WO2018142968A1 - Electrolyte solution, secondary battery and method for producing electrolyte solution - Google Patents
Electrolyte solution, secondary battery and method for producing electrolyte solution Download PDFInfo
- Publication number
- WO2018142968A1 WO2018142968A1 PCT/JP2018/001585 JP2018001585W WO2018142968A1 WO 2018142968 A1 WO2018142968 A1 WO 2018142968A1 JP 2018001585 W JP2018001585 W JP 2018001585W WO 2018142968 A1 WO2018142968 A1 WO 2018142968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnesium
- electrolytic solution
- solvent
- solution according
- ions
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0045—Room temperature molten salts comprising at least one organic ion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrolytic solution, a secondary battery, and a method for producing the electrolytic solution. More specifically, the present invention relates to an electrolyte containing magnesium, a secondary battery, and a method for producing the electrolyte.
- magnesium secondary batteries that use magnesium for the negative electrode are attracting attention as “next-generation secondary batteries”.
- Magnesium secondary batteries have advantages over lithium ion secondary batteries in that they have a large amount of electricity available per volume, are rich in metal resources, are inexpensive, and are highly safe in the air. It is.
- the electrolyte solution for a magnesium secondary battery is required to have a characteristic of retaining a sufficient amount of magnesium ions and efficiently causing a dissolution reaction and a precipitation reaction with the negative electrode (metallic magnesium). .
- Patent Document 1 discloses an electrolytic solution in which a magnesium salt is dissolved in a solvent made of sulfone.
- the literature also describes, as a method for producing the electrolytic solution, (1) a step of dissolving a magnesium salt in a low-boiling solvent (for example, alcohol) in which the magnesium salt can be dissolved, (2) a solution obtained in (1) And (3) a step of removing the low boiling point solvent from the solution obtained in (2).
- a low-boiling solvent for example, alcohol
- Patent Document 2 discloses an ion conductive medium containing magnesium ions, a halogen, and a non-aqueous solvent. According to this document, halogen and a non-aqueous solvent form a molecular complex in the ion conductive medium.
- Japanese Patent Publication Japanese Patent Laid-Open No. 2014-072031 (published on April 21, 2014)” Japanese Patent Publication “JP 2013-037993 A (published on February 21, 2013)”
- An object of one embodiment of the present invention is to provide an electrolytic solution capable of maintaining a high magnesium ion concentration.
- the present inventors have found that the above problem can be solved by an electrolytic solution produced by a method in which metallic magnesium and simple halogen are dissolved in a solvent. That is, the present invention includes the following.
- the magnesium atom having a coordination number of 4 accounts for 95% or more of the total number of magnesium atoms when analyzed by the soft X-ray fluorescence XAFS method. Electrolyte of description.
- ⁇ 5> The electrolyte solution according to any one of ⁇ 1> to ⁇ 4>, wherein the solvent is an organic solvent or an ionic liquid.
- ⁇ 6> The electrolyte solution according to any one of ⁇ 1> to ⁇ 5>, wherein the solvent is a sulfone solvent.
- ⁇ 7> The electrolyte solution according to any one of ⁇ 1> to ⁇ 6>, which contains bromide ions or iodide ions as halide ions.
- a secondary battery comprising the electrolytic solution according to any one of ⁇ 1> to ⁇ 7>.
- the manufacturing method of electrolyte solution including the process of mixing a solvent, metallic magnesium, and a single-piece
- ⁇ 12> The method for producing an electrolytic solution according to any one of ⁇ 9> to ⁇ 11>, wherein the solvent is an organic solvent or an ionic liquid.
- ⁇ 14> The method for producing an electrolytic solution according to any one of ⁇ 9> to ⁇ 13>, wherein the single halogen is a bromine molecule or an iodine molecule.
- an electrolytic solution that can maintain a high magnesium ion concentration is provided.
- (A) is a cyclic voltammogram showing the cyclic voltammetry measurement result of the electrolyte solution which concerns on one Embodiment of this invention.
