WO2018143149A1 - Production method of dried cellulose nanofibers - Google Patents

Production method of dried cellulose nanofibers Download PDF

Info

Publication number
WO2018143149A1
WO2018143149A1 PCT/JP2018/002846 JP2018002846W WO2018143149A1 WO 2018143149 A1 WO2018143149 A1 WO 2018143149A1 JP 2018002846 W JP2018002846 W JP 2018002846W WO 2018143149 A1 WO2018143149 A1 WO 2018143149A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnf
molecular weight
redispersibility
anion
dry
Prior art date
Application number
PCT/JP2018/002846
Other languages
French (fr)
Japanese (ja)
Inventor
藤槻薫麗
半埜賢治
Original Assignee
株式会社片山化学工業研究所
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社片山化学工業研究所, 日本製紙株式会社 filed Critical 株式会社片山化学工業研究所
Priority to JP2018565537A priority Critical patent/JP6931837B2/en
Publication of WO2018143149A1 publication Critical patent/WO2018143149A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/16Esters of inorganic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers

Definitions

  • the present disclosure relates to a method for producing dry cellulose nanofibers and a method for improving the redispersibility of dry cellulose nanofibers.
  • CNF Cellulose nanofiber
  • CNF is a plant-derived fiber refined to a fiber diameter of about several nm to several hundred nm.
  • CNF has a small environmental load and has various characteristics such as light weight, high strength, high gas barrier property, small dimensional deformation due to heat, high specific surface area, high transparency, and high viscosity in water. For this reason, CNF is expected to be used not only in automobile parts and food packaging materials but also in a wide range of fields such as foods, pharmaceuticals and cosmetics.
  • CNF is usually produced as a low concentration aqueous dispersion (wet state).
  • aqueous dispersion there are problems such as high transportation and storage costs and contamination with bacteria. For this reason, a method of drying CNF has been proposed (for example, Patent Document 1).
  • the dried CNF is usually used after being redispersed in a dispersion medium such as water.
  • a dispersion medium such as water.
  • CNF is not sufficiently redispersed.
  • CNF obtained by drying a transparent CNF solution, especially dried anion-modified CNF, particularly 2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) oxidized CNF has low redispersibility and transparency. There is a problem of not recovering. For this reason, a new method capable of drying CNF while maintaining sufficient redispersibility is demanded.
  • TEMPO 2,6,6-tetramethylpiperidine-1-oxy radical
  • the present disclosure provides a method for producing dry CNF with improved redispersibility, particularly a method for producing dry CNF with improved transparent dispersibility during redispersion.
  • the present disclosure provides a method that can improve the redispersibility of CNF.
  • this indication provides the method of making it possible to improve the transparent dispersibility at the time of re-dispersion of dry TEMPO oxidation CNF in one aspect
  • transparent dispersibility at the time of redispersion means that, in one or a plurality of embodiments, CNF is dispersed in a dispersion medium at a level close to microfibril units or microfibril units, and is dispersed in a highly transparent state. That means.
  • the present disclosure provides an aqueous suspension of anion-modified cellulose nanofibers by mixing an anion-modified cellulose nanofiber and a redispersibility improver, and drying the aqueous suspension to dry cellulose.
  • a dry cellulose nanofiber comprising: obtaining a nanofiber, wherein the redispersibility improving agent is selected from the group consisting of a saccharide having a molecular weight of 50,000 or less, a low molecular weight polypeptide, an amino acid, and a low molecular weight polyvinyl alcohol. It relates to the manufacturing method.
  • the present disclosure includes mixing an anion-modified cellulose nanofiber and a redispersibility improver to obtain an aqueous suspension of the anion-modified cellulose nanofiber, and drying the aqueous suspension.
  • the redispersibility improving agent relates to a method for improving redispersibility of cellulose nanofibers selected from the group consisting of sugars having a molecular weight of 50,000 or less, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol.
  • the present disclosure provides an agent for improving or improving the redispersibility of dry cellulose nanofibers in a dispersion medium, in particular, redispersibility, a saccharide having a molecular weight of 50,000 or less, a low molecular weight poly
  • a redispersibility improving agent comprising at least one selected from the group consisting of peptides, amino acids, and low molecular weight polyvinyl alcohol.
  • the present disclosure is a dry composition containing anion-modified cellulose nanofibers and a redispersibility improver, wherein the redispersibility improver is a saccharide having a molecular weight of 50,000 or less, a low molecular weight polypeptide,
  • the present invention relates to a dry composition comprising at least one selected from the group consisting of amino acids and low molecular weight polyvinyl alcohol.
  • a method for producing dry CNF with improved redispersibility particularly a method for producing dry CNF with improved transparent dispersibility during redispersion can be provided. Further, according to the present disclosure, it is possible to provide a method capable of improving or improving the redispersibility of CNF, particularly a method capable of improving or improving the transparent dispersibility during redispersion. According to the present disclosure, it is preferable to provide a method for producing dry TEMPO-oxidized CNF having improved transparent dispersibility during redispersion and a method capable of improving the transparent dispersibility during redispersion of dry TEMPO-oxidized CNF.
  • CM carboxymethyl
  • a method for producing dry carboxymethyl (CM) -modified CNF having improved dispersibility during re-dispersion and a method capable of improving the dispersibility during re-dispersion of dry C-methyl CNF.
  • a method for producing dry phosphate esterified CNF with improved dispersibility during redispersion and a method capable of improving the transparent dispersibility during redispersion of dry phosphate esterified CNF.
  • the present disclosure improves the redispersibility of dry CNF obtained by drying an aqueous suspension in which anion-modified CNF is mixed with a low molecular weight saccharide such as cyclodextrin or low molecular weight polycarboxymethylcellulose (CMC). Based on the knowledge that can be done. In addition, when the anion-modified CNF is TEMPO-oxidized CNF, mixing with the above low molecular weight saccharide and drying improves the transparent dispersibility during redispersion of the dry CNF, and the resulting dry CNF is dispersed in water or the like. It is based on the knowledge that a highly transparent dry CNF redispersion liquid can be obtained by contacting with a medium.
  • a low molecular weight saccharide such as cyclodextrin or low molecular weight polycarboxymethylcellulose (CMC).
  • the present disclosure is based on the finding that the redispersibility of the obtained dry CNF can be improved by drying an aqueous suspension in which anion-modified CNF and a low molecular weight polypeptide or amino acid are mixed.
  • the anion-modified CNF is TEMPO-oxidized CNF
  • the transparent dispersibility at the time of redispersion of the dry CNF is improved, and the obtained dry CNF is converted into water or the like. It is based on the knowledge that a highly transparent dry CNF redispersion liquid can be obtained when brought into contact with a dispersion medium.
  • the present disclosure is based on the finding that the redispersibility of the obtained dry CNF can be improved by drying an aqueous suspension obtained by mixing anion-modified CNF and low molecular weight polyvinyl alcohol (PVA). Further, when the anion-modified CNF is TEMPO-oxidized CNF, when mixed with a low molecular weight PVA and dried, the transparent dispersibility during re-dispersion of the dried CNF is improved, and the resulting dried CNF is mixed with a dispersion medium such as water. This is based on the knowledge that a highly transparent dry CNF redispersion liquid can be obtained by contact.
  • PVA polyvinyl alcohol
  • the present disclosure shows that low molecular weight sugars such as cyclodextrin and low molecular weight CMC, low molecular weight polypeptides, amino acids, and low molecular weight PVA can be used as a dispersibility improving agent when redispersing dry CNF. based on.
  • “molecular weight of the redispersibility improver” refers to an average molecular weight, preferably a weight average molecular weight, when the redispersibility improver is a polymer.
  • the redispersibility improving agent may be used alone or in combination of two or more.
  • “Improvement or improvement of redispersibility” in the present disclosure is obtained by mixing dry CNF obtained by the dry CNF production method of the present disclosure with a dispersion medium such as water in one or a plurality of embodiments.
  • a liquid (or CNF suspension) it means that the turbidity is low or the amount of undispersed CNF pieces or gelled products is small.
  • “improvement or improvement of transparent dispersibility during redispersion” means that in one or a plurality of embodiments, CNF is dispersed in a dispersion medium at a level close to microfibril units or microfibril units, and is in an undispersed state. It means that transparency is higher than CNF pieces or gelled products are hardly observed.
  • the dry CNF obtained by the dry CNF production method of the present disclosure is mixed with a dispersion medium such as water and stirred, and the CNF is separated at a level close to a microfibril unit or a microfibril unit.
  • dry CNF can be dispersed in the dispersion medium in a highly transparent state.
  • a highly transparent dry CNF re-dispersion liquid can be obtained in one or a plurality of embodiments.
  • “High transparency” in the present disclosure includes high light transmittance in one or more embodiments.
  • Japanese Patent Application Laid-Open No. 9-165402 discloses a method of adding a third component (components other than BC and water) to an aqueous suspension of bacterial cellulose (BC), followed by drying, thereby condensing BC after drying. It is disclosed that various properties such as dispersibility and sedimentation degree are restored to the state before drying.
  • bacterial cellulose is a naturally occurring cellulose fiber produced from bacteria and has no charge.
  • the anion-modified CNF of the present disclosure is a cellulose nanofiber obtained by chemical treatment as described later, and has a charge on the surface of the cellulose fiber by the chemical treatment. For this reason, the anion-modified CNF and bacterial cellulose of the present disclosure are completely different.
  • this document restores the original disaggregated state, specifically, a state in which a large amount of liquid component is included in the surface of the fine fibers or the voids of the network structure constituted by the fine fibers. It is intended.
  • the regenerated product obtained by the method of the same literature (the product obtained by adding water to the dried product of bacterial cellulose to restore the wet state) is a white turbid body.
  • the dry CNF redispersed liquid obtained by the present disclosure separates and disperses the fibers (CNF) separately, and thus a highly transparent CNF redispersed liquid is obtained. Therefore, the method disclosed in Japanese Patent Laid-Open No. 9-165402 is a method that is completely different from the method of the present disclosure in terms of not only the object to be processed but also the technical idea.
  • anion-modified CNF refers to cellulose nanofibers obtained by chemically treating cellulose, and more specifically, nanofibers are obtained by fibrillating cellulose fibers whose fiber surfaces are chemically treated. It refers to fine fibers (nanofibers).
  • the anion-modified CNF in the present disclosure has a charge on the surface of the cellulose fiber by chemical treatment.
  • the anion-modified CNF in the present disclosure does not include naturally-derived cellulose nanofibers such as bacterial cellulose produced from bacteria.
  • Examples of the chemical treatment include carboxymethyl (CM) treatment, carboxylation (oxidation) treatment, phosphate esterification treatment and the like in one or a plurality of embodiments.
  • Examples of the method for carboxymethylation of the cellulose raw material or the defibrated cellulose fiber include a method in which cellulose as a bottoming raw material is mercerized and then etherified.
  • a solvent is usually used.
  • the solvent include water, alcohol (eg, lower alcohol), and mixed solvents thereof.
  • Specific examples of the lower alcohol include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, isobutanol, and tertiary butanol.
  • the lower limit is usually 60% by weight or more
  • the upper limit is usually 95% by weight or less, preferably 60% by weight to 95% by weight.
  • the amount of the solvent is usually 3 times or more by weight based on the cellulose raw material or defibrated cellulose fiber.
  • the upper limit of the quantity of a solvent is not specifically limited, Usually, it is 20 weight times or less with respect to a cellulose raw material or a defibrated cellulose fiber. Therefore, the amount of the solvent is preferably 3 to 20 times by weight with respect to the cellulose raw material or defibrated cellulose fiber.
  • Mercerization is usually performed by mixing a cellulose raw material or defibrated cellulose fiber and a mercerizing agent.
  • mercerizing agents include alkali metal hydroxides (eg, sodium hydroxide, potassium hydroxide).
  • the lower limit of the amount of the mercerizing agent used is usually 0.5 times mol or more per anhydroglucose residue of cellulose raw material or defibrated cellulose fiber. Moreover, an upper limit is 20 times mole or less normally. Therefore, the amount of the mercerizing agent used is preferably 0.5 to 20 times mol per anhydroglucose residue of the cellulose raw material or defibrated cellulose fiber.
  • the lower limit of the mercerization reaction temperature is usually 0 ° C or higher, preferably 10 ° C or higher.
  • the upper limit is usually 70 ° C. or lower, preferably 60 ° C. or lower. Therefore, the reaction temperature for mercerization is usually 0 ° C. to 70 ° C., preferably 10 ° C. to 60 ° C.
  • the lower limit of the mercerization reaction time is usually 15 minutes or longer, preferably 30 minutes or longer.
  • the lower limit is usually 8 hours or less, preferably 7 hours or less. Therefore, the reaction time for mercerization is usually 15 minutes to 8 hours, preferably 30 minutes to 7 hours.
  • the etherification reaction is usually performed by adding a carboxymethylating agent to the reaction system after mercerization.
  • a carboxymethylating agent include sodium monochloroacetate.
  • the lower limit of the addition amount of the carboxymethylating agent is usually 0.05 times mole or more per glucose residue of the cellulose raw material or defibrated cellulose fiber.
  • the upper limit is usually 10.0 times mol or less. Accordingly, the addition amount of the carboxymethylating agent is usually 0.05 times to 10.0 times moles per glucose residue of the cellulose raw material or defibrated cellulose fiber.
  • the lower limit of the etherification reaction temperature is usually 30 ° C or higher, preferably 40 ° C or higher.
  • An upper limit is 90 degrees C or less normally, Preferably it is 80 degrees C or less. Accordingly, the reaction temperature for etherification is usually 30 ° C. to 90 ° C., preferably 40 ° C. to 80 ° C.
  • the lower limit of the etherification reaction time is usually 30 minutes or longer, preferably 1 hour or longer.
  • the upper limit is usually 10 hours or less, preferably 4 hours or less. Therefore, the reaction time for etherification is usually 30 minutes to 10 hours, preferably 1 hour to 4 hours.
  • the carboxymethyl substitution degree per glucose unit of carboxymethylated cellulose fiber or carboxymethylated cellulose nanofiber for example, it can be obtained by the following method. That is, 1) About 2.0 g of carboxymethylated cellulose fiber or carboxymethylated cellulose nanofiber (absolutely dried) is precisely weighed and placed in a 300 mL conical stoppered Erlenmeyer flask. 2) Add 100 mL of special concentrated nitric acid solution to 1000 mL of methanol, add 100 mL of methanol solution of nitric acid, and shake for 3 hours to convert carboxymethyl cellulose salt (CM-modified cellulose salt: eg Na-CMC) into H-CM-converted cellulose. (H-CMC).
  • CM-modified cellulose salt eg Na-CMC
  • carboxymethyl cellulose which is a kind of modified cellulose used for the preparation of modified CNF, means that at least a part of the fibrous shape is maintained even when dispersed in water. Therefore, it is distinguished from carboxymethyl cellulose (CMC) which is a kind of water-soluble polymer described later.
  • CMC carboxymethyl cellulose
  • a fibrous substance can be observed.
  • carboxymethyl cellulose which is a kind of water-soluble polymer
  • a fibrous substance is not observed.
  • “carboxymethylated cellulose” can observe the peak of cellulose I-type crystals when measured by X-ray diffraction, but cellulose I-type crystals are not observed in the water-soluble polymer carboxymethylcellulose.
  • carboxylated (oxidized) cellulose when carboxylated (oxidized) cellulose is used as the modified cellulose, carboxylated cellulose (also referred to as oxidized cellulose) can be obtained by carboxylating (oxidizing) the above cellulose raw material by a known method. .
  • the amount of carboxyl groups should be adjusted to 0.6 mmol / g to 2.0 mmol / g with respect to the absolute dry mass of anion-modified CNF. It is preferable to adjust the concentration to 1.0 mmol / g to 2.0 mmol / g.
  • a cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide, or a mixture thereof.
  • a method can be mentioned.
  • the primary hydroxyl group at the C6 position of the glucopyranose ring on the cellulose surface is selectively oxidized, and the cellulose fiber having an aldehyde group and a carboxyl group (—COOH) or carboxylate group (—COO—) on the surface.
  • the concentration of cellulose during the reaction is not particularly limited, but is preferably 5% by mass or less.
  • N-oxyl compound refers to a compound capable of generating a nitroxy radical.
  • any compound can be used as long as it promotes the target oxidation reaction. Examples include 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and its derivatives (eg, 4-hydroxy TEMPO).
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxy radical
  • its derivatives eg, 4-hydroxy TEMPO
  • the amount of N-oxyl compound used is not particularly limited as long as it is a catalytic amount capable of oxidizing cellulose as a raw material.
  • a catalytic amount capable of oxidizing cellulose as a raw material For example, with respect to 1 g of absolutely dry cellulose, 0.01 mmol to 10 mmol is preferable, 0.01 mmol to 1 mmol is more preferable, and 0.05 mmol to 0.5 mmol is more preferable. Further, it is preferably about 0.1 mmol / L to 4 mmol / L with respect to the reaction system.
  • Bromide is a compound containing bromine, and examples thereof include alkali metal bromide that can be dissociated and ionized in water.
  • an iodide is a compound containing iodine, and examples thereof include alkali metal iodide.
  • the amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted.
  • the total amount of bromide and iodide is, for example, preferably from 0.1 mmol to 100 mmol, more preferably from 0.1 mmol to 10 mmol, and even more preferably from 0.5 mmol to 5 mmol with respect to 1 g of absolutely dry cellulose.
  • oxidizing agent known ones can be used, and for example, halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide and the like can be used.
  • sodium hypochlorite is preferable because it is inexpensive and has a low environmental impact.
  • the amount of the oxidizing agent used is, for example, preferably 0.5 mmol to 500 mmol, more preferably 0.5 mmol to 50 mmol, further preferably 1 mmol to 25 mmol, and most preferably 3 mmol to 10 mmol with respect to 1 g of absolutely dry cellulose. Further, for example, 1 to 40 mol is preferable with respect to 1 mol of the N-oxyl compound.
  • the carboxylation (oxidation) of cellulose allows the reaction to proceed efficiently even under relatively mild conditions. Therefore, the reaction temperature is preferably 4 ° C. to 40 ° C., and may be room temperature of about 15 ° C. to 30 ° C. As the reaction proceeds, a carboxyl group is generated in the cellulose, so that the pH of the reaction solution is reduced.
  • an alkaline solution such as an aqueous sodium hydroxide solution is added to maintain the pH of the reaction solution at about 8 to 12, preferably about 10 to 11.
  • the reaction medium is preferably water because it is easy to handle and hardly causes side reactions.
  • the reaction time in the oxidation reaction can be appropriately set according to the progress of oxidation, and is usually 0.5 to 6 hours, for example, about 0.5 to 4 hours.
  • the oxidation reaction may be carried out in two stages. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the first-stage reaction again under the same or different reaction conditions, the efficiency is not affected by the reaction inhibition by the salt generated as a by-product in the first-stage reaction. Can be oxidized well.
  • Another example of the carboxylation (oxidation) method is a method of oxidizing by contacting a gas containing ozone and a cellulose raw material. By this oxidation reaction, at least the 2-position and 6-position hydroxyl groups of the glucopyranose ring are oxidized and the cellulose chain is decomposed.
  • the ozone concentration in the gas containing ozone is preferably 50 g / m 3 to 250 g / m 3 , and more preferably 50 g / m 3 to 220 g / m 3 .
  • the amount of ozone added to the cellulose raw material is preferably 0.1 parts by mass to 30 parts by mass, and more preferably 5 parts by mass to 30 parts by mass when the solid content of the cellulose raw material is 100 parts by mass. .
  • the ozone treatment temperature is preferably 0 ° C. to 50 ° C., more preferably 20 ° C. to 50 ° C.
  • the ozone treatment time is not particularly limited, but is about 1 minute to 360 minutes, preferably about 30 minutes to 360 minutes. When the conditions for the ozone treatment are within these ranges, the cellulose can be prevented from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved.
  • an additional oxidation treatment may be performed using an oxidizing agent.
  • the oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid.
  • these oxidizing agents can be dissolved in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and a cellulose raw material can be immersed in the solution for additional oxidation treatment.
  • the amount of carboxyl groups in the oxidized cellulose can be adjusted by controlling the reaction conditions such as the amount of the oxidant added and the reaction time.
  • phosphorylated cellulose can be used as the modified cellulose.
  • the said cellulose is obtained by the method of mixing the powder and aqueous solution of phosphoric acid type compound A with a cellulose raw material, and the method of adding the aqueous solution of phosphoric acid type compound A to the slurry of a cellulose raw material.
  • Examples of the phosphoric acid compound A include phosphoric acid, polyphosphoric acid, phosphorous acid, phosphonic acid, polyphosphonic acid, and esters thereof. These may be in the form of salts.
  • a compound having a phosphate group is preferable because it is low in cost, easy to handle, and can improve the fibrillation efficiency by introducing a phosphate group into cellulose of the pulp fiber.
  • Compounds having a phosphate group include phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium metaphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, phosphorus
  • Examples include tripotassium acid, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, ammonium metaphosphate, and the like. These can be used alone or in combination of two or more.
  • phosphoric acid phosphoric acid sodium salt, phosphoric acid potassium salt, phosphoric acid
  • the ammonium salt is more preferred.
  • sodium dihydrogen phosphate and disodium hydrogen phosphate are preferred.
  • the phosphoric acid compound A is preferably used as an aqueous solution because the uniformity of the reaction is enhanced and the efficiency of introduction of phosphate groups is increased.
  • the pH of the aqueous solution of the phosphoric acid compound A is preferably 7 or less because of the high efficiency of introducing phosphate groups, but is preferably pH 3 to 7 from the viewpoint of suppressing hydrolysis of pulp fibers.
  • Phosphoric acid compound A is added to a cellulose raw material dispersion having a solid content concentration of 0.1% by mass to 10% by mass with stirring to introduce phosphate groups into the cellulose.
  • the addition amount of the phosphoric acid compound A is preferably 0.2 to 500 parts by mass, preferably 1 to 400 parts by mass as the amount of phosphorus element. Is more preferable. If the ratio of the phosphoric acid type compound A is more than the said lower limit, the yield of a fine fibrous cellulose can be improved more. However, if the upper limit is exceeded, the effect of improving the yield reaches its peak, which is not preferable from the viewpoint of cost.
  • Compound B is not particularly limited, but a nitrogen-containing compound showing basicity is preferable.
  • “Basic” as used herein is defined as an aqueous solution exhibiting a pink to red color in the presence of a phenolphthalein indicator, or an aqueous solution having a pH greater than 7.
  • the basic nitrogen-containing compound used in the present disclosure is not particularly limited as long as the effect of the present disclosure is exhibited, but a compound having an amino group is preferable.
  • urea methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like can be mentioned, but not particularly limited. Among these, urea which is easy to handle at low cost is preferable.
  • the amount of compound B added is preferably 2 parts by mass to 1000 parts by mass, and more preferably 100 parts by mass to 700 parts by mass with respect to 100 parts by mass of the solid content of the cellulose raw material.
  • the reaction temperature is preferably 0 ° C. to 95 ° C., more preferably 30 ° C. to 90 ° C.
  • the reaction time is not particularly limited, but is about 1 to 600 minutes, more preferably 30 to 480 minutes.
  • the conditions of the phosphoric esterification reaction are within these ranges, it is possible to prevent the cellulose from being excessively phosphorylated and easily dissolved, and the yield of phosphorylated esterified cellulose is improved.
  • water is contained in the heat treatment, it is preferably heated at 130 ° C. or lower, preferably 110 ° C. or lower, after removing water, it is preferably heat treated at 100 ° C. to 170 ° C.
  • the phosphate group substitution degree per glucose unit of the phosphorylated cellulose is preferably 0.001 to 0.40.
  • the phosphate group substitution degree per glucose unit of the phosphorylated cellulose is preferably 0.001 to 0.40.
  • the celluloses are electrically repelled. For this reason, the cellulose which introduce
  • the degree of phosphate group substitution per glucose unit is greater than 0.40, it may swell or dissolve, and may not be obtained as a nanofiber.
  • it is preferable that the phosphoric esterified cellulose raw material obtained above is boiled and then washed with cold water.
  • an apparatus for defibrating is not particularly limited, but a strong shearing force is applied to the aqueous dispersion of the modified cellulose by using an apparatus such as a high-speed rotation type, a colloid mill type, a high-pressure type, a roll mill type, or an ultrasonic type. It is preferable to apply.
  • a wet high-pressure or ultrahigh-pressure homogenizer that can apply a pressure of 50 MPa or more to the aqueous dispersion and can apply a strong shearing force.
  • the pressure is more preferably 100 MPa or more, and further preferably 140 MPa or more.
  • the modified cellulose may be pretreated using a known mixing, stirring, emulsifying, and dispersing device such as a high-speed shear mixer. Is possible.
  • the number of treatments (passes) in the defibrating device may be one time, two times or more, and preferably two times or more.
  • the modified cellulose is usually dispersed in a solvent.
  • a solvent will not be specifically limited if a modified cellulose can be disperse
  • distributed For example, water, organic solvents (for example, hydrophilic organic solvents, such as methanol), and those mixed solvents are mentioned. Since it uses for foodstuffs, it is preferred that a solvent is water.
  • the solid content concentration of the modified cellulose in the dispersion is usually 0.1% by weight or more, preferably 0.2% by weight or more, more preferably 0.3% by weight or more. Thereby, the liquid quantity with respect to the quantity of a cellulose fiber raw material becomes an appropriate quantity, and is efficient.
  • the upper limit is usually 10% by weight or less, preferably 6% by weight or less. Thereby, fluidity
  • the fiber width of the anion-modified CNF is, in one or more embodiments, about 1 nm to 500 nm or 2 nm to 100 nm, preferably 1 nm to less than 20 nm, 2 nm to 15 nm, or 3 nm to 5 nm. .
  • the average aspect ratio of anion-modified CNF is usually 100 or more.
  • the upper limit of the average aspect ratio is not particularly limited, but is usually 1000 or less.
  • Examples of the cellulose raw material include plant materials, animal materials, and algae in one or more embodiments.
  • examples of the plant material include wood, bamboo, hemp, jute, kenaf, cloth, pulp, recycled pulp, and waste paper.
  • examples of the pulp include kraft pulp (KP), sulfate pulp (SP), dissolved sulfite pulp (DSP), dissolved kraft pulp (DKP), powdered cellulose, and microcrystalline cellulose powder in one or more embodiments.
  • Examples of the animal material include squirts in one or a plurality of embodiments.
  • the present disclosure includes mixing an anion-modified CNF and a redispersibility improver to obtain an aqueous suspension of the anion-modified CNF, and drying the aqueous suspension to obtain a dry CNF.
  • the present invention relates to a method for producing dry CNF (a method for producing dry CNF of the present disclosure).
  • a method for producing dry CNF of the present disclosure in one or a plurality of embodiments, film-like dry CNF and / or powder-like dry CNF having sufficient transparent dispersibility upon redispersion can be obtained.
  • the method for producing dry CNF of the present disclosure can be preferably used for TEMPO-oxidized CNF among anion-modified CNFs.
  • the redispersibility of a dried product of TEMPO-oxidized CNF dry CNF
  • Dispersibility can be improved or improved.
  • the manufacturing method of the dry CNF of this indication can be utilized for CCM CNF in one or some embodiment.
  • the dispersibility at the time of redispersion of the dried product of CCM CNF can be improved or improved.
  • the manufacturing method of the dry CNF of this indication can be preferably utilized for phosphate ester CNF in anion modified CNF in one or some embodiment.
  • the redispersibility of a dried product of phosphoesterified CNF can be improved or improved.
  • the transparent dispersibility of can be improved or improved.
  • dry CNF having improved redispersibility can be obtained, and in particular, dry CNF having improved transparent dispersibility during redispersion can be obtained.
  • the obtained dry CNF may have sufficient transparent dispersibility when redispersed. “Having sufficient transparent dispersibility when redispersed” means that, in one or more embodiments, the transparency and re-dispersion to the dispersion medium at the same or comparable level as the anion-modified CNF suspension before drying. It has dispersibility.
  • the obtained dry CNF is used in various chemical products, foods, cosmetics, pharmaceuticals, beverages, reinforcing materials (including paper), absorbent products such as diapers, heat insulating materials, automobile members, paints, and the like. It can be used for agricultural chemicals, construction, batteries, household goods, water treatment, or cleaning agents.
  • the redispersibility improving agent in the present disclosure includes, in one or more embodiments, low molecular weight saccharides, low molecular weight polypeptides, amino acids, and low molecular weight PVA.
  • the method for producing dry CNF of the present disclosure includes mixing an anion-modified CNF and a low molecular weight saccharide to obtain an aqueous suspension of the anion-modified CNF, and the obtained aqueous suspension. Including drying the liquid.
  • low molecular weight saccharide refers to a saccharide having a molecular weight of 50,000 or less.
  • the saccharide include monosaccharides, disaccharides, oligosaccharides, and polysaccharides in one or more embodiments.
  • the molecular weight of the low molecular weight saccharide is 50,000 or less, 20,000 or less, 15,000 or less, 10,000 or less, 5000 or less, 3000 or less, 2000 or less, or 200 or less, Or 150 or more.
  • Examples of monosaccharides include glucose and the like in one or more embodiments.
  • the molecular weight of the monosaccharide is 150 or more or 200 or less in one or more embodiments.
  • disaccharides examples include maltose and lactose in one or more embodiments.
  • the molecular weight of the disaccharide is 200 or more, or 400 or less, 380 or less, 360 or less, or 350 or less.
  • Oligosaccharides include cyclodextrin in one or more embodiments.
  • the molecular weight (weight average molecular weight) of the oligosaccharide is 400 or more, 600 or more, 800 or more, or 900 or more, or 5000 or less, 4000 or less, 3000 or less, or 2000 or less.
  • Examples of cyclodextrins include ⁇ -cyclodextrin (natural molecular weight: 973), ⁇ -cyclodextrin (natural molecular weight: 1135), and ⁇ -cyclodextrin (natural molecular weight: 1297).
  • the cyclodextrin may be a natural cyclodextrin or a chemically modified cyclodextrin (cyclodextrin derivative).
  • cyclodextrin derivative in one or more embodiments, hydroxypropylated cyclodextrin, acetylated cyclodextrin, triacetylated cyclodextrin, methylated cyclodextrin, monochlorotriazinated cyclodextrin, amino Cyclodextrin, ethylene diaminated cyclodextrin and the like.
  • ⁇ -cyclodextrin and ⁇ -cyclodextrin derivatives having a molecular weight of 3000 or less or 2000 or less from the viewpoint of obtaining good redispersibility, in particular, good transparent redispersibility upon redispersion.
  • ⁇ -cyclodextrin or glucose is preferable.
  • ⁇ -cyclodextrin, ⁇ -cyclodextrin derivative, or ⁇ -cyclodextrin is more preferable because it does not inhibit the properties (thixotropic properties, viscosity, etc.) of anion-modified CNF.
  • polysaccharides examples include dextrin and low molecular weight CMC in one or more embodiments.
  • the molecular weight of dextrin is 50,000 or less, 20,000 or less, 17,000 or less, 15,000 or less, 13,000 or less, 120,000 or less, 11,000 or less, or 10,000. 000 or less, or 200 or more, 500 or more, 1,000 or more, 2,000 or more, 3,000 or more, 4,000 or more, 5,000 or more, or 6,000 or more.
  • Examples of the low molecular weight CMC include CMC having a molecular weight of 20,000 or less.
  • the molecular weight of the low molecular weight CMC is 20,000 or less, 15,000 or less, or 200 or more in one or more embodiments.
  • the degree of etherification (carboxymethyl group substitution) of CMC is not particularly limited, and may be 0.55 to 1.6 or 0.65 to 1.1 in one or more embodiments.
  • the method for producing dry CNF according to the present disclosure includes mixing an anion-modified CNF in a wet state (dispersed in water) and a low molecular weight saccharide. Thereby, an aqueous suspension containing anion-modified CNF and a low molecular weight saccharide can be obtained.
  • the blending ratio of the low molecular weight saccharide to the anion-modified CNF is 5 parts by mass or more, 5 parts by mass to 500 parts by mass, 5 parts by mass to 400 parts by mass in one or more embodiments. Part by mass, 5 parts by mass to 300 parts by mass or 10 parts by mass to 200 parts by mass, and preferably 30 parts by mass to 350 parts by mass or 30 parts by mass to 150 parts by mass.
  • the blending ratio of the low molecular weight saccharide to the anion-modified CNF is 5 parts by mass in one or a plurality of embodiments. 5 parts by weight to 500 parts by weight, 5 parts by weight to 400 parts by weight, 5 parts by weight to 300 parts by weight or 10 parts by weight to 200 parts by weight, preferably 30 parts by weight to 250 parts by weight or 45 parts by weight. 150 parts by mass.
  • the blending ratio of the low molecular weight saccharide to the anion-modified CNF is 5 parts by mass or more and 10 parts by mass in one or more embodiments. From 500 parts by weight or from 30 parts by weight to 400 parts by weight, preferably from 50 parts by weight to 350 parts by weight or from 75 parts by weight to 350 parts by weight.
  • the blending ratio of the low molecular weight saccharide to the anion-modified CNF is 5 parts by mass or more in one or more embodiments, Parts by weight to 500 parts by weight, 5 parts by weight to 400 parts by weight, 5 parts by weight to 300 parts by weight or 10 parts by weight to 200 parts by weight, preferably 30 parts by weight to 250 parts by weight or 45 parts by weight to 150 parts by weight. It is.
  • the method for producing dry CNF of the present disclosure includes drying an aqueous suspension containing an anion-modified CNF and a low molecular weight saccharide.
  • the aqueous suspension may be dried by forming a thin film, or may be spray-dried. Thereby, a dry film and / or a dry powder containing an anion-modified CNF and a low molecular weight saccharide can be obtained.
  • the method for producing dry CNF according to the present disclosure is obtained by mixing an anion-modified CNF and a low molecular weight polypeptide or amino acid to obtain an aqueous suspension of the anion-modified CNF. Drying the aqueous suspension.
  • low molecular weight polypeptide refers to a polypeptide having a molecular weight of 10,000 or less.
  • the molecular weight of the low molecular weight polypeptide is 1000 or less, 500 or less, or 150 or more in one or more embodiments.
  • the amino acid include neutral amino acids such as glycine and glutamine in one or more embodiments.
  • the method for producing dry CNF according to the present disclosure includes mixing an anion-modified CNF in a wet state (dispersed in water) with a low molecular weight polypeptide or amino acid. Thereby, an aqueous suspension containing anion-modified CNF and a low molecular weight polypeptide or amino acid can be obtained.
  • the blending ratio of the low molecular weight polypeptide or amino acid to anion-modified CNF is 5 parts by mass or more, 5 parts by mass to 500 parts by mass, and 5 parts by mass in one or more embodiments. 400 parts by weight, 5 parts by weight to 300 parts by weight or 10 parts by weight to 200 parts by weight, preferably 30 parts by weight to 350 parts by weight or 30 parts by weight to 150 parts by weight.
  • the method for producing dry CNF of the present disclosure includes drying an aqueous suspension containing an anion-modified CNF and a low molecular weight polypeptide or amino acid.
  • the aqueous suspension may be dried by forming a thin film, or may be spray-dried. Thereby, a dry film and / or a dry powder containing an anion-modified CNF and a low molecular weight polypeptide or amino acid can be obtained.
  • the method for producing dry CNF of the present disclosure includes mixing an anion-modified CNF and a low molecular weight PVA to obtain an aqueous suspension of the anion-modified CNF, and the obtained aqueous suspension. Including drying the liquid.
  • low molecular weight PVA refers to PVA having a molecular weight of 3000 or less. In one or more embodiments, the molecular weight of the low molecular weight PVA is 2500 or less, 2000 or less, 1500 or less, or 100 or more.
  • the method for producing dry CNF according to the present disclosure includes mixing an anion-modified CNF in a wet state (dispersed in water) and a low molecular weight PVA. Thereby, an aqueous suspension containing anion-modified CNF and low molecular weight PVA can be obtained.
  • the blending ratio of the low molecular weight PVA to the anion-modified CNF is 5 parts by mass or more, 5 parts by mass to 500 parts by mass, and 5 parts by mass to 400 parts by mass in one or more embodiments.
  • the method for producing dry CNF according to the present disclosure includes drying an aqueous suspension containing an anion-modified CNF and a low molecular weight PVA.
  • the aqueous suspension may be dried by forming a thin film, or may be spray-dried. Thereby, a dry film and / or dry powder containing anion-modified CNF and low molecular weight PVA can be obtained.
  • the drying method of the aqueous suspension is not particularly limited, and in one or a plurality of embodiments, spray drying, air drying, hot air drying, vacuum drying, pressing, and the like can be given.
  • dry CNF obtained by the dry CNF production method of the present disclosure is added to 5 g of distilled CNF refined to about 1 mm to 2 mm to 5 g of distilled water, and then for about 1 minute with a point mixer. After stirring, when left standing at room temperature for about 24 hours and then again stirred for about 1 minute with a point mixer, it has a transparent dispersibility at least at the same level or comparable to that of the CNF dispersion before drying.
  • the dry CNF obtained by the dry CNF manufacturing method of the present disclosure is obtained by pulverizing a dry CNF in a film shape to about 3 ⁇ 3 mm in a 200 mL beaker.
  • distilled water is added to 7% and then stirred with a three-one motor at 600 rpm and a blade diameter of 3.5 cm for 1 to 3 hours, it is at least as high as the CNF dispersion before drying. Or, it has a transparent dispersibility at a comparable level.
  • the dry CNF obtained by the dry CNF production method of the present disclosure may be a dry product, and in one or more embodiments, in the form of a film, from the viewpoint of further improving the transparent dispersibility in the dispersion medium to be redispersed. It may be in powder form.
  • the present disclosure relates to dry CNF comprising a redispersibility improver and an anion-modified CNF (dry CNF of the present disclosure).
  • dry CNF of this indication can be obtained by the manufacturing method of dry CNF of this indication in one or some embodiment.
  • the dry CNF of the present disclosure is mainly composed of an anion-modified CNF that is not particularly limited.
  • the dry CNF of the present disclosure may be in the form of a film or powder.
  • the present disclosure relates to a method for producing a transparent redispersion of CNF (a method for producing a transparent redispersion of the present disclosure).
  • the method for producing a transparent redispersion of the present disclosure includes obtaining an aqueous suspension containing an anion-modified CNF and a redispersibility improving agent, drying the aqueous suspension, And redispersing the obtained dried product in a dispersion medium.
  • the method for producing a transparent redispersion of CNF according to the present disclosure includes redispersing the dry CNF obtained by the method for producing dry CNF according to the present disclosure in a dispersion medium.
  • a transparent redispersion of can be obtained.
  • a transparent redispersion of dry CNF having high transparency in which dry TEMPO-oxidized CNF is redispersed can be obtained.
  • the redispersion may be a liquid or a gel.
  • the dispersion medium examples include an aqueous dispersion medium such as water in one or a plurality of embodiments.
  • the dispersion medium may contain various polymers other than CNF.
  • the method for producing a transparent redispersion of the present disclosure may further include removing the redispersibility improver from the obtained transparent redispersion.
  • the redispersibility improver is a cyclodextrin
  • the removal of the redispersibility improver is performed in one or more embodiments by mixing a linear aliphatic alcohol such as 1-decanol and a transparent redispersion, This can then be done by separating the cyclodextrin from the transparent redispersion by applying physical stress.
  • the addition amount of the linear aliphatic alcohol is not particularly limited, and in one or a plurality of embodiments, it may be a molar equivalent with respect to the cyclodextrin contained in the transparent redispersion. Examples of the physical stress include centrifugation in one or more embodiments.
  • the dispersion medium examples include an aqueous dispersion medium such as water in one or a plurality of embodiments.
  • the dispersion medium may contain various polymers other than CNF.
  • the present disclosure relates to a method for producing a redispersion of CNF (a method for producing a redispersion of the present disclosure).
  • the method for producing a redispersion of the present disclosure includes obtaining an aqueous suspension containing CCM CNF and a redispersibility improving agent, drying the aqueous suspension, and Re-dispersing the obtained dried product in a dispersion medium.
  • the method for producing a CNF redispersion of the present disclosure includes redispersing the dry CNF obtained by the method for producing a dry CNF of the present disclosure in a dispersion medium.
  • the dispersibility is the same as or comparable to that of a CCM CNF aqueous suspension or aqueous dispersion that is not dried.
  • a re-dispersion of dry CMized CNF can be obtained.
  • the redispersion may be a liquid or a gel.
  • the method for removing the dispersion medium and the redispersibility improver is the same as the method for producing the transparent redispersion of the present disclosure.
  • the present disclosure includes mixing an anion-modified CNF and a redispersibility improver to obtain an aqueous suspension of anion-modified cellulose nanofibers, and drying the aqueous suspension.
  • the present invention relates to a method for improving redispersibility of contained CNF, in particular, transparent dispersibility during redispersion.
  • the transparent dispersibility at the time of redispersion of a dried product of TEMPO-oxidized CNF among anion-modified CNFs can be further improved or improved.
  • dispersibility during redispersion of a dry product of C-modified CNF among anion-modified CNFs can be further improved or improved.
  • the redispersibility improving method of the present disclosure in one or a plurality of embodiments, it is possible to further improve or improve the transparent dispersibility during redispersion of the dried product of phosphate esterified CNF among anion-modified CNFs. .
  • the redispersibility improving agent and the blending ratio are the same as in the method for producing dry CNF of the present disclosure.
  • the aqueous suspension may contain a third component other than the anion-modified CNF and the redispersibility improving agent during redispersion.
  • the third component include a water-soluble polymer in one or a plurality of embodiments.
  • the aqueous suspension can be dried in the same manner as the dry CNF production method of the present disclosure.
  • the present disclosure provides a redispersibility improving agent for improving or improving redispersibility of dry cellulose nanofibers in an aqueous dispersion medium, in particular, transparent dispersibility during redispersion (redispersion of the present disclosure).
  • Property improver includes one or more selected from the group consisting of low molecular weight saccharides, low molecular weight polypeptides, amino acids, and low molecular weight PVC.
  • the redispersibility improver of the present disclosure is used in one or a plurality of embodiments in the production of dry cellulose nanofibers having improved or improved redispersibility in a dispersion medium, in particular, transparent dispersibility during redispersion. can do.
  • Low molecular weight saccharides, low molecular weight polypeptides, amino acids, and low molecular weight PVC are as described above.
  • the present disclosure is a dry composition containing anion-modified cellulose nanofibers and a redispersibility improver, wherein the redispersibility improver is a saccharide having a molecular weight of 50,000 or less, a low molecular weight polypeptide,
  • the present invention relates to a dry composition (dry composition of the present disclosure) comprising at least one selected from the group consisting of amino acids and low molecular weight PVC.
  • the proportion of the redispersibility improver in the dry composition of the present disclosure is 5% by mass or more and 5% by mass to 500% by mass with respect to the anion-modified CNF (absolutely dry solid content). 5% by mass to 400% by mass, 5% by mass to 300% by mass, 10% by mass to 200% by mass, or 20% by mass to 300% by mass, and preferably 30% by mass to 350% by mass or 30% by mass to 150% by mass.
  • the proportion of the redispersibility improver in the dry composition of the present disclosure is, in one or more embodiments, 5 masses relative to TEMPO-oxidized CNF (absolutely dry solids). % Or more, 5 mass% to 500 mass%, 5 mass% to 400 mass%, 5 mass% to 300 mass%, or 10 mass% to 200 mass%, preferably 30 mass% to 250 mass% or 45 mass%. ⁇ 150% by weight.
  • the proportion of the redispersibility improver in the dry composition of the present disclosure is, in one or more embodiments, 5 masses with respect to TEMPO oxidized CNF (absolutely dry solids). % Or more, 10 mass% to 500 mass%, or 30 mass% to 400 mass%, preferably 50 mass% to 350 mass%, or 75 mass% to 350 mass%.
  • the proportion of the redispersibility improver in the dry composition of the present disclosure is, in one or more embodiments, based on phosphate esterified CNF (absolutely dry solids). 5 mass% or more, 5 mass% to 500 mass%, 5 mass% to 400 mass%, 5 mass% to 300 mass%, or 10 mass% to 200 mass%, preferably 30 mass% to 250 mass%. Or 45 mass% to 150 mass%.
  • the dry composition of the present disclosure may include a third component other than the anion-modified CNF and the redispersibility improving agent.
  • the third component include a water-soluble polymer in one or a plurality of embodiments.
  • the dry composition of the present disclosure may be a film, a solid, or a powder.
  • the film thickness of the dry composition of this indication is 50 micrometers or more or 100 micrometers or more, or 1000 micrometers or less or 300 micrometers or less in one or some embodiment.
  • the dry composition of the present disclosure may be produced by mixing an anion-modified CNF and a redispersibility improver, and, if necessary, the third component and drying it.
  • the dry CNF of the present disclosure and the third component may be mixed and dried.
  • the present disclosure further relates to one or more of the following embodiments.
  • An anion-modified CNF and a redispersibility improver are mixed to obtain an aqueous suspension of the anion-modified CNF, and the aqueous suspension is dried to obtain a dry CNF.
  • the method for producing dry CNF wherein the redispersibility improving agent is selected from the group consisting of sugars having a molecular weight of 50,000 or less, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol.
  • the redispersibility improving agent is carboxymethylcellulose having a molecular weight of 20,000 or less.
  • [10] comprising mixing an anion-modified CNF and a redispersibility improver to obtain an aqueous suspension of the anion-modified CNF, and drying the aqueous suspension;
  • the method for improving redispersibility of CNF wherein the redispersibility improving agent is selected from the group consisting of sugars having a molecular weight of 50,000 or less, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol.
  • a method for improving the redispersibility of CNF comprising mixing an anion-modified CNF and a low molecular weight saccharide to obtain an aqueous suspension of the anion-modified CNF, and drying the aqueous suspension.
  • a method for improving the redispersibility of CNF comprising mixing an anion-modified CNF and a low molecular weight CMC to obtain an aqueous suspension of the anion-modified CNF, and drying the aqueous suspension.
  • Redispersion of CNF comprising mixing an anion-modified CNF with at least one of a low molecular weight polypeptide and an amino acid to obtain an aqueous suspension of the anion-modified CNF, and drying the aqueous suspension Improvement method.
  • a method for improving the redispersibility of CNF comprising mixing an anion-modified CNF and a low molecular weight PVA to obtain an aqueous suspension of the anion-modified CNF, and drying the aqueous suspension.
  • the method for improving redispersibility of CNF according to any one of [10] to [14], wherein the anion-modified CNF is carboxylated CNF, CCM CNF, or phosphate ester CNF.
  • a drug for improving or improving the redispersibility of dry CNF in an aqueous dispersion medium selected from the group consisting of low molecular weight saccharides, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol
  • a redispersibility improving agent containing one or more of the above [17] A redispersibility improving agent for improving or improving the redispersibility of dry CNF in an aqueous dispersion medium, comprising a low molecular weight CMC.
  • a redispersibility improver for use in the production of dry CNF comprising at least one selected from the group consisting of low molecular weight sugars, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol. Redispersibility improving agent containing.
  • a redispersibility improving agent for use in the production of dry CNF comprising a low molecular weight CMC.
  • a redispersibility improver for use in the method for producing dry CNF according to any one of [1] to [9] or the redispersibility improving method according to any one of [10] to [15] A redispersibility improving agent comprising at least one selected from the group consisting of a low molecular weight saccharide, a low molecular weight polypeptide, an amino acid, and a low molecular weight polyvinyl alcohol.
  • a redispersibility improver for use in the method for producing dry CNF according to any one of [1] to [9] or the redispersibility improving method according to any one of [10] to [15] A redispersibility improver comprising low molecular weight CMC.
  • a dry composition comprising an anion-modified CNF and a redispersibility improver
  • a composition comprising the redispersibility improving agent comprising at least one selected from the group consisting of sugars having a molecular weight of 50,000 or less, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol.
  • the anion-modified CNF is carboxylated CNF, CCM CNF, or phosphate ester CNF.
  • the reaction product was taken out, neutralized and washed to obtain a carboxymethylated pulp having a carboxymethyl substitution degree of 0.25 per glucose unit.
  • the pulp solid content is 1.2% (w / v) with water, and the fiber is fibrillated by treating with a high-pressure homogenizer five times at 20 ° C. and a pressure of 150 MPa.
  • the carboxymethylated cellulose nanofiber (hereinafter referred to as CM-CNF) )
  • the average fiber diameter was 12 nm and the aspect ratio was 130.
  • This pulp sheet was immersed in 31.2 g of the phosphorylating reagent (80 parts by mass as the amount of phosphorus element with respect to 100 parts by mass of the dried pulp), and heated for 1 hour with an air dryer at 105 ° C. (Yamato Scientific Co., Ltd. DKM400) Further, heat treatment was performed at 150 ° C. for 1 hour to introduce phosphate groups into the cellulose fibers. Subsequently, 500 ml of ion-exchanged water was added to the pulp sheet in which the phosphate group was introduced into the cellulose fiber, and the mixture was dehydrated after washing with stirring.
  • the phosphorylating reagent 80 parts by mass as the amount of phosphorus element with respect to 100 parts by mass of the dried pulp
  • the dehydrated sheet was diluted with 300 ml of ion-exchanged water, and 5 ml of 1N aqueous sodium hydroxide solution was added little by little with stirring to obtain a cellulose suspension having a pH of 12 to 13. Thereafter, the cellulose suspension was dehydrated and washed by adding 500 ml of ion exchange water. This dehydration washing was repeated two more times. Ion exchange water was added to the sheet obtained after washing and dehydration, and the mixture was stirred to obtain a 0.5 mass% cellulose suspension.
  • This cellulose suspension was defibrated for 30 minutes using a defibrating apparatus (Cleamix-2.2S, manufactured by M Technique Co., Ltd.) at 21500 rpm, and defibrated cellulose (phosphate ester) Cellulose nanofiber) suspension was obtained.
  • a defibrating apparatus Cleamix-2.2S, manufactured by M Technique Co., Ltd.
  • defibrated cellulose (phosphate ester) Cellulose nanofiber) suspension was obtained.
  • fine fibrous cellulose having a width of 4 nm was contained.
  • Example 1 Using the chemicals shown in Table 1, production of dry anion-modified CNF (dry CNF) and redispersibility of dry CNF were evaluated.
  • dry CNF dry anion-modified CNF
  • anion-modified CNF1 T-CNF, average fiber width: 3 nm, aspect ratio: 250
  • the obtained liquid was applied on a Teflon (trademark) plate or a Teflon (trademark) dish, and dried with hot air of 60 ° C. to 105 ° C. to obtain a film-like dry CNF.
  • the blank was the same as above except that no drug was added.
  • Example 2 Using CMC (manufactured by Nippon Paper Industries Co., Ltd.) shown in Table 2 below, the redispersibility of anion-modified CNF was evaluated.
  • anion-modified CNF anion-modified CNF1 (T-CNF, average fiber diameter: 3 nm, aspect ratio: 250) was used.
  • “Sunrose” is a registered trademark of Nippon Paper Industries Co., Ltd.
  • a film-like dry CNF was obtained in the same procedure as in Experimental Example 1, except that the CMC shown in Table 2 below was used instead of the drugs in Table 1.
  • Film-like dry CNF is pulverized to about 3 x 3 mm, adjusted in distilled water to a solid content of 0.7% (w / v) in a 200 mL beaker, and a stirrer with a three-one motor of 600 rpm and a blade diameter of 3.5 cm The mixture was stirred for 1 to 3 hours to obtain an aqueous redispersion or aqueous suspension.
  • the blank was the same as above except that no drug was added.
  • the redispersibility of dry CNF could be improved by using CMC having a molecular weight of 20,000 or less.
  • CMC having a molecular weight of 20,000 or less was added and the stirring time was 2 hours or more, no precipitate or undispersed gel was confirmed, and anion-modified CNF dispersion before drying was confirmed.
  • a highly transparent CNF redispersion liquid equivalent to the liquid could be obtained. It was also confirmed that the time required for redispersion of dry CNF could be shortened by using CMC having a molecular weight of 20,000 or less.
  • CM-CNF anion-modified CNF2
  • average fiber width 12 nm, aspect ratio: 130 or more
  • the temperature of the hot air during the production of the dried film was 60 ° C.
  • dry CNF was produced and dry CNF was redispersed in the same manner as in Experimental Example 1 to obtain an aqueous dispersion or suspension in which dry CM CNF was redispersed.
  • the obtained dried CNF could be dispersed in distilled water for C-converted CNF. Moreover, it has confirmed that the redispersibility was improved compared with the conventional chemical

