WO2018142977A1 - System for detecting causes of abnormalities in plurality of devices constituting casting equipment - Google Patents

System for detecting causes of abnormalities in plurality of devices constituting casting equipment Download PDF

Info

Publication number
WO2018142977A1
WO2018142977A1 PCT/JP2018/001708 JP2018001708W WO2018142977A1 WO 2018142977 A1 WO2018142977 A1 WO 2018142977A1 JP 2018001708 W JP2018001708 W JP 2018001708W WO 2018142977 A1 WO2018142977 A1 WO 2018142977A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
pouring
molding
ladle
unit
Prior art date
Application number
PCT/JP2018/001708
Other languages
French (fr)
Japanese (ja)
Inventor
正孝 白木
加藤 晃一
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to CN201880002520.2A priority Critical patent/CN109414759A/en
Publication of WO2018142977A1 publication Critical patent/WO2018142977A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D47/00Casting plants
    • B22D47/02Casting plants for both moulding and casting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a system that detects the cause of abnormality of a plurality of devices that constitute a casting facility, and relates to a system that can identify the cause even when an abnormality of a certain device is caused by another device.
  • the casting is obtained by forming a mold, transporting the mold to a pouring position, and pouring the mold.
  • the foundry has facilities for adjusting the molding sand (sand treatment), molding the mold, molding and setting the core as necessary, and feeding the mold.
  • equipment post-treatment
  • the casting equipment is a combination of a large number of devices, and these devices are operating in a related manner.
  • Patent Document 1 collects operation data from a motor such as a load current value and a rotation speed during operation and monitors an operation state so that efficient maintenance can be performed.
  • the present invention provides a system for centrally monitoring operation data of a plurality of apparatuses and identifying the true cause of the abnormality in order to detect the cause of the abnormality occurring in the plurality of apparatuses constituting the casting equipment. For the purpose.
  • a system for example, molds a mold, transports the mold to a pouring position, and pours the mold into the mold.
  • An abnormality determination computer that receives information related to operation of the plurality of devices from a plurality of sampling PLCs 102, and determines a failure of the device from information related to operation of the device, and causes a plurality of causes of the abnormality of the device
  • an abnormality determination computer 108 that stores the operation status of the apparatus, and information regarding the operation of at least one of the plurality of apparatuses
  • determining the abnormality of Luo said device based on the operation status of plural device storing, identifies the operating state that causes the abnormality from information about the operation of
  • the operating status of the multiple devices was examined based on the operating status that caused the stored anomaly, and occurred in a certain device It becomes a system to identify the true cause of the abnormalities.
  • the plurality of devices measure a current value for operating the device.
  • the sampling PLC 102 has an ammeter or a voltmeter that measures a voltage value, and monitors the current value or the voltage value as information related to operation. If comprised in this way, the load concerning an apparatus can be measured as an electric current value or a voltage value, and operation
  • the plurality of devices are sound level meters that measure noise of the device. Or it has a vibrometer which measures vibration, and PLC102 for sampling monitors noise or vibration as information about operation. If comprised in this way, the noise or vibration which generate
  • the system according to the fourth aspect of the present invention is a system 100 according to any one of the first to third aspects, for example, as shown in FIG. 1, in which the sampling PLC 102 and the abnormality determination computer 108 are switched. They are connected by a LAN via the hub 104. If comprised in this way, the information of PLC for sampling of a some apparatus will be appropriately transmitted to the abnormality determination computer.
  • the system according to the fifth aspect of the present invention is a system 100 according to any one of the first to fourth aspects as shown in FIGS. 1, 2, 3, 4, and 8, for example.
  • a mold transport unit 30 for transporting the molded mold M, a pouring unit 70 for pouring the mold M transported by the mold transport unit 30, and a casting facility management computer 91 for controlling the casting facility 1 are provided.
  • the molding unit 10 includes a molding device 14 that molds the mold M, and a molding unit control device 11 that controls the operation of the molding device 14.
  • the molding unit control device 11 receives the molding plan data from the casting equipment management computer 91, controls the molding device 14 so as to mold the mold M with the molding plan corresponding to the molding plan data, and the mold M which has been molded.
  • the mold conveyance unit 30 includes a conveyance mechanism 38 that conveys the mold M one mold at a time, a mold position detection sensor 39 that detects that the mold M has been conveyed, and a mold conveyance unit control that controls the operation of the mold conveyance unit 30.
  • the mold transport unit control device 31 controls the transport mechanism 38 so that the mold M is transported intermittently, and receives the mold serial number of the mold M that has been formed by the molding apparatus 14 and can be transported by the transport mechanism 38.
  • the pouring unit 70 includes a pouring machine 72 that pours molten metal from the pouring ladle L 2 into the mold M, and a pouring unit control device 71 that controls the operation of the pouring machine 72.
  • the pouring unit control device 71 receives the ladle serial number associated with the molten state data of the molten metal in the pouring ladle L2, and receives the mold serial number of the mold M at the pouring position P6 from the mold transport unit control device 31.
  • the pouring machine 72 is controlled so as to perform pouring according to the pouring plan corresponding to the pouring plan data corresponding to the mold serial number, and the ladle serial number of the poured pouring ladle L2 is cast.
  • the data is transmitted to the casting equipment management computer 91 in association with the serial number.
  • the information about the mold is associated with the mold serial number issued for each mold, and the mold serial number at the position where the mold stops is shifted every time the mold is conveyed. By grasping. Moreover, the information about a molten metal is linked
  • the mold serial number of the mold at the pouring position and the ladle serial number of the poured ladle are associated and sent to the casting equipment management computer. That is, the data on the mold and the molten metal state data can be managed in combination using the mold serial number and the ladle serial number associated with the mold serial number.
  • a molding apparatus, a mold conveying apparatus, a molten metal conveying apparatus, a pouring machine, and the like are individually controlled, and a driver controls each apparatus to operate the entire casting facility.
  • a driver controls each apparatus to operate the entire casting facility.
  • the mold molding data and the molten metal state data management method the information about the mold is collected while grasping the situation that the mold is transported for each mold, information about the molten metal Collects while grasping the situation that the ladle is conveyed for each ladle, and when the molten metal is poured into the mold, the information on the mold and the information on the molten metal can be combined and managed.
  • data relating to the molding apparatus can be managed in association with a mold molded by the molding apparatus.
  • individual molds on the molding line can be identified and managed. From the cause of the abnormality determined by the abnormality determination computer, the operator can identify a product that may have a problem based on the information managed in this way.
  • the system according to the sixth aspect of the present invention is the same as the system 100 according to the fifth aspect in that the molding unit control device 11 is an abnormality determination computer as shown in FIGS. 1, 2, 3 and 8, for example. Also serves as 108. If comprised in this way, the cause of abnormality of the apparatus of a molding unit can be judged with a molding unit control apparatus.
  • the molding unit control device 11 is an abnormality determination computer as shown in FIGS. 1, 2, 3 and 8, for example. Also serves as 108. If comprised in this way, the cause of abnormality of the apparatus of a molding unit can be judged with a molding unit control apparatus.
  • system according to the seventh aspect of the present invention is the same as the system 100 according to the fifth or sixth aspect, as shown in FIG. 1, FIG. 2, FIG. 3, and FIG. It also serves as the abnormality determination computer 108. If comprised in this way, the cause of abnormality of the apparatus of a mold conveyance unit can be judged with a mold conveyance unit control apparatus.
  • the system according to the eighth aspect of the present invention includes a pouring unit in the system 100 according to any one of the fifth to seventh aspects as shown in FIGS. 1, 2, 3, and 8, for example.
  • the control device 71 also serves as the abnormality determination computer 108. If comprised in this way, the cause of abnormality of the apparatus of a pouring unit can be judged with the pouring unit control apparatus.
  • the system according to the ninth aspect of the present invention is the same as the system 100 according to the fifth aspect in that the casting equipment management computer 91 is an abnormality determination computer as shown in FIGS. Also serves as 108. If comprised in this way, the cause of abnormality of the apparatus of the whole casting installation can be judged with a casting installation management computer.
  • the abnormality determination computer 108 further includes a sand processing unit 80 that adjusts the molding sand supplied to the unit 10 to a property suitable for molding, and a core molding unit 82 that molds the core disposed in the mold M.
  • the defect state of the casting cast in the casting facility 1 and the cause of the defect in the unit are stored in the matrix database, and the malfunction of the apparatus is determined using the data of the matrix database from the information on the operation of at least one apparatus. judge. If comprised in this way, the malfunction of the apparatus which causes the defect of a casting can be determined quickly and reliably from a matrix database.
  • the system according to the eleventh aspect of the present invention is the system 100 according to the tenth aspect, for example, as shown in FIG. 15, in which the matrix database includes the state of casting failure, sand treatment, molding, core , The processing points divided into six processing points of pouring, cooling, and post-processing. If comprised in this way, the malfunction in six process points can be determined quickly and reliably from the state of the defect of a casting.
  • the system according to the twelfth aspect of the present invention is the system 100 according to the tenth or eleventh aspect, in which the casting equipment 1 causes a problem in order to eliminate the problem based on the determined problem.
  • Adjustment means for adjusting the apparatus is further provided. If comprised in this way, after determining quickly and reliably the apparatus which causes the casting defect using the matrix database, the apparatus causing the defect can be adjusted by the adjusting means, and the defect can be solved. .
  • the system according to the thirteenth aspect of the present invention is the system 100 according to the twelfth aspect, for example, as shown in FIGS. Either the device 31 or the pouring unit control device 51.
  • the molding unit control device, the mold transport unit control device, and the pouring unit control device that control the operations of the molding unit, the mold transport unit, and the pouring unit adjust the devices that cause problems. , It is possible to efficiently adjust the defect.
  • the system for forming a mold of the present invention transporting the mold to a pouring position, and detecting a cause of abnormality of a plurality of apparatuses constituting a casting facility for pouring the mold to obtain a casting, It is possible to centrally monitor the operation data of the device and identify the true cause of the abnormality.
  • FIG. 1 is a system diagram of a system example for detecting a cause of abnormality of a plurality of apparatuses constituting a casting facility.
  • FIG. 2 is a plan view showing the configuration of the casting equipment, showing the casting equipment that receives the hot water from the furnace with the treatment ladle, replaces it with the pouring ladle, and pours it into the mold formed from the pouring ladle.
  • FIG. 3 is an enlarged view of a portion A in FIG.
  • FIG. 4 is a diagram showing a mold feed pusher for conveying a mold and a sensor for detecting the operation thereof.
  • FIG. 5 is a side view of a hot water receiving cart with an air replacement function.
  • FIG. 6 is a side view of the pouring ladle transport cart.
  • FIG. 1 is a system diagram of a system example for detecting a cause of abnormality of a plurality of apparatuses constituting a casting facility.
  • FIG. 2 is a plan view showing the configuration of the casting equipment
  • FIG. 7 is a side view of the pouring machine.
  • FIG. 8 is a block diagram showing data acquired in each unit of the casting facility and data communication between the units.
  • FIG. 9 is a schematic diagram for explaining how the mold serial numbers are shifted.
  • Drawing 10 is a mimetic diagram explaining the position of a ladle, a ladle serial number, and molten metal state data related with a ladle serial number.
  • FIG. 11 is a flowchart showing the flow of data in the casting facility.
  • FIG. 12 is a plan view showing the configuration of the casting equipment, and shows the casting equipment for receiving the molten metal from the furnace into the pouring ladle and pouring it into the mold formed from the pouring ladle.
  • FIG. 13 is an enlarged view of a portion B in FIG.
  • FIG. 14 is a side view of the pouring ladle conveyance trolley with a raising / lowering function.
  • FIG. 15 schematically shows an example of a matrix database representing the relationship between the state
  • FIG. 1 a system 100 for detecting the cause of an abnormality in a plurality of apparatuses constituting a casting facility as an embodiment of the present invention will be described.
  • a plurality of devices constituting the casting facility are omitted, but reference numeral 102 denotes a sampling PLC installed in each device.
  • the sampling PLC 102 monitors and stores information related to the operation of each apparatus.
  • the information related to the operation of each device includes information measured by a sensor installed in each device. Note that the sampling PLC 102 may control the operation of the apparatus.
  • each apparatus is apparatuses, such as a molding apparatus, a kneading machine, a pouring machine, a surface treatment apparatus, a dust collector, a melting furnace, for example, it is not limited to these.
  • the information regarding each device includes information regarding the specifications of each device, information regarding the operating state of each device, and the like, but is not limited thereto. “Storing information” indicates that information can be acquired and then output, and the stored time may be very small.
  • the sensors installed in each device include, for example, sand input weight, compression rate, static pressure or squeeze pressure, squeeze time, pressure increase speed, squeeze stroke, mold thickness, molding time, etc.
  • a sensor (measuring instrument) for measuring the molding history data, an ammeter for measuring current for operation, a voltmeter for measuring voltage, a vibration meter, a sound level meter, and the like are not limited thereto.
  • the plurality of sampling PLCs 102 are connected to the abnormality determination computer 108 via the switching hub 104 via a LAN.
  • the sampling PLC 102 and the switching hub 104 of a certain apparatus may be connected via a wireless communication device 106 via a wireless LAN.
  • a wired LAN connection is preferable because of high communication reliability.
  • the sampling PLC 102 and the abnormality determination computer 108 may be LAN-connected via a simple hub instead of the switching hub 104.
  • the abnormality determination computer 108 receives information related to the operation of each device from a plurality of sampling PLCs 102 including information measured by sensors installed in each device, and determines an abnormality of the device from the information. That is, when a certain value is out of a predetermined range or greatly changes from the previous value, it is determined that the device is abnormal.
  • the predetermined range may be set so as to be changed, for example, by a change in the operation mode.
  • the abnormality determination computer 108 detects the cause.
  • the abnormality determination computer 108 stores operating states of a plurality of apparatuses that cause an abnormality of a certain apparatus. Therefore, when an abnormality occurs in a certain device, the operating status of not only that device but also other devices is examined.
  • the operating status to be checked is an operating status including a history.
  • the squeeze pressure is high in the molding machine and it is determined that the molding machine is abnormal.
  • the cause may be a failure of the molding machine valve, electrical system or other components, but there is an abnormality in the kneading machine, CB (contactability) controller, aerator, etc. in the previous process of the molding machine. There is also.
  • the kneading machine is not operating normally, the properties of the mold sand sent to the molding machine may be poor, and the squeeze pressure of the molding machine may increase.
  • the cause of this is to compare the data with the sand temperature in the kneader, the moisture value of the sand, the current value of the kneader, etc., that is, the sand temperature that increases the squeeze pressure of the molding machine. Can be specified. Similarly, it is possible to determine the cause by examining whether the operating status of the CB (contactability) controller and aerator is an operating status that increases the squeeze pressure of the molding machine.
  • the cause may be a malfunction of the motor system of the belt conveyor, or an abnormality of the belt conveyor itself, such as biting of the conveyor belt or belt drive, but it is caused by an abnormality of the kneading machine in the previous process of the belt conveyor.
  • the cause of this is to examine the data storing the sand temperature, sand moisture value, kneader current value, etc. in the kneader, that is, data that increases the amount of water injected into the mold sand of the molding machine. Can be specified.
  • the moisture control before the kneading machine is abnormal. is there. That is, moisture control before the kneading machine, that is, correct sand moisture cannot be measured by a moisture sensor in the pre-molding sand property measuring instrument 12 described later, and water injection in the kneading machine becomes excessive, resulting in overload. There is also. Therefore, it is possible to determine whether or not the moisture measurement value, sand temperature, and atmospheric temperature in moisture control are abnormal.
  • the system 100 that detects the cause of the abnormality of a plurality of devices, the information obtained by each of the sampling PLCs 102 is sent to the abnormality determination computer 108.
  • the abnormality determination computer 108 determines an abnormality of a certain device, the cause is searched for including the information of surrounding devices, and the true cause of the abnormality is specified.
  • the true cause of the abnormality of a certain apparatus in the facility comprised of a plurality of apparatuses such as a casting facility can be specified.
  • FIG. 2 is a plan view showing the configuration of the casting equipment
  • FIG. 3 is an enlarged view of part A in FIG.
  • the casting facility 1 includes a molding unit 10, a mold transport unit 30, a molten metal transport unit 50, and a pouring unit 70.
  • the molding unit 10 molds the mold M from the mold sand.
  • the mold conveyance unit 30 conveys the molded mold M from the molding unit 10 to the pouring unit 70, and cools and solidifies the molten metal while conveying the mold M poured by the pouring unit 70.
  • the casting is taken out, and the casting is taken out from the casting mold by the mold spreading device 48.
  • the molten metal transfer unit 50 puts the alloy material into the treatment ladle L1, receives the molten metal from the furnace F into the treatment ladle L1, reacts the molten metal with the alloy material, and emptyes the molten metal after the reaction into the pouring ladle L2. Instead, the pouring ladle L2 is transferred to the pouring machine 72 of the pouring unit 70. The pouring unit 70 pours the mold M from the pouring ladle L2.
  • the molding unit 10 has a pre-molding sand property measuring instrument 12 for measuring the properties of the molding sand before molding.
  • the molding sand before molding is kneaded by mixing, for example, raw sand or sand discharged from the mold separating device 48 with sand collecting device and adding a binder, an additive, a curing agent, moisture and the like. Sand.
  • the properties of the mold sand greatly affect the quality of the mold, and are therefore measured before molding.
  • the molding unit 10 includes a molding apparatus 14 that molds a mold from mold sand.
  • casting sand is put around a model simulating the shape of a product, and two upper and lower molds are formed for one product.
  • the molding apparatus 14 includes a measuring instrument (not shown) for measuring molding history data such as sand input weight at molding, compression rate, static pressure or squeeze pressure, squeeze time, pressurization speed, squeeze stroke, mold thickness, molding time, and the like. Have.
  • the molding unit 10 has a marking device 16 for marking a space formed in a mold by a model, that is, a surface into which a molten metal is poured and solidified into a casting, that is, an inner surface, that can be identified for each space.
  • the marking device 16 may cut a plurality of hole-shaped marks on the surface of the mold space with a jig such as a drill while changing the mutual positional relationship, or mark holes or grooves with a laser or the like. May be.
  • a jig such as a drill
  • a protrusion is formed at a position corresponding to the hole on the surface of the cast casting, and it becomes possible to identify each casting.
  • every space of a mold is because a plurality of castings may be made with one mold. That is, one mold has a plurality of spaces. That is, by marking on the surface of each molded casting space, a marking is formed corresponding to each casting obtained.
  • the marking device 16 may be provided in the mold transport unit 30.
  • the mold is imprinted immediately after molding, for example, in the case of a self-hardening sand mold, it can be imprinted before being completely cured, and it is easier to imprint without destroying the mold.
  • marking is performed by the marking apparatus 16 while the mold is in the molding apparatus 14.
  • the mold transport unit 30 includes a mold rail Rf for cooling the mold M while transporting the mold M and transporting it to the mold spreading device 48 from the molding unit 10 to the pouring unit 70.
  • the mold rails Rf are juxtaposed, and the mold M is moved laterally between the rails Rf and is alternately conveyed in the reverse direction by the plurality of rails Rf. Therefore, the mold M after pouring is cooled over time, and the molten metal is solidified before reaching the mold spreading device 48 to become a casting. That is, the conveyance path of the mold conveyance unit 30 is conveyed for pouring from the mold making line 32 for processing the mold molded by the molding apparatus 14 into a finished mold ready for pouring, and the pouring machine 72.
  • the mold transport unit pouring zone 33 is roughly divided into a mold transport unit cooling zone 34 in which the poured mold M is transported and cooled over time.
  • the mold transport unit 30 has a mold feed pusher 38 as a transport mechanism shown in FIG. 4 at a straight end of the rail Rf.
  • the pusher 38 is a device in which a rod expands and contracts to push a mold, and is, for example, an air cylinder, a hydraulic cylinder, or an electric cylinder.
  • the pusher 38 is a sensor that detects the expansion and contraction of the rod, and includes a mold position sensor 39 that detects that the mold M is conveyed.
  • the mold position sensor 39 may be a limit switch, a proximity switch, a photoelectric switch, or the like.
  • the pusher 38 preferably has a mold position detection encoder 37 in order to perform synchronous pouring or to correctly detect the pouring position even if the thickness of the mold changes.
  • the pusher 38 pushes the rear end molds arranged on the straight rail Rf by one frame, and intermittently conveys the arranged molds by one frame. It is preferable to install a pusher 38 on the opposite side (front end) of the straight rail Rf so that the rod is contracted as it is pushed at the rear end. If comprised in this way, the mold M of 1 row can be suppressed from both ends also during conveyance, and the mold M is stabilized also during conveyance. When the mold M reaches the front end, it is transferred onto the adjacent rail Rf by the traverser T, and is used as the rear end of the mold line there.
  • the traverser T may also include a mold position sensor 39.
  • the molding line 32 of the mold conveyance unit 30 further has a gas drilling device 40, and a hole for removing gas generated when pouring is poured in the mold.
  • the molding line 32 further includes an upper / lower mold reversing machine 41, for example, reversing the upper mold and the lower mold and directing the mold space upward.
  • the molding line 32 further includes a sand cutter 42 to remove and flatten excess sand on the upper surface of the upper mold and the lower surface of the lower mold.
  • the molding line 32 further includes a gate cutter 43 that opens the gate to the upper mold.
  • the molding line 32 further includes a surface plate carriage set device 44, and a mold is placed on the surface plate carriage.
  • the molding line 32 further includes a core setter 45 for setting the cores in the upper mold and the lower mold.
  • the molding line 32 further includes an upper mold re-inversion machine 46, which is aligned with the direction in which one mold is formed when the upper mold is inverted and two upper and lower molds are overlapped.
  • the molding line 32 further includes a mold aligning / transferring device 47, and the upper mold and the lower mold are combined to form an upper and lower completed mold ready for pouring.
  • sequence order of the apparatus from the gas drilling apparatus 40 to the core setter 45 is not restricted above, It can replace suitably.
  • the mold transport unit 30 includes a gas drilling device 40, an upper / lower mold reversing machine 41, a sand cutter 42, a gate cutter 43, and a surface plate carriage set device 44.
  • the core setter 45, the upper mold re-inversion machine 46, and the mold alignment / mold transfer apparatus 47 are provided, and the mold M molded by the molding apparatus 14 is processed into upper and lower completed molds ready for pouring.
  • processing such as formation of a vent hole, core setting, and mold matching may be performed by the molding apparatus 14, and in this case, the mold transport unit 30 processes the mold.
  • some or all of the devices 40-47 may not be provided.
  • the mold conveying unit 30 has a mold separating device 48.
  • the mold is disassembled to take out the casting, and the casting and sand are separated.
  • the casting is shipped as a product through a subsequent process.
  • the core is also separated.
  • Sand is used for a mold by removing iron powder, a binder and the like mixed with a sand recovery device (not shown).
  • the molten metal transport unit 50 includes an alloy material charging unit 60 for charging an alloy material to be reacted with the molten metal into the treatment ladle L1.
  • the alloy material charging unit 60 has a plurality of alloy material hoppers 62 and charges one or more types of alloy materials into the processing ladle L1. Alternatively, the processing ladle L1 is covered with a hole, and a thin pipe filled with an alloy material is inserted into the molten metal in the processing ladle L1 through the hole in the lid, and the alloy material and the molten metal are added. You may make it react.
  • the alloy material charging unit 60 has a measuring instrument (not shown) and a timer (not shown) for measuring the weight of the alloy material charged into the treatment ladle L1 from each alloy material hopper 62.
  • the molten metal transfer unit 50 replaces the molten metal into the pouring ladle L2, the pouring position P1 where the alloy material is charged into the processing ladle L1 from the alloy material charging unit 60, the hot water receiving position P2 where the molten metal is received from the furnace F, and the molten metal. It has a hot water receiving carriage 52 with an empty replacement function that transports the processing ladle L1 to the empty replacement position P4, and a rail R on which the hot water receiving carriage 52 with an empty replacement function travels. When the alloy material and the molten metal are reacted by wire inoculation, the position where the wire is inoculated becomes the charging position P1.
  • the alloy material means Mg, Ce, Ca, Ni, Cr, Cu, Mo, V, Ti, etc. added to the molten metal in order to increase the strength and toughness of cast iron, corrosion resistance, heat resistance, wear resistance, etc.
  • the alloy material includes a graphite spheronizing agent.
  • an inoculant such as calcium silicon, ferrosilicon, or graphite may be added in the alloy material charging unit 60.
  • the hot water receiving carriage 52 with an air exchange function includes a traveling carriage 520 that travels on the rail R and a traveling motor 522 that causes the traveling carriage 520 to travel.
  • the wheels of the traveling carriage 520 are provided with encoders 523, and the rotation of the wheels, that is, the traveling of the traveling carriage 520 is measured. That is, the encoder 523 is a ladle position detection sensor that can detect the position of the processing ladle L1.
  • the hot water receiving cart 52 with an empty replacement function may include a ladle position detection sensor 59 (see FIG. 3) such as a photoelectric sensor described later.
  • the hot water receiving carriage 52 with an empty replacement function includes a tilting device 526 for tilting the processing ladle L1 to replace the molten metal, and a tilting motor 527 for tilting the processing ladle L1 using the tilting device 526.
  • the tilting device 526 and the processing ladle L1 are placed on the scissor lifter 524 on the traveling carriage 520 and moved up and down. Since the hot water receiving carriage 52 with an empty replacement function has a function of moving the processing ladle L1 up and down, the emptying from the processing ladle L1 to the pouring ladle L2 becomes easy.
  • the hot water receiving carriage 52 with an air replacement function includes a load cell (first weigh scale) 525 that measures the weight of the molten metal received from the furnace F. Moreover, it has a non-contact thermometer (not shown) which measures the temperature of the molten metal received.
  • the cable reel 528 and the control panel 521 for receiving power from the outside are installed at a position away from the processing ladle L1, so that the molten metal is removed from the processing ladle L1. In case of leakage, these devices are not affected.
  • the control panel 521 may be installed not on the traveling carriage 520 but at a position along the rail R on which the traveling carriage 520 travels.
  • the processing ladle L1 When the molten metal is put into the processing ladle L1 into which the alloy material has been charged and the alloy material and the molten metal react with each other, droplets of the molten metal are scattered or dust or gas is generated. Therefore, when the alloy material in the processing ladle L1 reacts with the molten metal, the processing ladle L1 is conveyed to the reaction position P3.
  • a reaction chamber (not shown) is preferably provided at the reaction position P3. The reaction chamber surrounds the top of the treatment ladle L1 and discharges air through a duct. Therefore, it is possible to prevent molten liquid droplets from being scattered around and to discharge dust and dust.
  • the molten metal transport unit 50 is different from the empty replacement position P4 in which the molten metal is replaced from the processing ladle L1 (strictly speaking, the same sign is used for convenience, although it is different from the empty replacement position P4 of the processing ladle L1. ), And a pouring ladle transport carriage 54 that transports the pouring ladle L2 to a transfer position P5 that transports the pouring ladle L2 to the pouring machine 72, and a pouring ladle transport carriage 54 run. Rail R.
  • the pouring ladle transport carriage 54 includes a traveling carriage 540 that travels on a rail, a roller conveyor 544 that is installed on the traveling carriage 540 and moves in the horizontal direction of the pouring ladle L2, and a roller conveyor motor 546.
  • the wheels of the traveling carriage 540 are provided with encoders 543, and the rotation of the wheels, that is, the traveling of the traveling carriage 540 is measured. That is, the encoder 543 is a ladle position detection sensor that can detect the position of the pouring ladle L2.
  • the cable reel 548 for receiving power from the outside and the control panel 541 are installed away from the pouring ladle L2, so that the molten metal is removed from the pouring ladle L2.
  • control panel 541 may be installed not on the traveling carriage 540 but at a position along the rail R on which the traveling carriage 540 travels. Even if a pouring ladle transport mechanism 58 that transports the pouring ladle L2 in a direction orthogonal to the traveling direction of the pouring ladle transport carriage 54 is installed between the transfer position P5 and the pouring machine 72. Good.
  • the pouring ladle transport mechanism 58 may be a roller conveyor or the like.
  • capacitance of the process ladle L1 may be doubled to the capacity
  • the configuration of the air exchange inoculation device 56 is basically the same as that of the alloy material charging unit 60.
  • the molten metal conveyance unit 50 is configured to convey the treatment ladle L1 to the charging position P1, the hot water reception position P2, the reaction position P3, and the empty replacement position P4 as the ladle position of the treatment ladle L1, and the pouring ladle.
  • the ladle position detection sensor 59 may be a proximity switch or a laser sensor installed under the roller conveyor of the pouring ladle transport mechanism 58, for example, as shown in FIG.
  • it may be an encoder 523, 543 installed in the hot water receiving cart 52 with the air replacement function shown in FIG. 5 or the pouring ladle transport cart 54 shown in FIG. 6, or the hot water receiving cart 52 with the air replacement function.
  • a photoelectric sensor installed in the pouring ladle transport carriage 54 may be used.
  • it has a photoelectric sensor which confirms that the processing ladle L1 is mounted in the hot water receiving trolley 52 with an air exchange function, and that the pouring ladle L2 is mounted in the pouring ladle conveying cart 54. It is preferable.
  • the pouring unit 70 has a pouring machine 72 for pouring from the pouring ladle L2 into the mold M.
  • the pouring machine 72 is supported by the elevating mechanism 722 and the elevating mechanism 722 installed on the pouring machine carriage 720, which travels in parallel with the casting mold M being conveyed.
  • the elevating mechanism 722 is installed on a front / rear moving mechanism 728 that moves in a direction orthogonal to the direction in which the pouring machine cart 720 travels. Moreover, it has a non-contact thermometer (not shown) which measures the temperature of the molten metal to pour.
  • the non-contact thermometer is preferably, for example, a fiber type so that the temperature measuring unit can be adjusted.
  • the pouring machine 72 preferably has a hot water level detection camera 726 for detecting the hot water level of the pouring gate of the mold M.
  • a hot water level detection camera 726 for detecting the hot water level of the pouring gate of the mold M.
  • the hot water level detection camera 726 may be an image sensor. It is preferable that the hot water level detection camera is supported (suspended) by an arm and is movable in the horizontal direction so that the hot water level can be photographed even if the position of the gate is changed.
  • the pouring unit 70 preferably has a test piece (TP) collection unit 76 that receives molten metal for the test piece (TP) from the pouring ladle L2.
  • TP is collected from the molten metal for each pouring ladle L2 for material inspection.
  • the casting facility 1 includes a casting facility management computer 91 that manages the entire casting facility 1, and each unit includes a control device, that is, the molding unit 10 includes a molding unit control device 11.
  • the mold conveyance unit 30 includes a mold conveyance unit 31, the molten metal conveyance unit 50 includes a molten metal conveyance unit control device 51, and the pouring unit 70 includes a pouring unit control device 71.
  • the alloy material charging unit 60 includes an alloy material charging unit controller 61.
  • the TP collection unit 76 may include a TP collection unit controller.
  • the molten metal transport unit control device 51 may be configured by a control panel 521 of the hot water receiving carriage 52 with an empty replacement function and a control panel 541 of the pouring ladle transport truck 54.
  • the pouring unit control device 71 may be installed on the pouring machine carriage 720 as shown in FIG. 7, or may be installed at a position along the pouring machine rail Rp.
  • the plurality of control devices 11, 31, 51, 61, 71 may be in the same control device, or may be in the same computer as the casting facility management computer 91.
  • the casting equipment management computer 91 may be any computer that can manage data, and its configuration is not particularly limited.
  • each unit is provided with each control device, and the casting equipment 1 is provided with the casting equipment management computer 91.
  • Each device includes a sampling PLC 102. Depending on the apparatus, the sampling PLC 102 may not be provided.
  • the casting facility 1 may further include an abnormality determination computer 108.
  • each of the molding unit control device 11, the mold transport unit 31, the molten metal transport unit control device 51, the alloy material charging unit control device 61, and the pouring unit control device 71 may have the function of the abnormality determination computer 108.
  • the casting equipment management computer 91 may have the function of the abnormality determination computer 108.
  • the molding plan data indicating a plan for molding the mold M by the molding unit 10
  • the mold M molded by the mold transport unit 30 is transported, and the mold M is processed such as drilling.
  • pouring plan data indicating the pouring plan from the pouring ladle L2 to the mold M is input to the casting equipment management computer 91 or calculated by the casting equipment management computer 91.
  • the molding plan data, the conveyance plan data, the molten metal conveyance plan data, the alloy material plan data, and the pouring plan data may be combined as two or more and handled as a set of data.
  • the molten metal transport plan data and the alloy material plan data are collectively referred to as molten metal plan data.
  • the molding plan data includes data such as model number, release agent application time, static pressure or squeeze pressure during molding, sand loading, mold height, mold thickness, compressibility, etc.
  • the transfer plan data includes data such as gas drilling, gate shape and position, core set, intermittent mold transfer cycle time, and the like.
  • the molten metal transfer plan data includes data such as a material number and a molten metal weight planned value.
  • the alloy material plan data includes data such as the hopper number and the input weight from the hopper.
  • the pouring plan data includes data such as pouring weight, cup position, pouring temperature, allowable fading time, and molten metal material corresponding to the mold.
  • the molding unit 10 molds the mold M based on the molding plan data.
  • the property of the molding sand before molding is measured by the sand molding property measuring machine 12 before molding.
  • the properties to be measured are compactability (CB), moisture, sand temperature, air permeability, mold strength (pressure resistance) and the like.
  • the properties of the mold sand greatly affect the quality of the mold.
  • the measured properties of the molding sand are stored in the molding unit controller 11 as molding history data.
  • a mold (in this stage, an upper mold and a lower mold) is molded by the molding apparatus 14.
  • a mold release agent is applied to a predetermined model, a predetermined amount of mold sand is placed, and the mold is pressed with a predetermined static pressure or squeeze pressure until a predetermined compression ratio is obtained, thereby forming a mold having a predetermined thickness and height.
  • the molding unit control device 11 issues a mold serial number to the mold.
  • the molding plan data such as the measured properties of the mold sand is associated with the mold serial number.
  • molding history data such as sand input weight, compression rate, static pressure or squeeze pressure, squeeze time, pressurization speed, squeeze stroke, mold thickness, molding time, etc. is measured by the molding apparatus 14 and the mold serial number is obtained as molding history data. Associate with.
  • the molding unit control device 11 transmits the mold serial number and the molding history data to the casting equipment management computer 91.
  • the molding plan data and the molding history data are collectively called molding data. Further, the molding unit control device 11 transmits the mold serial number and the molding data associated with the mold serial number to the mold transport unit control device 31.
  • a mark for identifying the space is stamped by the stamping apparatus 16 on the inner surface of the space for manufacturing the casting in the mold. What is necessary is just to stamp on either an upper mold
  • an identifiable mark is imprinted in each space. That is, an identifiable mark is attached to each obtained casting (product).
  • the molding unit control device 11 issues an individual identification serial number corresponding to each marking. Moreover, the molding unit control apparatus 11 associates the issued individual identification serial number with the mold serial number.
  • the marking device 16 is installed in the mold transport unit 30, the individual identification serial number is issued by the mold transport unit control device 31, and is associated with the mold serial number by the mold transport unit control device 31.
  • the mold transport unit 30 transports the mold M based on the mold transport plan data, makes the mold M ready for pouring, cools the poured mold, that is, the molten metal, and separates the casting from the sand. .
  • the mold is intermittently sent by the pusher 38 frame by frame.
  • the traverser T also transfers the molds one by one to the adjacent mold row.
  • a hole is made in the mold by the gas drilling device 40, the upper mold and the lower mold are reversed by the upper and lower mold reversing machine 41, the mold space is directed upward, and the sand on the upper surface of the upper mold is removed by the sand cutter 42. Remove the gate and open the gate to the upper mold with the gate cutter 43.
  • the mold is placed on the surface plate carriage by the surface plate carriage set device 44, the core is set on the upper mold and the lower mold by the core setter 45, the upper mold is reversed by the upper mold re-reversing machine 46, and the mold is aligned.
  • the mold transfer device 47 combines the upper mold and the lower mold to form one mold M.
  • History data in these processes for example, gas drilling information, gate opening information, core information, and the like are collected as molding data (mold history data) and associated with mold serial numbers.
  • the mold transport unit 30 collects the molding data while transporting the mold.
  • the mold conveyance unit control device 31 associates the defect information with the mold serial number of the mold M.
  • some or all of the above-described gas drilling information, gate opening information, core information, etc. are obtained by the molding unit 10 and associated with the mold serial number by the molding unit controller 11. May be.
  • the mold position sensor 39 detects the transport of the mold and shifts the mold serial number.
  • a mold serial number “n” is issued to the mold molded by the molding apparatus 14.
  • the mold transport unit 30 detects that the mold has been transported for one frame, the mold serial number “n” is shifted to the next position.
  • the mold serial numbers are assigned to all the stop positions in the intermittent conveyance of the mold, and by shifting all the mold serial numbers, the mold positions and the mold serial numbers correspond correctly.
  • the hot water receiving carriage 52 with an air exchange function and the pouring ladle transfer truck 54 are operated based on the molten metal transfer plan data.
  • the empty processing ladle L1 is first transported to the charging position P1 by the hot water receiving carriage 52 with an empty replacement function.
  • the alloy material is charged from the alloy material charging unit 60 to the processing ladle L1.
  • the alloy material may contain an inoculant.
  • the alloy material charging unit 60 the alloy material is charged into the processing ladle L1 based on the alloy material loading plan data.
  • the alloy material charging unit controller 61 issues a ladle serial number to the processing ladle L1.
  • the alloy material input history data such as the type, weight, and input time of the alloy material input from the alloy material input unit 60 to the processing ladle L1 is associated with the pan sequence number.
  • the ladle serial number and the alloy material input history data are prepared, these data are transmitted to the casting equipment management computer 91. Further, at least the ladle serial number is transmitted to the molten metal transport unit control device 51.
  • the ladle serial number and the alloy material charging history data may be transmitted to the molten metal transport unit control device 51 without being transmitted to the casting equipment management computer 91.
  • the molten metal transport unit control device 51 transmits the molten state data including the data to the casting facility management computer 91 as molten metal history data.
  • the melt state data may include melt plan data.
  • information on the problem is transmitted to the casting equipment management computer 91 in association with the ladle serial number.
  • the processing ladle L1 charged with the alloy material is transported to the hot water receiving position P2 by the hot water receiving carriage 52 with an air replacement function of the molten metal transport unit 50.
  • the treatment ladle L1 receives molten metal from the furnace F.
  • the weight of the molten metal received by the load cell 525 as the first weighing scale, and the temperature measured by the non-contact thermometer are measured.
  • the molten metal transport unit control device 51 associates the measured weight, temperature, tapping furnace number, charge number, material number, time of receiving hot water, etc. with the ladle serial number of the processing ladle L1 as molten state data.
  • the data regarding the property of the molten metal melted in the furnace F may be received, and the data may be included in the molten state data. Note that the molten metal melted in the furnace, the molten metal received in the treatment ladle, and the molten metal reacted with the alloy material are simply referred to as “molten metal” in this specification.
  • the treatment ladle L1 that has received the hot water is transported to the reaction position P3 by the hot water receiving carriage 52 with an empty replacement function.
  • the alloy material charging unit 60 puts the alloy material into the processing ladle L1, and then covers the alloy material with a cover agent such as steel scrap, so that the molten metal contacts the alloy material. suppress. Therefore, immediately after receiving the hot water in the treatment ladle L1, no severe reaction occurs, and during that time, the treatment ladle L1 can be moved to the reaction position P3.
  • the alloy material contains a spheroidizing element such as Mg, severe bubbling occurs when the reaction starts. Therefore, the measurement value in the load cell 525 varies greatly.
  • the molten metal transport unit control device 51 may associate a fading start time or a fading elapsed time that is an elapsed time from the fading start time as a molten metal state data with a ladle serial number.
  • the fading start time or elapsed time associated with the ladle sequence number is transmitted to the pouring unit control device 71.
  • molten metal state data is collected and conveyed to the ladle serial number while conveying the treatment ladle L1 and the pouring ladle L2.
  • the treatment ladle L1 is conveyed to the empty replacement position P4 by the hot water receiving carriage 52 with an empty replacement function.
  • the empty replacement position P4 an empty pouring ladle L2 is transported by the pouring ladle transport carriage 54 and is on standby. Therefore, the molten metal is replaced from the treatment ladle L1 to the pouring ladle L2.
  • the processing ladle L1 is set to a desired height by the scissor lifter 524, and the processing ladle L1 is tilted and replaced, so that it can be replaced safely and efficiently.
  • the processing ladle L1 can be lowered
  • the ladle sequence number associated with the processing ladle L1 is associated with the pouring ladle L2.
  • the hot water receiving carriage 52 with the air replacement function conveys the processing ladle L1 to the charging position P1, and is repeated from the charging of the alloy material.
  • two pouring ladles L2 and a pouring machine 72 may be provided, and the molten metal may be replaced from one processing ladle L1 to two pouring ladles L2.
  • the efficiency of the casting facility 1 can be improved by pouring from the pouring ladle L2 to the mold M using a plurality of pouring machines 72.
  • the second pouring ladle L2 includes the ladle serial number of the processing ladle L1 and the second one. Data indicating that the hot water ladle has been replaced is associated as a ladle serial number.
  • the molten metal transport unit control device 51 associates the type, weight and addition time of the added inoculum with the ladle sequence number as molten metal state data.
  • the pouring ladle conveying cart 54 conveys the pouring ladle L2 to the transfer position P5.
  • the pouring ladle L ⁇ b> 2 is transferred from the transfer position P ⁇ b> 5 to the pouring position P ⁇ b> 6 by the pouring ladle transport mechanism 58 and is held by the pouring machine 72.
  • the molten metal transport unit control device 51 transmits the ladle sequence number and the molten metal state data associated with the ladle sequence number to the casting equipment management computer 91.
  • information on the malfunction is transmitted to the casting equipment management computer 91 in association with the pan sequence number.
  • the molten metal transport unit 50 has a ladle position at the pouring position P1, a hot water receiving position P2, a reaction position P3, an empty replacement position P4, and a pouring ladle L2 at the transfer position P5. It is detected by the detection sensor 59 (or encoder 523, 543), and the ladle serial number is shifted. Then, the molten metal state data is associated with the ladle serial number. Therefore, the position of the processing ladle L1 or the pouring ladle L2 and the ladle serial number correspond correctly, and the molten metal state data from different apparatuses are correctly associated with the ladle serial number.
  • the mold transport unit controller 31 transmits the mold serial number of the mold M to the pouring unit controller 71. Then, the pouring unit control device 71 receives the pouring plan data from the casting equipment management computer 91, and further, the ladle sequence number of the pouring ladle L2, the received hot water weight, the allowable amount from the molten metal transport unit control device 51. Receives fading time, fading start time, fading elapsed time, etc. Note that the pouring unit control device 71 may measure the fading elapsed time by receiving the fading start time without receiving the fading elapsed time.
  • the pouring unit control device 71 determines the material of the molten metal, that is, the type of alloy material, the weight, the weight of the molten metal, etc. based on the pouring schedule data corresponding to the mold serial number of the mold M, and the ladle connection of the pouring ladle L2. It compares with the material of the molten metal by the molten state data corresponding to the number. When these two materials do not match, the pouring unit control device 71 issues an error signal. In this case, the molten metal is returned to the melting furnace F without pouring.
  • the pouring ladle L2 may be hung with a crane or the like and returned to the melting furnace F. Alternatively, a conveying device (not shown) for returning the molten metal to the melting furnace F may be provided and returned to the melting furnace F.
  • the weight of the molten metal in the pouring ladle L2 is measured by the load cell 725 as the second weighing scale.
  • the difference between the weight measured by the load cell 725 and the weight measured by the load cell 525 associated with the same ladle serial number is calculated, and when the difference is larger than a predetermined value, the pouring unit control device 71 issues an error signal. . This is because there is a high possibility that the molten metal has spilled or leaked during transportation.
  • the pouring unit control device 71 pours the molten metal from the pouring ladle L2 into the mold M based on the pouring plan data. Therefore, first, the pouring ladle L2 is moved to the mold M side by the back-and-forth movement mechanism 728 based on the mold height and the position of the gate associated with the mold serial number, and is moved up and down by the lifting mechanism 722. Then, the pouring ladle L2 is tilted by the tilting mechanism 724 while the pouring ladle L2 is moved by the elevating mechanism 722 and the back-and-forth movement mechanism 728, and the molten metal is poured into the mold M.
  • the pouring unit control device 71 stores a pouring pattern and performs pouring with a pouring pattern applied to the mold associated with the mold serial number.
  • image data of the pouring gate is acquired by the pouring surface detection camera 726.
  • the pouring unit control device 71 calculates the hot water level based on the image data, and controls the tilting of the pouring ladle L2 in the tilting mechanism 724.
  • the weight of the molten metal in the pouring ladle L2 is measured by the load cell 725, and the pouring unit controller 71 calculates the amount of the molten metal poured into the mold M. When the weight of the poured molten metal approaches the target value, drain the hot water.
  • template M is intermittently conveyed also in front of the pouring machine 72 like other places. Therefore, when the pouring to the mold M is not completed within the time when it is stopped, the pouring machine cart 720 travels at the same speed as the mold M being conveyed, and the pouring to the mold M is continued. be able to. In addition, when the time for pouring from the pouring machine 72 is longer than the interval at which the mold is intermittently conveyed, two pouring machines 72 are used. That is, two pouring ladles L2 are used.
  • the pouring unit control device 71 compares the fading elapsed time and the allowable fading time as appropriate. When the elapsed fading time exceeds the allowable fading time, an error signal is generated and pouring from the pouring ladle L2 is stopped even if the molten metal remains in the pouring ladle L2. Therefore, spheroidization failure due to fading can be prevented.
  • the molten metal remaining in the pouring ladle L2 is returned to the melting furnace F and reused by using a conveying device that returns the molten metal to the melting furnace F.
  • the TP collection unit 76 receives the molten metal from the pouring ladle L2 and solidifies as TP.
  • the molten metal is received either before pouring into the first mold from the processing ladle L2, or after pouring into one mold and starting to pour into the next mold. It may be after pouring the mold.
  • the pouring unit control device 71 issues a test piece (TP) serial number.
  • the TP sequence number is associated with the ladle sequence number.
  • the TP is then subjected to a material inspection, and the inspection result is associated with the TP serial number and transmitted to the casting equipment management computer 91.
  • the TP collection unit 76 may have a TP collection unit controller and issue a TP sequence number.
  • the TP sequence number is transmitted to the pouring unit control device 71, where it is associated with the ladle sequence number.
  • the TP collection unit controller is regarded as a part of the pouring unit controller 71. If there is a material defect in the TP inspection result, the TP serial number is transmitted to the casting equipment management computer 91.
  • the ladle serial number is known from the TP serial number and is associated with the mold serial number, and the mold spreading device 48 described later treats it as a defective product when an error signal is associated with the mold serial number.
  • the pouring unit controller 71 In the pouring unit controller 71, the number of molds poured from the same pouring ladle L2, the number of times in the ladle, the pouring (casting) time, the pouring pattern number, the pouring (casting) weight And the time, the pouring temperature, etc. are measured, and these data are related to the ladle sequence number as molten state data. Further, the ladle sequence number of the pouring ladle L2 poured into the mold M is associated with the mold sequence number of the mold M. When the pouring unit control device 71 finishes the association, the pouring unit control device 71 transmits data to the casting equipment management computer 91. In addition, when a malfunction occurs in the pouring from the pouring ladle L2 into the mold M in the pouring unit 70, information on the malfunction is transmitted to the casting equipment management computer 91 in association with the mold serial number.
  • the poured mold M is conveyed in the cooling zone 34.
  • the rail Rf is long, and it takes time to be transported. During that time, the molten metal in the mold M is cooled and solidified.
  • the mold M is conveyed to the mold separating device 48 downstream of the cooling zone 34, the mold M is disassembled and the casting and the sand are separated. The casting is sent to a subsequent process to make a product.
  • the sand is sent to the molding unit 10 through a sand collecting device (not shown).
  • the mold conveyance unit control device 31 When the error signal and the TP inspection result associated with the mold serial number of the mold M conveyed to the mold separating apparatus 48 are defective, the mold conveyance unit control device 31 does not send the separated casting to the subsequent process. Distinguish as follows. Therefore, it is possible to prevent defective products from being shipped as products.
  • the mold conveyance unit control device 31 associates the mold serial number with the casting sent to the subsequent process. Further, the mold serial number and the molding history data are transmitted to the casting equipment management computer 91.
  • the casting equipment management computer 91 stores the mold serial number, molding data, ladle serial number, molten state data, and TP inspection result.
  • a mold serial number is associated with the mold manufactured by the casting facility 1.
  • a ladle sequence number is associated with the mold sequence number. Therefore, the mold serial number and the ladle serial number are known from the cast product.
  • the mold serial number is associated with mold making data, and the ladle serial number is associated with molten metal state data. Therefore, all history data is associated with the casting product. Therefore, the manufacturing history can be confirmed when there is a product defect.
  • the molten state data having a large amount of data is managed for each ladle and the data managed for each ladle can be extracted from the mold serial number for each mold, the amount of data to be stored can be reduced.
  • the cast product can be specified by the individual identification serial number. Therefore, for example, when a defect is found by product inspection, the mold serial number is extracted using the individual identification serial number of the casting product, and the history data and molten state data of the mold can be known based on the mold serial number. it can. Therefore, the cause of the problem can be easily investigated.
  • Molding is performed by the molding apparatus 14 using the sand sand that has been subjected to sand treatment and whose properties have been measured by the pre-molding sand characteristics.
  • a mold serial number is issued to the molded mold here, and data processing for each mold unit is performed using the mold serial number. Note that the exchange of the shape of the mold and the like is performed by exchanging a casting frame, a model, and the like used in the molding apparatus 14.
  • the ladle sequence number is associated with the mold sequence number, and the data associated with the ladle sequence number can be extracted from the mold sequence number. That is, the mold cooling time in the cooling zone can vary depending on, for example, the molten metal pouring weight, so that the length of the molten metal drawn from the mold serial number may be changed for each mold and conveyed in the cooling zone. Specifically, what traverser T is used to move the mold to the adjacent mold rail Rf or which mold rail Rf is moved by the traverser T may be changed. Further, when the mold disassembly device 48 disassembles the mold, if the molten state data drawn from the mold serial number includes a defect, the disintegrated casting is distinguished from the casting as a product, for example, disposal. You can also
  • the molten metal is received from the furnace F into the pouring ladle L ⁇ b> 2 and transferred to the pouring machine 72 without being replaced. Since the other points are the same as those of the casting equipment 1, overlapping description is omitted and only different points will be described.
  • the reaction between the molten metal and the alloy material is not so violent, it is not necessary to cause the reaction in the treatment ladle L1, and the reaction can be performed by receiving the hot water in the pouring ladle L2.
  • the molten metal transfer unit 50 includes an alloy material charging unit 60, a molten metal ladle transporting carriage 84 that conveys the molten metal ladle L2 to the charging position P1, the hot water receiving position P2, the reaction position P3, and the transfer position P5, A rail R on which the pan transport carriage 84 travels and a pouring ladle transport mechanism 58 that transports the pouring ladle L2 from the transfer position P5 to the pouring machine 72 are provided.
  • the reaction position P3 is not particularly defined, and the molten metal and the reaction alloy material may be reacted during conveyance.
  • the position of the pouring ladle L2 is detected by the encoder 843.
  • the pouring ladle transport carriage 84 includes a traveling carriage 840 that travels on the rail R, a guide pillar 842 that is installed on the traveling carriage 840, and extends horizontally from the guide pillar 842.
  • the elevating frame elevating device 848 elevates the elevating frame 844 by winding up the chain 848C by the rotation of the motor 848M.
  • the pouring ladle transport carriage 84 has a function of moving the pouring ladle L2 up and down. The difference in height can be absorbed.
  • the pouring ladle transport carriage 84 has a load cell (first weighing scale) 845 for measuring the weight of the molten metal received from the furnace F. Moreover, it has a non-contact thermometer (not shown) which measures the temperature of the molten metal received.
  • the pouring ladle transport truck 84 is provided with a power receiving device 849 and a motor 848M for receiving power from the outside at a high position and a position away from the pouring ladle L2. When the molten metal leaks from L2, these devices are not affected.
  • the high position is a position higher than the bottom of the pouring ladle L2 when the pouring ladle transport carriage 84 travels, that is, when the lifting frame is lowered.
  • the position away from the pouring ladle L2 is the position on the opposite side across the guide column 842.
  • the data transfer between the unit control devices 11, 31, 51, 61, 71 and the casting equipment management computer 91 described in this specification is not limited to the above, and may be changed as appropriate.
  • the data shown as each plan data, mold history data, and molten state data is an example, and other data may be used.
  • molding data is collected while the mold is transported by the mold transport unit control device 31, and when a malfunction occurs, the malfunction information is associated with the mold serial number by the mold transport apparatus control unit 31, and the casting equipment It transmits to the management computer 91. Therefore, the mold conveyance device control unit 31 may function as the abnormality determination computer 108 and specify the true cause of the malfunction.
  • the mold conveyance device control unit 31 stores the operating status of other devices that cause an abnormality in a certain device, along with information on malfunctions, the pusher 38, the gas drilling device 40, the sand cutter 42, the gate cutter 43, etc. Data from the apparatus may be received from the mold transport apparatus control unit 31, and the true cause of the malfunction may be specified by comparing with the stored operation status.
  • the molding unit control device 11, the molten metal transport unit control device 51, the alloy material charging unit control device 61, or the pouring unit control device 71 may function as the abnormality determination computer 108.
  • These control devices 11, 51, 61, 71 may store the operating status of other devices that cause an abnormality in a certain device, receive data from each device, and identify the true cause of the malfunction.
  • the casting equipment management computer 91 may function as the abnormality determination computer 108. That is, the casting facility management computer 91 stores the operating status of other devices that cause an abnormality in a certain device, and the molding unit control device 11, the mold transport device control unit 31, the molten metal transport unit control device 51, and the alloy material input unit control. The true cause of the malfunction may be specified based on the data of each device sent via the device 61 or the pouring unit control device 71.
  • the information about the mold M is associated with the mold sequence number issued for each mold, and the information about the molten metal is associated with the ladle sequence number for each ladle.
  • the mold serial number of the mold M at the pouring position P6 is associated with the ladle serial number of the poured ladle L2. That is, the data on the mold and the molten metal state data can be managed in combination using the mold serial number and the ladle serial number associated with the mold serial number.
  • data relating to the molding apparatus can be managed in association with a mold molded by the molding apparatus.
  • individual molds on the molding line can be identified and managed. Based on the cause of the abnormality determined by the abnormality determination computer, the operator can identify a product that may have a defect based on the information managed in this way, and the product in which the defect has occurred can enter the downstream process. It can be prevented from being sent.
  • a determination computer 108 may be provided to identify the cause of the abnormality of the apparatus.
  • the casting facilities 1 and 2 include a sand processing unit 80 that adjusts the molding sand supplied to the molding unit to a property suitable for molding, and a core molding unit (or core unit) that molds the core placed in the mold. 82 may be further provided.
  • the sand processing unit 80 or the core molding unit 82 may be installed in a building different from the casting facilities 1 and 2, and in that case, it is also a part of the casting facilities 1 and 2. .
  • Mold sand adjusted by the sand processing unit 80 is sent to the molding unit 10 and molded into a mold by the molding apparatus 14.
  • the core molded by the core molding unit 82 is sent to the core setter 45 of the mold transport unit 30 and set in the mold.
  • the abnormality determination computer 108 or the casting equipment management computer 91 is used to determine whether the castings cast in the casting equipment 1 and 2 are defective, the molding unit 10, the mold transport unit 30, the molten metal transport unit 50, the alloy material charging unit 60, and the molten metal. It is preferable to store the relationship between causes or defects in the unit 70, the sand processing unit 80, and the core unit 82 as a matrix database.
  • FIG. 15 schematically shows an example of the matrix database. In the example shown in FIG.
  • guilloche dimensions caused by the upper and lower mold deviations generated on the divided surface of the casting
  • sand biting introduction of lump or plate-like sand intervening near the casting surface
  • noro biting slag is The casting defect that flows into the mold during pouring and is caught, which remains in the product after solidification
  • shrinkage cavity cavity with rough inner wall mainly caused by solidification shrinkage of the melt on the surface or inside of the casting
  • poor hot water Defects caused by solidification before the molten metal fills the mold
  • gas large and small bubbles generated inside the casting produced by entraining air, gas generated from the mold or gas released from the molten metal during casting, etc.
  • the cause of the occurrence of guitch is considered to be a malfunction of the mold alignment / mold transfer device 47, a malfunction of the mold transfer lane, etc.
  • Data relating the mold transport lane is stored. Therefore, when a guilloche occurs in the casting, the abnormality determination computer 108 or the casting equipment management computer 91 performs control so as to check the operating conditions of the mold alignment / mold transfer device 47 and the mold conveyance lane in the molding unit 10.
  • the operation of the device is adjusted to eliminate the problem. For example, when the transport speed of the mold transport lane is too high and guilloche occurs, the transport speed of the mold transport lane is decreased.
  • These adjustments can be made by the molding unit control device 11, the mold transport unit control device 31, and the molten metal transport unit control device 51 that have received information from the abnormality determination computer 108 or the casting equipment management computer 91.
  • the matrix database that associates casting defects with processing points or equipment defects, it becomes possible to quickly and reliably identify the equipment that causes casting defects. Furthermore, the cause of the casting defect can be eliminated by adjusting the operation of the device causing the problem by the control device of each unit.
  • Molding unit control apparatus Pre-molding sand characteristic measuring machine 14 Molding apparatus 16 Stamping measure 30 Mold conveyance unit 31 Mold conveyance unit control apparatus 32 Molding line 33 Mold conveyance unit pouring zone 34 Mold conveyance unit Cooling zone 37 Mold position detection encoder 38 Mold feed pusher (conveyance mechanism) 39 Mold position sensor 40 Gas drilling device 41 Upper and lower mold reversing machine 42 Sand cutter 43 Spout cutter 44 Surface plate carriage set device 45 Core setter 46 Upper mold reversing machine 47 Mold alignment / mold transfer device 48 Mold dispersal device 50 Molten metal conveying unit 51 Molten metal transfer unit controller 52 Hot water receiving carts 54 and 84 with an empty exchange function Pouring ladle conveying cart 56 Empty inoculation device 58 Pouring ladle conveying mechanism 59 Ladle position detection sensor 60 Alloy material charging unit 61 Alloy material charging Unit controller (alloy material input controller) 62 Alloy material hopper 70 Pouring unit (molten

