patent/JP5506298B2/en
Priority claimed from JP2009200196A external-priority patent/JP5638211B2/en
Application filed by 株式会社ユポ・コーポレーション filed Critical 株式会社ユポ・コーポレーション
Priority to CN200980135383.0A priority Critical patent/CN102150225B/en
Publication of WO2010030011A1 publication Critical patent/WO2010030011A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/02Electrets, i.e. having a permanently-polarised dielectric
    • H01G7/021Electrets, i.e. having a permanently-polarised dielectric having an organic dielectric
    • H01G7/023Electrets, i.e. having a permanently-polarised dielectric having an organic dielectric of macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/516Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to an electret film and an electret including the same, and more particularly, as an electret film in which charge density is stable by accumulating charges inside the film and a material for an electric / electronic input / output device including the electret film.
  • the present invention relates to an electret including a conductive layer having various performances.
  • An electret is a material that forms an electric field to the outside (applies an electric force) while maintaining electric polarization semi-permanently even in the absence of an external electric field, and has been difficult to conduct electricity in the past.
  • a material obtained by treating a part of the material semi-permanently by thermally or electrically treating the material or an inorganic material that is, a material that is charged with static electricity or a material that retains an electric charge.
  • electrets made of a polymer material are used in various forms such as a film, a sheet, a fiber, and a non-woven fabric depending on the use mode.
  • An electret using a porous resin film is known to exhibit a piezoelectric effect, and can be used for vibration measurement, vibration control, sound generation, sound detection, and the like. For this reason, electrets using such porous resin films make use of their light weight to provide electrical equipment such as vibrators, acceleration sensors, ultrasonic sensors, pressure sensors, and vibration control devices for acoustic devices such as speakers, headphones, and microphones. -Applications for various applications have been proposed as materials for electronic input / output devices. (Patent Document 2) An electret made of a porous resin film is said to be able to retain a large amount of charge in the pores inside the film, thereby obtaining an electret having excellent performance and stability.
  • the performance as a piezoelectric element improves the electret using this, when a porous resin film is expanded in the thickness direction using high-pressure gas (nonpatent literature 1).
  • a method of expanding the porous resin film in the thickness direction in this way a film having pores is created by biaxial stretching in advance, and a high-pressure gas is infiltrated into this, followed by heat treatment under reduced pressure.
  • Patent Document 3 A method for obtaining a porous resin film having a high expansion ratio has been proposed (Patent Document 3). These porous resin films having a high expansion ratio were considered to be able to obtain electrets with excellent performance and stability by retaining more charges in the pores inside the film.
  • Non-Patent Document 1 and Patent Document 3 a high-pressure gas is infiltrated into a film made of polypropylene and having pores formed in advance by biaxial stretching of all layers, and then heat-treated under reduced pressure.
  • the porous resin film having a high expansion ratio thus obtained is inferior in the uniformity of the film surface and has large irregularities, so that when the applied voltage is increased, local discharge concentration occurs, and the porous resin film There was a problem that the film was partially destroyed beyond the insulation resistance of the film.
  • a conductive layer for transmitting an electric signal on at least one surface thereof.
  • a method for providing a conductive layer coating of a conductive paint or vapor deposition of metal or the like is common, but the coating method has a drawback that the electret itself deteriorates in performance when the temperature is raised excessively in the drying process.
  • the vapor deposition method has a drawback in that the vaporized metal directly contacts the electret, so that the temperature of the electret rises and the performance is reduced as in the coating method.
  • a porous resin film (i) having high insulation resistance can be used for charge injection at a higher voltage than a conventional porous resin film, and a high charge state can be stably maintained over a long period of time. It aims at providing the electret film (ii) which can be performed.
  • the present invention comprises a porous resin film that has excellent film uniformity compared to conventional porous resin films and is capable of charge injection at a high voltage, resulting in stable high charge state over a long period of time.
  • the object of the present invention is to provide an electret film having excellent performance as an electric / electronic input / output device material.
  • an object of the present invention is to provide an electret having a conductive layer in which the performance reduction of the electret is small when the conductive layer is installed.
  • the present inventors have found that a porous resin film (i) having a specific structure is suitable for the same use, and by electretizing it, It has been found that an electret film (ii) having the desired characteristics can be provided, and the present invention has been completed. That is, the present invention has the following configuration.
  • the porous resin film (i) having a surface resistance of 0.1 ⁇ 2.5 g ⁇ mm / m 2 ⁇ 24 hr and a surface resistance value of at least one surface of 1 ⁇ 10 13 to 9 ⁇ 10 17 ⁇ is DC
  • the above (2) is characterized in that the porous resin film (i) is impregnated with a non-reactive gas under a pressurized condition and then subjected to a heat treatment under a non-pressurized condition.
  • the thickness of the core layer (A) is 10 to 500 ⁇ m, and the thickness of the surface layer (B) is 5 to 500 ⁇ m, according to any one of the above (1) to (3) Electretized film (ii).
  • the core layer (A) contains 50 to 97% by weight of the thermoplastic resin, and 3 to 50% by weight of at least one kind of inorganic fine powder and organic filler, and the surface layer (B) has a thermoplastic resin of 30 to 97%.
  • the electret film (ii) according to (5) above which contains 3% by weight and 3 to 70% by weight of at least one of inorganic fine powder and organic filler.
  • the thermoplastic resin is a polyolefin resin.
  • the electret film (ii) according to any one of (1) to (14), the adhesive layer (D), and the surface resistance value is 1 ⁇ 10 ⁇ 2 to 9 ⁇ 10 7 ⁇ .
  • the electret (iii) provided with the conductive layer characterized by containing the dielectric film (F) provided with the conductive layer (E) in this order.
  • the conductive layer (E) is laminated so as to be an outermost layer.
  • An electret (iii) comprising the conductive layer according to any one of (15) to (19) above.
  • the porous resin film (i) of the present invention By using the porous resin film (i) of the present invention, it is possible to inject more charge, and it is possible to obtain an electret film (ii) having a charge holding ability that is more stable for a longer period than before. Moreover, the electret (iii) provided with the conductive layer of the present invention has high energy conversion efficiency and high mass productivity without reducing the performance of the electret when the conductive layer (E) is provided in the electret material. It becomes possible to provide an output material.
  • the electretized film (ii) of the present invention includes a core layer (A) including a biaxially stretched resin film having pores, and a surface layer (B) including a stretched resin film on at least one side of the core layer (A). It consists of a porous resin film (i) having
  • the core layer (A) used in the present invention is mainly used for retaining electric charges therein. Therefore, the core layer (A) includes a biaxially stretched resin film having pores.
  • the core layer (A) preferably includes a thermoplastic resin that is a polymer material that has a certain thickness or more and is difficult to conduct electricity in order to ensure capacitance, and shows a state with porosity. By having the vacancies formed inside by stretching, it has a structure that can easily hold the electric charge.
  • the core layer (A) used in the present invention is preferably a layer that is expanded in the thickness direction by increasing the internal pressure of the pores by a pressure treatment and a heat treatment described later.
  • Such a core layer (A) is preferably made of a thermoplastic resin, which is a polymer material that has a certain thickness or more and is difficult to conduct electricity in order to ensure capacitance, and has a structure with porosity. As shown, it has a structure that is easy to hold charges by having pores formed by stretching and then expanded by pressure treatment and heat treatment.
  • the thickness of the core layer (A) is preferably in the range of 10 to 500 ⁇ m, more preferably in the range of 20 to 300 ⁇ m, and particularly preferably in the range of 30 to 100 ⁇ m. The thickness of these core layers (A) is the same when they are expanded in the thickness direction.
  • the core layer (A) has a small capacitance and is not suitable for use in electrets, and it becomes difficult to control molding with a uniform thickness, and dielectric breakdown occurs during electret processing described later. It is not preferable because local discharge is likely to occur and local discharge is likely to occur. On the other hand, if it exceeds 500 ⁇ m, it is difficult to reach the inside of the layer at the time of charge injection, which is not preferable because the desired performance of the present invention cannot be exhibited.
  • the core layer (A) is preferably made of a thermoplastic resin that is a polymer material that hardly conducts electricity, but the type of the thermoplastic resin to be used is not particularly limited.
  • a thermoplastic resin that is a polymer material that hardly conducts electricity
  • the type of the thermoplastic resin to be used is not particularly limited.
  • polyolefin resins examples include homopolymers of olefins such as ethylene, propylene, butene, butylene, butadiene, isoprene, chloroprene, methylpentene, and cyclic olefins, and copolymers composed of two or more of these olefins.
  • specific examples of the polyolefin resin include high density polyethylene, medium density polyethylene, propylene resin, copolymers of ethylene and other olefins, and copolymers of propylene and other olefins.
  • propylene-based resins are preferable in terms of processability, insulating properties, cost, and the like.
  • the propylene-based resin include propylene homopolymers such as isotactic or syndiotactic and polypropylene having various degrees of stereoregularity, and mainly composed of propylene, ethylene, 1-butene, Examples thereof include copolymers obtained by copolymerizing ⁇ -olefins such as 1-hexene, 1-heptene and 4-methyl-1-pentene.
  • the copolymer may be a binary system or a ternary system, and may be a random copolymer or a block copolymer.
  • thermoplastic resin When a propylene resin is used as the thermoplastic resin, 2 to 25% by weight of a resin having a melting point lower than that of polypropylene (propylene homopolymer) is used in order to improve the stretch moldability described later. It is preferable.
  • a resin having a low melting point include high density or low density polyethylene.
  • the functional group-containing polyolefin resin include a copolymer with a functional group-containing monomer copolymerizable with the olefins.
  • Such functional group-containing monomers include styrenes such as styrene and ⁇ -methylstyrene, vinyl acetate, vinyl alcohol, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl caproate, vinyl laurate, vinyl stearate, vinyl benzoate.
  • Vinyl esters of carboxylic acid such as vinyl butylbenzoate and vinyl cyclohexanecarboxylate, acrylic acid, methacrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl ( (Meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclope Acrylic acid esters such as Tanyl (meth) acrylate, (meth) acrylamide, N-metalol (meth) acrylamide, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, cyclopentyl vinyl ether,
  • these polyolefin resins and functional group-containing polyolefin resins can be used if necessary by graft modification.
  • a known technique can be used for graft modification.
  • Specific examples of the graft monomer include graft modification with an unsaturated carboxylic acid or a derivative thereof.
  • the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid and the like.
  • unsaturated carboxylic acid derivative acid anhydrides, esters, amides, imides, metal salts and the like can also be used.
  • maleic anhydride, itaconic anhydride, citraconic anhydride methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, glycidyl acrylate, glycidyl methacrylate, maleic acid Monoethyl ester, maleic acid diethyl ester, fumaric acid monomethyl ester, fumaric acid dimethyl ester, itaconic acid monomethyl ester, itaconic acid diethyl ester, acrylamide, methacrylamide, maleic acid monoamide, maleic acid diamide, maleic acid-N-monoethylamide , Maleic acid-N, N-diethylamide, maleic acid-N-monobutylamide, maleic acid-N, N-dibutylamide, fumaric acid monoamide, fumaric acid diamide, fumaric acid-N-monoe
  • Graft modified products that can be used are those obtained by graft modification by adding 0.005 to 10% by weight, preferably 0.01 to 5% by weight, of graft monomers to polyolefin resins or functional group-containing polyolefin resins. is there.
  • the thermoplastic resin used for the core layer (A) one type may be selected from the above thermoplastic resins and used alone, or two or more types may be selected and used in combination.
  • the thermoplastic resin used for the core layer (A) is obtained by adding at least one of an inorganic fine powder and an organic filler. By adding the inorganic fine powder or the organic filler, it becomes easy to form pores in the core layer (A) by the stretching process described later.
  • the core layer (A) preferably contains 50 to 97% by weight of the above thermoplastic resin and 3 to 50% by weight of at least one kind of inorganic fine powder and organic filler. Further, the core layer (A) more preferably contains 60 to 95% by weight of a thermoplastic resin and 5 to 40% by weight of at least one of inorganic fine powder and organic filler. If the content of the inorganic fine powder and organic filler, which are the nucleating agent for the pores, is less than 3% by weight, the number of pores formed in the stretching process described below will be small and the charge storage capacity will be inferior, achieving the intended purpose. Hard to do. On the other hand, if it exceeds 50% by weight, the formed pores communicate with each other.
  • the structure is such that the charge easily escapes from the surface or end surface of the porous resin film (i) via the communication hole, and the charge tends to be unstable, which is not preferable.
  • the non-reactive gas permeates during the pressurizing process the non-reactive gas permeated through the non-reactive gas during the pressurizing process easily escapes from the porous resin film (i) and does not easily expand even when heat-treated. There is a tendency.
  • an inorganic fine powder When adding an inorganic fine powder, one having an average particle size of usually 0.01 to 15 ⁇ m, preferably 0.05 to 5 ⁇ m, more preferably 0.1 to 3 ⁇ m, particularly preferably 0.5 to 2.5 ⁇ m. use.
  • the inorganic fine powder include calcium carbonate, calcined clay, silica, diatomaceous earth, white clay, talc, titanium oxide, barium sulfate, alumina, zeolite, mica, sericite, bentonite, sepiolite, vermiculite, dolomite, wallast. Knight, glass fiber, etc. can be used.
  • the average particle size was referred to the manufacturer catalog value.
  • thermoplastic resin when added, it is preferable to select a different type of resin from the thermoplastic resin that is the main component.
  • the thermoplastic resin when the thermoplastic resin is a polyolefin resin, examples of the organic filler include polyethylene terephthalate, polybutylene terephthalate, polycarbonate, nylon-6, nylon-6,6, cyclic olefin polymer, polystyrene, and polymethacrylate.
  • a polymer having a melting point higher than the melting point of the polyolefin resin, such as 170 to 300 ° C., or a glass transition temperature, such as 170 to 280 ° C., and incompatible can be used.
  • a heat stabilizer antioxidant
  • a light stabilizer a dispersant, a lubricant and the like
  • a heat stabilizer it is usually added within a range of 0.001 to 1% by weight based on the resin.
  • the heat stabilizer sterically hindered phenol-based, phosphorus-based, amine-based stabilizers can be used.
  • a light stabilizer it is usually added within a range of 0.001 to 1% by weight based on the resin.
  • Specific examples of the light stabilizer include sterically hindered amine-based, benzotriazole-based, and benzophenone-based light stabilizers.
  • the dispersant and the lubricant are used for the purpose of dispersing the inorganic fine powder in the resin, for example.
  • the amount used is usually in the range of 0.01 to 4% by weight based on the resin.
  • Specific examples thereof include silane coupling agents, higher fatty acids such as oleic acid and stearic acid, metal soaps, polyacrylic acid, polymethacrylic acid or salts thereof.
  • the core layer (A) is stretched in the biaxial direction of the film width direction and the flow direction.
  • the vacancies formed in the core layer (A) desirably have a large individual volume, a large number, and shapes independent from each other, from the viewpoint of maintaining electric charge.
  • the size of the pores can be increased by extending in the biaxial direction rather than extending in only one direction.
  • those stretched in the biaxial direction of the film in the width direction and the flow direction can form disk-like vacancies that are stretched in the plane direction. It is easy to accumulate polarized charges.
  • a biaxially stretched resin film is used for the core layer (A) of the present invention.
  • the porous resin film (i) when the porous resin film (i) is infiltrated with a non-reactive gas under a pressurized condition and then subjected to a heat treatment under a non-pressurized condition, the porous film before the pressure treatment is performed.
  • the core layer (A) in the conductive resin film (i) is stretched in the biaxial direction of the film width direction and the flow direction.
  • a large number of pores are preliminarily formed inside the layer by stretching. It is desirable that the pores formed in the porous resin film (i) have a large individual volume, a large number, and shapes independent from each other from the viewpoint of maintaining electric charge.
  • the size of the pores can be increased by extending in the biaxial direction rather than extending in only one direction.
  • a film stretched in the biaxial direction of the film in the width direction and the flow direction can form a disk-shaped hole stretched in the surface direction, and therefore, the pressure hole and the heat treatment are further applied to increase the thickness of the hole.
  • the pressure hole and the heat treatment are further applied to increase the thickness of the hole.
  • the surface layer (B) used in the present invention improves the insulation resistance during the electretization treatment of the porous resin film (i) and improves the retention of charges accumulated in the core layer (A).
  • the surface layer (B) is a conventional porous resin. It is a layer that has excellent film surface uniformity compared to a film, and enables charge injection at a high voltage during electretization of the porous resin film (i) of the present invention.
  • the surface layer (B) in the present invention is a layer made of a stretched resin film provided on at least one side of the core layer (A), preferably on both sides.
  • the surface layer (B) preferably includes a thermoplastic resin, which is a polymer material having a thickness greater than or equal to a certain level in order to improve insulation resistance, and is difficult to conduct electricity, but introducing a charge into the core layer (A).
  • the thickness of the surface layer (B) is preferably in the range of 5 to 500 ⁇ m, more preferably in the range of 7 to 300 ⁇ m, further preferably in the range of 9 to 100 ⁇ m, and in the range of 10 to 50 ⁇ m. Particularly preferred is the range of 10 to 30 ⁇ m. If the thickness is less than 5 ⁇ m, the effect of improving the insulation resistance of the porous resin film (i) is insufficient, and charge injection at a high voltage cannot be performed, and an electret film (ii) having a high charge is obtained. It's hard to be done. On the other hand, if it exceeds 500 ⁇ m, it is difficult to reach the inside of the interior during electretization, and the desired performance of the present invention cannot be exhibited, which is not preferable.
  • thermoplastic resin which comprises a surface layer (B) the thing similar to the thermoplastic resin quoted by the term of the core layer (A) can be used. From the viewpoint of stretching properties, it is preferable to use the same kind of resin as the thermoplastic resin used for the surface layer (B) and the core layer (A).
  • the surface layer (B) may or may not contain an inorganic fine powder or an organic filler, but it is contained from the viewpoint of modifying electrical characteristics such as the dielectric constant of the surface layer (B). Is preferable. When it contains, the thing similar to the inorganic fine powder and organic filler quoted by the term of the core layer (A) can be used.
  • the surface layer (B) preferably contains 30 to 97% by weight of the above-mentioned thermoplastic resin and 3 to 70% by weight of at least one kind of inorganic fine powder and organic filler. Furthermore, the surface layer (B) preferably contains 40 to 95% by weight of a thermoplastic resin and 5 to 60% by weight of at least one of inorganic fine powder and organic filler, 50 to 90% by weight of thermoplastic resin, and It is particularly preferable to contain 10 to 50% by weight of at least one of inorganic fine powder and organic filler. When the content of the inorganic fine powder and the organic filler is less than 3% by weight, the effect of improving the electrical characteristics cannot be sufficiently obtained. On the other hand, if it exceeds 70% by weight, the structure is such that the charge easily escapes due to the dielectric effect of the inorganic fine powder itself and the formation of pores communicating with each other, and the charge tends to be unstable, which is not preferable.
  • the surface layer (B) contains an inorganic fine powder or an organic filler
  • the same kind of inorganic fine powder or organic filler used in the core layer (A) or a different kind may be used.
  • the addition of an inorganic fine powder is generally suitable for modifying the electrical characteristics of the surface layer (B) because of its higher dielectric constant than that of a thermoplastic resin.
  • a resin having a low dielectric constant such as a polyolefin-based resin
  • the core layer (A) due to the dielectric effect when a high voltage is applied during electret treatment by containing an inorganic fine powder or an organic filler.
  • the charge can reach the core layer (A), and after the electretization, the low dielectric property of the polyolefin resin as the main component has an effect of retaining the charge of the core layer (A) without escaping.
  • the surface layer (B) is a layer made of a stretched resin film. This is because the uniformity of thickness (film thickness) can be improved by stretching, and electrical characteristics such as insulation resistance can be made uniform. If the thickness of the layer (B) is not uniform, local discharge concentration is likely to occur particularly in a thin portion during charge injection using a high voltage, and effective charge injection cannot be expected. Further, the surface layer (B) is preferably a uniaxially stretched resin film with low pore formation efficiency. When the surface layer (B) is a biaxially stretched resin film, pores are formed with inorganic fine powder or organic filler as the core as in the core layer (A). The effect of holding is reduced.
  • the surface layer (B) is preferably stretched in at least a uniaxial direction after being laminated with the core layer (A).
  • the uniformity of the film thickness as the porous resin film (i) is improved rather than laminating stretched films, resulting in electrical characteristics such as insulation resistance. Will improve.
  • the porous resin film (i) when the porous resin film (i) is infiltrated with a non-reactive gas under pressure and then subjected to heat treatment under non-pressure, the porous resin before pressure treatment
  • the surface layer (B) in the film (i) is a layer containing a uniaxially stretched resin film as described above.
  • the electretized film (ii) of the present invention is greatly improved in performance as compared with the conventional film.
  • the uniformity of thickness (film thickness) is improved by stretching to improve the electrical characteristics such as withstand voltage. If the thickness of the surface layer (B) is not uniform, local discharge concentration is likely to occur particularly in a thin portion during charge injection using a high voltage, and effective charge injection cannot be expected.
  • the surface layer (B) is a biaxially stretched film as in the conventional case, as with the core layer (A), pores are easily formed with inorganic fine powder or organic filler as the core, followed by pressure treatment As a result, large pores are easily formed by the heat treatment, and as a result, the uniformity of thickness (film thickness) is impaired, and the intended purpose cannot be achieved. Further, by forming these holes, the purpose of preventing the non-reactive gas from the core layer (A) from diffusing to the outside between the pressurizing treatment and the heat treatment, and the core layer ( A) It is difficult to achieve the purpose of improving the retention of charges accumulated inside. Therefore, when performing the said process, the surface layer (B) in the porous resin film (i) of this invention uses the resin film extended uniaxially with low formation efficiency of a void
  • the surface layer (B) may have a multilayer structure of two or more layers in addition to the single layer structure. In the case of a multilayer structure, the design of the porous resin film (i) having higher charge retention performance by changing the type and content of the thermoplastic resin, inorganic fine powder, and organic filler used in each layer Is possible.
  • the surface layer (B) is provided on at least one side of the core layer (A), and may be provided on both sides.
  • the front and back may have the same composition and configuration, or may have different compositions and configurations (see FIG. 1).
  • porous resin film (i) comprises a laminated film of a core layer (A) / surface layer (B) (biaxially stretched resin film / stretched resin film (preferably uniaxially stretched resin film)) as a minimum constituent unit. To do.
  • the lamination of the core layer (A) and the surface layer (B) various known methods can be used. Specific examples include a co-extrusion method using a multilayer die using a feed block and a multi-manifold, an extrusion lamination method using a plurality of dies, and the like. Furthermore, a method of combining a coextrusion method using a multilayer die and an extrusion lamination method can be mentioned.
  • the core layer (A) is preferably a biaxially stretched film
  • the surface layer (B) is preferably a uniaxially stretched film.
  • the lamination of the core layer (A) and the surface layer (B) is preferably performed by extrusion lamination of the surface layer (B) on the core layer (A) stretched in the uniaxial direction.
  • the laminate is stretched in a direction substantially perpendicular to the stretching axis of the core layer (A), whereby the core layer (A) is biaxial.
  • a porous resin film (i) having a uniform film thickness is obtained in which a stretched film is used and the surface layer (B) is a uniaxially stretched film.
  • Stretching of the core layer (A), the surface layer (B), and the porous resin film (i) that is a laminate thereof can be performed by various known methods.
  • the stretching method the longitudinal stretching method utilizing the peripheral speed difference of the roll group, the transverse stretching method using a tenter oven, the rolling method, the simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor, the tenter oven and the pantograph
  • the simultaneous biaxial stretching method by a combination etc. can be mentioned.
  • the simultaneous biaxial stretching method by the tubular method which is a stretching method of an inflation film can be mentioned.
  • the temperature at the time of stretching can be performed within the range from the glass transition point temperature to the melting point of the crystal part of the main thermoplastic resin used in each layer.
  • the stretching temperature is a temperature 1 to 70 ° C. lower than the melting point of the thermoplastic resin used as an index. Specifically, when the thermoplastic resin of each layer is a propylene homopolymer (melting point 155 to 167 ° C.), it is 100 to 166 ° C., and when it is a high density polyethylene (melting point 121 to 136 ° C.), it is 70 to 135 ° C. ° C.
  • the stretching speed is preferably in the range of 20 to 350 m / min.
  • the draw ratio is not particularly limited, and is appropriately determined in consideration of the characteristics of the thermoplastic resin used for the porous resin film (i), the porosity to be described later, and the like.
  • the draw ratio is about 1.2 to 12 times, preferably 2 to 10 times when drawn in a uniaxial direction.
  • the area magnification product of the vertical magnification and the horizontal magnification
  • the stretching ratio is 1.2 to 10 times, preferably 2 to 5 times when stretched in a uniaxial direction, and 1.5 to 20 times the area magnification when stretched in a biaxial direction. Times, preferably 4 to 12 times.
  • the porous resin film (i) may be laminated on one or both sides in order to further expand the use after electretization by laminating multiple materials, and to improve the adhesion to an adhesive or a deposited metal film. It is preferable to have an anchor coat layer (C).
  • a polymer binder is preferably used for the anchor coat layer (C). Specific examples of such a polymer binder include polyethyleneimine, alkyl-modified polyethyleneimine having 1 to 12 carbon atoms, poly (ethyleneimine-urea).
  • polyethyleneimine polymers such as ethyleneimine adducts of polyamine polyamides and epichlorohydrin adducts of polyamine polyamides, acrylic amide-acrylic acid ester copolymers, acrylic acid amide-acrylic acid ester-methacrylic acid ester copolymers, Examples include polyacrylamide derivatives, acrylic ester polymers such as oxazoline group-containing acrylic ester polymers, polyvinyl alcohol and modified products thereof, polyvinyl pyrrolidone, polyethylene glycol, and the like.
  • Polyurethanes polyurethanes, polyurethane, ethylene-vinyl acetate copolymer, polyvinylidene chloride, chlorinated polypropylene, maleic acid-modified polypropylene, acrylic acid-modified polypropylene, and other polypropylene polymers, acrylonitrile-butadiene copolymer, polyester and other organic solvent dilutions Resin or water dilution resin etc. are mentioned.
  • a polyethyleneimine polymer, a polyvinyl alcohol polymer, and a polypropylene polymer are preferable because of their excellent anchoring effect on the porous resin film (i).
  • the film thickness of the anchor coat layer (C) is preferably 0.001 to 5 g / m 2 , more preferably 0.005 to 3 g / m 2 in terms of solid content basis weight, and 0.01 to 1 g. / M 2 is more preferable.
  • the basis weight of the layer (C) is less than 0.001 g / m 2 , the effect of providing the anchor coat layer (C) cannot be sufficiently obtained.
  • it exceeds 5 g / m 2 it is difficult to keep the film thickness of the anchor coat layer (C) as the coating layer uniform, and the electrical characteristics of the porous resin film (i) due to the fluctuation of the film thickness.
  • the anchor effect is reduced due to insufficient cohesive strength of the anchor coat layer (C), or the surface resistance value of the anchor coat layer (C) is reduced to less than 1 ⁇ 10 13 W,
  • the porous resin film (i) is converted into an electret, it is difficult to inject charges, and the core layer (A) is not reached and the desired performance of the present invention is not exhibited.
  • the anchor coat layer (C) on the porous resin film (i) it is preferable to use a method in which a coating material containing the polymer binder is applied onto the porous resin film (i).
  • the coating can be formed by forming a coating film on the porous resin film (i) with a known coating apparatus and drying it.
  • Specific examples of coating devices include, for example, die coaters, bar coaters, comma coaters, lip coaters, roll coaters, curtain coaters, gravure coaters, spray coaters, squeeze coaters, blade coaters, reverse coaters, air knife coaters, etc. Is mentioned.
  • the lamination of the anchor coat layer (C) to the porous resin film (i) is preferably performed before performing the electretization process described later.
  • the timing for installing the anchor coat layer (C) is: Step of porous resin film (i) before carrying out pressure treatment and heat treatment described later, step of porous resin film (i) before carrying out pressure treatment and heat treatment, pressure treatment and heating
  • the stage of the porous resin film (i) which processed can be considered, and all can be implemented. Considering the rationality of equipment and processes, it is preferable to carry out at the stage of the porous resin film (i) before performing the pressure treatment and the heat treatment.
  • the preferred porous resin film (i) is prepared by placing the aforementioned resin film in a pressure vessel, introducing a non-reactive gas into the vessel, and applying pressure to the inside of the core layer (A). It is obtained by infiltrating a non-reactive gas into the pores and expanding the pores by a heat treatment described later.
  • the non-reactive gas used include inert gases such as nitrogen, carbon dioxide, helium, neon, argon, chlorofluorocarbon, and halon, or mixed gases and air thereof. Even when a gas other than a non-reactive gas is used, an expansion effect can be obtained. From the viewpoint of safety during pressure treatment and the safety of the obtained porous resin film (i), methane, ethane, propane, It is desirable to use the non-reactive gas described above without using a reactive gas such as butane.
  • the pressure during the pressure treatment is preferably in the range of 0.2 to 10 MPa, more preferably 0.3 to 8 MPa, and still more preferably 0.4 to 6 MPa.
  • the applied pressure is less than 0.2 MPa, the pressure is low, so that the gas cannot be sufficiently permeated into the porous resin film (i), and a sufficient expansion effect cannot be obtained.
  • the pores of the core layer (A) cannot withstand the internal pressure during the subsequent heat treatment, and burst, resulting in holes and tears in the porous resin film (i).
  • the time for performing the pressure treatment is preferably 1 hour or more, more preferably in the range of 1 to 50 hours.
  • the pressure treatment time is less than 1 hour, the non-reactive gas cannot be fully filled in the entire core layer (A).
  • the porous resin film (i) in which the non-reactive gas is sufficiently filled in the pores of the core layer (A) in a short time of less than 1 hour the gas emission after the treatment is similarly the same.
  • the infiltrated gas diffuses and a stable expansion ratio cannot be obtained.
  • a buffer sheet as shown in FIG. 6 is provided so that the non-reactive gas can easily penetrate into the winding. It is desirable to prepare a material that has been wound together with and to process it.
  • the buffer sheet include a foamed polystyrene sheet, a foamed polyethylene sheet, a foamed polypropylene sheet, a non-woven fabric, a woven fabric, and a paper having a continuous void.
  • This winding is put into a pressurized container as shown in FIG. 7, and a pressure treatment is performed with a non-reactive gas.
  • the porous resin film (i) can be obtained by fixing the shape of a resin film having pores expanded by pressure treatment by heat treatment. After the pressure treatment, the porous resin film (i) is expanded by the differential pressure by returning it to a non-pressure condition. However, in this state, the permeated non-reactive gas gradually escapes, and the porous resin film (i) returns to its original thickness. Therefore, heat treatment promotes inelastic deformation (plastic deformation) of the thermoplastic resin in the expanded shape, and even after the non-reactive gas escapes from the film and the pores fall to atmospheric pressure. The expansion effect can be maintained.
  • the temperature of the heat treatment is within a known temperature range suitable for stretching the thermoplastic resin, which is not lower than the glass transition temperature of the thermoplastic resin mainly used for the core layer (A) and not higher than the melting point of the crystal part. it can. More specifically, when the thermoplastic resin of the core layer (A) is a propylene homopolymer (melting point: 155 to 167 ° C.), the temperature is in the range of 80 to 160 ° C.
  • the heating method various conventionally known methods can be used. As a specific example, when the porous resin film (i) is a single wafer, heating in an oven, heating on a heat plate, radiant heating by radiating infrared rays from an infrared heater to the film surface, etc. Can be mentioned.