Abstract

A production method of dried cellulose nanofibers (CNFs) having sufficient redispersibility, and a method capable of improving redispersibility of CNFs are provided. The invention relates to: a dried CNF production method which involves mixing anion-modified CNFs and a redispersibility improving agent to obtain an aqueous suspension of anion-modified CNFs, and drying the aqueous suspension to obtain dried CNFs, wherein the redispersibility improving agent is selected from the group consisting of sugars with a molecular weight of less than or equal to 50,000, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol; and a CNF redispersibility improvement method which involves mixing anion-modified CNF and a redispersibility improving agent to obtain an aqueous suspension of anion-modified CNF, and drying the aqueous suspension, wherein the redispersibility improving agent is selected from the group consisting of sugars with a molecular weight less than or equal to 50,000, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol.

Description

乾燥セルロースナノファイバーの製造方法Method for producing dry cellulose nanofiber
 本開示は、乾燥セルロースナノファイバーの製造方法、及び乾燥セルロースナノファイバーの再分散性の改善方法に関する。 The present disclosure relates to a method for producing dry cellulose nanofibers and a method for improving the redispersibility of dry cellulose nanofibers.
 セルロースナノファイバー(CNF)は、数nm~数百nm程度の繊維径までに微細化した植物由来の繊維である。CNFは、環境負荷が少なく、軽量、高強度、高ガスバリア性、熱による小寸法変形、高い比表面積、高い透明性、及び水中での高粘性等といった様々な特徴を備える。このため、CNFは、自動車の部材及び食品包装材のみならず、食品、医薬品及び化粧品等といった幅広い分野での利用が見込まれている。 Cellulose nanofiber (CNF) is a plant-derived fiber refined to a fiber diameter of about several nm to several hundred nm. CNF has a small environmental load and has various characteristics such as light weight, high strength, high gas barrier property, small dimensional deformation due to heat, high specific surface area, high transparency, and high viscosity in water. For this reason, CNF is expected to be used not only in automobile parts and food packaging materials but also in a wide range of fields such as foods, pharmaceuticals and cosmetics.
 CNFは、通常、低濃度の水分散体(湿潤状態)として製造される。しかしながら、水分散体の場合、移送及び保管コストが高いという問題や、菌による汚染といった問題等がある。このため、CNFを乾燥する方法が提案されている(例えば、特許文献1等)。 CNF is usually produced as a low concentration aqueous dispersion (wet state). However, in the case of an aqueous dispersion, there are problems such as high transportation and storage costs and contamination with bacteria. For this reason, a method of drying CNF has been proposed (for example, Patent Document 1).
WO2015/107995WO2015 / 107995
 乾燥させたCNFは、通常、水等の分散媒に再分散させて使用される。この再分散を行うにあたり、CNFが十分に再分散されないという問題が生じる場合がある。特に、透明なCNF溶液を乾燥させたCNF、中でも乾燥させたアニオン変性CNF、特に2,6,6-テトラメチルピペリジン-1-オキシラジカル(TEMPO)酸化CNFの再分散性が低く、透明性が回復しないという問題がある。このため、十分な再分散性を維持した状態でCNFを乾燥可能な新たな方法が求められている。 The dried CNF is usually used after being redispersed in a dispersion medium such as water. When performing this redispersion, there may be a problem that CNF is not sufficiently redispersed. In particular, CNF obtained by drying a transparent CNF solution, especially dried anion-modified CNF, particularly 2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) oxidized CNF has low redispersibility and transparency. There is a problem of not recovering. For this reason, a new method capable of drying CNF while maintaining sufficient redispersibility is demanded.
 本開示は、一態様において、再分散性が向上した乾燥CNFの製造方法、特に、再分散時の透明分散性が向上した乾燥CNFの製造方法を提供する。本開示は、一態様において、CNFの再分散性を改善可能とする方法を提供する。また、本開示は、一態様において、乾燥TEMPO酸化CNFの再分散時の透明分散性を改善可能とする方法を提供する。本開示における「再分散時の透明分散性」とは、一又は複数の実施形態において、CNFがミクロフィブリル単位又はミクロフィブリル単位に近いレベルで分散媒に分散し、透明性が高い状態で分散することをいう。 In one aspect, the present disclosure provides a method for producing dry CNF with improved redispersibility, particularly a method for producing dry CNF with improved transparent dispersibility during redispersion. In one aspect, the present disclosure provides a method that can improve the redispersibility of CNF. Moreover, this indication provides the method of making it possible to improve the transparent dispersibility at the time of re-dispersion of dry TEMPO oxidation CNF in one aspect | mode. In the present disclosure, “transparent dispersibility at the time of redispersion” means that, in one or a plurality of embodiments, CNF is dispersed in a dispersion medium at a level close to microfibril units or microfibril units, and is dispersed in a highly transparent state. That means.
 本開示は、一態様において、アニオン変性セルロースナノファイバーと再分散性改善剤とを混合してアニオン変性セルロースナノファイバーの水性懸濁液を得ること、及び前記水性懸濁液を乾燥させて乾燥セルロースナノファイバーを得ることを含み、前記再分散性改善剤は、分子量が5万以下の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のポリビニルアルコールからなる群から選択される、乾燥セルロースナノファイバーの製造方法に関する。 In one aspect, the present disclosure provides an aqueous suspension of anion-modified cellulose nanofibers by mixing an anion-modified cellulose nanofiber and a redispersibility improver, and drying the aqueous suspension to dry cellulose. A dry cellulose nanofiber comprising: obtaining a nanofiber, wherein the redispersibility improving agent is selected from the group consisting of a saccharide having a molecular weight of 50,000 or less, a low molecular weight polypeptide, an amino acid, and a low molecular weight polyvinyl alcohol. It relates to the manufacturing method.
 本開示は、一態様において、アニオン変性セルロースナノファイバーと再分散性改善剤とを混合してアニオン変性セルロースナノファイバーの水性懸濁液を得ること、及び前記水性懸濁液を乾燥させることを含み、前記再分散性改善剤は、分子量が5万以下の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のポリビニルアルコールからなる群から選択される、セルロースナノファイバーの再分散性改善方法に関する。 In one aspect, the present disclosure includes mixing an anion-modified cellulose nanofiber and a redispersibility improver to obtain an aqueous suspension of the anion-modified cellulose nanofiber, and drying the aqueous suspension. The redispersibility improving agent relates to a method for improving redispersibility of cellulose nanofibers selected from the group consisting of sugars having a molecular weight of 50,000 or less, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol.
 本開示は、一態様において、乾燥セルロースナノファイバーの分散媒への再分散性、特に、再分散性を向上又は改善するための薬剤であって、分子量が5万以下の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のポリビニルアルコールからなる群から選択される一種以上を含む再分散性改善剤に関する。 In one aspect, the present disclosure provides an agent for improving or improving the redispersibility of dry cellulose nanofibers in a dispersion medium, in particular, redispersibility, a saccharide having a molecular weight of 50,000 or less, a low molecular weight poly The present invention relates to a redispersibility improving agent comprising at least one selected from the group consisting of peptides, amino acids, and low molecular weight polyvinyl alcohol.
 本開示は、一態様において、アニオン変性セルロースナノファイバーと再分散性改善剤を含む乾燥組成物であって、前記再分散性改善剤が、分子量が5万以下の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のポリビニルアルコールからなる群から選択される少なくとも1種類を含む乾燥組成物に関する。 In one aspect, the present disclosure is a dry composition containing anion-modified cellulose nanofibers and a redispersibility improver, wherein the redispersibility improver is a saccharide having a molecular weight of 50,000 or less, a low molecular weight polypeptide, The present invention relates to a dry composition comprising at least one selected from the group consisting of amino acids and low molecular weight polyvinyl alcohol.
 本開示によれば、再分散性が向上した乾燥CNFの製造方法、特に、再分散時の透明分散性が向上した乾燥CNFの製造方法を提供できる。また、本開示によれば、CNFの再分散性を改善又は向上可能な方法、特に、再分散時の透明分散性を改善又は向上可能な方法を提供できる。本開示によれば、好ましくは、再分散時の透明分散性が向上した乾燥TEMPO酸化CNFの製造方法、及び乾燥TEMPO酸化CNFの再分散時の透明分散性を改善可能な方法を提供できる。また、本開示によれば、再分散時の分散性が向上した乾燥カルボキシメチル(CM)化CNFの製造方法、及び乾燥CM化CNFの再分散時の分散性を改善可能な方法を提供できる。また、本開示によれば、再分散時の分散性が向上した乾燥リン酸エステル化CNFの製造方法、及び乾燥リン酸エステル化CNFの再分散時の透明分散性を改善可能な方法を提供できる。
According to the present disclosure, a method for producing dry CNF with improved redispersibility, particularly a method for producing dry CNF with improved transparent dispersibility during redispersion can be provided. Further, according to the present disclosure, it is possible to provide a method capable of improving or improving the redispersibility of CNF, particularly a method capable of improving or improving the transparent dispersibility during redispersion. According to the present disclosure, it is preferable to provide a method for producing dry TEMPO-oxidized CNF having improved transparent dispersibility during redispersion and a method capable of improving the transparent dispersibility during redispersion of dry TEMPO-oxidized CNF. In addition, according to the present disclosure, it is possible to provide a method for producing dry carboxymethyl (CM) -modified CNF having improved dispersibility during re-dispersion and a method capable of improving the dispersibility during re-dispersion of dry C-methyl CNF. Further, according to the present disclosure, it is possible to provide a method for producing dry phosphate esterified CNF with improved dispersibility during redispersion and a method capable of improving the transparent dispersibility during redispersion of dry phosphate esterified CNF. .
 本開示は、アニオン変性CNFとシクロデキストリンや低分子量のポリカルボキシメチルセルロース(CMC)等といった低分子量の糖類とを混合した水性懸濁液を乾燥することによって、得られる乾燥CNFの再分散性が改善されることができるという知見に基づく。また、アニオン変性CNFがTEMPO酸化CNFである場合、上記の低分子量の糖類と混合して乾燥させると、乾燥CNFの再分散時の透明分散性が改善され、得られる乾燥CNFを水等の分散媒と接触させると、透明性の高い乾燥CNFの再分散液を得ることができるという知見に基づく。 The present disclosure improves the redispersibility of dry CNF obtained by drying an aqueous suspension in which anion-modified CNF is mixed with a low molecular weight saccharide such as cyclodextrin or low molecular weight polycarboxymethylcellulose (CMC). Based on the knowledge that can be done. In addition, when the anion-modified CNF is TEMPO-oxidized CNF, mixing with the above low molecular weight saccharide and drying improves the transparent dispersibility during redispersion of the dry CNF, and the resulting dry CNF is dispersed in water or the like. It is based on the knowledge that a highly transparent dry CNF redispersion liquid can be obtained by contacting with a medium.
 本開示は、アニオン変性CNFと低分子量のポリペプタイド又はアミノ酸とを混合した水性懸濁液を乾燥することによって、得られる乾燥CNFの再分散性が改善されることができるという知見に基づく。また、アニオン変性CNFがTEMPO酸化CNFである場合、低分子量のポリペプタイド又はアミノ酸と混合して乾燥させると、乾燥CNFの再分散時の透明分散性が改善され、得られる乾燥CNFを水等の分散媒と接触させると、透明性の高い乾燥CNFの再分散液を得ることができるという知見に基づく。 The present disclosure is based on the finding that the redispersibility of the obtained dry CNF can be improved by drying an aqueous suspension in which anion-modified CNF and a low molecular weight polypeptide or amino acid are mixed. In addition, when the anion-modified CNF is TEMPO-oxidized CNF, when mixed with a low molecular weight polypeptide or amino acid and dried, the transparent dispersibility at the time of redispersion of the dry CNF is improved, and the obtained dry CNF is converted into water or the like. It is based on the knowledge that a highly transparent dry CNF redispersion liquid can be obtained when brought into contact with a dispersion medium.
 本開示は、アニオン変性CNFと低分子量のポリビニルアルコール(PVA)とを混合した水性懸濁液を乾燥することによって、得られる乾燥CNFの再分散性が改善されることができるという知見に基づく。また、アニオン変性CNFがTEMPO酸化CNFである場合、低分子量のPVAと混合して乾燥させると、乾燥CNFの再分散時の透明分散性が改善され、得られる乾燥CNFを水等の分散媒と接触させると、透明性の高い乾燥CNFの再分散液を得ることができるという知見に基づく。 The present disclosure is based on the finding that the redispersibility of the obtained dry CNF can be improved by drying an aqueous suspension obtained by mixing anion-modified CNF and low molecular weight polyvinyl alcohol (PVA). Further, when the anion-modified CNF is TEMPO-oxidized CNF, when mixed with a low molecular weight PVA and dried, the transparent dispersibility during re-dispersion of the dried CNF is improved, and the resulting dried CNF is mixed with a dispersion medium such as water. This is based on the knowledge that a highly transparent dry CNF redispersion liquid can be obtained by contact.
 本開示は、シクロデキストリンや低分子量のCMC等の低分子量の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のPVAが、乾燥CNFを再分散する際の分散性改善剤として使用できるという知見に基づく。本開示において「再分散性改善剤の分子量」は、再分散性改善剤がポリマーの場合は平均分子量、好ましくは重量平均分子量をいう。本開示において、再分散性改善剤は、一種類で使用してもよいし、複数種類を併用してもよい。 The present disclosure shows that low molecular weight sugars such as cyclodextrin and low molecular weight CMC, low molecular weight polypeptides, amino acids, and low molecular weight PVA can be used as a dispersibility improving agent when redispersing dry CNF. based on. In the present disclosure, “molecular weight of the redispersibility improver” refers to an average molecular weight, preferably a weight average molecular weight, when the redispersibility improver is a polymer. In the present disclosure, the redispersibility improving agent may be used alone or in combination of two or more.
 本開示における「再分散性の向上又は改善」としては、一又は複数の実施形態において、本開示の乾燥CNFの製造方法により得られた乾燥CNFを、水等の分散媒と混合して得られるCNF分散液が、水に分散している状態(湿潤状態)のアニオン変性CNFをそのまま(薬剤を添加することなく)乾燥して得られた乾燥物と分散媒とを混合して得られるCNF分散液(又はCNF懸濁液)と比較して、濁度が低い、又は未分散状態のCNF片若しくはゲル化物の量が少ないことをいう。本開示における「再分散時の透明分散性の向上又は改善」とは、一又は複数の実施形態において、CNFがミクロフィブリル単位又はミクロフィブリル単位に近いレベルで分散媒に分散し、未分散状態のCNF片若しくはゲル化物がほとんど認められないより透明性が高いことをいう。本開示の乾燥CNFの製造方法により得られた乾燥CNFは、一又は複数の実施形態において、水等の分散媒と混合して攪拌すると、CNFがミクロフィブリル単位又はミクロフィブリル単位に近いレベルでバラバラに分離することから、乾燥CNFを透明性の高い状態で分散媒に分散させることができる。本開示の製造方法により得られた乾燥CNFによれば、一又は複数の実施形態において、透明性の高い乾燥CNF再分散液を得ることができる。本開示における「透明性の高い」としては、一又は複数の実施形態において、光透過性が高いことが挙げられる。 “Improvement or improvement of redispersibility” in the present disclosure is obtained by mixing dry CNF obtained by the dry CNF production method of the present disclosure with a dispersion medium such as water in one or a plurality of embodiments. A CNF dispersion obtained by mixing an anion-modified CNF in a state where the CNF dispersion is dispersed in water (wet state) as it is (without adding a chemical agent) and a dispersion medium. Compared with a liquid (or CNF suspension), it means that the turbidity is low or the amount of undispersed CNF pieces or gelled products is small. In the present disclosure, “improvement or improvement of transparent dispersibility during redispersion” means that in one or a plurality of embodiments, CNF is dispersed in a dispersion medium at a level close to microfibril units or microfibril units, and is in an undispersed state. It means that transparency is higher than CNF pieces or gelled products are hardly observed. In one or a plurality of embodiments, the dry CNF obtained by the dry CNF production method of the present disclosure is mixed with a dispersion medium such as water and stirred, and the CNF is separated at a level close to a microfibril unit or a microfibril unit. Therefore, dry CNF can be dispersed in the dispersion medium in a highly transparent state. According to the dry CNF obtained by the production method of the present disclosure, a highly transparent dry CNF re-dispersion liquid can be obtained in one or a plurality of embodiments. “High transparency” in the present disclosure includes high light transmittance in one or more embodiments.
 特開平9-165402号公報には、バクテリアセルロース(BC)の水性懸濁液に第3の成分(BC及び水以外の成分)を加えた後、乾燥させることによって、乾燥後復水させたBCの分散性及び沈降度等の諸特性を乾燥前の状態に復元させることが開示されている。しかしながら、バクテリアセルロースは、バクテリアから産生される自然由来のセルロースファイバーであって、電荷をもたない。これに対し、本開示のアニオン変性CNFは、後述するように化学処理して得られるセルロースナノファイバーであって、化学処理によりセルロース繊維の表面に電荷を有する。このため、本開示のアニオン変性CNFとバクテリアセルロースとは全く異なるものである。さらに、同文献は、元の離解物の状態に復元すること、具体的には、微細繊維の表面又は微細繊維で構成させる網目状の構造の空隙に大量の液体成分を含ませる状態にすることを目的とするものである。このため、同文献の方法によって得られた乾燥物の復元物(バクテリアセルロースの乾燥物に水を加えて湿潤状態に復元したもの)は白く濁った膨潤の物体である。これに対し、本開示によって得られる乾燥CNFの再分散液は、繊維(CNF)がバラバラに分離して分散することから、透明性の高いCNF再分散液が得られる。よって、特開平9-165402号公報の方法は、本開示の方法とは、処理対象のみならず、技術的思想がまったく異なる方法である。 Japanese Patent Application Laid-Open No. 9-165402 discloses a method of adding a third component (components other than BC and water) to an aqueous suspension of bacterial cellulose (BC), followed by drying, thereby condensing BC after drying. It is disclosed that various properties such as dispersibility and sedimentation degree are restored to the state before drying. However, bacterial cellulose is a naturally occurring cellulose fiber produced from bacteria and has no charge. On the other hand, the anion-modified CNF of the present disclosure is a cellulose nanofiber obtained by chemical treatment as described later, and has a charge on the surface of the cellulose fiber by the chemical treatment. For this reason, the anion-modified CNF and bacterial cellulose of the present disclosure are completely different. Furthermore, this document restores the original disaggregated state, specifically, a state in which a large amount of liquid component is included in the surface of the fine fibers or the voids of the network structure constituted by the fine fibers. It is intended. For this reason, the regenerated product obtained by the method of the same literature (the product obtained by adding water to the dried product of bacterial cellulose to restore the wet state) is a white turbid body. In contrast, the dry CNF redispersed liquid obtained by the present disclosure separates and disperses the fibers (CNF) separately, and thus a highly transparent CNF redispersed liquid is obtained. Therefore, the method disclosed in Japanese Patent Laid-Open No. 9-165402 is a method that is completely different from the method of the present disclosure in terms of not only the object to be processed but also the technical idea.
 [アニオン変性CNF]
 本開示において「アニオン変性CNF」としては、セルロースを化学処理して得られるセルロースナノファイバーをいい、より具体的には繊維表面が化学処理されたセルロール繊維を解繊することによってナノファイバー化された微細繊維(ナノファイバー)をいう。本開示におけるアニオン変性CNFは、一又は複数の実施形態において、化学処理によりセルロース繊維の表面に電荷を有する。本開示におけるアニオン変性CNFは、一又は複数の実施形態において、バクテリアから生産されるバクテリアセルロース等といった自然由来のセルロースナノファイバーは含まない。
[Anion-modified CNF]
In the present disclosure, “anion-modified CNF” refers to cellulose nanofibers obtained by chemically treating cellulose, and more specifically, nanofibers are obtained by fibrillating cellulose fibers whose fiber surfaces are chemically treated. It refers to fine fibers (nanofibers). In one or a plurality of embodiments, the anion-modified CNF in the present disclosure has a charge on the surface of the cellulose fiber by chemical treatment. In one or a plurality of embodiments, the anion-modified CNF in the present disclosure does not include naturally-derived cellulose nanofibers such as bacterial cellulose produced from bacteria.
 化学処理としては、一又は複数の実施形態において、カルボキシメチル(CM)化処理、カルボキシル化(酸化)処理、リン酸エステル化処理等があげられる。 Examples of the chemical treatment include carboxymethyl (CM) treatment, carboxylation (oxidation) treatment, phosphate esterification treatment and the like in one or a plurality of embodiments.
 [カルボキシメチル(CM)化]
 セルロース原料または解繊セルロース繊維のカルボキシメチル化の方法としては、例えば、発底原料としてのセルロースをマーセル化し、その後エーテル化する方法が挙げられる。カルボキシメチル化反応の際は通常溶媒を用いる。溶媒としては、例えば、水、アルコール(例、低級アルコール)およびこれらの混合溶媒が挙げられる。低級アルコールとしては、例えば、具体的にはメタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブタノール、イソブタノール、第3級ブタノールが挙げられる。混合溶媒における低級アルコールの混合割合は、通常下限が60重量%以上であり、通常上限が95重量%以下であり、好ましくは60重量%~95重量%である。溶媒の量は、セルロース原料または解繊セルロース繊維に対して、通常3重量倍以上である。また、溶媒の量の上限は特に限定されないが、セルロース原料または解繊セルロース繊維に対して、通常20重量倍以下である。したがって、溶媒の量は、セルロース原料または解繊セルロース繊維に対して、好ましくは3重量倍~20重量倍である。
[Carboxymethyl (CM)]
Examples of the method for carboxymethylation of the cellulose raw material or the defibrated cellulose fiber include a method in which cellulose as a bottoming raw material is mercerized and then etherified. In the carboxymethylation reaction, a solvent is usually used. Examples of the solvent include water, alcohol (eg, lower alcohol), and mixed solvents thereof. Specific examples of the lower alcohol include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, isobutanol, and tertiary butanol. As for the mixing ratio of the lower alcohol in the mixed solvent, the lower limit is usually 60% by weight or more, and the upper limit is usually 95% by weight or less, preferably 60% by weight to 95% by weight. The amount of the solvent is usually 3 times or more by weight based on the cellulose raw material or defibrated cellulose fiber. Moreover, although the upper limit of the quantity of a solvent is not specifically limited, Usually, it is 20 weight times or less with respect to a cellulose raw material or a defibrated cellulose fiber. Therefore, the amount of the solvent is preferably 3 to 20 times by weight with respect to the cellulose raw material or defibrated cellulose fiber.
 マーセル化は、通常セルロース原料または解繊セルロース繊維とマーセル化剤とを混合して行う。マーセル化剤としては、例えば、水酸化アルカリ金属(例、水酸化ナトリウム、水酸化カリウム)が挙げられる。 Mercerization is usually performed by mixing a cellulose raw material or defibrated cellulose fiber and a mercerizing agent. Examples of mercerizing agents include alkali metal hydroxides (eg, sodium hydroxide, potassium hydroxide).
 マーセル化剤の使用量は、セルロース原料または解繊セルロース繊維の無水グルコース残基当たり、下限が通常0.5倍モル以上である。また、上限は通常20倍モル以下である。したがって、マーセル化剤の使用量は、セルロース原料または解繊セルロース繊維の無水グルコース残基当たり、好ましくは0.5倍モル~20倍モルである。 The lower limit of the amount of the mercerizing agent used is usually 0.5 times mol or more per anhydroglucose residue of cellulose raw material or defibrated cellulose fiber. Moreover, an upper limit is 20 times mole or less normally. Therefore, the amount of the mercerizing agent used is preferably 0.5 to 20 times mol per anhydroglucose residue of the cellulose raw material or defibrated cellulose fiber.
 マーセル化の反応温度の下限は、通常0℃以上であり、好ましくは10℃以上である。上限は、通常70℃以下であり、好ましくは60℃以下である。したがって、マーセル化の反応温度は、通常0℃~70℃であり、好ましくは10℃~60℃である。 The lower limit of the mercerization reaction temperature is usually 0 ° C or higher, preferably 10 ° C or higher. The upper limit is usually 70 ° C. or lower, preferably 60 ° C. or lower. Therefore, the reaction temperature for mercerization is usually 0 ° C. to 70 ° C., preferably 10 ° C. to 60 ° C.
 マーセル化の反応時間の下限は、通常15分間以上であり、好ましくは30分間以上である。下限は、通常8時間以下であり、好ましくは7時間以下である。したがって、マーセル化の反応時間は、通常15分間~8時間であり、好ましくは30分間~7時間である。 The lower limit of the mercerization reaction time is usually 15 minutes or longer, preferably 30 minutes or longer. The lower limit is usually 8 hours or less, preferably 7 hours or less. Therefore, the reaction time for mercerization is usually 15 minutes to 8 hours, preferably 30 minutes to 7 hours.