Abstract

Provided is a system that intensively monitors the operating data of a plurality of devices constituting casting equipment, and identifies the true causes of abnormalities in order to detect the causes of abnormalities that occur in the devices. The system (100) is provided with: sampling PLCs (102) that monitor and store information pertaining to the operation of at least one device among a plurality of devices; and an abnormality-determining computer (108) that receives, from a plurality of sampling PLCs, information pertaining to the operation of a plurality of devices, determines an abnormality in a device on the basis of information pertaining to the operation of the device, and stores the operating states of a plurality of devices causing the abnormality in the device. When determining the abnormality in at least one device among the plurality of devices from information pertaining to the operation of the device, on the basis of the stored operating states of the plurality of devices, the operating state causing the abnormality is identified from the received information pertaining to the operation of the plurality of devices. [Selected drawing] FIG. 1

Description

鋳造設備を構成する複数の装置の異常の原因を検出するシステムA system for detecting the cause of abnormality in a plurality of devices constituting a casting facility
 本発明は、鋳造設備を構成する複数の装置の異常の原因を検出するシステムに関し、ある装置の異常が他の装置に起因する場合にも原因を特定できるシステムに関する。 The present invention relates to a system that detects the cause of abnormality of a plurality of devices that constitute a casting facility, and relates to a system that can identify the cause even when an abnormality of a certain device is caused by another device.
 鋳物は、鋳型を造型し、該鋳型を注湯位置まで搬送して、該鋳型に注湯することにより得られる。そのために、鋳造工場には、造型砂を調整(砂処理)し、鋳型を造型して、必要に応じて中子を造型、セットし、鋳型送りをする設備がある。また、溶解炉で溶解した高温の溶湯を取鍋に受湯し、受湯した取鍋を注湯位置まで運搬し、注湯位置において鋳型に注湯する設備がある。さらに、鋳型内の溶湯を冷却し、鋳物製品と鋳型砂を分離する設備(後処理)がある。このように鋳造設備は、多数の装置が組み合わされ、それらの装置が関連しながら稼働している。 The casting is obtained by forming a mold, transporting the mold to a pouring position, and pouring the mold. For this purpose, the foundry has facilities for adjusting the molding sand (sand treatment), molding the mold, molding and setting the core as necessary, and feeding the mold. There is also a facility for receiving hot molten metal melted in a melting furnace into a ladle, transporting the received ladle to a pouring position, and pouring it into a mold at the pouring position. Furthermore, there is equipment (post-treatment) for cooling the molten metal in the mold and separating the cast product and the mold sand. In this way, the casting equipment is a combination of a large number of devices, and these devices are operating in a related manner.
 鋳造設備の装置は、装置毎に専用の制御装置を備えている。たとえば、特許文献1では、運転時に負荷電流値、回転数などのモータからの運転データを収集し、運転状況を監視して、効率のよいメンテナンスを行えるようにしている。 Casting equipment is equipped with a dedicated control device for each equipment. For example, Patent Document 1 collects operation data from a motor such as a load current value and a rotation speed during operation and monitors an operation state so that efficient maintenance can be performed.
 しかし、複数の装置が関連しながら稼働している鋳造設備の装置では、故障した装置の真の故障原因がその装置自体にはなく、別の装置に原因があるという場合もある。そこで、その装置だけのデータを監視しても、逆に余計な保全作業や無駄な点検作業が発生してしまうということもある。 However, in a casting facility apparatus in which a plurality of apparatuses are operating in association with each other, there is a case where the true failure cause of the failed apparatus is not in the apparatus itself but in another apparatus. Therefore, even if only the data of the device is monitored, there are cases where extra maintenance work and useless inspection work occur.
 そこで本発明は、鋳造設備を構成する複数の装置において発生する異常の原因を検出するために、複数の装置の運転データを集中的に監視し、異常の真の原因を特定するシステムを提供することを目的とする。 Therefore, the present invention provides a system for centrally monitoring operation data of a plurality of apparatuses and identifying the true cause of the abnormality in order to detect the cause of the abnormality occurring in the plurality of apparatuses constituting the casting equipment. For the purpose.
特開2002-95219号公報JP 2002-95219 A
 上記課題を解決するために、本発明の第1の態様に係るシステムは、例えば図1に示すように、鋳型を造型し、該鋳型を注湯位置まで搬送するとともに、該鋳型に注湯して鋳物を得る鋳造設備を構成する複数の装置の異常の原因を検出するシステム100であって、複数の装置の内の少なくとも一つの装置の稼働に関する情報をモニターし、記憶するサンプリング用PLC102と、前記複数の装置の稼働に関する情報を複数のサンプリング用PLC102から受信する異常判定コンピュータ108であって、装置の稼働に関する情報から当該装置の異常を判定し、かつ、前記装置の異常の原因となる複数の装置の稼働状態を記憶している異常判定コンピュータ108とを備え、複数の装置の内の少なくとも一つの装置の稼働に関する情報から該装置の異常を判定すると、記憶した複数の装置の稼働状態に基づいて、受信した複数の装置の稼働に関する情報から異常の原因となる稼働状態を特定する。このように構成すると、鋳造設備を構成する複数の装置の一つに生じた異常に対し、記憶している異常の原因となる稼働状況に基づき複数の装置の稼働状況を調べ、ある装置に発生した異常の真の原因を特定するシステムとなる。 In order to solve the above problems, a system according to a first aspect of the present invention, as shown in FIG. 1, for example, molds a mold, transports the mold to a pouring position, and pours the mold into the mold. A system 100 for detecting the cause of an abnormality of a plurality of apparatuses constituting a casting facility for obtaining a casting, and monitoring and storing information relating to the operation of at least one of the plurality of apparatuses; An abnormality determination computer that receives information related to operation of the plurality of devices from a plurality of sampling PLCs 102, and determines a failure of the device from information related to operation of the device, and causes a plurality of causes of the abnormality of the device And an abnormality determination computer 108 that stores the operation status of the apparatus, and information regarding the operation of at least one of the plurality of apparatuses When determining the abnormality of Luo said device, based on the operation status of plural device storing, identifies the operating state that causes the abnormality from information about the operation of a plurality of devices received. When configured in this way, for an anomaly that occurred in one of the multiple devices that make up the casting facility, the operating status of the multiple devices was examined based on the operating status that caused the stored anomaly, and occurred in a certain device It becomes a system to identify the true cause of the abnormalities.
 また、本発明の第2の態様に係るシステムは、例えば図1に示すように、第1の態様に係るシステム100において、前記複数の装置は、当該装置を稼働するための電流値を計測する電流計または電圧値を計測する電圧計を有し、サンプリング用PLC102は、電流値または電圧値を稼働に関する情報としてモニターする。このように構成すると、装置に掛かる負荷を電流値または電圧値として計測し、装置の稼働をモニターすることができる。 Further, in the system according to the second aspect of the present invention, for example, as shown in FIG. 1, in the system 100 according to the first aspect, the plurality of devices measure a current value for operating the device. The sampling PLC 102 has an ammeter or a voltmeter that measures a voltage value, and monitors the current value or the voltage value as information related to operation. If comprised in this way, the load concerning an apparatus can be measured as an electric current value or a voltage value, and operation | movement of an apparatus can be monitored.
 また、本発明の第3の態様に係るシステムは、例えば図1に示すように、第1または第2の態様に係るシステム100において、前記複数の装置は、当該装置の騒音を計測する騒音計または振動を計測する振動計を有し、サンプリング用PLC102は、騒音または振動を稼働に関する情報としてモニターする。このように構成すると、装置に生じる騒音または振動を計測し、装置に発生した異常を検知することができる。 Further, as shown in FIG. 1, for example, in the system 100 according to the third aspect of the present invention, in the system 100 according to the first or second aspect, the plurality of devices are sound level meters that measure noise of the device. Or it has a vibrometer which measures vibration, and PLC102 for sampling monitors noise or vibration as information about operation. If comprised in this way, the noise or vibration which generate | occur | produces in an apparatus can be measured, and the abnormality which generate | occur | produced in the apparatus can be detected.
 また、本発明の第4の態様に係るシステムは、例えば図1に示すように、第1ないし第3のいずれかの態様に係るシステム100において、サンプリング用PLC102と異常判定コンピュータ108とが、スイッチングハブ104を介してLANによって接続される。このように構成すると、複数の装置のサンプリング用PLCの情報が、適切に異常判定コンピュータに伝達される。 Further, the system according to the fourth aspect of the present invention is a system 100 according to any one of the first to third aspects, for example, as shown in FIG. 1, in which the sampling PLC 102 and the abnormality determination computer 108 are switched. They are connected by a LAN via the hub 104. If comprised in this way, the information of PLC for sampling of a some apparatus will be appropriately transmitted to the abnormality determination computer.
 また、本発明の第5の態様に係るシステムは、例えば図1、図2、図3、図4および図8に示すように、第1ないし第4のいずれかの態様に係るシステム100において、造型された鋳型Mを搬送する鋳型搬送ユニット30と、鋳型搬送ユニット30で搬送された鋳型Mに注湯する注湯ユニット70と、鋳造設備1を制御する鋳造設備管理コンピュータ91とを備える。造型ユニット10は、鋳型Mを造型する造型装置14と、造型装置14の動作を制御する造型ユニット制御装置11とを有する。造型ユニット制御装置11は、鋳造設備管理コンピュータ91から造型計画データを受け取り、該造型計画データに対応する造型計画で鋳型Mの造型を行うよう造型装置14を制御するとともに、造型が完了した鋳型Mに対して鋳型連番を発行し、該鋳型連番には鋳型Mに関する造型データを関連付ける。鋳型搬送ユニット30は、鋳型Mを1鋳型分ずつ搬送する搬送機構38と、鋳型Mが搬送されたことを検出する鋳型位置検出センサ39と、鋳型搬送ユニット30の動作を制御する鋳型搬送ユニット制御装置31とを有する。鋳型搬送ユニット制御装置31は、鋳型Mを間欠的に搬送するよう搬送機構38を制御し、造型装置14で造型され搬送機構38で搬送可能な状態とされた鋳型Mの鋳型連番を受信し、鋳型位置検出センサ39で検出される鋳型Mの動きに合わせて鋳型Mが停止する鋳型位置に割り当てられる前記鋳型連番をずらすことにより、鋳型位置と当該鋳型位置にある鋳型Mの鋳型連番を対応させる。注湯ユニット70は、注湯取鍋L2から鋳型Mに溶湯を注湯する注湯機72と、注湯機72の動作を制御する注湯ユニット制御装置71とを有する。注湯ユニット制御装置71は、注湯取鍋L2内の溶湯の溶湯状態データと関連付けられた取鍋連番を受け取り、鋳型搬送ユニット制御装置31から注湯位置P6にある鋳型Mの鋳型連番を受け取り、該鋳型連番に対応する注湯計画データに対応する注湯計画で注湯を行うよう注湯機72を制御するとともに、注湯した注湯取鍋L2の取鍋連番を鋳型連番に関連付けて前記鋳造設備管理コンピュータ91に送信する。 Further, the system according to the fifth aspect of the present invention is a system 100 according to any one of the first to fourth aspects as shown in FIGS. 1, 2, 3, 4, and 8, for example. A mold transport unit 30 for transporting the molded mold M, a pouring unit 70 for pouring the mold M transported by the mold transport unit 30, and a casting facility management computer 91 for controlling the casting facility 1 are provided. The molding unit 10 includes a molding device 14 that molds the mold M, and a molding unit control device 11 that controls the operation of the molding device 14. The molding unit control device 11 receives the molding plan data from the casting equipment management computer 91, controls the molding device 14 so as to mold the mold M with the molding plan corresponding to the molding plan data, and the mold M which has been molded. A mold serial number is issued to the mold serial number, and molding data relating to the mold M is associated with the mold serial number. The mold conveyance unit 30 includes a conveyance mechanism 38 that conveys the mold M one mold at a time, a mold position detection sensor 39 that detects that the mold M has been conveyed, and a mold conveyance unit control that controls the operation of the mold conveyance unit 30. Device 31. The mold transport unit control device 31 controls the transport mechanism 38 so that the mold M is transported intermittently, and receives the mold serial number of the mold M that has been formed by the molding apparatus 14 and can be transported by the transport mechanism 38. By shifting the mold serial number assigned to the mold position where the mold M stops according to the movement of the mold M detected by the mold position detection sensor 39, the mold serial number of the mold M at the mold position and the mold position is shifted. To correspond. The pouring unit 70 includes a pouring machine 72 that pours molten metal from the pouring ladle L 2 into the mold M, and a pouring unit control device 71 that controls the operation of the pouring machine 72. The pouring unit control device 71 receives the ladle serial number associated with the molten state data of the molten metal in the pouring ladle L2, and receives the mold serial number of the mold M at the pouring position P6 from the mold transport unit control device 31. The pouring machine 72 is controlled so as to perform pouring according to the pouring plan corresponding to the pouring plan data corresponding to the mold serial number, and the ladle serial number of the poured pouring ladle L2 is cast. The data is transmitted to the casting equipment management computer 91 in association with the serial number.
 このように構成すると、鋳型についての情報は、鋳型毎に発行された鋳型連番に関連付けられ、また、鋳型が停止する位置の鋳型連番を、鋳型が搬送される度に鋳型連番をずらすことにより、把握する。また、溶湯についての情報は、取鍋毎の取鍋連番に関連付けられる。そして、注湯機で鋳型に溶湯が注湯されると、注湯位置にある鋳型の鋳型連番と注湯した取鍋の取鍋連番を関連付けて、鋳造設備管理コンピュータに送付する。すなわち、鋳型に関するデータと溶湯の溶湯状態データとを、鋳型連番と鋳型連番に関連付けられた取鍋連番とを用いて、組み合わせて管理することができる。従来、鋳造工場は、造型装置、鋳型搬送装置、溶湯搬送装置、注湯機などが、個別に制御されて、運転者が各装置を制御して、鋳造設備全体が運転されていた。特に、鋳型は、連続的に多数の鋳型が造型されて搬送されるので、個々の鋳型が搬送されている状況を把握し、その位置を特定して管理するのが難しかった。そこで、搬送される個々の鋳型の位置を特定して管理することに着目した。また、溶湯についても、溶湯を搬送する取鍋毎に管理することに着目した。さらに、鋳造設備の情報管理における、鋳型の造型データと溶湯の溶湯状態データの管理方法は、鋳型についての情報は、鋳型毎に鋳型が搬送される状況を把握しつつ収集し、溶湯についての情報は、取鍋毎に取鍋が搬送される状況を把握しつつ収集し、鋳型に溶湯が注湯されると、その鋳型の情報と溶湯の情報を組み合わせて管理できる。また、造型装置に関するデータを、造型装置で造型された鋳型と関連付けて管理することもできる。さらに、造型ライン上の個別の鋳型を識別して管理することもできる。異常判定コンピュータで判定された異常の原因から、作業者は、このように管理された情報に基づき不具合の生じた可能性のある製品を特定することができる。 With this configuration, the information about the mold is associated with the mold serial number issued for each mold, and the mold serial number at the position where the mold stops is shifted every time the mold is conveyed. By grasping. Moreover, the information about a molten metal is linked | related with the ladle serial number for every ladle. When the molten metal is poured into the mold by the pouring machine, the mold serial number of the mold at the pouring position and the ladle serial number of the poured ladle are associated and sent to the casting equipment management computer. That is, the data on the mold and the molten metal state data can be managed in combination using the mold serial number and the ladle serial number associated with the mold serial number. Conventionally, in a casting factory, a molding apparatus, a mold conveying apparatus, a molten metal conveying apparatus, a pouring machine, and the like are individually controlled, and a driver controls each apparatus to operate the entire casting facility. In particular, since a large number of molds are continuously formed and transported, it is difficult to grasp the situation in which individual molds are transported and to identify and manage their positions. Therefore, we focused on identifying and managing the positions of individual molds to be conveyed. We also focused on managing the molten metal for each ladle that transports the molten metal. Furthermore, in the information management of the casting equipment, the mold molding data and the molten metal state data management method, the information about the mold is collected while grasping the situation that the mold is transported for each mold, information about the molten metal Collects while grasping the situation that the ladle is conveyed for each ladle, and when the molten metal is poured into the mold, the information on the mold and the information on the molten metal can be combined and managed. In addition, data relating to the molding apparatus can be managed in association with a mold molded by the molding apparatus. Furthermore, individual molds on the molding line can be identified and managed. From the cause of the abnormality determined by the abnormality determination computer, the operator can identify a product that may have a problem based on the information managed in this way.
 また、本発明の第6の態様に係るシステムは、例えば図1、図2、図3および図8に示すように、第5の態様に係るシステム100において、造型ユニット制御装置11が異常判定コンピュータ108を兼ねる。このように構成すると、造型ユニット制御装置で造型ユニットの装置の異常の原因を判断することができる。 Further, the system according to the sixth aspect of the present invention is the same as the system 100 according to the fifth aspect in that the molding unit control device 11 is an abnormality determination computer as shown in FIGS. 1, 2, 3 and 8, for example. Also serves as 108. If comprised in this way, the cause of abnormality of the apparatus of a molding unit can be judged with a molding unit control apparatus.
 また、本発明の第7の態様に係るシステムは、例えば図1、図2、図3および図8に示すように、第5または6の態様に係るシステム100において、鋳型搬送ユニット制御装置31が異常判定コンピュータ108を兼ねる。このように構成すると、鋳型搬送ユニット制御装置で鋳型搬送ユニットの装置の異常の原因を判断することができる。 In addition, the system according to the seventh aspect of the present invention is the same as the system 100 according to the fifth or sixth aspect, as shown in FIG. 1, FIG. 2, FIG. 3, and FIG. It also serves as the abnormality determination computer 108. If comprised in this way, the cause of abnormality of the apparatus of a mold conveyance unit can be judged with a mold conveyance unit control apparatus.
 また、本発明の第8の態様に係るシステムは、例えば図1、図2、図3および図8に示すように、第5ないし第7のいずれかの態様に係るシステム100において、注湯ユニット制御装置71が異常判定コンピュータ108を兼ねる。このように構成すると、注湯ユニット制御装置で注湯ユニットの装置の異常の原因を判断することができる。 Further, the system according to the eighth aspect of the present invention includes a pouring unit in the system 100 according to any one of the fifth to seventh aspects as shown in FIGS. 1, 2, 3, and 8, for example. The control device 71 also serves as the abnormality determination computer 108. If comprised in this way, the cause of abnormality of the apparatus of a pouring unit can be judged with the pouring unit control apparatus.
 また、本発明の第9の態様に係るシステムは、例えば図1、図2、図3および図8に示すように、第5の態様に係るシステム100において、鋳造設備管理コンピュータ91が異常判定コンピュータ108を兼ねる。このように構成すると、鋳造設備管理コンピュータで鋳造設備全体の装置の異常の原因を判断することができる。 Further, the system according to the ninth aspect of the present invention is the same as the system 100 according to the fifth aspect in that the casting equipment management computer 91 is an abnormality determination computer as shown in FIGS. Also serves as 108. If comprised in this way, the cause of abnormality of the apparatus of the whole casting installation can be judged with a casting installation management computer.
 また、本発明の第10の態様に係るシステムは、例えば図1、図2、図3および図15に示すように、第5ないし第9の態様に係るシステム100において、鋳造設備1は、造型ユニット10に供給する鋳型砂を造型に適した性状に調整する砂処理ユニット80と、鋳型Mの中に配置する中子を造型する中子造型ユニット82と、をさらに備え、異常判定コンピュータ108は、鋳造設備1で鋳造された鋳物の不良の状態と、該不良の前記ユニットにおける原因をマトリックスデータベースで記憶し、少なくとも一つの装置の稼働に関する情報から該マトリックスデータベースのデータを用いて装置の不具合を判定する。このように構成すると、鋳物の不良の原因となる装置の不具合をマトリックスデータベースから迅速に確実に判定することができる。 Further, the system according to the tenth aspect of the present invention is the same as the system 100 according to the fifth to ninth aspects, as shown in FIGS. 1, 2, 3 and 15, for example. The abnormality determination computer 108 further includes a sand processing unit 80 that adjusts the molding sand supplied to the unit 10 to a property suitable for molding, and a core molding unit 82 that molds the core disposed in the mold M. The defect state of the casting cast in the casting facility 1 and the cause of the defect in the unit are stored in the matrix database, and the malfunction of the apparatus is determined using the data of the matrix database from the information on the operation of at least one apparatus. judge. If comprised in this way, the malfunction of the apparatus which causes the defect of a casting can be determined quickly and reliably from a matrix database.
 また、本発明の第11の態様に係るシステムは、例えば図15に示すように、第10の態様に係るシステム100において、マトリックスデータベースは、鋳物の不良の状態と、砂処理、造型、中子、注湯、冷却及び後処理の6つの加工点に区分した加工点とを関連付けたものである。このように構成すると、鋳物の不良の状態から、6つの加工点における不具合を迅速に確実に判定することができる。 Further, the system according to the eleventh aspect of the present invention is the system 100 according to the tenth aspect, for example, as shown in FIG. 15, in which the matrix database includes the state of casting failure, sand treatment, molding, core , The processing points divided into six processing points of pouring, cooling, and post-processing. If comprised in this way, the malfunction in six process points can be determined quickly and reliably from the state of the defect of a casting.
 また、本発明の第12の態様に係るシステムは、第10または11の態様に係るシステム100において、鋳造設備1は、判定した不具合に基づき、当該不具合を解消するために、不具合の原因となる装置を調整する調整手段をさらに備える。このように構成すると、マトリックスデータベースを用いて鋳物の不良の原因となる装置を迅速に確実に判定したうえで、調整手段により不具合の原因となる装置を調整して、不具合を解消することができる。 The system according to the twelfth aspect of the present invention is the system 100 according to the tenth or eleventh aspect, in which the casting equipment 1 causes a problem in order to eliminate the problem based on the determined problem. Adjustment means for adjusting the apparatus is further provided. If comprised in this way, after determining quickly and reliably the apparatus which causes the casting defect using the matrix database, the apparatus causing the defect can be adjusted by the adjusting means, and the defect can be solved. .
 また、本発明の第13の態様に係るシステムは、例えば図1および図2に示すように、第12の態様に係るシステム100において、前記調整手段が、造型ユニット制御装置11、鋳型搬送ユニット制御装置31、注湯ユニット制御装置51のいずれかである。このように構成すると、造型ユニット、鋳型搬送ユニット、注湯ユニットの装置の動作を制御する造型ユニット制御装置、鋳型搬送ユニット制御装置、注湯ユニット制御装置で不具合の原因となる装置を調整するので、効率よく不具合の調整を行うことができる。 In addition, the system according to the thirteenth aspect of the present invention is the system 100 according to the twelfth aspect, for example, as shown in FIGS. Either the device 31 or the pouring unit control device 51. With this configuration, the molding unit control device, the mold transport unit control device, and the pouring unit control device that control the operations of the molding unit, the mold transport unit, and the pouring unit adjust the devices that cause problems. , It is possible to efficiently adjust the defect.
 本発明の鋳型を造型し、該鋳型を注湯位置まで搬送するとともに、該鋳型に注湯して鋳物を得る鋳造設備を構成する複数の装置の異常の原因を検出するシステムによれば、複数の装置の運転データを集中的に監視し、異常の真の原因を特定することができる。 According to the system for forming a mold of the present invention, transporting the mold to a pouring position, and detecting a cause of abnormality of a plurality of apparatuses constituting a casting facility for pouring the mold to obtain a casting, It is possible to centrally monitor the operation data of the device and identify the true cause of the abnormality.
 この出願は、日本国で2017年2月3日に出願された特願2017-018486号に基づいており、その内容は本出願の内容として、その一部を形成する。
 また、本発明は以下の詳細な説明により更に完全に理解できるであろう。しかしながら、詳細な説明および特定の実施例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、当業者にとって明らかだからである。
 出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、開示された改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
 本明細書あるいは請求の範囲の記載において、名詞及び同様な指示語の使用は、特に指示されない限り、または文脈によって明瞭に否定されない限り、単数および複数の両方を含むものと解釈すべきである。本明細書中で提供されたいずれの例示または例示的な用語(例えば、「等」)の使用も、単に本発明を説明し易くするという意図であるに過ぎず、特に請求の範囲に記載しない限り本発明の範囲に制限を加えるものではない。
This application is based on Japanese Patent Application No. 2017-018486 filed on February 3, 2017 in Japan, the contents of which form part of the present application.
The present invention will also be more fully understood from the following detailed description. However, the detailed description and specific examples are preferred embodiments of the present invention and are described for illustrative purposes only. This is because various changes and modifications will be apparent to those skilled in the art from this detailed description.
The applicant does not intend to contribute any of the described embodiments to the public, and the disclosed modifications and alternatives that may not be included in the scope of the claims are equivalent. It is part of the invention under discussion.
In this specification or in the claims, the use of nouns and similar directives should be interpreted to include both the singular and the plural unless specifically stated otherwise or clearly denied by context. The use of any examples or exemplary terms provided herein (eg, “etc.”) is merely intended to facilitate the description of the invention and is not specifically recited in the claims. As long as it does not limit the scope of the present invention.