  • porous resin film (i) when the porous resin film (i) is long and is in the form of winding, hot air heating that blows hot air from the nozzle onto the film surface, and radiant heating that radiates infrared rays from the infrared heater to the film surface And contact heating for bringing the film into contact with a roll or plate with a temperature control function.
  • the heating time of the porous resin film (i) is determined by the treatment temperature and the heat transfer rate, but is preferably in the range of 1 to 100 seconds, more preferably 2 to 80 seconds, still more preferably 3 to 60 seconds. It is. If the heat treatment time is less than 1 second, the porous resin film (i) cannot be heated uniformly, and the film thickness after the heat treatment is not stable. On the other hand, if it exceeds 100 seconds, the gas escapes from the porous resin film (i) whose gas permeability is improved by heating, and the film thickness is reduced during the heat treatment.
  • FIG. 8 shows an example of a non-contact type heat treatment apparatus.
  • porous resin stretched film (i) The porous resin film (i) obtained through the above laminating step and stretching step and then, if necessary, through pressure treatment and heat treatment, is suitable for forming an electret film (ii) by charge injection. Designed as a thing.
  • the porous resin film (i) has a certain range of porosity in order to ensure the capacitance, and in order to prevent the accumulated charge from escaping to the outside, The surface resistance value is greater than or equal to the value.
  • the pores in the porous resin film (i) are places where electric charges are retained, so that the larger the ratio, the greater the capacitance can be ensured.
  • the water vapor transmission coefficient of the porous resin film (i) determines the presence or absence of such communicating pores. If the water vapor transmission coefficient is large, electric charges are likely to be discharged due to the surface of the communicating holes and intervening water vapor.
  • the surface specific resistance value of the porous resin film (i) also determines the ease of charge release from the porous resin film (i). If the surface resistivity is too small, discharge through the film surface is likely to occur.
  • the thicknesses of the porous resin film (i) and electret film (ii) in the present invention were measured using a thickness meter in accordance with JIS-K-7130: 1999.
  • the thickness of each of the core layer (A) and the surface layer (B) is such that a film as a measurement target sample is cooled to a temperature of ⁇ 60 ° C.
  • a razor blade is placed on a sample placed on a glass plate (Sick Japan Co., Ltd., trade name: Proline Blade) is cut perpendicularly to the surface direction to create a sample for cross-section measurement, and the cross-section of the obtained sample is scanned with a scanning electron microscope (JEOL ( Measured by the above method using a product name, JSM-6490), and determining the thickness ratio by distinguishing the boundary line between the core layer (A) and the surface layer (B) from the pore shape and composition. Calculated from the thickness of the entire film layer.
  • JEOL scanning electron microscope
  • the porosity calculated by the following formula (1) is preferably 1 to 70%, more preferably 10 to 60%, and more preferably 20 to 50%. It is particularly preferred. It is preferable to have a large number of these pores independently as fine pores inside the film. Due to the presence of pores, the number of interfaces in the resin film is increased, and the performance of accumulating charges inside the resin film is improved compared with a resin film having no pores, thereby obtaining an electret film (ii) with high performance. Can do. However, excessive vacancies can cause charge to escape.
  • the resin film before the treatment has a fine void inside the film. It has a large number of holes, and the porosity calculated by the above formula (1) is preferably 1 to 50%, more preferably 10 to 45%. If the porosity is less than 1%, the effect of expansion due to permeation of the non-reactive gas cannot be sufficiently obtained. On the other hand, if the porosity exceeds 50%, communication between the pores occurs, and the non-reactive gas tends to escape and a sufficient expansion effect tends not to be obtained.
  • the resulting porous resin film (i) has a higher porosity than the resin film.
  • the porous resin film (i) after performing the pressure treatment and the heat treatment preferably has a porosity of 5 to 95% calculated by the previous formula (1) and is 10 to 80%. More preferably, it is more preferably 12 to 70%, and particularly preferably 15 to 60%. When the porosity is less than 5%, the charge storage capacity is low, and the obtained electret (iii) is inferior in performance as a material for an electric / electronic input / output device.
  • the water vapor transmission coefficient (g ⁇ mm / m 2 ⁇ 24 hr) of the porous resin film (i) is a permeation rate at a temperature of 40 ° C. and a relative humidity of 90% by a cup method in accordance with JIS-Z-0208: 1976. It is a value obtained by measuring humidity (g / m 2 ⁇ 24 hr) and converting from the thickness (mm) of the film.
  • the surface layer (B) of the porous resin film (i) of the present invention has an insulating effect so that electric charges accumulated in the core layer (A) do not escape to the outside, but when the effect is low The water vapor transmission coefficient becomes high, and the charge holding ability is inferior. Or when many of the said void
  • the water vapor transmission coefficient of the porous resin film (i) of the present invention is in the range of 0.1 to 2.5 g ⁇ mm / m 2 ⁇ 24 hr, preferably 0.2 to 1.5 g ⁇ mm / m 2 ⁇ It is within the range of 24 hr, and particularly preferably within the range of 0.3 to 1.0 g ⁇ mm / m 2 ⁇ 24 hr.
  • the water vapor transmission coefficient of the porous resin film (i) exceeds 2.5 g ⁇ mm / m 2 ⁇ 24 hr, the chargeability under high humidity is remarkably lowered, and the desired performance of the present invention is not exhibited.
  • thermoplastic resin that can be a main component of the porous resin film (i) for example, a polyolefin-based resin has a water vapor transmission coefficient of around 0.1 g / m 2 ⁇ 24 hr, so that it is less than 0.1 g / m 2 ⁇ 24 hr. It is difficult to produce a porous resin film (i). As described above, these water vapor transmission coefficients can be adjusted mainly by the amount of pores (porosity), its size, and shape.
  • the surface resistance value ( ⁇ ) of the porous resin film (i) was measured under the conditions of a temperature of 23 ° C. and a relative humidity of 50% by a double ring method in accordance with JIS-K-6911: 1995.
  • the porous resin film (i) of the present invention has a surface resistance of at least one surface of 1 ⁇ 10 13 to 9 ⁇ 10 17 ⁇ , preferably 1 ⁇ 10 14 to 9 ⁇ 10 16 ⁇ , particularly preferably. Is in the range of 5 ⁇ 10 14 to 9 ⁇ 10 15 ⁇ .
  • the surface resistance value is less than 1 ⁇ 10 13 ⁇ , when the porous resin film (i) is subjected to electret treatment, the charge easily escapes through the surface, and sufficient charge injection is not performed. On the other hand, if the surface resistance exceeds 9 ⁇ 10 17 ⁇ , it becomes difficult to remove dust and dirt adhering to the porous resin film (i), and local discharge tends to occur during electret processing. Therefore, the partial porous resin film (i) is easily broken and is not preferable.
  • These surface resistances can be adjusted mainly by the selection of the thermoplastic resin to be used and the basis weight of the anchor coat layer (C) described above.
  • an electret treatment by direct current high voltage discharge is performed.
  • several processing methods can be considered for the electretization process. For example, a method of holding both surfaces of the porous resin film (i) with a conductor and applying a DC high voltage or a pulsed high voltage (electroelectretization method) or a method of electretization by irradiating ⁇ rays or electron beams ( Radio electretization method) and the like are known.
  • the electretization method (electroelectretization method) using a direct current high voltage has a small apparatus and a small burden on workers and the environment, and is as high as the porous resin film (i) of the present invention. Suitable for electretization of molecular materials.
  • a porous resin film (i) is fixed between a needle electrode 6 connected to a DC high voltage power source 5 and a ground electrode 7 as shown in FIG.
  • the porous resin film (i) is fixed between the wire electrode 10 connected to the DC high voltage power source and the ground electrode 7 as shown in FIG. 4
  • the wire electrode 10 is moved while applying a predetermined voltage, FIG.
  • FIG. 2 there is one that allows the porous resin film (i) to pass through while applying a predetermined voltage between the wire electrode 11 connected to the DC high voltage power source and the roll 9 connected to the ground.
  • the present invention is characterized in that a larger amount of electric charge is accumulated in the inside by electretization by direct current high voltage discharge.
  • the voltage of the electretization treatment is such that the thickness of the porous resin film (i), the porosity, the material of the resin or filler, the treatment speed, the shape, material, size of the electrode to be used, and the electret film to be finally obtained (although it can be changed depending on the charge amount of ii), the preferable range is 10 to 100 KV, more preferably 12 to 70 KV, and still more preferably 15 to 50 KV. If the electretization voltage is less than 10 KV, the amount of charge injection is insufficient, and the initial performance of the present invention tends to be difficult to exhibit.
  • an excessive charge may be injected into the porous resin film (i).
  • a discharge phenomenon occurs from the treated electret film (ii), resulting in inconvenience in the subsequent process.
  • the electret film (ii) can be subjected to a charge removal process for surplus charges after the electret process.
  • a charge remover such as a voltage application type charge remover (ionizer) or a self-discharge charge remover can be used.
  • These general static eliminators can remove the charge on the surface, but do not remove the charge accumulated in the core layer (A), particularly in the vacancies. Therefore, there is no influence that the performance of the electret film (ii) is greatly reduced by the charge removal treatment.
  • the electretization treatment is desirably performed at a temperature not lower than the glass transition temperature of the main thermoplastic resin used for the porous resin film (i) and not higher than the melting point of the crystal part. If the glass transition point or higher, the molecular motion of the amorphous portion of the thermoplastic resin is active, and a molecular arrangement suitable for a given charge is formed, so that an efficient electret treatment is possible. On the other hand, if the melting point is exceeded, the porous resin film (i) cannot maintain its structure, and thus the desired performance of the present invention cannot be obtained.
  • the electret (iii) provided with the conductive layer of the present invention is obtained by laminating the dielectric film (F) on at least one surface of the electret film (ii) via the adhesive layer (D).
  • a stretched film or an unstretched film made of a thermoplastic resin can be used as the dielectric film (F).
  • the type of thermoplastic resin used for the dielectric film (F) is not particularly limited.
  • high density polyethylene high density polyethylene, medium density polyethylene, low density polyethylene, propylene resin, polyolefin resin such as polymethyl-1-pentene, ethylene / vinyl acetate copolymer, ethylene / acrylic acid copolymer, maleic acid modified polyethylene, Functional group-containing polyolefin resins such as maleic acid-modified polypropylene, polyamide resins such as nylon-6 and nylon-6,6, polyethylene terephthalate and copolymers thereof, thermoplastic polyester resins such as polybutylene terephthalate and aliphatic polyester Polycarbonate, atactic polystyrene, syndiotactic polystyrene and the like can be used.
  • polyolefin resin such as polymethyl-1-pentene, ethylene / vinyl acetate copolymer, ethylene / acrylic acid copolymer, maleic acid modified polyethylene, Functional group-containing polyolefin resins such as maleic acid-modified polypropylene, polyamide resins
  • the film thickness of the dielectric film (F) is preferably from 0.1 to 100 ⁇ m, more preferably from 0.5 to 70 ⁇ m, still more preferably from 1 to 50 ⁇ m. If the film thickness is less than 0.1 ⁇ m, the thickness is too thin and wrinkles are likely to occur when stacking, and defects are likely to occur in the conductive layer (E). On the other hand, if it exceeds 100 ⁇ m, the signal does not reach the electret film (ii) through the dielectric film, or it is difficult for sound and vibration to be transmitted to the electret film (ii). When used, the performance is inferior.
  • the dielectric film (F) needs to have a conductive layer (E) on one side.
  • Examples of the method for providing the conductive layer (E) on the dielectric film (F) include application of a conductive paint and vapor deposition of metal.
  • Specific examples of the conductive paint include metal particles such as gold, silver, platinum, copper, and silicon, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum dope.
  • Conductive metal oxide particles such as zinc oxide and carbon particles mixed with a solution and / or dispersion of a binder component such as acrylic resin, urethane resin, ether resin, ester resin, epoxy resin, or polyaniline , Solutions and / or dispersions of conductive resins such as polypyrrole and polythiophene.
  • the conductive coating can be formed by forming a coating film on a support with a known coating apparatus and drying it.
  • Specific examples of the coating apparatus include a die coater, a bar coater, a comma coater, a lip coater, a roll coater, a curtain coater, a gravure coater, a spray coater, a blade coater, a reverse coater, and an air knife coater.
  • a thin film is formed by vaporizing a metal such as aluminum, zinc, gold, silver, platinum, nickel under reduced pressure and directly adhering to the surface of the dielectric film (F), Or the said metal is vaporized under reduced pressure, once adheres to the surface of a transfer film, a thin film is formed, and it is made to transfer on the surface of a dielectric film (F) etc. next.
  • the film thickness of the conductive layer (E) is preferably from 0.01 to 10 ⁇ m, more preferably from 0.03 to 7 ⁇ m, still more preferably from 0.05 to 5 ⁇ m. If the film thickness is less than 0.01 ⁇ m, the conductive layer tends to be uneven in signal transmission performance. On the other hand, if the thickness exceeds 10 ⁇ m, the conductive layer becomes heavy and it becomes difficult to transmit sound and vibration, resulting in poor performance when used in an electric / electronic input / output device.
  • the electret (iii) provided with the conductive layer of the present invention is obtained by laminating the dielectric film (F) on at least one surface of the electret film (ii) via the adhesive layer (D).
  • the dielectric layer (E) may be laminated so that the conductive layer (E) becomes the outermost layer.
  • the adhesive layer (D) may be laminated. In general, it is preferable to laminate so that the conductive layer (E) provided on the laminated dielectric film (F) is the outermost layer (facing the side opposite to the electret film (ii)).
  • Lamination is performed by applying an adhesive such as a solvent-based adhesive, a water-dispersed adhesive, or a hot-melt adhesive on the electret film (ii) or the dielectric film (F).
  • the adhesive layer can be provided by a technique, and the lamination can be performed through the adhesive layer, or a usual technique such as a melt lamination using a heat-fusible film or a melt-extruded film can be used.
  • These adhesive layers are usually preferably provided on the dielectric film (F) first because the heat history on the electret film (ii) is reduced.
  • solvent-based adhesives and water-dispersed adhesives include resins made of acrylic resins, urethane resins, ether resins, ester resins, epoxy resins, rubber resins, silicone resins, ABS resins, etc.
  • the components are dissolved, dispersed, emulsion-dispersed and diluted in a phase using a conventionally known solvent to obtain a liquid adhesive that is fluid and can be applied in the form of a solution type or an emulsion type.
  • These adhesives are applied by a die coater, bar coater, comma coater, lip coater, roll coater, gravure coater, spray coater, blade coater, reverse coater, air knife coater, or the like.
  • an adhesive layer is formed through a drying step.
  • These adhesives are generally applied so that the basis weight is 0.5 to 25 g / m 2 and an adhesive layer is provided.
  • an adhesive apply the adhesive on the surface of the dielectric film (F) that does not have the conductive layer (E), then stack the electret film (ii), and apply pressure with a pressure roll. That's fine.
  • hot-melt adhesive examples include polyolefin resins such as polyethylene and ethylene / vinyl acetate copolymers, polyamide resins, polybutyral resins, urethane resins, and the like.
  • the dielectric film (F) is provided on both sides. At least one side must be after performing the electretization process. Even if the electretization process is performed after the dielectric film (F) is laminated on both sides, the charge may escape through the conductive layer (E), so that the charge reaches the inside of the porous resin film (i). The desired performance of the present invention cannot be achieved.
  • One mode of the electret (iii) provided with the conductive layer of the present invention is shown in FIG.
  • thermoplastic resin composition a After kneading the thermoplastic resin composition a with an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 135 ° C. and stretched 5 times in the machine direction using a number of roll groups having different peripheral speed differences to obtain a 5 times stretched film. Subsequently, after kneading the plastic resin composition c with an extruder set at 250 ° C., the plastic resin composition c is supplied to an extrusion die set at 250 ° C.
  • thermoplastic resin composition b After kneading the thermoplastic resin composition b in an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. .
  • This unstretched sheet was heated to 150 ° C. and stretched 4 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4 times stretched film.
  • the plastic resin composition d was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape.
  • each of these layers was laminated to obtain a laminated film having a three-layer structure.
  • this laminated film is cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 7.5 times in the transverse direction, and then subjected to an annealing treatment in an oven adjusted to 160 ° C.
  • thermoplastic resin composition f After kneading the thermoplastic resin composition f with an extruder set at 220 ° C., the thermoplastic resin composition f was supplied to an extrusion die set at 240 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 145 ° C., and stretched 4 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4 times stretched film. Next, after kneading the plastic resin composition g with an extruder set at 230 ° C., the plastic resin composition g was supplied to an extrusion die set at 250 ° C.
  • thermoplastic resin composition b After kneading the thermoplastic resin composition b in an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 150 ° C. and stretched 4.5 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4.5 times stretched film. Next, after kneading the plastic resin composition d with an extruder set at 250 ° C., the plastic resin composition d was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape.
  • thermoplastic resin composition b After kneading the thermoplastic resin composition b in an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 150 ° C. and stretched 4 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4 times stretched film. Next, the plastic resin composition d was kneaded with an extruder set at 250 ° C., then supplied to an extrusion die set at 250 ° C.
  • a laminated film having a two-layer structure was obtained.
  • thermoplastic resin composition a and the thermoplastic resin composition e are kneaded in individual extruders set at 230 ° C., then supplied to a feed block type multilayer die set at 250 ° C., and e / a /
  • the layers were laminated in the order of e and extruded into a sheet shape, which was cooled by a cooling device to obtain a three-layer unstretched sheet.
  • This unstretched sheet was heated to 135 ° C. and stretched 5 times in the longitudinal direction to obtain a 5-fold stretched film.
  • this 5-fold stretched film is cooled to 60 ° C., heated again to about 155 ° C.
  • thermoplastic resin composition b After kneading the thermoplastic resin composition b in an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. .
  • This unstretched sheet was heated to 150 ° C. and stretched 4.5 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4.5 times stretched film.
  • this 4.5 times stretched film was cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 7.5 times in the transverse direction, and then annealed in an oven adjusted to 160 ° C.
  • the ears were slit to obtain a porous resin film having a single layer structure with a thickness of 60 ⁇ m and a porosity of 44%.
  • the composition of the obtained porous resin film is shown in Table 2 below.
  • Examples 1 to 6, Comparative Example 3 Corona surface treatment was applied to both surfaces of the porous resin films obtained in Production Examples 1 to 5, the anchor agents listed in Table 1 were combined, and the coating amount (basis weight) after drying was as shown in Table 3 It was coated as such, and dried in an oven at 80 ° C. for 30 minutes, and an anchor coat layer (C) was provided to obtain a porous resin film (i).
  • the electretization apparatus shown in FIG. 2 set to a distance between the needles of 10 mm and a distance between the main electrode and the ground electrode of 10 mm was used, and the following tests were conducted. Finally, a direct current high voltage discharge treatment was performed at the applied voltage shown in Table 3 to obtain an electret film (ii).
  • the porous resin film (i) obtained in each example and each comparative example is placed on the ground electrode 7 board, and electretization is performed at an applied voltage 1 KV lower than the voltage at which local spark discharge is generated in the above spark discharge test.
  • the treated porous resin film (i) surface (treated surface) is once covered with aluminum foil (product name: Myfoil), the surplus charge remaining on the surface is removed, and the aluminum foil is further removed. After peeling off, move to a constant temperature room with a temperature of 25 ° C.
  • the surface potential of each electret film (ii) in the same environment is measured with a surface potential meter ( Measurement was performed immediately after the treatment and after 30 days using a product of Keyence Co., Ltd. (trade name: high-accuracy electrostatic sensor SK), and evaluated according to the following criteria. The evaluation results and the measured surface potential are shown in Table 3. ⁇ : Good: the surface potential after 30 days is 200 V or more X: Bad: the surface potential after 30 days is less than 200 V As shown in Table 3, the electret film (ii) of the present invention has more It was confirmed that the charge was retained for a long period of time.
  • Adhesive adhesion A polyurethane adhesive (manufactured by Toyo Ink, trade name: Tomoflex TM319) and a curing agent (manufactured by Toyo Ink, trade name: Tomoflex CAT-11B) are mixed at a ratio of 1: 1 and diluted with ethyl acetate. Thus, an adhesive paint having a solid content of 20% by weight was prepared.
  • An adhesive paint was applied to one side of the electret films (ii) obtained in Examples 1 to 3 and Comparative Examples 1 to 3 so that the coating amount after drying was 2 g / m 2 , After drying in an oven for 60 seconds, the adhesive was folded in two so that the adhesive was on the inside, and a sample for adhesive adhesion evaluation was prepared. The prepared sample was aged in an oven set at 40 ° C.
  • Example of electret film (ii) subjected to pressure and heat treatment The materials used in the production examples, examples, and comparative examples of the electret film (ii) of the present invention are shown in Table 1 and Table 4 below.
  • thermoplastic resin composition a After kneading the thermoplastic resin composition a with an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 135 ° C. and stretched 5.0 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 5-fold stretched film. Next, after kneading the plastic resin composition c with an extruder set at 250 ° C., the mixture was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape.
  • each was laminated to obtain a laminated film having a three-layer structure.
  • thermoplastic resin composition b After kneading the thermoplastic resin composition b in an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 150 ° C. and stretched 4.5 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4.5 times stretched film. Next, after kneading the plastic resin composition d with an extruder set at 250 ° C., the plastic resin composition d was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape.
  • thermoplastic resin composition b After kneading the thermoplastic resin composition b in an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 145 ° C., and stretched 4 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4 times stretched film. Next, the plastic resin composition d was kneaded with an extruder set at 250 ° C., then supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape.
  • each of these layers was laminated to obtain a laminated film having a three-layer structure.
  • this laminated film is cooled to 60 ° C., heated again to about 155 ° C. using a tenter oven, stretched 7 times in the transverse direction, and then subjected to an annealing treatment in an oven adjusted to 160 ° C.
  • thermoplastic resin composition a After kneading the thermoplastic resin composition a with an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 145 ° C., and stretched 4 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4 times stretched film. Next, after kneading the plastic resin composition a with an extruder set at 250 ° C., the mixture was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape.
  • each of these layers was laminated to obtain a laminated film having a three-layer structure.
  • thermoplastic resin composition a and the thermoplastic resin composition e are kneaded in individual extruders set at 230 ° C., then each is supplied to a feed block die set at 250 ° C., and e /
  • the layers were laminated in the order of a / e and extruded into a sheet shape, which was cooled by a cooling device to obtain a non-stretched sheet having a three-layer structure.
  • This unstretched sheet was heated to 135 ° C. and stretched 5 times in the machine direction using a number of roll groups having different peripheral speed differences to obtain a 5 times stretched film.
  • this 5-fold stretched film is cooled to 60 ° C., heated again to about 145 ° C.
  • thermoplastic resin composition b After kneading the thermoplastic resin composition b with an extruder set at 230 ° C., it is supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which is cooled by a cooling device to obtain an unstretched sheet. It was. This unstretched sheet was heated to 150 ° C. and stretched 4.5 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4.5 times stretched film. Next, this 4.5 times stretched film was cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 7.5 times in the transverse direction, and then annealed in an oven adjusted to 160 ° C.
  • Examples 11 to 14, Comparative Examples 11 to 13 Corona surface treatment was applied to both surfaces of the resin films obtained from Production Examples 11 to 16, and the anchor coating agents described in Table 1 and Table 4 were combined and the coating amount (basis weight) after drying was as shown in Table 6. Coating was performed as described, and drying was performed in an oven at 80 ° C. for 30 minutes to provide an anchor coat layer (C). This resin film is cut into A4 size, placed in a pressure vessel, air is then introduced into the vessel and pressurized for 8 hours at a pressure of 1.0 MPa, taken out and immediately heat treated in an oven set at 95 ° C. for 30 seconds. It implemented and obtained the porous resin film (i). Next, using the electretization apparatus shown in FIG.
  • the porous resin film (i) obtained above on the ground electrode board set to have a distance between the main electrodes of 10 mm and a distance between the main electrode and the ground electrode of 10 mm.
  • the applied voltage was gradually increased from 1 KV, and the voltage at which the porous resin film (i) was destroyed by local spark discharge was measured. Thereafter, electret treatment was performed at a voltage 1 KV lower than the spark discharge voltage to obtain electret films (ii) of Examples 11 to 14 and Comparative Examples 11 to 13.
  • the film was cut to a size of 10 cm x 10 cm, and lead wires were attached to the front and back surfaces using conductive tape (manufactured by Sumitomo 3M Co., Ltd., product name: AL-25BT) to form an electret with a conductive layer (E).
  • Film (ii) was prepared.
  • the conductive layer (E) was provided by drying at room temperature for a long time.
  • coating is disadvantageous, and the conductive layer ( The electret (iii) provided with the conductive layer is easily obtained when the conductive film (F) provided with E) is bonded.
  • the conductive layer (E) provided on the electret film (ii) was rubbed 10 times with a nail, and the adhesion of the conductive layer (E) was evaluated according to the following criteria. Table 7 shows the evaluation results. ⁇ : Good not peeled ⁇ : Bad The conductive layer (E) peels from the film (ii) (generated voltage) A conductive layer in which an iron ball having a diameter of 11 mm and a weight of 5.5 g is installed on an insulating film (unstretched polypropylene film 100 ⁇ m) from a height of 3.6 cm using the falling ball apparatus shown in FIG.
  • the electret films (ii) of Examples 11 to 14 have high voltage generation efficiency, good performance as piezoelectric elements, and excellent performance as materials for electric / electronic input / output devices. I had it.
  • Example of electret provided with conductive layer The materials used in the production examples and examples of the electret (iii) provided with the conductive layer of the present invention are summarized in Table 1 and Table 8 below.
  • thermoplastic resin composition a was kneaded in an extruder set at 230 ° C., then supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. This unstretched sheet was heated to 135 ° C. and stretched 5 times in the machine direction.
  • the plastic resin composition c was kneaded with an extruder set at 250 ° C., then extruded into a sheet and laminated on the front and back surfaces of the 5-fold stretched film prepared above to obtain a laminated film having a three-layer structure.
  • this three-layer laminated film is cooled to 60 ° C., heated again to about 145 ° C. using a tenter oven, stretched 8 times in the transverse direction, and then heat-treated in a heat setting zone adjusted to 160 ° C. It was. Then, after cooling to 60 ° C., the ears are slit, the corona surface treatment is applied to both sides, and the anchor agent A is applied to both sides so that the coating amount after drying is 0.01 g / m 2. Dry in an oven at 0 ° C.
  • thermoplastic resin composition b was kneaded in an extruder set at 230 ° C., then supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. This unstretched sheet was heated to 150 ° C. and stretched 4 times in the longitudinal direction. After the plastic resin composition d was kneaded with an extruder set at 250 ° C., it was extruded into a sheet and laminated on the front and back surfaces of the 4 ⁇ stretched film prepared above to obtain a laminated film having a three-layer structure.
  • this three-layer laminated film is cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 7.5 times in the transverse direction, and then heat-treated in a heat setting zone adjusted to 160 ° C. Went. Then, after cooling to 60 ° C., the ears are slit, the corona surface treatment is applied to both sides, and the anchor agent B is applied to both sides so that the coating amount after drying is 0.02 g / m 2. Dry in an oven at 0 ° C.
  • thermoplastic resin composition a After kneading the thermoplastic resin composition a with an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 145 ° C., and stretched 4 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4 times stretched film. Next, after kneading the plastic resin composition a with an extruder set at 250 ° C., the mixture was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape.
  • each of these layers was laminated to obtain a laminated film having a three-layer structure.
  • the laminated film was cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 8 times in the transverse direction, and then subjected to an annealing treatment in an oven adjusted to 160 ° C.
  • the ears are slit, the corona surface treatment is applied to both sides, and the anchor agent C is applied to both sides so that the coating amount after drying is 1.0 g / m 2.
  • Example 21 to 24 and 26 The porous resin films (i) obtained in Production Examples 21 to 24 and 26 were formed on the ground electrode board of the electretization apparatus shown in FIG. ), The applied voltage is gradually increased from 1 KV, the voltage at which the porous resin film (i) is destroyed by local spark discharge is measured, electret treatment is performed at a voltage 1 KV lower than this spark discharge voltage, Film (ii) was obtained.
  • the adhesive paint described in Table 8 was applied with a bar coater so that the coating amount after drying was 4 g / m 2. And after drying for 1 minute in the oven set to 40 degreeC, it bonded on both surfaces of the electret film (ii), respectively, and produced the electret (iii) provided with the conductive layer.
  • Table 10 shows the types of dielectric films used.
  • Example 25 In the oven set at 40 ° C., the adhesive paint described in Table 8 was applied to the opposite surface of the conductive layer of the dielectric film I with a bar coater so that the coating amount after drying was 4 g / m 2. After drying for 1 minute, it was bonded to one side of the porous resin film (i) obtained in Production Example 25.
  • a dielectric film I of a porous resin film (i) is bonded onto the ground electrode board of the electretization apparatus shown in FIG. 2 set to a distance between the main electrodes of 10 mm and a distance between the main electrodes and the ground electrode of 10 mm.
  • the applied voltage is gradually increased from 1 KV, and the voltage at which the porous resin film (i) is destroyed by local spark discharge is measured.
  • a voltage 1 KV lower than this spark discharge voltage The electret process was implemented and the electret film (ii) was obtained.
  • the adhesive paint described in Table 1 was applied to the opposite surface of the conductive layer of another dielectric film I so that the coating amount after drying was 4 g / m 2 , and the oven was set at 40 ° C. After drying for 1 minute, this was bonded to the electret-treated surface of the electret film (ii) to produce an electret (iii) provided with a conductive layer.
  • This electretized film (ii) is 5 cm square, and a conductive layer (E) is formed by 0.03 ⁇ m gold vapor deposition film on both sides using a gold vapor deposition device (trade name: Ion Sputter E101, manufactured by Hitachi, Ltd.). did.
  • the electrets (iii) including the conductive layers of Examples 21 to 26 can convert the impact energy of the falling ball into an electric signal. Further, it can be seen that in Comparative Example 21 in which the electretized film (ii) is directly provided with the conductive layer, the accumulated charge escapes due to the heat of the metal vapor deposition treatment, and the performance cannot be exhibited. .
  • Japanese Patent Application No. 2008-234641 Japanese patent application filed on September 12, 2008 (Japanese Patent Application No. 2008-234642), and September 12, 2008.
  • Japanese patent application filed Japanese patent application filed (Japanese Patent Application No. 2008-234643), Japanese patent application filed on August 31, 2009 (Japanese Patent Application No. 2009-200196), Japanese patent application filed on August 31, 2009 (Japanese Patent Application No. 2009- No. 200019) and Japanese Patent Application (Japanese Patent Application No. 2009-200198) filed on Aug. 31, 2009, the contents of which are incorporated herein by reference.
  • porous resin film (i) of the present invention By using the porous resin film (i) of the present invention, it is possible to inject more charge, and as a result, it is possible to obtain an electret film (ii) exhibiting stable charge retention ability for a long period of time. Further, by using the porous resin film (i) of the present invention that has been subjected to pressure and heat treatment, more charge injection becomes possible, and as a result, an electret film (ii) that exhibits excellent voltage generation capability Can be obtained.
  • the electretized film (ii) of the present invention is a printing material such as a charge adsorption type label, a poster, an advertisement, an industrial material such as an air filter or a dust removal mat, a speaker, a headphone, an ultrasonic vibrator, an ultrasonic motor , Vibration control devices, microphones, ultrasonic sensors, pressure sensors, acceleration sensors, strain sensors, fatigue / crack sensors, and materials for electrical and electronic input / output devices such as power generators.