- (B) is a cyclic voltammogram showing the cyclic voltammetry measurement result of the electrolyte solution described in Patent Document 1.
- (A) is the electron microscope image which image
- the bright part is metal magnesium deposited, and the dark part is nickel of the substrate.
- (B) is an element mapping image obtained by analyzing the same range as (a) by energy dispersive X-ray analysis (EDX) and color-coding each element.
- EDX energy dispersive X-ray analysis
- (C) shows the analysis result in (b) as a mapping spectrum. It is a graph showing the result of having analyzed the electrolyte solution (solid line) which concerns on one Embodiment of this invention, and the magnesium perchlorate aqueous solution (broken line) by the soft X ray fluorescence XAFS method. In addition, the broken line is a reference curve representing the analysis result when the solvent molecule is 6-coordinated to the magnesium atom.
- (A) shows the progress of the initial stage (1st cycle to 10th cycle) when imposing a constant current charge / discharge test on the electrolytic solution according to one embodiment of the present invention under the conditions assuming the operation as a battery. It is a graph to represent.
- (B) is a graph showing the course of the final stage of the same test as in (a) (cycles 5011 to 5014). 4th cycle, 400th cycle, 600th cycle, 800th cycle, 1000th cycle when the constant current charge / discharge test is imposed on the electrolyte solution according to the embodiment of the present invention under conditions different from those in FIG. It is a graph showing the behavior of 1100th cycle.
- (A)-(c) is a cyclic voltammogram showing the cyclic voltammetry measurement result of the electrolyte solution which concerns on other embodiment of this invention.
- Each type of solvent is changed.
- (A)-(d) is a cyclic voltammogram showing the cyclic voltammetry measurement result of the electrolyte solution which concerns on other embodiment of this invention. In each case, the types of simple halogen and solvent are changed.
- the electrolytic solution according to an embodiment of the present invention is an electrolytic solution obtained by mixing a solvent, metallic magnesium, and a single halogen.
- the electrolyte solution which concerns on one Embodiment of this invention is also an electrolyte solution containing a solvent, magnesium ion, and halide ion.
- each component will be described in order.
- solvent If the solvent which the electrolyte solution which concerns on one Embodiment of this invention contains is a solvent normally used when manufacturing electrolyte solution, it will not specifically limit. Examples of such solvents include organic solvents and ionic liquids.
- organic solvent examples include sulfone solvents (dimethylsulfone, methylisopropylsulfone, ethylmethylsulfone, ethylisopropylsulfone, ethylisobutylsulfone (EiBS), dipropylsulfone, isopropyl-s-butylsulfone (iPsBS), isopropyl Isobutyl sulfone (iPiBS), butyl isobutyl sulfone (BiBS), sulfolane, etc.), ether solvents (2-methyltetrahydrofuran, dimethoxyethane, dioxolane, monoglyme (G1), diglyme (G2), triglyme (G3), tetraglyme (G4) ) Etc.).
- sulfone solvents dimethylsulfone, methylisopropylsulfone,
- Examples of other ether solvents include a mixed solvent of dimethoxyethane and dioxolane.
- sulfone solvents methyl isopropyl sulfone, ethyl isopropyl sulfone, dipropyl sulfone, and sulfolane are preferable, and ethyl isopropyl sulfone is more preferable.
- 2-methyltetrahydrofuran is preferable.
- Examples of the ionic liquid include DEMETFSI (Dimethylmethyl (2-methoxyethyl) ammoniumbis (trifluoromethylsulfonyl) imide), DEMEBF4 (Diethylmethyl (2-methoxyethyl) ammoniumtetrafluoroborate), EMIBF4 (1-Ethyl-3-methylimidazoliumtetrafluoroborate), EMITFSI (1-Ethyl -3-methylimidazolium (bis (trifluoromethanesulfonyl) imide)) EMISI (1-Ethyl-3-methylimidazolium (bis (fluorosulfonyl) imide)) and the like. From the viewpoint that the electrochemical properties of the electrolytic solution are excellent, DEMETFSI is preferable among the ionic liquids.