図1は、鋳造設備を構成する複数の装置の異常の原因を検出するシステム例のシステム図である。FIG. 1 is a system diagram of a system example for detecting a cause of abnormality of a plurality of apparatuses constituting a casting facility. 図2は、鋳造設備の構成を示す平面図で、炉から処理取鍋で受湯し、注湯取鍋に空け替えて、注湯取鍋から造型した鋳型に注湯する鋳造設備を示す。FIG. 2 is a plan view showing the configuration of the casting equipment, showing the casting equipment that receives the hot water from the furnace with the treatment ladle, replaces it with the pouring ladle, and pours it into the mold formed from the pouring ladle. 図3は、図2のA部拡大図である。FIG. 3 is an enlarged view of a portion A in FIG. 図4は、鋳型を搬送する鋳型送りプッシャとその動作を検知するセンサを示す図である。FIG. 4 is a diagram showing a mold feed pusher for conveying a mold and a sensor for detecting the operation thereof. 図5は、空替機能付き受湯台車の側面図である。FIG. 5 is a side view of a hot water receiving cart with an air replacement function. 図6は、注湯取鍋搬送台車の側面図である。FIG. 6 is a side view of the pouring ladle transport cart. 図7は、注湯機の側面図である。FIG. 7 is a side view of the pouring machine. 図8は、鋳造設備の各ユニットで取得するデータと、ユニット間でのデータの通信を示すブロック図である。FIG. 8 is a block diagram showing data acquired in each unit of the casting facility and data communication between the units. 図9は、鋳型連番をずらす様子を説明する模式図である。FIG. 9 is a schematic diagram for explaining how the mold serial numbers are shifted. 図10は、取鍋の位置と取鍋連番と取鍋連番に関連付けられる溶湯状態データを説明する模式図である。Drawing 10 is a mimetic diagram explaining the position of a ladle, a ladle serial number, and molten metal state data related with a ladle serial number. 図11は、鋳造設備でのデータの流れを示すフローチャートである。FIG. 11 is a flowchart showing the flow of data in the casting facility. 図12は、鋳造設備の構成を示す平面図で、炉から注湯取鍋に受湯し、注湯取鍋から造型した鋳型に注湯する鋳造設備を示す。FIG. 12 is a plan view showing the configuration of the casting equipment, and shows the casting equipment for receiving the molten metal from the furnace into the pouring ladle and pouring it into the mold formed from the pouring ladle. 図13は、図12のB部拡大図である。FIG. 13 is an enlarged view of a portion B in FIG. 図14は、昇降機能付き注湯取鍋搬送台車の側面図である。FIG. 14: is a side view of the pouring ladle conveyance trolley with a raising / lowering function. 図15は、鋳物の不良の状態と、原因あるいは不具合との関係を表わすマトリックスデータベース一例を模式的に示す。FIG. 15 schematically shows an example of a matrix database representing the relationship between the state of a casting defect and the cause or defect.
 以下、図面を参照して、本発明の実施の形態について説明する。なお、各図において、互いに同一または相当する装置には同一符号を付し、重複した説明は省略する。先ず、図1を参照して、本発明の実施の形態としての鋳造設備を構成する複数の装置の異常の原因を検出するシステム100について説明する。図中、鋳造設備を構成する複数の装置は省略するが、符号102は各装置に設置されたサンプリング用PLCを示す。サンプリング用PLC102は、各装置の稼働に関する情報をモニターして記憶する。各装置の稼働に関する情報には、各装置に設置されたセンサで計測した情報を含む。なお、サンプリング用PLC102は、装置の稼働を制御してもよい。ここで、各装置とは、たとえば、造型装置、混錬機、注湯機、表面処理装置、集塵機、溶解炉などの装置であるが、これらには限定されない。また、各装置に関する情報とは、各装置の仕様に関する情報、各装置の作動状態に関する情報、等が含まれるが、これらには限定されない。また、「情報を記憶する」とは、情報を取得し、その後に出力できることを指し、記憶している時間は微小でもよい。また、各装置に設置されたセンサとは、例えば造型装置に設置された造型時の砂投入重量、圧縮率、静圧またはスクイズ圧力、スクイズ時間、昇圧速度、スクイズストローク、鋳型厚み、造型時刻等の造型履歴データを計測するセンサ(計測器)、稼働するための電流を計測する電流計または電圧を計測する電圧計、振動計、騒音計等であるが、これらには限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding devices are denoted by the same reference numerals, and redundant description is omitted. First, referring to FIG. 1, a system 100 for detecting the cause of an abnormality in a plurality of apparatuses constituting a casting facility as an embodiment of the present invention will be described. In the figure, a plurality of devices constituting the casting facility are omitted, but reference numeral 102 denotes a sampling PLC installed in each device. The sampling PLC 102 monitors and stores information related to the operation of each apparatus. The information related to the operation of each device includes information measured by a sensor installed in each device. Note that the sampling PLC 102 may control the operation of the apparatus. Here, although each apparatus is apparatuses, such as a molding apparatus, a kneading machine, a pouring machine, a surface treatment apparatus, a dust collector, a melting furnace, for example, it is not limited to these. In addition, the information regarding each device includes information regarding the specifications of each device, information regarding the operating state of each device, and the like, but is not limited thereto. “Storing information” indicates that information can be acquired and then output, and the stored time may be very small. In addition, the sensors installed in each device include, for example, sand input weight, compression rate, static pressure or squeeze pressure, squeeze time, pressure increase speed, squeeze stroke, mold thickness, molding time, etc. A sensor (measuring instrument) for measuring the molding history data, an ammeter for measuring current for operation, a voltmeter for measuring voltage, a vibration meter, a sound level meter, and the like are not limited thereto.
 複数のサンプリング用PLC102は、スイッチングハブ104を介して、異常判定コンピュータ108にLAN接続される。ある装置のサンプリング用PLC102とスイッチングハブ104とが見通しの良い位置にある場合には、無線通信機器106を介して無線LANで接続してもよい。ただし、有線LAN接続の方が、通信の信頼性が高いので好ましい。なお、スイッチングハブ104ではなく単なるハブを介して、サンプリング用PLC102と異常判定コンピュータ108がLAN接続されてもよい。 The plurality of sampling PLCs 102 are connected to the abnormality determination computer 108 via the switching hub 104 via a LAN. When the sampling PLC 102 and the switching hub 104 of a certain apparatus are in a position where visibility is good, they may be connected via a wireless communication device 106 via a wireless LAN. However, a wired LAN connection is preferable because of high communication reliability. Note that the sampling PLC 102 and the abnormality determination computer 108 may be LAN-connected via a simple hub instead of the switching hub 104.
 異常判定コンピュータ108は、各装置に設置されたセンサで計測した情報を含む複数のサンプリング用PLC102から各装置の稼働に関する情報を受信し、その情報から、装置の異常を判定する。すなわち、ある値が所定の範囲から外れたり、それまでの値から大きく変化したりした場合に、その装置が異常であると判定する。なお、所定の範囲は、たとえば運転モードの変化により変更されるように設定されてもよい。 The abnormality determination computer 108 receives information related to the operation of each device from a plurality of sampling PLCs 102 including information measured by sensors installed in each device, and determines an abnormality of the device from the information. That is, when a certain value is out of a predetermined range or greatly changes from the previous value, it is determined that the device is abnormal. The predetermined range may be set so as to be changed, for example, by a change in the operation mode.
 ある装置が異常であると判定すると、異常判定コンピュータ108はその原因を検出する。異常判定コンピュータ108は、ある装置の異常の原因となる複数の装置の稼働状態を記憶している。そこで、ある装置に異常が生じたときには、その装置だけではなく、他の装置の稼働状況を調べる。調べる稼働状況は、履歴を含めた稼働状況である。 If it is determined that a certain device is abnormal, the abnormality determination computer 108 detects the cause. The abnormality determination computer 108 stores operating states of a plurality of apparatuses that cause an abnormality of a certain apparatus. Therefore, when an abnormality occurs in a certain device, the operating status of not only that device but also other devices is examined. The operating status to be checked is an operating status including a history.
 たとえば、造型機でスクイズ圧が高くなり、造型機の異常が判定されたとする。原因としては、造型機のバルブや電装系統あるいは他の構成部品の故障の場合もあるが、造型機の前工程の混錬機、CB(コンタクタビリティ)コントローラ、エアレータ等に異常が生じている場合もある。混錬機が正常に作動しておらず、造型機に送られた鋳型砂の性状が悪く、造型機のスクイズ圧が高くなってしまうことがある。このような原因は、混錬機における砂温度、砂の水分値、混錬機の電流値等を記憶しているデータ、すなわち造型機のスクイズ圧を高くするような砂温度等と比較することにより特定することができる。同様に、CB(コンタクタビリティ)コントローラ、エアレータの稼働状況が、造型機のスクイズ圧を高くするような稼働状況となっているかを調べ、原因を特定することができる。 Suppose, for example, that the squeeze pressure is high in the molding machine and it is determined that the molding machine is abnormal. The cause may be a failure of the molding machine valve, electrical system or other components, but there is an abnormality in the kneading machine, CB (contactability) controller, aerator, etc. in the previous process of the molding machine. There is also. The kneading machine is not operating normally, the properties of the mold sand sent to the molding machine may be poor, and the squeeze pressure of the molding machine may increase. The cause of this is to compare the data with the sand temperature in the kneader, the moisture value of the sand, the current value of the kneader, etc., that is, the sand temperature that increases the squeeze pressure of the molding machine. Can be specified. Similarly, it is possible to determine the cause by examining whether the operating status of the CB (contactability) controller and aerator is an operating status that increases the squeeze pressure of the molding machine.
 また、ベルトコンベヤが過負荷のために異常に停止したとする。原因としては、ベルトコンベヤのモータ系の不具合、あるいは、コンベヤベルトあるいはベルトドライブの噛み込み等、ベルトコンベヤ自体の異常である場合もあるが、ベルトコンベヤの前工程の混錬機の異常が原因の場合もある。たとえば、混錬機で鋳型砂に過多に注水して砂の比重が大きくなりすぎ、過負荷によりベルトコンベアが停止することも考えられる。このような原因は、混錬機における砂温度、砂の水分値、混錬機の電流値等を記憶しているデータ、すなわち造型機の鋳型砂への注水量を高くするようなデータを調べることにより特定することができる。 Suppose also that the belt conveyor stopped abnormally due to overload. The cause may be a malfunction of the motor system of the belt conveyor, or an abnormality of the belt conveyor itself, such as biting of the conveyor belt or belt drive, but it is caused by an abnormality of the kneading machine in the previous process of the belt conveyor. In some cases. For example, it is conceivable that water is poured excessively into the mold sand with a kneader and the specific gravity of the sand becomes too large, and the belt conveyor stops due to overload. The cause of this is to examine the data storing the sand temperature, sand moisture value, kneader current value, etc. in the kneader, that is, data that increases the amount of water injected into the mold sand of the molding machine. Can be specified.
 あるいは、混錬機が過負荷のために異常に停止したとする。混錬機のマラーホイールの異常、マラーホイールのモータ系の異常等、混錬機自体の異常である場合もあるが、混錬機の前工程の混錬機前水分制御が異常である場合もある。すなわち、混錬機前水分制御すなわち、後述の造型前砂特性計測器12での水分センサで正しい砂水分を計測できず、混錬機での注水が過多になり、過負荷となってしまうこともある。そこで、水分制御での水分計測値、砂温、大気温が異常になっていないかを調べ、原因を特定することができる。 Or, suppose that the kneading machine stopped abnormally due to overload. There may be abnormalities in the kneader itself, such as an abnormality in the kneader's muller wheel, an abnormality in the motor system of the muller wheel, etc., but there are also cases where the moisture control before the kneading machine is abnormal. is there. That is, moisture control before the kneading machine, that is, correct sand moisture cannot be measured by a moisture sensor in the pre-molding sand property measuring instrument 12 described later, and water injection in the kneading machine becomes excessive, resulting in overload. There is also. Therefore, it is possible to determine whether or not the moisture measurement value, sand temperature, and atmospheric temperature in moisture control are abnormal.
 上記の例のように、他の設備の異常が原因となってある装置に異常が生じる場合がある。そのために、複数の装置の異常の原因を検出するシステム100では、各サンプリング用PLC102で得られた情報を異常判定コンピュータ108に送る。異常判定コンピュータ108では、ある装置の異常を判定すると、その原因を周囲の装置の情報を含めて探索し、異常の真の原因を特定する。このように、システム100によれば、鋳造設備のように複数の装置で構成された設備における、ある装置の異常の真の原因を特定することができる。 As in the above example, there may be a case where an abnormality occurs in the device due to an abnormality in other equipment. Therefore, in the system 100 that detects the cause of the abnormality of a plurality of devices, the information obtained by each of the sampling PLCs 102 is sent to the abnormality determination computer 108. When the abnormality determination computer 108 determines an abnormality of a certain device, the cause is searched for including the information of surrounding devices, and the true cause of the abnormality is specified. Thus, according to the system 100, the true cause of the abnormality of a certain apparatus in the facility comprised of a plurality of apparatuses such as a casting facility can be specified.
 次に、図2および図3を参照して、鋳造設備1の構成について説明する。図2は、鋳造設備の構成を示す平面図であり、図3は、図2のA部拡大図である。鋳造設備1は、造型ユニット10と鋳型搬送ユニット30と溶湯搬送ユニット50と注湯ユニット70を備える。造型ユニット10は、鋳型砂から鋳型Mを造型する。鋳型搬送ユニット30は、造型された鋳型Mを造型ユニット10から注湯ユニット70へ搬送し、そして注湯ユニット70で注湯された鋳型Mを搬送しつつ冷却して溶湯を冷却・固化して鋳物とし、鋳型ばらし装置48で鋳型から鋳物を取り出す。溶湯搬送ユニット50は、処理取鍋L1に合金材を投入し、炉Fから処理取鍋L1に受湯し、溶湯と合金材とを反応させ、反応後の溶湯を注湯取鍋L2に空け替えて、注湯取鍋L2を注湯ユニット70の注湯機72に移送する。注湯ユニット70は、注湯取鍋L2から鋳型Mに注湯する。 Next, the configuration of the casting equipment 1 will be described with reference to FIGS. FIG. 2 is a plan view showing the configuration of the casting equipment, and FIG. 3 is an enlarged view of part A in FIG. The casting facility 1 includes a molding unit 10, a mold transport unit 30, a molten metal transport unit 50, and a pouring unit 70. The molding unit 10 molds the mold M from the mold sand. The mold conveyance unit 30 conveys the molded mold M from the molding unit 10 to the pouring unit 70, and cools and solidifies the molten metal while conveying the mold M poured by the pouring unit 70. The casting is taken out, and the casting is taken out from the casting mold by the mold spreading device 48. The molten metal transfer unit 50 puts the alloy material into the treatment ladle L1, receives the molten metal from the furnace F into the treatment ladle L1, reacts the molten metal with the alloy material, and emptyes the molten metal after the reaction into the pouring ladle L2. Instead, the pouring ladle L2 is transferred to the pouring machine 72 of the pouring unit 70. The pouring unit 70 pours the mold M from the pouring ladle L2.
 造型ユニット10は、造型前の鋳型砂の性状を計測する造型前砂特性計測器12を有する。造型前の鋳型砂は、たとえば、生砂や鋳型ばらし装置48から排出された砂を砂回収装置で処理した砂に、粘結剤、添加剤、硬化剤、水分などを配合して混錬した砂である。鋳型砂の性状は、鋳型の品質に大きく影響するので、造型前に計測する。 The molding unit 10 has a pre-molding sand property measuring instrument 12 for measuring the properties of the molding sand before molding. The molding sand before molding is kneaded by mixing, for example, raw sand or sand discharged from the mold separating device 48 with sand collecting device and adding a binder, an additive, a curing agent, moisture and the like. Sand. The properties of the mold sand greatly affect the quality of the mold, and are therefore measured before molding.
 造型ユニット10は、鋳型砂から鋳型を造型する造型装置14を有する。造型装置14では、製品の形状を模した模型の回りに鋳物砂を込めて、1製品に対して上下2つの鋳型を成形する。鋳型には、型枠の中に作られる枠付き鋳型と、型枠のない枠無し鋳型とがある。造型装置14は、造型時の砂投入重量、圧縮率、静圧またはスクイズ圧力、スクイズ時間、昇圧速度、スクイズストローク、鋳型厚み、造型時刻等の造型履歴データを計測する計測器(不図示)を有する。 The molding unit 10 includes a molding apparatus 14 that molds a mold from mold sand. In the molding apparatus 14, casting sand is put around a model simulating the shape of a product, and two upper and lower molds are formed for one product. There are two types of molds: a framed mold formed in a mold and a frameless mold without a mold. The molding apparatus 14 includes a measuring instrument (not shown) for measuring molding history data such as sand input weight at molding, compression rate, static pressure or squeeze pressure, squeeze time, pressurization speed, squeeze stroke, mold thickness, molding time, and the like. Have.
 造型ユニット10は、模型により鋳型に形成される空間、すなわち溶湯が注がれ、固化して鋳物とする空間の面、すなわち内面に、空間毎に識別可能な刻印を付ける刻印装置16を有してもよい。刻印装置16は、たとえば、ドリルなどの治具で鋳型の空間の面に複数の穴状の印を、相互の位置関係を変えながら切削加工してもよいし、レーザなどで穴や溝を刻印してもよい。鋳型の空間毎の内面にたとえば穴が形成されると、鋳造された鋳物の表面には穴に対応する位置に突起が形成され、鋳物毎に識別することが可能になる。ここで、鋳型の空間毎というのは、1つの鋳型で複数の鋳物を作ることがあるからである。すなわち、1つの鋳型が複数の空間を有するからである。すなわち、造型された鋳物の空間毎の面に刻印することにより、得られる鋳物毎に対応して刻印が形成されることになる。なお、刻印装置16は、鋳型搬送ユニット30に設けられてもよい。ただし、鋳型を造型した直後に刻印する方が、たとえば自硬性砂型の場合に完全に硬化する前に刻印でき、鋳型を崩すことなく刻印し易い。特に、枠無し鋳型の場合には、鋳型が造型装置14内にある間に刻印装置16で刻印する。 The molding unit 10 has a marking device 16 for marking a space formed in a mold by a model, that is, a surface into which a molten metal is poured and solidified into a casting, that is, an inner surface, that can be identified for each space. May be. For example, the marking device 16 may cut a plurality of hole-shaped marks on the surface of the mold space with a jig such as a drill while changing the mutual positional relationship, or mark holes or grooves with a laser or the like. May be. When, for example, a hole is formed on the inner surface of each space of the mold, a protrusion is formed at a position corresponding to the hole on the surface of the cast casting, and it becomes possible to identify each casting. Here, every space of a mold is because a plurality of castings may be made with one mold. That is, one mold has a plurality of spaces. That is, by marking on the surface of each molded casting space, a marking is formed corresponding to each casting obtained. Note that the marking device 16 may be provided in the mold transport unit 30. However, if the mold is imprinted immediately after molding, for example, in the case of a self-hardening sand mold, it can be imprinted before being completely cured, and it is easier to imprint without destroying the mold. In particular, in the case of a frameless mold, marking is performed by the marking apparatus 16 while the mold is in the molding apparatus 14.
 鋳型搬送ユニット30は、造型ユニット10から注湯ユニット70へ、および、鋳型Mを搬送しつつ冷却して鋳型ばらし装置48へと搬送するための鋳型レールRfを有する。なお、鋳型レールRfは、たとえば図2に示すように、並列され、鋳型MはレールRf間を横移動させられて、複数のレールRfで交互に逆方向に搬送される。そのために、注湯された後の鋳型Mは時間を掛けて冷却され、溶湯は鋳型ばらし装置48に至る前に固化して鋳物となる。すなわち、鋳型搬送ユニット30の搬送路は、造型装置14で造型された鋳型を注湯可能な状態の完成鋳型に処理する造型ライン32と、注湯機72から注湯されるために搬送される鋳型搬送ユニット注湯ゾーン33と、注湯された鋳型Mが時間を掛けて搬送されて冷却される鋳型搬送ユニット冷却ゾーン34とに大別される。 The mold transport unit 30 includes a mold rail Rf for cooling the mold M while transporting the mold M and transporting it to the mold spreading device 48 from the molding unit 10 to the pouring unit 70. For example, as shown in FIG. 2, the mold rails Rf are juxtaposed, and the mold M is moved laterally between the rails Rf and is alternately conveyed in the reverse direction by the plurality of rails Rf. Therefore, the mold M after pouring is cooled over time, and the molten metal is solidified before reaching the mold spreading device 48 to become a casting. That is, the conveyance path of the mold conveyance unit 30 is conveyed for pouring from the mold making line 32 for processing the mold molded by the molding apparatus 14 into a finished mold ready for pouring, and the pouring machine 72. The mold transport unit pouring zone 33 is roughly divided into a mold transport unit cooling zone 34 in which the poured mold M is transported and cooled over time.
 鋳型搬送ユニット30は、図4に示す搬送機構としての鋳型送りプッシャ38をレールRfの一直線の端部に有する。プッシャ38は、鋳型を押すためにロッドが伸び縮みする装置で、たとえばエアシリンダ、油圧シリンダまたは電動シリンダである。プッシャ38は、ロッドの伸び縮みを検知するセンサであって、鋳型Mが搬送されることを検知する鋳型位置センサ39を有する。鋳型位置センサ39は、リミットスイッチ、近接スイッチ、光電スイッチなどでよい。プッシャ38は、同期注湯させたり、鋳型の厚みが変わっても注湯位置を正しく検出したりするために、鋳型位置検出用エンコーダ37を有するのが好ましい。プッシャ38は一直線のレールRf上に並べられた後端の鋳型を1枠分だけ押して、並べられた鋳型を1枠分ずつ間欠的に搬送する。一直線のレールRfの反対側(前端)にもプッシャ38を設置して、後端で押されるのに合わせて、ロッドを縮めるのが好ましい。このように構成すると、搬送中にも一列の鋳型Mを両端から抑えることができ、搬送中にも鋳型Mが安定する。鋳型Mが前端に至ると、トラバーサTで隣のレールRf上に移送され、そこの鋳型ラインでの後端とされる。トラバーサTにも鋳型位置センサ39を備えてもよい。 The mold transport unit 30 has a mold feed pusher 38 as a transport mechanism shown in FIG. 4 at a straight end of the rail Rf. The pusher 38 is a device in which a rod expands and contracts to push a mold, and is, for example, an air cylinder, a hydraulic cylinder, or an electric cylinder. The pusher 38 is a sensor that detects the expansion and contraction of the rod, and includes a mold position sensor 39 that detects that the mold M is conveyed. The mold position sensor 39 may be a limit switch, a proximity switch, a photoelectric switch, or the like. The pusher 38 preferably has a mold position detection encoder 37 in order to perform synchronous pouring or to correctly detect the pouring position even if the thickness of the mold changes. The pusher 38 pushes the rear end molds arranged on the straight rail Rf by one frame, and intermittently conveys the arranged molds by one frame. It is preferable to install a pusher 38 on the opposite side (front end) of the straight rail Rf so that the rod is contracted as it is pushed at the rear end. If comprised in this way, the mold M of 1 row can be suppressed from both ends also during conveyance, and the mold M is stabilized also during conveyance. When the mold M reaches the front end, it is transferred onto the adjacent rail Rf by the traverser T, and is used as the rear end of the mold line there. The traverser T may also include a mold position sensor 39.
 鋳型搬送ユニット30の造型ライン32はさらに、ガス穴明け装置40を有し、注湯した際に発生するガスを抜くための穴を鋳型に明ける。造型ライン32はさらに、上下鋳型反転機41を有し、たとえば、上型および下型を反転して、鋳型の空間を上方に向ける。造型ライン32はさらに、サンドカッタ42を有し、上型の上面および下型の下面の余分な砂を取り除き、平らにする。造型ライン32はさらに、湯口カッタ43を有し、上型に湯口を明ける。 The molding line 32 of the mold conveyance unit 30 further has a gas drilling device 40, and a hole for removing gas generated when pouring is poured in the mold. The molding line 32 further includes an upper / lower mold reversing machine 41, for example, reversing the upper mold and the lower mold and directing the mold space upward. The molding line 32 further includes a sand cutter 42 to remove and flatten excess sand on the upper surface of the upper mold and the lower surface of the lower mold. The molding line 32 further includes a gate cutter 43 that opens the gate to the upper mold.
 造型ライン32はさらに、定盤台車セット装置44を有し、鋳型を定盤台車に載置する。造型ライン32はさらに、コアセッタ45を有し、上型および下型に中子をセットする。造型ライン32はさらに、上鋳型再反転機46を有し、上型を反転して上下2つの鋳型を重ねたときに1つの鋳型を形成する向きに合わせる。造型ライン32はさらに、鋳型合わせ・鋳型移換装置47を有し、上型と下型を合わせて、注湯可能な状態の上下完成鋳型とする。なお、ガス穴明け装置40からコアセッタ45までの装置の並び順は、上記に限られず、適宜入れ替え可能である。 The molding line 32 further includes a surface plate carriage set device 44, and a mold is placed on the surface plate carriage. The molding line 32 further includes a core setter 45 for setting the cores in the upper mold and the lower mold. The molding line 32 further includes an upper mold re-inversion machine 46, which is aligned with the direction in which one mold is formed when the upper mold is inverted and two upper and lower molds are overlapped. The molding line 32 further includes a mold aligning / transferring device 47, and the upper mold and the lower mold are combined to form an upper and lower completed mold ready for pouring. In addition, the arrangement | sequence order of the apparatus from the gas drilling apparatus 40 to the core setter 45 is not restricted above, It can replace suitably.
 鋳型が枠付き鋳型の場合には、鋳型搬送ユニット30は、たとえば図2に示すように、ガス穴明け装置40、上下鋳型反転機41、サンドカッタ42、湯口カッタ43、定盤台車セット装置44、コアセッタ45、上鋳型再反転機46、鋳型合わせ・鋳型移換装置47を備えて、造型装置14で造型された鋳型Mを処理し、注湯可能な状態の上下完成鋳型とする。鋳型が枠無し鋳型の場合には、ガス抜き穴の形成、中子セット、鋳型合わせなどの処理を造型装置14で行ってもよく、その場合には、鋳型搬送ユニット30は、鋳型を処理するための装置40~47のいくつか若しくは全部を備えなくてよい。 When the mold is a framed mold, for example, as shown in FIG. 2, the mold transport unit 30 includes a gas drilling device 40, an upper / lower mold reversing machine 41, a sand cutter 42, a gate cutter 43, and a surface plate carriage set device 44. The core setter 45, the upper mold re-inversion machine 46, and the mold alignment / mold transfer apparatus 47 are provided, and the mold M molded by the molding apparatus 14 is processed into upper and lower completed molds ready for pouring. When the mold is a frameless mold, processing such as formation of a vent hole, core setting, and mold matching may be performed by the molding apparatus 14, and in this case, the mold transport unit 30 processes the mold. For example, some or all of the devices 40-47 may not be provided.
 鋳型搬送ユニット30は、鋳型ばらし装置48を有する。鋳型ばらし装置48では、鋳型を分解して鋳物を取り出し、鋳物と砂とを分離する。鋳物は、その後に後工程を経て、製品として出荷される。中子も分離される。砂は、砂回収装置(不図示)で、混在する鉄粉や、粘結剤等を砂回収装置で除去して、鋳型用に用いられる。 The mold conveying unit 30 has a mold separating device 48. In the mold separating device 48, the mold is disassembled to take out the casting, and the casting and sand are separated. The casting is shipped as a product through a subsequent process. The core is also separated. Sand is used for a mold by removing iron powder, a binder and the like mixed with a sand recovery device (not shown).
 溶湯搬送ユニット50は、溶湯と反応させる合金材を処理取鍋L1に投入する合金材投入ユニット60を備える。合金材投入ユニット60は、複数の合金材ホッパ62を有し、1種または複数種の合金材を処理取鍋L1に投入する。あるいは、処理取鍋L1に穴付きの蓋をし、合金材が充填された細いパイプを蓋の穴を通して処理取鍋L1内の溶湯に挿入するワイヤ接種装置(不図示)で合金材と溶湯を反応させてもよい。合金材投入ユニット60は、各合金材ホッパ62から処理取鍋L1へ投入された合金材の重量を計測する計測器(不図示)やタイマ(不図示)を有する。 The molten metal transport unit 50 includes an alloy material charging unit 60 for charging an alloy material to be reacted with the molten metal into the treatment ladle L1. The alloy material charging unit 60 has a plurality of alloy material hoppers 62 and charges one or more types of alloy materials into the processing ladle L1. Alternatively, the processing ladle L1 is covered with a hole, and a thin pipe filled with an alloy material is inserted into the molten metal in the processing ladle L1 through the hole in the lid, and the alloy material and the molten metal are added. You may make it react. The alloy material charging unit 60 has a measuring instrument (not shown) and a timer (not shown) for measuring the weight of the alloy material charged into the treatment ladle L1 from each alloy material hopper 62.
 溶湯搬送ユニット50は、処理取鍋L1に合金材投入ユニット60から合金材を投入される投入位置P1と、炉Fから受湯する受湯位置P2と、溶湯を注湯取鍋L2に空け替える空替位置P4とに処理取鍋L1を搬送する空替機能付受湯台車52と、空替機能付受湯台車52が走行するレールRとを有する。ワイヤ接種で合金材と溶湯を反応させる場合には、ワイヤ接種される位置が投入位置P1となる。その他、以降で「合金材を投入されたとき」という記載は、「ワイヤ接種されるとき」と読み替えるものとする。なお、合金材とは、鋳鉄の強度や靱性、あるいは耐食性、耐熱性、耐摩耗性などを高めるために溶湯に添加されるMg、Ce、Ca、Ni、Cr、Cu、Mo、V、Tiなどをいう。合金材には、黒鉛球状化剤を含む。また、合金材投入ユニット60で、カルシウムシリコン、フェロシリコン、黒鉛などの接種剤を添加してもよい。 The molten metal transfer unit 50 replaces the molten metal into the pouring ladle L2, the pouring position P1 where the alloy material is charged into the processing ladle L1 from the alloy material charging unit 60, the hot water receiving position P2 where the molten metal is received from the furnace F, and the molten metal. It has a hot water receiving carriage 52 with an empty replacement function that transports the processing ladle L1 to the empty replacement position P4, and a rail R on which the hot water receiving carriage 52 with an empty replacement function travels. When the alloy material and the molten metal are reacted by wire inoculation, the position where the wire is inoculated becomes the charging position P1. In addition, the description “when an alloy material is introduced” hereinafter is read as “when a wire is inoculated”. The alloy material means Mg, Ce, Ca, Ni, Cr, Cu, Mo, V, Ti, etc. added to the molten metal in order to increase the strength and toughness of cast iron, corrosion resistance, heat resistance, wear resistance, etc. Say. The alloy material includes a graphite spheronizing agent. In addition, an inoculant such as calcium silicon, ferrosilicon, or graphite may be added in the alloy material charging unit 60.