  • the electret (iii) provided with the conductive layer of the present invention is characterized in that a conductive layer is indirectly provided on the electret film (ii), and there is no deterioration in quality in the processing step and high mass productivity. .
  • materials for electrical / electronic input / output devices such as speakers, headphones, ultrasonic transducers, ultrasonic motors, vibration control devices, microphones, ultrasonic sensors, pressure sensors, acceleration sensors, strain sensors, fatigue / crack sensors, and power generation devices As such, industrial applicability is great.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is an electret film (ii) that can stably maintain a high charge state over a long period of time and is formed by injecting charges into a porous resin film (i) having high dielectric strength.  Specifically, the electret film (ii) is characterized in that a porous resin film (i) which comprises a core layer (A) having a biaxially stretched porous resin film and a surface layer (B) having a stretched resin film provided on at least one side of the core layer (A), has a water vapor permeation coefficient of 0.1 to 2.5 g∙mm/m2∙24 hr, and has a surface resistivity (at least one surface thereof) of 1 × 1013 to 9 × 1017 Ω is subjected to direct current high-voltage discharge treatment to electretize the film (i).  Also disclosed is an electret (iii) comprising the electret film (ii) and an electroconductive layer.

Description

エレクトレット化フィルム及びそれを含むエレクトレットElectretized film and electret including the same
 本発明はエレクトレット化フィルム及びそれを含むエレクトレットに関し、特に、フィルム内部に電荷を蓄積することにより電荷密度が長期にわたり安定しているエレクトレット化フィルム及びそれを含む、電気・電子入出力装置用材料として各種性能が良好な導電層を備えたエレクトレットに関する。 The present invention relates to an electret film and an electret including the same, and more particularly, as an electret film in which charge density is stable by accumulating charges inside the film and a material for an electric / electronic input / output device including the electret film. The present invention relates to an electret including a conductive layer having various performances.
 エレクトレットとは、外部に電界が存在しない状態でも内部に半永久的に電気分極を保持して外部に対して電界を形成する(電気力を及ぼす)素材であって、従来電気を通しにくい高分子材料や無機質材料などを熱的・電気的に処理することでその材料の一部を半永久的に分極したもの、即ち、静電気を帯びさせたもの、電荷を保持したもの、を指す。
 従来から高分子材料よりなるエレクトレットは、その使用態様に応じて、フィルム、シート、繊維、不織布等の様々な形態で用いられている。特にエレクトレットを成形加工してなるエレクトレットフィルターは、電界により微小な埃やアレルゲン等を効率的に吸着するエアーフィルター等の用途に広く使用されてきた。
 同様に高分子材料よりなる多孔性樹脂フィルムのエレクトレットは、吸着力が優れていることが知られている。例えば、多孔性樹脂フィルムをエレクトレット化した自己接着性フィルムが提案されている。(特許文献1)
An electret is a material that forms an electric field to the outside (applies an electric force) while maintaining electric polarization semi-permanently even in the absence of an external electric field, and has been difficult to conduct electricity in the past. Or a material obtained by treating a part of the material semi-permanently by thermally or electrically treating the material or an inorganic material, that is, a material that is charged with static electricity or a material that retains an electric charge.
Conventionally, electrets made of a polymer material are used in various forms such as a film, a sheet, a fiber, and a non-woven fabric depending on the use mode. In particular, electret filters formed by molding electrets have been widely used for applications such as air filters that efficiently adsorb minute dust, allergens, and the like by an electric field.
Similarly, an electret of a porous resin film made of a polymer material is known to have an excellent adsorptive power. For example, a self-adhesive film obtained by electretizing a porous resin film has been proposed. (Patent Document 1)
 又、多孔性樹脂フィルムを用いたエレクトレットは、圧電効果を示すことが知られており、振動測定、振動制御、音の発生、音の検出などに使用することができる。そのため、このような多孔性樹脂フィルムを用いたエレクトレットは、その軽量性を活かして、スピーカー、ヘッドフォン、マイクロフォンなど音響機器の振動子、加速度センサー、超音波センサー、圧力センサー、振動制御装置などの電気・電子入出力装置用の材料として各種用途への応用が提案されている。(特許文献2)
 多孔性樹脂フィルムからなるエレクトレットは、フィルム内部の空孔により多くの電荷を保持することができ、それにより性能と安定性に優れたエレクトレットを得ることが可能になると言われている。しかしながら、フィルム内部により多くの電荷を蓄積するためには、電荷注入の際により高電圧で処理をすることが理想であるが、一般的な多孔性樹脂フィルムでは、絶縁耐性が低く、また面方向の均一性に劣るために、印加電圧を上げてゆくと局所的な放電集中が発生してしまい、多孔性樹脂フィルムが部分的に破壊されてしまうという欠点があった。
An electret using a porous resin film is known to exhibit a piezoelectric effect, and can be used for vibration measurement, vibration control, sound generation, sound detection, and the like. For this reason, electrets using such porous resin films make use of their light weight to provide electrical equipment such as vibrators, acceleration sensors, ultrasonic sensors, pressure sensors, and vibration control devices for acoustic devices such as speakers, headphones, and microphones. -Applications for various applications have been proposed as materials for electronic input / output devices. (Patent Document 2)
An electret made of a porous resin film is said to be able to retain a large amount of charge in the pores inside the film, thereby obtaining an electret having excellent performance and stability. However, in order to accumulate more charges inside the film, it is ideal to process at a higher voltage during charge injection. However, in general porous resin films, the insulation resistance is low, and the surface direction Therefore, when the applied voltage is increased, local discharge concentration occurs and the porous resin film is partially broken.
 又、多孔性樹脂フィルムは高圧ガスを用いて厚み方向に膨らませることで、これを用いたエレクトレットは、圧電素子としての性能が向上すると言われている(非特許文献1)。
 このように多孔性樹脂フィルムを厚み方向に膨らませる方法として、予め2軸延伸することにより内部に空孔を有するフィルムを作成し、これに高圧ガスを浸透させ、次いで減圧下で熱処理することにより発泡倍率の高い多孔性樹脂フィルムを得る方法が提案されている(特許文献3)。これら発泡倍率の高い多孔性樹脂フィルムは、フィルム内部の空孔により多くの電荷を保持することにより、性能と安定性に優れたエレクトレットを得ることが可能となると考えられた。
 しかしながら、実際にフィルム内部により多くの電荷を蓄積するためには、電荷注入の際に、より高い電圧でフィルムを放電処理することが必要になる。
 この際、上記非特許文献1や特許文献3に見られる様な、ポリプロピレンからなり全層を二軸延伸することにより予め空孔を形成したフィルムに、高圧ガスを浸透させ、次いで減圧下で熱処理して得た発泡倍率の高い多孔性樹脂フィルムは、フィルム表面の均一性に劣り、また凹凸も大きいために、印加電圧を上げてゆくと局所的な放電集中が発生してしまい、多孔性樹脂フィルムの絶縁耐性を超えてフィルムが部分的に破壊されてしまう問題点があった。
Moreover, it is said that the performance as a piezoelectric element improves the electret using this, when a porous resin film is expanded in the thickness direction using high-pressure gas (nonpatent literature 1).
As a method of expanding the porous resin film in the thickness direction in this way, a film having pores is created by biaxial stretching in advance, and a high-pressure gas is infiltrated into this, followed by heat treatment under reduced pressure. A method for obtaining a porous resin film having a high expansion ratio has been proposed (Patent Document 3). These porous resin films having a high expansion ratio were considered to be able to obtain electrets with excellent performance and stability by retaining more charges in the pores inside the film.
However, in order to actually accumulate more charges inside the film, it is necessary to discharge the film at a higher voltage during charge injection.
At this time, as seen in Non-Patent Document 1 and Patent Document 3 above, a high-pressure gas is infiltrated into a film made of polypropylene and having pores formed in advance by biaxial stretching of all layers, and then heat-treated under reduced pressure. The porous resin film having a high expansion ratio thus obtained is inferior in the uniformity of the film surface and has large irregularities, so that when the applied voltage is increased, local discharge concentration occurs, and the porous resin film There was a problem that the film was partially destroyed beyond the insulation resistance of the film.
 一方、多孔性樹脂フィルムを用いたエレクトレットを、電気・電子入出力装置に使用する為には、その少なくとも片方の面に、電気信号を伝達するための導電層を設ける必要がある。
 導電層を設ける手法としては、導電性塗料の塗工や金属等の蒸着などが一般的であるが、塗工方式は乾燥工程で温度を上げ過ぎるとエレクトレット自体が性能低下する欠点があった。又、蒸着方式は気化した金属が直接エレクトレットに接触するためにエレクトレットの温度が上昇してしまい塗工方式と同様に性能低下する欠点があった。
On the other hand, in order to use an electret using a porous resin film in an electric / electronic input / output device, it is necessary to provide a conductive layer for transmitting an electric signal on at least one surface thereof.
As a method for providing a conductive layer, coating of a conductive paint or vapor deposition of metal or the like is common, but the coating method has a drawback that the electret itself deteriorates in performance when the temperature is raised excessively in the drying process. In addition, the vapor deposition method has a drawback in that the vaporized metal directly contacts the electret, so that the temperature of the electret rises and the performance is reduced as in the coating method.
日本国特表平10-504248号公報Japanese National Table No. 10-504248 日本国特公平05-041104号公報Japanese Patent Publication No. 05-041104 日本国特許第3675827号公報Japanese Patent No. 3675827
 本発明は、絶縁耐性が高い多孔性樹脂フィルム(i)を用いて、従来の多孔性樹脂フィルムと比べて高電圧での電荷注入が可能であり、長期に渡り高い電荷状態を安定して維持できるエレクトレット化フィルム(ii)を提供することを目的とするものである。
 また、本発明では、従来の多孔性樹脂フィルムと比べてフィルムの均一性に優れ、高電圧での電荷注入が可能である多孔性樹脂フィルムよりなり、結果的に長期に渡り高い電荷状態を安定して維持でき、電気・電子入出力装置材料として優れた性能を持つエレクトレット化フィルムを提供することを目的とした。
 更に、本発明は導電層の設置の際にエレクトレットの性能低下が少ない導電層を備えたエレクトレットを提供することを目的とした。
In the present invention, a porous resin film (i) having high insulation resistance can be used for charge injection at a higher voltage than a conventional porous resin film, and a high charge state can be stably maintained over a long period of time. It aims at providing the electret film (ii) which can be performed.
In addition, the present invention comprises a porous resin film that has excellent film uniformity compared to conventional porous resin films and is capable of charge injection at a high voltage, resulting in stable high charge state over a long period of time. The object of the present invention is to provide an electret film having excellent performance as an electric / electronic input / output device material.
Furthermore, an object of the present invention is to provide an electret having a conductive layer in which the performance reduction of the electret is small when the conductive layer is installed.
 本発明者らは、これらの課題を解決する為に、鋭意検討を進めた結果、特定の構造を有する多孔性樹脂フィルム(i)が同用途に好適であり、これをエレクトレット化することによって、所期の特性を有するエレクトレット化フィルム(ii)を提供し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下構成を有する。
(1)空孔を有する2軸延伸樹脂フィルムを含むコア層(A)と、該コア層(A)の少なくとも片面に延伸樹脂フィルムを含む表面層(B)とを含有し、水蒸気透過係数が0.1~2.5g・mm/m2 ・24hrであり、且つ、少なくとも片方の表面の表面抵抗値が1×1013~9×1017Ωである多孔性樹脂フィルム(i)に、直流高電圧放電処理を施してエレクトレット化したことを特徴とするエレクトレット化フィルム(ii)。
(2)表面層(B)における延伸樹脂フィルムが1軸延伸樹脂フィルムであることを特徴とする上記(1)に記載のエレクトレット化フィルム(ii)。
(3)多孔性樹脂フィルム(i)が、加圧条件下で非反応性ガスを浸透させ、次いで非加圧条件下で加熱処理を施されていることを特徴とする、上記(2)に記載のエレクトレット化フィルム(ii)。
As a result of intensive studies to solve these problems, the present inventors have found that a porous resin film (i) having a specific structure is suitable for the same use, and by electretizing it, It has been found that an electret film (ii) having the desired characteristics can be provided, and the present invention has been completed.
That is, the present invention has the following configuration.
(1) A core layer (A) including a biaxially stretched resin film having pores and a surface layer (B) including a stretched resin film on at least one surface of the core layer (A), and having a water vapor transmission coefficient The porous resin film (i) having a surface resistance of 0.1 × 2.5 g · mm / m 2 · 24 hr and a surface resistance value of at least one surface of 1 × 10 13 to 9 × 10 17 Ω is DC An electret film (ii) characterized by being subjected to high-voltage discharge treatment to be electret.
(2) The electret film (ii) according to (1) above, wherein the stretched resin film in the surface layer (B) is a uniaxially stretched resin film.
(3) The above (2) is characterized in that the porous resin film (i) is impregnated with a non-reactive gas under a pressurized condition and then subjected to a heat treatment under a non-pressurized condition. The electret film (ii) described.
(4)コア層(A)の厚みが10~500μmであり、且つ、表面層(B)の厚みが5~500μmであることを特徴とする上記(1)~(3)のいずれかに記載のエレクトレット化フィルム(ii)。
(5)コア層(A)及び表面層(B)における延伸樹脂フィルムが、熱可塑性樹脂を含有することを特徴とする上記(1)~(4)のいずれかに記載のエレクトレット化フィルム(ii)。
(6)コア層(A)が熱可塑性樹脂50~97重量%、及び無機微細粉末及び有機フィラーの少なくとも一種3~50重量%を含有し、且つ表面層(B)が熱可塑性樹脂30~97重量%、及び無機微細粉末及び有機フィラーの少なくとも一種3~70重量%を含有することを特徴とする上記(5)に記載のエレクトレット化フィルム(ii)。
(7)熱可塑性樹脂がポリオレフィン系樹脂であることを特徴とする上記(5)又は(6)に記載のエレクトレット化フィルム(ii)。
(4) The thickness of the core layer (A) is 10 to 500 μm, and the thickness of the surface layer (B) is 5 to 500 μm, according to any one of the above (1) to (3) Electretized film (ii).
(5) The electret film (ii) according to any one of (1) to (4) above, wherein the stretched resin film in the core layer (A) and the surface layer (B) contains a thermoplastic resin. ).
(6) The core layer (A) contains 50 to 97% by weight of the thermoplastic resin, and 3 to 50% by weight of at least one kind of inorganic fine powder and organic filler, and the surface layer (B) has a thermoplastic resin of 30 to 97%. The electret film (ii) according to (5) above, which contains 3% by weight and 3 to 70% by weight of at least one of inorganic fine powder and organic filler.
(7) The electret film (ii) according to (5) or (6) above, wherein the thermoplastic resin is a polyolefin resin.
(8)コア層(A)に表面層(B)を積層した後に、その積層体を少なくとも1軸方向に延伸して各層を延伸樹脂フィルムとしたことを特徴とする上記(1)~(7)のいずれかに記載のエレクトレット化フィルム(ii)。
(9)多孔性樹脂フィルム(i)の空孔率が1~70%であることを特徴とする上記(1)~(8)のいずれかに記載のエレクトレット化フィルム(ii)。
(10)加圧処理及び加熱処理を施した多孔性樹脂フィルム(i)の空孔率が5~95%であることを特徴とする上記(3)~(8)のいずれかに記載のエレクトレット化フィルム(ii)。
(8) The above (1) to (7), wherein the surface layer (B) is laminated on the core layer (A), and then the laminate is stretched in at least one axial direction to form each layer as a stretched resin film. The electret film (ii) according to any one of the above.
(9) The electret film (ii) according to any one of (1) to (8) above, wherein the porosity of the porous resin film (i) is 1 to 70%.
(10) The electret according to any one of (3) to (8) above, wherein the porosity of the porous resin film (i) subjected to pressure treatment and heat treatment is 5 to 95% Film (ii).
(11)多孔性樹脂フィルム(i)の少なくとも片方の面に、アンカーコート層(C)を更に含有することを特徴とする上記(1)~(10)のいずれかに記載のエレクトレット化フィルム(ii)。
(12)アンカーコート層(C)の坪量が0.001~5g/m2 であることを特徴とする上記(11)に記載のエレクトレット化フィルム(ii)。
(13)多孔性樹脂フィルム(i)に放電電圧10KV~100KVの範囲で直流高電圧放電処理を施してエレクトレット化したことを特徴とする上記(1)~(12)のいずれかに記載のエレクトレット化フィルム(ii)。
(14)直流高電圧放電処理において多孔性樹脂フィルム(ii)の表面層(B)表面から電荷注入を行うことを特徴とする上記(1)~(13)のいずれかに記載のエレクトレット化フィルム(ii)。
(11) The electret film according to any one of (1) to (10) above, further comprising an anchor coat layer (C) on at least one surface of the porous resin film (i) ii).
(12) The electret film (ii) according to the above (11), wherein the anchor coat layer (C) has a basis weight of 0.001 to 5 g / m 2 .
(13) The electret according to any one of (1) to (12) above, wherein the porous resin film (i) is subjected to direct current high-voltage discharge treatment in a discharge voltage range of 10 KV to 100 KV to form an electret. Film (ii).
(14) The electret film according to any one of the above (1) to (13), wherein charge injection is performed from the surface of the surface layer (B) of the porous resin film (ii) in the DC high-voltage discharge treatment (Ii).
(15)上記(1)~(14)のいずれかに記載のエレクトレット化フィルム(ii)と、接着剤層(D)と、表面抵抗値が1×10-2~9×10Ωである導電層(E)を設けた誘電体フィルム(F)とを、この順で含有することを特徴とする導電層を備えたエレクトレット(iii)。
(16)誘電体フィルム(F)が、熱可塑性樹脂を含む延伸フィルムまたは無延伸フィルムであることを特徴とする上記(15)に記載の導電層を備えたエレクトレット(iii)。
(17)誘電体フィルム(F)の膜厚が0.1~100μmであることを特徴とする上記(15)又は(16)に記載の導電層を備えたエレクトレット(iii)。
(18)導電層(E)が、導電性塗料の塗工あるいは金属の蒸着により形成されていることを特徴とする上記(15)~(17)のいずれかに記載の導電層を備えたエレクトレット(iii)。
(19)導電層(E)の膜厚が0.01~10μmであることを特徴とする上記(15)~(18)のいずれかに記載の導電層を備えたエレクトレット(iii)。
(20)エレクトレット化フィルム(ii)へ導電層(E)を設けた誘電体フィルム(F)を積層する際に、導電層(E)が最外層となるように積層することを特徴とする、上記(15)~(19)のいずれかに記載の導電層を備えたエレクトレット(iii)。
(15) The electret film (ii) according to any one of (1) to (14), the adhesive layer (D), and the surface resistance value is 1 × 10 −2 to 9 × 10 7 Ω. The electret (iii) provided with the conductive layer characterized by containing the dielectric film (F) provided with the conductive layer (E) in this order.
(16) The electret (iii) provided with the conductive layer as described in (15) above, wherein the dielectric film (F) is a stretched film or a non-stretched film containing a thermoplastic resin.
(17) The electret (iii) provided with the conductive layer as described in (15) or (16) above, wherein the dielectric film (F) has a thickness of 0.1 to 100 μm.
(18) The electret having the conductive layer as described in any one of (15) to (17) above, wherein the conductive layer (E) is formed by applying a conductive paint or depositing a metal (Iii).
(19) An electret (iii) comprising the conductive layer according to any one of (15) to (18) above, wherein the thickness of the conductive layer (E) is from 0.01 to 10 μm.
(20) When the dielectric film (F) provided with the conductive layer (E) is laminated on the electret film (ii), the conductive layer (E) is laminated so as to be an outermost layer. An electret (iii) comprising the conductive layer according to any one of (15) to (19) above.
 本発明の多孔性樹脂フィルム(i)を用いることで、より多くの電荷注入が可能となり、従来よりも長期間安定した電荷保持能力を持つエレクトレット化フィルム(ii)を得ることが可能である。また、本発明の導電層を備えたエレクトレット(iii)により、エレクトレット材料に導電層(E)を設ける際にエレクトレットの性能を低下させることなく、エネルギー変換効率が高く量産性の高い電気・電子入出力材料を提供することが可能となる。 By using the porous resin film (i) of the present invention, it is possible to inject more charge, and it is possible to obtain an electret film (ii) having a charge holding ability that is more stable for a longer period than before. Moreover, the electret (iii) provided with the conductive layer of the present invention has high energy conversion efficiency and high mass productivity without reducing the performance of the electret when the conductive layer (E) is provided in the electret material. It becomes possible to provide an output material.
本発明の多孔性樹脂フィルム(i)の一態様の断面図である。It is sectional drawing of the one aspect | mode of the porous resin film (i) of this invention. 本発明で用い得るバッチ式エレクトレット化装置の一例の模式図である。It is a schematic diagram of an example of the batch type electretization apparatus which can be used by this invention. 本発明で用い得る連続式エレクトレット化装置の一例の模式図である。It is a schematic diagram of an example of the continuous electretization apparatus which can be used by this invention. 本発明で用い得るバッチ式エレクトレット化装置の一例の模式図である。It is a schematic diagram of an example of the batch type electretization apparatus which can be used by this invention. 本発明で用い得る連続式エレクトレット化装置の一例の模式図である。It is a schematic diagram of an example of the continuous electretization apparatus which can be used by this invention. 多孔性樹脂フィルム(i)を加圧処理する際の処理形態の一例の模式図。The schematic diagram of an example of the process form at the time of pressurizing a porous resin film (i). 加圧処理装置の一例の模式図。The schematic diagram of an example of a pressurization processing apparatus. 加熱処理装置の一例の模式図。The schematic diagram of an example of a heat processing apparatus. 実施例で使用した落球装置の説明図。Explanatory drawing of the falling ball apparatus used in the Example. 本発明の導電層を備えたエレクトレット(iii)の一態様の一部拡大断面図である。It is a partial expanded sectional view of one mode of electret (iii) provided with the conductive layer of the present invention.
 以下に、本発明のエレクトレット化フィルムについて詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明のエレクトレット化フィルム(ii)は、空孔を有する2軸延伸樹脂フィルムを含むコア層(A)と、該コア層(A)の少なくとも片面に延伸樹脂フィルムを含む表面層(B)とを有する多孔性樹脂フィルム(i)よりなるものである。
Below, the electret film of this invention is demonstrated in detail. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
The electretized film (ii) of the present invention includes a core layer (A) including a biaxially stretched resin film having pores, and a surface layer (B) including a stretched resin film on at least one side of the core layer (A). It consists of a porous resin film (i) having
[コア層(A)]
 本発明において用いるコア層(A)は、内部に電荷を保持することを主目的に用いるものである。そのためコア層(A)は、空孔を有する2軸延伸樹脂フィルムを含む。
 コア層(A)は、好ましくは、静電容量を確保する為に一定以上の厚みを有し、電気を通しにくい高分子材料である熱可塑性樹脂を含み、空孔率で状態を示すように延伸によって内部に形成された空孔を有することにより、電荷を保持し易い構造を有するものである。
 本発明において用いるコア層(A)は、更に後述する加圧処理及び加熱処理により、空孔の内圧を上昇させて厚み方向に膨らませた層であることが好ましい。
 このようなコア層(A)は、好ましくは、静電容量を確保する為に一定以上の厚みを有し、電気を通しにくい高分子材料である熱可塑性樹脂からなり、空孔率で構造を示すように延伸によって形成され、次ぐ加圧処理及び加熱処理によって拡張された空孔を有することにより、電荷を保持し易い構造を有するものである。 コア層(A)の厚みは、10~500μmの範囲であることが好ましく、20~300μmの範囲であることがより好ましく、30~100μmの範囲であることが特に好ましい。これらのコア層(A)の厚みは、厚み方向に膨らませた場合の厚みも同様である。同厚みが10μm未満ではコア層(A)の静電容量が少なくエレクトレットの用途に不向きであり、また均一な厚みで成形を制御することが困難となり、後述のエレクトレット化処理の際に絶縁破壊が起こりやすく局所放電が発生しやすいために好ましくない。一方、500μmを超えると電荷注入の際に層内部まで電荷を到達させることが困難となり、本発明の所期の性能を発揮し得ずに好ましくない。
[Core layer (A)]
The core layer (A) used in the present invention is mainly used for retaining electric charges therein. Therefore, the core layer (A) includes a biaxially stretched resin film having pores.
The core layer (A) preferably includes a thermoplastic resin that is a polymer material that has a certain thickness or more and is difficult to conduct electricity in order to ensure capacitance, and shows a state with porosity. By having the vacancies formed inside by stretching, it has a structure that can easily hold the electric charge.
The core layer (A) used in the present invention is preferably a layer that is expanded in the thickness direction by increasing the internal pressure of the pores by a pressure treatment and a heat treatment described later.
Such a core layer (A) is preferably made of a thermoplastic resin, which is a polymer material that has a certain thickness or more and is difficult to conduct electricity in order to ensure capacitance, and has a structure with porosity. As shown, it has a structure that is easy to hold charges by having pores formed by stretching and then expanded by pressure treatment and heat treatment. The thickness of the core layer (A) is preferably in the range of 10 to 500 μm, more preferably in the range of 20 to 300 μm, and particularly preferably in the range of 30 to 100 μm. The thickness of these core layers (A) is the same when they are expanded in the thickness direction. If the thickness is less than 10 μm, the core layer (A) has a small capacitance and is not suitable for use in electrets, and it becomes difficult to control molding with a uniform thickness, and dielectric breakdown occurs during electret processing described later. It is not preferable because local discharge is likely to occur and local discharge is likely to occur. On the other hand, if it exceeds 500 μm, it is difficult to reach the inside of the layer at the time of charge injection, which is not preferable because the desired performance of the present invention cannot be exhibited.
 コア層(A)は電気を通しにくい高分子材料である熱可塑性樹脂からなることが好ましいが、用いる熱可塑性樹脂の種類は特に制限されない。例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、プロピレン系樹脂、ポリメチル-1-ペンテン等のポリオレフィン系樹脂、エチレン・酢酸ビニル共重合体、エチレン・アクリル酸共重合体、マレイン酸変性ポリエチレン、マレイン酸変性ポリプロピレン等の官能基含有ポリオレフィン系樹脂、ナイロン-6、ナイロン-6,6等のポリアミド系樹脂、ポリエチレンテレフタレートやその共重合体、ポリブチレンテレフタレート、ポリブチレンサクシネート、ポリ乳酸、脂肪族ポリエステル等のポリエステル系樹脂、ポリカーボネート、アタクティックポリスチレン、シンジオタクティックポリスチレン等を使用することができる。これらの熱可塑性樹脂の中では、吸湿性が低く、絶縁性が高いポリオレフィン系樹脂、官能基含有ポリオレフィン系樹脂を用いることが好ましい。 The core layer (A) is preferably made of a thermoplastic resin that is a polymer material that hardly conducts electricity, but the type of the thermoplastic resin to be used is not particularly limited. For example, high density polyethylene, medium density polyethylene, low density polyethylene, propylene resin, polyolefin resin such as polymethyl-1-pentene, ethylene / vinyl acetate copolymer, ethylene / acrylic acid copolymer, maleic acid modified polyethylene, Functional group-containing polyolefin resins such as maleic acid-modified polypropylene, polyamide resins such as nylon-6 and nylon-6,6, polyethylene terephthalate and copolymers thereof, polybutylene terephthalate, polybutylene succinate, polylactic acid, aliphatic Polyester resins such as polyester, polycarbonate, atactic polystyrene, syndiotactic polystyrene and the like can be used. Among these thermoplastic resins, it is preferable to use a polyolefin resin or a functional group-containing polyolefin resin having a low hygroscopic property and a high insulating property.
 ポリオレフィン系樹脂としては、エチレン、プロピレン、ブテン、ブチレン、ブタジエン、イソプレン、クロロプレン、メチルペンテン、環状オレフィンなどのオレフィン類の単独重合体、及びこれらオレフィン類の2種類以上からなる共重合体が挙げられる。ポリオレフィン系樹脂の具体的な例としては、高密度ポリエチレン、中密度ポリエチレン、プロピレン系樹脂、エチレンと他のオレフィンとの共重合体、プロピレンと他のオレフィンとの共重合体が挙げられる。
 これらポリオレフィン系樹脂の中でも、プロピレン系樹脂が、加工性、絶縁性、コスト等の面などから好ましい。プロピレン系樹脂としては、プロピレン単独重合体でありアイソタクティックないしはシンジオタクティック及び種々の程度の立体規則性を示すポリプロピレンが挙げられ、またプロピレンを主成分とし、これと、エチレン、1-ブテン、1-ヘキセン、1-ヘプテン、4-メチル-1-ペンテン等のαオレフィンとを共重合させた共重合体が挙げられる。この共重合体については、2元系でも3元系以上でもよく、またランダム共重合体でもブロック共重合体であってもよい。
 熱可塑性樹脂としてプロピレン系樹脂を用いる場合には、後述する延伸成形性をより良好にするために、ポリプロピレン(プロピレン単独重合体)よりも融点が低い樹脂を2~25重量%配合して使用することが好ましい。このような融点が低い樹脂として、高密度ないしは低密度のポリエチレンを例示することができる。
Examples of polyolefin resins include homopolymers of olefins such as ethylene, propylene, butene, butylene, butadiene, isoprene, chloroprene, methylpentene, and cyclic olefins, and copolymers composed of two or more of these olefins. . Specific examples of the polyolefin resin include high density polyethylene, medium density polyethylene, propylene resin, copolymers of ethylene and other olefins, and copolymers of propylene and other olefins.
Among these polyolefin-based resins, propylene-based resins are preferable in terms of processability, insulating properties, cost, and the like. Examples of the propylene-based resin include propylene homopolymers such as isotactic or syndiotactic and polypropylene having various degrees of stereoregularity, and mainly composed of propylene, ethylene, 1-butene, Examples thereof include copolymers obtained by copolymerizing α-olefins such as 1-hexene, 1-heptene and 4-methyl-1-pentene. The copolymer may be a binary system or a ternary system, and may be a random copolymer or a block copolymer.
When a propylene resin is used as the thermoplastic resin, 2 to 25% by weight of a resin having a melting point lower than that of polypropylene (propylene homopolymer) is used in order to improve the stretch moldability described later. It is preferable. Examples of such a resin having a low melting point include high density or low density polyethylene.
 官能基含有ポリオレフィン系樹脂の具体的な例としては、前記オレフィン類と共重合可能な官能基含有モノマーとの共重合体が挙げられる。かかる官能基含有モノマーとしては、スチレン、αメチルスチレンなどのスチレン類、酢酸ビニル、ビニルアルコール、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ブチル安息香酸ビニル、シクロヘキサンカルボン酸ビニルなどのカルボン酸ビニルエステル類、アクリル酸、メタクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、(メタ)アクリルアミド、N-メタロール(メタ)アクリルアミドなどのアクリル酸エステル類、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、シクロペンチルビニルエーテル、シクロヘキシルビニルエーテル、ベンジルビニルエーテル、フェニルビニルエーテルなどのビニルエーテル類が特に代表的である。これら官能基含有モノマーの中から必要に応じ1種類もしくは2種類以上を適宜選択し重合したものを用いる事ができる。 Specific examples of the functional group-containing polyolefin resin include a copolymer with a functional group-containing monomer copolymerizable with the olefins. Such functional group-containing monomers include styrenes such as styrene and α-methylstyrene, vinyl acetate, vinyl alcohol, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl caproate, vinyl laurate, vinyl stearate, vinyl benzoate. , Vinyl esters of carboxylic acid such as vinyl butylbenzoate and vinyl cyclohexanecarboxylate, acrylic acid, methacrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, octyl ( (Meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclope Acrylic acid esters such as Tanyl (meth) acrylate, (meth) acrylamide, N-metalol (meth) acrylamide, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, cyclopentyl vinyl ether, cyclohexyl vinyl ether, benzyl vinyl ether, phenyl vinyl ether, etc. Vinyl ethers are particularly representative. One or two or more of these functional group-containing monomers may be appropriately selected and polymerized as necessary.