 エーテル化反応は、通常カルボキシメチル化剤をマーセル化後に反応系に添加して行う。カルボキシメチル化剤としては、例えば、モノクロロ酢酸ナトリウムが挙げられる。 The etherification reaction is usually performed by adding a carboxymethylating agent to the reaction system after mercerization. Examples of the carboxymethylating agent include sodium monochloroacetate.
 カルボキシメチル化剤の添加量は、セルロース原料または解繊セルロース繊維のグルコース残基当たり、下限が、通常0.05倍モル以上である。上限は、通常10.0倍モル以下である。したがって、カルボキシメチル化剤の添加量は、セルロース原料または解繊セルロース繊維のグルコース残基当たり、通常0.05倍モル~10.0倍モルである。エーテル化の反応温度は、下限が、通常30℃以上であり、好ましくは40℃以上である。上限は、通常90℃以下であり、好ましくは80℃以下である。したがって、エーテル化の反応温度は、通常30℃~90℃であり、好ましくは40℃~80℃である。 The lower limit of the addition amount of the carboxymethylating agent is usually 0.05 times mole or more per glucose residue of the cellulose raw material or defibrated cellulose fiber. The upper limit is usually 10.0 times mol or less. Accordingly, the addition amount of the carboxymethylating agent is usually 0.05 times to 10.0 times moles per glucose residue of the cellulose raw material or defibrated cellulose fiber. The lower limit of the etherification reaction temperature is usually 30 ° C or higher, preferably 40 ° C or higher. An upper limit is 90 degrees C or less normally, Preferably it is 80 degrees C or less. Accordingly, the reaction temperature for etherification is usually 30 ° C. to 90 ° C., preferably 40 ° C. to 80 ° C.
 エーテル化の反応時間は、下限が、通常30分間以上であり、好ましくは1時間以上である。上限は、通常10時間以下であり、好ましくは4時間以下である。したがって、エーテル化の反応時間は、通常30分間~10時間であり、好ましくは1時間~4時間である。 The lower limit of the etherification reaction time is usually 30 minutes or longer, preferably 1 hour or longer. The upper limit is usually 10 hours or less, preferably 4 hours or less. Therefore, the reaction time for etherification is usually 30 minutes to 10 hours, preferably 1 hour to 4 hours.
 カルボキシメチル化セルロース繊維またはカルボキシメチル化セルロースナノファイバーの、グルコース単位当たりのカルボキシメチル置換度の測定方法としては、例えば、次の方法によって得ることができる。すなわち、1)カルボキシメチル化セルロース繊維またはカルボキシメチル化セルロースナノファイバー(絶乾)約2.0gを精秤して、300mL容共栓付き三角フラスコに入れる。2)メタノール1000mLに特級濃硝酸100mLを加えて得られた硝酸メタノール溶液100mLを加え、3時間振とうして、カルボキシメチルセルロース塩(CM化セルロース塩:例えばNa-CMC)をH-CM化セルロースにする(H-CMC)。3)H-CM化セルロース(絶乾)を1.5g~2.0g精秤し、300mL容共栓付き三角フラスコに入れる。4)80%メタノール15mLでH-CM化セルロースを湿潤し、0.1NのNaOHを100mL加え、室温で3時間振とうする。5)指示薬として、フェノールフタレインを用いて、0.1NのH2SO4で過剰のNaOHを逆滴定する。6)カルボキシメチル置換度(DS)を、次式によって算出する:
A=[(100×F’-(0.1NのHSO)(mL)×F)×0.1]/(H-CM化セルロースの絶乾質量(g))
DS=0.162×A/(1-0.058×A)
A:H-CM化セルロースの1gの中和に要する1NのNaOH量(mL)
F’:0.1NのNaOHのファクター
F:0.1NのH2SOのファクター
As a measuring method of the carboxymethyl substitution degree per glucose unit of carboxymethylated cellulose fiber or carboxymethylated cellulose nanofiber, for example, it can be obtained by the following method. That is, 1) About 2.0 g of carboxymethylated cellulose fiber or carboxymethylated cellulose nanofiber (absolutely dried) is precisely weighed and placed in a 300 mL conical stoppered Erlenmeyer flask. 2) Add 100 mL of special concentrated nitric acid solution to 1000 mL of methanol, add 100 mL of methanol solution of nitric acid, and shake for 3 hours to convert carboxymethyl cellulose salt (CM-modified cellulose salt: eg Na-CMC) into H-CM-converted cellulose. (H-CMC). 3) Weigh accurately 1.5 g to 2.0 g of H-CM-modified cellulose (absolutely dry) and put into a 300 mL Erlenmeyer flask with a stopper. 4) Wet the H-CM cellulose with 15 mL of 80% methanol, add 100 mL of 0.1N NaOH, and shake at room temperature for 3 hours. 5) Back titrate excess NaOH with 0.1N H 2 SO 4 using phenolphthalein as indicator. 6) The degree of carboxymethyl substitution (DS) is calculated by the following formula:
A = [(100 × F ′ − (0.1 N H 2 SO 4 ) (mL) × F) × 0.1] / (absolute dry mass of H-CM cellulose (g))
DS = 0.162 × A / (1-0.058 × A)
A: Amount of 1N NaOH required for neutralizing 1 g of H-CM cellulose (mL)
F ′: Factor of 0.1N NaOH F: Factor of 0.1N H 2 SO 4
 なお、本開示において、変性CNFの調製に用いる変性セルロースの一種である「カルボキシメチル化セルロース」は、水に分散した際にも繊維状の形状の少なくとも一部が維持されるものをいう。したがって、後述する水溶性高分子の一種であるカルボキシメチルセルロース(CMC)とは区別される。「カルボキシメチル化セルロース」の水分散液を電子顕微鏡で観察すると、繊維状の物質を観察することができる。一方、水溶性高分子の一種であるカルボキシメチルセルロースの水分散液を観察しても、繊維状の物質は観察されない。また、「カルボキシメチル化セルロース」はX線回折で測定した際にセルロースI型結晶のピークを観測することができるが、水溶性高分子のカルボキシメチルセルロースではセルロースI型結晶はみられない。 In the present disclosure, “carboxymethylated cellulose”, which is a kind of modified cellulose used for the preparation of modified CNF, means that at least a part of the fibrous shape is maintained even when dispersed in water. Therefore, it is distinguished from carboxymethyl cellulose (CMC) which is a kind of water-soluble polymer described later. When an aqueous dispersion of “carboxymethylated cellulose” is observed with an electron microscope, a fibrous substance can be observed. On the other hand, even when an aqueous dispersion of carboxymethyl cellulose, which is a kind of water-soluble polymer, is observed, a fibrous substance is not observed. In addition, “carboxymethylated cellulose” can observe the peak of cellulose I-type crystals when measured by X-ray diffraction, but cellulose I-type crystals are not observed in the water-soluble polymer carboxymethylcellulose.
 [カルボキシル化]
 本開示において、変性セルロースとしてカルボキシル化(酸化)したセルロースを用いる場合、カルボキシル化セルロース(酸化セルロースとも呼ぶ)は、上記のセルロース原料を公知の方法でカルボキシル化(酸化)することにより得ることができる。特に限定されるものではないが、カルボキシル化の際には、アニオン変性CNFの絶乾質量に対して、カルボキシル基の量が0.6mmol/g~2.0mmol/gとなるように調整することが好ましく、1.0mmol/g~2.0mmol/gになるように調整することがさらに好ましい。
[Carboxylation]
In the present disclosure, when carboxylated (oxidized) cellulose is used as the modified cellulose, carboxylated cellulose (also referred to as oxidized cellulose) can be obtained by carboxylating (oxidizing) the above cellulose raw material by a known method. . Although not particularly limited, at the time of carboxylation, the amount of carboxyl groups should be adjusted to 0.6 mmol / g to 2.0 mmol / g with respect to the absolute dry mass of anion-modified CNF. It is preferable to adjust the concentration to 1.0 mmol / g to 2.0 mmol / g.
 カルボキシル化(酸化)方法の一例として、セルロース原料を、N-オキシル化合物と、臭化物、ヨウ化物もしくはこれらの混合物からなる群から選択される化合物との存在下で酸化剤を用いて水中で酸化する方法を挙げることができる。この酸化反応により、セルロース表面のグルコピラノース環のC6位の一級水酸基が選択的に酸化され、表面にアルデヒド基と、カルボキシル基(-COOH)またはカルボキシレート基(-COO-)とを有するセルロース繊維を得ることができる。反応時のセルロースの濃度は特に限定されないが、5質量%以下が好ましい。 As an example of a carboxylation (oxidation) method, a cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide, or a mixture thereof. A method can be mentioned. By this oxidation reaction, the primary hydroxyl group at the C6 position of the glucopyranose ring on the cellulose surface is selectively oxidized, and the cellulose fiber having an aldehyde group and a carboxyl group (—COOH) or carboxylate group (—COO—) on the surface. Can be obtained. The concentration of cellulose during the reaction is not particularly limited, but is preferably 5% by mass or less.
 N-オキシル化合物とは、ニトロキシラジカルを発生しうる化合物をいう。N-オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。例えば、2,2,6,6-テトラメチルピペリジン-1-オキシラジカル(TEMPO)およびその誘導体(例えば4-ヒドロキシTEMPO)が挙げられる。 N-oxyl compound refers to a compound capable of generating a nitroxy radical. As the N-oxyl compound, any compound can be used as long as it promotes the target oxidation reaction. Examples include 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and its derivatives (eg, 4-hydroxy TEMPO).
 N-オキシル化合物の使用量は、原料となるセルロースを酸化できる触媒量であればよく、特に制限されない。例えば、絶乾1gのセルロースに対して、0.01mmol~10mmolが好ましく、0.01mmol~1mmolがより好ましく、0.05mmol~0.5mmolがさらに好ましい。また、反応系に対し0.1mmol/L~4mmol/L程度が好ましい。 The amount of N-oxyl compound used is not particularly limited as long as it is a catalytic amount capable of oxidizing cellulose as a raw material. For example, with respect to 1 g of absolutely dry cellulose, 0.01 mmol to 10 mmol is preferable, 0.01 mmol to 1 mmol is more preferable, and 0.05 mmol to 0.5 mmol is more preferable. Further, it is preferably about 0.1 mmol / L to 4 mmol / L with respect to the reaction system.
 臭化物とは臭素を含む化合物であり、その例には、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物であり、その例には、ヨウ化アルカリ金属が含まれる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は、例えば、絶乾1gのセルロースに対して、0.1mmol~100mmolが好ましく、0.1mmol~10mmolがより好ましく、0.5mmol~5mmolがさらに好ましい。 Bromide is a compound containing bromine, and examples thereof include alkali metal bromide that can be dissociated and ionized in water. Further, an iodide is a compound containing iodine, and examples thereof include alkali metal iodide. The amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted. The total amount of bromide and iodide is, for example, preferably from 0.1 mmol to 100 mmol, more preferably from 0.1 mmol to 10 mmol, and even more preferably from 0.5 mmol to 5 mmol with respect to 1 g of absolutely dry cellulose.
 酸化剤としては、公知のものを使用でき、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物などを使用できる。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムが好ましい。酸化剤の使用量としては、例えば、絶乾1gのセルロースに対して、0.5mmol~500mmolが好ましく、0.5mmol~50mmolがより好ましく、1mmol~25mmolがさらに好ましく、3mmol~10mmolが最も好ましい。また、例えば、N-オキシル化合物1molに対して1mmol~40molが好ましい。 As the oxidizing agent, known ones can be used, and for example, halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide and the like can be used. Of these, sodium hypochlorite is preferable because it is inexpensive and has a low environmental impact. The amount of the oxidizing agent used is, for example, preferably 0.5 mmol to 500 mmol, more preferably 0.5 mmol to 50 mmol, further preferably 1 mmol to 25 mmol, and most preferably 3 mmol to 10 mmol with respect to 1 g of absolutely dry cellulose. Further, for example, 1 to 40 mol is preferable with respect to 1 mol of the N-oxyl compound.
 セルロースのカルボキシル化(酸化)は、比較的温和な条件であっても反応を効率よく進行させられる。よって、反応温度は4℃~40℃が好ましく、また15℃~30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを8~12、好ましくは10~11程度に維持することが好ましい。反応媒体は、取扱容易性や、副反応が生じにくいこと等から、水が好ましい。 The carboxylation (oxidation) of cellulose allows the reaction to proceed efficiently even under relatively mild conditions. Therefore, the reaction temperature is preferably 4 ° C. to 40 ° C., and may be room temperature of about 15 ° C. to 30 ° C. As the reaction proceeds, a carboxyl group is generated in the cellulose, so that the pH of the reaction solution is reduced. In order to make the oxidation reaction proceed efficiently, an alkaline solution such as an aqueous sodium hydroxide solution is added to maintain the pH of the reaction solution at about 8 to 12, preferably about 10 to 11. The reaction medium is preferably water because it is easy to handle and hardly causes side reactions.
 酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常は0.5時間~6時間、例えば、0.5時間~4時間程度である。 The reaction time in the oxidation reaction can be appropriately set according to the progress of oxidation, and is usually 0.5 to 6 hours, for example, about 0.5 to 4 hours.
 また、酸化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化させることができる。 Moreover, the oxidation reaction may be carried out in two stages. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the first-stage reaction again under the same or different reaction conditions, the efficiency is not affected by the reaction inhibition by the salt generated as a by-product in the first-stage reaction. Can be oxidized well.
 カルボキシル化(酸化)方法の別の例として、オゾンを含む気体とセルロース原料とを接触させることにより酸化する方法を挙げることができる。この酸化反応により、グルコピラノース環の少なくとも2位および6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。オゾンを含む気体中のオゾン濃度は、50g/m3~250g/m3であることが好ましく、50g/m3~220g/m3であることがより好ましい。セルロース原料に対するオゾン添加量は、セルロース原料の固形分を100質量部とした際に、0.1質量部~30質量部であることが好ましく、5質量部~30質量部であることがより好ましい。オゾン処理温度は、0℃~50℃であることが好ましく、20℃~50℃であることがより好ましい。オゾン処理時間は、特に限定されないが、1分~360分程度であり、30分~360分程度が好ましい。オゾン処理の条件がこれらの範囲内であると、セルロースが過度に酸化および分解されることを防ぐことができ、酸化セルロースの収率が良好となる。オゾン処理を施した後に、酸化剤を用いて、追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物や、酸素、過酸化水素、過硫酸、過酢酸などが挙げられる。例えば、これらの酸化剤を水またはアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作成し、溶液中にセルロース原料を浸漬させることにより追酸化処理を行うことができる。 Another example of the carboxylation (oxidation) method is a method of oxidizing by contacting a gas containing ozone and a cellulose raw material. By this oxidation reaction, at least the 2-position and 6-position hydroxyl groups of the glucopyranose ring are oxidized and the cellulose chain is decomposed. The ozone concentration in the gas containing ozone is preferably 50 g / m 3 to 250 g / m 3 , and more preferably 50 g / m 3 to 220 g / m 3 . The amount of ozone added to the cellulose raw material is preferably 0.1 parts by mass to 30 parts by mass, and more preferably 5 parts by mass to 30 parts by mass when the solid content of the cellulose raw material is 100 parts by mass. . The ozone treatment temperature is preferably 0 ° C. to 50 ° C., more preferably 20 ° C. to 50 ° C. The ozone treatment time is not particularly limited, but is about 1 minute to 360 minutes, preferably about 30 minutes to 360 minutes. When the conditions for the ozone treatment are within these ranges, the cellulose can be prevented from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved. After the ozone treatment, an additional oxidation treatment may be performed using an oxidizing agent. The oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid. For example, these oxidizing agents can be dissolved in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and a cellulose raw material can be immersed in the solution for additional oxidation treatment.
 酸化セルロースのカルボキシル基の量は、上記した酸化剤の添加量、反応時間等の反応条件をコントロールすることで調整することができる。 The amount of carboxyl groups in the oxidized cellulose can be adjusted by controlling the reaction conditions such as the amount of the oxidant added and the reaction time.
 [リン酸エステル化]
 変性セルロースとして、リン酸エステル化したセルロースを使用できる。当該セルロースは、セルロース原料にリン酸系化合物Aの粉末や水溶液を混合する方法、セルロース原料のスラリーにリン酸系化合物Aの水溶液を添加する方法により得られる。
[Phosphate esterification]
As the modified cellulose, phosphorylated cellulose can be used. The said cellulose is obtained by the method of mixing the powder and aqueous solution of phosphoric acid type compound A with a cellulose raw material, and the method of adding the aqueous solution of phosphoric acid type compound A to the slurry of a cellulose raw material.
 リン酸系化合物Aとしては、リン酸、ポリリン酸、亜リン酸、ホスホン酸、ポリホスホン酸あるいはこれらのエステルが挙げられる。これらは塩の形態であってもよい。これらの中でも、低コストであり、扱いやすく、またパルプ繊維のセルロースにリン酸基を導入して、解繊効率の向上が図れるなどの理由からリン酸基を有する化合物が好ましい。リン酸基を有する化合物としては、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、メタリン酸カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、メタリン酸アンモニウム等が挙げられる。これらは1種、あるいは2種以上を併用できる。これらのうち、リン酸基導入の効率が高く、下記解繊工程で解繊しやすく、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩がより好ましい。特にリン酸二水素ナトリウム、リン酸水素二ナトリウムが好ましい。また、反応の均一性が高まり、かつリン酸基導入の効率が高くなることから前記リン酸系化合物Aは水溶液として用いることが好ましい。リン酸系化合物Aの水溶液のpHは、リン酸基導入の効率が高くなることから7以下であることが好ましいが、パルプ繊維の加水分解を抑える観点からpH3~7が好ましい。 Examples of the phosphoric acid compound A include phosphoric acid, polyphosphoric acid, phosphorous acid, phosphonic acid, polyphosphonic acid, and esters thereof. These may be in the form of salts. Among these, a compound having a phosphate group is preferable because it is low in cost, easy to handle, and can improve the fibrillation efficiency by introducing a phosphate group into cellulose of the pulp fiber. Compounds having a phosphate group include phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium pyrophosphate, sodium metaphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, phosphorus Examples include tripotassium acid, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium pyrophosphate, ammonium metaphosphate, and the like. These can be used alone or in combination of two or more. Among these, phosphoric acid, phosphoric acid sodium salt, phosphoric acid potassium salt, phosphoric acid, from the viewpoint that phosphoric acid group introduction efficiency is high, is easy to be defibrated in the following defibrating process, and is industrially applicable. The ammonium salt is more preferred. In particular, sodium dihydrogen phosphate and disodium hydrogen phosphate are preferred. In addition, the phosphoric acid compound A is preferably used as an aqueous solution because the uniformity of the reaction is enhanced and the efficiency of introduction of phosphate groups is increased. The pH of the aqueous solution of the phosphoric acid compound A is preferably 7 or less because of the high efficiency of introducing phosphate groups, but is preferably pH 3 to 7 from the viewpoint of suppressing hydrolysis of pulp fibers.
 リン酸エステル化セルロースの製造方法の一例として以下の方法を挙げることができる。固形分濃度0.1質量%~10質量%のセルロース原料の分散液に、リン酸系化合物Aを撹拌しながら添加してセルロースにリン酸基を導入する。セルロース原料を100質量部とした際に、リン酸系化合物Aの添加量はリン元素量として、0.2質量部~500質量部であることが好ましく、1質量部~400質量部であることがより好ましい。リン酸系化合物Aの割合が前記下限値以上であれば、微細繊維状セルロースの収率をより向上させることができる。しかし、前記上限値を超えると収率向上の効果は頭打ちとなるのでコスト面から好ましくない。 The following method can be mentioned as an example of the manufacturing method of phosphoric ester cellulose. Phosphoric acid compound A is added to a cellulose raw material dispersion having a solid content concentration of 0.1% by mass to 10% by mass with stirring to introduce phosphate groups into the cellulose. When the cellulose raw material is 100 parts by mass, the addition amount of the phosphoric acid compound A is preferably 0.2 to 500 parts by mass, preferably 1 to 400 parts by mass as the amount of phosphorus element. Is more preferable. If the ratio of the phosphoric acid type compound A is more than the said lower limit, the yield of a fine fibrous cellulose can be improved more. However, if the upper limit is exceeded, the effect of improving the yield reaches its peak, which is not preferable from the viewpoint of cost.
 この際、セルロース原料、リン酸系化合物Aの他に、これ以外の化合物Bの粉末や水溶液を混合してもよい。化合物Bは特に限定されないが、塩基性を示す窒素含有化合物が好ましい。ここでの「塩基性」は、フェノールフタレイン指示薬の存在下で水溶液が桃~赤色を呈すること、または水溶液のpHが7より大きいことと定義される。本開示で用いる塩基性を示す窒素含有化合物は、本開示の効果を奏する限り特に限定されないが、アミノ基を有する化合物が好ましい。例えば、尿素、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられるが、特に限定されない。この中でも低コストで扱いやすい尿素が好ましい。化合物Bの添加量はセルロース原料の固形分100質量部に対して、2質量部~1000質量部が好ましく、100質量部~700質量部がより好ましい。反応温度は0℃~95℃が好ましく、30℃~90℃がより好ましい。反応時間は特に限定されないが、1分~600分程度であり、30分~480分がより好ましい。リン酸エステル化反応の条件がこれらの範囲内であると、セルロースが過度にリン酸エステル化されて溶解しやすくなることを防ぐことができ、リン酸エステル化セルロースの収率が良好となる。得られたリン酸エステル化セルロース懸濁液を脱水した後、セルロースの加水分解を抑える観点から、100℃~170℃で加熱処理することが好ましい。さらに、加熱処理の際に水が含まれている間は130℃以下、好ましくは110℃以下で加熱し、水を除いた後、100℃~170℃で加熱処理することが好ましい。 At this time, in addition to the cellulose raw material and the phosphoric acid compound A, powders and aqueous solutions of other compounds B may be mixed. Compound B is not particularly limited, but a nitrogen-containing compound showing basicity is preferable. “Basic” as used herein is defined as an aqueous solution exhibiting a pink to red color in the presence of a phenolphthalein indicator, or an aqueous solution having a pH greater than 7. The basic nitrogen-containing compound used in the present disclosure is not particularly limited as long as the effect of the present disclosure is exhibited, but a compound having an amino group is preferable. For example, urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like can be mentioned, but not particularly limited. Among these, urea which is easy to handle at low cost is preferable. The amount of compound B added is preferably 2 parts by mass to 1000 parts by mass, and more preferably 100 parts by mass to 700 parts by mass with respect to 100 parts by mass of the solid content of the cellulose raw material. The reaction temperature is preferably 0 ° C. to 95 ° C., more preferably 30 ° C. to 90 ° C. The reaction time is not particularly limited, but is about 1 to 600 minutes, more preferably 30 to 480 minutes. When the conditions of the phosphoric esterification reaction are within these ranges, it is possible to prevent the cellulose from being excessively phosphorylated and easily dissolved, and the yield of phosphorylated esterified cellulose is improved. From the viewpoint of suppressing hydrolysis of cellulose, it is preferable to heat-treat the obtained phosphoric esterified cellulose suspension at 100 ° C. to 170 ° C. Further, while water is contained in the heat treatment, it is preferably heated at 130 ° C. or lower, preferably 110 ° C. or lower, after removing water, it is preferably heat treated at 100 ° C. to 170 ° C.
 リン酸エステル化されたセルロースのグルコース単位当たりのリン酸基置換度は0.001~0.40であることが好ましい。セルロースにリン酸基置換基を導入することで、セルロース同士が電気的に反発する。このため、リン酸基を導入したセルロースは容易にナノ解繊することができる。なお、グルコース単位当たりのリン酸基置換度が0.001より小さいと、十分にナノ解繊することができない。一方、グルコース単位当たりのリン酸基置換度が0.40より大きいと、膨潤あるいは溶解するため、ナノファイバーとして得られなくなる場合がある。解繊を効率よく行なうために、上記で得たリン酸エステル化されたセルロース原料は煮沸した後、冷水で洗浄することで洗浄されることが好ましい。 The phosphate group substitution degree per glucose unit of the phosphorylated cellulose is preferably 0.001 to 0.40. By introducing a phosphate group substituent into cellulose, the celluloses are electrically repelled. For this reason, the cellulose which introduce | transduced the phosphate group can be nano-defibrated easily. In addition, when the phosphate group substitution degree per glucose unit is smaller than 0.001, nano-defibration cannot be sufficiently performed. On the other hand, if the degree of phosphate group substitution per glucose unit is greater than 0.40, it may swell or dissolve, and may not be obtained as a nanofiber. In order to efficiently perform defibration, it is preferable that the phosphoric esterified cellulose raw material obtained above is boiled and then washed with cold water.
 [解繊]
 本開示において、解繊する装置は特に限定されないが、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの装置を用いて、変性セルロースの水分散体に強力なせん断力を印加することが好ましい。特に、効率よく解繊するには、前記水分散体に50MPa以上の圧力を印加し、かつ強力なせん断力を印加できる湿式の高圧または超高圧ホモジナイザを用いることが好ましい。前記圧力は、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。また、高圧ホモジナイザでの解繊・分散処理に先立って、必要に応じて、高速せん断ミキサーなどの公知の混合、攪拌、乳化、分散装置を用いて、上記の変性セルロースに予備処理を施すことも可能である。解繊装置での処理(パス)回数は、1回でもよいし2回以上でもよく、2回以上が好ましい。
[Defibration]