 図5に示すように、空替機能付受湯台車52は、レールR上を走行する走行台車520と、走行台車520を走行させるための走行モータ522を備える。走行台車520の車輪にはエンコーダ523を備え、車輪の回転、すなわち、走行台車520の走行を計測する。すなわち、エンコーダ523は、処理取鍋L1の位置を検出できる取鍋位置検出センサである。なお、空替機能付受湯台車52は、後述する光電センサなどの取鍋位置検出センサ59(図3参照)を備えてもよい。空替機能付受湯台車52は、溶湯を空け替えるために処理取鍋L1を傾動する傾動装置526と、傾動装置526を用いて処理取鍋L1を傾動するための傾動モータ527を備える。傾動装置526および処理取鍋L1は、走行台車520上でシザーリフタ524に載置され、昇降される。空替機能付受湯台車52が、処理取鍋L1を昇降する機能を有することで、処理取鍋L1から注湯取鍋L2への空け替えが容易になる。空替機能付受湯台車52は、炉Fから受湯した溶湯の重量を計測するロードセル(第1重量計)525を有する。また、受湯した溶湯の温度を計測する非接触温度計(不図示)を有する。 As shown in FIG. 5, the hot water receiving carriage 52 with an air exchange function includes a traveling carriage 520 that travels on the rail R and a traveling motor 522 that causes the traveling carriage 520 to travel. The wheels of the traveling carriage 520 are provided with encoders 523, and the rotation of the wheels, that is, the traveling of the traveling carriage 520 is measured. That is, the encoder 523 is a ladle position detection sensor that can detect the position of the processing ladle L1. In addition, the hot water receiving cart 52 with an empty replacement function may include a ladle position detection sensor 59 (see FIG. 3) such as a photoelectric sensor described later. The hot water receiving carriage 52 with an empty replacement function includes a tilting device 526 for tilting the processing ladle L1 to replace the molten metal, and a tilting motor 527 for tilting the processing ladle L1 using the tilting device 526. The tilting device 526 and the processing ladle L1 are placed on the scissor lifter 524 on the traveling carriage 520 and moved up and down. Since the hot water receiving carriage 52 with an empty replacement function has a function of moving the processing ladle L1 up and down, the emptying from the processing ladle L1 to the pouring ladle L2 becomes easy. The hot water receiving carriage 52 with an air replacement function includes a load cell (first weigh scale) 525 that measures the weight of the molten metal received from the furnace F. Moreover, it has a non-contact thermometer (not shown) which measures the temperature of the molten metal received.
 空替機能付受湯台車52では、外部から電源を受電するケーブルリール528や制御盤521を、処理取鍋L1とは離れた位置に設置することにより、万一、処理取鍋L1から溶湯が漏れた場合に、これらの機器に影響しないようにしている。なお、制御盤521は、走行台車520上ではなく、走行台車520が走行するレールRに沿った位置に設置されてもよい。 In the hot water receiving carriage 52 with the air exchange function, the cable reel 528 and the control panel 521 for receiving power from the outside are installed at a position away from the processing ladle L1, so that the molten metal is removed from the processing ladle L1. In case of leakage, these devices are not affected. Note that the control panel 521 may be installed not on the traveling carriage 520 but at a position along the rail R on which the traveling carriage 520 travels.
 合金材が投入された処理取鍋L1に溶湯が入れられて、合金材と溶湯が反応すると、溶湯の液滴が飛散したり粉じんやガスが発生したりする。そこで、処理取鍋L1内の合金材と溶湯とが反応するときは、処理取鍋L1を反応位置P3に搬送する。反応位置P3には、反応室(不図示)を設けるのがよい。反応室は、処理取鍋L1の上方を囲み、ダクトで空気を排出する。よって、溶湯の液滴が周囲に飛散するのを防止し、また、粉じんやダストを排出することができる。 When the molten metal is put into the processing ladle L1 into which the alloy material has been charged and the alloy material and the molten metal react with each other, droplets of the molten metal are scattered or dust or gas is generated. Therefore, when the alloy material in the processing ladle L1 reacts with the molten metal, the processing ladle L1 is conveyed to the reaction position P3. A reaction chamber (not shown) is preferably provided at the reaction position P3. The reaction chamber surrounds the top of the treatment ladle L1 and discharges air through a duct. Therefore, it is possible to prevent molten liquid droplets from being scattered around and to discharge dust and dust.
 図6に示すように、溶湯搬送ユニット50は、処理取鍋L1から溶湯を空け替えられる空替位置P4(厳密には処理取鍋L1の空替位置P4とは異なるが、便宜的に同符号を用いる)と、注湯機72に注湯取鍋L2を移送する移送位置P5とに注湯取鍋L2を搬送する注湯取鍋搬送台車54と、注湯取鍋搬送台車54が走行するレールRとを有する。注湯取鍋搬送台車54は、レール上を走行する走行台車540と、走行台車540に設置され、注湯取鍋L2を水平方向に移動するローラコンベア544とローラコンベアモータ546とを有する。走行台車540の車輪にはエンコーダ543を備え、車輪の回転、すなわち、走行台車540の走行を計測する。すなわち、エンコーダ543は、注湯取鍋L2の位置を検出できる取鍋位置検出センサである。注湯取鍋搬送台車54では、外部から電源を受電するケーブルリール548や制御盤541を、注湯取鍋L2とは離れた位置に設置することにより、万一、注湯取鍋L2から溶湯が漏れた場合に、これらの機器に影響しないようにしている。なお、制御盤541は、走行台車540上ではなく、走行台車540が走行するレールRに沿った位置に設置されてもよい。また、移送位置P5と注湯機72との間に、注湯取鍋L2を注湯取鍋搬送台車54の走行方向と直交する方向に搬送する注湯取鍋搬送機構58が設置されてもよい。注湯取鍋搬送機構58は、ローラコンベア等でよい。なお、処理取鍋L1の容量を注湯取鍋L2の容量のたとえば2倍にして、1台の処理取鍋L1から2台の注湯取鍋L2に空け替えてもよい。 As shown in FIG. 6, the molten metal transport unit 50 is different from the empty replacement position P4 in which the molten metal is replaced from the processing ladle L1 (strictly speaking, the same sign is used for convenience, although it is different from the empty replacement position P4 of the processing ladle L1. ), And a pouring ladle transport carriage 54 that transports the pouring ladle L2 to a transfer position P5 that transports the pouring ladle L2 to the pouring machine 72, and a pouring ladle transport carriage 54 run. Rail R. The pouring ladle transport carriage 54 includes a traveling carriage 540 that travels on a rail, a roller conveyor 544 that is installed on the traveling carriage 540 and moves in the horizontal direction of the pouring ladle L2, and a roller conveyor motor 546. The wheels of the traveling carriage 540 are provided with encoders 543, and the rotation of the wheels, that is, the traveling of the traveling carriage 540 is measured. That is, the encoder 543 is a ladle position detection sensor that can detect the position of the pouring ladle L2. In the pouring ladle transporting carriage 54, the cable reel 548 for receiving power from the outside and the control panel 541 are installed away from the pouring ladle L2, so that the molten metal is removed from the pouring ladle L2. In the event that leaks, these devices will not be affected. Note that the control panel 541 may be installed not on the traveling carriage 540 but at a position along the rail R on which the traveling carriage 540 travels. Even if a pouring ladle transport mechanism 58 that transports the pouring ladle L2 in a direction orthogonal to the traveling direction of the pouring ladle transport carriage 54 is installed between the transfer position P5 and the pouring machine 72. Good. The pouring ladle transport mechanism 58 may be a roller conveyor or the like. In addition, the capacity | capacitance of the process ladle L1 may be doubled to the capacity | capacitance of the pouring ladle L2, for example, and it may replace with one 2 pouring ladles L2.
 処理取鍋L1から注湯取鍋L2へ空け替えられる溶湯に接種剤を添加する空替接種装置56を空替位置P4の近くに有してもよい。空替接種装置56の構成は、基本的に、合金材投入ユニット60と同じである。処理取鍋L1から注湯取鍋L2へ溶湯を空け替えるときに接種剤を投入することにより、短時間で均一に接種剤を投入できる。 You may have the empty inoculation apparatus 56 which adds an inoculum to the molten metal refilled from the process ladle L1 to the pouring ladle L2 near the empty position P4. The configuration of the air exchange inoculation device 56 is basically the same as that of the alloy material charging unit 60. By injecting the inoculum when the molten metal is emptied from the treatment ladle L1 to the pouring ladle L2, the inoculum can be uniformly introduced in a short time.
 溶湯搬送ユニット50は、処理取鍋L1の取鍋位置としての投入位置P1、受湯位置P2、反応位置P3、および空替位置P4に処理取鍋L1が搬送されたこと、並びに、注湯取鍋L2の取鍋位置としての空替位置P4および移送位置P5に注湯取鍋L2が搬送されたことを検出する取鍋位置検出センサ59を有する。取鍋位置検出センサ59は、たとえば図3に示すように、注湯取鍋搬送機構58のローラコンベアの下に設置された近接スイッチ若しくはレーザセンサであってもよい。あるいは、図5に示す空替機能付受湯台車52や図6に示す注湯取鍋搬送台車54に設置されたエンコーダ523、543であってもよく、あるいは、空替機能付受湯台車52や注湯取鍋搬送台車54に設置された光電センサであってもよい。なお、空替機能付受湯台車52に処理取鍋L1が搭載されていること、および、注湯取鍋搬送台車54に注湯取鍋L2が搭載されていることを確認する光電センサを有することが好ましい。 The molten metal conveyance unit 50 is configured to convey the treatment ladle L1 to the charging position P1, the hot water reception position P2, the reaction position P3, and the empty replacement position P4 as the ladle position of the treatment ladle L1, and the pouring ladle. There is a ladle position detection sensor 59 that detects that the pouring ladle L2 has been transported to the empty replacement position P4 and the transfer position P5 as the ladle position of the ladle L2. The ladle position detection sensor 59 may be a proximity switch or a laser sensor installed under the roller conveyor of the pouring ladle transport mechanism 58, for example, as shown in FIG. Alternatively, it may be an encoder 523, 543 installed in the hot water receiving cart 52 with the air replacement function shown in FIG. 5 or the pouring ladle transport cart 54 shown in FIG. 6, or the hot water receiving cart 52 with the air replacement function. Alternatively, a photoelectric sensor installed in the pouring ladle transport carriage 54 may be used. In addition, it has a photoelectric sensor which confirms that the processing ladle L1 is mounted in the hot water receiving trolley 52 with an air exchange function, and that the pouring ladle L2 is mounted in the pouring ladle conveying cart 54. It is preferable.
 注湯ユニット70は、図7に示すように、注湯取鍋L2から鋳型Mに注湯する注湯機72を有する。注湯機72は、注湯される鋳型Mが搬送されるのと平行して走行する注湯機台車720と、注湯機台車720上に設置される昇降機構722と、昇降機構722に支持され、搭載した注湯取鍋L2を傾動させる傾動機構724と、注湯機台車720が走行する注湯機レールRpと、注湯取鍋L2の溶湯重量を計測するロードセル(第2重量計)725を有する。昇降機構722は、注湯機台車720が走行する方向と直交する方向に移動する前後移動機構728上に設置される。また、注湯する溶湯の温度を計測する非接触温度計(不図示)を有する。非接触温度計は、温度計測部を調整できるように、たとえばファイバー型とするのが好ましい。 As shown in FIG. 7, the pouring unit 70 has a pouring machine 72 for pouring from the pouring ladle L2 into the mold M. The pouring machine 72 is supported by the elevating mechanism 722 and the elevating mechanism 722 installed on the pouring machine carriage 720, which travels in parallel with the casting mold M being conveyed. The tilting mechanism 724 for tilting the pouring ladle L2 mounted thereon, the pouring machine rail Rp on which the pouring machine cart 720 travels, and the load cell for measuring the molten metal weight of the pouring ladle L2 (second weighing scale) 725. The elevating mechanism 722 is installed on a front / rear moving mechanism 728 that moves in a direction orthogonal to the direction in which the pouring machine cart 720 travels. Moreover, it has a non-contact thermometer (not shown) which measures the temperature of the molten metal to pour. The non-contact thermometer is preferably, for example, a fiber type so that the temperature measuring unit can be adjusted.
 注湯機72は、鋳型Mの湯口の湯面レベルを検知するための湯面検知カメラ726を有することが好ましい。この場合、湯口の注湯カップにテーパを設けることにより、湯面検知カメラ726で撮影した湯面の面積から湯面レベルを検知する。湯面検知カメラ726は、イメージセンサでよい。湯面検知カメラはアームで支持(吊下)され、水平方向に移動可能として、湯口の位置が変化しても湯面を撮影できるようにすることが好ましい。 The pouring machine 72 preferably has a hot water level detection camera 726 for detecting the hot water level of the pouring gate of the mold M. In this case, by providing a taper on the pouring cup of the pouring gate, the pouring surface level is detected from the area of the pouring surface photographed by the pouring surface detection camera 726. The hot water level detection camera 726 may be an image sensor. It is preferable that the hot water level detection camera is supported (suspended) by an arm and is movable in the horizontal direction so that the hot water level can be photographed even if the position of the gate is changed.
 図7に示すように、注湯ユニット70は、注湯取鍋L2からテストピース(TP)用に溶湯を受け取るテストピース(TP)採取ユニット76を有することが好ましい。TP採取ユニット76では、材質検査のために注湯取鍋L2毎の溶湯からTPを採取する。  As shown in FIG. 7, the pouring unit 70 preferably has a test piece (TP) collection unit 76 that receives molten metal for the test piece (TP) from the pouring ladle L2. In the TP collection unit 76, TP is collected from the molten metal for each pouring ladle L2 for material inspection. *
 鋳造設備1では、図8に示すように、鋳造設備1全体を管理する鋳造設備管理コンピュータ91を備え、かつ、各ユニットに制御装置を備える、すなわち、造型ユニット10には造型ユニット制御装置11を、鋳型搬送ユニット30には鋳型搬送ユニット31を、溶湯搬送ユニット50には溶湯搬送ユニット制御装置51を、注湯ユニット70には注湯ユニット制御装置71を備える。さらに、合金材投入ユニット60には合金材投入ユニット制御装置61を備える。TP採取ユニット76にTP採取ユニット制御装置を備えてもよい。これらの制御装置は、各ユニットに設置されるが、設置される場所は限定されない。たとえば、溶湯搬送ユニット制御装置51は、空替機能付受湯台車52の制御盤521と注湯取鍋搬送台車54の制御盤541とで構成されてもよい。また、注湯ユニット制御装置71は、図7に示すように注湯機台車720上に設置されてもよいし、注湯機レールRpに沿った位置に設置されてもよい。なお、物理的には複数の制御装置11、31、51、61、71が同一の制御装置内にあってもよく、鋳造設備管理コンピュータ91と同一のコンピュータ内にあってもよい。鋳造設備管理コンピュータ91は、データ管理を行えるコンピュータであればよく、その構成は特に限定されない。あるいは、クラウドコンピューティングを利用して、各制御装置および鋳造設備管理コンピュータ91の動作が、鋳造設備1とは異なる場所のコンピュータで行われてもよい。これらの場合にも、各ユニットが各制御装置を備え、鋳造設備1が鋳造設備管理コンピュータ91を備えるものとする。 As shown in FIG. 8, the casting facility 1 includes a casting facility management computer 91 that manages the entire casting facility 1, and each unit includes a control device, that is, the molding unit 10 includes a molding unit control device 11. The mold conveyance unit 30 includes a mold conveyance unit 31, the molten metal conveyance unit 50 includes a molten metal conveyance unit control device 51, and the pouring unit 70 includes a pouring unit control device 71. Further, the alloy material charging unit 60 includes an alloy material charging unit controller 61. The TP collection unit 76 may include a TP collection unit controller. These control devices are installed in each unit, but the installation location is not limited. For example, the molten metal transport unit control device 51 may be configured by a control panel 521 of the hot water receiving carriage 52 with an empty replacement function and a control panel 541 of the pouring ladle transport truck 54. Moreover, the pouring unit control device 71 may be installed on the pouring machine carriage 720 as shown in FIG. 7, or may be installed at a position along the pouring machine rail Rp. Physically, the plurality of control devices 11, 31, 51, 61, 71 may be in the same control device, or may be in the same computer as the casting facility management computer 91. The casting equipment management computer 91 may be any computer that can manage data, and its configuration is not particularly limited. Alternatively, the operations of the respective control devices and the casting facility management computer 91 may be performed by a computer at a location different from the casting facility 1 using cloud computing. Also in these cases, each unit is provided with each control device, and the casting equipment 1 is provided with the casting equipment management computer 91.
 各装置は、サンプリング用PLC102を備える。なお装置によっては、サンプリング用PLC102を備えていなくてもよい。また、鋳造設備1は、異常判定コンピュータ108をさらに備えてもよい。あるいは、造型ユニット制御装置11、鋳型搬送ユニット31、溶湯搬送ユニット制御装置51、合金材投入ユニット制御装置61、注湯ユニット制御装置71のそれぞれが、異常判定コンピュータ108の機能を有しても良く、あるいは、鋳造設備管理コンピュータ91が異常判定コンピュータ108の機能を有してもよい。 Each device includes a sampling PLC 102. Depending on the apparatus, the sampling PLC 102 may not be provided. The casting facility 1 may further include an abnormality determination computer 108. Alternatively, each of the molding unit control device 11, the mold transport unit 31, the molten metal transport unit control device 51, the alloy material charging unit control device 61, and the pouring unit control device 71 may have the function of the abnormality determination computer 108. Alternatively, the casting equipment management computer 91 may have the function of the abnormality determination computer 108.
 次に、図2、図3および図8を参照して、鋳造設備1での鋳造方法とデータ管理方法について説明する。製品計画、ユーザ入力等に基づき、造型ユニット10で鋳型Mを造型する計画を示す造型計画データ、鋳型搬送ユニット30で造型した鋳型Mを搬送し、また、鋳型Mに穴明けなどの加工をする計画を示す搬送計画データ、溶湯搬送ユニット50で溶湯の搬送計画や空け替え計画を示す溶湯搬送計画データ、合金材投入ユニット60で投入する合金材および接種剤の計画を示す合金材計画データ、および、注湯ユニット70で注湯取鍋L2から鋳型Mへの注湯計画を示す注湯計画データが、鋳造設備管理コンピュータ91に入力され、または、鋳造設備管理コンピュータ91で演算される。なお、造型計画データ、搬送計画データ、溶湯搬送計画データ、合金材計画データ、および注湯計画データは、2つ以上が組み合わされて、一まとまりのデータとして扱われてもよい。溶湯搬送計画データと合金材計画データを合わせて溶湯計画データという。 Next, a casting method and a data management method in the casting facility 1 will be described with reference to FIGS. Based on the product plan, user input, etc., the molding plan data indicating a plan for molding the mold M by the molding unit 10, the mold M molded by the mold transport unit 30 is transported, and the mold M is processed such as drilling. Transportation plan data indicating a plan, molten metal transportation plan data indicating a molten metal transportation plan or replacement plan in the molten metal transportation unit 50, alloy material planning data indicating a plan of an alloy material and an inoculum to be charged in an alloy material charging unit 60, and In the pouring unit 70, pouring plan data indicating the pouring plan from the pouring ladle L2 to the mold M is input to the casting equipment management computer 91 or calculated by the casting equipment management computer 91. Note that the molding plan data, the conveyance plan data, the molten metal conveyance plan data, the alloy material plan data, and the pouring plan data may be combined as two or more and handled as a set of data. The molten metal transport plan data and the alloy material plan data are collectively referred to as molten metal plan data.
 造型計画データには、模型番号、離型剤塗布時間、造型時の静圧またはスクイズ圧、砂投入量、鋳型高さ、鋳型厚み、圧縮率等のデータを含む。搬送計画データには、ガス穴明け、湯口の形状と位置、中子セット、間欠的な鋳型搬送のサイクル時間等のデータを含む。溶湯搬送計画データには、材質番号、受湯重量計画値等のデータが含まれる。合金材計画データには、ホッパ番号、ホッパからの投入重量等のデータが含まれる。注湯計画データには、注湯重量、カップ位置、注湯可能温度、許容フェーディング時間および鋳型に対応する溶湯の材質等のデータが含まれる。 The molding plan data includes data such as model number, release agent application time, static pressure or squeeze pressure during molding, sand loading, mold height, mold thickness, compressibility, etc. The transfer plan data includes data such as gas drilling, gate shape and position, core set, intermittent mold transfer cycle time, and the like. The molten metal transfer plan data includes data such as a material number and a molten metal weight planned value. The alloy material plan data includes data such as the hopper number and the input weight from the hopper. The pouring plan data includes data such as pouring weight, cup position, pouring temperature, allowable fading time, and molten metal material corresponding to the mold.
 造型ユニット10では、造型計画データに基づき、鋳型Mを造型する。先ず、造型前砂特性計測機12で造型前の鋳型砂の性状を計測する。計測する性状は、コンパクタビリティ(CB)、水分、砂温度、通気度、鋳型強度(抗圧力)などである。鋳型砂の性状は鋳型の品質に大きく影響する。計測された鋳型砂の性状は、造型履歴データとして造型ユニット制御装置11に記憶される。 The molding unit 10 molds the mold M based on the molding plan data. First, the property of the molding sand before molding is measured by the sand molding property measuring machine 12 before molding. The properties to be measured are compactability (CB), moisture, sand temperature, air permeability, mold strength (pressure resistance) and the like. The properties of the mold sand greatly affect the quality of the mold. The measured properties of the molding sand are stored in the molding unit controller 11 as molding history data.
 性状を計測した鋳型砂を用いて、造型装置14で鋳型(この段階では、上型と下型)を造型する。所定の模型に離型剤を塗布し、所定量の鋳型砂を込めて、所定の静圧またはスクイズ圧で所定の圧縮率になるまで加圧し、所定の厚みおよび高さの鋳型を造型する。鋳型を造型すると、造型ユニット制御装置11は、この鋳型に対して鋳型連番を発行する。鋳型連番を発行すると、計測した鋳型砂の性状等の造型計画データを、当該鋳型連番に関連付ける。また、造型装置14で砂投入重量、圧縮率、静圧またはスクイズ圧力、スクイズ時間、昇圧速度、スクイズストローク、鋳型厚み、造型時刻等の造型履歴データを計測して、造型履歴データとして鋳型連番に関連付ける。造型ユニット制御装置11は、鋳型連番と造型履歴データを鋳造設備管理コンピュータ91に送信する。造型計画データと造型履歴データとをまとめて造型データという。また、造型ユニット制御装置11は、鋳型搬送ユニット制御装置31に鋳型連番と鋳型連番に関連付けられた造型データを送信する。 Using the molding sand whose properties were measured, a mold (in this stage, an upper mold and a lower mold) is molded by the molding apparatus 14. A mold release agent is applied to a predetermined model, a predetermined amount of mold sand is placed, and the mold is pressed with a predetermined static pressure or squeeze pressure until a predetermined compression ratio is obtained, thereby forming a mold having a predetermined thickness and height. When the mold is formed, the molding unit control device 11 issues a mold serial number to the mold. When the mold serial number is issued, the molding plan data such as the measured properties of the mold sand is associated with the mold serial number. Further, molding history data such as sand input weight, compression rate, static pressure or squeeze pressure, squeeze time, pressurization speed, squeeze stroke, mold thickness, molding time, etc. is measured by the molding apparatus 14 and the mold serial number is obtained as molding history data. Associate with. The molding unit control device 11 transmits the mold serial number and the molding history data to the casting equipment management computer 91. The molding plan data and the molding history data are collectively called molding data. Further, the molding unit control device 11 transmits the mold serial number and the molding data associated with the mold serial number to the mold transport unit control device 31.
 造型装置14で鋳型を造型すると、鋳型における鋳物を製造するための空間の内面にその空間を識別するためのマークを刻印装置16で刻印する。上型または下型のいずれか一方に刻印すればよい。また、1つの鋳型に複数の空間がある場合、すなわち、1つの鋳型で複数の鋳物を製造する場合には、各空間に識別可能なマークを刻印する。すなわち、得られる鋳物(製品)ごとに識別可能なマークが付される。刻印装置16で刻印すると、造型ユニット制御装置11は、各刻印に対応して個体識別連番を発行する。また、造型ユニット制御装置11は、発行した個体識別連番を鋳型連番に関連付ける。なお、刻印装置16が鋳型搬送ユニット30に設置されている場合には、個体識別連番は、鋳型搬送ユニット制御装置31で発行され、鋳型搬送ユニット制御装置31により鋳型連番に関連付けられる。 When the mold is formed by the molding apparatus 14, a mark for identifying the space is stamped by the stamping apparatus 16 on the inner surface of the space for manufacturing the casting in the mold. What is necessary is just to stamp on either an upper mold | type or a lower mold | type. In addition, when there are a plurality of spaces in one mold, that is, when a plurality of castings are manufactured with one mold, an identifiable mark is imprinted in each space. That is, an identifiable mark is attached to each obtained casting (product). When marking is performed by the marking device 16, the molding unit control device 11 issues an individual identification serial number corresponding to each marking. Moreover, the molding unit control apparatus 11 associates the issued individual identification serial number with the mold serial number. When the marking device 16 is installed in the mold transport unit 30, the individual identification serial number is issued by the mold transport unit control device 31, and is associated with the mold serial number by the mold transport unit control device 31.
 鋳型搬送ユニット30では、鋳型搬送計画データに基づき、鋳型Mを搬送すると共に、鋳型Mを注湯できる状態にし、また、注湯された鋳型、すなわち溶湯を冷却し、鋳物と砂とを分離する。鋳型搬送ユニット30では、プッシャ38で鋳型を1枠分ずつ間欠的に送る。トラバーサTでも鋳型を1つずつ隣の鋳型列に移送する。また、ガス穴明け装置40で穴を鋳型に明け、上下鋳型反転機41で上型および下型を反転して鋳型の空間を上方に向け、サンドカッタ42で上型の上面の余分な砂を取り除き、湯口カッタ43で上型に湯口を明ける。さらに、定盤台車セット装置44で鋳型を定盤台車に載置し、コアセッタ45で上型および下型に中子をセットし、上鋳型再反転機46で上型を反転し、鋳型合わせ・鋳型移換装置47で上型と下型を合わせて、1つの鋳型Mを形成する。これらの処理における履歴データ、たとえば、ガス穴明け情報、湯口穴明け情報、中子情報などを、造型データ(鋳型履歴データ)として収集し、鋳型連番に関連付ける。このように、鋳型搬送ユニット30では、鋳型を搬送しながら、造型データを収集する。これらの処理で不具合が発生したときには、鋳型搬送ユニット制御装置31は、その不具合の情報を鋳型Mの鋳型連番に関連付ける。なお、枠無し鋳型の場合には、上記のガス穴明け情報、湯口穴明け情報、中子情報などの一部若しくは全部が造型ユニット10で得られ、造型ユニット制御装置11により鋳型連番に関連付けられてもよい。 The mold transport unit 30 transports the mold M based on the mold transport plan data, makes the mold M ready for pouring, cools the poured mold, that is, the molten metal, and separates the casting from the sand. . In the mold transport unit 30, the mold is intermittently sent by the pusher 38 frame by frame. The traverser T also transfers the molds one by one to the adjacent mold row. Also, a hole is made in the mold by the gas drilling device 40, the upper mold and the lower mold are reversed by the upper and lower mold reversing machine 41, the mold space is directed upward, and the sand on the upper surface of the upper mold is removed by the sand cutter 42. Remove the gate and open the gate to the upper mold with the gate cutter 43. Further, the mold is placed on the surface plate carriage by the surface plate carriage set device 44, the core is set on the upper mold and the lower mold by the core setter 45, the upper mold is reversed by the upper mold re-reversing machine 46, and the mold is aligned. The mold transfer device 47 combines the upper mold and the lower mold to form one mold M. History data in these processes, for example, gas drilling information, gate opening information, core information, and the like are collected as molding data (mold history data) and associated with mold serial numbers. As described above, the mold transport unit 30 collects the molding data while transporting the mold. When a defect occurs in these processes, the mold conveyance unit control device 31 associates the defect information with the mold serial number of the mold M. In the case of a frameless mold, some or all of the above-described gas drilling information, gate opening information, core information, etc. are obtained by the molding unit 10 and associated with the mold serial number by the molding unit controller 11. May be.