- an organic solvent or an ionic liquid is preferable from the viewpoint that the electrochemical properties of the electrolytic solution are excellent.
- sulfone solvents and ether solvents are more preferable.
- the sulfone solvent is more preferable.
- methyl isopropyl sulfone, ethyl isopropyl sulfone, dipropyl sulfone, and sulfolane are particularly preferable, and ethyl isopropyl sulfone is further particularly preferable.
- the solvent mentioned above may contain only one type, or two or more types.
- the electrolytic solution according to one embodiment of the present invention contains magnesium ions.
- the metallic magnesium of the negative electrode is dissolved in the electrolytic solution as magnesium ions during discharge, and the magnesium ion in the electrolytic solution is deposited on the negative electrode as metallic magnesium during charging. For this reason, in order to increase the battery output, it is necessary to sufficiently increase the magnesium ion concentration in the electrolytic solution.
- the magnesium ion concentration in the electrolytic solution according to an embodiment of the present invention is preferably 0.50 mol / L or more, more preferably 0.55 mol / L or more, and 0.75 mol / L with respect to the total amount of the electrolytic solution. Further preferred. If the magnesium ion concentration in the electrolytic solution is 0.50 mol / L or more, sufficient battery output can be obtained when the battery is manufactured.
- the magnesium ion concentration in the electrolytic solution according to an embodiment of the present invention is suitably about 1.00 mol / L or less with respect to the total amount of the electrolytic solution.
- this value is merely an example and is not intended to limit the present invention.
- the coordination number of solvent molecules with respect to one magnesium atom is preferably 4.
- a magnesium atom in such a state has (1) higher solubility in a solvent and higher magnesium ion concentration than a magnesium atom having a coordination number of 6 solvent molecules to one magnesium atom.
- the coordination number of the solvent with respect to the magnesium atom in the electrolytic solution can be known, for example, by the soft X-ray fluorescence XAFS method (for details, see Example 3).
- the proportion of the magnesium atom having the coordination number of 4 can also be calculated.
- the soft X-ray fluorescence XAFS method is a technique for irradiating a sample with soft X-rays and measuring and analyzing the fluorescent X-rays emitted secondarily.
- the structure of a specific atom in a sample can be known by analyzing the fluorescent X-ray and obtaining a radial structure function.
- Yasuo Udagawa,“ X-ray absorption fine structure: XAFS measurement and analysis Society of Science Publishing Center, 1993
- Toshiaki Ota,“ X-ray absorption spectroscopy: XAFS and its applications ” PC, 2002 See, for example, “Yasuo Udagawa,“ X-ray absorption fine structure: XAFS measurement and analysis ”, Society of Science Publishing Center, 1993; Toshiaki Ota,“ X-ray absorption spectroscopy: XAFS and its applications ” PC, 2002].
- magnesium atoms having a coordination number of 4 occupy 95% or more of the total magnesium atoms when analyzed by the soft X-ray fluorescence XAFS method. More preferably 97% or more, and even more preferably 99% or more. If magnesium atoms having a coordination number of 4 occupy 95% or more of all magnesium atoms, it can be said that the solubility of magnesium in the solvent and the reaction activity of magnesium atoms are sufficiently high.
- the electrolytic solution according to one embodiment of the present invention contains halide ions. From the viewpoint of not corroding the magnesium electrode, it is preferable that no non-ionized single halogen exists in the solvent. In addition, according to the manufacturing method which concerns on one Embodiment of this invention mentioned later, since a single-piece
- single halogen means a fluorine molecule (F 2 ), a chlorine molecule (Cl 2 ), a bromine molecule (Br 2 ), or an iodine molecule (I 2 ).
- halide ion means fluoride ion (F ⁇ ), chloride ion (Cl ⁇ ), bromide ion (Br ⁇ ) or iodide ion (I ⁇ ).
- the halide ions dissolved in the electrolyte solution according to one embodiment of the present invention are preferably bromide ions or iodide ions, and more preferably iodide ions.