In the present disclosure, an apparatus for defibrating is not particularly limited, but a strong shearing force is applied to the aqueous dispersion of the modified cellulose by using an apparatus such as a high-speed rotation type, a colloid mill type, a high-pressure type, a roll mill type, or an ultrasonic type. It is preferable to apply. In particular, for efficient defibration, it is preferable to use a wet high-pressure or ultrahigh-pressure homogenizer that can apply a pressure of 50 MPa or more to the aqueous dispersion and can apply a strong shearing force. The pressure is more preferably 100 MPa or more, and further preferably 140 MPa or more. In addition, prior to defibration / dispersion treatment with a high-pressure homogenizer, if necessary, the modified cellulose may be pretreated using a known mixing, stirring, emulsifying, and dispersing device such as a high-speed shear mixer. Is possible. The number of treatments (passes) in the defibrating device may be one time, two times or more, and preferably two times or more.
 変性セルロースの分散処理においては通常、溶媒に変性セルロースを分散する。溶媒は、変性セルロースを分散できるものであれば特に限定されないが、例えば、水、有機溶媒(例えば、メタノール等の親水性の有機溶媒)、それらの混合溶媒が挙げられる。食品に使用することから、溶媒は水であることが好ましい。 In the modified cellulose dispersion treatment, the modified cellulose is usually dispersed in a solvent. Although a solvent will not be specifically limited if a modified cellulose can be disperse | distributed, For example, water, organic solvents (for example, hydrophilic organic solvents, such as methanol), and those mixed solvents are mentioned. Since it uses for foodstuffs, it is preferred that a solvent is water.
 分散体中の変性セルロースの固形分濃度は、通常は0.1重量%以上、好ましくは0.2重量%以上、より好ましくは0.3重量%以上である。これにより、セルロース繊維原料の量に対する液量が適量となり効率的である。上限は、通常10重量%以下、好ましくは6重量%以下である。これにより流動性を保持することができる。 The solid content concentration of the modified cellulose in the dispersion is usually 0.1% by weight or more, preferably 0.2% by weight or more, more preferably 0.3% by weight or more. Thereby, the liquid quantity with respect to the quantity of a cellulose fiber raw material becomes an appropriate quantity, and is efficient. The upper limit is usually 10% by weight or less, preferably 6% by weight or less. Thereby, fluidity | liquidity can be hold | maintained.
 本開示において、アニオン変性CNFの繊維幅は、一又は複数の実施形態において、1nm~500nm又は2nm~100nm程度であり、好ましくは1nm以上20nm未満、2nm以上15nm以下、又は3nm以上5nm以下である。また、アニオン変性CNFの平均アスペクト比は通常100以上である。平均アスペクト比の上限は特に限定されないが、通常は1000以下である。平均アスペクト比は、下記の式により算出することができる:
 平均アスペクト比=平均繊維長/平均繊維径
In the present disclosure, the fiber width of the anion-modified CNF is, in one or more embodiments, about 1 nm to 500 nm or 2 nm to 100 nm, preferably 1 nm to less than 20 nm, 2 nm to 15 nm, or 3 nm to 5 nm. . The average aspect ratio of anion-modified CNF is usually 100 or more. The upper limit of the average aspect ratio is not particularly limited, but is usually 1000 or less. The average aspect ratio can be calculated by the following formula:
Average aspect ratio = average fiber length / average fiber diameter
 セルロース原料としては、一又は複数の実施形態において、植物性材料、動物性材料、又は藻類等が挙げられる。植物性材料としては、一又は複数の実施形態において、木材、竹、麻、ジュート、ケナフ、布、パルプ、再生パルプ、又は古紙等が挙げられる。パルプとしては、一又は複数の実施形態において、クラフトパルプ(KP)、硫酸パルプ(SP)、溶解亜硫酸パルプ(DSP)、溶解クラフトパルプ(DKP)、粉末セルロース、微結晶セルロース粉末等が挙げられる。動物性材料としては、一又は複数の実施形態において、ホヤ等が挙げられる。 Examples of the cellulose raw material include plant materials, animal materials, and algae in one or more embodiments. In one or a plurality of embodiments, examples of the plant material include wood, bamboo, hemp, jute, kenaf, cloth, pulp, recycled pulp, and waste paper. Examples of the pulp include kraft pulp (KP), sulfate pulp (SP), dissolved sulfite pulp (DSP), dissolved kraft pulp (DKP), powdered cellulose, and microcrystalline cellulose powder in one or more embodiments. Examples of the animal material include squirts in one or a plurality of embodiments.
 [乾燥CNFの製造方法]
 本開示は、一態様において、アニオン変性CNFと再分散性改善剤とを混合してアニオン変性CNFの水性懸濁液を得ること、及び前記水性懸濁液を乾燥させて乾燥CNFを得ることを含む乾燥CNFの製造方法(本開示の乾燥CNFの製造方法)に関する。本開示の乾燥CNFの製造方法によれば、一又は複数の実施形態において、再分散時に十分な透明分散性を有するフィルム状の乾燥CNF及び/又は粉末状の乾燥CNFを得ることができる。本開示の乾燥CNFの製造方法は、一又は複数の実施形態において、アニオン変性CNFの中でもTEMPO酸化CNFに好ましく利用できる。本開示の乾燥CNFの製造方法によれば、一又は複数の実施形態において、TEMPO酸化CNFの乾燥物(乾燥CNF)の再分散性を向上又は改善することができ、特に、再分散時の透明分散性を向上又は改善することができる。
 また、本開示の乾燥CNFの製造方法は、一又は複数の実施形態において、CM化CNFに利用できる。本開示の乾燥CNFの製造方法によれば、一又は複数の実施形態において、CM化CNFの乾燥物(乾燥CNF)の再分散時の分散性を向上又は改善することができる。
 また、本開示の乾燥CNFの製造方法は、一又は複数の実施形態において、アニオン変性CNFの中でもリン酸エステル化CNFに好ましく利用できる。本開示の乾燥CNFの製造方法によれば、一又は複数の実施形態において、リン酸エステル化CNFの乾燥物(乾燥CNF)の再分散性を向上又は改善することができ、特に、再分散時の透明分散性を向上又は改善することができる。
[Method for producing dry CNF]
In one aspect, the present disclosure includes mixing an anion-modified CNF and a redispersibility improver to obtain an aqueous suspension of the anion-modified CNF, and drying the aqueous suspension to obtain a dry CNF. The present invention relates to a method for producing dry CNF (a method for producing dry CNF of the present disclosure). According to the method for producing dry CNF of the present disclosure, in one or a plurality of embodiments, film-like dry CNF and / or powder-like dry CNF having sufficient transparent dispersibility upon redispersion can be obtained. In one or a plurality of embodiments, the method for producing dry CNF of the present disclosure can be preferably used for TEMPO-oxidized CNF among anion-modified CNFs. According to the method for producing dry CNF of the present disclosure, in one or a plurality of embodiments, the redispersibility of a dried product of TEMPO-oxidized CNF (dry CNF) can be improved or improved. Dispersibility can be improved or improved.
Moreover, the manufacturing method of the dry CNF of this indication can be utilized for CCM CNF in one or some embodiment. According to the method for producing dry CNF of the present disclosure, in one or a plurality of embodiments, the dispersibility at the time of redispersion of the dried product of CCM CNF (dry CNF) can be improved or improved.
Moreover, the manufacturing method of the dry CNF of this indication can be preferably utilized for phosphate ester CNF in anion modified CNF in one or some embodiment. According to the method for producing dry CNF of the present disclosure, in one or a plurality of embodiments, the redispersibility of a dried product of phosphoesterified CNF (dry CNF) can be improved or improved. The transparent dispersibility of can be improved or improved.
 本開示の乾燥CNFの製造方法によれば、一又は複数の実施形態において、再分散性が向上した乾燥CNFを得ることができ、特に、再分散時の透明分散性が向上された乾燥CNFを得ることができる。得られる乾燥CNFは、特に限定されない一又は複数の実施形態において、再分散時に十分な透明分散性を有しうる。「再分散時に十分な透明分散性を有する」としては、一又は複数の実施形態において、乾燥前のアニオン変性CNF懸濁液と同程度又は遜色のないレベルでの透明性と分散媒への再分散性を有することが挙げられる。得られる乾燥CNFは、一又は複数の実施形態において、各種化学用品、食品、化粧品、医薬品、飲料、補強材(紙関係を含む)、おむつのような吸収性製品、断熱材、自動車部材、塗料、農薬、建築、電池、家庭雑貨、水処理、又は洗浄剤等に使用することができる。 According to the method for producing dry CNF of the present disclosure, in one or a plurality of embodiments, dry CNF having improved redispersibility can be obtained, and in particular, dry CNF having improved transparent dispersibility during redispersion can be obtained. Obtainable. In one or more embodiments that are not particularly limited, the obtained dry CNF may have sufficient transparent dispersibility when redispersed. “Having sufficient transparent dispersibility when redispersed” means that, in one or more embodiments, the transparency and re-dispersion to the dispersion medium at the same or comparable level as the anion-modified CNF suspension before drying. It has dispersibility. In one or a plurality of embodiments, the obtained dry CNF is used in various chemical products, foods, cosmetics, pharmaceuticals, beverages, reinforcing materials (including paper), absorbent products such as diapers, heat insulating materials, automobile members, paints, and the like. It can be used for agricultural chemicals, construction, batteries, household goods, water treatment, or cleaning agents.
 本開示における再分散性改善剤としては、一又は複数の実施形態において、低分子量の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のPVAが挙げられる。 The redispersibility improving agent in the present disclosure includes, in one or more embodiments, low molecular weight saccharides, low molecular weight polypeptides, amino acids, and low molecular weight PVA.
 <低分子量の糖類>
 本開示の乾燥CNFの製造方法は、一又は複数の実施形態において、アニオン変性CNFと低分子量の糖類とを混合してアニオン変性CNFの水性懸濁液を得ること、及び得られた水性懸濁液を乾燥させることを含む。
<Low molecular weight sugars>
In one or a plurality of embodiments, the method for producing dry CNF of the present disclosure includes mixing an anion-modified CNF and a low molecular weight saccharide to obtain an aqueous suspension of the anion-modified CNF, and the obtained aqueous suspension. Including drying the liquid.
 本開示において「低分子量の糖類」とは、分子量が5万以下の糖類をいう。糖類としては、一又は複数の実施形態において、単糖類、二糖類、オリゴ糖類及び多糖類が挙げられる。低分子量の糖類の分子量は、一又は複数の実施形態において、50,000以下、20,000以下、15,000以下、10,000以下、5000以下、3000以下、2000以下若しくは200以下であり、又は150以上である。 In the present disclosure, “low molecular weight saccharide” refers to a saccharide having a molecular weight of 50,000 or less. Examples of the saccharide include monosaccharides, disaccharides, oligosaccharides, and polysaccharides in one or more embodiments. In one or more embodiments, the molecular weight of the low molecular weight saccharide is 50,000 or less, 20,000 or less, 15,000 or less, 10,000 or less, 5000 or less, 3000 or less, 2000 or less, or 200 or less, Or 150 or more.
 単糖類としては、一又は複数の実施形態において、グルコース等が挙げられる。単糖類の分子量は、一又は複数の実施形態において、150以上であり、又は200以下である。 Examples of monosaccharides include glucose and the like in one or more embodiments. The molecular weight of the monosaccharide is 150 or more or 200 or less in one or more embodiments.
 二糖類としては、一又は複数の実施形態において、マルトース及びラクトース等が挙げられる。二糖類の分子量は、一又は複数の実施形態において、200以上であり、又は400以下、380以下、360以下若しくは350以下である。 Examples of disaccharides include maltose and lactose in one or more embodiments. In one or more embodiments, the molecular weight of the disaccharide is 200 or more, or 400 or less, 380 or less, 360 or less, or 350 or less.
 オリゴ糖類としては、一又は複数の実施形態において、シクロデキストリンが挙げられる。オリゴ糖類の分子量(重量平均分子量)は、一又は複数の実施形態において、400以上、600以上、800以上若しくは900以上であり、又は5000以下、4000以下、3000以下若しくは2000以下である。シクロデキストリンとしては、α-シクロデキストリン(天然型の分子量:973)、β-シクロデキストリン(天然型の分子量:1135)、及びγ-シクロデキストリン(天然型の分子量:1297)等が挙げられる。シクロデキストリンは、一又は複数の実施形態において、天然型シクロデキストリンであってもよいし、又は化学修飾シクロデキストリン(シクロデキストリン誘導体)であってもよい。化学修飾シクロデキストリン(シクロデキストリン誘導体)としては、一又は複数の実施形態において、ヒドロキシプロピル化シクロデキストリン、アセチル化シクロデキストリン、トリアセチル化シクロデキストリン、メチル化シクロデキストリン、モノクロロトリアジノ化シクロデキストリン、アミノ化シクロデキストリン、及びエチレンジアミノ化シクロデキストリン等が挙げられる。 Oligosaccharides include cyclodextrin in one or more embodiments. In one or more embodiments, the molecular weight (weight average molecular weight) of the oligosaccharide is 400 or more, 600 or more, 800 or more, or 900 or more, or 5000 or less, 4000 or less, 3000 or less, or 2000 or less. Examples of cyclodextrins include α-cyclodextrin (natural molecular weight: 973), β-cyclodextrin (natural molecular weight: 1135), and γ-cyclodextrin (natural molecular weight: 1297). In one or more embodiments, the cyclodextrin may be a natural cyclodextrin or a chemically modified cyclodextrin (cyclodextrin derivative). As the chemically modified cyclodextrin (cyclodextrin derivative), in one or more embodiments, hydroxypropylated cyclodextrin, acetylated cyclodextrin, triacetylated cyclodextrin, methylated cyclodextrin, monochlorotriazinated cyclodextrin, amino Cyclodextrin, ethylene diaminated cyclodextrin and the like.
 上記の低分子量の糖類の中でも、良好な再分散性、特に、再分散時に良好な透明再分散性が得られる点から、分子量が3000以下又は2000以下のα-シクロデキストリン、β-シクロデキストリン誘導体若しくはγ-シクロデキストリン、又はグルコースが好ましい。さらに、アニオン変性CNFの特性(チキソトロピー性、粘性等)を阻害しない点から、α-シクロデキストリン、β-シクロデキストリン誘導体、又はγ-シクロデキストリンがより好ましい。 Among the above low molecular weight saccharides, α-cyclodextrin and β-cyclodextrin derivatives having a molecular weight of 3000 or less or 2000 or less from the viewpoint of obtaining good redispersibility, in particular, good transparent redispersibility upon redispersion. Alternatively, γ-cyclodextrin or glucose is preferable. Furthermore, α-cyclodextrin, β-cyclodextrin derivative, or γ-cyclodextrin is more preferable because it does not inhibit the properties (thixotropic properties, viscosity, etc.) of anion-modified CNF.
 多糖類としては、一又は複数の実施形態において、デキストリン、及び低分子量のCMC等が挙げられる。 Examples of polysaccharides include dextrin and low molecular weight CMC in one or more embodiments.
 デキストリンの分子量は、一又は複数の実施形態において、50,000以下、20,000以下、17,000以下、15,000以下、13,000以下、12,0000以下、11,000以下若しくは10,000以下であり、又は200以上、500以上、1,000以上、2,000以上、3,000以上、4,000以上、5,000以上若しくは6,000以上である。 In one or a plurality of embodiments, the molecular weight of dextrin is 50,000 or less, 20,000 or less, 17,000 or less, 15,000 or less, 13,000 or less, 120,000 or less, 11,000 or less, or 10,000. 000 or less, or 200 or more, 500 or more, 1,000 or more, 2,000 or more, 3,000 or more, 4,000 or more, 5,000 or more, or 6,000 or more.
 低分子量のCMCとしては、分子量が2万以下のCMCが挙げられる。低分子量のCMCの分子量は、一又は複数の実施形態において、20,000以下、15,000以下であり、又は200以上である。 Examples of the low molecular weight CMC include CMC having a molecular weight of 20,000 or less. The molecular weight of the low molecular weight CMC is 20,000 or less, 15,000 or less, or 200 or more in one or more embodiments.
 CMCのエーテル化度(カルボキシメチル基置換度)としては、特に限定されない一又は複数の実施形態において、0.55~1.6又は0.65~1.1等が挙げられる。 The degree of etherification (carboxymethyl group substitution) of CMC is not particularly limited, and may be 0.55 to 1.6 or 0.65 to 1.1 in one or more embodiments.
 本開示の乾燥CNFの製造方法は、一又は複数の実施形態において、湿潤状態(水に分散している状態)のアニオン変性CNFと、低分子量の糖類とを混合することを含む。これにより、アニオン変性CNFと低分子量の糖類とを含む水性懸濁液を得ることができる。 In one or a plurality of embodiments, the method for producing dry CNF according to the present disclosure includes mixing an anion-modified CNF in a wet state (dispersed in water) and a low molecular weight saccharide. Thereby, an aqueous suspension containing anion-modified CNF and a low molecular weight saccharide can be obtained.
 アニオン変性CNF(絶乾固形分、100質量部)に対する低分子量の糖類の配合比率は、一又は複数の実施形態において、5質量部以上、5質量部~500質量部、5質量部~400質量部、5質量部~300質量部又は10質量部~200質量部であり、好ましくは30質量部~350質量部又は30質量部~150質量部である。 The blending ratio of the low molecular weight saccharide to the anion-modified CNF (absolute dry solid content, 100 parts by mass) is 5 parts by mass or more, 5 parts by mass to 500 parts by mass, 5 parts by mass to 400 parts by mass in one or more embodiments. Part by mass, 5 parts by mass to 300 parts by mass or 10 parts by mass to 200 parts by mass, and preferably 30 parts by mass to 350 parts by mass or 30 parts by mass to 150 parts by mass.
 アニオン変性CNFがTEPO酸化CNF等のカルボキシル化CNFである場合、アニオン変性CNF(絶乾固形分、100質量部)に対する低分子量の糖類の配合比率は、一又は複数の実施形態において、5質量部以上、5質量部~500質量部、5質量部~400質量部、5質量部~300質量部又は10質量部~200質量部であり、好ましくは30質量部~250質量部又は45質量部~150質量部である。 When the anion-modified CNF is a carboxylated CNF such as TEPO-oxidized CNF, the blending ratio of the low molecular weight saccharide to the anion-modified CNF (absolutely dry solid content, 100 parts by mass) is 5 parts by mass in one or a plurality of embodiments. 5 parts by weight to 500 parts by weight, 5 parts by weight to 400 parts by weight, 5 parts by weight to 300 parts by weight or 10 parts by weight to 200 parts by weight, preferably 30 parts by weight to 250 parts by weight or 45 parts by weight. 150 parts by mass.
 アニオン変性CNFがCM化CNFである場合、アニオン変性CNF(絶乾固形分、100質量部)に対する低分子量の糖類の配合比率は、一又は複数の実施形態において、5質量部以上、10質量部~500質量部又は30質量部~400質量部であり、好ましくは50質量部~350質量部又は75質量部~350質量部である。 When the anion-modified CNF is C-modified CNF, the blending ratio of the low molecular weight saccharide to the anion-modified CNF (absolutely dry solid content, 100 parts by mass) is 5 parts by mass or more and 10 parts by mass in one or more embodiments. From 500 parts by weight or from 30 parts by weight to 400 parts by weight, preferably from 50 parts by weight to 350 parts by weight or from 75 parts by weight to 350 parts by weight.
 アニオン変性CNFがリン酸エステル化CNFである場合、アニオン変性CNF(絶乾固形分、100質量部)に対する低分子量の糖類の配合比率は、一又は複数の実施形態において、5質量部以上、5質量部~500質量部、5質量部~400質量部、5質量部~300質量部又は10質量部~200質量部であり、好ましくは30質量部~250質量部又は45質量部~150質量部である。 When the anion-modified CNF is phosphate esterified CNF, the blending ratio of the low molecular weight saccharide to the anion-modified CNF (absolutely dry solid content, 100 parts by mass) is 5 parts by mass or more in one or more embodiments, Parts by weight to 500 parts by weight, 5 parts by weight to 400 parts by weight, 5 parts by weight to 300 parts by weight or 10 parts by weight to 200 parts by weight, preferably 30 parts by weight to 250 parts by weight or 45 parts by weight to 150 parts by weight. It is.
 本開示の乾燥CNFの製造方法は、一又は複数の実施形態において、アニオン変性CNFと低分子量の糖類とを含む水性懸濁液を乾燥させることを含む。水性懸濁液は、一又は複数の実施形態において、薄膜を形成して乾燥させてもよいし、噴霧乾燥させてもよい。これによりアニオン変性CNFと低分子量の糖類とを含む乾燥フィルム及び/又は乾燥粉体を得ることができる。 In one or a plurality of embodiments, the method for producing dry CNF of the present disclosure includes drying an aqueous suspension containing an anion-modified CNF and a low molecular weight saccharide. In one or more embodiments, the aqueous suspension may be dried by forming a thin film, or may be spray-dried. Thereby, a dry film and / or a dry powder containing an anion-modified CNF and a low molecular weight saccharide can be obtained.
 <低分子量のポリペプタイド又はアミノ酸>
 本開示の乾燥CNFの製造方法は、一又は複数の実施形態において、アニオン変性CNFと低分子量のポリペプタイド又はアミノ酸とを混合してアニオン変性CNFの水性懸濁液を得ること、及び得られた水性懸濁液を乾燥させることを含む。
<Low molecular weight polypeptide or amino acid>
In one or a plurality of embodiments, the method for producing dry CNF according to the present disclosure is obtained by mixing an anion-modified CNF and a low molecular weight polypeptide or amino acid to obtain an aqueous suspension of the anion-modified CNF. Drying the aqueous suspension.
 本開示において「低分子量のポリペプタイド」とは、分子量が1万以下のポリペプタイドをいう。低分子量のポリペプタイドの分子量は、一又は複数の実施形態において、1000以下若しくは500以下であり、又は150以上である。アミノ酸としては、一又は複数の実施形態において、グリシン及びグルタミン等の中性アミノ酸が挙げられる。 In the present disclosure, “low molecular weight polypeptide” refers to a polypeptide having a molecular weight of 10,000 or less. The molecular weight of the low molecular weight polypeptide is 1000 or less, 500 or less, or 150 or more in one or more embodiments. Examples of the amino acid include neutral amino acids such as glycine and glutamine in one or more embodiments.
 本開示の乾燥CNFの製造方法は、一又は複数の実施形態において、湿潤状態(水に分散している状態)のアニオン変性CNFと、低分子量のポリペプタイド又はアミノ酸とを混合することを含む。これにより、アニオン変性CNFと低分子量のポリペプタイド又はアミノ酸とを含む水性懸濁液を得ることができる。 In one or more embodiments, the method for producing dry CNF according to the present disclosure includes mixing an anion-modified CNF in a wet state (dispersed in water) with a low molecular weight polypeptide or amino acid. Thereby, an aqueous suspension containing anion-modified CNF and a low molecular weight polypeptide or amino acid can be obtained.
 アニオン変性CNF(絶乾固形分、100質量部)に対する低分子量のポリペプタイド又はアミノ酸の配合比率は、一又は複数の実施形態において、5質量部以上、5質量部~500質量部、5質量部~400質量部、5質量部~300質量部又は10質量部~200質量部であり、好ましくは30質量部~350質量部又は30質量部~150質量部である。 The blending ratio of the low molecular weight polypeptide or amino acid to anion-modified CNF (absolutely dry solid content, 100 parts by mass) is 5 parts by mass or more, 5 parts by mass to 500 parts by mass, and 5 parts by mass in one or more embodiments. 400 parts by weight, 5 parts by weight to 300 parts by weight or 10 parts by weight to 200 parts by weight, preferably 30 parts by weight to 350 parts by weight or 30 parts by weight to 150 parts by weight.
 本開示の乾燥CNFの製造方法は、一又は複数の実施形態において、アニオン変性CNFと低分子量のポリペプタイド又はアミノ酸とを含む水性懸濁液を乾燥させることを含む。水性懸濁液は、一又は複数の実施形態において、薄膜を形成して乾燥させてもよいし、噴霧乾燥させてもよい。これによりアニオン変性CNFと低分子量のポリペプタイド又はアミノ酸とを含む乾燥フィルム及び/又は乾燥粉体を得ることができる。 In one or a plurality of embodiments, the method for producing dry CNF of the present disclosure includes drying an aqueous suspension containing an anion-modified CNF and a low molecular weight polypeptide or amino acid. In one or more embodiments, the aqueous suspension may be dried by forming a thin film, or may be spray-dried. Thereby, a dry film and / or a dry powder containing an anion-modified CNF and a low molecular weight polypeptide or amino acid can be obtained.
 <低分子量のPVA>
 本開示の乾燥CNFの製造方法は、一又は複数の実施形態において、アニオン変性CNFと低分子量のPVAとを混合してアニオン変性CNFの水性懸濁液を得ること、及び得られた水性懸濁液を乾燥させることを含む。
<Low molecular weight PVA>
In one or a plurality of embodiments, the method for producing dry CNF of the present disclosure includes mixing an anion-modified CNF and a low molecular weight PVA to obtain an aqueous suspension of the anion-modified CNF, and the obtained aqueous suspension. Including drying the liquid.
 本開示において「低分子量のPVA」とは、分子量が3000以下のPVAをいう。低分子量のPVAの分子量は、一又は複数の実施形態において、2500以下、2000以下若しくは1500以下であり、又は100以上である。 In the present disclosure, “low molecular weight PVA” refers to PVA having a molecular weight of 3000 or less. In one or more embodiments, the molecular weight of the low molecular weight PVA is 2500 or less, 2000 or less, 1500 or less, or 100 or more.
 本開示の乾燥CNFの製造方法は、一又は複数の実施形態において、湿潤状態(水に分散している状態)のアニオン変性CNFと、低分子量のPVAとを混合することを含む。これにより、アニオン変性CNFと低分子量のPVAとを含む水性懸濁液を得ることができる。 In one or a plurality of embodiments, the method for producing dry CNF according to the present disclosure includes mixing an anion-modified CNF in a wet state (dispersed in water) and a low molecular weight PVA. Thereby, an aqueous suspension containing anion-modified CNF and low molecular weight PVA can be obtained.
 アニオン変性CNF(絶乾固形分、100質量部)に対する低分子量のPVAの配合比率は、一又は複数の実施形態において、5質量部以上、5質量部~500質量部、5質量部~400質量部、5質量部~300質量部又は10質量部~200質量部であり、好ましくは30質量部~350質量部又は30質量部~150質量部である。 The blending ratio of the low molecular weight PVA to the anion-modified CNF (absolute dry solid content, 100 parts by mass) is 5 parts by mass or more, 5 parts by mass to 500 parts by mass, and 5 parts by mass to 400 parts by mass in one or more embodiments. Part by mass, 5 parts by mass to 300 parts by mass or 10 parts by mass to 200 parts by mass, and preferably 30 parts by mass to 350 parts by mass or 30 parts by mass to 150 parts by mass.