 更にこれらポリオレフィン系樹脂及び官能基含有ポリオレフィン系樹脂は必要によりグラフト変性したものを使用することも可能である。グラフト変性には公知の手法を用いることができる。グラフトモノマーの具体的な例としては、不飽和カルボン酸又はその誘導体によるグラフト変性を挙げることができる。該不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等を挙げることができる。また上記不飽和カルボン酸の誘導体としては、酸無水物、エステル、アミド、イミド、金属塩等も使用可能である。具体的には無水マレイン酸、無水イタコン酸、無水シトラコン酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸グリシジル、メタクリル酸グリシジル、マレイン酸モノエチルエステル、マレイン酸ジエチルエステル、フマル酸モノメチルエステル、フマル酸ジメチルエステル、イタコン酸モノメチルエステル、イタコン酸ジエチルエステル、アクリルアミド、メタクリルアミド、マレイン酸モノアミド、マレイン酸ジアミド、マレイン酸-N-モノエチルアミド、マレイン酸-N,N-ジエチルアミド、マレイン酸-N-モノブチルアミド、マレイン酸-N,N-ジブチルアミド、フマル酸モノアミド、フマル酸ジアミド、フマル酸-N-モノエチルアミド、フマル酸-N,N-ジエチルアミド、フマル酸-N-モノブチルアミド、フマル酸-N,N-ジブチルアミド、マレイミド、N-ブチルマレイミド、N-フェニルマレイミド、アクリル酸ナトリウム、メタクリル酸ナトリウム、アクリル酸カリウム、メタクリル酸カリウム等を挙げることができる。 Further, these polyolefin resins and functional group-containing polyolefin resins can be used if necessary by graft modification. A known technique can be used for graft modification. Specific examples of the graft monomer include graft modification with an unsaturated carboxylic acid or a derivative thereof. Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid and the like. As the unsaturated carboxylic acid derivative, acid anhydrides, esters, amides, imides, metal salts and the like can also be used. Specifically, maleic anhydride, itaconic anhydride, citraconic anhydride, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, glycidyl acrylate, glycidyl methacrylate, maleic acid Monoethyl ester, maleic acid diethyl ester, fumaric acid monomethyl ester, fumaric acid dimethyl ester, itaconic acid monomethyl ester, itaconic acid diethyl ester, acrylamide, methacrylamide, maleic acid monoamide, maleic acid diamide, maleic acid-N-monoethylamide , Maleic acid-N, N-diethylamide, maleic acid-N-monobutylamide, maleic acid-N, N-dibutylamide, fumaric acid monoamide, fumaric acid diamide, fumaric acid-N-monoethyl Amides, fumaric acid-N, N-diethylamide, fumaric acid-N-monobutylamide, fumaric acid-N, N-dibutylamide, maleimide, N-butylmaleimide, N-phenylmaleimide, sodium acrylate, sodium methacrylate, Examples include potassium acrylate and potassium methacrylate.
 使用可能なグラフト変性物は、グラフトモノマーをポリオレフィン系樹脂又は官能基含有ポリオレフィン系樹脂に対して一般に0.005~10重量%、好ましくは0.01~5重量%加えて、グラフト変性したものである。
 コア層(A)に用いる熱可塑性樹脂としては、上記の熱可塑性樹脂の中から1種を選択して単独で使用してもよいし、2種以上を選択して組み合わせて使用してもよい。
 コア層(A)に使用する熱可塑性樹脂には、無機微細粉末及び有機フィラーの少なくとも一方を添加したものであることが望ましい。無機微細粉末や有機フィラーの添加により、後述する延伸工程により、コア層(A)内部に空孔を形成することが容易となる。
 コア層(A)は、より具体的には、上記の熱可塑性樹脂50~97重量%、及び無機微細粉末及び有機フィラーの少なくとも一種3~50重量%を含有することが好ましい。さらにコア層(A)は熱可塑性樹脂60~95重量%、及び無機微細粉末及び有機フィラーの少なくとも一種5~40重量%を含有することがより好ましい。
 空孔の核剤となる無機微細粉末及び有機フィラーの含有率が3重量%未満では、後述する延伸工程で形成される空孔数が少なく電荷の蓄積能力に劣るものとなり所期の目的を達成しにくい。一方、50重量%を超えると形成される空孔が互いに連通してしまう。そのため、電荷を導入しても連通孔を経由して多孔性樹脂フィルム(i)の表面や端面から電荷が逃げ易い構造となり、電荷が安定しない傾向があるために好ましくない。また、加圧処理時に非反応性ガス浸透させる場合においては、加圧処理時に非反応性ガス浸透させる非反応性ガスが多孔性樹脂フィルム(i)から抜け易く加熱処理しても膨張しにくくなる傾向にある。
Graft modified products that can be used are those obtained by graft modification by adding 0.005 to 10% by weight, preferably 0.01 to 5% by weight, of graft monomers to polyolefin resins or functional group-containing polyolefin resins. is there.
As the thermoplastic resin used for the core layer (A), one type may be selected from the above thermoplastic resins and used alone, or two or more types may be selected and used in combination. .
It is desirable that the thermoplastic resin used for the core layer (A) is obtained by adding at least one of an inorganic fine powder and an organic filler. By adding the inorganic fine powder or the organic filler, it becomes easy to form pores in the core layer (A) by the stretching process described later.
More specifically, the core layer (A) preferably contains 50 to 97% by weight of the above thermoplastic resin and 3 to 50% by weight of at least one kind of inorganic fine powder and organic filler. Further, the core layer (A) more preferably contains 60 to 95% by weight of a thermoplastic resin and 5 to 40% by weight of at least one of inorganic fine powder and organic filler.
If the content of the inorganic fine powder and organic filler, which are the nucleating agent for the pores, is less than 3% by weight, the number of pores formed in the stretching process described below will be small and the charge storage capacity will be inferior, achieving the intended purpose. Hard to do. On the other hand, if it exceeds 50% by weight, the formed pores communicate with each other. Therefore, even if the charge is introduced, the structure is such that the charge easily escapes from the surface or end surface of the porous resin film (i) via the communication hole, and the charge tends to be unstable, which is not preferable. In addition, when the non-reactive gas permeates during the pressurizing process, the non-reactive gas permeated through the non-reactive gas during the pressurizing process easily escapes from the porous resin film (i) and does not easily expand even when heat-treated. There is a tendency.
 無機微細粉末を添加する場合は、平均粒径が通常0.01~15μm、好ましくは0.05~5μm、より好ましくは0.1~3μm、特に好ましくは0.5~2.5μmのものを使用する。無機微細粉末の具体例としては、炭酸カルシウム、焼成クレー、シリカ、けいそう土、白土、タルク、酸化チタン、硫酸バリウム、アルミナ、ゼオライト、マイカ、セリサイト、ベントナイト、セピオライト、バーミキュライト、ドロマイト、ワラストナイト、ガラスファイバーなどを使用することができる。本発明において平均粒径はメーカーカタログ値を参照した。
 有機フィラーを添加する場合は、主成分である熱可塑性樹脂とは異なる種類の樹脂を選択することが好ましい。例えば、熱可塑性樹脂がポリオレフィン系樹脂である場合には、有機フィラーとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ナイロン-6、ナイロン-6,6、環状オレフィン重合体、ポリスチレン、ポリメタクリレート等の重合体であって、ポリオレフィン系樹脂の融点よりも高い融点、例えば170~300℃、ないしはガラス転移温度、例えば170~280℃、を有し、かつ非相溶のものを使用することができる。
When adding an inorganic fine powder, one having an average particle size of usually 0.01 to 15 μm, preferably 0.05 to 5 μm, more preferably 0.1 to 3 μm, particularly preferably 0.5 to 2.5 μm. use. Specific examples of the inorganic fine powder include calcium carbonate, calcined clay, silica, diatomaceous earth, white clay, talc, titanium oxide, barium sulfate, alumina, zeolite, mica, sericite, bentonite, sepiolite, vermiculite, dolomite, wallast. Knight, glass fiber, etc. can be used. In the present invention, the average particle size was referred to the manufacturer catalog value.
When an organic filler is added, it is preferable to select a different type of resin from the thermoplastic resin that is the main component. For example, when the thermoplastic resin is a polyolefin resin, examples of the organic filler include polyethylene terephthalate, polybutylene terephthalate, polycarbonate, nylon-6, nylon-6,6, cyclic olefin polymer, polystyrene, and polymethacrylate. A polymer having a melting point higher than the melting point of the polyolefin resin, such as 170 to 300 ° C., or a glass transition temperature, such as 170 to 280 ° C., and incompatible can be used.
 コア層(A)に使用する熱可塑性樹脂には、必要に応じて、熱安定剤(酸化防止剤)、光安定剤、分散剤、滑剤などを任意に添加することができる。熱安定剤を添加する場合は、樹脂に対し通常0.001~1重量%の範囲内で添加する。熱安定剤の具体例としては、立体障害フェノール系、リン系、アミン系等の安定剤を使用することができる。光安定剤を添加する場合は、樹脂に対し通常0.001~1重量%の範囲内で添加する。光安定剤の具体例としては、立体障害アミン系、ベンゾトリアゾール系、ベンゾフェノン系等の光安定剤を使用することができる。分散剤や滑剤は、例えば無機微細粉末を樹脂中に分散させる目的で使用する。使用量は樹脂に対し通常0.01~4重量%の範囲内である。これらの具体例としては、シランカップリング剤、オレイン酸やステアリン酸等の高級脂肪酸、金属石鹸、ポリアクリル酸、ポリメタクリル酸ないしはそれらの塩等を使用することができる。 In the thermoplastic resin used for the core layer (A), a heat stabilizer (antioxidant), a light stabilizer, a dispersant, a lubricant and the like can be optionally added as necessary. When a heat stabilizer is added, it is usually added within a range of 0.001 to 1% by weight based on the resin. As specific examples of the heat stabilizer, sterically hindered phenol-based, phosphorus-based, amine-based stabilizers can be used. When a light stabilizer is added, it is usually added within a range of 0.001 to 1% by weight based on the resin. Specific examples of the light stabilizer include sterically hindered amine-based, benzotriazole-based, and benzophenone-based light stabilizers. The dispersant and the lubricant are used for the purpose of dispersing the inorganic fine powder in the resin, for example. The amount used is usually in the range of 0.01 to 4% by weight based on the resin. Specific examples thereof include silane coupling agents, higher fatty acids such as oleic acid and stearic acid, metal soaps, polyacrylic acid, polymethacrylic acid or salts thereof.
 本発明においてコア層(A)はフィルムの巾方向、流れ方向の2軸方向に延伸されている。延伸により層内部に空孔が多数形成され、この空孔内部に電荷が蓄積されるので、エレクトレット化フィルム(ii)として電荷の保持性能が優れたものとなる。
 コア層(A)に形成される空孔は、電荷を保持する観点から個々の体積が大きく、その数が多く、且つ互いに独立した形状であることが望ましい。空孔の大きさは1方向のみの延伸よりも、2軸方向に延伸した方が大きくできる。特にフィルムの巾方向、流れ方向の2軸方向に延伸したものは面方向に引き延ばされた円盤状の空孔を形成できるので、フィルム厚み方向に電荷注入した際に、空孔内に正負分極した電荷を蓄積しやすい。したがって本発明のコア層(A)には2軸延伸した樹脂フィルムを用いる。
 また、本発明において、多孔性樹脂フィルム(i)に加圧条件下で非反応性ガスを浸透させ、次いで非加圧条件下で加熱処理を施す場合には、加圧処理をする前の多孔性樹脂フィルム(i)におけるコア層(A)は、フィルムの巾方向、流れ方向の2軸方向に延伸されている。延伸により層内部に空孔が多数予備形成される。多孔性樹脂フィルム(i)中に形成される空孔は電荷を保持する観点から個々の体積が大きく、その数が多く、且つ互いに独立した形状であることが望ましい。空孔の大きさは1方向のみの延伸よりも、2軸方向に延伸した方が大きくできる。特にフィルムの巾方向、流れ方向の2軸方向に延伸したものは面方向に引き延ばされた円盤状の空孔を形成できるので、更に加圧処理と加熱処理とを施して空孔を厚み方向に膨張させたときに個々の体積が大きな空孔を形成でき、電荷注入した際に空孔内に正負分極した電荷を蓄積しやすく、エレクトレット化フィルム(ii)とした際の電荷の保持性能が優れたものとなる。したがって、本発明の多孔性樹脂フィルム(i)におけるコア層(A)には2軸延伸した樹脂フィルムを用いる。
In the present invention, the core layer (A) is stretched in the biaxial direction of the film width direction and the flow direction. By stretching, a large number of holes are formed inside the layer, and charges are accumulated inside the holes, so that the electret film (ii) has excellent charge retention performance.
The vacancies formed in the core layer (A) desirably have a large individual volume, a large number, and shapes independent from each other, from the viewpoint of maintaining electric charge. The size of the pores can be increased by extending in the biaxial direction rather than extending in only one direction. In particular, those stretched in the biaxial direction of the film in the width direction and the flow direction can form disk-like vacancies that are stretched in the plane direction. It is easy to accumulate polarized charges. Therefore, a biaxially stretched resin film is used for the core layer (A) of the present invention.
In the present invention, when the porous resin film (i) is infiltrated with a non-reactive gas under a pressurized condition and then subjected to a heat treatment under a non-pressurized condition, the porous film before the pressure treatment is performed. The core layer (A) in the conductive resin film (i) is stretched in the biaxial direction of the film width direction and the flow direction. A large number of pores are preliminarily formed inside the layer by stretching. It is desirable that the pores formed in the porous resin film (i) have a large individual volume, a large number, and shapes independent from each other from the viewpoint of maintaining electric charge. The size of the pores can be increased by extending in the biaxial direction rather than extending in only one direction. In particular, a film stretched in the biaxial direction of the film in the width direction and the flow direction can form a disk-shaped hole stretched in the surface direction, and therefore, the pressure hole and the heat treatment are further applied to increase the thickness of the hole. When it is expanded in the direction, it is possible to form vacancies with large volumes, and when charges are injected, positively and negatively polarized electric charges are easily accumulated, and charge retention performance when an electret film (ii) is obtained. Will be excellent. Therefore, a biaxially stretched resin film is used for the core layer (A) in the porous resin film (i) of the present invention.
[表面層(B)]
 本発明において用いる表面層(B)は、多孔性樹脂フィルム(i)のエレクトレット化処理の際の絶縁耐性を向上し、且つ、コア層(A)内部に蓄積した電荷の保持性を向上することを主目的に、コア層(A)の少なくとも片面に、好ましくは両面に設けられる延伸フィルムからなる層である。
 また、多孔性樹脂フィルム(i)に加圧条件下で非反応性ガスを浸透させ、次いで非加圧条件下で加熱処理を施す場合には、表面層(B)は、従来の多孔性樹脂フィルムと比べてフィルム表面の均一性に優れ、本発明の多孔性樹脂フィルム(i)のエレクトレット化処理の際に高電圧での電荷注入を可能とする層である。また、加圧処理から加熱処理までの間にコア層(A)からの非反応性ガスが外部に拡散することを防止する役目を担っている。更には、多孔性樹脂フィルム(i)の絶縁耐圧を向上し、コア層(A)内部に蓄積した電荷の保持性を向上する役目を担う。本発明における表面層(B)は、コア層(A)の少なくとも片面に、好ましくは両面に設けられる延伸樹脂フィルムからなる層である。
 表面層(B)は、好ましくは、絶縁耐性を向上する為に一定以上の厚みを有し、電気を通しにくい高分子材料である熱可塑性樹脂を含むが、コア層(A)へ電荷の導入が出来る程度に内部に空孔を形成するため、好ましくは1軸延伸樹脂フィルム構造を有するものである。
 表面層(B)の厚みは5~500μmの範囲であることが好ましく、7~300μmの範囲であることがより好ましく、9~100μmの範囲であることが更に好ましく、10~50μmの範囲であることが特に好ましく、10~30μmの範囲であることが最も好ましい。同厚みが5μm未満では多孔性樹脂フィルム(i)の絶縁耐性の向上には効果が不十分であり、高電圧での電荷注入が出来ず、高い電荷を持ったエレクトレット化フィルム(ii)は得られにくい。一方、500μmを越えてしまうとエレクトレット化処理の際に内部まで電荷を到達させる事が困難となり、本発明の所期の性能を発揮し得ずに好ましくない。
[Surface layer (B)]
The surface layer (B) used in the present invention improves the insulation resistance during the electretization treatment of the porous resin film (i) and improves the retention of charges accumulated in the core layer (A). Is a layer made of a stretched film provided on at least one side of the core layer (A), preferably on both sides.
When the porous resin film (i) is infiltrated with a non-reactive gas under pressure and then subjected to heat treatment under non-pressure, the surface layer (B) is a conventional porous resin. It is a layer that has excellent film surface uniformity compared to a film, and enables charge injection at a high voltage during electretization of the porous resin film (i) of the present invention. Moreover, it plays the role which prevents that the non-reactive gas from a core layer (A) spread | diffuses outside from a pressurization process to a heat processing. Furthermore, it plays a role of improving the dielectric strength of the porous resin film (i) and improving the retention of charges accumulated in the core layer (A). The surface layer (B) in the present invention is a layer made of a stretched resin film provided on at least one side of the core layer (A), preferably on both sides.
The surface layer (B) preferably includes a thermoplastic resin, which is a polymer material having a thickness greater than or equal to a certain level in order to improve insulation resistance, and is difficult to conduct electricity, but introducing a charge into the core layer (A). In order to form pores as much as possible, it preferably has a uniaxially stretched resin film structure.
The thickness of the surface layer (B) is preferably in the range of 5 to 500 μm, more preferably in the range of 7 to 300 μm, further preferably in the range of 9 to 100 μm, and in the range of 10 to 50 μm. Particularly preferred is the range of 10 to 30 μm. If the thickness is less than 5 μm, the effect of improving the insulation resistance of the porous resin film (i) is insufficient, and charge injection at a high voltage cannot be performed, and an electret film (ii) having a high charge is obtained. It's hard to be done. On the other hand, if it exceeds 500 μm, it is difficult to reach the inside of the interior during electretization, and the desired performance of the present invention cannot be exhibited, which is not preferable.
 表面層(B)を構成する熱可塑性樹脂としては、コア層(A)の項で挙げた熱可塑性樹脂と同様のものを用いることができる。延伸特性の観点から表面層(B)とコア層(A)に使用する熱可塑性樹脂は同種類の樹脂を用いることが好ましい。
 表面層(B)は無機微細粉末又は有機フィラーを含有していても、含有していなくても良いが、表面層(B)の誘電率などの電気的特性の改質という観点から、含有している方が好ましい。含有する場合にはコア層(A)の項で挙げた無機微細粉末及び有機フィラーと同様のものを用いることができる。
 表面層(B)はより具体的には、上記の熱可塑性樹脂30~97重量%、及び無機微細粉末及び有機フィラーの少なくとも一種3~70重量%を含有することが好ましい。
 さらに表面層(B)は、熱可塑性樹脂40~95重量%、及び無機微細粉末及び有機フィラーの少なくとも一種5~60重量%を含有することがより好ましく、熱可塑性樹脂50~90重量%、及び無機微細粉末及び有機フィラーの少なくとも一種10~50重量%を含有することが特に好ましい。無機微細粉末及び有機フィラーの含有率が3重量%未満では、電気的特性の改質効果が充分に得られない。一方、70重量%を越えると、無機微細粉末自身による誘電効果や、互いに連通した空孔の形成によって電荷が逃げ易い構造となり、電荷が安定しない傾向があるために好ましくない。
As a thermoplastic resin which comprises a surface layer (B), the thing similar to the thermoplastic resin quoted by the term of the core layer (A) can be used. From the viewpoint of stretching properties, it is preferable to use the same kind of resin as the thermoplastic resin used for the surface layer (B) and the core layer (A).
The surface layer (B) may or may not contain an inorganic fine powder or an organic filler, but it is contained from the viewpoint of modifying electrical characteristics such as the dielectric constant of the surface layer (B). Is preferable. When it contains, the thing similar to the inorganic fine powder and organic filler quoted by the term of the core layer (A) can be used.
More specifically, the surface layer (B) preferably contains 30 to 97% by weight of the above-mentioned thermoplastic resin and 3 to 70% by weight of at least one kind of inorganic fine powder and organic filler.
Furthermore, the surface layer (B) preferably contains 40 to 95% by weight of a thermoplastic resin and 5 to 60% by weight of at least one of inorganic fine powder and organic filler, 50 to 90% by weight of thermoplastic resin, and It is particularly preferable to contain 10 to 50% by weight of at least one of inorganic fine powder and organic filler. When the content of the inorganic fine powder and the organic filler is less than 3% by weight, the effect of improving the electrical characteristics cannot be sufficiently obtained. On the other hand, if it exceeds 70% by weight, the structure is such that the charge easily escapes due to the dielectric effect of the inorganic fine powder itself and the formation of pores communicating with each other, and the charge tends to be unstable, which is not preferable.
 表面層(B)に無機微細粉末や有機フィラーを含有させる場合、コア層(A)に用いた無機微細粉末及び有機フィラーと同種のものを用いても、異種のものを用いてもよい。
 特に無機微細粉末の添加は、一般的には熱可塑性樹脂よりも誘電率が高い為に、表面層(B)の電気特性の改質には向いている。
 特に熱可塑性樹脂としてポリオレフィン系樹脂などの誘電率の低い樹脂を使用する場合は、無機微細粉末又は有機フィラーを含有することにより、エレクトレット化処理時の高電圧印加時には誘電効果によりコア層(A)まで電荷を到達させることができ、エレクトレット化処理後は、主成分であるポリオレフィン系樹脂の低い誘電特性によりコア層(A)の電荷を逃がさず保持する効果が得られる。
When the surface layer (B) contains an inorganic fine powder or an organic filler, the same kind of inorganic fine powder or organic filler used in the core layer (A) or a different kind may be used.
In particular, the addition of an inorganic fine powder is generally suitable for modifying the electrical characteristics of the surface layer (B) because of its higher dielectric constant than that of a thermoplastic resin.
In particular, when a resin having a low dielectric constant such as a polyolefin-based resin is used as the thermoplastic resin, the core layer (A) due to the dielectric effect when a high voltage is applied during electret treatment by containing an inorganic fine powder or an organic filler. The charge can reach the core layer (A), and after the electretization, the low dielectric property of the polyolefin resin as the main component has an effect of retaining the charge of the core layer (A) without escaping.
 表面層(B)は上述の通り、延伸樹脂フィルムからなる層である。これは延伸によって厚み(膜厚)の均一性を向上させて、絶縁耐性などの電気特性の均一化が図れるためである。層(B)の厚みが不均一であると、高電圧を用いた電荷注入時に、特に薄い部分で局所的な放電集中が発生しやすく、効果的な電荷注入は期待できない。
 また、表面層(B)は、空孔の形成効率が低い1軸延伸をした樹脂フィルムであることが望ましい。表面層(B)を2軸延伸樹脂フィルムにした場合は、コア層(A)と同様に無機微細粉末や有機フィラーを核として空孔が形成してしまう為に、表面層(B)によって電荷を保持する効果は低下してしまう。
As described above, the surface layer (B) is a layer made of a stretched resin film. This is because the uniformity of thickness (film thickness) can be improved by stretching, and electrical characteristics such as insulation resistance can be made uniform. If the thickness of the layer (B) is not uniform, local discharge concentration is likely to occur particularly in a thin portion during charge injection using a high voltage, and effective charge injection cannot be expected.
Further, the surface layer (B) is preferably a uniaxially stretched resin film with low pore formation efficiency. When the surface layer (B) is a biaxially stretched resin film, pores are formed with inorganic fine powder or organic filler as the core as in the core layer (A). The effect of holding is reduced.
 表面層(B)は、コア層(A)と積層した後に、少なくとも1軸方向に延伸することが好ましい。コア層(A)と積層した後に延伸することによって、延伸フィルム同士を積層するよりも、多孔性樹脂フィルム(i)としての膜厚の均一性が向上し、結果的に絶縁耐性などの電気特性が向上する。 The surface layer (B) is preferably stretched in at least a uniaxial direction after being laminated with the core layer (A). By stretching after laminating with the core layer (A), the uniformity of the film thickness as the porous resin film (i) is improved rather than laminating stretched films, resulting in electrical characteristics such as insulation resistance. Will improve.
 本発明において、多孔性樹脂フィルム(i)に加圧条件下で非反応性ガスを浸透させ、次いで非加圧条件下で加熱処理を施す場合には、加圧処理をする前の多孔性樹脂フィルム(i)における表面層(B)は、上述の通り一軸延伸樹脂フィルムを含む層である。この点で本発明のエレクトレット化フィルム(ii)は従来のものと比べて大きく性能が改良されている。本発明の表面層(B)は、延伸によって厚み(膜厚)の均一性を向上させて、絶縁耐圧性などの電気特性の改良が図られている。表面層(B)の厚みが不均一であると、高電圧を用いた電荷注入時に、特に薄い部分で局所的な放電集中が発生しやすく、効果的な電荷注入は期待できない。従来のものと同様に表面層(B)を2軸延伸フィルムとした場合は、コア層(A)と同様に、無機微細粉末又は有機フィラーを核として空孔が形成しやすく、続く加圧処理と加熱処理により大きな空孔が形成されやすく、結果的に厚み(膜厚)の均一性が損なわれてしまい、所期の目的を達成し得ない。また、これらの空孔形成により、加圧処理から加熱処理までの間にコア層(A)からの非反応性ガスが外部に拡散することを防止する目的や、絶縁耐圧を向上させコア層(A)内部に蓄積した電荷の保持性を向上する目的も達成しにくくなる。したがって、上記処理を行う場合、本発明の多孔性樹脂フィルム(i)における表面層(B)には空孔の形成効率が低い1軸延伸した樹脂フィルムを用いる。 In the present invention, when the porous resin film (i) is infiltrated with a non-reactive gas under pressure and then subjected to heat treatment under non-pressure, the porous resin before pressure treatment The surface layer (B) in the film (i) is a layer containing a uniaxially stretched resin film as described above. In this respect, the electretized film (ii) of the present invention is greatly improved in performance as compared with the conventional film. In the surface layer (B) of the present invention, the uniformity of thickness (film thickness) is improved by stretching to improve the electrical characteristics such as withstand voltage. If the thickness of the surface layer (B) is not uniform, local discharge concentration is likely to occur particularly in a thin portion during charge injection using a high voltage, and effective charge injection cannot be expected. When the surface layer (B) is a biaxially stretched film as in the conventional case, as with the core layer (A), pores are easily formed with inorganic fine powder or organic filler as the core, followed by pressure treatment As a result, large pores are easily formed by the heat treatment, and as a result, the uniformity of thickness (film thickness) is impaired, and the intended purpose cannot be achieved. Further, by forming these holes, the purpose of preventing the non-reactive gas from the core layer (A) from diffusing to the outside between the pressurizing treatment and the heat treatment, and the core layer ( A) It is difficult to achieve the purpose of improving the retention of charges accumulated inside. Therefore, when performing the said process, the surface layer (B) in the porous resin film (i) of this invention uses the resin film extended uniaxially with low formation efficiency of a void | hole.
 表面層(B)は単層構造以外に、2層構造以上の多層構造のものであってもよい。多層構造とする場合は、各層に使用する熱可塑性樹脂、無機微細粉末、及び有機フィラーの種類や含有量を変更することにより、より高い電荷保持性能を備えた多孔性樹脂フィルム(i)の設計が可能となる。
 表面層(B)はコア層(A)の少なくとも片面に設けるものであり、両面に設けても良い。表面層(B)をコア層(A)の両面に設ける場合は、表裏それぞれの組成、構成が同一でも良いし、異なる組成、構成のものであっても良い(図1参照)。
[多孔性樹脂フィルム(i)]
 本発明における多孔性樹脂フィルム(i)は、コア層(A)/表面層(B)(二軸延伸樹脂フィルム/延伸樹脂フィルム(好ましくは一軸延伸樹脂フィルム))の積層フィルムを最小構成単位とする。
The surface layer (B) may have a multilayer structure of two or more layers in addition to the single layer structure. In the case of a multilayer structure, the design of the porous resin film (i) having higher charge retention performance by changing the type and content of the thermoplastic resin, inorganic fine powder, and organic filler used in each layer Is possible.
The surface layer (B) is provided on at least one side of the core layer (A), and may be provided on both sides. When the surface layer (B) is provided on both surfaces of the core layer (A), the front and back may have the same composition and configuration, or may have different compositions and configurations (see FIG. 1).
[Porous resin film (i)]
The porous resin film (i) in the present invention comprises a laminated film of a core layer (A) / surface layer (B) (biaxially stretched resin film / stretched resin film (preferably uniaxially stretched resin film)) as a minimum constituent unit. To do.
[積層]
 コア層(A)と表面層(B)の積層は公知の種々の方法が使用できる。具体例としては、フィードブロックやマルチマニホールドを使用した多層ダイスを用いる共押出方式と、複数のダイスを使用する押出ラミネーション方式等が挙げられる。更に多層ダイスによる共押出方式と押出ラミネーション方式を組み合わせる方法が挙げられる。
 前述の通りコア層(A)は2軸延伸フィルムであり、表面層(B)は1軸延伸フィルムであることが好ましい。そして膜厚の均一性の観点から、コア層(A)と表面層(B)との積層後に、少なくとも1軸方向に延伸することが好ましい。両層を積層後に延伸することによって、延伸フィルム同士を積層するよりも、多孔性樹脂フィルム(i)としての膜厚の均一性が向上し、結果的に絶縁耐圧性などの電気特性が向上する。
 従って、コア層(A)と表面層(B)との積層は、1軸方向に延伸されたコア層(A)上に、表面層(B)を押出ラミネーションをすることが好ましい。コア層(A)上へ表面層(B)を押出ラミネート積層した後に、積層物を前記コア層(A)の延伸軸とはほぼ直角方向に延伸することで、コア層(A)を2軸延伸フィルムとし、表面層(B)を1軸延伸フィルムとした、膜厚の均一な多孔性樹脂フィルム(i)が得られる。
[Lamination]
For the lamination of the core layer (A) and the surface layer (B), various known methods can be used. Specific examples include a co-extrusion method using a multilayer die using a feed block and a multi-manifold, an extrusion lamination method using a plurality of dies, and the like. Furthermore, a method of combining a coextrusion method using a multilayer die and an extrusion lamination method can be mentioned.
As described above, the core layer (A) is preferably a biaxially stretched film, and the surface layer (B) is preferably a uniaxially stretched film. And from a viewpoint of the uniformity of a film thickness, it is preferable to extend | stretch at least uniaxial direction after lamination | stacking with a core layer (A) and a surface layer (B). By stretching both layers after laminating, the uniformity of the film thickness as the porous resin film (i) is improved rather than laminating the stretched films, and as a result, the electrical characteristics such as withstand voltage are improved. .