 図9に示すように、鋳型搬送ユニット制御装置31は、鋳型を搬送する度に、鋳型位置センサ39で鋳型の搬送を検知して鋳型連番をずらす。造型装置14で造型された鋳型に鋳型連番「n」が発行される。鋳型搬送ユニット30にて鋳型が1枠分搬送されたことが検知されると、次の位置に鋳型連番「n」がずらされる。鋳型の間欠的搬送における停止位置全てに鋳型連番が割り当てられて、全ての鋳型連番をずらすことにより、鋳型の位置と鋳型連番が正しく対応する。 As shown in FIG. 9, every time the mold transport unit control device 31 transports the mold, the mold position sensor 39 detects the transport of the mold and shifts the mold serial number. A mold serial number “n” is issued to the mold molded by the molding apparatus 14. When the mold transport unit 30 detects that the mold has been transported for one frame, the mold serial number “n” is shifted to the next position. The mold serial numbers are assigned to all the stop positions in the intermittent conveyance of the mold, and by shifting all the mold serial numbers, the mold positions and the mold serial numbers correspond correctly.
 溶湯搬送ユニット50では、溶湯搬送計画データに基づき、空替機能付き受湯台車52と注湯取鍋搬送台車54を動作させる。空の処理取鍋L1は、空替機能付き受湯台車52により、先ず投入位置P1へ搬送される。処理取鍋L1が投入位置P1へ搬送されると、合金材投入ユニット60から処理取鍋L1へ合金材が投入される。なお、合金材には接種剤を含んでもよい。 In the molten metal transfer unit 50, the hot water receiving carriage 52 with an air exchange function and the pouring ladle transfer truck 54 are operated based on the molten metal transfer plan data. The empty processing ladle L1 is first transported to the charging position P1 by the hot water receiving carriage 52 with an empty replacement function. When the processing ladle L1 is transported to the charging position P1, the alloy material is charged from the alloy material charging unit 60 to the processing ladle L1. The alloy material may contain an inoculant.
 合金材投入ユニット60では、合金材投入計画データに基づき、合金材を処理取鍋L1へ投入する。合金材が処理取鍋L1へ投入されると、合金材投入ユニット制御装置61は、この処理取鍋L1に対して取鍋連番を発行する。また、合金材投入ユニット60から処理取鍋L1へ投入された合金材の種類、重量、投入時刻等の合金材投入履歴データを取鍋連番に関連付ける。取鍋連番と合金材投入履歴データが揃うと、それらのデータを鋳造設備管理コンピュータ91に送信する。また、溶湯搬送ユニット制御装置51に少なくとも取鍋連番を送信する。なお、取鍋連番と合金材投入履歴データを鋳造設備管理コンピュータ91に送信せずに、溶湯搬送ユニット制御装置51に送信してもよい。その場合には、溶湯搬送ユニット制御装置51が、それらのデータを含めて溶湯履歴データとしての溶湯状態データとして鋳造設備管理コンピュータ91に送信する。溶湯状態データには、溶湯計画データを含んでもよい。なお、合金材投入ユニット60での合金材の処理取鍋L1への投入において不具合が発生した場合には、その不具合の情報を取鍋連番に関連付けて鋳造設備管理コンピュータ91に送信する。 In the alloy material charging unit 60, the alloy material is charged into the processing ladle L1 based on the alloy material loading plan data. When the alloy material is charged into the processing ladle L1, the alloy material charging unit controller 61 issues a ladle serial number to the processing ladle L1. Further, the alloy material input history data such as the type, weight, and input time of the alloy material input from the alloy material input unit 60 to the processing ladle L1 is associated with the pan sequence number. When the ladle serial number and the alloy material input history data are prepared, these data are transmitted to the casting equipment management computer 91. Further, at least the ladle serial number is transmitted to the molten metal transport unit control device 51. The ladle serial number and the alloy material charging history data may be transmitted to the molten metal transport unit control device 51 without being transmitted to the casting equipment management computer 91. In that case, the molten metal transport unit control device 51 transmits the molten state data including the data to the casting facility management computer 91 as molten metal history data. The melt state data may include melt plan data. In addition, when a problem occurs in charging the alloy material into the processing ladle L1 in the alloy material charging unit 60, information on the problem is transmitted to the casting equipment management computer 91 in association with the ladle serial number.
 溶湯搬送ユニット50の空替機能付き受湯台車52により、合金材の投入された処理取鍋L1は、受湯位置P2へ搬送される。処理取鍋L1は、炉Fから溶湯を受湯する。溶湯を受湯すると、第1重量計としてのロードセル525で受湯した溶湯の重量、非接触温度計で計測した温度を計測する。溶湯搬送ユニット制御装置51は、計測した重量、温度、出湯炉番号やチャージ番号、材質番号、受湯した時刻等を、溶湯状態データとして処理取鍋L1の取鍋連番に関連付ける。さらに、炉Fで溶解した溶湯の性状に関するデータを受信し、そのデータを溶湯状態データに含めてもよい。なお、炉で溶解した溶湯も、処理取鍋で受湯した溶湯も、合金材と反応した溶湯も、本明細書では単に「溶湯」という。 The processing ladle L1 charged with the alloy material is transported to the hot water receiving position P2 by the hot water receiving carriage 52 with an air replacement function of the molten metal transport unit 50. The treatment ladle L1 receives molten metal from the furnace F. When the molten metal is received, the weight of the molten metal received by the load cell 525 as the first weighing scale, and the temperature measured by the non-contact thermometer are measured. The molten metal transport unit control device 51 associates the measured weight, temperature, tapping furnace number, charge number, material number, time of receiving hot water, etc. with the ladle serial number of the processing ladle L1 as molten state data. Furthermore, the data regarding the property of the molten metal melted in the furnace F may be received, and the data may be included in the molten state data. Note that the molten metal melted in the furnace, the molten metal received in the treatment ladle, and the molten metal reacted with the alloy material are simply referred to as “molten metal” in this specification.
 受湯した処理取鍋L1は、空替機能付き受湯台車52により反応位置P3へ搬送される。溶湯と合金材との反応が激しい場合には、合金材投入ユニット60で処理取鍋L1に合金材を投入した後、合金材にスチールスクラップなどのカバー剤を被せ、溶湯と合金材の接触を抑える。そのために、処理取鍋L1で受湯した直後には激しい反応は起こらず、その間に処理取鍋L1を反応位置P3へ移動できる。また、合金材にMg等の球状化元素を含む場合には、反応が始まると激しいバブリングを生ずる。そのために、ロードセル525での計測値が大きく変動する。そこで、ロードセル525での計測値が大きく変動し、その後に所定値より小さくなった時点を、フェーディング開始と認識することができる。溶湯搬送ユニット制御装置51は、フェーディング開始時刻またはフェーディング開始時刻からの経過時間であるフェーディング経過時間を溶湯状態データとして取鍋連番に関連付けてもよい。取鍋連番に関連付けたフェーディング開始時刻または経過時間は、注湯ユニット制御装置71に送信される。このように、溶湯搬送ユニット制御装置71では、処理取鍋L1および注湯取鍋L2を搬送しながら、溶湯状態データを収集し、取鍋連番に関連付ける。 The treatment ladle L1 that has received the hot water is transported to the reaction position P3 by the hot water receiving carriage 52 with an empty replacement function. When the reaction between the molten metal and the alloy material is intense, the alloy material charging unit 60 puts the alloy material into the processing ladle L1, and then covers the alloy material with a cover agent such as steel scrap, so that the molten metal contacts the alloy material. suppress. Therefore, immediately after receiving the hot water in the treatment ladle L1, no severe reaction occurs, and during that time, the treatment ladle L1 can be moved to the reaction position P3. When the alloy material contains a spheroidizing element such as Mg, severe bubbling occurs when the reaction starts. Therefore, the measurement value in the load cell 525 varies greatly. Therefore, the time when the measurement value at the load cell 525 greatly fluctuates and then becomes smaller than the predetermined value can be recognized as fading start. The molten metal transport unit control device 51 may associate a fading start time or a fading elapsed time that is an elapsed time from the fading start time as a molten metal state data with a ladle serial number. The fading start time or elapsed time associated with the ladle sequence number is transmitted to the pouring unit control device 71. Thus, in the molten metal conveyance unit control apparatus 71, molten metal state data is collected and conveyed to the ladle serial number while conveying the treatment ladle L1 and the pouring ladle L2.
 溶湯と合金材の反応が終了すると、処理取鍋L1は、空替機能付き受湯台車52により空替位置P4へ搬送される。空替位置P4では、空の注湯取鍋L2が、注湯取鍋搬送台車54により搬送されて、待機している。そこで、処理取鍋L1から注湯取鍋L2へ溶湯を空け替える。ここで、空替機能付き受湯台車52では、処理取鍋L1をシザーリフタ524で所望の高さとし、処理取鍋L1を傾動して空け替えるので、安全に効率的に空け替えることができる。なお、処理取鍋1の搬送中には、処理取鍋L1を下げて、かつ、走行台車520の中心に近い位置に移動し、走行台車520の揺れによる影響を小さくすることができる。 When the reaction between the molten metal and the alloy material is completed, the treatment ladle L1 is conveyed to the empty replacement position P4 by the hot water receiving carriage 52 with an empty replacement function. In the empty replacement position P4, an empty pouring ladle L2 is transported by the pouring ladle transport carriage 54 and is on standby. Therefore, the molten metal is replaced from the treatment ladle L1 to the pouring ladle L2. Here, in the hot water receiving trolley 52 with the air replacement function, the processing ladle L1 is set to a desired height by the scissor lifter 524, and the processing ladle L1 is tilted and replaced, so that it can be replaced safely and efficiently. In addition, during conveyance of the processing ladle 1, the processing ladle L1 can be lowered | hung, and it can move to the position close | similar to the center of the traveling cart 520, and the influence by the shaking of the traveling cart 520 can be made small.
 空け替えが終了すると、処理取鍋L1に関連付けられていた取鍋連番は、注湯取鍋L2に関連付けられる。その後、空替機能付き受湯台車52は処理取鍋L1を投入位置P1へ搬送し、合金材の投入から繰り返される。なお、注湯取鍋L2および注湯機72を2台備え、1台の処理取鍋L1から2台の注湯取鍋L2へ溶湯を空け替えてもよい。注湯に時間が掛かる場合に、複数の注湯機72を用いて注湯取鍋L2から鋳型Mへ注湯することで、鋳造設備1の効率を向上させることができる。1台の処理取鍋L1から2台の注湯取鍋L2に空け替えされるときには、2台目の注湯取鍋L2には、処理取鍋L1の取鍋連番と、2台目に空け替えられた注湯取鍋であることを示すデータが、取鍋連番として関連付けられる。なお、処理取鍋L1から注湯取鍋L2へ空け替えられる溶湯に、空替接種装置56から接種剤を添加してもよい。溶湯搬送ユニット制御装置51は、添加した接種剤の種類と重量と添加時刻を、溶湯状態データとして、取鍋連番に関連付ける。 When the replacement is completed, the ladle sequence number associated with the processing ladle L1 is associated with the pouring ladle L2. Thereafter, the hot water receiving carriage 52 with the air replacement function conveys the processing ladle L1 to the charging position P1, and is repeated from the charging of the alloy material. Note that two pouring ladles L2 and a pouring machine 72 may be provided, and the molten metal may be replaced from one processing ladle L1 to two pouring ladles L2. When it takes time to pour, the efficiency of the casting facility 1 can be improved by pouring from the pouring ladle L2 to the mold M using a plurality of pouring machines 72. When one processing ladle L1 is replaced with two pouring ladles L2, the second pouring ladle L2 includes the ladle serial number of the processing ladle L1 and the second one. Data indicating that the hot water ladle has been replaced is associated as a ladle serial number. In addition, you may add an inoculum from the empty exchange inoculation apparatus 56 to the molten metal refilled from the process ladle L1 to the pouring ladle L2. The molten metal transport unit control device 51 associates the type, weight and addition time of the added inoculum with the ladle sequence number as molten metal state data.
 注湯取鍋L2に溶湯が空け替えられると、注湯取鍋搬送台車54は、注湯取鍋L2を移送位置P5に搬送する。注湯取鍋L2は、移送位置P5から注湯取鍋搬送機構58により注湯位置P6に移送され、注湯機72に保持される。溶湯搬送ユニット制御装置51は、取鍋連番と、取鍋連番に関連付けられた溶湯状態データを鋳造設備管理コンピュータ91に送信する。なお、注湯搬送ユニット50での溶湯搬送において不具合が発生した場合には、その不具合の情報を取鍋連番に関連付けて鋳造設備管理コンピュータ91に送信する。 When the molten metal is replaced in the pouring ladle L2, the pouring ladle conveying cart 54 conveys the pouring ladle L2 to the transfer position P5. The pouring ladle L <b> 2 is transferred from the transfer position P <b> 5 to the pouring position P <b> 6 by the pouring ladle transport mechanism 58 and is held by the pouring machine 72. The molten metal transport unit control device 51 transmits the ladle sequence number and the molten metal state data associated with the ladle sequence number to the casting equipment management computer 91. In addition, when a malfunction occurs in the molten metal conveyance in the pouring conveyance unit 50, information on the malfunction is transmitted to the casting equipment management computer 91 in association with the pan sequence number.
 図10に示すように、溶湯搬送ユニット50は、投入位置P1、受湯位置P2、反応位置P3、空替位置P4、移送位置P5にある処理取鍋L1または注湯取鍋L2を取鍋位置検出センサ59(またはエンコーダ523、543)にて検知して、取鍋連番をずらす。そして、取鍋連番に溶湯状態データを関連付けていく。よって、処理取鍋L1または注湯取鍋L2の位置と取鍋連番が正しく対応し、別々の装置からの溶湯状態データが正しく取鍋連番に関連付けられる。 As shown in FIG. 10, the molten metal transport unit 50 has a ladle position at the pouring position P1, a hot water receiving position P2, a reaction position P3, an empty replacement position P4, and a pouring ladle L2 at the transfer position P5. It is detected by the detection sensor 59 (or encoder 523, 543), and the ladle serial number is shifted. Then, the molten metal state data is associated with the ladle serial number. Therefore, the position of the processing ladle L1 or the pouring ladle L2 and the ladle serial number correspond correctly, and the molten metal state data from different apparatuses are correctly associated with the ladle serial number.
 鋳型搬送ユニット制御装置31は、鋳型Mが注湯機72の前に搬送されると、注湯ユニット制御装置71に鋳型Mの鋳型連番を送信する。そして、注湯ユニット制御装置71は、鋳造設備管理コンピュータ91から、注湯計画データを受信し、さらに、溶湯搬送ユニット制御装置51から注湯取鍋L2の取鍋連番、受湯重量、許容フェーディング時間、フェーディング開始時刻、フェーディング経過時間等を受信する。なお、注湯ユニット制御装置71は、フェーディング経過時間を受信せず、フェーディング開始時刻を受信して、フェーディング経過時間を計測してもよい。 When the mold M is transported before the pouring machine 72, the mold transport unit controller 31 transmits the mold serial number of the mold M to the pouring unit controller 71. Then, the pouring unit control device 71 receives the pouring plan data from the casting equipment management computer 91, and further, the ladle sequence number of the pouring ladle L2, the received hot water weight, the allowable amount from the molten metal transport unit control device 51. Receives fading time, fading start time, fading elapsed time, etc. Note that the pouring unit control device 71 may measure the fading elapsed time by receiving the fading start time without receiving the fading elapsed time.
 注湯ユニット制御装置71は、鋳型Mの鋳型連番に対応する注湯計画データによる溶湯の材質、すなわち、合金材の種類、重量、溶湯の重量等を、注湯取鍋L2の取鍋連番に対応する溶湯状態データによる溶湯の材質と比較する。これら2つの材質が不一致であるときには、注湯ユニット制御装置71はエラー信号を発する。この場合、注湯せずに、溶湯を溶解炉Fに戻す。注湯取鍋L2をクレーンなどで吊り出し、溶解炉Fに戻してもよい。あるいは、溶解炉Fに溶湯を戻す搬送装置(不図示)を設け、溶解炉Fに戻してもよい。 The pouring unit control device 71 determines the material of the molten metal, that is, the type of alloy material, the weight, the weight of the molten metal, etc. based on the pouring schedule data corresponding to the mold serial number of the mold M, and the ladle connection of the pouring ladle L2. It compares with the material of the molten metal by the molten state data corresponding to the number. When these two materials do not match, the pouring unit control device 71 issues an error signal. In this case, the molten metal is returned to the melting furnace F without pouring. The pouring ladle L2 may be hung with a crane or the like and returned to the melting furnace F. Alternatively, a conveying device (not shown) for returning the molten metal to the melting furnace F may be provided and returned to the melting furnace F.
 注湯機72で注湯取鍋L2を受け取ると、第2重量計としてのロードセル725で注湯取鍋L2内の溶湯の重量を計測する。ロードセル725で計測した重量と同じ取鍋連番に関連付けられているロードセル525で計測した重量との差を算定し、その差が所定値より大きいときには、注湯ユニット制御装置71はエラー信号を発する。搬送中に溶湯がこぼれたり漏れたりした可能性が高いからである。 When the pouring ladle L2 is received by the pouring machine 72, the weight of the molten metal in the pouring ladle L2 is measured by the load cell 725 as the second weighing scale. The difference between the weight measured by the load cell 725 and the weight measured by the load cell 525 associated with the same ladle serial number is calculated, and when the difference is larger than a predetermined value, the pouring unit control device 71 issues an error signal. . This is because there is a high possibility that the molten metal has spilled or leaked during transportation.
 注湯ユニット制御装置71は、注湯計画データに基づき、溶湯を注湯取鍋L2から鋳型Mに注湯する。そこでまず、鋳型連番に関連付けられた鋳型の高さや湯口の位置に基づき、注湯取鍋L2を前後移動機構728により鋳型M側に移動し、昇降機構722により昇降する。そして、昇降機構722および前後移動機構728により注湯取鍋L2の注湯口を動かしつつ、傾動機構724により注湯取鍋L2を傾動して、鋳型Mに注湯する。 The pouring unit control device 71 pours the molten metal from the pouring ladle L2 into the mold M based on the pouring plan data. Therefore, first, the pouring ladle L2 is moved to the mold M side by the back-and-forth movement mechanism 728 based on the mold height and the position of the gate associated with the mold serial number, and is moved up and down by the lifting mechanism 722. Then, the pouring ladle L2 is tilted by the tilting mechanism 724 while the pouring ladle L2 is moved by the elevating mechanism 722 and the back-and-forth movement mechanism 728, and the molten metal is poured into the mold M.
 注湯ユニット制御装置71は、注湯パターンを記憶しており、鋳型連番に関連付けられた鋳型に適用される注湯パターンで注湯する。注湯中は、湯面検知カメラ726で湯口の画像データを取得する。注湯ユニット制御装置71は、画像データに基づき、湯面レベルを演算し、傾動機構724での注湯取鍋L2の傾動を制御する。また、注湯中もロードセル725で注湯取鍋L2内の溶湯重量を計測し、注湯ユニット制御装置71は、鋳型Mに注湯した溶湯の量を演算する。注湯した溶湯の重量が目標値に近づいたところで、湯切りをする。なお、鋳型Mは、注湯機72の前でも、他の場所と同様に間欠的に搬送される。そのために、停止している時間で鋳型Mへの注湯が完了しない場合には、注湯機台車720が搬送される鋳型Mと同じ速さで走行して、鋳型Mへの注湯を続けることができる。また、注湯機72から注湯する時間が、鋳型が間欠的に搬送される間隔より長いときには、2台の注湯機72を用いる。すなわち、2台の注湯取鍋L2を用いる。 The pouring unit control device 71 stores a pouring pattern and performs pouring with a pouring pattern applied to the mold associated with the mold serial number. During pouring, image data of the pouring gate is acquired by the pouring surface detection camera 726. The pouring unit control device 71 calculates the hot water level based on the image data, and controls the tilting of the pouring ladle L2 in the tilting mechanism 724. During the pouring, the weight of the molten metal in the pouring ladle L2 is measured by the load cell 725, and the pouring unit controller 71 calculates the amount of the molten metal poured into the mold M. When the weight of the poured molten metal approaches the target value, drain the hot water. In addition, the casting_mold | template M is intermittently conveyed also in front of the pouring machine 72 like other places. Therefore, when the pouring to the mold M is not completed within the time when it is stopped, the pouring machine cart 720 travels at the same speed as the mold M being conveyed, and the pouring to the mold M is continued. be able to. In addition, when the time for pouring from the pouring machine 72 is longer than the interval at which the mold is intermittently conveyed, two pouring machines 72 are used. That is, two pouring ladles L2 are used.
 注湯ユニット制御装置71は、フェーディング経過時間と許容フェーディング時間を適宜比較する。フェーディング経過時間が許容フェーディング時間を超えると、エラー信号を発し、注湯取鍋L2に溶湯が残っていても注湯取鍋L2からの注湯を中止する。よって、フェーディングによる球状化不良を防止することができる。注湯取鍋L2に残った溶湯は、溶解炉Fに溶湯を戻す搬送装置を用いて、溶解炉Fに戻され、再利用される。 The pouring unit control device 71 compares the fading elapsed time and the allowable fading time as appropriate. When the elapsed fading time exceeds the allowable fading time, an error signal is generated and pouring from the pouring ladle L2 is stopped even if the molten metal remains in the pouring ladle L2. Therefore, spheroidization failure due to fading can be prevented. The molten metal remaining in the pouring ladle L2 is returned to the melting furnace F and reused by using a conveying device that returns the molten metal to the melting furnace F.
 TP採取ユニット76は、注湯取鍋L2から溶湯を受け取り、TPとして固化する。溶湯を受け取るのは、処理取鍋L2から最初の鋳型に注湯する前でも、一の鋳型に注湯し終わり、次の鋳型に注湯し始める間でも、注湯取鍋L2からの最後の鋳型に注湯した後でもよい。TPを採取すると、注湯ユニット制御装置71は、テストピース(TP)連番を発行する。TP連番は、取鍋連番に関連付けられる。TPは、その後、材質検査をされて、検査結果がTP連番に関連付けられ、鋳造設備管理コンピュータ91に送信される。なお、TP採取ユニット76が、TP採取ユニット制御装置を有し、TP連番を発行してもよい。その場合、TP連番は、注湯ユニット制御装置71に送信され、そこで取鍋連番に関連付けられる。この場合、TP採取ユニット制御装置は、注湯ユニット制御装置71の一部とみなされる。TPの検査結果で材質不良があった場合は、そのTP連番を鋳造設備管理コンピュータ91に送信する。TP連番から取鍋連番が分かり、鋳型連番に関連付けられ、後述する鋳型ばらし装置48は、鋳型連番にエラー信号が関連付けられている場合には不良品として処理する。 The TP collection unit 76 receives the molten metal from the pouring ladle L2 and solidifies as TP. The molten metal is received either before pouring into the first mold from the processing ladle L2, or after pouring into one mold and starting to pour into the next mold. It may be after pouring the mold. When the TP is collected, the pouring unit control device 71 issues a test piece (TP) serial number. The TP sequence number is associated with the ladle sequence number. The TP is then subjected to a material inspection, and the inspection result is associated with the TP serial number and transmitted to the casting equipment management computer 91. Note that the TP collection unit 76 may have a TP collection unit controller and issue a TP sequence number. In that case, the TP sequence number is transmitted to the pouring unit control device 71, where it is associated with the ladle sequence number. In this case, the TP collection unit controller is regarded as a part of the pouring unit controller 71. If there is a material defect in the TP inspection result, the TP serial number is transmitted to the casting equipment management computer 91. The ladle serial number is known from the TP serial number and is associated with the mold serial number, and the mold spreading device 48 described later treats it as a defective product when an error signal is associated with the mold serial number.
 注湯ユニット制御装置71では、同一の注湯取鍋L2から注湯された鋳型の番号である取鍋内回数、注湯(鋳込)時刻、注湯パターン番号、注湯(鋳込)重量および時間、注湯温度等を計測して、これらのデータを溶湯状態データとして取鍋連番に関連付ける。また、鋳型Mの鋳型連番に、鋳型Mに注湯した注湯取鍋L2の取鍋連番を関連付ける。注湯ユニット制御装置71は、これらの関連付けを終えると、データを鋳造設備管理コンピュータ91に送信する。なお、注湯ユニット70での注湯取鍋L2から鋳型Mへの注湯において不具合が発生した場合には、その不具合の情報を鋳型連番に関連付けて鋳造設備管理コンピュータ91に送信する。 In the pouring unit controller 71, the number of molds poured from the same pouring ladle L2, the number of times in the ladle, the pouring (casting) time, the pouring pattern number, the pouring (casting) weight And the time, the pouring temperature, etc. are measured, and these data are related to the ladle sequence number as molten state data. Further, the ladle sequence number of the pouring ladle L2 poured into the mold M is associated with the mold sequence number of the mold M. When the pouring unit control device 71 finishes the association, the pouring unit control device 71 transmits data to the casting equipment management computer 91. In addition, when a malfunction occurs in the pouring from the pouring ladle L2 into the mold M in the pouring unit 70, information on the malfunction is transmitted to the casting equipment management computer 91 in association with the mold serial number.
 鋳型搬送ユニット30では、注湯された鋳型Mを冷却ゾーン34で搬送させる。冷却ゾーン34ではレールRfが長く、搬送されるのに時間が掛かる。その時間で鋳型M内の溶湯は冷却固化される。冷却ゾーン34の下流の鋳型ばらし装置48に鋳型Mが搬送されると、鋳型Mが分解され、鋳物と砂とが分離される。鋳物は製品とするための後工程に送られる。砂は、砂回収装置(不図示)を経て、造型ユニット10に送られる。鋳型搬送ユニット制御装置31は、鋳型ばらし装置48に搬送された鋳型Mの鋳型連番に関連付けられたエラー信号およびTP検査結果が不良品である場合には、分離した鋳物を後工程に送らないように区別する。よって、不良品が製品として出荷されることを防止できる。鋳型搬送ユニット制御装置31は、後工程に送られる鋳物に対し、鋳型連番を関連付ける。また、鋳型連番と造型履歴データを鋳造設備管理コンピュータ91に送信する。 In the mold conveyance unit 30, the poured mold M is conveyed in the cooling zone 34. In the cooling zone 34, the rail Rf is long, and it takes time to be transported. During that time, the molten metal in the mold M is cooled and solidified. When the mold M is conveyed to the mold separating device 48 downstream of the cooling zone 34, the mold M is disassembled and the casting and the sand are separated. The casting is sent to a subsequent process to make a product. The sand is sent to the molding unit 10 through a sand collecting device (not shown). When the error signal and the TP inspection result associated with the mold serial number of the mold M conveyed to the mold separating apparatus 48 are defective, the mold conveyance unit control device 31 does not send the separated casting to the subsequent process. Distinguish as follows. Therefore, it is possible to prevent defective products from being shipped as products. The mold conveyance unit control device 31 associates the mold serial number with the casting sent to the subsequent process. Further, the mold serial number and the molding history data are transmitted to the casting equipment management computer 91.