 本開示の乾燥CNFの製造方法は、一又は複数の実施形態において、アニオン変性CNFと低分子量のPVAとを含む水性懸濁液を乾燥させることを含む。水性懸濁液は、一又は複数の実施形態において、薄膜を形成して乾燥させてもよいし、噴霧乾燥させてもよい。これによりアニオン変性CNFと低分子量のPVAとを含む乾燥フィルム及び/又は乾燥粉体を得ることができる。 In one or a plurality of embodiments, the method for producing dry CNF according to the present disclosure includes drying an aqueous suspension containing an anion-modified CNF and a low molecular weight PVA. In one or more embodiments, the aqueous suspension may be dried by forming a thin film, or may be spray-dried. Thereby, a dry film and / or dry powder containing anion-modified CNF and low molecular weight PVA can be obtained.
 本開示において、水性懸濁液の乾燥方法は、特に限定されるものではなく、一又は複数の実施形態において、噴霧乾燥、風乾、熱風乾燥、真空乾燥、及び圧搾等が挙げられる。 In the present disclosure, the drying method of the aqueous suspension is not particularly limited, and in one or a plurality of embodiments, spray drying, air drying, hot air drying, vacuum drying, pressing, and the like can be given.
 本開示の乾燥CNFの製造方法により得られた乾燥CNFは、一又は複数の実施形態において、1mm~2mm程度に微細化した乾燥CNF0.1gを蒸留水5gに添加し、ポイントミキサーで1分間程度攪拌後、室温で24時間程度放置し、ついで再度ポイントミキサーで1分間程度攪拌した場合に、少なくとも、乾燥前のCNF分散液と同程度又は遜色ないレベルでの透明分散性を有する。 In one or a plurality of embodiments, dry CNF obtained by the dry CNF production method of the present disclosure is added to 5 g of distilled CNF refined to about 1 mm to 2 mm to 5 g of distilled water, and then for about 1 minute with a point mixer. After stirring, when left standing at room temperature for about 24 hours and then again stirred for about 1 minute with a point mixer, it has a transparent dispersibility at least at the same level or comparable to that of the CNF dispersion before drying.
 また、本開示の乾燥CNFの製造方法により得られた乾燥CNFは、一又は複数の実施形態において、フィルム状の乾燥CNFを3×3mm程度に粉砕したものを200mLビーカーに入れ、ついで固形分0.7%となるように蒸留水を加えた後、スリーワンモーターで600rpm、羽直径3.5cmの攪拌機を用いて1時間~3時間攪拌した場合に、少なくとも、乾燥前のCNF分散液と同程度又は遜色ないレベルでの透明分散性を有する。 In one or a plurality of embodiments, the dry CNF obtained by the dry CNF manufacturing method of the present disclosure is obtained by pulverizing a dry CNF in a film shape to about 3 × 3 mm in a 200 mL beaker. When distilled water is added to 7% and then stirred with a three-one motor at 600 rpm and a blade diameter of 3.5 cm for 1 to 3 hours, it is at least as high as the CNF dispersion before drying. Or, it has a transparent dispersibility at a comparable level.
 本開示の乾燥CNFの製造方法により得られた乾燥CNFは、乾燥物であればよく、再分散させる分散媒への透明分散性をさらに向上させる点から、一又は複数の実施形態において、フィルム状であってもよいし、粉末状であってもよい。 The dry CNF obtained by the dry CNF production method of the present disclosure may be a dry product, and in one or more embodiments, in the form of a film, from the viewpoint of further improving the transparent dispersibility in the dispersion medium to be redispersed. It may be in powder form.
 [乾燥CNF]
 本開示は、一態様において、再分散性改善剤とアニオン変性CNFとを含む乾燥CNF(本開示の乾燥CNF)に関する。本開示の乾燥CNFは、一又は複数の実施形態において、本開示の乾燥CNFの製造方法により得られることができる。本開示の乾燥CNFは、一又は複数の実施形態において、特に限定されないアニオン変性CNFを主成分とする。本開示の乾燥CNFは、一又は複数の実施形態において、フィルム状であってもよいし、粉末状であってもよい。
[Dry CNF]
In one aspect, the present disclosure relates to dry CNF comprising a redispersibility improver and an anion-modified CNF (dry CNF of the present disclosure). The dry CNF of this indication can be obtained by the manufacturing method of dry CNF of this indication in one or some embodiment. In one or a plurality of embodiments, the dry CNF of the present disclosure is mainly composed of an anion-modified CNF that is not particularly limited. In one or a plurality of embodiments, the dry CNF of the present disclosure may be in the form of a film or powder.
 [CNFの透明再分散物の製造方法]
 本開示は、一態様において、CNFの透明再分散物の製造方法(本開示の透明再分散物の製造方法)に関する。本開示の透明再分散物の製造方法は、一又は複数の実施形態において、アニオン変性CNFと再分散性改善剤とを含む水性懸濁液を得ること、前記水性懸濁液を乾燥させること、及び得られた乾燥物を分散媒に再分散させることを含む。本開示のCNFの透明再分散物の製造方法は、一又は複数の実施形態において、本開示の乾燥CNFの製造方法により得られた乾燥CNFを分散媒に再分散させることを含む。本開示のCNFの透明再分散物の製造方法によれば、一又は複数の実施形態において、乾燥状態を経ないCNF水性懸濁液又は水性分散液と分散性が同程度又は遜色ないレベルのCNFの透明再分散物を得ることができる。本開示のCNFの透明再分散物の製造方法によれば、一又は複数の実施形態において、乾燥TEMPO酸化CNFが再分散した、透明性の高い乾燥CNFの透明再分散物を得ることができる。再分散物は、一又は複数の実施形態において、液体であってもよいし、ゲル状物であってもよい。
[Method for producing transparent redispersion of CNF]
In one aspect, the present disclosure relates to a method for producing a transparent redispersion of CNF (a method for producing a transparent redispersion of the present disclosure). In one or a plurality of embodiments, the method for producing a transparent redispersion of the present disclosure includes obtaining an aqueous suspension containing an anion-modified CNF and a redispersibility improving agent, drying the aqueous suspension, And redispersing the obtained dried product in a dispersion medium. In one or a plurality of embodiments, the method for producing a transparent redispersion of CNF according to the present disclosure includes redispersing the dry CNF obtained by the method for producing dry CNF according to the present disclosure in a dispersion medium. According to the method for producing a transparent redispersion of CNF of the present disclosure, in one or a plurality of embodiments, a CNF having a dispersibility comparable to or comparable to an aqueous CNF suspension or an aqueous dispersion that does not undergo a dry state. A transparent redispersion of can be obtained. According to the method for producing a transparent redispersion of CNF of the present disclosure, in one or a plurality of embodiments, a transparent redispersion of dry CNF having high transparency in which dry TEMPO-oxidized CNF is redispersed can be obtained. In one or a plurality of embodiments, the redispersion may be a liquid or a gel.
 分散媒としては、一又は複数の実施形態において、水等の水性分散媒等があげられる。分散媒は、一又は複数の実施形態において、CNF以外の各種ポリマー等を含んでいてもよい。 Examples of the dispersion medium include an aqueous dispersion medium such as water in one or a plurality of embodiments. In one or a plurality of embodiments, the dispersion medium may contain various polymers other than CNF.
 本開示の透明再分散物の製造方法は、さらに、得られた透明再分散物から再分散性改善剤を除去することを含んでいてもよい。再分散性改善剤がシクロデキストリンである場合、再分散性改善剤の除去は、一又は複数の実施形態において、1-デカノール等の直鎖状脂肪族アルコールと透明再分散物とを混合し、ついで物理的応力をかけることによって、透明再分散物からシクロデキストリンを分離することにより行うことができる。直鎖状脂肪族アルコールの添加量は特に制限されず、一又は複数の実施形態において、透明再分散物に含まれるシクロデキストリンに対してモル等量であることが挙げられる。物理的応力としては、一又は複数の実施形態において、遠心分離等が挙げられる。 The method for producing a transparent redispersion of the present disclosure may further include removing the redispersibility improver from the obtained transparent redispersion. When the redispersibility improver is a cyclodextrin, the removal of the redispersibility improver is performed in one or more embodiments by mixing a linear aliphatic alcohol such as 1-decanol and a transparent redispersion, This can then be done by separating the cyclodextrin from the transparent redispersion by applying physical stress. The addition amount of the linear aliphatic alcohol is not particularly limited, and in one or a plurality of embodiments, it may be a molar equivalent with respect to the cyclodextrin contained in the transparent redispersion. Examples of the physical stress include centrifugation in one or more embodiments.
 分散媒としては、一又は複数の実施形態において、水等の水性分散媒等があげられる。分散媒は、一又は複数の実施形態において、CNF以外の各種ポリマー等を含んでいてもよい。 Examples of the dispersion medium include an aqueous dispersion medium such as water in one or a plurality of embodiments. In one or a plurality of embodiments, the dispersion medium may contain various polymers other than CNF.
 [CNFの再分散物の製造方法]
 本開示は、一態様において、CNFの再分散物の製造方法(本開示の再分散物の製造方法)に関する。本開示の再分散物の製造方法は、一又は複数の実施形態において、CM化CNFと再分散性改善剤とを含む水性懸濁液を得ること、前記水性懸濁液を乾燥させること、及び得られた乾燥物を分散媒に再分散させることを含む。本開示のCNFの再分散物の製造方法は、一又は複数の実施形態において、本開示の乾燥CNFの製造方法により得られた乾燥CNFを分散媒に再分散させることを含む。本開示のCNFの再分散物の製造方法によれば、一又は複数の実施形態において、乾燥状態を経ないCM化CNF水性懸濁液又は水性分散液と分散性が同程度又は遜色ないレベルの乾燥CM化CNFの再分散物を得ることができる。再分散物は、一又は複数の実施形態において、液体であってもよいし、ゲル状物であってもよい。分散媒及び再分散性改善剤の除去方法は本開示の透明再分散物の製造方法と同様である。
[Method for Producing CNF Redispersion]
In one aspect, the present disclosure relates to a method for producing a redispersion of CNF (a method for producing a redispersion of the present disclosure). In one or more embodiments, the method for producing a redispersion of the present disclosure includes obtaining an aqueous suspension containing CCM CNF and a redispersibility improving agent, drying the aqueous suspension, and Re-dispersing the obtained dried product in a dispersion medium. In one or a plurality of embodiments, the method for producing a CNF redispersion of the present disclosure includes redispersing the dry CNF obtained by the method for producing a dry CNF of the present disclosure in a dispersion medium. According to the method for producing a CNF redispersion of the present disclosure, in one or a plurality of embodiments, the dispersibility is the same as or comparable to that of a CCM CNF aqueous suspension or aqueous dispersion that is not dried. A re-dispersion of dry CMized CNF can be obtained. In one or a plurality of embodiments, the redispersion may be a liquid or a gel. The method for removing the dispersion medium and the redispersibility improver is the same as the method for producing the transparent redispersion of the present disclosure.
 [CNFの再分散性改善方法]
 上記の通り、アニオン変性CNFを再分散性改善剤とともに乾燥させることによって、得られる乾燥CNFの再分散性、特に、再分散時の透明分散性を向上又は改善することができる。よって、本開示は、その他の態様において、アニオン変性CNFと再分散性改善剤とを混合してアニオン変性セルロースナノファイバーの水性懸濁液を得ること、及び前記水性懸濁液を乾燥させることを含むCNFの再分散性、特に、再分散時の透明分散性改善方法に関する。本開示の再分散性改善方法によれば、一又は複数の実施形態において、アニオン変性CNFの中でもTEMPO酸化CNFの乾燥物の再分散時の透明分散性をより向上又は改善することができる。また、本開示の再分散性改善方法によれば、一又は複数の実施形態において、アニオン変性CNFの中でもCM化CNFの乾燥物の再分散時の分散性をより向上又は改善することができる。
 本開示の再分散性改善方法によれば、一又は複数の実施形態において、アニオン変性CNFの中でもリン酸エステル化CNFの乾燥物の再分散時の透明分散性をより向上又は改善することができる。再分散性改善剤及び配合比率は、本開示の乾燥CNFの製造方法と同様である。
[Method for improving redispersibility of CNF]
As described above, by drying the anion-modified CNF together with the redispersibility improving agent, the redispersibility of the obtained dry CNF, in particular, the transparent dispersibility during redispersion can be improved or improved. Therefore, in another aspect, the present disclosure includes mixing an anion-modified CNF and a redispersibility improver to obtain an aqueous suspension of anion-modified cellulose nanofibers, and drying the aqueous suspension. The present invention relates to a method for improving redispersibility of contained CNF, in particular, transparent dispersibility during redispersion. According to the method for improving redispersibility of the present disclosure, in one or a plurality of embodiments, the transparent dispersibility at the time of redispersion of a dried product of TEMPO-oxidized CNF among anion-modified CNFs can be further improved or improved. Moreover, according to the redispersibility improving method of the present disclosure, in one or a plurality of embodiments, dispersibility during redispersion of a dry product of C-modified CNF among anion-modified CNFs can be further improved or improved.
According to the redispersibility improving method of the present disclosure, in one or a plurality of embodiments, it is possible to further improve or improve the transparent dispersibility during redispersion of the dried product of phosphate esterified CNF among anion-modified CNFs. . The redispersibility improving agent and the blending ratio are the same as in the method for producing dry CNF of the present disclosure.
 前記水性懸濁液は、一又は複数の実施形態において、アニオン変性CNF及び再分散時の再分散性改善剤以外の第3の成分を含んでいてもよい。第3の成分としては、一又は複数の実施形態において、水溶性ポリマー等が挙げられる。 In one or a plurality of embodiments, the aqueous suspension may contain a third component other than the anion-modified CNF and the redispersibility improving agent during redispersion. Examples of the third component include a water-soluble polymer in one or a plurality of embodiments.
 水性懸濁液の乾燥は、一又は複数の実施形態において、本開示の乾燥CNFの製造方法と同様に行うことができる。 In one or a plurality of embodiments, the aqueous suspension can be dried in the same manner as the dry CNF production method of the present disclosure.
 [再分散性改善剤]
 本開示は、その他の態様において、乾燥セルロースナノファイバーの水性分散媒への再分散性、特に、再分散時の透明分散性を向上又は改善するための再分散性改善剤(本開示の再分散性改善剤)に関する。本開示の再分散性改善剤は、低分子量の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のPVCからなる群から選択される一種以上を含む。本開示の再分散性改善剤は、一又は複数の実施形態において、分散媒への再分散性、特に、再分散時の透明分散性が向上又は改善された乾燥セルロースナノファイバイーの製造において使用することができる。低分子量の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のPVCは、上記の通りである。
[Redispersibility improver]
In another aspect, the present disclosure provides a redispersibility improving agent for improving or improving redispersibility of dry cellulose nanofibers in an aqueous dispersion medium, in particular, transparent dispersibility during redispersion (redispersion of the present disclosure). Property improver). The redispersibility improving agent of the present disclosure includes one or more selected from the group consisting of low molecular weight saccharides, low molecular weight polypeptides, amino acids, and low molecular weight PVC. The redispersibility improver of the present disclosure is used in one or a plurality of embodiments in the production of dry cellulose nanofibers having improved or improved redispersibility in a dispersion medium, in particular, transparent dispersibility during redispersion. can do. Low molecular weight saccharides, low molecular weight polypeptides, amino acids, and low molecular weight PVC are as described above.
 [乾燥組成物]
 本開示は、一態様において、アニオン変性セルロースナノファイバーと再分散性改善剤を含む乾燥組成物であって、前記再分散性改善剤が、分子量が5万以下の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のPVCからなる群から選択される少なくとも1種類を含む乾燥組成物(本開示の乾燥組成物)に関する。
[Dry composition]
In one aspect, the present disclosure is a dry composition containing anion-modified cellulose nanofibers and a redispersibility improver, wherein the redispersibility improver is a saccharide having a molecular weight of 50,000 or less, a low molecular weight polypeptide, The present invention relates to a dry composition (dry composition of the present disclosure) comprising at least one selected from the group consisting of amino acids and low molecular weight PVC.
 本開示の乾燥組成物における再分散性改善剤の割合は、一又は複数の実施形態において、アニオン変性CNF(絶乾固形分)に対して、5質量%以上、5質量%~500質量%、5質量%~400質量%、5質量%~300質量%、10質量%~200質量%又は20質量%~300質量%、好ましくは30~350質量%又は30質量%~150質量%である。 In one or a plurality of embodiments, the proportion of the redispersibility improver in the dry composition of the present disclosure is 5% by mass or more and 5% by mass to 500% by mass with respect to the anion-modified CNF (absolutely dry solid content). 5% by mass to 400% by mass, 5% by mass to 300% by mass, 10% by mass to 200% by mass, or 20% by mass to 300% by mass, and preferably 30% by mass to 350% by mass or 30% by mass to 150% by mass.
 アニオン変性CNFがTEPO酸化CNFである場合、本開示の乾燥組成物における再分散性改善剤の割合は、一又は複数の実施形態において、TEMPO酸化CNF(絶乾固形分)に対して、5質量%以上、5質量%~500質量%、5質量%~400質量%、5質量%~300質量%又は10質量%~200質量%であり、好ましくは30質量%~250質量%又は45質量%~150質量%である。 When the anion-modified CNF is TEMPO-oxidized CNF, the proportion of the redispersibility improver in the dry composition of the present disclosure is, in one or more embodiments, 5 masses relative to TEMPO-oxidized CNF (absolutely dry solids). % Or more, 5 mass% to 500 mass%, 5 mass% to 400 mass%, 5 mass% to 300 mass%, or 10 mass% to 200 mass%, preferably 30 mass% to 250 mass% or 45 mass%. ~ 150% by weight.
 アニオン変性CNFがCM化CNFである場合、本開示の乾燥組成物における再分散性改善剤の割合は、一又は複数の実施形態において、TEMPO酸化CNF(絶乾固形分)に対して、5質量%以上、10質量%~500質量%又は30質量%~400質量%であり、好ましくは50質量%~350質量%又は75質量%~350質量%である。 When the anion-modified CNF is C-merized CNF, the proportion of the redispersibility improver in the dry composition of the present disclosure is, in one or more embodiments, 5 masses with respect to TEMPO oxidized CNF (absolutely dry solids). % Or more, 10 mass% to 500 mass%, or 30 mass% to 400 mass%, preferably 50 mass% to 350 mass%, or 75 mass% to 350 mass%.
 アニオン変性CNFがリン酸エステル化CNFである場合、本開示の乾燥組成物における再分散性改善剤の割合は、一又は複数の実施形態において、リン酸エステル化CNF(絶乾固形分)に対して、5質量%以上、5質量%~500質量%、5質量%~400質量%、5質量%~300質量%又は10質量%~200質量%であり、好ましくは30質量%~250質量%又は45質量%~150質量%である。 When the anion-modified CNF is phosphate esterified CNF, the proportion of the redispersibility improver in the dry composition of the present disclosure is, in one or more embodiments, based on phosphate esterified CNF (absolutely dry solids). 5 mass% or more, 5 mass% to 500 mass%, 5 mass% to 400 mass%, 5 mass% to 300 mass%, or 10 mass% to 200 mass%, preferably 30 mass% to 250 mass%. Or 45 mass% to 150 mass%.
 本開示の乾燥組成物は、一又は複数の実施形態において、アニオン変性CNF及び再分散性改善剤以外の第3の成分を含んでいてもよい。第3の成分としては、一又は複数の実施形態において、水溶性ポリマー等が挙げられる。 In one or a plurality of embodiments, the dry composition of the present disclosure may include a third component other than the anion-modified CNF and the redispersibility improving agent. Examples of the third component include a water-soluble polymer in one or a plurality of embodiments.
 本開示の乾燥組成物は、一又は複数の実施形態において、フィルム状であっても、固形状であっても、粉末状であってもよい。本開示の乾燥組成物の膜厚は、一又は複数の実施形態において、50μm以上若しくは100μm以上であり、又は1000μm以下若しくは300μm以下である。 In one or more embodiments, the dry composition of the present disclosure may be a film, a solid, or a powder. The film thickness of the dry composition of this indication is 50 micrometers or more or 100 micrometers or more, or 1000 micrometers or less or 300 micrometers or less in one or some embodiment.
 本開示の乾燥組成物は、一又は複数の実施形態において、アニオン変性CNF及び再分散性改善剤、並びに必要に応じて前記第3の成分を混合し、それを乾燥させることにより製造してもよいし、又は本開示の乾燥CNFと前記第3の成分とを混合し、それを乾燥させることにより製造してもよい。 In one or a plurality of embodiments, the dry composition of the present disclosure may be produced by mixing an anion-modified CNF and a redispersibility improver, and, if necessary, the third component and drying it. Alternatively, the dry CNF of the present disclosure and the third component may be mixed and dried.
 本開示はさらに以下の一又は複数の実施形態に関する。
〔1〕 アニオン変性CNFと再分散性改善剤とを混合してアニオン変性CNFの水性懸濁液を得ること、及び
 前記水性懸濁液を乾燥させて乾燥CNFを得ることを含み、
 前記再分散性改善剤は、分子量が5万以下の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のポリビニルアルコールからなる群から選択される、乾燥CNFの製造方法。
〔2〕 前記再分散性改善剤は、分子量が2万以下のカルボキシメチルセルロースである、〔1〕記載の乾燥CNFの製造方法。
〔3〕 アニオン変性CNFと低分子量の糖類とを混合してアニオン変性CNFの水性懸濁液を得ること、及び
 前記水性懸濁液を乾燥させて乾燥CNFを得ることを含む、乾燥CNFの製造方法。
〔4〕 前記糖類の分子量は、5万以下である、〔3〕記載の乾燥CNFの製造方法。
〔5〕 アニオン変性CNFと低分子量のCMCとを混合してアニオン変性CNFの水性懸濁液を得ること、及び
 前記水性懸濁液を乾燥させて乾燥CNFを得ることを含む、乾燥CNFの製造方法。
〔6〕 前記CMCの分子量は、2万以下である、〔5〕記載の乾燥CNFの製造方法。
〔7〕 アニオン変性CNFと低分子量のポリペプタイド及びアミノ酸の少なくとも一方とを混合してアニオン変性CNFの水性懸濁液を得ること、及び
 前記水性懸濁液を乾燥させて乾燥CNFを得ることを含む、乾燥CNFの製造方法。
〔8〕 アニオン変性CNFと低分子量のPVAとを混合してアニオン変性CNFの水性懸濁液を得ること、及び
 前記水性懸濁液を乾燥させて乾燥CNFを得ることを含む、乾燥CNFの製造方法。
〔9〕 前記アニオン変性CNFが、カルボキシル化CNF、CM化CNF又はリン酸エステル化CNFである、〔1〕から〔8〕のいずれかに記載の乾燥CNFの製造方法。
〔10〕 アニオン変性CNFと再分散性改善剤とを混合してアニオン変性CNFの水性懸濁液を得ること、及び
 前記水性懸濁液を乾燥させることを含み、
 前記再分散性改善剤は、分子量が5万以下の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のポリビニルアルコールからなる群から選択される、CNFの再分散性改善方法。
〔11〕 アニオン変性CNFと低分子量の糖類とを混合してアニオン変性CNFの水性懸濁液を得ること、及び
 前記水性懸濁液を乾燥させることを含む、CNFの再分散性改善方法。
〔12〕 アニオン変性CNFと低分子量のCMCとを混合してアニオン変性CNFの水性懸濁液を得ること、及び
 前記水性懸濁液を乾燥させることを含む、CNFの再分散性改善方法。
〔13〕 アニオン変性CNFと低分子量のポリペプタイド及びアミノ酸少なくとも一方とを混合してアニオン変性CNFの水性懸濁液を得ること、及び
 前記水性懸濁液を乾燥させることを含む、CNFの再分散性改善方法。
〔14〕 アニオン変性CNFと低分子量のPVAとを混合してアニオン変性CNFの水性懸濁液を得ること、及び
 前記水性懸濁液を乾燥させることを含む、CNFの再分散性改善方法。
〔15〕 前記アニオン変性CNFが、カルボキシル化CNF、CM化CNF又はリン酸エステル化CNFである、〔10〕から〔14〕のいずれかに記載のCNFの再分散性改善方法。
〔16〕 乾燥CNFの水性分散媒への再分散性を向上又は改善するための薬剤であって、低分子量の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のポリビニルアルコールからなる群から選択される一種以上を含む再分散性改善剤。
〔17〕 乾燥CNFの水性分散媒への再分散性を向上又は改善するための薬剤であって、低分子量のCMCを含む再分散性改善剤。
〔18〕 乾燥CNFの製造に使用するための再分散性改善剤であって、低分子量の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のポリビニルアルコールからなる群から選択される一種以上を含む再分散性改善剤。
〔19〕 乾燥CNFの製造に使用するための再分散性改善剤であって、低分子量のCMCを含む再分散性改善剤。
〔20〕 〔1〕から〔9〕のいずれかに記載の乾燥CNFの製造方法又は〔10〕から〔15〕のいずれかに記載の再分散性改善方法に使用するための再分散性改善剤であって、低分子量の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のポリビニルアルコールからなる群から選択される一種以上を含む再分散性改善剤。
〔21〕 〔1〕から〔9〕のいずれかに記載の乾燥CNFの製造方法又は〔10〕から〔15〕のいずれかに記載の再分散性改善方法に使用するための再分散性改善剤であって、低分子量のCMCを含む再分散性改善剤。
〔22〕 アニオン変性CNF及び再分散性改善剤を含む乾燥組成物であって、
 前記再分散性改善剤が、分子量が5万以下の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のポリビニルアルコールからなる群から選択される少なくとも1種類を含む、組成物。
〔23〕 前記アニオン変性CNFが、カルボキシル化CNF、CM化CNF又はリン酸エステル化CNFである、〔22〕記載の組成物。
The present disclosure further relates to one or more of the following embodiments.
[1] An anion-modified CNF and a redispersibility improver are mixed to obtain an aqueous suspension of the anion-modified CNF, and the aqueous suspension is dried to obtain a dry CNF.
The method for producing dry CNF, wherein the redispersibility improving agent is selected from the group consisting of sugars having a molecular weight of 50,000 or less, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol.
[2] The method for producing dry CNF according to [1], wherein the redispersibility improving agent is carboxymethylcellulose having a molecular weight of 20,000 or less.
[3] Production of dry CNF, comprising mixing anion-modified CNF and a low molecular weight saccharide to obtain an aqueous suspension of anion-modified CNF, and drying the aqueous suspension to obtain dry CNF Method.
[4] The method for producing dry CNF according to [3], wherein the saccharide has a molecular weight of 50,000 or less.
[5] Production of dry CNF, comprising mixing anion-modified CNF and low molecular weight CMC to obtain an aqueous suspension of anion-modified CNF, and drying the aqueous suspension to obtain dry CNF Method.
[6] The method for producing dry CNF according to [5], wherein the molecular weight of the CMC is 20,000 or less.
[7] Mixing an anion-modified CNF with at least one of a low molecular weight polypeptide and an amino acid to obtain an aqueous suspension of the anion-modified CNF, and drying the aqueous suspension to obtain a dry CNF A method for producing dry CNF.
[8] Production of dry CNF, comprising mixing anion-modified CNF and low molecular weight PVA to obtain an aqueous suspension of anion-modified CNF, and drying the aqueous suspension to obtain dry CNF Method.
[9] The method for producing dry CNF according to any one of [1] to [8], wherein the anion-modified CNF is carboxylated CNF, C-converted CNF, or phosphate-esterified CNF.
[10] comprising mixing an anion-modified CNF and a redispersibility improver to obtain an aqueous suspension of the anion-modified CNF, and drying the aqueous suspension;