Therefore, the lamination of the core layer (A) and the surface layer (B) is preferably performed by extrusion lamination of the surface layer (B) on the core layer (A) stretched in the uniaxial direction. After the surface layer (B) is extrusion-laminated on the core layer (A), the laminate is stretched in a direction substantially perpendicular to the stretching axis of the core layer (A), whereby the core layer (A) is biaxial. A porous resin film (i) having a uniform film thickness is obtained in which a stretched film is used and the surface layer (B) is a uniaxially stretched film.
[延伸]
 コア層(A)、表面層(B)、およびこれらの積層物である多孔性樹脂フィルム(i)の延伸は、公知の種々の方法によって行うことができる。
 延伸の方法としては、ロール群の周速差を利用した縦延伸方法、テンターオーブンを使用した横延伸方法、圧延方法、テンターオーブンとリニアモーターの組み合わせによる同時二軸延伸方法、テンターオーブンとパンタグラフの組み合わせによる同時二軸延伸方法などを挙げることができる。又、インフレーションフィルムの延伸方法であるチューブラー法による同時二軸延伸方法を挙げることができる。
 延伸時の温度は、各層に用いる主な熱可塑性樹脂の、ガラス転移点温度以上から結晶部の融点以下の範囲内で行うことができる。コア層(A)と表面層(B)の積層物である多孔性樹脂フィルム(i)を延伸する場合は、より設定坪量の多い層(通常はコア層(A))に併せて、延伸温度を設定すれば良い。
[Stretching]
Stretching of the core layer (A), the surface layer (B), and the porous resin film (i) that is a laminate thereof can be performed by various known methods.
As the stretching method, the longitudinal stretching method utilizing the peripheral speed difference of the roll group, the transverse stretching method using a tenter oven, the rolling method, the simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor, the tenter oven and the pantograph The simultaneous biaxial stretching method by a combination etc. can be mentioned. Moreover, the simultaneous biaxial stretching method by the tubular method which is a stretching method of an inflation film can be mentioned.
The temperature at the time of stretching can be performed within the range from the glass transition point temperature to the melting point of the crystal part of the main thermoplastic resin used in each layer. When the porous resin film (i), which is a laminate of the core layer (A) and the surface layer (B), is stretched, it is stretched together with the layer having a higher set basis weight (usually the core layer (A)). What is necessary is just to set temperature.
 延伸温度は、指標としては用いる熱可塑性樹脂の融点より1~70℃低い温度である。具体的には、各層の熱可塑性樹脂がプロピレン単独重合体(融点155~167℃)である場合は100~166℃であり、高密度ポリエチレン(融点121~136℃)である場合は70~135℃である。また、延伸速度は20~350m/分の範囲とするのが好ましい。
 延伸の倍率は特に限定されず、多孔性樹脂フィルム(i)に用いる熱可塑性樹脂の特性や後述する得るべき空孔率等を考慮して適宜決定する。
 延伸倍率は、例えば熱可塑性樹脂としてプロピレン単独重合体ないしはその共重合体を使用する場合で、一軸方向に延伸する場合は約1.2~12倍であり、好ましくは2~10倍であり、二軸方向に延伸する場合には面積倍率(縦倍率と横倍率の積)で1.5~60倍、好ましくは4~50倍である。その他の熱可塑性樹脂を使用する場合、一軸方向に延伸する場合は1.2~10倍、好ましくは2~5倍であり、二軸方向に延伸する場合には面積倍率で1.5~20倍、好ましくは4~12倍である。
The stretching temperature is a temperature 1 to 70 ° C. lower than the melting point of the thermoplastic resin used as an index. Specifically, when the thermoplastic resin of each layer is a propylene homopolymer (melting point 155 to 167 ° C.), it is 100 to 166 ° C., and when it is a high density polyethylene (melting point 121 to 136 ° C.), it is 70 to 135 ° C. ° C. The stretching speed is preferably in the range of 20 to 350 m / min.
The draw ratio is not particularly limited, and is appropriately determined in consideration of the characteristics of the thermoplastic resin used for the porous resin film (i), the porosity to be described later, and the like.
For example, when a propylene homopolymer or a copolymer thereof is used as a thermoplastic resin, the draw ratio is about 1.2 to 12 times, preferably 2 to 10 times when drawn in a uniaxial direction. In the case of stretching in the biaxial direction, the area magnification (product of the vertical magnification and the horizontal magnification) is 1.5 to 60 times, preferably 4 to 50 times. When other thermoplastic resins are used, the stretching ratio is 1.2 to 10 times, preferably 2 to 5 times when stretched in a uniaxial direction, and 1.5 to 20 times the area magnification when stretched in a biaxial direction. Times, preferably 4 to 12 times.
[アンカーコート層(C)]
 多孔性樹脂フィルム(i)には、更に多素材を張り合わせてエレクトレット化後の用途を拡大するために、また、接着剤や蒸着金属膜などとの密着性を向上するために、片面もしくは両面にアンカーコート層(C)を有していることが好ましい。
 アンカーコート層(C)には高分子バインダーを用いることが好ましく、係る高分子バインダーの具体的な例としては、ポリエチレンイミン、炭素数1~12のアルキル変性ポリエチレンイミン、ポリ(エチレンイミン-尿素)及びポリアミンポリアミドのエチレンイミン付加物、及びポリアミンポリアミドのエピクロルヒドリン付加物等のポリエチレンイミン系重合体、アクリル酸アミド-アクリル酸エステル共重合体、アクリル酸アミド-アクリル酸エステル-メタクリル酸エステル共重合体、ポリアクリルアミドの誘導体、オキサゾリン基含有アクリル酸エステル系重合体等のアクリル酸エステル系重合体、ポリビニルアルコールとその変性体、ポリビニルピロリドン、ポリエチレングリコール等が挙げられ、これに加えてポリ酢酸ビニル、ポリウレタン、エチレン-酢酸ビニル共重合体、ポリ塩化ビニリデン、塩素化ポリプロピレン、マレイン酸変性ポリプロピレン、アクリル酸変性ポリプロピレン等のポリプロピレン系重合体、アクリルニトリル-ブタジエン共重合体、ポリエステル等の有機溶剤希釈樹脂又は水希釈樹脂等が挙げられる。これらの内でもポリエチレンイミン系重合体、ポリビニルアルコール系重合体、及びポリプロピレン系重合体が、多孔性樹脂フィルム(i)へのアンカー効果に優れ好ましい。
[Anchor coat layer (C)]
The porous resin film (i) may be laminated on one or both sides in order to further expand the use after electretization by laminating multiple materials, and to improve the adhesion to an adhesive or a deposited metal film. It is preferable to have an anchor coat layer (C).
A polymer binder is preferably used for the anchor coat layer (C). Specific examples of such a polymer binder include polyethyleneimine, alkyl-modified polyethyleneimine having 1 to 12 carbon atoms, poly (ethyleneimine-urea). And polyethyleneimine polymers such as ethyleneimine adducts of polyamine polyamides and epichlorohydrin adducts of polyamine polyamides, acrylic amide-acrylic acid ester copolymers, acrylic acid amide-acrylic acid ester-methacrylic acid ester copolymers, Examples include polyacrylamide derivatives, acrylic ester polymers such as oxazoline group-containing acrylic ester polymers, polyvinyl alcohol and modified products thereof, polyvinyl pyrrolidone, polyethylene glycol, and the like. Polyurethanes, polyurethane, ethylene-vinyl acetate copolymer, polyvinylidene chloride, chlorinated polypropylene, maleic acid-modified polypropylene, acrylic acid-modified polypropylene, and other polypropylene polymers, acrylonitrile-butadiene copolymer, polyester and other organic solvent dilutions Resin or water dilution resin etc. are mentioned. Among these, a polyethyleneimine polymer, a polyvinyl alcohol polymer, and a polypropylene polymer are preferable because of their excellent anchoring effect on the porous resin film (i).
 アンカーコート層(C)の膜厚は固形分換算坪量として0.001~5g/m2 であるのが好ましく、0.005~3g/m2 であることがより好ましく、0.01~1g/m2 であることがより好ましい。層(C)の坪量が0.001g/m2 未満では、アンカーコート層(C)を設けることによる効果を充分に得られない。一方、5g/m2 を超えてしまうと、塗工層であるアンカーコート層(C)の膜厚を均一に保つことが困難となり、膜厚の振れによって多孔性樹脂フィルム(i)の電気特性の均一性が損なわれたり、アンカーコート層(C)自体の凝集力不足からアンカー効果が低下したり、或いはアンカーコート層(C)の表面抵抗値が低下して1×1013W未満となり、多孔性樹脂フィルム(i)のエレクトレット化の際に電荷が注入されにくくコア層(A)まで到達せずに本発明の所期の性能を発現しないため好ましくない。 The film thickness of the anchor coat layer (C) is preferably 0.001 to 5 g / m 2 , more preferably 0.005 to 3 g / m 2 in terms of solid content basis weight, and 0.01 to 1 g. / M 2 is more preferable. When the basis weight of the layer (C) is less than 0.001 g / m 2 , the effect of providing the anchor coat layer (C) cannot be sufficiently obtained. On the other hand, if it exceeds 5 g / m 2 , it is difficult to keep the film thickness of the anchor coat layer (C) as the coating layer uniform, and the electrical characteristics of the porous resin film (i) due to the fluctuation of the film thickness. Of the anchor coating layer (C) itself, the anchor effect is reduced due to insufficient cohesive strength of the anchor coat layer (C), or the surface resistance value of the anchor coat layer (C) is reduced to less than 1 × 10 13 W, When the porous resin film (i) is converted into an electret, it is difficult to inject charges, and the core layer (A) is not reached and the desired performance of the present invention is not exhibited.
 アンカーコート層(C)を多孔性樹脂フィルム(i)に設ける方法としては、上記高分子バインダーを含む塗料を多孔性樹脂フィルム(i)上に塗工する方法によるのが好ましい。塗工は公知の塗工装置により多孔性樹脂フィルム(i)上に塗膜を形成し乾燥することにより形成することができる。塗工装置の具体的な例としては、例えば、ダイコーター、バーコーター、コンマコーター、リップコーター、ロールコーター、カーテンコーター、グラビアコーター、スプレーコーター、スクイズコーター、ブレードコーター、リバースコーター、エアーナイフコーター等が挙げられる。
 多孔性樹脂フィルム(i)へのアンカーコート層(C)の積層は、後述のエレクトレット化処理を実施する前に施すことが好ましい。
 また、多孔性樹脂フィルム(i)に加圧条件下で非反応性ガスを浸透させ、次いで非加圧条件下で加熱処理を施す場合には、アンカーコート層(C)を設置するタイミングは、後述する加圧処理と加熱処理を実施する前の多孔性樹脂フィルム(i)の段階、加圧処理して加熱処理を実施する前の多孔性樹脂フィルム(i)の段階、加圧処理と加熱処理を実施した多孔性樹脂フィルム(i)の段階が考えられ、いずれも実施可能である。設備やプロセスの合理性を考慮すれば、加圧処理と加熱処理を実施する前の多孔性樹脂フィルム(i)の段階で行うのが好ましい。
As a method of providing the anchor coat layer (C) on the porous resin film (i), it is preferable to use a method in which a coating material containing the polymer binder is applied onto the porous resin film (i). The coating can be formed by forming a coating film on the porous resin film (i) with a known coating apparatus and drying it. Specific examples of coating devices include, for example, die coaters, bar coaters, comma coaters, lip coaters, roll coaters, curtain coaters, gravure coaters, spray coaters, squeeze coaters, blade coaters, reverse coaters, air knife coaters, etc. Is mentioned.
The lamination of the anchor coat layer (C) to the porous resin film (i) is preferably performed before performing the electretization process described later.
Further, when the porous resin film (i) is infiltrated with a non-reactive gas under pressure and then subjected to heat treatment under non-pressure, the timing for installing the anchor coat layer (C) is: Step of porous resin film (i) before carrying out pressure treatment and heat treatment described later, step of porous resin film (i) before carrying out pressure treatment and heat treatment, pressure treatment and heating The stage of the porous resin film (i) which processed can be considered, and all can be implemented. Considering the rationality of equipment and processes, it is preferable to carry out at the stage of the porous resin film (i) before performing the pressure treatment and the heat treatment.
[加圧処理]
 本発明における、好ましい多孔性樹脂フィルム(i)は、前述の樹脂フィルムを圧力容器に入れて、該容器に非反応性ガスを導入し、加圧条件下とすることによりコア層(A)内部の空孔に非反応性ガスを浸透させて、後述する加熱処理により空孔を膨張することで得られる。
 使用する非反応性ガスの具体的な例としては、窒素、二酸化炭素、ヘリウム、ネオン、アルゴン、フロン、ハロンなどの不活性ガス、又はこれらの混合ガスや空気が挙げられる。非反応性ガス以外の気体を使用した場合でも膨張効果は得られるが、加圧処理中の安全性や得られた多孔性樹脂フィルム(i)の安全性の観点から、メタン、エタン、プロパン、ブタン等の反応性ガスは用いず、上記の非反応性ガスを用いることが望ましい。
[Pressure treatment]
In the present invention, the preferred porous resin film (i) is prepared by placing the aforementioned resin film in a pressure vessel, introducing a non-reactive gas into the vessel, and applying pressure to the inside of the core layer (A). It is obtained by infiltrating a non-reactive gas into the pores and expanding the pores by a heat treatment described later.
Specific examples of the non-reactive gas used include inert gases such as nitrogen, carbon dioxide, helium, neon, argon, chlorofluorocarbon, and halon, or mixed gases and air thereof. Even when a gas other than a non-reactive gas is used, an expansion effect can be obtained. From the viewpoint of safety during pressure treatment and the safety of the obtained porous resin film (i), methane, ethane, propane, It is desirable to use the non-reactive gas described above without using a reactive gas such as butane.
 加圧処理を行う際の圧力は、好ましくは0.2~10MPa、より好ましくは0.3~8MPa、更に好ましくは0.4~6MPaの範囲である。加圧力が0.2MPa未満では圧力が低いために多孔性樹脂フィルム(i)中にガスを充分に浸透させられず、充分な膨張効果が得られない。一方、10MPaを超えてしまうと、後の加熱処理時にコア層(A)の空孔が内圧に耐え切れず、破裂してしまい多孔性樹脂フィルム(i)に穴や破れが発生してしまう。
 加圧処理の実施時間は、好ましくは1時間以上、より好ましくは1~50時間の範囲である。加圧処理の時間が1時間未満では非反応性ガスがコア層(A)全体に充分に充満しきれない。逆に、1時間未満の短時間でコア層(A)の空孔に非反応性ガスが充分に充満してしまうような多孔性樹脂フィルム(i)では、処理後のガスの放散も同様に早く、後述する加熱処理を施す前、または施している間に、浸透させたガスが拡散してしまい安定した膨張倍率が得られない。
 多孔性樹脂フィルム(i)が長尺であり、巻取りの形態で加圧処理をする場合は、非反応性ガスが巻取りの内部まで浸透し易いように、図6に示す様に緩衝シートと一緒に巻取ったものを予め用意しておき、これを処理することが望ましい。緩衝シートの具体的な例としては、発泡ポリスチレンシート、発泡ポリエチレンシート、発泡ポリプロピレンシート、不織布、織布、紙などの連通した空隙を持つ物が挙げられる。この巻取りを図7に示す様な加圧容器に入れて、非反応性ガスにより加圧処理が行われる。
The pressure during the pressure treatment is preferably in the range of 0.2 to 10 MPa, more preferably 0.3 to 8 MPa, and still more preferably 0.4 to 6 MPa. When the applied pressure is less than 0.2 MPa, the pressure is low, so that the gas cannot be sufficiently permeated into the porous resin film (i), and a sufficient expansion effect cannot be obtained. On the other hand, if it exceeds 10 MPa, the pores of the core layer (A) cannot withstand the internal pressure during the subsequent heat treatment, and burst, resulting in holes and tears in the porous resin film (i).
The time for performing the pressure treatment is preferably 1 hour or more, more preferably in the range of 1 to 50 hours. If the pressure treatment time is less than 1 hour, the non-reactive gas cannot be fully filled in the entire core layer (A). On the contrary, in the porous resin film (i) in which the non-reactive gas is sufficiently filled in the pores of the core layer (A) in a short time of less than 1 hour, the gas emission after the treatment is similarly the same. As soon as before or during the heat treatment described later, the infiltrated gas diffuses and a stable expansion ratio cannot be obtained.
When the porous resin film (i) is long and pressure treatment is performed in the form of winding, a buffer sheet as shown in FIG. 6 is provided so that the non-reactive gas can easily penetrate into the winding. It is desirable to prepare a material that has been wound together with and to process it. Specific examples of the buffer sheet include a foamed polystyrene sheet, a foamed polyethylene sheet, a foamed polypropylene sheet, a non-woven fabric, a woven fabric, and a paper having a continuous void. This winding is put into a pressurized container as shown in FIG. 7, and a pressure treatment is performed with a non-reactive gas.
[加熱処理]
 多孔性樹脂フィルム(i)は、加圧処理により空孔が膨張した樹脂フィルムを加熱処理により形状固定することにより得られる。
 加圧処理後、これを非加圧条件下に戻すことにより、多孔性樹脂フィルム(i)は差圧によって膨張する。しかしながら、このままでは浸透した非反応性ガスは次第に抜けてしまい、多孔性樹脂フィルム(i)は元の厚みに戻ってしまう。
 そこで加熱処理を行うことにより、膨張した形状のまま熱可塑性樹脂の非弾性変形(可塑変形)を促し、フィルムから非反応性ガスが抜けてしまって空孔内部が大気圧に下がった後でもフィルムの膨張効果を維持させることができる。
[Heat treatment]
The porous resin film (i) can be obtained by fixing the shape of a resin film having pores expanded by pressure treatment by heat treatment.
After the pressure treatment, the porous resin film (i) is expanded by the differential pressure by returning it to a non-pressure condition. However, in this state, the permeated non-reactive gas gradually escapes, and the porous resin film (i) returns to its original thickness.
Therefore, heat treatment promotes inelastic deformation (plastic deformation) of the thermoplastic resin in the expanded shape, and even after the non-reactive gas escapes from the film and the pores fall to atmospheric pressure. The expansion effect can be maintained.
 係る加熱処理の温度は、コア層(A)に主に用いる熱可塑性樹脂のガラス転移点温度以上から結晶部の融点以下の、熱可塑性樹脂の延伸に好適な公知の温度範囲内で行うことができる。より具体的には、コア層(A)の熱可塑性樹脂がプロピレン単独重合体(融点155~167℃)の場合は80~160℃の範囲内である。
 また加熱方法も従来公知の種々の手法を用いることが出来る。具体的な例としては、多孔性樹脂フィルム(i)が枚葉である場合は、オーブン内での加熱やヒートプレート上での加熱、赤外線ヒーターからの赤外線をフィルム表面に放射よる輻射加熱などが挙げられる。また、多孔性樹脂フィルム(i)が長尺であり、巻取りの形態である場合は、ノズルからの熱風をフィルム表面に吹き当てる熱風加熱、赤外線ヒーターからの赤外線をフィルム表面に放射よる輻射加熱、温調機能付きのロールやプレートにフィルムを接触させる接触加熱などが挙げられる。
The temperature of the heat treatment is within a known temperature range suitable for stretching the thermoplastic resin, which is not lower than the glass transition temperature of the thermoplastic resin mainly used for the core layer (A) and not higher than the melting point of the crystal part. it can. More specifically, when the thermoplastic resin of the core layer (A) is a propylene homopolymer (melting point: 155 to 167 ° C.), the temperature is in the range of 80 to 160 ° C.
As the heating method, various conventionally known methods can be used. As a specific example, when the porous resin film (i) is a single wafer, heating in an oven, heating on a heat plate, radiant heating by radiating infrared rays from an infrared heater to the film surface, etc. Can be mentioned. Also, when the porous resin film (i) is long and is in the form of winding, hot air heating that blows hot air from the nozzle onto the film surface, and radiant heating that radiates infrared rays from the infrared heater to the film surface And contact heating for bringing the film into contact with a roll or plate with a temperature control function.
 多孔性樹脂フィルム(i)の加熱時間は、処理の温度と熱伝達速度により決定されるが、好ましくは1~100秒、より好ましくは2~80秒、更に好ましくは3~60秒の範囲内である。熱処理時間が1秒未満では多孔性樹脂フィルム(i)を均一に加熱することが出来ず、熱処理後のフィルム厚みが安定しない。一方100秒を超えると加熱によりガスの透過率が良くなった多孔性樹脂フィルム(i)からガスが抜けてしまい、加熱処理中にフィルム厚みが減少してしまう。
 加熱処理により得られた多孔性樹脂フィルム(i)の弾性率は低く、加重が掛ると空孔が潰れ易いことから、非接触方式の熱風加熱や輻射加熱の方が高い膨張倍率を得やすい傾向にある。図8に非接触方式の加熱処理装置の一例を示す。
The heating time of the porous resin film (i) is determined by the treatment temperature and the heat transfer rate, but is preferably in the range of 1 to 100 seconds, more preferably 2 to 80 seconds, still more preferably 3 to 60 seconds. It is. If the heat treatment time is less than 1 second, the porous resin film (i) cannot be heated uniformly, and the film thickness after the heat treatment is not stable. On the other hand, if it exceeds 100 seconds, the gas escapes from the porous resin film (i) whose gas permeability is improved by heating, and the film thickness is reduced during the heat treatment.
Since the elastic modulus of the porous resin film (i) obtained by the heat treatment is low and the pores are easily crushed when a load is applied, the non-contact type hot air heating or radiation heating tends to obtain a higher expansion ratio. It is in. FIG. 8 shows an example of a non-contact type heat treatment apparatus.
[多孔性樹脂延伸フィルム(i)]
 上記の積層工程や延伸工程を経て、次いで、必要により、加圧処理や加熱処理を経て、得られる多孔性樹脂フィルム(i)は、電荷注入によってエレクトレット化フィルム(ii)とするのに好適なものとして設計されている。多孔性樹脂フィルム(i)は静電容量を確保する為に一定範囲の空孔率を有し、蓄積した電荷が外部に逃げにくいようにする為に、一定値以下の水蒸気透過係数や、一定値以上の表面抵抗値を有している。
 本発明において多孔性樹脂フィルム(i)内の空孔は電荷を保持する場所として、割合が多いほど静電容量を確保できるが、多すぎると絶縁する熱可塑性樹脂の割合が減少し、また連通する空孔も増えるために長期に渡り高い電荷状態を安定して維持することが難しくなる。
 多孔性樹脂フィルム(i)の水蒸気透過係数は、こうした連通する空孔の有無を判断するものである。水蒸気透過係数が大きければ、連通空孔表面や介在する水蒸気により電荷が放電しやすくなる。多孔性樹脂フィルム(i)の表面固有抵抗値もまた、多孔性樹脂フィルム(i)の電荷の逃がしやすさを判断するものである。表面固有抵抗値が小さすぎれば、フィルム表面を介した放電が起こりやすくなる。
[Porous resin stretched film (i)]
The porous resin film (i) obtained through the above laminating step and stretching step and then, if necessary, through pressure treatment and heat treatment, is suitable for forming an electret film (ii) by charge injection. Designed as a thing. The porous resin film (i) has a certain range of porosity in order to ensure the capacitance, and in order to prevent the accumulated charge from escaping to the outside, The surface resistance value is greater than or equal to the value.
In the present invention, the pores in the porous resin film (i) are places where electric charges are retained, so that the larger the ratio, the greater the capacitance can be ensured. Since the number of vacancies increases, it becomes difficult to stably maintain a high charge state over a long period of time.
The water vapor transmission coefficient of the porous resin film (i) determines the presence or absence of such communicating pores. If the water vapor transmission coefficient is large, electric charges are likely to be discharged due to the surface of the communicating holes and intervening water vapor. The surface specific resistance value of the porous resin film (i) also determines the ease of charge release from the porous resin film (i). If the surface resistivity is too small, discharge through the film surface is likely to occur.
[厚み]
 本発明における多孔性樹脂フィルム(i)及びエレクトレット化フィルム(ii)の厚みは、JIS-K-7130:1999に準拠し、厚み計を用いて測定した。
 コア層(A)および表面層(B)のそれぞれの厚みは、測定対象試料であるフィルムを液体窒素にて-60℃以下の温度に冷却し、ガラス板上に置いた試料に対してカミソリ刃(シック・ジャパン(株)製、商品名:プロラインブレード)を面方向に垂直に当て切断して断面測定用の試料を作成し、得られた試料の断面を走査型電子顕微鏡(日本電子(株)製、商品名:JSM-6490)を用いて観測し、空孔形状や組成からコア層(A)と表面層(B)の境界線を判別して厚み比率を求め、上記方法で測定されたフィルム全層の厚みから算出して求めた。
[Thickness]
The thicknesses of the porous resin film (i) and electret film (ii) in the present invention were measured using a thickness meter in accordance with JIS-K-7130: 1999.
The thickness of each of the core layer (A) and the surface layer (B) is such that a film as a measurement target sample is cooled to a temperature of −60 ° C. or lower with liquid nitrogen, and a razor blade is placed on a sample placed on a glass plate (Sick Japan Co., Ltd., trade name: Proline Blade) is cut perpendicularly to the surface direction to create a sample for cross-section measurement, and the cross-section of the obtained sample is scanned with a scanning electron microscope (JEOL ( Measured by the above method using a product name, JSM-6490), and determining the thickness ratio by distinguishing the boundary line between the core layer (A) and the surface layer (B) from the pore shape and composition. Calculated from the thickness of the entire film layer.
[空孔率]
 多孔性樹脂フィルム(i)は、次式(1)で算出される空孔率が、1~70%であることが好ましく、10~60%であることがより好ましく、20~50%であることが特に好ましい。これら空孔は微細な空孔としてフィルム内部に多数独立して有することが好ましい。空孔の存在により、樹脂フィルム内の界面数が増加し、空孔が存在しない樹脂フィルムと比較して内部に電荷を蓄積できる性能が向上し、性能の高いエレクトレット化フィルム(ii)を得ることができる。しかし、過剰の空孔は逆に電荷を逃がす原因となり得る。
Figure JPOXMLDOC01-appb-M000001
[Porosity]
In the porous resin film (i), the porosity calculated by the following formula (1) is preferably 1 to 70%, more preferably 10 to 60%, and more preferably 20 to 50%. It is particularly preferred. It is preferable to have a large number of these pores independently as fine pores inside the film. Due to the presence of pores, the number of interfaces in the resin film is increased, and the performance of accumulating charges inside the resin film is improved compared with a resin film having no pores, thereby obtaining an electret film (ii) with high performance. Can do. However, excessive vacancies can cause charge to escape.
Figure JPOXMLDOC01-appb-M000001
 多孔性樹脂フィルム(i)に加圧条件下で非反応性ガスを浸透させ、次いで非加圧条件下で加熱処理を施す場合には、当該処理前の樹脂フィルムは、フィルム内部に微細な空孔を多数有するものであり、前記式(1)で算出される空孔率が、1~50%であることが好ましく、10~45%であることがより好ましい。この空孔率が1%未満では非反応性ガスの浸透による膨張の効果が充分得られない。一方、空孔率が50%を超えてしまうと空孔どうしの連通が発生してしまい非反応性ガスが抜け易く充分な膨張の効果が得られない傾向にある。
 樹脂フィルムを前述の加圧処理と加熱処理を実施することにより、得られる多孔性樹脂フィルム(i)は、その樹脂フィルムに比べて空孔率が高くなる。
 加圧処理及び加熱処理を実施した後の多孔性樹脂フィルム(i)は、前式(1)で算出される空孔率が、5~95%であることが好ましく、10~80%であることがより好ましく、12~70%であることが更に好ましく、15~60%であることが特に好ましい。空孔率が5%未満では電荷の蓄積容量が低く、得られるエレクトレット(iii)も電気・電子入出力装置用材料として性能が劣るものとなる。一方、95%を越えると、連通した空孔を介した電荷の流出が起こりやすく、得られるエレクトレット(ii)の経時による性能低下が起こりやすい。また多孔性樹脂フィルム(i)の弾性率が極端に劣るものとなり、厚み方向の復元性が低下し、耐久性に劣るものとなる。
When the porous resin film (i) is infiltrated with a non-reactive gas under a pressurized condition and then subjected to a heat treatment under a non-pressurized condition, the resin film before the treatment has a fine void inside the film. It has a large number of holes, and the porosity calculated by the above formula (1) is preferably 1 to 50%, more preferably 10 to 45%. If the porosity is less than 1%, the effect of expansion due to permeation of the non-reactive gas cannot be sufficiently obtained. On the other hand, if the porosity exceeds 50%, communication between the pores occurs, and the non-reactive gas tends to escape and a sufficient expansion effect tends not to be obtained.
By carrying out the above-described pressure treatment and heat treatment on the resin film, the resulting porous resin film (i) has a higher porosity than the resin film.
The porous resin film (i) after performing the pressure treatment and the heat treatment preferably has a porosity of 5 to 95% calculated by the previous formula (1) and is 10 to 80%. More preferably, it is more preferably 12 to 70%, and particularly preferably 15 to 60%. When the porosity is less than 5%, the charge storage capacity is low, and the obtained electret (iii) is inferior in performance as a material for an electric / electronic input / output device. On the other hand, if it exceeds 95%, the outflow of charges through the communicating vacancies is likely to occur, and the performance of the obtained electret (ii) is likely to deteriorate with time. Moreover, the elastic modulus of the porous resin film (i) becomes extremely inferior, the resilience in the thickness direction is lowered, and the durability is inferior.
[水蒸気透過係数]
 多孔性樹脂フィルム(i)の水蒸気透過係数(g・mm/m2 ・24hr)は、JIS-Z-0208:1976に準拠しカップ法により、温度40℃、相対湿度90%の条件にて透湿度(g/m2 ・24hr)を測定し、フィルムの厚み(mm)から換算して求めた値である。本発明の多孔性樹脂フィルム(i)の表面層(B)はコア層(A)に蓄積した電荷が外部に逃げないように、絶縁する効果を有するものであるが、その効果が低い場合は水蒸気透過係数が高くなり、電荷の保持能力が劣るものとなる。或いは本発明の多孔性樹脂フィルム(i)中の上記空孔の多くが連通している場合、同様に水蒸気透過係数が高くなり、電荷の保持能力が劣るものとなる。
[Water vapor transmission coefficient]
The water vapor transmission coefficient (g · mm / m 2 · 24 hr) of the porous resin film (i) is a permeation rate at a temperature of 40 ° C. and a relative humidity of 90% by a cup method in accordance with JIS-Z-0208: 1976. It is a value obtained by measuring humidity (g / m 2 · 24 hr) and converting from the thickness (mm) of the film. The surface layer (B) of the porous resin film (i) of the present invention has an insulating effect so that electric charges accumulated in the core layer (A) do not escape to the outside, but when the effect is low The water vapor transmission coefficient becomes high, and the charge holding ability is inferior. Or when many of the said void | holes in the porous resin film (i) of this invention are connecting, a water-vapor-permeation coefficient becomes high similarly and a charge retention capability becomes inferior.