 鋳造設備管理コンピュータ91では、鋳型連番、造型データ、取鍋連番、溶湯状態データ、TP検査結果を記憶する。鋳造設備1で製造した鋳型には、鋳型連番が関連付けられる。鋳型連番には、取鍋連番が関連付けられる。よって、鋳物製品から鋳型連番および取鍋連番が分かる。そして、鋳型連番には鋳型の造型データが、取鍋連番には溶湯状態データが関連付けられる。したがって、鋳物製品には、全ての履歴データが関連付けられる。よって、製品不良があったときに、製造履歴を確認することができる。ここで、データ量の多い溶湯状態データを取鍋毎に管理し、鋳型毎の鋳型連番から取鍋毎に管理されているデータを引き出せるので、記憶するデータ量を少なくすることができる。 The casting equipment management computer 91 stores the mold serial number, molding data, ladle serial number, molten state data, and TP inspection result. A mold serial number is associated with the mold manufactured by the casting facility 1. A ladle sequence number is associated with the mold sequence number. Therefore, the mold serial number and the ladle serial number are known from the cast product. The mold serial number is associated with mold making data, and the ladle serial number is associated with molten metal state data. Therefore, all history data is associated with the casting product. Therefore, the manufacturing history can be confirmed when there is a product defect. Here, since the molten state data having a large amount of data is managed for each ladle and the data managed for each ladle can be extracted from the mold serial number for each mold, the amount of data to be stored can be reduced.
 なお、鋳型の各空間に対応して個体識別連番が発行されている場合には、鋳物製品を個体識別連番で特定することができる。そのため、たとえば製品検査により不具合が見つかった場合には、その鋳物製品の個体識別連番を用いて、鋳型連番を引き出し、鋳型連番に基づき、鋳型の履歴データおよび溶湯状態データを知ることができる。よって、不具合を生じた原因の究明を容易に行うことができる。 In addition, when the individual identification serial number is issued corresponding to each space of the mold, the cast product can be specified by the individual identification serial number. Therefore, for example, when a defect is found by product inspection, the mold serial number is extracted using the individual identification serial number of the casting product, and the history data and molten state data of the mold can be known based on the mold serial number. it can. Therefore, the cause of the problem can be easily investigated.
 ここで、図11をも参照して、鋳型単位のデータ処理を行う作業と、取鍋単位のデータ処理を行う作業とをまとめて説明する。砂処理をして造型前砂特性で性状を計測された鋳型砂を用いて造型装置14で造型する。ここで造型された鋳型に鋳型連番が発行され、以降その鋳型連番を用いて鋳型単位のデータ処理が行われる。なお、鋳型の形状等の交換は、造型装置14で用いる鋳枠、模型等を交換することにより行われる。造型した鋳型に加工する工程としてのガス穴明け、上げ枠反転、サンドカット、湯口カット、定盤台車セット、中子セット、上鋳型再反転、鋳型合わせなどは、鋳型単位のデータを用い、履歴は鋳型単位に記録される。 Here, with reference to FIG. 11 as well, an operation for performing data processing in units of molds and an operation for performing data processing in units of ladles will be described together. Molding is performed by the molding apparatus 14 using the sand sand that has been subjected to sand treatment and whose properties have been measured by the pre-molding sand characteristics. A mold serial number is issued to the molded mold here, and data processing for each mold unit is performed using the mold serial number. Note that the exchange of the shape of the mold and the like is performed by exchanging a casting frame, a model, and the like used in the molding apparatus 14. Gas drilling, raising frame reversal, sand cut, gate cut, surface plate carriage set, core set, upper mold re-reversal, mold alignment, etc., as the process to process the molded mold, use mold unit data, history Is recorded in the mold unit.
 空替機能付き受湯台車52に載置された処理取鍋L1に合金材を投入すると、処理取鍋L1に取鍋連番が発行される。以降その取鍋連番を用いて取鍋単位のデータ処理が行われる。受湯位置P2、反応位置P3、空替位置P4への処理取鍋L1の移動、溶解炉Fからの溶湯の受湯、注湯取鍋搬送台車54に載置された注湯取鍋L2への空け替え、移送位置P5への注湯取鍋L2の移動、注湯機72への注湯取鍋L2の移送、注湯機72での鋳型への注湯、TP採取ユニット76でのTP採取などは、取鍋単位のデータを用い、履歴(状態データ)も取鍋単位に記録される。 When the alloy material is put into the processing ladle L1 placed on the hot water receiving carriage 52 with an air exchange function, a ladle serial number is issued to the processing ladle L1. Thereafter, data processing for each ladle is performed using the ladle serial number. The movement of the treatment ladle L1 to the hot water receiving position P2, the reaction position P3, and the empty replacement position P4, the hot water receiving from the melting furnace F, the pouring ladle L2 placed on the pouring ladle transport carriage 54 Emptying, moving the pouring ladle L2 to the transfer position P5, transporting the pouring ladle L2 to the pouring machine 72, pouring the mold in the pouring machine 72, TP in the TP sampling unit 76 For collection, etc., data for each ladle is used, and history (status data) is also recorded for each ladle.
 注湯機72により鋳型に注湯されると、取鍋連番が鋳型連番に関連付けられ、鋳型連番から取鍋連番に関連付けられたデータを引き出すことができるようになる。すなわち、冷却ゾーンでの鋳型の冷却時間は、たとえば溶湯の注湯重量により変わり得るので、鋳型毎に、鋳型連番から注湯重量を引き出し冷却ゾーンで搬送される長さを変えてもよい。具体的には、鋳型を隣の鋳型レールRfに移すのにどのトラバーサTで移すか、あるいは、トラバーサTでどの鋳型レールRfに移すか、を変えればよい。また、鋳型ばらし装置48で鋳型ばらしをする際に、鋳型連番から引き出される溶湯状態データに不良であることが含まれていれば、ばらした鋳物を製品としての鋳物と区別し、たとえば廃棄処分することもできる。 When pouring into the mold by the pouring machine 72, the ladle sequence number is associated with the mold sequence number, and the data associated with the ladle sequence number can be extracted from the mold sequence number. That is, the mold cooling time in the cooling zone can vary depending on, for example, the molten metal pouring weight, so that the length of the molten metal drawn from the mold serial number may be changed for each mold and conveyed in the cooling zone. Specifically, what traverser T is used to move the mold to the adjacent mold rail Rf or which mold rail Rf is moved by the traverser T may be changed. Further, when the mold disassembly device 48 disassembles the mold, if the molten state data drawn from the mold serial number includes a defect, the disintegrated casting is distinguished from the casting as a product, for example, disposal. You can also
 次に、図12および図13を参照して、図2の鋳造設備1とは異なる鋳造設備2について説明する。鋳造設備2では、炉Fから注湯取鍋L2に受湯し、空け替えなしで、注湯機72に移送する。その他の点は、鋳造設備1と同様であるので、重複する説明は省略し、異なる点のみを説明する。溶湯と合金材との反応があまり激しくないときには、処理取鍋L1で反応させる必要はなく、注湯取鍋L2で受湯して反応させることができる。 Next, a casting facility 2 different from the casting facility 1 in FIG. 2 will be described with reference to FIGS. In the casting facility 2, the molten metal is received from the furnace F into the pouring ladle L <b> 2 and transferred to the pouring machine 72 without being replaced. Since the other points are the same as those of the casting equipment 1, overlapping description is omitted and only different points will be described. When the reaction between the molten metal and the alloy material is not so violent, it is not necessary to cause the reaction in the treatment ladle L1, and the reaction can be performed by receiving the hot water in the pouring ladle L2.
 溶湯搬送ユニット50は、合金材投入ユニット60と、注湯取鍋L2を投入位置P1、受湯位置P2、反応位置P3、移送位置P5に搬送する注湯取鍋搬送台車84と、注湯取鍋搬送台車84が走行するレールRと、移送位置P5から注湯取鍋L2を注湯機72に搬送する注湯取鍋搬送機構58を有する。反応が穏やかな場合には、反応位置P3を特に定めず、搬送中に溶湯と反応合金材とを反応させてもよい。また、エンコーダ843にて、注湯取鍋L2の位置を検出する。 The molten metal transfer unit 50 includes an alloy material charging unit 60, a molten metal ladle transporting carriage 84 that conveys the molten metal ladle L2 to the charging position P1, the hot water receiving position P2, the reaction position P3, and the transfer position P5, A rail R on which the pan transport carriage 84 travels and a pouring ladle transport mechanism 58 that transports the pouring ladle L2 from the transfer position P5 to the pouring machine 72 are provided. When the reaction is gentle, the reaction position P3 is not particularly defined, and the molten metal and the reaction alloy material may be reacted during conveyance. Moreover, the position of the pouring ladle L2 is detected by the encoder 843.
 図14に示すように、注湯取鍋搬送台車84は、レールR上を走行する走行台車840と、走行台車840上に設置されるガイド柱842と、ガイド柱842から水平方向に延び、台車上で昇降可能な昇降フレーム844と、昇降フレーム844に設置され、注湯取鍋L2を水平方向に移動する取鍋移動機構846と、昇降フレーム844を昇降する昇降フレーム昇降装置848とを有する。昇降フレーム昇降装置848は、モータ848Mの回転によりチェーン848Cを巻き上げて昇降フレーム844を昇降する。たとえば、溶解炉Fと注湯ユニット70との建設時期が異なり、設置高さに差があっても、注湯取鍋搬送台車84が注湯取鍋L2を昇降する機能を有することで、設置高さの差を吸収することができる。注湯取鍋搬送台車84は、炉Fから受湯した溶湯の重量を計測するロードセル(第1重量計)845を有する。また、受湯した溶湯の温度を計測する非接触温度計(不図示)を有する。 As shown in FIG. 14, the pouring ladle transport carriage 84 includes a traveling carriage 840 that travels on the rail R, a guide pillar 842 that is installed on the traveling carriage 840, and extends horizontally from the guide pillar 842. There is a lifting frame 844 that can be moved up and down, a ladle moving mechanism 846 that is installed on the lifting frame 844 and moves the pouring ladle L2 in the horizontal direction, and a lifting frame lifting device 848 that lifts and lowers the lifting frame 844. The elevating frame elevating device 848 elevates the elevating frame 844 by winding up the chain 848C by the rotation of the motor 848M. For example, even if the construction time of the melting furnace F and the pouring unit 70 is different and there is a difference in the installation height, the pouring ladle transport carriage 84 has a function of moving the pouring ladle L2 up and down. The difference in height can be absorbed. The pouring ladle transport carriage 84 has a load cell (first weighing scale) 845 for measuring the weight of the molten metal received from the furnace F. Moreover, it has a non-contact thermometer (not shown) which measures the temperature of the molten metal received.
 注湯取鍋搬送台車84は、外部から電源を受電する受電装置849やモータ848Mを高い位置、かつ、注湯取鍋L2とは離れた位置に設置することにより、万一、注湯取鍋L2から溶湯が漏れた場合に、これらの機器に影響しないようにしている。高い位置とは、注湯取鍋搬送台車84が走行するとき、すなわち、昇降フレームを下げたときの注湯取鍋L2の底部より高い位置である。注湯取鍋L2とは離れた位置とは、ガイド柱842を挟んで反対側の位置である。 The pouring ladle transport truck 84 is provided with a power receiving device 849 and a motor 848M for receiving power from the outside at a high position and a position away from the pouring ladle L2. When the molten metal leaks from L2, these devices are not affected. The high position is a position higher than the bottom of the pouring ladle L2 when the pouring ladle transport carriage 84 travels, that is, when the lifting frame is lowered. The position away from the pouring ladle L2 is the position on the opposite side across the guide column 842.
 鋳造設備2においても、注湯取鍋L2に合金材投入ユニット60から合金材を投入したら、注湯取鍋L2に対して取鍋連番を発行する。溶湯状態データを取鍋連番に関連付け、注湯機72から鋳型Mに注湯したら、取鍋連番を鋳型連番に関連付ける。よって、鋳造設備1と同様の効果を得ることができる。 Also in the casting facility 2, when an alloy material is introduced into the pouring ladle L2 from the alloy material feeding unit 60, a ladle serial number is issued to the pouring ladle L2. When the molten metal state data is associated with the ladle sequence number and poured into the mold M from the pouring machine 72, the ladle sequence number is associated with the mold sequence number. Therefore, the same effect as the casting equipment 1 can be obtained.
 本明細書で説明した各ユニット制御装置11、31、51、61、71および鋳造設備管理コンピュータ91間のデータの受け渡しは、上記に限られず、適宜変更してもよい。各計画データ、鋳型履歴データ、溶湯状態データとして示したデータは一例であって、他のデータを用いてもよい。 The data transfer between the unit control devices 11, 31, 51, 61, 71 and the casting equipment management computer 91 described in this specification is not limited to the above, and may be changed as appropriate. The data shown as each plan data, mold history data, and molten state data is an example, and other data may be used.
 上記の実施の形態では、鋳型搬送ユニット制御装置31で鋳型を搬送しながら造型データを収集し、不具合が発生したときには、鋳型搬送装置制御ユニット31で不具合の情報を鋳型連番に関連付け、鋳造設備管理コンピュータ91に送信する。そこで、鋳型搬送装置制御ユニット31が、異常判定コンピュータ108としても機能し、不具合の真の原因を特定してもよい。鋳型搬送装置制御ユニット31が、ある装置に異常をもたらす他の装置の稼働状況を記憶しており、不具合の情報と共に、プッシャ38やガス穴明け装置40、サンドカッタ42、湯口カッタ43等の各装置からのデータを鋳型搬送装置制御ユニット31から受信し、記憶している稼働状況と比較することにより不具合の真の原因を特定してもよい。 In the above-described embodiment, molding data is collected while the mold is transported by the mold transport unit control device 31, and when a malfunction occurs, the malfunction information is associated with the mold serial number by the mold transport apparatus control unit 31, and the casting equipment It transmits to the management computer 91. Therefore, the mold conveyance device control unit 31 may function as the abnormality determination computer 108 and specify the true cause of the malfunction. The mold conveyance device control unit 31 stores the operating status of other devices that cause an abnormality in a certain device, along with information on malfunctions, the pusher 38, the gas drilling device 40, the sand cutter 42, the gate cutter 43, etc. Data from the apparatus may be received from the mold transport apparatus control unit 31, and the true cause of the malfunction may be specified by comparing with the stored operation status.
 同様に、造型ユニット制御装置11、溶湯搬送ユニット制御装置51、合金材投入ユニット制御装置61、あるいは、注湯ユニット制御装置71が、異常判定コンピュータ108としても機能してもよい。これらの制御装置11、51、61、71が、ある装置に異常をもたらす他の装置の稼働状況を記憶し、各装置からのデータを受信し、不具合の真の原因を特定してもよい。 Similarly, the molding unit control device 11, the molten metal transport unit control device 51, the alloy material charging unit control device 61, or the pouring unit control device 71 may function as the abnormality determination computer 108. These control devices 11, 51, 61, 71 may store the operating status of other devices that cause an abnormality in a certain device, receive data from each device, and identify the true cause of the malfunction.
 また、鋳造設備管理コンピュータ91が、異常判定コンピュータ108として機能してもよい。すなわち、鋳造設備管理コンピュータ91が、ある装置に異常をもたらす他の装置の稼働状況を記憶し、造型ユニット制御装置11、鋳型搬送装置制御ユニット31、溶湯搬送ユニット制御装置51、合金材投入ユニット制御装置61、あるいは、注湯ユニット制御装置71を経由して送られる各装置のデータに基づき、不具合の真の原因を特定してもよい。 Further, the casting equipment management computer 91 may function as the abnormality determination computer 108. That is, the casting facility management computer 91 stores the operating status of other devices that cause an abnormality in a certain device, and the molding unit control device 11, the mold transport device control unit 31, the molten metal transport unit control device 51, and the alloy material input unit control. The true cause of the malfunction may be specified based on the data of each device sent via the device 61 or the pouring unit control device 71.
 鋳造設備1、2によれば、鋳型Mについての情報は、鋳型毎に発行された鋳型連番に関連付けられ、溶湯についての情報は、取鍋毎の取鍋連番に関連付けられる。そして、注湯機72で鋳型Mに溶湯が注湯されると、注湯位置P6にある鋳型Mの鋳型連番と注湯した取鍋L2の取鍋連番が関連付けられる。すなわち、鋳型に関するデータと溶湯の溶湯状態データとを、鋳型連番と鋳型連番に関連付けられた取鍋連番とを用いて、組み合わせて管理することができる。また、造型装置に関するデータを、造型装置で造型された鋳型と関連付けて管理することもできる。さらに、造型ライン上の個別の鋳型を識別して管理することもできる。異常判定コンピュータで判定された異常の原因から、作業者は、このように管理された情報に基づき不具合の生じた可能性のある製品を特定することができ、不具合の生じた製品が下流工程に送られてしまうことを防止できる。 According to the casting facilities 1 and 2, the information about the mold M is associated with the mold sequence number issued for each mold, and the information about the molten metal is associated with the ladle sequence number for each ladle. When the molten metal is poured into the mold M by the pouring machine 72, the mold serial number of the mold M at the pouring position P6 is associated with the ladle serial number of the poured ladle L2. That is, the data on the mold and the molten metal state data can be managed in combination using the mold serial number and the ladle serial number associated with the mold serial number. In addition, data relating to the molding apparatus can be managed in association with a mold molded by the molding apparatus. Furthermore, individual molds on the molding line can be identified and managed. Based on the cause of the abnormality determined by the abnormality determination computer, the operator can identify a product that may have a defect based on the information managed in this way, and the product in which the defect has occurred can enter the downstream process. It can be prevented from being sent.
 鋳型ユニット制御装置11、鋳型搬送装置制御ユニット31、溶湯搬送ユニット制御装置51、合金材投入ユニット制御装置61、注湯ユニット制御装置71、または、鋳造設備管理コンピュータ91とは別にサンプリング用PLC102や異常判定コンピュータ108を備えて、装置の異常の原因を特定してもよい。 Separately from the mold unit control device 11, the mold transport device control unit 31, the molten metal transport unit control device 51, the alloy material charging unit control device 61, the pouring unit control device 71, or the casting equipment management computer 91, the sampling PLC 102 or an abnormality A determination computer 108 may be provided to identify the cause of the abnormality of the apparatus.
 鋳造設備1、2は、造型ユニットに供給する鋳型砂を造型に適した性状に調整する砂処理ユニット80と、鋳型の中に配置する中子を造型する中子造型ユニット(あるいは中子ユニット)82をさらに備えていてもよい。なお、砂処理ユニット80あるいは中子造型ユニット82は、鋳造設備1、2とは、別の建屋に設置されてもよく、その場合にも、鋳造設備1、2の一部であるものとする。砂処理ユニット80で調整した鋳型砂は、造型ユニット10に送られ、造型装置14で鋳型に造型される。中子造型ユニット82で造型された中子は、鋳型搬送ユニット30のコアセッタ45に送られ、鋳型内にセットされる。 The casting facilities 1 and 2 include a sand processing unit 80 that adjusts the molding sand supplied to the molding unit to a property suitable for molding, and a core molding unit (or core unit) that molds the core placed in the mold. 82 may be further provided. In addition, the sand processing unit 80 or the core molding unit 82 may be installed in a building different from the casting facilities 1 and 2, and in that case, it is also a part of the casting facilities 1 and 2. . Mold sand adjusted by the sand processing unit 80 is sent to the molding unit 10 and molded into a mold by the molding apparatus 14. The core molded by the core molding unit 82 is sent to the core setter 45 of the mold transport unit 30 and set in the mold.
 異常判定コンピュータ108あるいは鋳造設備管理コンピュータ91は、鋳造設備1、2で鋳造された鋳物の不良の状態と、造型ユニット10、鋳型搬送ユニット30、溶湯搬送ユニット50、合金材投入ユニット60、注湯ユニット70、砂処理ユニット80および中子ユニット82における原因あるいは不具合との関係をマトリックスデータベースとして記憶するのがよい。図15にマトリックスデータベースの一例を模式的に示す。図15に示す例では、グイチ(鋳物の分割面に生じる、上下型のずれによる寸法不良)、砂噛み(鋳物表面の近くに介在する塊状、板状の砂の巻き込み)、ノロ噛み(スラグが注湯時鋳型内に流入して巻き込まれ、これが凝固後も製品に残った鋳造欠陥)、引け巣(鋳物の表面又は内部に主として溶湯の凝固収縮により生じる粗い内壁を持つ空洞)、湯廻り不良(溶湯が鋳型に充満する前に凝固して生ずる欠陥)、ガス(鋳込み中に空気や鋳型より発生するガス又は溶湯から放出するガスなどを巻き込んで生じた鋳物の内部に生じる大小の気泡状の穴)、打痕(鋳型ばらししたときに表面をぶつけてできる欠陥)を鋳物の不良とし、砂処理ユニット、造型ユニット、中子ユニット、注湯ユニット、鋳型搬送ユニットの冷却ゾーンと、鋳型搬送ユニットの後処理装置(鋳型ばらし装置)との6つの代表的な加工点をその不良の原因となる装置としている。 The abnormality determination computer 108 or the casting equipment management computer 91 is used to determine whether the castings cast in the casting equipment 1 and 2 are defective, the molding unit 10, the mold transport unit 30, the molten metal transport unit 50, the alloy material charging unit 60, and the molten metal. It is preferable to store the relationship between causes or defects in the unit 70, the sand processing unit 80, and the core unit 82 as a matrix database. FIG. 15 schematically shows an example of the matrix database. In the example shown in FIG. 15, guilloche (dimensions caused by the upper and lower mold deviations generated on the divided surface of the casting), sand biting (intrusion of lump or plate-like sand intervening near the casting surface), noro biting (slag is The casting defect that flows into the mold during pouring and is caught, which remains in the product after solidification), shrinkage cavity (cavity with rough inner wall mainly caused by solidification shrinkage of the melt on the surface or inside of the casting), poor hot water (Defects caused by solidification before the molten metal fills the mold), gas (large and small bubbles generated inside the casting produced by entraining air, gas generated from the mold or gas released from the molten metal during casting, etc. Holes) and dents (defects caused by bumping the surface when the mold is separated) are regarded as defective castings. Sand processing unit, molding unit, core unit, pouring unit, cooling zone of mold transport unit, and mold transport Six representative processing point of the knit of the post-processing apparatus (mold disassembling device) is set to its defective causative device.
 例えば、グイチが発生する原因として鋳型合わせ・鋳型移換装置47の不具合、鋳型搬送レーンの不具合等が考えられるので、マトリックスデータベースには、グイチと造型ユニット10の鋳型合わせ・鋳型移換装置47、鋳型搬送レーンを関連付けるデータが保存される。そこで、鋳物にグイチが発生した場合には、異常判定コンピュータ108あるいは鋳造設備管理コンピュータ91は、造型ユニット10における鋳型合わせ・鋳型移換装置47、鋳型搬送レーンの稼働状況を調べるように制御する。 For example, the cause of the occurrence of guitch is considered to be a malfunction of the mold alignment / mold transfer device 47, a malfunction of the mold transfer lane, etc. Data relating the mold transport lane is stored. Therefore, when a guilloche occurs in the casting, the abnormality determination computer 108 or the casting equipment management computer 91 performs control so as to check the operating conditions of the mold alignment / mold transfer device 47 and the mold conveyance lane in the molding unit 10.
 その結果、原因となる装置の稼働状況が判明すると、不具合を解消するためにその装置の運転を調整する。例えば、鋳型搬送レーンの搬送速度が速すぎてグイチが発生する場合には、鋳型搬送レーンの搬送速度を遅くする。これらの調整は、異常判定コンピュータ108あるいは鋳造設備管理コンピュータ91から情報を受信した造型ユニット制御装置11、鋳型搬送ユニット制御装置31、溶湯搬送ユニット制御装置51で行うことができる。 As a result, when the operating status of the device causing the problem is found, the operation of the device is adjusted to eliminate the problem. For example, when the transport speed of the mold transport lane is too high and guilloche occurs, the transport speed of the mold transport lane is decreased. These adjustments can be made by the molding unit control device 11, the mold transport unit control device 31, and the molten metal transport unit control device 51 that have received information from the abnormality determination computer 108 or the casting equipment management computer 91.
 このように、鋳物の不良と加工点あるいは装置の不具合とを関連付けるマトリックスデータベースを用いることにより、鋳物の不良の原因となる装置を確実に早く特定することが可能となる。さらに、各ユニットの制御装置により原因となる装置の稼働を調整することで、鋳物の不良の原因を解消することができる。 As described above, by using the matrix database that associates casting defects with processing points or equipment defects, it becomes possible to quickly and reliably identify the equipment that causes casting defects. Furthermore, the cause of the casting defect can be eliminated by adjusting the operation of the device causing the problem by the control device of each unit.
1、2 鋳造設備
10 造型ユニット
11 造型ユニット制御装置
12 造型前砂特性計測機
14 造型装置
16 刻印措置
30 鋳型搬送ユニット
31 鋳型搬送ユニット制御装置
32 造型ライン
33 鋳型搬送ユニット注湯ゾーン
34 鋳型搬送ユニット冷却ゾーン
37 鋳型位置検出用エンコーダ
38 鋳型送りプッシャ(搬送機構)
39 鋳型位置センサ
40 ガス穴明け装置
41 上下鋳型反転機
42 サンドカッタ
43 湯口カッタ
44 定盤台車セット装置
45 コアセッタ
46 上鋳型再反転機
47 鋳型合わせ・鋳型移換装置
48 鋳型ばらし装置
50 溶湯搬送ユニット
51 溶湯搬送ユニット制御装置
52 空替機能付受湯台車
54、84 注湯取鍋搬送台車
56 空替接種装置
58 注湯取鍋搬送機構
59 取鍋位置検出センサ
60 合金材投入ユニット
61 合金材投入ユニット制御装置(合金材投入制御装置)
62 合金材ホッパ
70 注湯ユニット(溶湯搬送ユニット)
71 注湯ユニット制御装置
72 注湯機
76 テストピース(TP)採取ユニット
80 砂処理ユニット
82 中子造型ユニット(中子ユニット)
91 鋳造設備管理コンピュータ
100 鋳造設備を構成する複数の装置の異常の原因を検出するシステム
102 サンプリング用PLC
104 スイッチングハブ
106 無線通信機器
108 異常判定コンピュータ
520 走行台車
521 制御盤
522 走行モータ
523 エンコーダ(位置検出センサ)
524 シザーリフタ(昇降機能)
525 ロードセル(第1重量計)
526 傾動装置
527 傾動モータ
528 ケーブルリール
540 走行台車
541 制御盤
542 走行モータ
543 エンコーダ(取鍋位置検出センサ)
544 ローラコンベア
546 ローラコンベアモータ
548 ケーブルリール
720 注湯機台車
722 昇降機構
724 傾動機構
725 ロードセル(第2重量計)
726 湯面検知カメラ
728 前後移動機構
840 走行台車
842 ガイド柱
843 エンコーダ
844 昇降フレーム
845 ロードセル(第1重量計)
846 取鍋移動機構
848 昇降フレーム昇降装置
849 受電装置
F 溶解炉
L1 処理取鍋
L2 注湯取鍋
M 鋳型
P1 投入位置
P2 受湯位置
P3 反応位置
P4 空替位置
P5 移送位置
P6 注湯位置
R レール
Rf 鋳型レール
Rp 注湯機レール
T トラバーサ
DESCRIPTION OF SYMBOLS 1, 2 Casting equipment 10 Molding unit 11 Molding unit control apparatus 12 Pre-molding sand characteristic measuring machine 14 Molding apparatus 16 Stamping measure 30 Mold conveyance unit 31 Mold conveyance unit control apparatus 32 Molding line 33 Mold conveyance unit pouring zone 34 Mold conveyance unit Cooling zone 37 Mold position detection encoder 38 Mold feed pusher (conveyance mechanism)
39 Mold position sensor 40 Gas drilling device 41 Upper and lower mold reversing machine 42 Sand cutter 43 Spout cutter 44 Surface plate carriage set device 45 Core setter 46 Upper mold reversing machine 47 Mold alignment / mold transfer device 48 Mold dispersal device 50 Molten metal conveying unit 51 Molten metal transfer unit controller 52 Hot water receiving carts 54 and 84 with an empty exchange function Pouring ladle conveying cart 56 Empty inoculation device 58 Pouring ladle conveying mechanism 59 Ladle position detection sensor 60 Alloy material charging unit 61 Alloy material charging Unit controller (alloy material input controller)
62 Alloy material hopper 70 Pouring unit (molten transfer unit)
71 Pouring unit control device 72 Pouring machine 76 Test piece (TP) sampling unit 80 Sand processing unit 82 Core molding unit (core unit)
91 Casting Equipment Management Computer 100 System 102 for Detecting Causes of Abnormalities in Multiple Equipments Constructing Casting Equipment 102 Sampling PLC
104 Switching Hub 106 Wireless Communication Device 108 Abnormality Determination Computer 520 Traveling Cart 521 Control Panel 522 Traveling Motor 523 Encoder (Position Detection Sensor)
524 Scissor lifter (lifting function)
525 Load cell (first weighing scale)
526 Tilt device 527 Tilt motor 528 Cable reel 540 Traveling carriage 541 Control panel 542 Traveling motor 543 Encoder (Ladle position detection sensor)
544 Roller conveyor 546 Roller conveyor motor 548 Cable reel 720 Pouring machine cart 722 Lifting mechanism 724 Tilt mechanism 725 Load cell (second weighing scale)
726 Molten surface detection camera 728 Back and forth movement mechanism 840 Traveling carriage 842 Guide column 843 Encoder 844 Lifting frame 845 Load cell (first weighing scale)
846 Ladle moving mechanism 848 Elevating frame elevating device 849 Power receiving device F Melting furnace L1 Treatment ladle L2 Pouring ladle M Mold P1 Loading position P2 Hot water receiving position P3 Reaction position P4 Empty position P5 Transfer position P6 Pouring position R Rail Rf Mold rail Rp Pouring machine rail T Traverser