The method for improving redispersibility of CNF, wherein the redispersibility improving agent is selected from the group consisting of sugars having a molecular weight of 50,000 or less, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol.
[11] A method for improving the redispersibility of CNF, comprising mixing an anion-modified CNF and a low molecular weight saccharide to obtain an aqueous suspension of the anion-modified CNF, and drying the aqueous suspension.
[12] A method for improving the redispersibility of CNF, comprising mixing an anion-modified CNF and a low molecular weight CMC to obtain an aqueous suspension of the anion-modified CNF, and drying the aqueous suspension.
[13] Redispersion of CNF, comprising mixing an anion-modified CNF with at least one of a low molecular weight polypeptide and an amino acid to obtain an aqueous suspension of the anion-modified CNF, and drying the aqueous suspension Improvement method.
[14] A method for improving the redispersibility of CNF, comprising mixing an anion-modified CNF and a low molecular weight PVA to obtain an aqueous suspension of the anion-modified CNF, and drying the aqueous suspension.
[15] The method for improving redispersibility of CNF according to any one of [10] to [14], wherein the anion-modified CNF is carboxylated CNF, CCM CNF, or phosphate ester CNF.
[16] A drug for improving or improving the redispersibility of dry CNF in an aqueous dispersion medium, selected from the group consisting of low molecular weight saccharides, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol A redispersibility improving agent containing one or more of the above.
[17] A redispersibility improving agent for improving or improving the redispersibility of dry CNF in an aqueous dispersion medium, comprising a low molecular weight CMC.
[18] A redispersibility improver for use in the production of dry CNF, comprising at least one selected from the group consisting of low molecular weight sugars, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol. Redispersibility improving agent containing.
[19] A redispersibility improving agent for use in the production of dry CNF, comprising a low molecular weight CMC.
[20] A redispersibility improver for use in the method for producing dry CNF according to any one of [1] to [9] or the redispersibility improving method according to any one of [10] to [15] A redispersibility improving agent comprising at least one selected from the group consisting of a low molecular weight saccharide, a low molecular weight polypeptide, an amino acid, and a low molecular weight polyvinyl alcohol.
[21] A redispersibility improver for use in the method for producing dry CNF according to any one of [1] to [9] or the redispersibility improving method according to any one of [10] to [15] A redispersibility improver comprising low molecular weight CMC.
[22] A dry composition comprising an anion-modified CNF and a redispersibility improver,
A composition comprising the redispersibility improving agent comprising at least one selected from the group consisting of sugars having a molecular weight of 50,000 or less, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol.
[23] The composition according to [22], wherein the anion-modified CNF is carboxylated CNF, CCM CNF, or phosphate ester CNF.
 以下、実施例及び比較例を用いて本開示をさらに説明する。ただし、本開示は以下の実施例に限定して解釈されない。 Hereinafter, the present disclosure will be further described using examples and comparative examples. However, the present disclosure is not construed as being limited to the following examples.
 [カルボキシル化セルロースナノファイバー(アニオン変性CNF1)の製造]
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)を、TEMPO(Sigma Aldrich社)39mg(絶乾1gのセルロースに対し0.05mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を次亜塩素酸ナトリウムが5.5mmol/gになるように添加し、室温にて酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。
 反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水洗することで酸化されたパルプ(カルボキシル化セルロース)を得た。この時のパルプ収率は90%であり、酸化反応に要した時間は90分、カルボキシル基量は1.6mmol/gであった。これを水でパルプ固形分1.1%(w/v)に調整し、超高圧ホモジナイザー(20℃、150Mpa)で3回処理して、カルボキシル化セルロースナノファイバー(以下、T-CNFという)の水分散液を得た。平均繊維径は3nm、アスペクト比は250であった。
[Production of carboxylated cellulose nanofiber (anion-modified CNF1)]
Bleached unbeaten kraft pulp derived from conifers (whiteness 85%) 5.00 g (absolutely dried), TEMPO (Sigma Aldrich) 39 mg (0.05 mmol for 1 g of absolutely dried cellulose) and 514 mg of sodium bromide (absolutely dry) The solution was added to 500 ml of an aqueous solution in which 1.0 mmol) was dissolved in 1 g of dry cellulose, and stirred until the pulp was uniformly dispersed. An aqueous sodium hypochlorite solution was added to the reaction system so that sodium hypochlorite was 5.5 mmol / g, and the oxidation reaction was started at room temperature. During the reaction, the pH in the system was lowered, but a 3M sodium hydroxide aqueous solution was sequentially added to adjust the pH to 10. The reaction was terminated when sodium hypochlorite was consumed and the pH in the system no longer changed.
The reaction mixture was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain oxidized pulp (carboxylated cellulose). The pulp yield at this time was 90%, the time required for the oxidation reaction was 90 minutes, and the amount of carboxyl groups was 1.6 mmol / g. This was adjusted to a pulp solid content of 1.1% (w / v) with water, treated three times with an ultra-high pressure homogenizer (20 ° C., 150 Mpa), and carboxylated cellulose nanofiber (hereinafter referred to as T-CNF). An aqueous dispersion was obtained. The average fiber diameter was 3 nm and the aspect ratio was 250.
 [カルボキシメチル化セルロースナノファイバー(アニオン変性CNF2)の製造]
 パルプを混ぜることができる撹拌機に、針葉樹晒クラフトパルプ(日本製紙株式会社製)を乾燥質量で200g、水酸化ナトリウムを乾燥質量で111g(発底原料の無水グルコース残基当たり2.25倍モル)加え、パルプ固形分が20%(w/v)になるように水を加えた。その後、30℃で30分撹拌した後にモノクロロ酢酸ナトリウムを216g(有効成分換算、パルプのグルコース残基当たり1.5倍モル)添加した。30分撹拌した後に、70℃まで昇温し1時間撹拌した。その後、反応物を取り出して中和、洗浄して、グルコース単位当たりのカルボキシメチル置換度0.25のカルボキシメチル化したパルプを得た。これを水でパルプ固形分1.2%(w/v)とし、高圧ホモジナイザにより20℃、150MPaの圧力で5回処理することにより解繊しカルボキシメチル化セルロースナノファイバー(以下、CM-CNFという)を得た。平均繊維径は12nm、アスペクト比は130であった。
[Production of Carboxymethylated Cellulose Nanofiber (Anion-Modified CNF2)]
In a stirrer capable of mixing pulp, 200 g dry needle bleached kraft pulp (manufactured by Nippon Paper Industries Co., Ltd.) and 111 g sodium hydroxide dry mass (2.25 times mol per anhydroglucose residue of the bottoming material) In addition, water was added so that the pulp solid content was 20% (w / v). Thereafter, after stirring at 30 ° C. for 30 minutes, 216 g of sodium monochloroacetate (in terms of active ingredient, 1.5 times mol per glucose residue of pulp) was added. After stirring for 30 minutes, the temperature was raised to 70 ° C. and stirred for 1 hour. Thereafter, the reaction product was taken out, neutralized and washed to obtain a carboxymethylated pulp having a carboxymethyl substitution degree of 0.25 per glucose unit. The pulp solid content is 1.2% (w / v) with water, and the fiber is fibrillated by treating with a high-pressure homogenizer five times at 20 ° C. and a pressure of 150 MPa. The carboxymethylated cellulose nanofiber (hereinafter referred to as CM-CNF) ) The average fiber diameter was 12 nm and the aspect ratio was 130.
 [リン酸エステル化セルロースナノファイバー(アニオン変性CNF3)の製造]
リン酸二水素ナトリウム二水和物6.75g、リン酸水素二ナトリウム4.83gを19.62gの水に溶解させ、リン酸系化合物の水溶液(以下、「リン酸化試薬」という。)を得た。針葉樹未晒クラフトパルプ(NUKP、水分80%、JIS P8121に準じて測定されるカナダ標準濾水度(CSF)580ml)に、パルプ固形分が4%(w/v)になるように水を加えた。その後、ダブルディスクリファイナーを用いて、変則CSF(平織り80メッシュ、パルプ採取量を0.3gとした以外はJIS P8121に準ずる)が200ml、長さ平均繊維長が0.66mmになるまで叩解した。これにより得たセルロース懸濁液をパルプ固形分0.3%(w/v)に希釈し、含水率90%、固形分(絶乾質量)3gのパルプシート(厚み200μm)を抄紙法で得た。このパルプシートを前記リン酸化試薬31.2g(乾燥パルプ100質量部に対してリン元素量として80質量部)に浸漬させ、105℃の送風乾燥機(ヤマト科学株式会社 DKM400)で1時間加熱後、さらに150℃で1時間加熱処理して、セルロース繊維にリン酸基を導入した。次いで、セルロース繊維にリン酸基を導入したパルプシートに500mlのイオン交換水を加え、攪拌洗浄後、脱水した。脱水後のシートを300mlのイオン交換水で希釈し、攪拌しながら、1Nの水酸化ナトリウム水溶液5mlを少しずつ添加し、pHが12~13のセルロース懸濁液を得た。その後、このセルロース懸濁液を脱水し、500mlのイオン交換水を加えて洗浄を行った。この脱水洗浄をさらに2回繰り返した。洗浄脱水後に得られたシートにイオン交換水を添加した後、攪拌し、0.5質量%のセルロース懸濁液にした。このセルロース懸濁液を、解繊処理装置(エムテクニック社製、クレアミックス-2.2S)を用いて、21500回転/分の条件で30分間解繊処理して、解繊セルロース(リン酸エステル化セルロースナノファイバー)懸濁液を得た。解繊セルロース懸濁液に含まれるセルロースについて透過型電子顕微鏡により観察したところ、幅4nmの微細繊維状セルロースが含まれていることが確認された。また、X線回折により、セルロースはセルロースI型結晶を維持していることが確認された。また、FT-IRによる赤外線吸収スペクトルの測定により、1230cm-1~1290cm-1にリン酸基に基づく吸収が見られ、リン酸基の付加が確認された。この時のリン酸基導入量は微細繊維状セルロース1g(質量)あたり2.1mmol/gであった。
[Production of Phosphate Ester Cellulose Nanofiber (Anion-Modified CNF3)]
6.75 g of sodium dihydrogen phosphate dihydrate and 4.83 g of disodium hydrogen phosphate are dissolved in 19.62 g of water to obtain an aqueous solution of a phosphoric acid compound (hereinafter referred to as “phosphorylation reagent”). It was. Water is added to unbleached kraft pulp (NUKP, moisture 80%, Canadian standard freeness (CSF) 580 ml measured according to JIS P8121) so that the pulp solid content is 4% (w / v). It was. After that, using a double disc refiner, it was beaten until an irregular CSF (plain mesh 80 mesh, according to JIS P8121 except that the amount of pulp collected was 0.3 g) was 200 ml, and the length average fiber length was 0.66 mm. The cellulose suspension thus obtained was diluted to a pulp solid content of 0.3% (w / v), and a pulp sheet (thickness 200 μm) having a moisture content of 90% and a solid content (absolute dry mass) of 3 g was obtained by a papermaking method. It was. This pulp sheet was immersed in 31.2 g of the phosphorylating reagent (80 parts by mass as the amount of phosphorus element with respect to 100 parts by mass of the dried pulp), and heated for 1 hour with an air dryer at 105 ° C. (Yamato Scientific Co., Ltd. DKM400) Further, heat treatment was performed at 150 ° C. for 1 hour to introduce phosphate groups into the cellulose fibers. Subsequently, 500 ml of ion-exchanged water was added to the pulp sheet in which the phosphate group was introduced into the cellulose fiber, and the mixture was dehydrated after washing with stirring. The dehydrated sheet was diluted with 300 ml of ion-exchanged water, and 5 ml of 1N aqueous sodium hydroxide solution was added little by little with stirring to obtain a cellulose suspension having a pH of 12 to 13. Thereafter, the cellulose suspension was dehydrated and washed by adding 500 ml of ion exchange water. This dehydration washing was repeated two more times. Ion exchange water was added to the sheet obtained after washing and dehydration, and the mixture was stirred to obtain a 0.5 mass% cellulose suspension. This cellulose suspension was defibrated for 30 minutes using a defibrating apparatus (Cleamix-2.2S, manufactured by M Technique Co., Ltd.) at 21500 rpm, and defibrated cellulose (phosphate ester) Cellulose nanofiber) suspension was obtained. When the cellulose contained in the defibrated cellulose suspension was observed with a transmission electron microscope, it was confirmed that fine fibrous cellulose having a width of 4 nm was contained. Moreover, it was confirmed by X-ray diffraction that the cellulose maintained the cellulose I type crystal. Further, the infrared absorption spectrum was measured by FT-IR. Absorption based on phosphate groups was observed at 1230 cm −1 to 1290 cm −1 , confirming the addition of phosphate groups. The amount of phosphate group introduced at this time was 2.1 mmol / g per 1 g (mass) of fine fibrous cellulose.
 (実験例1)
 表1に示す薬剤を用いて、乾燥アニオン変性CNF(乾燥CNF)の製造及び乾燥CNFの再分散性の評価を行った。アニオン変性CNFは、アニオン変性CNF1(T-CNF、平均繊維幅:3nm、アスペクト比:250)を使用した。
(Experimental example 1)
Using the chemicals shown in Table 1, production of dry anion-modified CNF (dry CNF) and redispersibility of dry CNF were evaluated. As the anion-modified CNF, anion-modified CNF1 (T-CNF, average fiber width: 3 nm, aspect ratio: 250) was used.
 [乾燥CNFの製造]
 アニオン変性CNF1のパルプ固形分1%(w/v)水性懸濁液に、表1に示す薬剤を粉末のまま添加した。薬剤は、CNF100質量部に対して表1の量(質量部)となるように添加した。表1の実施例で使用した薬剤は、1%又は5%の濃度で25℃の水と混合した場合に、透明又は曇った状態で溶解したことから、いずれも水溶性であった。
 薬剤は、懸濁液中のCNF固形分と等量となるように添加した。次いで、スターラー、ポイントミキサー又はホモミキサー等で透明性を帯びる状態になるまで攪拌混合した。得られた液体をテフロン(商標)板又はテフロン(商標)皿の上に塗布し、60℃~105℃の温風で乾燥し、フィルム状の乾燥CNFを得た。
 ブランクでは、薬剤を添加しない以外は、上記と同様に行った。
[Production of dry CNF]
The chemical | medical agent shown in Table 1 was added with powder to 1% (w / v) pulp solid content suspension of anion-modified CNF1. The chemical | medical agent was added so that it might become the quantity (mass part) of Table 1 with respect to 100 mass parts of CNFs. The chemicals used in the examples in Table 1 were both water-soluble because they were dissolved in a clear or cloudy state when mixed with 25 ° C. water at a concentration of 1% or 5%.
The drug was added in an amount equivalent to the CNF solid content in the suspension. Next, the mixture was stirred and mixed with a stirrer, a point mixer, a homomixer, or the like until it became transparent. The obtained liquid was applied on a Teflon (trademark) plate or a Teflon (trademark) dish, and dried with hot air of 60 ° C. to 105 ° C. to obtain a film-like dry CNF.
The blank was the same as above except that no drug was added.
 [乾燥CNFの再分散]
 フィルム状の乾燥CNFを1mm~2mm程度に手で微細化し、0.1gを試験管に量り取った。蒸留水5gを添加し、ポイントミキサーで1分間程度攪拌した後、室温で24時間程度放置した。これを再度ポイントミキサーで1分間程度攪拌してアニオン変性CNFを再分散した水性分散液又は水性懸濁液を得た(固形分濃度2%(w/v))。
[Redispersion of dry CNF]
The film-like dry CNF was refined by hand to about 1 mm to 2 mm, and 0.1 g was weighed into a test tube. Distilled water (5 g) was added, the mixture was stirred for about 1 minute with a point mixer, and then allowed to stand at room temperature for about 24 hours. This was again stirred with a point mixer for about 1 minute to obtain an aqueous dispersion or aqueous suspension in which anion-modified CNF was redispersed (solid content concentration 2% (w / v)).
 [再分散性の評価]
 試験管中の水性再分散液又は水性懸濁液を目視により再分散性を評価した。評価は下記の評価基準に基づき行った。その結果を下記表1に示す。
<評価基準>
  A:未分散CNF片が完全に認められず、乾燥前のアニオン変性CNFと同等の高い透明性を示す。
  B:微細な未分散CNF片が微量認められるが、高い透明性を示す。
  C:未分散CNF片が少量認められる
  D:CNFの分散が全く認められず、白濁している。
[Evaluation of redispersibility]
The redispersibility of the aqueous redispersion liquid or aqueous suspension in the test tube was evaluated visually. Evaluation was performed based on the following evaluation criteria. The results are shown in Table 1 below.
<Evaluation criteria>
A: Undispersed CNF pieces are not completely observed, and show high transparency equivalent to anion-modified CNF before drying.
B: Although a trace amount of fine undispersed CNF pieces is observed, it shows high transparency.
C: A small amount of undispersed CNF pieces is observed. D: Dispersion of CNF is not recognized at all, and it is cloudy.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、強いアニオン性を持つ物質、カチオンポリマーや水不溶性物質とともに乾燥させた比較例では、いずれも、得られた乾燥CNFを分散させることができなかった。一方、低分子量の糖類若しくはPVA又はアミノ酸とともに乾燥させた実施例では、得られた乾燥CNFを分散させることができ、再分散性、特に、再分散時の透明分散性が改善されることが確認できた。
 また、ブランクや比較例では、白い沈殿物や浮遊物が確認され、白濁していた。これに対し、実施例の試験管では、いずれも、沈殿物や未分散状態のゲル状物がほとんど確認されず透明であった。中でも再分散性の評価がAの試験管では、沈殿物や未分散状態のゲル状物は確認されず、透明性がとくに高かった。
As shown in Table 1, none of the comparative examples dried with a substance having a strong anionic property, a cationic polymer or a water-insoluble substance could disperse the obtained dry CNF. On the other hand, in the examples dried with low molecular weight saccharides or PVA or amino acids, it was confirmed that the obtained dry CNF can be dispersed, and redispersibility, particularly, transparent dispersibility during redispersion is improved. did it.
Moreover, in the blank and the comparative example, a white precipitate and a suspended | floating matter were confirmed and it became cloudy. On the other hand, in all the test tubes of the examples, almost no precipitates or undispersed gel-like substances were confirmed, and the test tubes were transparent. In particular, in the test tube with an evaluation of redispersibility of A, no precipitate or undispersed gel was confirmed, and the transparency was particularly high.
 [再フィルム化及びゲル化の評価]
 表1における再分散性の評価でA又はBと評価された水性分散液について、再フィルム化及びゲル化の評価を行った。
 再フィルム化は、水性分散液(再分散をテフロン(商標)板の上に2g程度量り取り、70℃~80℃の温風で十分に乾燥させることにより行った。ゲル化は、水性分散液を入れた試験管中に、20%塩化カルシウム溶液を数滴添加することにより行った。
 その結果、いずれもフィルム及びゲルを形成した。つまり、本開示の製造方法により得られた乾燥CNFの物性は、未処理(乾燥処理を行う前)のアニオン変性CNFとは大きな変化がないことが示唆された。
[Evaluation of refilming and gelation]
The aqueous dispersion evaluated as A or B in the evaluation of redispersibility in Table 1 was evaluated for refilming and gelation.
Re-filming was performed by weighing about 2 g of an aqueous dispersion (re-dispersion on a Teflon (trademark) plate) and thoroughly drying with hot air of 70 ° C. to 80 ° C. This was done by adding a few drops of a 20% calcium chloride solution in a test tube containing.
As a result, both formed a film and a gel. That is, it was suggested that the physical properties of dry CNF obtained by the production method of the present disclosure are not significantly different from those of untreated (before drying treatment) anion-modified CNF.
 (実験例2)
 下記表2に示すCMC(日本製紙株式会社製)を用いて、アニオン変性CNFの再分散性の評価を行った。アニオン変性CNFは、アニオン変性CNF1(T-CNF、平均繊維径:3nm、アスペクト比:250)を使用した。なお、「サンローズ」は日本製紙株式会社の登録商標である。
(Experimental example 2)
Using CMC (manufactured by Nippon Paper Industries Co., Ltd.) shown in Table 2 below, the redispersibility of anion-modified CNF was evaluated. As the anion-modified CNF, anion-modified CNF1 (T-CNF, average fiber diameter: 3 nm, aspect ratio: 250) was used. “Sunrose” is a registered trademark of Nippon Paper Industries Co., Ltd.
 [乾燥CNFの製造及び再分散]
 表1の薬剤に替えて下記表2に示すCMCを使用した以外は、実験例1と同様の手順で、フィルム状の乾燥CNFを得た。フィルム状の乾燥CNFを3×3mm程度に粉砕し、200mLビーカーに固形分0.7%(w/v)となるように蒸留水で調整し、スリーワンモーターで600rpm、羽直径3.5cmの攪拌機を用いて1時間~3時間攪拌して水性再分散液又は水性懸濁液を得た。
 ブランクでは、薬剤を添加しない以外は、上記と同様におこなった。
[Production and redispersion of dry CNF]
A film-like dry CNF was obtained in the same procedure as in Experimental Example 1, except that the CMC shown in Table 2 below was used instead of the drugs in Table 1. Film-like dry CNF is pulverized to about 3 x 3 mm, adjusted in distilled water to a solid content of 0.7% (w / v) in a 200 mL beaker, and a stirrer with a three-one motor of 600 rpm and a blade diameter of 3.5 cm The mixture was stirred for 1 to 3 hours to obtain an aqueous redispersion or aqueous suspension.
The blank was the same as above except that no drug was added.
 [再分散性の評価]
 1~3時間の攪拌の間、1時間ごとに水性再分散液又は水性懸濁液のCNFの分散状態を観察し、その再分散性を下記の評価基準に基づき評価した。その結果を下記表2に示す。
<評価基準>
  A:未分散CNF片が完全に認められない
  B:微細な未分散CNF片が極微量認められる
  C:未分散CNF片が少量認められる
  D:CNFの分散が全く認められない
[Evaluation of redispersibility]
During stirring for 1 to 3 hours, the dispersion state of CNF in the aqueous redispersion or suspension was observed every hour, and the redispersibility was evaluated based on the following evaluation criteria. The results are shown in Table 2 below.
<Evaluation criteria>
A: Undispersed CNF pieces are not completely observed B: Fine undispersed CNF pieces are observed in a very small amount C: Undispersed CNF pieces are observed in a small amount D: No dispersion of CNF is observed
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す通り、分子量が2万以下のCMCを使用することにより、乾燥CNFの再分散性を改善することができた。特に、分子量が2万以下のCMCを添加し、攪拌時間を2時間以上とした実施例の試験管では、沈殿物や未分散状態のゲル状物は確認されず、乾燥前のアニオン変性CNF分散液と同等の透明性の高いCNF再分散液を得ることができた。
 また、分子量が2万以下のCMCを使用することにより、乾燥CNFの再分散に要する時間を短縮できることが確認できた。
As shown in Table 2, the redispersibility of dry CNF could be improved by using CMC having a molecular weight of 20,000 or less. In particular, in the test tube of the example in which CMC having a molecular weight of 20,000 or less was added and the stirring time was 2 hours or more, no precipitate or undispersed gel was confirmed, and anion-modified CNF dispersion before drying was confirmed. A highly transparent CNF redispersion liquid equivalent to the liquid could be obtained.
It was also confirmed that the time required for redispersion of dry CNF could be shortened by using CMC having a molecular weight of 20,000 or less.
 (実験例3)
 表3に示す薬剤を用いて、アニオン変性CNFとしてアニオン変性CNF2(CM-CNF、平均繊維幅:12nm、アスペクト比:130以上)を使用し、乾燥フィルム製造時の温風の温度を60℃とした以外は、実験例1と同様に乾燥CNFの製造及び乾燥CNFの再分散を行い、乾燥CM化CNFを再分散した水性分散液又は水性懸濁液を得た。
(Experimental example 3)
Using the agents shown in Table 3, anion-modified CNF2 (CM-CNF, average fiber width: 12 nm, aspect ratio: 130 or more) was used as the anion-modified CNF, and the temperature of the hot air during the production of the dried film was 60 ° C. Except that, dry CNF was produced and dry CNF was redispersed in the same manner as in Experimental Example 1 to obtain an aqueous dispersion or suspension in which dry CM CNF was redispersed.
 [再分散性の評価]
 試験管中の水性再分散液又は水性懸濁液を目視により再分散性を評価した。評価は下記の評価基準に基づき行った。その結果を下記表3に示す。
<評価基準>
  A:未分散CNF片が完全に認められない
  B:微細な未分散CNF片が微量認められる
  C:未分散CNF片が少量認められる
  D:CNFの分散が全く認められない
[Evaluation of redispersibility]
The redispersibility of the aqueous redispersion liquid or aqueous suspension in the test tube was evaluated visually. Evaluation was performed based on the following evaluation criteria. The results are shown in Table 3 below.
<Evaluation criteria>
A: Undispersed CNF pieces are not completely observed B: Fine undispersed CNF pieces are observed in a small amount C: Undispersed CNF pieces are observed in a small amount D: No dispersion of CNF is observed
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示す通り、デキストリン及びα-シクロデキストリンといった低分子量の糖類とともに乾燥させることによって、CM化CNFについても、得られた乾燥CNFを蒸留水に分散させることができた。
 また、乾燥CNFの再分散性向上に使用されている従来の薬剤と比較して、その再分散性が改善されることが確認できた。
As shown in Table 3, by drying together with low molecular weight sugars such as dextrin and α-cyclodextrin, the obtained dried CNF could be dispersed in distilled water for C-converted CNF.
Moreover, it has confirmed that the redispersibility was improved compared with the conventional chemical | medical agent currently used for the improvement of the redispersibility of dry CNF.