- the concentration of halide ions dissolved in the electrolytic solution according to one embodiment of the present invention is not particularly limited. From the viewpoint of improving the production yield of the electrolytic solution, the concentration of halide ions dissolved in the electrolytic solution according to one embodiment of the present invention is preferably 0.5 mol / L or more, and 0.55 mol / L or more. Is more preferable, and 0.75 mol / L or more is more preferable.
- the concentration of halide ions in the electrolytic solution according to one embodiment of the present invention is suitably about 0.90 mol / L or less with respect to the total amount of the electrolytic solution. is there.
- this value is merely an example and is not intended to limit the present invention.
- Only one type of halide ion described above may be included, or two or more types may be included.
- the electrolytic solution according to one embodiment of the present invention may contain components other than those described above.
- examples of such components include Lewis bases (such as magnesium ethoxide).
- the manufacturing method of the electrolyte solution which concerns on one Embodiment of this invention includes the process of mixing a solvent, metallic magnesium, and single-piece
- the order in which each component is mixed is not particularly limited. That is, the solvent and metal magnesium may be mixed first, the solvent and single halogen may be mixed first, or the metal magnesium and single halogen may be mixed first. Moreover, you may mix three components with a solvent simultaneously. From the viewpoint of improving the production yield of the electrolytic solution, it is preferable to mix the simple halogen and the solvent first, and then mix the magnesium metal and the solvent.
- the manufacturing method of the electrolyte solution which concerns on one Embodiment of this invention may also include another process.
- a redox reaction using metallic magnesium as a reducing agent and single halogen as an oxidizing agent occurs in a solvent, and magnesium ions are generated.
- a conventional manufacturing method for example, a manufacturing method described in Patent Document 1 in which a magnesium salt is dissolved in a solvent.
- the present inventors have found that an electrolytic solution having a magnesium concentration higher than that of the conventional manufacturing method can be manufactured by the above manufacturing method, and have completed the present invention.
- the magnesium metal used in the method for producing an electrolytic solution according to an embodiment of the present invention is a metal containing magnesium as a main component (for example, a metal in which magnesium accounts for 95% by weight or more with 100% by weight of the total weight of the metal) If there is, the purity is not particularly limited. From the viewpoint of minimizing unexpected reactions due to impurities, the purity of the metallic magnesium is preferably 96% by weight or more, more preferably 98% by weight or more, and further preferably 99.9% by weight or more.
- the purity of the metal magnesium is suitably about 99.99% by weight or less.
- this value is merely an example and is not intended to limit the present invention.
- the amount of magnesium metal used in the method for producing an electrolytic solution according to one embodiment of the present invention is preferably large excess (for example, 4 times or more the weight of the single halogen) with respect to the single halogen.
- the single halogen used in the method for producing an electrolyte solution according to an embodiment of the present invention is a single halogen as a main component (for example, the total weight including impurities is 100 wt%, the single halogen occupies 99 wt% or more).
- the purity is not particularly limited. From the viewpoint of minimizing unexpected reactions due to impurities, the single-body halogen purity is preferably 99% by weight or more, more preferably 99.9% by weight or more, and even more preferably 99.99% by weight or more.
- the purity of the single halogen is suitably about 99.999% by weight or less.
- this value is merely an example and is not intended to limit the present invention.
- mold halogen may use only 1 type and may use 2 or more types together.
- halogen is added to a solvent and dissolved (or dispersed).
- Metal magnesium is then added to the solution.
- an oxidation-reduction reaction occurs between the halogen in the solvent and the magnesium metal.
- the electrolytic solution according to one embodiment of the present invention can be produced.
- a secondary battery can be produced by combining a positive electrode and a negative electrode with the electrolytic solution according to one embodiment of the present invention.
- the material, shape, and the like of the positive electrode, the negative electrode, and other members (separator, etc.) can be appropriately selected by those skilled in the art.
- An example of a more specific manufacturing method is described in [Example 5] below.
- the material of the negative electrode is usually metallic magnesium.
- the material for the positive electrode include vanadium pentoxide, molybdenum sulfide, magnesium-containing oxide, and transition metal oxide.