 本発明の多孔性樹脂フィルム(i)の水蒸気透過係数は0.1~2.5g・mm/m2 ・24hrの範囲内であり、好ましくは0.2~1.5g・mm/m2 ・24hrの範囲内であり、特に好ましくは0.3~1.0g・mm/m2 ・24hrの範囲内である。多孔性樹脂フィルム(i)の水蒸気透過係数が2.5g・mm/m2 ・24hrを超えると高湿度下での帯電性の低下が著しく、本発明の所期の性能を発揮しない。一方、多孔性樹脂フィルム(i)の主成分となり得る熱可塑性樹脂、例えばポリオレフィン系樹脂の水蒸気透過係数が0.1g/m2 ・24hr前後であることから、0.1g/m2 ・24hr未満の多孔性樹脂フィルム(i)を製造することは困難である。これらの水蒸気透過係数は、上述のとおり、主に空孔の量(空孔率)やその大きさ、形状により調整可能である。 The water vapor transmission coefficient of the porous resin film (i) of the present invention is in the range of 0.1 to 2.5 g · mm / m 2 · 24 hr, preferably 0.2 to 1.5 g · mm / m 2 · It is within the range of 24 hr, and particularly preferably within the range of 0.3 to 1.0 g · mm / m 2 · 24 hr. When the water vapor transmission coefficient of the porous resin film (i) exceeds 2.5 g · mm / m 2 · 24 hr, the chargeability under high humidity is remarkably lowered, and the desired performance of the present invention is not exhibited. On the other hand, a thermoplastic resin that can be a main component of the porous resin film (i), for example, a polyolefin-based resin has a water vapor transmission coefficient of around 0.1 g / m 2 · 24 hr, so that it is less than 0.1 g / m 2 · 24 hr. It is difficult to produce a porous resin film (i). As described above, these water vapor transmission coefficients can be adjusted mainly by the amount of pores (porosity), its size, and shape.
[表面抵抗]
 多孔性樹脂フィルム(i)の表面抵抗値(Ω)は、JIS-K-6911:1995に準拠し2重リング法により、温度23℃、相対湿度50%の条件下にて測定した。
 本発明の多孔性樹脂フィルム(i)は、少なくとも片方の表面の表面抵抗が1×1013~9×1017Ωであり、好ましくは1×1014~9×1016Ωであり、特に好ましくは5×1014~9×1015Ωの範囲内である。
 表面抵抗値が1×1013Ω未満では多孔性樹脂フィルム(i)のエレクトレット化処理を施す際に、電荷が表面を伝って逃げやすくなり、充分な電荷注入が行われない。一方、表面抵抗が9×1017Ωを超えてしまうと多孔性樹脂フィルム(i)に付着したゴミや埃の除去が困難となり、エレクトレット化処理の際にこれを伝って局所放電が発生しやすくなり、部分的な多孔性樹脂フィルム(i)の破壊が発生し易く好ましくない。これらの表面抵抗は、主に、用いる熱可塑性樹脂の選定や、上述のアンカーコート層(C)の坪量などにより調整可能である。
[Surface resistance]
The surface resistance value (Ω) of the porous resin film (i) was measured under the conditions of a temperature of 23 ° C. and a relative humidity of 50% by a double ring method in accordance with JIS-K-6911: 1995.
The porous resin film (i) of the present invention has a surface resistance of at least one surface of 1 × 10 13 to 9 × 10 17 Ω, preferably 1 × 10 14 to 9 × 10 16 Ω, particularly preferably. Is in the range of 5 × 10 14 to 9 × 10 15 Ω.
When the surface resistance value is less than 1 × 10 13 Ω, when the porous resin film (i) is subjected to electret treatment, the charge easily escapes through the surface, and sufficient charge injection is not performed. On the other hand, if the surface resistance exceeds 9 × 10 17 Ω, it becomes difficult to remove dust and dirt adhering to the porous resin film (i), and local discharge tends to occur during electret processing. Therefore, the partial porous resin film (i) is easily broken and is not preferable. These surface resistances can be adjusted mainly by the selection of the thermoplastic resin to be used and the basis weight of the anchor coat layer (C) described above.
[エレクトレット化]
 本発明の多孔性樹脂フィルム(i)をエレクトレット化フィルム(ii)とするためには直流高電圧放電によるエレクトレット化処理を施す。
 従前の方法によれば、係るエレクトレット化処理は幾つかの処理方法が考えられる。例えば、多孔性樹脂フィルム(i)の両面を導電体で保持し、直流高電圧やパルス状高電圧を加える方法(エレクトロエレクトレット化法)やγ線や電子線を照射してエレクトレット化する方法(ラジオエレクトレット化法)などが公知である。
 中でも直流高電圧を用いたエレクトレット化処理法(エレクトロエレクトレット化法)は装置が小型であり、且つ、作業者や環境への負荷が小さく、本発明の多孔性樹脂フィルム(i)の様な高分子材料のエレクトレット化に適している。
[Electretization]
In order to use the porous resin film (i) of the present invention as an electret film (ii), an electret treatment by direct current high voltage discharge is performed.
According to the conventional method, several processing methods can be considered for the electretization process. For example, a method of holding both surfaces of the porous resin film (i) with a conductor and applying a DC high voltage or a pulsed high voltage (electroelectretization method) or a method of electretization by irradiating γ rays or electron beams ( Radio electretization method) and the like are known.
Among them, the electretization method (electroelectretization method) using a direct current high voltage has a small apparatus and a small burden on workers and the environment, and is as high as the porous resin film (i) of the present invention. Suitable for electretization of molecular materials.
 本発明に用い得るエレクトレット化装置の好ましい例としては、図2に示す様に直流高圧電源5に繋がった針状電極6とアース電極7の間に多孔性樹脂フィルム(i)を固定し所定の電圧を印加するもの、図3に示す様に直流高圧電源に繋がった針状電極8とアースに接続されたロール9間に所定の電圧を印加しながら多孔性樹脂フィルム(i)を通過させるもの、図4に示す様に直流高圧電源に繋がったワイヤー電極10とアース電極7の間に多孔性樹脂フィルム(i)を固定し所定の電圧を印加しながらワイヤー電極10を移動するもの、図5に示す様に直流高圧電源に繋がったワイヤー電極11とアースに接続されたロール9間に所定の電圧を印加しながら多孔性樹脂フィルム(i)を通過させるものなどが挙げられる。 As a preferred example of an electretization apparatus that can be used in the present invention, a porous resin film (i) is fixed between a needle electrode 6 connected to a DC high voltage power source 5 and a ground electrode 7 as shown in FIG. Applying voltage, passing a porous resin film (i) while applying a predetermined voltage between a needle electrode 8 connected to a DC high voltage power source and a roll 9 connected to the ground as shown in FIG. 4, the porous resin film (i) is fixed between the wire electrode 10 connected to the DC high voltage power source and the ground electrode 7 as shown in FIG. 4, and the wire electrode 10 is moved while applying a predetermined voltage, FIG. As shown in FIG. 2, there is one that allows the porous resin film (i) to pass through while applying a predetermined voltage between the wire electrode 11 connected to the DC high voltage power source and the roll 9 connected to the ground.
 本発明は、直流高電圧放電によるエレクトレット化処理により、より多くの電荷を内部に蓄積することを特徴とする。係るエレクトレット化処理の電圧は、多孔性樹脂フィルム(i)の厚み、空孔率、樹脂やフィラーの材質、処理速度、用いる電極の形状、材質、大きさ、最終的に得るべきエレクトレット化フィルム(ii)の帯電量などにより変更し得るが、好ましい範囲としては10~100KV、より好ましくは12~70KV、更に好ましくは15~50KVの範囲内である。エレクトレット化処理の電圧が10KV未満では電荷注入量が不十分となり本発明の初期の性能を発揮し難い傾向にある。一方100KVを超えてしまうと局所的な火花放電が発生しやすくなってしまい多孔性樹脂フィルム(i)の部分的な破壊が発生しやすい傾向にある。又、100KVを超えてしまうと注入した電荷が多孔性樹脂フィルム(i)の表面から端面を伝いアース電極へ流れる電流が発生し易くなり、エレクトレット化の効率が悪くなる傾向にある。 The present invention is characterized in that a larger amount of electric charge is accumulated in the inside by electretization by direct current high voltage discharge. The voltage of the electretization treatment is such that the thickness of the porous resin film (i), the porosity, the material of the resin or filler, the treatment speed, the shape, material, size of the electrode to be used, and the electret film to be finally obtained ( Although it can be changed depending on the charge amount of ii), the preferable range is 10 to 100 KV, more preferably 12 to 70 KV, and still more preferably 15 to 50 KV. If the electretization voltage is less than 10 KV, the amount of charge injection is insufficient, and the initial performance of the present invention tends to be difficult to exhibit. On the other hand, if it exceeds 100 KV, local spark discharge tends to occur, and partial destruction of the porous resin film (i) tends to occur. On the other hand, if it exceeds 100 KV, a current flowing from the surface of the porous resin film (i) through the end face to the ground electrode tends to be generated, and the electretization efficiency tends to be deteriorated.
 エレクトレット化処理は、多孔性樹脂フィルム(i)中に過剰に電荷を注入する場合があり、この場合は処理後のエレクトレット化フィルム(ii)から放電現象が起こり、後のプロセスで不都合を来す場合がある。そのためエレクトレット化フィルム(ii)はエレクトレット化処理後に、余剰電荷の除電処理を行うことも可能である。除電処理を行なうことによりエレクトレット化処理により過剰に与えられた電荷を除去して放電現象の防止が可能となる。係る除電処理としては、電圧印加式除電器(イオナイザ)や自己放電式除電器など公知の除電器を用いることができる。これら一般的な除電器は表面の電荷の除去はできるが、コア層(A)内部、特に空孔内に蓄積した電荷まで除去することはない。したがって除電処理によりエレクトレット化フィルム(ii)の性能が大きく低下するような影響は与えない。 In the electretization treatment, an excessive charge may be injected into the porous resin film (i). In this case, a discharge phenomenon occurs from the treated electret film (ii), resulting in inconvenience in the subsequent process. There is a case. Therefore, the electret film (ii) can be subjected to a charge removal process for surplus charges after the electret process. By performing the charge removal process, it is possible to remove the charge applied excessively by the electret process and prevent the discharge phenomenon. As the charge removal process, a known charge remover such as a voltage application type charge remover (ionizer) or a self-discharge charge remover can be used. These general static eliminators can remove the charge on the surface, but do not remove the charge accumulated in the core layer (A), particularly in the vacancies. Therefore, there is no influence that the performance of the electret film (ii) is greatly reduced by the charge removal treatment.
 エレクトレット化処理は、多孔性樹脂フィルム(i)に用いる主な熱可塑性樹脂のガラス転移点温度以上から結晶部の融点以下の温度で行うことが望ましい。ガラス転移点以上であれば熱可塑性樹脂の非晶質部分の分子運動が活発であり、与えられた電荷に適した分子配列をなすため、効率が良いエレクトレット化処理が可能である。一方、融点を超えてしまうと多孔性樹脂フィルム(i)がその構造を維持できなくなってしまうため、本発明の所期の性能を得られない。 The electretization treatment is desirably performed at a temperature not lower than the glass transition temperature of the main thermoplastic resin used for the porous resin film (i) and not higher than the melting point of the crystal part. If the glass transition point or higher, the molecular motion of the amorphous portion of the thermoplastic resin is active, and a molecular arrangement suitable for a given charge is formed, so that an efficient electret treatment is possible. On the other hand, if the melting point is exceeded, the porous resin film (i) cannot maintain its structure, and thus the desired performance of the present invention cannot be obtained.
[誘電体フィルム(F)]
 本発明の導電層を備えたエレクトレット(iii)は、エレクトレット化フィルム(ii)の少なくとも片方の面に誘電体フィルム(F)を、接着剤層(D)を介して積層することにより得られる。係る誘電体フィルム(F)は熱可塑性樹脂からなる延伸フィルムや無延伸フィルムを用いることが出来る。
 誘電体フィルム(F)に用いる熱可塑性樹脂の種類は特に制限されない。例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、プロピレン系樹脂、ポリメチル-1-ペンテン等のポリオレフィン系樹脂、エチレン・酢酸ビニル共重合体、エチレン・アクリル酸共重合体、マレイン酸変性ポリエチレン、マレイン酸変性ポリプロピレン等の官能基含有ポリオレフィン系樹脂、ナイロン-6、ナイロン-6,6等のポリアミド系樹脂、ポリエチレンテレフタレートやその共重合体、ポリブチレンテレフタレート、脂肪族ポリエステル等の熱可塑性ポリエステル系樹脂、ポリカーボネート、アタクティックポリスチレン、シンジオタクティックポリスチレン等を使用することができる。
 誘電体フィルム(F)の膜厚は、0.1~100μmが好ましく、0.5~70μmがより好ましく、1~50μmが更に好ましい。膜厚が0.1μm未満では、厚みが薄すぎて積層する際にシワが発生しやすく、導電層(E)に欠陥が発生し易いものとなってしまう。一方100μmを超えてしまうと、誘電体フィルムを介してエレクトレット化フィルム(ii)まで信号が届かないか、或いは、エレクトレット化フィルム(ii)に音や振動が伝わりづらくなり電気・電子入出力装置に使用した場合の性能が劣るものとなる。
[Dielectric film (F)]
The electret (iii) provided with the conductive layer of the present invention is obtained by laminating the dielectric film (F) on at least one surface of the electret film (ii) via the adhesive layer (D). As the dielectric film (F), a stretched film or an unstretched film made of a thermoplastic resin can be used.
The type of thermoplastic resin used for the dielectric film (F) is not particularly limited. For example, high density polyethylene, medium density polyethylene, low density polyethylene, propylene resin, polyolefin resin such as polymethyl-1-pentene, ethylene / vinyl acetate copolymer, ethylene / acrylic acid copolymer, maleic acid modified polyethylene, Functional group-containing polyolefin resins such as maleic acid-modified polypropylene, polyamide resins such as nylon-6 and nylon-6,6, polyethylene terephthalate and copolymers thereof, thermoplastic polyester resins such as polybutylene terephthalate and aliphatic polyester Polycarbonate, atactic polystyrene, syndiotactic polystyrene and the like can be used.
The film thickness of the dielectric film (F) is preferably from 0.1 to 100 μm, more preferably from 0.5 to 70 μm, still more preferably from 1 to 50 μm. If the film thickness is less than 0.1 μm, the thickness is too thin and wrinkles are likely to occur when stacking, and defects are likely to occur in the conductive layer (E). On the other hand, if it exceeds 100 μm, the signal does not reach the electret film (ii) through the dielectric film, or it is difficult for sound and vibration to be transmitted to the electret film (ii). When used, the performance is inferior.
[導電層(E)]
 誘電体フィルム(F)は片方の面に導電層(E)を備えていることが必要である。誘電体フィルム(F)に導電層(E)を設ける方法としては、導電性塗料の塗工や金属の蒸着などが挙げられる。
 導電性塗料の具体的な例としては、金、銀、白金、銅、ケイ素などの金属粒子、スズドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)、アルミニウムドープ酸化亜鉛などの導電性酸化金属粒子やカーボン粒子をアクリル系樹脂、ウレタン系樹脂、エーテル系樹脂、エステル系樹脂、エポキシ系樹脂などのバインダー成分の溶液及び/又は分散液に混合したものや、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性樹脂の溶液及び/又は分散液などが挙げられる。導電性塗料の塗工は公知の塗工装置により支持体上に塗膜を形成し乾燥することにより形成することができる。塗工装置の具体的な例としては、ダイコーター、バーコーター、コンマコーター、リップコーター、ロールコーター、カーテンコーター、グラビアコーター、スプレーコーター、ブレードコーター、リバースコーター、エアーナイフコーター等が挙げられる。
 金属蒸着膜の具体的な例としては、アルミニウム、亜鉛、金、銀、白金、ニッケルなどの金属を減圧下で気化して直接誘電体フィルム(F)の表面に付着させ薄膜を形成すること、または上記金属を減圧下で気化して一旦転写フィルムの表面に付着させ薄膜を形成し、次いで誘電体フィルム(F)の表面に転写させること等が挙げられる。
 導電層(E)の膜厚は0.01~10μmが好ましく、0.03~7μmがより好ましく、0.05~5μmが更に好ましい。膜厚が0.01μm未満では、導電層に信号伝達性能にムラが発性し易くなってしまう傾向がある。一方、10μmを超えてしまうと導電層の重量が重くなり音や振動が伝わりづらくなり電気・電子入出力装置に使用した場合の性能が劣るものとなる。
[Conductive layer (E)]
The dielectric film (F) needs to have a conductive layer (E) on one side. Examples of the method for providing the conductive layer (E) on the dielectric film (F) include application of a conductive paint and vapor deposition of metal.
Specific examples of the conductive paint include metal particles such as gold, silver, platinum, copper, and silicon, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum dope. Conductive metal oxide particles such as zinc oxide and carbon particles mixed with a solution and / or dispersion of a binder component such as acrylic resin, urethane resin, ether resin, ester resin, epoxy resin, or polyaniline , Solutions and / or dispersions of conductive resins such as polypyrrole and polythiophene. The conductive coating can be formed by forming a coating film on a support with a known coating apparatus and drying it. Specific examples of the coating apparatus include a die coater, a bar coater, a comma coater, a lip coater, a roll coater, a curtain coater, a gravure coater, a spray coater, a blade coater, a reverse coater, and an air knife coater.
As a specific example of the metal vapor deposition film, a thin film is formed by vaporizing a metal such as aluminum, zinc, gold, silver, platinum, nickel under reduced pressure and directly adhering to the surface of the dielectric film (F), Or the said metal is vaporized under reduced pressure, once adheres to the surface of a transfer film, a thin film is formed, and it is made to transfer on the surface of a dielectric film (F) etc. next.
The film thickness of the conductive layer (E) is preferably from 0.01 to 10 μm, more preferably from 0.03 to 7 μm, still more preferably from 0.05 to 5 μm. If the film thickness is less than 0.01 μm, the conductive layer tends to be uneven in signal transmission performance. On the other hand, if the thickness exceeds 10 μm, the conductive layer becomes heavy and it becomes difficult to transmit sound and vibration, resulting in poor performance when used in an electric / electronic input / output device.
[接着剤層(D)]
 本発明の導電層を備えたエレクトレット(iii)は、エレクトレット化フィルム(ii)の少なくとも片方の面に誘電体フィルム(F)を、接着剤層(D)を介して積層することにより得られる。
 エレクトレット化フィルム(ii)へ導電層(E)を設けた誘電体フィルム(F)を積層する際には、導電層(E)が最外層となるように積層しても良く、導電層(E)と接着剤層(D)が接するように積層しても良い。一般には積層された誘電体フィルム(F)に設けた導電層(E)が最外層となるように(エレクトレット化フィルム(ii)とは反対側を向く様に)積層することが好ましい。導電層(E)がエレクトレット化フィルム(ii)を向く様に設置してしまうと、電気信号はより拾いやすくなるものの、導電層(E)に信号伝達用のケーブルやコネクタを設置することが難しくなってしまう。
 積層は、エレクトレット化フィルム(ii)または誘電体フィルム(F)上に溶剤系接着剤、水分散型接着剤あるいはホットメルト型接着剤等の接着剤を、塗工、散布、溶融押出ラミネート等の手法により接着剤層として設け、これを介してラミネート、または熱融着性フィルムや溶融押出フィルムを用いた溶融ラミネート等の通常の手法により行うことができる。これら接着剤層は通常、まずは誘電体フィルム(F)上に設けた方が、エレクトレット化フィルム(ii)への熱履歴が少なくなり好ましい。
[Adhesive layer (D)]
The electret (iii) provided with the conductive layer of the present invention is obtained by laminating the dielectric film (F) on at least one surface of the electret film (ii) via the adhesive layer (D).
When laminating the dielectric film (F) provided with the conductive layer (E) on the electret film (ii), the dielectric layer (E) may be laminated so that the conductive layer (E) becomes the outermost layer. And the adhesive layer (D) may be laminated. In general, it is preferable to laminate so that the conductive layer (E) provided on the laminated dielectric film (F) is the outermost layer (facing the side opposite to the electret film (ii)). If the conductive layer (E) is installed so as to face the electret film (ii), it becomes easier to pick up electrical signals, but it is difficult to install a signal transmission cable or connector on the conductive layer (E). turn into.
Lamination is performed by applying an adhesive such as a solvent-based adhesive, a water-dispersed adhesive, or a hot-melt adhesive on the electret film (ii) or the dielectric film (F). The adhesive layer can be provided by a technique, and the lamination can be performed through the adhesive layer, or a usual technique such as a melt lamination using a heat-fusible film or a melt-extruded film can be used. These adhesive layers are usually preferably provided on the dielectric film (F) first because the heat history on the electret film (ii) is reduced.
 溶剤系接着剤、水分散型接着剤としては、例えば、アクリル系樹脂、ウレタン系樹脂、エーテル系樹脂、エステル系樹脂、エポキシ系樹脂、ゴム系樹脂、シリコーン系樹脂、ABS系樹脂等からなる樹脂成分を、従来公知の溶剤を用いてその相の中に溶解、分散、乳濁分散、希釈して、流動性があり塗工の可能な、溶液型やエマルジョン型の様態の液状の接着剤が代表的である。
 これら接着剤の塗工は、ダイコーター、バーコーター、コンマコーター、リップコーター、ロールコーター、グラビアコーター、スプレーコーター、ブレードコーター、リバースコーター、エアーナイフコーター等により行われる。その後必要によりスムージングを行い、乾燥工程を経て、接着剤層が形成される。
 これらの接着剤は、一般的には秤量が0.5~25g/mとなるように塗工されて接着剤層は設けられる。
 接着剤を使用する場合は、誘電体フィルム(F)の導電層(E)が無い面に該接着剤を塗工し、次いで、エレクトレット化フィルム(ii)を重ね、圧着ロールで加圧接着すればよい。
Examples of solvent-based adhesives and water-dispersed adhesives include resins made of acrylic resins, urethane resins, ether resins, ester resins, epoxy resins, rubber resins, silicone resins, ABS resins, etc. The components are dissolved, dispersed, emulsion-dispersed and diluted in a phase using a conventionally known solvent to obtain a liquid adhesive that is fluid and can be applied in the form of a solution type or an emulsion type. Representative.
These adhesives are applied by a die coater, bar coater, comma coater, lip coater, roll coater, gravure coater, spray coater, blade coater, reverse coater, air knife coater, or the like. Thereafter, smoothing is performed as necessary, and an adhesive layer is formed through a drying step.
These adhesives are generally applied so that the basis weight is 0.5 to 25 g / m 2 and an adhesive layer is provided.
When using an adhesive, apply the adhesive on the surface of the dielectric film (F) that does not have the conductive layer (E), then stack the electret film (ii), and apply pressure with a pressure roll. That's fine.
 ホットメルト型接着剤としては、ポリエチレン、エチレン・酢酸ビニル共重合体等のポリオレフィン系樹脂、ポリアミド系樹脂、ポリブチラール系樹脂、ウレタン系樹脂などを例示できる。
 ホットメルト型接着剤を使用する場合は、誘電体フィルム(F)の導電層(E)が無い面にビート塗工、カーテン塗工、スロット塗工等の方法で塗工するか、ダイより溶融フィルム状に押し出してラミネートし、次いで、エレクトレット化フィルム(ii)を重ね、圧着ロールで加圧接着すればよい。
 エレクトレット化フィルム(ii)と誘電体フィルム(F)の積層は、多孔性樹脂フィルム(i)のエレクトレット化処理の前でも良いし、後でもよいが、両面に誘電体フィルム(F)を設ける場合は、少なくとも片面はエレクトレット化処理を実施した後でなければならない。両面に誘電体フィルム(F)を積層してからエレクトレット化処理を実施しても、導電層(E)を通じて電荷が逃げてしまうために多孔性樹脂フィルム(i)内部まで電荷が到達することができず、本発明の所期の性能を達成できない。
 本発明の導電層を備えたエレクトレット(iii)の一態様を、図10に示す。
Examples of the hot-melt adhesive include polyolefin resins such as polyethylene and ethylene / vinyl acetate copolymers, polyamide resins, polybutyral resins, urethane resins, and the like.
When using a hot-melt adhesive, apply it to the surface of the dielectric film (F) that does not have the conductive layer (E) by methods such as beat coating, curtain coating, and slot coating, or melt from the die. The film may be extruded and laminated, then the electret film (ii) may be stacked and pressure bonded with a pressure roll.
When the electret film (ii) and the dielectric film (F) are laminated before or after the electret treatment of the porous resin film (i), the dielectric film (F) is provided on both sides. At least one side must be after performing the electretization process. Even if the electretization process is performed after the dielectric film (F) is laminated on both sides, the charge may escape through the conductive layer (E), so that the charge reaches the inside of the porous resin film (i). The desired performance of the present invention cannot be achieved.
One mode of the electret (iii) provided with the conductive layer of the present invention is shown in FIG.
 以下に実施例、比較例及び試験例を用いて、本発明を更に具体的に説明する。以下に示す材料、使用量、割合、操作等は、本発明の精神から逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例に制限されるものではない。なお、以下に記載される%は、特記しない限り重量%である。
 本発明のエレクトレット化フィルム(ii)の製造例、実施例及び比較例に使用する材料を表1にまとめて示す。
Hereinafter, the present invention will be described more specifically with reference to Examples, Comparative Examples, and Test Examples. The materials, amounts used, ratios, operations, and the like shown below can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below. The% described below is% by weight unless otherwise specified.
Table 1 summarizes the materials used in the production examples, examples and comparative examples of the electret film (ii) of the present invention.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [製造例1]
 熱可塑性樹脂組成物aを230℃に設定した押出機にて混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを冷却装置により冷却して無延伸シートを得た。この無延伸シートを135℃に加熱し、周速差の異なる多数のロール群を用いて縦方向に5倍延伸して5倍延伸フィルムを得た。次いで、可塑性樹脂組成物cを250℃に設定した押出機で混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを上記で調整した5倍延伸フィルムの表面及び裏面それぞれに積層し、3層構造の積層フィルムを得た。次いで、この積層フィルムを60℃まで冷却し、テンターオーブンを用いて再び約145℃に加熱し、横方向に8倍延伸した後、これを160℃に調整したオーブンによりアニーリング処理を行い、60℃まで冷却した後、耳部をスリットして、3層構造(c/a/c=10/40/10μm、延伸層構成(1軸/2軸/1軸))で厚み60μm、空孔率26%の多孔性樹脂フィルムを得た。
[Production Example 1]
After kneading the thermoplastic resin composition a with an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 135 ° C. and stretched 5 times in the machine direction using a number of roll groups having different peripheral speed differences to obtain a 5 times stretched film. Subsequently, after kneading the plastic resin composition c with an extruder set at 250 ° C., the plastic resin composition c is supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, and this is the surface and back surface of the 5-fold stretched film adjusted as described above Each was laminated to obtain a laminated film having a three-layer structure. Next, this laminated film was cooled to 60 ° C., heated again to about 145 ° C. using a tenter oven, stretched 8 times in the transverse direction, and then subjected to an annealing treatment in an oven adjusted to 160 ° C. After cooling to the end, the ears are slit and the thickness is 60 μm and the porosity is 26 with a three-layer structure (c / a / c = 10/40/10 μm, stretched layer configuration (one axis / 2 axes / 1 axis)). % Porous resin film was obtained.
 [製造例2]
 熱可塑性樹脂組成物bを230℃に設定した押出機にて混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを冷却装置により冷却して無延伸シートを得た。この無延伸シートを150℃に加熱し、周速差の異なる多数のロール群を用いて縦方向に4倍延伸して4倍延伸フィルムを得た。次いで、可塑性樹脂組成物dを250℃に設定した押出機で混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを上記で調整した4倍延伸フィルムの表面及び裏面それぞれに積層し、3層構造の積層フィルムを得た。次いで、この積層フィルムを60℃まで冷却し、テンターオーブンを用いて再び約150℃に加熱し、横方向に7.5倍延伸した後、これを160℃に調整したオーブンによりアニーリング処理を行い、60℃まで冷却した後、耳部をスリットして、3層構造(d/b/d=20/60/20μm、延伸層構成(1軸/2軸/1軸))で厚み100μm、空孔率38%の多孔性樹脂フィルムを得た。
[Production Example 2]
After kneading the thermoplastic resin composition b in an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 150 ° C. and stretched 4 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4 times stretched film. Subsequently, after kneading the plastic resin composition d with an extruder set at 250 ° C., the plastic resin composition d was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape. Each of these layers was laminated to obtain a laminated film having a three-layer structure. Next, this laminated film is cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 7.5 times in the transverse direction, and then subjected to an annealing treatment in an oven adjusted to 160 ° C. After cooling to 60 ° C., the ears are slit and a three-layer structure (d / b / d = 20/60/20 μm, stretched layer configuration (1 axis / 2 axes / 1 axis)) with a thickness of 100 μm, pores A porous resin film having a rate of 38% was obtained.
 [製造例3]
 熱可塑性樹脂組成物fを220℃に設定した押出機にて混練した後、240℃に設定した押出ダイスに供給してシート状に押し出し、これを冷却装置により冷却して無延伸シートを得た。この無延伸シートを145℃に加熱し、周速差の異なる多数のロール群を用いて縦方向に4倍延伸して4倍延伸フィルムを得た。次いで、可塑性樹脂組成物gを230℃に設定した押出機で混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを上記で調整した4倍延伸フィルムの表面及び裏面それぞれに積層し、3層構造の積層フィルムを得た。次いで、この積層フィルムを60℃まで冷却し、テンターオーブンを用いて再び約145℃に加熱し、横方向に7倍延伸した後、これを160℃に調整したオーブンによりアニーリング処理を行い、60℃まで冷却した後、耳部をスリットして、3層構造(g/f/g=15/50/15μm、延伸層構成(1軸/2軸/1軸))で厚み80μm、空孔率24%の多孔性樹脂フィルムを得た。
[Production Example 3]
After kneading the thermoplastic resin composition f with an extruder set at 220 ° C., the thermoplastic resin composition f was supplied to an extrusion die set at 240 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 145 ° C., and stretched 4 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4 times stretched film. Next, after kneading the plastic resin composition g with an extruder set at 230 ° C., the plastic resin composition g was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape. Each was laminated to obtain a laminated film having a three-layer structure. Next, the laminated film was cooled to 60 ° C., heated again to about 145 ° C. using a tenter oven, stretched 7 times in the transverse direction, and then subjected to an annealing treatment in an oven adjusted to 160 ° C. After cooling to a point, the ears are slit and the thickness is 80 μm and the porosity is 24 with a three-layer structure (g / f / g = 15/50/15 μm, stretched layer configuration (one axis / 2 axes / 1 axis)). % Porous resin film was obtained.
 [製造例4]
 熱可塑性樹脂組成物bを230℃に設定した押出機にて混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを冷却装置により冷却して無延伸シートを得た。この無延伸シートを150℃に加熱し、周速差の異なる多数のロール群を用いて縦方向に4.5倍延伸して4.5倍延伸フィルムを得た。次いで、可塑性樹脂組成物dを250℃に設定した押出機で混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを上記で調整した4.5倍延伸フィルムの表面及び裏面それぞれに積層し、3層構造の積層フィルムを得た。次いで、この積層フィルムを60℃まで冷却し、テンターオーブンを用いて再び約145℃に加熱し、横方向に7倍延伸した後、これを160℃に調整したオーブンによりアニーリング処理を行い、60℃まで冷却した後、耳部をスリットして、3層構造(d/b/d=10/100/10μm、延伸層構成(1軸/2軸/1軸))で厚み120μm、空孔率45%の多孔性樹脂フィルムを得た。
[Production Example 4]
After kneading the thermoplastic resin composition b in an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 150 ° C. and stretched 4.5 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4.5 times stretched film. Next, after kneading the plastic resin composition d with an extruder set at 250 ° C., the plastic resin composition d was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape. And a laminated film having a three-layer structure. Next, this laminated film was cooled to 60 ° C., heated again to about 145 ° C. using a tenter oven, stretched seven times in the transverse direction, and then subjected to an annealing treatment in an oven adjusted to 160 ° C. After cooling to the end, the ears are slit, the thickness is 120 μm, and the porosity is 45 in a three-layer structure (d / b / d = 10/100/10 μm, stretched layer configuration (one axis / 2 axes / 1 axis)). % Porous resin film was obtained.