Claims (8)

  1.  アニオン変性セルロースナノファイバーと再分散性改善剤とを混合してアニオン変性セルロースナノファイバーの水性懸濁液を得ること、及び
     前記水性懸濁液を乾燥させて乾燥セルロースナノファイバーを得ることを含み、
     前記再分散性改善剤は、分子量が5万以下の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のポリビニルアルコールからなる群から選択される、乾燥セルロースナノファイバーの製造方法。
    Mixing an anion-modified cellulose nanofiber and a redispersibility improver to obtain an aqueous suspension of the anion-modified cellulose nanofiber, and drying the aqueous suspension to obtain a dry cellulose nanofiber,
    The method for producing dry cellulose nanofibers, wherein the redispersibility improving agent is selected from the group consisting of saccharides having a molecular weight of 50,000 or less, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol.
  2.  前記再分散性改善剤は、分子量が2万以下のカルボキシメチルセルロースである、請求項1記載の製造方法。 The production method according to claim 1, wherein the redispersibility improving agent is carboxymethylcellulose having a molecular weight of 20,000 or less.
  3.  前記アニオン変性セルロースナノファイバーが、カルボキシル化セルロースナノファイバー、カルボキシメチル化セルロースナノファイバー又はリン酸エステル化セルロースナノファイバーである、請求項1又は2に記載の乾燥セルロースナノファイバーの製造方法。 The method for producing dry cellulose nanofibers according to claim 1 or 2, wherein the anion-modified cellulose nanofibers are carboxylated cellulose nanofibers, carboxymethylated cellulose nanofibers, or phosphate esterified cellulose nanofibers.
  4.  アニオン変性セルロースナノファイバーと再分散性改善剤とを混合してアニオン変性セルロースナノファイバーの水性懸濁液を得ること、及び
     前記水性懸濁液を乾燥させることを含み、
     前記再分散性改善剤は、分子量が5万以下の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のポリビニルアルコールからなる群から選択される、セルロースナノファイバーの再分散性改善方法。
    Mixing an anion-modified cellulose nanofiber and a redispersibility improver to obtain an aqueous suspension of the anion-modified cellulose nanofiber, and drying the aqueous suspension,
    The method for improving redispersibility of cellulose nanofibers, wherein the redispersibility improving agent is selected from the group consisting of sugars having a molecular weight of 50,000 or less, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol.
  5.  前記アニオン変性セルロースナノファイバーが、カルボキシル化セルロースナノファイバー、カルボキシメチル化セルロースナノファイバー又はリン酸エステル化セルロースナノファイバーである、請求項4記載の再分散性改善方法。 The method for improving redispersibility according to claim 4, wherein the anion-modified cellulose nanofiber is a carboxylated cellulose nanofiber, a carboxymethylated cellulose nanofiber or a phosphate esterified cellulose nanofiber.
  6.  乾燥セルロースナノファイバーの分散媒への再分散性を向上又は改善するための薬剤であって、分子量が5万以下の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のポリビニルアルコールからなる群から選択される一種以上を含む再分散性改善剤。 A drug for improving or improving the redispersibility of dry cellulose nanofibers in a dispersion medium, comprising a saccharide having a molecular weight of 50,000 or less, a low molecular weight polypeptide, an amino acid, and a low molecular weight polyvinyl alcohol A redispersibility improving agent containing one or more selected.
  7.  アニオン変性セルロースナノファイバーと再分散性改善剤を含む乾燥組成物であって、
     前記再分散性改善剤が、分子量が5万以下の糖類、低分子量のポリペプタイド、アミノ酸、及び低分子量のポリビニルアルコールからなる群から選択される少なくとも1種類を含む、組成物。
    A dry composition comprising an anion-modified cellulose nanofiber and a redispersibility improver,
    A composition comprising the redispersibility improving agent comprising at least one selected from the group consisting of sugars having a molecular weight of 50,000 or less, low molecular weight polypeptides, amino acids, and low molecular weight polyvinyl alcohol.
  8.  前記アニオン変性セルロースナノファイバーが、カルボキシル化セルロースナノファイバー、カルボキシメチル化セルロースナノファイバー又はリン酸エステル化セルロースナノファイバーである、請求項7記載の組成物。 The composition according to claim 7, wherein the anion-modified cellulose nanofiber is a carboxylated cellulose nanofiber, a carboxymethylated cellulose nanofiber or a phosphate esterified cellulose nanofiber.
PCT/JP2018/002846 2017-02-03 2018-01-30 Production method of dried cellulose nanofibers WO2018143149A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018565537A JP6931837B2 (en) 2017-02-03 2018-01-30 Manufacturing method of dried cellulose nanofibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-018824 2017-02-03
JP2017018824 2017-02-03