- the material of the negative electrode is usually metallic magnesium.
- the positive electrode material include, in addition to carbon (C), platinum (Pt), ruthenium (Ru), iridium (Ir), rhodium (Rh), palladium (Pd), and osmium (Os).
- the above embodiment is an electrolytic solution prepared by dissolving a simple halogen in a sulfone solvent and then mixing a sufficient amount of metallic magnesium so that the simple halogen is completely reacted.
- a simple halogen in a sulfone solvent
- metallic magnesium so that the simple halogen is completely reacted.
- other embodiments may be optimal depending on various conditions and purposes.
- a high magnesium ion concentration exceeding 0.50 mol / L can be achieved while using a sulfone solvent that can withstand practical use (long battery life). Further, since magnesium ions are generated without using an auxiliary solvent and / or an additive, the number of production steps can be reduced.
- the present invention includes the following configurations.
- the magnesium atom having a coordination number of 4 accounts for 95% or more of the total number of magnesium atoms when analyzed by the soft X-ray fluorescence XAFS method, according to ⁇ 1> or ⁇ 2> Electrolytic solution.
- ⁇ 4> The electrolytic solution according to any one of ⁇ 1> to ⁇ 3>, wherein the solvent is an organic solvent or an ionic liquid.
- ⁇ 5> The electrolytic solution according to any one of ⁇ 1> to ⁇ 4>, wherein the solvent is a sulfone solvent.
- ⁇ 6> The electrolytic solution according to any one of ⁇ 1> to ⁇ 5>, wherein the halide ion is a bromide ion or an iodide ion.
- a secondary battery comprising the electrolytic solution according to any one of ⁇ 1> to ⁇ 6>.
- ⁇ 8> A method for producing an electrolytic solution, comprising a step of mixing a solvent, metallic magnesium, and simple halogen.
- ⁇ 12> The method for producing an electrolytic solution according to any one of ⁇ 8> to ⁇ 11>, wherein the solvent is a sulfone solvent.
- ⁇ 13> The method for producing an electrolytic solution according to any one of ⁇ 8> to ⁇ 12>, wherein the single halogen is a bromine molecule or an iodine molecule.
- An electrolytic solution according to an embodiment of the present invention was prepared by the following method. The measurement of the reagent and the mixing of the reagent and the solvent were performed in a glove box (argon atmosphere, dew point: ⁇ 80 to ⁇ 90 ° C.).
- electrolyte solution A an electrolyte solution according to an embodiment of the present invention (hereinafter referred to as “electrolyte solution A”) was obtained as a supernatant liquid in which unreacted metallic magnesium was precipitated.
- the magnesium concentration of the prepared electrolytic solution A was 0.55 mol / L. In addition, it was confirmed that the magnesium concentration was increased to 3.5 mol / L at the maximum by the same manufacturing method.
- Example 1 In order to examine the electrochemical characteristics of the electrolyte A, cyclic voltammetry (CV) measurement was performed.
- a triode cell electroactive polymer (electrolyte volume 0.7 mL; manufactured by BAS, VC-4) was used.
- a nickel (Ni) substrate (diameter 10 mm) was used as a working electrode, and magnesium (Mg) pellets (diameter 12 mm; manufactured by Rare Metallic) and magnesium wires (diameter 1.6 mm; manufactured by Rare Metallic) were used as a counter electrode and a reference electrode.
- the measurement was performed at room temperature and atmospheric pressure.
- the potential of the working electrode with respect to the reference electrode was changed in the order of OCV ⁇ ⁇ 0.7V ⁇ about +1.0 to 2.0V ⁇ OCV.
- the speed at which the potential was inserted was 20 mV / s.
- FIG. 1A A cyclic voltammogram representing the result is shown in FIG. According to the figure, when the potential is swept in the negative direction, a response current is generated from the time of 0 V (see point A). This indicates that magnesium precipitation actually starts at a theoretical potential at which magnesium precipitation begins thermodynamically. That is, it shows that the precipitation reaction of magnesium proceeds without causing overvoltage. Similarly, when the potential is swept in the positive direction, it can be read from FIG. 1A (see point B) that the magnesium dissolution reaction proceeds without causing overvoltage.