 [製造例5]
 熱可塑性樹脂組成物bを230℃に設定した押出機にて混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを冷却装置により冷却して無延伸シートを得た。この無延伸シートを150℃に加熱し、周速差の異なる多数のロール群を用いて縦方向に4倍延伸して4倍延伸フィルムを得た。次いで、可塑性樹脂組成物dを250℃に設定した押出機で混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを上記で調整した4倍延伸フィルムの片面に積層し、2層構造の積層フィルムを得た。次いで、この積層フィルムを60℃まで冷却し、テンターオーブンを用いて再び約150℃に加熱し、横方向に8倍延伸した後、これを160℃に調整したオーブンによりアニーリング処理を行い、60℃まで冷却した後、耳部をスリットして、2層構造(d/b=20/60μm、延伸層構成(1軸/2軸))で厚み80μm、空孔率41%の多孔性樹脂フィルムを得た。
[Production Example 5]
After kneading the thermoplastic resin composition b in an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 150 ° C. and stretched 4 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4 times stretched film. Next, the plastic resin composition d was kneaded with an extruder set at 250 ° C., then supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was laminated on one side of the 4 × stretched film adjusted as described above. Thus, a laminated film having a two-layer structure was obtained. Next, the laminated film was cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 8 times in the transverse direction, and then subjected to an annealing treatment in an oven adjusted to 160 ° C. After cooling to the end, the ear part is slit, and a porous resin film having a two-layer structure (d / b = 20/60 μm, stretched layer structure (one axis / 2 axes)) with a thickness of 80 μm and a porosity of 41% is obtained. Obtained.
 [製造例6]
 熱可塑性樹脂組成物aと熱可塑性樹脂組成物eを230℃に設定したそれぞれ個別の押出機にて混練した後、250℃に設定したフィードブロック式多層ダイスに供給しダイス内でe/a/eの順になる様に積層してシート状に押し出し、これを冷却装置により冷却して3層構造の無延伸シートを得た。この無延伸シートを135℃に加熱して縦方向に5倍延伸して5倍延伸フィルムを得た。次いで、この5倍延伸フィルムを60℃まで冷却し、テンターオーブンを用いて再び約155℃に加熱し、横方向に8倍延伸した後、これを160℃に調整したオーブンによりアニーリング処理を行い、60℃まで冷却した後、耳部をスリットして、3層構造(e/a/e=1/40/1μm、延伸層構成(2軸/2軸/2軸))で厚み42μm、空孔率23%の多孔性樹脂フィルムを得た。
[Production Example 6]
The thermoplastic resin composition a and the thermoplastic resin composition e are kneaded in individual extruders set at 230 ° C., then supplied to a feed block type multilayer die set at 250 ° C., and e / a / The layers were laminated in the order of e and extruded into a sheet shape, which was cooled by a cooling device to obtain a three-layer unstretched sheet. This unstretched sheet was heated to 135 ° C. and stretched 5 times in the longitudinal direction to obtain a 5-fold stretched film. Next, this 5-fold stretched film is cooled to 60 ° C., heated again to about 155 ° C. using a tenter oven, stretched 8 times in the transverse direction, and then subjected to an annealing treatment in an oven adjusted to 160 ° C., After cooling to 60 ° C., the ears are slit, and a three-layer structure (e / a / e = 1/40/1 μm, stretched layer configuration (two axes / 2 axes / 2 axes)) with a thickness of 42 μm, pores A porous resin film having a rate of 23% was obtained.
 [製造例7]
 熱可塑性樹脂組成物bを230℃に設定した押出機にて混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを冷却装置により冷却して無延伸シートを得た。この無延伸シートを150℃に加熱し、周速差の異なる多数のロール群を用いて縦方向に4.5倍延伸して4.5倍延伸フィルムを得た。次いで、この4.5倍延伸フィルムを60℃まで冷却し、テンターオーブンを用いて再び約150℃に加熱し、横方向に7.5倍延伸した後、これを160℃に調整したオーブンによりアニーリング処理を行い、60℃まで冷却した後、耳部をスリットして、単層構造で厚み60μm、空孔率44%の多孔性樹脂フィルムを得た。
 得られた多孔性樹脂フィルムの構成を、以下の表2に示す。
[Production Example 7]
After kneading the thermoplastic resin composition b in an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 150 ° C. and stretched 4.5 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4.5 times stretched film. Next, this 4.5 times stretched film was cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 7.5 times in the transverse direction, and then annealed in an oven adjusted to 160 ° C. After the treatment and cooling to 60 ° C., the ears were slit to obtain a porous resin film having a single layer structure with a thickness of 60 μm and a porosity of 44%.
The composition of the obtained porous resin film is shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [実施例1~6、比較例3]
 製造例1~5で得た多孔性樹脂フィルムの両面に、コロナ表面処理を施し、表1に記載したアンカー剤を組み合わせ及び乾燥後の塗工量(坪量)が表3に記載の通りとなる様に塗工し、80℃のオーブンにて30分間乾燥し、アンカーコート層(C)を設けて、多孔性樹脂フィルム(i)を得た。これに針間距離10mm、主電極-アース電極間距離10mmに設定した図2に記載のエレクトレット化装置を使用し、下記内容の試験を実施した。最終的には表3に記載の印加電圧にて直流高電圧放電処理を行い、エレクトレット化フィルム(ii)を得た。
[Examples 1 to 6, Comparative Example 3]
Corona surface treatment was applied to both surfaces of the porous resin films obtained in Production Examples 1 to 5, the anchor agents listed in Table 1 were combined, and the coating amount (basis weight) after drying was as shown in Table 3 It was coated as such, and dried in an oven at 80 ° C. for 30 minutes, and an anchor coat layer (C) was provided to obtain a porous resin film (i). The electretization apparatus shown in FIG. 2 set to a distance between the needles of 10 mm and a distance between the main electrode and the ground electrode of 10 mm was used, and the following tests were conducted. Finally, a direct current high voltage discharge treatment was performed at the applied voltage shown in Table 3 to obtain an electret film (ii).
 [比較例1,2]
 製造例6、7で得た多孔性樹脂フィルムをそのまま用いて、多孔性樹脂フィルム(i)とした。これに針間距離10mm、主電極-アース電極間距離10mmに設定した図2に記載のエレクトレット化装置を使用し、下記内容の試験を実施した。最終的には表3に記載の印加電圧にて直流高電圧放電処理を行い、エレクトレット化フィルム(ii)を得た。
 [試験例]
 (火花放電電圧試験)
 図2に記載のエレクトレット化装置のアース電極7盤上に各実施例及び各比較例で得た多孔性樹脂フィルム(i)を置き、印加電圧を1KVから少しずつ上昇してゆき、局所火花放電により多孔性樹脂フィルム(i)が破壊される電圧を測定した。結果を表3に示す。
[Comparative Examples 1 and 2]
The porous resin film obtained in Production Examples 6 and 7 was used as it was to obtain a porous resin film (i). The electretization apparatus shown in FIG. 2 set to a distance between the needles of 10 mm and a distance between the main electrode and the ground electrode of 10 mm was used, and the following tests were conducted. Finally, a direct current high voltage discharge treatment was performed at the applied voltage shown in Table 3 to obtain an electret film (ii).
[Test example]
(Spark discharge voltage test)
The porous resin film (i) obtained in each example and each comparative example is placed on the 7 ground electrodes of the electretization apparatus shown in FIG. 2, and the applied voltage is gradually increased from 1 KV to cause local spark discharge. Was used to measure the voltage at which the porous resin film (i) was broken. The results are shown in Table 3.
 (帯電電位試験)
 アース電極7盤上に各実施例及び各比較例で得た多孔性樹脂フィルム(i)を置き、上記の火花放電試験にて局所火花放電が発生した電圧よりも1KV低い印加電圧でエレクトレット化処理を施した。処理後の多孔性樹脂フィルム(i)表面(処理面)を一度アルミ箔(住軽アルミ箔(株)製、商品名:マイホイル)で覆い表面に残留した余剰電荷を除去し、更にアルミ箔を引き剥がした後、アース電極7盤上に保持したまま温度25℃、相対湿度60%の恒温室に移動し、同環境下にて各エレクトレット化フィルム(ii)の表面電位を、表面電位計((株)キーエンス製、商品名:高精度静電気センサーSK)を使用して処理直後及び30日後に測定し、以下の基準で評価した。評価結果及び測定された表面電位を表3に示す。
   ○ : 良好・・・30日後の表面電位が200V以上
   × : 不良・・・30日後の表面電位が200V未満
 表3に示す結果の通り、本発明のエレクトレット化フィルム(ii)は、より多くの電荷を長期間に渡り保持することが確認された。
(Charging potential test)
The porous resin film (i) obtained in each example and each comparative example is placed on the ground electrode 7 board, and electretization is performed at an applied voltage 1 KV lower than the voltage at which local spark discharge is generated in the above spark discharge test. Was given. The treated porous resin film (i) surface (treated surface) is once covered with aluminum foil (product name: Myfoil), the surplus charge remaining on the surface is removed, and the aluminum foil is further removed. After peeling off, move to a constant temperature room with a temperature of 25 ° C. and a relative humidity of 60% while being held on the 7 ground electrodes, and the surface potential of each electret film (ii) in the same environment is measured with a surface potential meter ( Measurement was performed immediately after the treatment and after 30 days using a product of Keyence Co., Ltd. (trade name: high-accuracy electrostatic sensor SK), and evaluated according to the following criteria. The evaluation results and the measured surface potential are shown in Table 3.
○: Good: the surface potential after 30 days is 200 V or more X: Bad: the surface potential after 30 days is less than 200 V As shown in Table 3, the electret film (ii) of the present invention has more It was confirmed that the charge was retained for a long period of time.
 (接着剤密着性)
 ポリウレタン系接着剤(東洋インキ製造製、商品名:トモフレックスTM319)と硬化剤(東洋インキ製造製、商品名:トモフレックスCAT-11B)を1:1の割合で混合し、酢酸エチルで希釈して固形分濃度20重量%の接着性塗料を作成した。実施例1~3及び比較例1~3で得たエレクトレット化フィルム(ii)の片面に接着性塗料を乾燥後の塗工量が2g/m2 となる様に塗工して、40℃のオーブンで60秒間乾燥後、接着剤が内側になる様に2つ折りにして貼りあわせて接着剤密着性評価用のサンプルを作成した。作成したサンプルを40℃に設定したオーブンで3日間エージングした後、幅10mm、長さ150mmに切り取り、引張圧縮試験機(島津製作所製、オートグラフ;AGS-D)を使用して、接着したフィルム(ii)間の剥離接着強さを、JIS-K-6854-3に準拠して引張速度300mm/分、T字剥離にて測定し、以下の基準で評価した。評価結果及び測定された剥離接着強さを表3に示す。
   ○ : 良好・・・剥離強度150g/cm以上
   × : 不良・・・剥離強度150g/cm未満
(Adhesive adhesion)
A polyurethane adhesive (manufactured by Toyo Ink, trade name: Tomoflex TM319) and a curing agent (manufactured by Toyo Ink, trade name: Tomoflex CAT-11B) are mixed at a ratio of 1: 1 and diluted with ethyl acetate. Thus, an adhesive paint having a solid content of 20% by weight was prepared. An adhesive paint was applied to one side of the electret films (ii) obtained in Examples 1 to 3 and Comparative Examples 1 to 3 so that the coating amount after drying was 2 g / m 2 , After drying in an oven for 60 seconds, the adhesive was folded in two so that the adhesive was on the inside, and a sample for adhesive adhesion evaluation was prepared. The prepared sample was aged in an oven set at 40 ° C. for 3 days, then cut to a width of 10 mm and a length of 150 mm, and adhered using a tensile / compression tester (manufactured by Shimadzu Corp., Autograph; AGS-D) The peel adhesion strength between (ii) was measured by T-peeling at a tensile speed of 300 mm / min according to JIS-K-6854-3, and evaluated according to the following criteria. Table 3 shows the evaluation results and the measured peel adhesion strength.
○: Good: Peel strength of 150 g / cm or more X: Poor: Peel strength of less than 150 g / cm
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(加圧・加熱処理されるエレクトレット化フィルム(ii)の実施例)
 本発明のエレクトレット化フィルム(ii)の製造例、実施例及び比較例に使用する材料を上記表1と、下記表4に示す。
(Example of electret film (ii) subjected to pressure and heat treatment)
The materials used in the production examples, examples, and comparative examples of the electret film (ii) of the present invention are shown in Table 1 and Table 4 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 [製造例11]
 熱可塑性樹脂組成物aを230℃に設定した押出機にて混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを冷却装置により冷却して無延伸シートを得た。この無延伸シートを135℃に加熱し、周速差の異なる多数のロール群を用いて縦方向に5.0倍延伸して5倍延伸フィルムを得た。
 次いで、可塑性樹脂組成物cを250℃に設定した押出機で混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを上で調整した5倍延伸フィルムの表面及び裏面それぞれに積層し、3層構造の積層フィルムを得た。次いで、この積層フィルムを60℃まで冷却し、テンターオーブンを用いて再び約145℃に加熱し、横方向に8倍延伸した後、これを160℃に調整したオーブンによりアニーリング処理を行い、その後60℃に冷却し、耳部をスリットして、3層構造(c/a/c=10/40/10μm、延伸層構成(1軸/2軸/1軸))で厚み60μm、空孔率26%の樹脂フィルムを得た。
[Production Example 11]
After kneading the thermoplastic resin composition a with an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 135 ° C. and stretched 5.0 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 5-fold stretched film.
Next, after kneading the plastic resin composition c with an extruder set at 250 ° C., the mixture was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape. Each was laminated to obtain a laminated film having a three-layer structure. Next, this laminated film is cooled to 60 ° C., heated again to about 145 ° C. using a tenter oven, stretched 8 times in the transverse direction, and then subjected to an annealing treatment in an oven adjusted to 160 ° C. Cooling to 0 ° C., slitting the ears, a three-layer structure (c / a / c = 10/40/10 μm, stretched layer configuration (one axis / 2 axes / 1 axis)), a thickness of 60 μm, a porosity of 26 % Resin film was obtained.
 [製造例12]
 熱可塑性樹脂組成物bを230℃に設定した押出機にて混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを冷却装置により冷却して無延伸シートを得た。この無延伸シートを150℃に加熱し、周速差の異なる多数のロール群を用いて縦方向に4.5倍延伸して4.5倍延伸フィルムを得た。
 次いで、可塑性樹脂組成物dを250℃に設定した押出機で混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを上で調整した4.5倍延伸フィルムの表面及び裏面それぞれに積層し、3層構造の積層フィルムを得た。次いで、この積層フィルムを60℃まで冷却し、テンターオーブンを用いて再び約150℃に加熱し、横方向に7.5倍延伸した後、これを160℃に調整したオーブンによりアニーリング処理を行い、その後60℃に冷却し、耳部をスリットして、3層構造(d/b/d=20/60/20μm、延伸層構成(1軸/2軸/1軸))で厚み100μm、空孔率38%の樹脂フィルムを得た。
[Production Example 12]
After kneading the thermoplastic resin composition b in an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 150 ° C. and stretched 4.5 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4.5 times stretched film.
Next, after kneading the plastic resin composition d with an extruder set at 250 ° C., the plastic resin composition d was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape. And a laminated film having a three-layer structure. Next, this laminated film is cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 7.5 times in the transverse direction, and then subjected to an annealing treatment in an oven adjusted to 160 ° C. Thereafter, it is cooled to 60 ° C., the ears are slit, and a three-layer structure (d / b / d = 20/60/20 μm, stretched layer structure (one axis / 2 axes / 1 axis)) is 100 μm in thickness and has pores A resin film having a rate of 38% was obtained.
 [製造例13]
 熱可塑性樹脂組成物bを230℃に設定した押出機にて混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを冷却装置により冷却して無延伸シートを得た。この無延伸シートを145℃に加熱し、周速差の異なる多数のロール群を用いて縦方向に4倍延伸して4倍延伸フィルムを得た。
 次いで、可塑性樹脂組成物dを250℃に設定した押出機で混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを上で調整した4倍延伸フィルムの表面及び裏面それぞれに積層し、3層構造の積層フィルムを得た。次いで、この積層フィルムを60℃まで冷却し、テンターオーブンを用いて再び約155℃に加熱し、横方向に7倍延伸した後、これを160℃に調整したオーブンによりアニーリング処理を行い、その後60℃まで冷却し、耳部をスリットして、3層構造(d/b/d=10/80/10μm、延伸層構成(1軸/2軸/1軸))で厚み100μm、空孔率39%の樹脂フィルムを得た。
[Production Example 13]
After kneading the thermoplastic resin composition b in an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 145 ° C., and stretched 4 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4 times stretched film.
Next, the plastic resin composition d was kneaded with an extruder set at 250 ° C., then supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape. Each of these layers was laminated to obtain a laminated film having a three-layer structure. Next, this laminated film is cooled to 60 ° C., heated again to about 155 ° C. using a tenter oven, stretched 7 times in the transverse direction, and then subjected to an annealing treatment in an oven adjusted to 160 ° C. After cooling to 0 ° C. and slitting the ear, the thickness is 100 μm and the porosity is 39 in a three-layer structure (d / b / d = 10/80/10 μm, stretched layer configuration (one axis / 2 axes / 1 axis)) % Resin film was obtained.
 [製造例14]
 熱可塑性樹脂組成物aを230℃に設定した押出機にて混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを冷却装置により冷却して無延伸シートを得た。この無延伸シートを145℃に加熱し、周速差の異なる多数のロール群を用いて縦方向に4倍延伸して4倍延伸フィルムを得た。
 次いで、可塑性樹脂組成物aを250℃に設定した押出機で混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを上で調整した4倍延伸フィルムの表面及び裏面それぞれに積層し、3層構造の積層フィルムを得た。次いで、この積層フィルムを60℃まで冷却し、テンターオーブンを用いて再び約150℃に加熱し、横方向に8倍延伸した後、これを160℃に調整したオーブンによりアニーリング処理を行い、その後60℃まで冷却し、耳部をスリットして、3層構造(a/a/a=15/40/15μm、延伸層構成(1軸/2軸/1軸))で厚み70μm、空孔率9%の樹脂フィルムを得た。
[Production Example 14]
After kneading the thermoplastic resin composition a with an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 145 ° C., and stretched 4 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4 times stretched film.
Next, after kneading the plastic resin composition a with an extruder set at 250 ° C., the mixture was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape. Each of these layers was laminated to obtain a laminated film having a three-layer structure. Next, the laminated film is cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 8 times in the transverse direction, and then subjected to an annealing treatment in an oven adjusted to 160 ° C. Cooling to 0 ° C., slitting the ears, a three-layer structure (a / a / a = 15/40/15 μm, stretched layer structure (one axis / 2 axes / 1 axis)), thickness 70 μm, porosity 9 % Resin film was obtained.
 [製造例15]
 熱可塑性樹脂組成物aと熱可塑性樹脂組成物eを、230℃に設定した個別の押出機にて混練した後、それぞれを250℃に設定したフィードブロック式ダイスに供給してダイス内でe/a/eの順になる様に積層してシート状に押し出し、これを冷却装置により冷却して3層構成の無延伸シートを得た。この無延伸シートを135℃に加熱し、周速差の異なる多数のロール群を用いて縦方向に5倍延伸して5倍延伸フィルムを得た。
 次いで、この5倍延伸フィルムを60℃まで冷却し、テンターオーブンを用いて再び約145℃に加熱し、横方向に8倍延伸した後、これを160℃に調整したオーブンによりアニーリング処理を行い、その後60℃に冷却し、次いで耳部をスリットして、3層構造(e/a/e=1/40/1μm、延伸層構成(2軸/2軸/2軸))で厚み42μm、空孔率23%の樹脂フィルムを得た。
[Production Example 15]
The thermoplastic resin composition a and the thermoplastic resin composition e are kneaded in individual extruders set at 230 ° C., then each is supplied to a feed block die set at 250 ° C., and e / The layers were laminated in the order of a / e and extruded into a sheet shape, which was cooled by a cooling device to obtain a non-stretched sheet having a three-layer structure. This unstretched sheet was heated to 135 ° C. and stretched 5 times in the machine direction using a number of roll groups having different peripheral speed differences to obtain a 5 times stretched film.
Next, this 5-fold stretched film is cooled to 60 ° C., heated again to about 145 ° C. using a tenter oven, stretched 8 times in the transverse direction, and then subjected to an annealing treatment in an oven adjusted to 160 ° C., Thereafter, it is cooled to 60 ° C., then the ear is slit, and a three-layer structure (e / a / e = 1/40/1 μm, stretched layer structure (two axes / 2 axes / 2 axes)) is 42 μm in thickness and empty. A resin film having a porosity of 23% was obtained.
 [製造例16]
 熱可塑性樹脂組成物bを、230℃に設定した押出機にて混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを冷却装置により冷却して無延伸シートを得た。この無延伸シートを150℃に加熱し、周速差の異なる多数のロール群を用いて縦方向に4.5倍延伸して4.5倍延伸フィルムを得た。
 次いで、この4.5倍延伸フィルムを60℃まで冷却し、テンターオーブンを用いて再び約150℃に加熱し、横方向に7.5倍延伸した後、これを160℃に調整したオーブンによりアニーリング処理を行い、その後60℃まで冷却し、耳部をスリットして、単層構造(2軸延伸)で厚み60μm、空孔率44%の樹脂フィルムを得た。
 得られた樹脂フィルムの構成を以下の表5に示す。
[Production Example 16]
After kneading the thermoplastic resin composition b with an extruder set at 230 ° C., it is supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which is cooled by a cooling device to obtain an unstretched sheet. It was. This unstretched sheet was heated to 150 ° C. and stretched 4.5 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4.5 times stretched film.
Next, this 4.5 times stretched film was cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 7.5 times in the transverse direction, and then annealed in an oven adjusted to 160 ° C. After the treatment, cooling to 60 ° C. was performed, and the ear portion was slit to obtain a resin film having a single layer structure (biaxial stretching) with a thickness of 60 μm and a porosity of 44%.
The composition of the obtained resin film is shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[実施例11~14、比較例11~13]
 製造例11~16から得た樹脂フィルムの両面に、コロナ表面処理を施し、前記表1と表4に記載のアンカーコート剤を、組み合わせ及び乾燥後の塗工量(坪量)が表6に記載の通りとなる様に塗工し、80℃のオーブンにて30分間乾燥し、アンカーコート層(C)を設けた。
 この樹脂フィルムをA4サイズに切り出し、圧力容器内に入れ、その後容器内に空気を導入して1.0MPaの圧力で8時間加圧し、取り出して直ぐに95℃に設定したオーブン内で30秒間熱処理を実施し、多孔性樹脂フィルム(i)を得た。
 次いで、図2に記載のエレクトレット化装置を用いて、主電極の針間距離10mm、主電極-アース電極間距離10mmに設定したアース電極盤上に上記で得られた多孔性樹脂フィルム(i)を置き、印加電圧を1KVから少しずつ上昇し局所火花放電により多孔性樹脂フィルム(i)が破壊される電圧を測定した。その後、この火花放電電圧よりも1KV低い電圧でエレクトレット処理して、実施例11~14、比較例11~13のエレクトレット化フィルム(ii)を得た。
[Examples 11 to 14, Comparative Examples 11 to 13]
Corona surface treatment was applied to both surfaces of the resin films obtained from Production Examples 11 to 16, and the anchor coating agents described in Table 1 and Table 4 were combined and the coating amount (basis weight) after drying was as shown in Table 6. Coating was performed as described, and drying was performed in an oven at 80 ° C. for 30 minutes to provide an anchor coat layer (C).
This resin film is cut into A4 size, placed in a pressure vessel, air is then introduced into the vessel and pressurized for 8 hours at a pressure of 1.0 MPa, taken out and immediately heat treated in an oven set at 95 ° C. for 30 seconds. It implemented and obtained the porous resin film (i).
Next, using the electretization apparatus shown in FIG. 2, the porous resin film (i) obtained above on the ground electrode board set to have a distance between the main electrodes of 10 mm and a distance between the main electrode and the ground electrode of 10 mm. The applied voltage was gradually increased from 1 KV, and the voltage at which the porous resin film (i) was destroyed by local spark discharge was measured. Thereafter, electret treatment was performed at a voltage 1 KV lower than the spark discharge voltage to obtain electret films (ii) of Examples 11 to 14 and Comparative Examples 11 to 13.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 [試験例]
 実施例11~14、比較例11~13で得たエレクトレット化フィルム(ii)の電気・電子入出力装置用材料としての適性を評価するため、フィルム(ii)の表裏両面に、表4に記載の導電性塗料I、IIを、乾燥後の塗工量が表7に記載の塗工量となる様に塗工し、常温(23℃)にて24時間放置し乾燥して導電層(E)を設けた。更にこのフィルムを10cm×10cmのサイズに切り出し、導電性テープ(住友スリーエム(株)製、商品名:AL-25BT)を使用して表裏面にリード線を張付けて導電層(E)付きエレクトレット化フィルム(ii)を作成した。本試験ではエレクトレット化フィルム(ii)への加熱を避けるために常温で長時間乾燥させて導電層(E)を設けたが、量産性の観点では、塗工は不利であり、予め導電層(E)を設けた導電体フィルム(F)を貼合した方が容易に導電層を備えたエレクトレット(iii)が得られ好ましい。
[Test example]
In order to evaluate the suitability of the electret films (ii) obtained in Examples 11 to 14 and Comparative Examples 11 to 13 as materials for electric / electronic input / output devices, it is shown in Table 4 on both front and back surfaces of the film (ii). The conductive paints I and II were coated so that the coating amount after drying would be the coating amount shown in Table 7, and allowed to stand at room temperature (23 ° C.) for 24 hours to dry, and then the conductive layer (E ). The film was cut to a size of 10 cm x 10 cm, and lead wires were attached to the front and back surfaces using conductive tape (manufactured by Sumitomo 3M Co., Ltd., product name: AL-25BT) to form an electret with a conductive layer (E). Film (ii) was prepared. In this test, in order to avoid heating the electret film (ii), the conductive layer (E) was provided by drying at room temperature for a long time. However, from the viewpoint of mass productivity, coating is disadvantageous, and the conductive layer ( The electret (iii) provided with the conductive layer is easily obtained when the conductive film (F) provided with E) is bonded.
 (導電層密着性)
 エレクトレット化フィルム(ii)に設けた導電層(E)を爪で10回擦り、導電層(E)の密着性を以下の基準で評価した。評価結果を表7に示す。
   ○ :良好   剥離せず
   × :不良   フィルム(ii)より導電層(E)が剥離する
 (発生電圧)
 図9に記載の落球装置を使用して、直径11mm,重量5.5gの鉄球を、高さ3.6cmの高さから絶縁性フィルム(無延伸ポリプロピレンフィルム100μm)の上に設置した導電層(E)付きエレクトレット(iii)上に落下させ、サンプルからの電圧信号を高速レコーダー((株)キーエンス製、商品名:GR-7000)に取り込み、落球の衝撃により発生した最大電圧を5回測定して平均値を算出し、以下の基準で評価した。評価結果及び測定された最大電圧(平均値)を表7に示す。
   ○ :良好   最大電圧(平均値)が200mV以上
   △ :やや不良 最大電圧(平均値)が50mV以上、200mV未満
   × :不良   最大電圧(平均値)が50mV未満
(Conductive layer adhesion)
The conductive layer (E) provided on the electret film (ii) was rubbed 10 times with a nail, and the adhesion of the conductive layer (E) was evaluated according to the following criteria. Table 7 shows the evaluation results.
○: Good not peeled ×: Bad The conductive layer (E) peels from the film (ii) (generated voltage)
A conductive layer in which an iron ball having a diameter of 11 mm and a weight of 5.5 g is installed on an insulating film (unstretched polypropylene film 100 μm) from a height of 3.6 cm using the falling ball apparatus shown in FIG. (E) Dropped onto electret (iii), sampled voltage signal into high-speed recorder (manufactured by Keyence Co., Ltd., product name: GR-7000), and measured the maximum voltage generated by impact of falling ball 5 times The average value was calculated and evaluated according to the following criteria. Table 7 shows the evaluation results and the measured maximum voltage (average value).
○: Good Maximum voltage (average value) is 200 mV or more △: Slightly defective Maximum voltage (average value) is 50 mV or more and less than 200 mV ×: Failure Maximum voltage (average value) is less than 50 mV
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表7に示す通り、実施例11~14のエレクトレット化フィルム(ii)は、電圧発生の効率が高く、圧電素子としての性能が良好であり、電気・電子入出力装置用材料として優れた性能を持つものであった。 As shown in Table 7, the electret films (ii) of Examples 11 to 14 have high voltage generation efficiency, good performance as piezoelectric elements, and excellent performance as materials for electric / electronic input / output devices. I had it.
(導電層を備えたエレクトレットの実施例)
 本発明の導電層を備えたエレクトレット(iii)の製造例、実施例に使用する材料を上記表1と下記表8にまとめて示す。
(Example of electret provided with conductive layer)
The materials used in the production examples and examples of the electret (iii) provided with the conductive layer of the present invention are summarized in Table 1 and Table 8 below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[製造例21]
 熱可塑性樹脂組成物aを230℃に設定した押出機にて混練した後、250℃に設定した押出ダイに供給しシート状に押し出し、これを冷却装置により冷却して無延伸シートを得た。この無延伸シートを135℃に加熱して縦方向に5倍延伸した。
 可塑性樹脂組成物cを250℃に設定した押出機で混練した後、シート状に押し出して上記で調整した5倍延伸フィルムの表面及び裏面それぞれに積層し、3層構造の積層フィルムを得た。
 次いで、この3層構造の積層フィルムを60℃まで冷却し、テンターオーブンを用いて再び約145℃に加熱して横方向に8倍延伸した後、160℃に調整した熱セットゾーンにより熱処理を行った。
 その後60℃に冷却した後、次いで耳部をスリットし、両面にコロナ表面処理を施しアンカー剤Aを乾燥後の塗工量が0.01g/mとなるように両面に塗工し、80℃のオーブンにて乾燥してアンカー層(D)を設けて、3層〔10/40/10μm:延伸層構成(1軸/2軸/1軸)〕構造の肉厚60μm、空孔率26%の多孔性樹脂フィルム(i)を得た。
[Production Example 21]
The thermoplastic resin composition a was kneaded in an extruder set at 230 ° C., then supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. This unstretched sheet was heated to 135 ° C. and stretched 5 times in the machine direction.
The plastic resin composition c was kneaded with an extruder set at 250 ° C., then extruded into a sheet and laminated on the front and back surfaces of the 5-fold stretched film prepared above to obtain a laminated film having a three-layer structure.
Next, this three-layer laminated film is cooled to 60 ° C., heated again to about 145 ° C. using a tenter oven, stretched 8 times in the transverse direction, and then heat-treated in a heat setting zone adjusted to 160 ° C. It was.