Publications (1)

Publication Number Publication Date
WO2018143149A1 true WO2018143149A1 (en) 2018-08-09

Family

ID=63040744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002846 WO2018143149A1 (en) 2017-02-03 2018-01-30 Production method of dried cellulose nanofibers

Country Status (2)

Country Link
JP (2) JP6931837B2 (en)
WO (1) WO2018143149A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230716A1 (en) * 2018-05-29 2019-12-05 日本製紙株式会社 Powder containing carboxymethylated cellulose nanofibers
WO2020066731A1 (en) * 2018-09-28 2020-04-02 大王製紙株式会社 Gel-form cleaning agent composition and cleaning agent product
JP2021010310A (en) * 2019-07-04 2021-02-04 日本製紙株式会社 Cellulose nanofiber-containing powder composition and method of producing the same
JP2021138875A (en) * 2020-03-06 2021-09-16 ユニチカ株式会社 Polypropylene resin composition and resin composition including the same
WO2022172832A1 (en) * 2021-02-12 2022-08-18 王子ホールディングス株式会社 Sheet and layered body

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6931837B2 (en) * 2017-02-03 2021-09-08 株式会社片山化学工業研究所 Manufacturing method of dried cellulose nanofibers
JP7232072B2 (en) * 2019-02-15 2023-03-02 第一工業製薬株式会社 MODIFIED CELLULOSE NANOFIBER, GAS BARRIER MATERIAL AND GAS BARRIER MOLDED PRODUCT
CN115651086B (en) * 2022-11-07 2024-01-30 宁波大学 Environment-friendly preparation method of polypeptide modified cellulose

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251446A (en) * 1997-03-17 1998-09-22 Nippon Paper Ind Co Ltd Water-dispersible composite
JP2008001728A (en) * 2006-06-20 2008-01-10 Asahi Kasei Corp Fine cellulose fiber
WO2009069641A1 (en) * 2007-11-26 2009-06-04 The University Of Tokyo Cellulose nanofiber and process for production thereof, and cellulose nanofiber dispersion
JP2012041489A (en) * 2010-08-23 2012-03-01 Kao Corp Gas barrier molded body
JP2014028935A (en) * 2012-06-26 2014-02-13 Toray Ind Inc Method for producing carboxymethylcellulose, dispersant of carboxymethylcellulose and carbone nanotube-containing composition
WO2015107995A1 (en) * 2014-01-17 2015-07-23 日本製紙株式会社 Dry solid of anion-modified cellulose nanofiber and method for producing same
JP2015183096A (en) * 2014-03-24 2015-10-22 凸版印刷株式会社 Coating agent, barrier film, packaging film and manufacturing method of coating agent
JP2016186018A (en) * 2015-03-27 2016-10-27 日本製紙株式会社 Concentrate of anion-modified cellulose nanofiber, method for the production thereof and dispersion liquid thereof
JP2017002231A (en) * 2015-06-12 2017-01-05 王子ホールディングス株式会社 Method for producing fine fibrous cellulose concentrated matter, and composition including fine fibrous cellulose

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6931837B2 (en) 2017-02-03 2021-09-08 株式会社片山化学工業研究所 Manufacturing method of dried cellulose nanofibers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251446A (en) * 1997-03-17 1998-09-22 Nippon Paper Ind Co Ltd Water-dispersible composite
JP2008001728A (en) * 2006-06-20 2008-01-10 Asahi Kasei Corp Fine cellulose fiber
WO2009069641A1 (en) * 2007-11-26 2009-06-04 The University Of Tokyo Cellulose nanofiber and process for production thereof, and cellulose nanofiber dispersion
JP2012041489A (en) * 2010-08-23 2012-03-01 Kao Corp Gas barrier molded body
JP2014028935A (en) * 2012-06-26 2014-02-13 Toray Ind Inc Method for producing carboxymethylcellulose, dispersant of carboxymethylcellulose and carbone nanotube-containing composition
WO2015107995A1 (en) * 2014-01-17 2015-07-23 日本製紙株式会社 Dry solid of anion-modified cellulose nanofiber and method for producing same
JP2015183096A (en) * 2014-03-24 2015-10-22 凸版印刷株式会社 Coating agent, barrier film, packaging film and manufacturing method of coating agent
JP2016186018A (en) * 2015-03-27 2016-10-27 日本製紙株式会社 Concentrate of anion-modified cellulose nanofiber, method for the production thereof and dispersion liquid thereof
JP2017002231A (en) * 2015-06-12 2017-01-05 王子ホールディングス株式会社 Method for producing fine fibrous cellulose concentrated matter, and composition including fine fibrous cellulose

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230716A1 (en) * 2018-05-29 2019-12-05 日本製紙株式会社 Powder containing carboxymethylated cellulose nanofibers
JPWO2019230716A1 (en) * 2018-05-29 2021-08-05 日本製紙株式会社 Powder containing carboxymethylated cellulose nanofibers
JP7445593B2 (en) 2018-05-29 2024-03-07 日本製紙株式会社 Powder containing carboxymethylated cellulose nanofibers
WO2020066731A1 (en) * 2018-09-28 2020-04-02 大王製紙株式会社 Gel-form cleaning agent composition and cleaning agent product
JP2020050804A (en) * 2018-09-28 2020-04-02 大王製紙株式会社 Gelatinous detergent composition and detergent product
JP2021010310A (en) * 2019-07-04 2021-02-04 日本製紙株式会社 Cellulose nanofiber-containing powder composition and method of producing the same
JP2021138875A (en) * 2020-03-06 2021-09-16 ユニチカ株式会社 Polypropylene resin composition and resin composition including the same
WO2022172832A1 (en) * 2021-02-12 2022-08-18 王子ホールディングス株式会社 Sheet and layered body

Also Published As

Publication number Publication date
JP2021143343A (en) 2021-09-24
JPWO2018143149A1 (en) 2019-11-21
JP7270194B2 (en) 2023-05-10
JP6931837B2 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
JP7270194B2 (en) METHOD FOR MANUFACTURING DRY CELLULOSE NANOFIBER
JP6199858B2 (en) Method for producing anion-modified cellulose nanofiber dispersion
WO2018116660A1 (en) Acid-type carboxymethylated cellulose nanofibers and production method therefor
WO2017111016A1 (en) Method for producing cellulose nanofiber dry solid
JP2018199753A (en) Hydrogel and production method thereof
WO2018110627A1 (en) Method for manufacturing dry solid of chemically modified pulp
JP6861972B2 (en) Manufacturing method of dried cellulose nanofibers
JP2023013443A (en) Method for producing chemically modified microfibril cellulose fiber
WO2021112195A1 (en) Method for manufacturing modified cellulose microfibrils
JP6671935B2 (en) Method for producing dry solid material of cellulose nanofiber
EP3375933A1 (en) Method for dehydrating dispersion of chemically modified pulp
JP2021075665A (en) Cellulose nanofiber having carboxyl group and anionic group other than carboxyl group, and method for producing the same
JP2020033531A (en) Composition containing cellulose nanofiber and starch
WO2018173761A1 (en) Method for storing chemically modified cellulose fibers and method for producing chemically modified cellulose nanofibers
JP7303794B2 (en) METHOD FOR MANUFACTURING CELLULOSE NANOFIBER DRY SOLID
JP7098467B2 (en) Manufacturing method of cellulose nanofibers
JP7426810B2 (en) Adhesive composition, its manufacturing method and use
JP7250455B2 (en) Composition containing anion-modified cellulose nanofibers
JP7432390B2 (en) Hydrophobized anion-modified cellulose nanofiber dispersion and method for producing the same, and dry solid of hydrophobized anion-modified cellulose and method for producing the same
JP2018027074A (en) cheese
JP7239294B2 (en) Method for producing anion-modified cellulose nanofiber
JP7199229B2 (en) Method for producing hydrophobized anion-modified cellulose nanofiber dispersion and dry solid of hydrophobized anion-modified cellulose
JP2022011982A (en) Method for Producing Chemically Modified Microfibril Cellulose Fiber
JP2017095813A (en) Dewatering process of chemically modified pulp
JP2022051300A (en) Method for Producing Chemically Modified Microfibril Cellulose Fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747201

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565537

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747201

Country of ref document: EP

Kind code of ref document: A1