- FIG. 1 a cyclic voltammogram of the electrolytic solution described in Patent Document 1 which is a prior art is shown in FIG.
- the above electrolyte was prepared by dissolving magnesium chloride (II) in dehydrated methanol, mixing it with ethyl-n-propylsulfone (EnPS), and removing the methanol under reduced pressure.
- the response current when the potential is swept in the negative direction is generated from around ⁇ 1V (see point C). That is, a reaction resistance is generated between 0V and 1V, and the precipitation of magnesium does not start (overvoltage is generated). Similarly, when the potential is swept in the positive direction, a slight overvoltage is observed (see point D). This difference is derived from the fact that in the electrolytic solution described in Patent Document 1, magnesium atoms having six coordinated solvent molecules and magnesium atoms having four coordinated solvent molecules are mixed. Conceivable.
- the current density in FIG. 1A is on the order of A / cm 2
- the current density in FIG. 1B is on the order of mA / cm 2 . That is, the electrolytic solution A has succeeded in extracting a current about 1000 times that of the prior art.
- Example 2 From the electrolytic solution A, it was confirmed that metallic magnesium was deposited.
- Example 2-1 It was confirmed by electron microscopy that metallic magnesium was deposited.
- Electrolytic solution A was injected into a triode cell (electrolytic solution amount 2.0 mL; manufactured by BAS, VC-4), a nickel electrode was inserted into the working electrode, and magnesium metal was inserted into the counter electrode and the reference electrode. Next, a current of 1 mA / cm 2 was passed between the working electrode and the counter electrode for 10 minutes. Thereafter, the working electrode to which the deposit was attached was immersed in EiPS, washed, dried under reduced pressure, and then the deposit on the working electrode was observed with a scanning electron microscope (manufactured by Hitachi hightech). The acceleration voltage of the electron gun filament was 15 kV, and the current was 40.0 mA.
- Example 2-2 Energy dispersive X-ray analysis (EDX) was performed using an energy dispersive X-ray analyzer (Genesis XM2 manufactured by Edax Japan) to analyze the elements of the precipitate.
- EDX Energy dispersive X-ray analysis
- Example 3 The electrolyte solution A was analyzed by the soft X-ray XAFS method, and the state of magnesium atoms contained therein was investigated.
- an aqueous magnesium perchlorate solution was analyzed by a soft X-ray XAFS method to obtain a radial structure function.
- the magnesium perchlorate aqueous solution was prepared by dissolving magnesium perchlorate (manufactured by Wako Pure Chemical Industries, Ltd.) in water to 0.55 M and stirring with a stirrer in the atmosphere.
- the magnesium perchlorate aqueous solution will coordinate 6 water molecules with respect to a magnesium atom.
- the radial structure functions of the electrolytic solution A (solid line) and the magnesium perchlorate aqueous solution (broken line) are shown in FIG.
- the horizontal axis of the graph represents the distance from the center of the magnesium atom, and the peak size of the radial structure function is proportional to the number of atoms.
- a magnesium perchlorate aqueous solution it is known that water molecules are six-coordinated to magnesium atoms, and therefore, the broken line can be regarded as a function in the case of six-coordinates.
- the ratio between the peak intensity of the electrolyte A and the peak intensity of the magnesium perchlorate aqueous solution is 4. 015: 6.00. That is, in the electrolytic solution A, four atoms are present in the vicinity of most of the magnesium atoms. This suggests that the sulfone solvent molecule is 4-coordinated around the magnesium atom.
- the coordination number of the solvent molecule to the magnesium atom is either tetracoordinate or hexacoordinate
- 99.25% of the total magnesium atom is tetracoordinate and 0.75% is It will be 6-coordinated.
- the electrolytic solution A is a preferable state as an electrolytic solution.
- Example 4 A constant current charge / discharge test was imposed on the electrolytic solution A under conditions assuming operation as a battery.