Then, after cooling to 60 ° C., the ears are slit, the corona surface treatment is applied to both sides, and the anchor agent A is applied to both sides so that the coating amount after drying is 0.01 g / m 2. Dry in an oven at 0 ° C. to provide an anchor layer (D), and have a three-layer [10/40/10 μm: stretched layer structure (1 axis / 2 axis / 1 axis)] structure with a thickness of 60 μm and a porosity of 26 % Porous resin film (i) was obtained.
[製造例22]
 熱可塑性樹脂組成物bを230℃に設定した押出機にて混練した後、250℃に設定した押出ダイに供給しシート状に押し出し、これを冷却装置により冷却して無延伸シートを得た。この無延伸シートを150℃に加熱して縦方向に4倍延伸した。
 可塑性樹脂組成物dを250℃に設定した押出機で混練した後、シート状に押し出して上記で調整した4倍延伸フィルムの表面及び裏面それぞれに積層し、3層構造の積層フィルムを得た。
 次いで、この3層構造の積層フィルムを60℃まで冷却し、テンターオーブンを用いて再び約150℃に加熱して横方向に7.5倍延伸した後、160℃に調整した熱セットゾーンにより熱処理を行った。
 その後60℃に冷却した後、次いで耳部をスリットし、両面にコロナ表面処理を施しアンカー剤Bを乾燥後の塗工量が0.02g/mとなるように両面に塗工し、80℃のオーブンにて乾燥してアンカー層(D)を設けて、3層〔20/60/20μm:延伸層構成(1軸/2軸/1軸)〕構造の肉厚100μm、空孔率38%の多孔性樹脂フィルム(i)を得た。
[Production Example 22]
The thermoplastic resin composition b was kneaded in an extruder set at 230 ° C., then supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. This unstretched sheet was heated to 150 ° C. and stretched 4 times in the longitudinal direction.
After the plastic resin composition d was kneaded with an extruder set at 250 ° C., it was extruded into a sheet and laminated on the front and back surfaces of the 4 × stretched film prepared above to obtain a laminated film having a three-layer structure.
Next, this three-layer laminated film is cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 7.5 times in the transverse direction, and then heat-treated in a heat setting zone adjusted to 160 ° C. Went.
Then, after cooling to 60 ° C., the ears are slit, the corona surface treatment is applied to both sides, and the anchor agent B is applied to both sides so that the coating amount after drying is 0.02 g / m 2. Dry in an oven at 0 ° C. to provide an anchor layer (D), and have a three-layer [20/60/20 μm: stretched layer structure (1 axis / 2 axis / 1 axis)] structure with a thickness of 100 μm and a porosity of 38 % Porous resin film (i) was obtained.
[製造例23]
 熱可塑性樹脂組成物aを230℃に設定した押出機にて混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを冷却装置により冷却して無延伸シートを得た。この無延伸シートを145℃に加熱し、周速差の異なる多数のロール群を用いて縦方向に4倍延伸して4倍延伸フィルムを得た。
 次いで、可塑性樹脂組成物aを250℃に設定した押出機で混練した後、250℃に設定した押出ダイスに供給してシート状に押し出し、これを上で調整した4倍延伸フィルムの表面及び裏面それぞれに積層し、3層構造の積層フィルムを得た。
 次いで、この積層フィルムを60℃まで冷却し、テンターオーブンを用いて再び約150℃に加熱し、横方向に8倍延伸した後、これを160℃に調整したオーブンによりアニーリング処理を行い、60℃まで冷却した後、耳部をスリットし、両面にコロナ表面処理を施しアンカー剤Cを乾燥後の塗工量が1.0g/mとなるように両面に塗工し、3層構造(a/a/a=16/40/16μm、延伸層構成(1軸/2軸/1軸))で厚み72μm、空孔率9%の多孔性樹脂フィルム(i)を得た。
[Production Example 23]
After kneading the thermoplastic resin composition a with an extruder set at 230 ° C., it was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape, which was cooled by a cooling device to obtain an unstretched sheet. . This unstretched sheet was heated to 145 ° C., and stretched 4 times in the longitudinal direction using a number of roll groups having different peripheral speed differences to obtain a 4 times stretched film.
Next, after kneading the plastic resin composition a with an extruder set at 250 ° C., the mixture was supplied to an extrusion die set at 250 ° C. and extruded into a sheet shape. Each of these layers was laminated to obtain a laminated film having a three-layer structure.
Next, the laminated film was cooled to 60 ° C., heated again to about 150 ° C. using a tenter oven, stretched 8 times in the transverse direction, and then subjected to an annealing treatment in an oven adjusted to 160 ° C. After cooling to the bottom, the ears are slit, the corona surface treatment is applied to both sides, and the anchor agent C is applied to both sides so that the coating amount after drying is 1.0 g / m 2. / A / a = 16/40/16 μm, a stretched layer structure (1 axis / 2 axis / 1 axis)), a thickness of 72 μm, and a porosity of 9%, a porous resin film (i) was obtained.
[製造例24~26]
 製造例21~23で得られた多孔性樹脂フィルム(i)をA4サイズに切り出し、圧力容器内に入れ1.0MPaの圧力で8時間加圧し、取り出して直ぐに95℃に設定したオーブン内で30秒間熱処理を実施した。
 得られた多孔性樹脂フィルム(i)の構成を以下の表9に示す。
[Production Examples 24 to 26]
The porous resin films (i) obtained in Production Examples 21 to 23 were cut into A4 size, placed in a pressure vessel, pressurized at 1.0 MPa for 8 hours, and taken out immediately in an oven set at 95 ° C. for 30 hours. Heat treatment was performed for 2 seconds.
The structure of the obtained porous resin film (i) is shown in Table 9 below.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[実施例21~24、及び26]
 主電極の針間距離10mm、主電極-アース電極間距離10mmに設定した図2に記載のエレクトレット化装置のアース電極盤上に製造例21~24、及び26で得た多孔性樹脂フィルム(i)を置き、印加電圧を1KVから少しずつ上昇し局所火花放電により多孔性樹脂フィルム(i)が破壊される電圧を測定し、この火花放電電圧よりも1KV低い電圧でエレクトレット処理を実施し、エレクトレット化フィルム(ii)を得た。
 表8に記載の誘電体フィルム(IまたはII)の導電層の反対面に表8に記載の接着剤塗料を乾燥後の塗工量が4g/mとなるようにバーコーターで塗工して、40℃に設定したオーブンで1分間乾燥後、エレクトレット化フィルム(ii)の両面にそれぞれ貼合して、導電層を備えたエレクトレット(iii)を作製した。用いた誘電体フィルムの種類は表10に示す。
[Examples 21 to 24 and 26]
The porous resin films (i) obtained in Production Examples 21 to 24 and 26 were formed on the ground electrode board of the electretization apparatus shown in FIG. ), The applied voltage is gradually increased from 1 KV, the voltage at which the porous resin film (i) is destroyed by local spark discharge is measured, electret treatment is performed at a voltage 1 KV lower than this spark discharge voltage, Film (ii) was obtained.
On the opposite side of the conductive layer of the dielectric film (I or II) described in Table 8, the adhesive paint described in Table 8 was applied with a bar coater so that the coating amount after drying was 4 g / m 2. And after drying for 1 minute in the oven set to 40 degreeC, it bonded on both surfaces of the electret film (ii), respectively, and produced the electret (iii) provided with the conductive layer. Table 10 shows the types of dielectric films used.
[実施例25]
 誘電体フィルムIの導電層の反対面に表8に記載の接着剤塗料を乾燥後の塗工量が4g/mとなるようにバーコーターで塗工して、40℃に設定したオーブンで1分間乾燥後、製造例25で得た多孔性樹脂フィルム(i)の片面に貼合した。
 主電極の針間距離10mm、主電極-アース電極間距離10mmに設定した図2に記載のエレクトレット化装置のアース電極盤上に多孔性樹脂フィルム(i)の誘電体フィルムIを貼合していない面が主電極を向く様に置き、印加電圧を1KVから少しずつ上昇し局所火花放電により多孔性樹脂フィルム(i)が破壊される電圧を測定し、この火花放電電圧よりも1KV低い電圧でエレクトレット処理を実施し、エレクトレット化フィルム(ii)を得た。
 更に別の誘電体フィルムIの導電層の反対面に表1に記載の接着剤塗料を乾燥後の塗工量が4g/mになるように塗工して、40℃に設定したオーブンで1分間乾燥後、これを上記のエレクトレット化フィルム(ii)のエレクトレット処理した面に貼合して、導電層を備えたエレクトレット(iii)を作製した。
[Example 25]
In the oven set at 40 ° C., the adhesive paint described in Table 8 was applied to the opposite surface of the conductive layer of the dielectric film I with a bar coater so that the coating amount after drying was 4 g / m 2. After drying for 1 minute, it was bonded to one side of the porous resin film (i) obtained in Production Example 25.
A dielectric film I of a porous resin film (i) is bonded onto the ground electrode board of the electretization apparatus shown in FIG. 2 set to a distance between the main electrodes of 10 mm and a distance between the main electrodes and the ground electrode of 10 mm. With the surface not facing the main electrode, the applied voltage is gradually increased from 1 KV, and the voltage at which the porous resin film (i) is destroyed by local spark discharge is measured. At a voltage 1 KV lower than this spark discharge voltage The electret process was implemented and the electret film (ii) was obtained.
Furthermore, the adhesive paint described in Table 1 was applied to the opposite surface of the conductive layer of another dielectric film I so that the coating amount after drying was 4 g / m 2 , and the oven was set at 40 ° C. After drying for 1 minute, this was bonded to the electret-treated surface of the electret film (ii) to produce an electret (iii) provided with a conductive layer.
[比較例21]
 主電極の針間距離10mm、主電極-アース電極間距離10mmに設定した図2に記載のエレクトレット化装置のアース電極盤上に製造例25で得た多孔性樹脂フィルム(i)を置き、印加電圧を1KVから少しずつ上昇し局所火花放電により多孔性樹脂フィルム(i)が破壊される電圧を測定し、この火花放電電圧よりも1KV低い電圧でエレクトレット処理を実施してエレクトレット化フィルム(ii)を得た。
 このエレクトレット化フィルム(ii)を5cm四方の大きさにし、金蒸着装置(日立製作所製、商品名:イオンスパッタE101)を用いて両面に0.03μmの金蒸着膜による導電層(E)を形成した。
[Comparative Example 21]
The porous resin film (i) obtained in Production Example 25 is placed on the ground electrode board of the electretization apparatus shown in FIG. 2 set to a distance between the main electrodes of 10 mm and a distance between the main electrodes and the ground electrode of 10 mm. The voltage is gradually increased from 1 KV, and the voltage at which the porous resin film (i) is broken by local spark discharge is measured. The electret film is subjected to electret treatment at a voltage 1 KV lower than the spark discharge voltage (ii). Got.
This electretized film (ii) is 5 cm square, and a conductive layer (E) is formed by 0.03 μm gold vapor deposition film on both sides using a gold vapor deposition device (trade name: Ion Sputter E101, manufactured by Hitachi, Ltd.). did.
[試験例]
(発生電圧)
 実施例21~26および比較例21の導電層を備えたエレクトレット(iii)を5cm×5cmのサイズに切り出し、導電性テープ(住友スリーエム(株)製、商品名:AL-25BT)を使用して表裏面にリード線を張付けて、図9に記載の落球装置を使用して、直径11mm、重量5.5gの鉄球を高さ3.6cmの高さから絶縁性フィルム(無延伸ポリプロピレンフィルム100μm)の上に設置した導電層を備えたエレクトレット(iii)に落下させ、サンプルからの電圧信号を高速レコーダー((株)キーエンス製、商品名:GR-7000)に取り込み、落球の衝撃により発生した最大電圧を5回測定し平均値を算出して、以下の基準で評価した。評価結果及び測定された最大電圧を表10に示す。
  ○ :良好   最大電圧(平均値)が200mV以上
  △ :やや良好 最大電圧(平均値)が10mV以上、200mV未満
  × :不良   最大電圧(平均値)が10mV未満
[Test example]
(Generated voltage)
The electret (iii) provided with the conductive layer of Examples 21 to 26 and Comparative Example 21 was cut into a size of 5 cm × 5 cm, and a conductive tape (manufactured by Sumitomo 3M Co., Ltd., trade name: AL-25BT) was used. Lead wires are attached to the front and back surfaces, and using a falling ball apparatus shown in FIG. It was dropped on an electret (iii) equipped with a conductive layer placed on top of it, and the voltage signal from the sample was taken into a high-speed recorder (manufactured by Keyence Co., Ltd., product name: GR-7000) and generated by the impact of a falling ball The maximum voltage was measured 5 times, the average value was calculated, and evaluated according to the following criteria. The evaluation results and the measured maximum voltage are shown in Table 10.
○: Good Maximum voltage (average value) is 200 mV or more Δ: Slightly good Maximum voltage (average value) is 10 mV or more and less than 200 mV ×: Defect Maximum voltage (average value) is less than 10 mV
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表10に示す通り、実施例21~26の導電層を備えたエレクトレット(iii)は、落球の衝撃エネルギーを電気信号に変換できることがわかる。
 又、エレクトレット化フィルム(ii)に直接導電層を設けた比較例21は、金属蒸着処理の熱によりダメージを受けて蓄積した電荷が逃げてしまい、その性能を発揮することが出来ないことがわかる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年9月12日出願の日本特許出願(特願2008-234641号)、2008年9月12日出願の日本特許出願(特願2008-234642号)、2008年9月12日出願の日本特許出願(特願2008-234643号)、2009年8月31日出願の日本特許出願(特願2009-200196号)、2009年8月31日出願の日本特許出願(特願2009-200197号)、及び2009年8月31日出願の日本特許出願(特願2009-200198号)、に基づくものであり、その内容はここに参照として取り込まれる。
As shown in Table 10, it can be seen that the electrets (iii) including the conductive layers of Examples 21 to 26 can convert the impact energy of the falling ball into an electric signal.
Further, it can be seen that in Comparative Example 21 in which the electretized film (ii) is directly provided with the conductive layer, the accumulated charge escapes due to the heat of the metal vapor deposition treatment, and the performance cannot be exhibited. .
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
The present application includes a Japanese patent application filed on September 12, 2008 (Japanese Patent Application No. 2008-234641), a Japanese patent application filed on September 12, 2008 (Japanese Patent Application No. 2008-234642), and September 12, 2008. Japanese patent application filed (Japanese Patent Application No. 2008-234643), Japanese patent application filed on August 31, 2009 (Japanese Patent Application No. 2009-200196), Japanese patent application filed on August 31, 2009 (Japanese Patent Application No. 2009- No. 200019) and Japanese Patent Application (Japanese Patent Application No. 2009-200198) filed on Aug. 31, 2009, the contents of which are incorporated herein by reference.
 本発明の多孔性樹脂フィルム(i)を用いることで、より多くの電荷注入が可能となり、結果として長期間安定した電荷保持能力を示すエレクトレット化フィルム(ii)を得ることが可能となる。また、加圧・加熱処理された、本発明の多孔性樹脂フィルム(i)を用いることで、より多くの電荷注入が可能となり、結果として優れた電圧発生能力を示すエレクトレット化フィルム(ii)を得ることが可能となる。そのため、本発明のエレクトレット化フィルム(ii)は、帯電吸着式のラベル、ポスター、広告などの印刷材料、エアーフィルター、ゴミ取りマットなどの産業材料、スピーカー、ヘッドフォン、超音波振動子、超音波モーター、振動制御装置、マイクロフォン、超音波センサー、圧力センサー、加速度センサー、歪センサー、疲労・亀裂センサー、発電装置などの電気・電子入出力装置用材料などさまざまな分野へ大きく寄与できる。
 本発明の導電層を備えたエレクトレット(iii)は、エレクトレット化フィルム(ii)に間接的に導電層を設けることを特徴とし、加工工程での品質低下がなく、又量産性も高いものである。そのためスピーカー、ヘッドフォン、超音波振動子、超音波モーター、振動制御装置、マイクロフォン、超音波センサー、圧力センサー、加速度センサー、歪センサー、疲労・亀裂センサー、発電装置などの電気・電子入出力装置用材料として、産業上の利用可能性は大きい。
By using the porous resin film (i) of the present invention, it is possible to inject more charge, and as a result, it is possible to obtain an electret film (ii) exhibiting stable charge retention ability for a long period of time. Further, by using the porous resin film (i) of the present invention that has been subjected to pressure and heat treatment, more charge injection becomes possible, and as a result, an electret film (ii) that exhibits excellent voltage generation capability Can be obtained. Therefore, the electretized film (ii) of the present invention is a printing material such as a charge adsorption type label, a poster, an advertisement, an industrial material such as an air filter or a dust removal mat, a speaker, a headphone, an ultrasonic vibrator, an ultrasonic motor , Vibration control devices, microphones, ultrasonic sensors, pressure sensors, acceleration sensors, strain sensors, fatigue / crack sensors, and materials for electrical and electronic input / output devices such as power generators.
The electret (iii) provided with the conductive layer of the present invention is characterized in that a conductive layer is indirectly provided on the electret film (ii), and there is no deterioration in quality in the processing step and high mass productivity. . Therefore, materials for electrical / electronic input / output devices such as speakers, headphones, ultrasonic transducers, ultrasonic motors, vibration control devices, microphones, ultrasonic sensors, pressure sensors, acceleration sensors, strain sensors, fatigue / crack sensors, and power generation devices As such, industrial applicability is great.
1   多孔性樹脂フィルム(i)
2   コア層(A)
3、4 表面層(B)
5   直流高圧電源
6、8 針状電極
7   アース電極
9   アースに接続されたロール
10、11 ワイヤー電極
15 加圧処理用に準備した巻取
16 多孔性樹脂フィルム(i)
17 緩衝シート
18 圧力容器
19 圧力容器の蓋
20 加圧用バルプ
21 減圧用バルブ
22 スタンド
23 シャフト
24 コンプレッサー
25 多孔性樹脂フィルム(i)の巻取り装置
26 緩衝シートの巻取り装置
27 熱風装置
28 ガイドロール
29、30 冷却ロール
31 導電層(E)付きエレクトレット(iii)
32 絶縁性フィルム
33、34 リード線
35 透明アクリルパイプ
36 鉄球
37 電磁石
38 高速レコーダー
41 導電層を備えたエレクトレット(iii)
42 エレクトレット化フィルム(ii)
43、44 誘電体フィルム(F)
45、46 接着剤層(D)
47、48 導電層(E)
49 コア層(A)
50、51 表面層(B)
1 Porous resin film (i)
2 Core layer (A)
3, 4 Surface layer (B)
5 DC high voltage power supply 6, 8 Needle electrode 7 Ground electrode 9 Roll 10, 11 connected to ground Wire electrode 15 Winding 16 prepared for pressure treatment Porous resin film (i)
17 Buffer sheet 18 Pressure vessel 19 Pressure vessel lid 20 Pressure valve 21 Pressure reducing valve 22 Stand 23 Shaft 24 Compressor 25 Porous resin film (i) winding device 26 Buffer sheet winding device 27 Hot air device 28 Guide roll 29, 30 Cooling roll 31 Electret with conductive layer (E) (iii)
32 Insulating films 33 and 34 Lead wire 35 Transparent acrylic pipe 36 Iron ball 37 Electromagnet 38 High-speed recorder 41 Electret (iii) provided with conductive layer
42 Electretized film (ii)
43, 44 Dielectric film (F)
45, 46 Adhesive layer (D)
47, 48 Conductive layer (E)
49 Core layer (A)
50, 51 Surface layer (B)

Claims (20)

  1.  空孔を有する2軸延伸樹脂フィルムを含むコア層(A)と、該コア層(A)の少なくとも片面に延伸樹脂フィルムを含む表面層(B)とを含有し、水蒸気透過係数が0.1~2.5g・mm/m2 ・24hrであり、且つ、少なくとも片方の表面の表面抵抗値が1×1013~9×1017Ωである多孔性樹脂フィルム(i)に、直流高電圧放電処理を施してエレクトレット化したことを特徴とするエレクトレット化フィルム(ii)。 It contains a core layer (A) containing a biaxially stretched resin film having pores and a surface layer (B) containing a stretched resin film on at least one side of the core layer (A), and has a water vapor transmission coefficient of 0.1. DC porous high voltage discharge is applied to the porous resin film (i) having a surface resistance of 1 × 10 13 to 9 × 10 17 Ω of about 2.5 g · mm / m 2 · 24 hr and a surface resistance value of at least one surface of 1 × 10 13 to 9 × 10 17 Ω An electret film (ii) characterized by being processed into an electret.
  2.  表面層(B)における延伸樹脂フィルムが1軸延伸樹脂フィルムであることを特徴とする請求項1に記載のエレクトレット化フィルム(ii)。 The electret film (ii) according to claim 1, wherein the stretched resin film in the surface layer (B) is a uniaxially stretched resin film.
  3.  多孔性樹脂フィルム(i)が、加圧条件下で非反応性ガスを浸透させ、次いで非加圧条件下で加熱処理を施されていることを特徴とする、請求項2に記載のエレクトレット化フィルム(ii)。 The electretization according to claim 2, wherein the porous resin film (i) is impregnated with a non-reactive gas under a pressurized condition and then subjected to a heat treatment under the non-pressurized condition. Film (ii).
  4.  コア層(A)の厚みが10~500μmであり、且つ、表面層(B)の厚みが5~500μmであることを特徴とする請求項1~3のいずれかに記載のエレクトレット化フィルム(ii)。 The electret film (ii) according to any one of claims 1 to 3, wherein the core layer (A) has a thickness of 10 to 500 µm, and the surface layer (B) has a thickness of 5 to 500 µm. ).
  5.  コア層(A)及び表面層(B)における延伸樹脂フィルムが、熱可塑性樹脂を含有することを特徴とする請求項1~4のいずれかに記載のエレクトレット化フィルム(ii)。 The electret film (ii) according to any one of claims 1 to 4, wherein the stretched resin film in the core layer (A) and the surface layer (B) contains a thermoplastic resin.
  6.  コア層(A)が熱可塑性樹脂50~97重量%、及び無機微細粉末及び有機フィラーの少なくとも一種3~50重量%を含有し、且つ表面層(B)が熱可塑性樹脂30~97重量%、及び無機微細粉末及び有機フィラーの少なくとも一種3~70重量%を含有することを特徴とする請求項5に記載のエレクトレット化フィルム(ii)。 The core layer (A) contains 50 to 97% by weight of a thermoplastic resin, and 3 to 50% by weight of at least one kind of inorganic fine powder and organic filler, and the surface layer (B) contains 30 to 97% by weight of a thermoplastic resin, The electret film (ii) according to claim 5, further comprising 3 to 70% by weight of at least one of inorganic fine powder and organic filler.
  7.  熱可塑性樹脂がポリオレフィン系樹脂であることを特徴とする請求項5又は6に記載のエレクトレット化フィルム(ii)。 The electret film (ii) according to claim 5 or 6, wherein the thermoplastic resin is a polyolefin resin.
  8.  コア層(A)に表面層(B)を積層した後に、その積層体を少なくとも1軸方向に延伸して各層を延伸樹脂フィルムとしたことを特徴とする請求項1~7のいずれかに記載のエレクトレット化フィルム(ii)。 8. The surface layer (B) is laminated on the core layer (A), and then the laminate is stretched in at least uniaxial direction to form each layer as a stretched resin film. Electretized film (ii).
  9.  多孔性樹脂フィルム(i)の空孔率が1~70%であることを特徴とする請求項1~8のいずれかに記載のエレクトレット化フィルム(ii)。 The electret film (ii) according to any one of claims 1 to 8, wherein the porosity of the porous resin film (i) is 1 to 70%.
  10.  加圧処理及び加熱処理を施した多孔性樹脂フィルム(i)の空孔率が5~95%であることを特徴とする請求項3~8のいずれかに記載のエレクトレット化フィルム(ii)。 The electret film (ii) according to any one of claims 3 to 8, wherein the porosity of the porous resin film (i) subjected to the pressure treatment and the heat treatment is 5 to 95%.
  11.  多孔性樹脂フィルム(i)の少なくとも片方の面に、アンカーコート層(C)を更に含有することを特徴とする請求項1~10のいずれかに記載のエレクトレット化フィルム(ii)。 The electret film (ii) according to any one of claims 1 to 10, further comprising an anchor coat layer (C) on at least one surface of the porous resin film (i).
  12.  アンカーコート層(C)の坪量が0.001~5g/m2 であることを特徴とする請求項11に記載のエレクトレット化フィルム(ii)。 The electret film (ii) according to claim 11, wherein the basis weight of the anchor coat layer (C) is 0.001 to 5 g / m 2 .
  13.  多孔性樹脂フィルム(i)に放電電圧10KV~100KVの範囲で直流高電圧放電処理を施してエレクトレット化したことを特徴とする請求項1~12のいずれかに記載のエレクトレット化フィルム(ii)。 The electret film (ii) according to any one of claims 1 to 12, wherein the porous resin film (i) is electretized by subjecting the porous resin film (i) to a direct current high voltage discharge treatment in a discharge voltage range of 10 KV to 100 KV.
  14.  直流高電圧放電処理において多孔性樹脂フィルム(i)の表面層(B)表面から電荷注入を行うことを特徴とする請求項1~13のいずれかに記載のエレクトレット化フィルム(ii)。 The electret film (ii) according to any one of claims 1 to 13, wherein charge is injected from the surface of the surface layer (B) of the porous resin film (i) in a direct current high voltage discharge treatment.
  15.  請求項1~14のいずれかに記載のエレクトレット化フィルム(ii)と、接着剤層(D)と、表面抵抗値が1×10-2~9×10Ωである導電層(E)を設けた誘電体フィルム(F)とを、この順で含有することを特徴とする導電層を備えたエレクトレット(iii)。 The electret film (ii) according to any one of claims 1 to 14, an adhesive layer (D), and a conductive layer (E) having a surface resistance value of 1 × 10 −2 to 9 × 10 7 Ω The electret (iii) provided with the conductive layer characterized by containing the provided dielectric film (F) in this order.
  16.  誘電体フィルム(F)が、熱可塑性樹脂を含む延伸フィルムまたは無延伸フィルムであることを特徴とする請求項15に記載の導電層を備えたエレクトレット(iii)。 The electret (iii) provided with the conductive layer according to claim 15, wherein the dielectric film (F) is a stretched film or a non-stretched film containing a thermoplastic resin.
  17.  誘電体フィルム(F)の膜厚が0.1~100μmであることを特徴とする請求項15又は16に記載の導電層を備えたエレクトレット(iii)。 The electret (iii) provided with the conductive layer according to claim 15 or 16, wherein the dielectric film (F) has a thickness of 0.1 to 100 µm.
  18.  導電層(E)が、導電性塗料の塗工あるいは金属の蒸着により形成されていることを特徴とする請求項15~17のいずれかに記載の導電層を備えたエレクトレット(iii)。 The electret (iii) provided with the conductive layer according to any one of claims 15 to 17, wherein the conductive layer (E) is formed by application of a conductive paint or metal deposition.
  19.  導電層(E)の膜厚が0.01~10μmであることを特徴とする請求項15~18のいずれかに記載の導電層を備えたエレクトレット(iii)。 The electret (iii) provided with the conductive layer according to any one of claims 15 to 18, wherein the conductive layer (E) has a thickness of 0.01 to 10 µm.
  20.  エレクトレット化フィルム(ii)へ導電層(E)を設けた誘電体フィルム(F)を積層する際に、導電層(E)が最外層となるように積層することを特徴とする、請求項15~19のいずれかに記載の導電層を備えたエレクトレット(iii)。 16. When the dielectric film (F) provided with the conductive layer (E) is laminated on the electret film (ii), the conductive layer (E) is laminated so as to be the outermost layer. An electret (iii) comprising the conductive layer according to any one of .about.19.
PCT/JP2009/065961 2008-09-12 2009-09-11 Electret film and electret comprising same WO2010030011A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980135383.0A CN102150225B (en) 2008-09-12 2009-09-11 Electret film and electret comprising same

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2008234642 2008-09-12
JP2008-234642 2008-09-12
JP2008-234641 2008-09-12
JP2008234643 2008-09-12
JP2008234641 2008-09-12
JP2008-234643 2008-09-12
JP2009-200197 2009-08-31
JP2009200198A JP5638212B2 (en) 2008-09-12 2009-08-31 Electret with conductive layer
JP2009200197A JP5506298B2 (en) 2008-09-12 2009-08-31 Electret film
JP2009-200198 2009-08-31
JP2009-200196 2009-08-31
JP2009200196A JP5638211B2 (en) 2008-09-12 2009-08-31 Electret film

Publications (1)

Publication Number Publication Date
WO2010030011A1 true WO2010030011A1 (en) 2010-03-18

Family

ID=42005261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065961 WO2010030011A1 (en) 2008-09-12 2009-09-11 Electret film and electret comprising same

Country Status (1)

Country Link
WO (1) WO2010030011A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2696623C1 (en) * 2018-07-05 2019-08-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Method of producing polymer electret
CN111424435A (en) * 2020-03-19 2020-07-17 合肥科天水性科技有限责任公司 Air filter medium and preparation method thereof
EP3550620A4 (en) * 2016-11-30 2020-08-05 Yupo Corporation Piezoelectric element and musical instrument

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110974A (en) * 1985-11-05 1987-05-22 東レ株式会社 Production of electret fiber sheet
JPH08155230A (en) * 1994-12-06 1996-06-18 Nitto Denko Corp Electret filter and its preparation
JP2006180450A (en) * 2004-11-26 2006-07-06 Univ Of Tokyo Electrostatic induction conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110974A (en) * 1985-11-05 1987-05-22 東レ株式会社 Production of electret fiber sheet
JPH08155230A (en) * 1994-12-06 1996-06-18 Nitto Denko Corp Electret filter and its preparation
JP2006180450A (en) * 2004-11-26 2006-07-06 Univ Of Tokyo Electrostatic induction conversion device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550620A4 (en) * 2016-11-30 2020-08-05 Yupo Corporation Piezoelectric element and musical instrument
US11176918B2 (en) 2016-11-30 2021-11-16 Yupo Corporation Piezoelectric element and musical instrument
RU2696623C1 (en) * 2018-07-05 2019-08-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Method of producing polymer electret
CN111424435A (en) * 2020-03-19 2020-07-17 合肥科天水性科技有限责任公司 Air filter medium and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5638212B2 (en) Electret with conductive layer
JP5506298B2 (en) Electret film
JP5638326B2 (en) Energy conversion film
JP5638211B2 (en) Electret film
CN102150225B (en) Electret film and electret comprising same
EP3550620B1 (en) Piezoelectric element and musical instrument
JP6771591B2 (en) Energy conversion film and energy conversion element using it
JP6233301B2 (en) Laminated porous film, separator for electricity storage device, and method for producing laminated porous film
WO2018186297A1 (en) High-frequency dielectric heating adhesive sheet, and adhesion method in which same is used
WO2010030011A1 (en) Electret film and electret comprising same
JP6018888B2 (en) Electret sheet
JP2010267906A (en) Method of manufacturing polymer porous electret
JP2023094422A (en) Electret-converted film and piezoelectric film
CN108604499B (en) Electret sheet
WO2021020427A1 (en) Energy conversion film, energy conversion element and method for producing energy conversion film
JP6959013B2 (en) Electret sheet
WO2021024868A1 (en) Energy-conversion film and production method therefor, and production method for energy-conversion element
JP7271641B2 (en) electret sheet
JP2022094638A (en) Laminate
JP2013116442A (en) Method for manufacturing laminated porous film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135383.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09813157

Country of ref document: EP

Kind code of ref document: A1