Claims (13)

  1.  鋳型を造型し、該鋳型を注湯位置まで搬送するとともに、該鋳型に注湯して鋳物を得る鋳造設備を構成する複数の装置の異常の原因を検出するシステムであって、
     前記複数の装置の内の少なくとも一つの装置の稼働に関する情報をモニターし、記憶するサンプリング用PLCと、
     前記複数の装置の稼働に関する情報を複数の前記サンプリング用PLCから受信する異常判定コンピュータであって、前記装置の稼働に関する情報から当該装置の異常を判定し、かつ、前記装置の異常の原因となる前記複数の装置の稼働状態を記憶している異常判定コンピュータとを備え、
     前記複数の装置の内の少なくとも一つの装置の稼働に関する情報から該装置の異常を判定すると、記憶した前記複数の装置の稼働状態に基づいて、受信した前記複数の装置の稼働に関する情報から前記異常の原因となる稼働状態を特定する、
     システム。
    A system for detecting a cause of an abnormality in a plurality of apparatuses constituting a casting facility for forming a mold, transporting the mold to a pouring position, and pouring the mold to obtain a casting,
    A sampling PLC that monitors and stores information relating to the operation of at least one of the plurality of devices;
    An abnormality determination computer that receives information related to operation of the plurality of devices from the plurality of sampling PLCs, determines abnormality of the device from information related to operation of the device, and causes the abnormality of the device An abnormality determination computer storing operation states of the plurality of devices,
    When the abnormality of the device is determined from the information regarding the operation of at least one of the plurality of devices, the abnormality is determined from the received information regarding the operation of the plurality of devices based on the stored operation state of the plurality of devices. Identify the operating conditions that cause
    system.
  2.  前記複数の装置は、当該装置を稼働するための電流値を計測する電流計または電圧値を計測する電圧計を有し、
     前記サンプリング用PLCは、前記電流値または前記電圧値を前記稼働に関する情報としてモニターする、
     請求項1に記載のシステム。
    The plurality of devices have an ammeter for measuring a current value for operating the device or a voltmeter for measuring a voltage value,
    The sampling PLC monitors the current value or the voltage value as information related to the operation.
    The system of claim 1.
  3.  前記複数の装置は、当該装置の騒音を計測する騒音計または振動を計測する振動計を有し、
     前記サンプリング用PLCは、前記騒音または前記振動を前記稼働に関する情報としてモニターする、
     請求項1に記載のシステム。
    The plurality of devices include a sound level meter that measures noise of the device or a vibrometer that measures vibration.
    The sampling PLC monitors the noise or the vibration as information related to the operation.
    The system of claim 1.
  4.  前記サンプリング用PLCと前記異常判定コンピュータとが、スイッチングハブを介してLANによって接続される、
     請求項1に記載のシステム。
    The sampling PLC and the abnormality determination computer are connected by a LAN via a switching hub.
    The system of claim 1.
  5.  前記鋳造設備が、
     鋳型砂から鋳型を造型する造型ユニットと、
     造型された鋳型を搬送する鋳型搬送ユニットと、
     前記鋳型搬送ユニットで搬送された前記鋳型に注湯する注湯ユニットと、
     前記鋳造設備を制御する鋳造設備管理コンピュータとを備え、
     前記造型ユニットは、前記鋳型を造型する造型装置と、該造型装置の動作を制御する造型ユニット制御装置とを有し、
     前記造型ユニット制御装置は、前記鋳造設備管理コンピュータから造型計画データを受け取り、該造型計画データに対応する造型計画で鋳型の造型を行うよう前記造型装置を制御するとともに、造型が完了した鋳型に対して鋳型連番を発行し、該鋳型連番には前記鋳型に関する造型データを関連付け、
     前記鋳型搬送ユニットは、前記鋳型を1鋳型分ずつ搬送する搬送機構と、鋳型が搬送されたことを検出する鋳型位置検出センサと、該鋳型搬送ユニットの動作を制御する鋳型搬送ユニット制御装置とを有し、
     前記鋳型搬送ユニット制御装置は、鋳型を間欠的に搬送するよう前記搬送機構を制御し、前記造型装置で造型され前記搬送機構で搬送可能な状態とされた鋳型の鋳型連番を受信し、前記鋳型位置検出センサで検出される鋳型の動きに合わせて前記鋳型が停止する鋳型位置に割り当てられる前記鋳型連番をずらすことにより、前記鋳型位置と当該鋳型位置にある鋳型の前記鋳型連番を対応させ、
     前記注湯ユニットは、注湯取鍋から鋳型に溶湯を注湯する注湯機と、該注湯機の動作を制御する注湯ユニット制御装置とを有し、
     前記注湯ユニット制御装置は、前記注湯取鍋内の溶湯の溶湯状態データと関連付けられた取鍋連番を受け取り、前記鋳型搬送ユニット制御装置から前記注湯位置にある鋳型の鋳型連番を受け取り、該鋳型連番に対応する注湯計画データに対応する注湯計画で注湯を行うよう前記注湯機を制御するとともに、注湯した注湯取鍋の前記取鍋連番を前記鋳型連番に関連付けて前記鋳造設備管理コンピュータに送信する、
     請求項1ないし4のいずれか1項に記載のシステム。
    The casting equipment is
    A molding unit for molding a mold from mold sand;
    A mold transport unit for transporting the molded mold;
    A pouring unit for pouring the mold carried by the mold carrying unit;
    A casting equipment management computer for controlling the casting equipment,
    The molding unit has a molding device that molds the mold, and a molding unit control device that controls the operation of the molding device,
    The molding unit control device receives the molding plan data from the casting equipment management computer, controls the molding device to mold the mold with the molding plan corresponding to the molding plan data, and for the mold that has been molded The mold serial number is issued, and the mold serial number is associated with molding data relating to the mold,
    The mold transport unit includes a transport mechanism that transports the mold one mold at a time, a mold position detection sensor that detects that the mold has been transported, and a mold transport unit control device that controls the operation of the mold transport unit. Have
    The mold transport unit control device controls the transport mechanism to intermittently transport the mold, receives the mold serial number of the mold that is molded by the molding apparatus and is transportable by the transport mechanism, By shifting the mold serial number assigned to the mold position where the mold stops in accordance with the movement of the mold detected by the mold position detection sensor, the mold position and the mold serial number of the mold at the mold position are associated with each other. Let
    The pouring unit has a pouring machine for pouring molten metal from a pouring ladle into a mold, and a pouring unit control device for controlling the operation of the pouring machine,
    The pouring unit control device receives a ladle serial number associated with the molten state data of the molten metal in the pouring ladle, and receives a mold serial number of the mold at the pouring position from the mold transport unit control device. The pouring machine is controlled to perform pouring in accordance with the pouring plan corresponding to the pouring plan data corresponding to the casting serial number, and the ladle serial number of the poured pouring ladle is the mold. Sending to the casting equipment management computer in association with the serial number,
    The system according to any one of claims 1 to 4.
  6.  前記造型ユニット制御装置が前記異常判定コンピュータを兼ねる、
     請求項5に記載のシステム。
    The molding unit control device also serves as the abnormality determination computer;
    The system according to claim 5.
  7.  前記鋳型搬送ユニット制御装置が前記異常判定コンピュータを兼ねる、
     請求項5に記載のシステム。
    The mold transport unit control device also serves as the abnormality determination computer,
    The system according to claim 5.
  8.  前記注湯ユニット制御装置が前記異常判定コンピュータを兼ねる、
     請求項5に記載のシステム。
    The pouring unit control device also serves as the abnormality determination computer;
    The system according to claim 5.
  9.  前記鋳造設備管理コンピュータが前記異常判定コンピュータを兼ねる、
     請求項5に記載のシステム。
    The casting equipment management computer also serves as the abnormality determination computer;
    The system according to claim 5.
  10.  前記鋳造設備は、
     前記造型ユニットに供給する鋳型砂を造型に適した性状に調整する砂処理ユニットと、
     前記鋳型の中に配置する中子を造型する中子造型ユニットと、
     をさらに備え、
     前記異常判定コンピュータは、前記鋳造設備で鋳造された鋳物の不良の状態と、該不良の前記ユニットにおける原因をマトリックスデータベースで記憶し、前記少なくとも一つの装置の稼働に関する情報から該マトリックスデータベースのデータを用いて装置の不具合を判定する、
     請求項5に記載のシステム。
    The casting equipment is
    A sand treatment unit for adjusting the molding sand supplied to the molding unit to a property suitable for molding;
    A core molding unit for molding a core to be placed in the mold;
    Further comprising
    The abnormality determination computer stores a defect state of a casting cast by the casting equipment and a cause of the defect in the unit in a matrix database, and obtains data of the matrix database from information on operation of the at least one apparatus. To determine the malfunction of the device,
    The system according to claim 5.
  11.  前記マトリックスデータベースは、前記鋳物の不良の状態と、砂処理、造型、中子、注湯、冷却及び後処理の6つの加工点に区分した加工点とを関連付けたものであることを特徴とする請求項10記載のシステム。 The matrix database associates the defective state of the casting with processing points divided into six processing points of sand processing, molding, core, pouring, cooling, and post-processing. The system of claim 10.
  12.  前記鋳造設備は、
     前記判定した不具合に基づき、当該不具合を解消するために、不具合の原因となる装置を調整する調整手段をさらに備える、
     請求項10に記載のシステム。
    The casting equipment is
    Based on the determined defect, the apparatus further includes an adjustment unit that adjusts the apparatus that causes the defect in order to eliminate the defect.
    The system according to claim 10.
  13.  前記調整手段が、前記造型ユニット制御装置、鋳型搬送ユニット制御装置、注湯ユニット制御装置のいずれかであることを特徴とする請求項12記載のシステム。
     