- Electrolyte solution A0.5mL was poured into a bipolar cell (made by Hosen), and a nickel electrode was inserted into the working electrode and metallic magnesium was inserted into the counter electrode. Prior to repeated charging and discharging, precharging at 10 C / cm 2 was performed to deposit metallic magnesium. Then, (1) the current 1.0 mA / cm 2 flowed 500 seconds toward the working electrode to the counter electrode, (2) passing a current of 1.0 mA / cm 2 for 500 seconds toward the working electrode to the counter electrode, it Repeated charging and discharging. Note that the current flowing under these conditions is a current corresponding to repeating dissolution and precipitation in 5% of the metal magnesium initially precipitated. The charge / discharge cycle was repeated until dissolution and precipitation of metallic magnesium could not be repeated, and the cycle efficiency was calculated according to the following formula.
- N represents the number of cycles.
- x represents the amount of electricity (C / cm 2 ) per unit area charged by the preliminary charging.
- y (charge) represents the amount of electricity (C / cm 2 ) used to deposit Mg on the working electrode, and y (discharge) represents the amount of electricity (C / cm 2 ) used to dissolve Mg deposited on the working electrode. cm 2 ).
- Example 4-2 A constant current charge / discharge test was imposed on the electrolytic solution A under other conditions assuming operation as a battery. Specifically, a constant current charge / discharge test was imposed under the same conditions as in Example 4-1, except that the current flow time was changed to 5000 seconds. The current flowing under these conditions is a current corresponding to repeating dissolution and precipitation in 50% of the metal magnesium initially precipitated. In this example, the number of charge / discharge cycles was 1100, and the cycle efficiency was adjusted to be equivalent to that of Example 4-1.
- FIG. 5 shows the progress of the 200th cycle, 400th cycle, 600th cycle, 800th cycle, 1000th cycle, and 1100th cycle. From the figure, it can be seen that the dissolution and precipitation behavior of magnesium is stable even when the charge / discharge cycle is repeated. The actual capacity when reaching 1100 cycles was 50 mAh / cm 3 . The overvoltage generated in this test was about 1V.
- Example 5 The electrolyte solution A, the negative electrode, and the positive electrode were combined to produce a magnesium secondary battery. Furthermore, a constant current charge / discharge test was imposed on the magnesium secondary battery.
- a coin battery was manufactured using magnesium (Mg) for the negative electrode, vanadium pentoxide (V 2 O 5 ) for the positive electrode, and electrolytic solution A for the electrolytic solution.
- the method for producing the coin battery is as follows. Place the gasket coin battery can further (Mg pellets thickness 200 [mu] m), (stainless steel plate having a thickness of 500 [mu] m) spacer its cathode on (V 2 O 5 pellets of thickness 30 [mu] m), polyolefin separator, a negative electrode, the washer The coin battery lids were stacked in this order. Thereafter, 100 ⁇ L of electrolyte solution A was injected, and the coin battery can was crimped and sealed.
- the progress of the 1st cycle, 5th cycle, 10th cycle, and 20th cycle is shown in FIG.
- the positive electrode of the battery manufactured in this example has magnesium insertion reaction: V 2 O 5 + nMg 2+ + 2ne ⁇ ⁇ Mg n V 2 O 5 and magnesium elimination reaction: Mg n V 2 O 5 ⁇ V 2 O 5. + NMg 2+ + 2ne ⁇ is repeated. From FIG. 6, it can be seen that even when the charge / discharge cycle is repeated, curves corresponding to the insertion and desorption reactions of magnesium are obtained, and the reaction is stable.
- Example 6 Electrolytic solutions were prepared by changing the type of solvent, and cyclic voltammetry measurement was performed using each electrolytic solution.
- the solvents in the production examples are (a) 2-methyltetrahydrofuran (ether solvent; manufactured by Tokyo Chemical Industry), (b) methylisopropylsulfone (MiPS; sulfone solvent; manufactured by Tokyo Chemical Industry), (c) sulfolane (
- the electrolyte solution was prepared by changing to a sulfone solvent (manufactured by Tokyo Chemical Industry Co., Ltd.), and cyclic voltammetry measurement was performed in the same manner as in Example 1.