    The system according to claim 12, wherein the adjusting means is any one of the molding unit control device, a mold transport unit control device, and a pouring unit control device.
PCT/JP2018/001708 2017-02-03 2018-01-22 System for detecting causes of abnormalities in plurality of devices constituting casting equipment WO2018142977A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880002520.2A CN109414759A (en) 2017-02-03 2018-01-22 The system that the abnormal reason for the multiple devices for constituting Casting Equipment is detected

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-018486 2017-02-03
JP2017018486A JP6624100B2 (en) 2017-02-03 2017-02-03 A system that detects the cause of abnormalities in multiple devices that make up a casting facility

Publications (1)

Publication Number Publication Date
WO2018142977A1 true WO2018142977A1 (en) 2018-08-09

Family

ID=63040619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001708 WO2018142977A1 (en) 2017-02-03 2018-01-22 System for detecting causes of abnormalities in plurality of devices constituting casting equipment

Country Status (4)

Country Link
JP (1) JP6624100B2 (en)
CN (1) CN109414759A (en)
TW (1) TW201840377A (en)
WO (1) WO2018142977A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112351057A (en) * 2019-08-07 2021-02-09 耐驰-仪器制造有限公司 Data acquisition system, system and method for real-time on-line monitoring of industrial manufacturing processes
TWI820612B (en) * 2021-10-18 2023-11-01 大陸商深圳富聯富桂精密工業有限公司 Method for detecting abnormities of stamping equipment,device,equipment and storage medium using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109784512A (en) * 2019-02-13 2019-05-21 上海大学 A kind of method of traffic infrastructure causes of defects retrospect

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732132A (en) * 1993-07-19 1995-02-03 Kawasaki Heavy Ind Ltd Method and device for assisting work in casting process
JP2001191174A (en) * 2000-01-05 2001-07-17 Sintokogio Ltd Method of monitoring for operation of sandmold casting equipment and device of monitoring
JP2004330264A (en) * 2003-05-09 2004-11-25 Asahi Tec Corp Method and device for controlling operation situation in automatic casting system
JP2016203195A (en) * 2015-04-17 2016-12-08 新東工業株式会社 Data management system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2946892B2 (en) * 1991-12-12 1999-09-06 株式会社豊田自動織機製作所 Loom diagnostic system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732132A (en) * 1993-07-19 1995-02-03 Kawasaki Heavy Ind Ltd Method and device for assisting work in casting process
JP2001191174A (en) * 2000-01-05 2001-07-17 Sintokogio Ltd Method of monitoring for operation of sandmold casting equipment and device of monitoring
JP2004330264A (en) * 2003-05-09 2004-11-25 Asahi Tec Corp Method and device for controlling operation situation in automatic casting system
JP2016203195A (en) * 2015-04-17 2016-12-08 新東工業株式会社 Data management system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112351057A (en) * 2019-08-07 2021-02-09 耐驰-仪器制造有限公司 Data acquisition system, system and method for real-time on-line monitoring of industrial manufacturing processes
EP3786731A1 (en) * 2019-08-07 2021-03-03 Netzsch-Gerätebau GmbH Data acquisition system, system and method for real-time in-line monitoring of industrial production processes
US11493907B2 (en) 2019-08-07 2022-11-08 Netzsch Process Intelligence Gmbh Data acquisition system, system and method for real-time in-line monitoring of industrial manufacturing processes
TWI820612B (en) * 2021-10-18 2023-11-01 大陸商深圳富聯富桂精密工業有限公司 Method for detecting abnormities of stamping equipment,device,equipment and storage medium using the same

Also Published As

Publication number Publication date
CN109414759A (en) 2019-03-01
JP6624100B2 (en) 2019-12-25
JP2018122350A (en) 2018-08-09
TW201840377A (en) 2018-11-16

Similar Documents

Publication Publication Date Title
JP6472899B2 (en) Method of managing casting mold data and molten metal state data in casting equipment and casting equipment
JP6856077B2 (en) Information display system in casting equipment
WO2010146908A1 (en) Method for supplying molten metal to automatic pouring machine and facility therefor
WO2018142977A1 (en) System for detecting causes of abnormalities in plurality of devices constituting casting equipment
KR102291995B1 (en) Molten metal conveying system and method
CN104936726B (en) Test specimen acquisition method, test specimen data managing method and test specimen model
US7475716B2 (en) Foundry mold handling system with multiple dump outputs and method
EP3269471B1 (en) Method for managing casting process on basis of property of molding sand
CN112203785A (en) Management system and management method
JP5408797B2 (en) Pouring facilities
WO2019064726A1 (en) Method and device for detecting operational failure in casting line
JPH04167965A (en) Apparatus for cooling mold
CN117718446A (en) System for casting ladle wire feeding spheroidization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748620

Country of ref document: EP

Kind code of ref document: A1