- the measurement of the electrolytic solution using 2-methyltetrahydrofuran as a solvent was performed in an extremely low humidity environment using a glove box.
- FIGS. 7A to 7C Each cyclic voltammogram is shown in FIGS. 7A to 7C. From these figures, it can be seen that even when the electrolyte was prepared by changing the solvent, the potential at which magnesium dissolution and precipitation began did not change. It can also be seen that no overvoltage condition has occurred. This fact suggests that the structures of magnesium complexes related to magnesium dissolution and precipitation are similar (presumed to be 4-coordinated by solvent molecules).
- Electrolytic solutions were prepared by changing the single halogen to bromine molecules and changing the type of solvent, and cyclic voltammetry measurement was performed when each electrolytic solution was used.
- the iodine in the production example was changed to bromine (5 g; manufactured by Wako Pure Chemical Industries), and the solvent was further changed to (a) DEMETFSI (Diethylmethyl (2-methoxyethyl) ammoniumbis (trifluoromethylsulfonyl) imide; ionic liquid; manufactured by Kishida Chemical Co., Ltd.) ), (B) methyl isopropyl sulfone (MiPS; sulfone solvent; manufactured by Tokyo Kasei), (c) dipropyl sulfone (DnPS; sulfone solvent; manufactured by Tokyo Chemical Industry) (d) sulfolane (sulfone solvent; manufactured by Tokyo Chemical Industry)
- the electrolyte solution was prepared by changing to, and cyclic voltam
- FIG. 8 (a) to (d) Each cyclic voltammogram is shown in FIG. 8 (a) to (d). From these figures, even when the electrolyte was prepared by changing the simple halogen and the solvent, the potential at which magnesium was dissolved and precipitated was almost the same as in Example 1 when a solvent other than DEMETFSI was used. Similarly, it can also be seen that when a solvent other than DEMETFSI is used, no overvoltage condition has occurred. Further, even when DEMETFSI is used as a solvent, a response current is generated from about ⁇ 0.5 V, and the dissolution of magnesium starts at an earlier stage than the prior art (see, for example, FIG. 1B). It will be. This fact suggests that the structures of magnesium complexes related to magnesium dissolution and precipitation are similar (presumed to be 4-coordinated by solvent molecules).
- the present invention can be used for, for example, a magnesium secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Provided is an electrolyte solution which is capable of maintaining a high magnesium ion concentration. An electrolyte solution according to one embodiment of the present invention is obtained by mixing a solvent, magnesium metal and an elemental halogen.
Description
本発明は、電解液、二次電池および電解液の製造方法に関する。より具体的には、本発明は、マグネシウムを含有する電解液、二次電池および電解液の製造方法に関する。
The present invention relates to an electrolytic solution, a secondary battery, and a method for producing the electrolytic solution. More specifically, the present invention relates to an electrolyte containing magnesium, a secondary battery, and a method for producing the electrolyte.
二次電池として現在広く用いられているリチウムイオン二次電池に対し、負極にマグネシウムを用いるマグネシウム二次電池が、「次世代の二次電池」として注目を集めている。マグネシウム二次電池は、体積当たりの利用可能な電気量が多いこと、金属資源が豊富で安価であること、空気中での安全性が高いことなどの点において、リチウムイオン二次電池よりも有利である。
In contrast to lithium ion secondary batteries that are currently widely used as secondary batteries, magnesium secondary batteries that use magnesium for the negative electrode are attracting attention as “next-generation secondary batteries”. Magnesium secondary batteries have advantages over lithium ion secondary batteries in that they have a large amount of electricity available per volume, are rich in metal resources, are inexpensive, and are highly safe in the air. It is.
マグネシウム二次電池は、放電の際には金属マグネシウムがマグネシウムイオンとして溶解し、逆に充電時にはマグネシウムイオンが金属マグネシウムとして析出する。このため、マグネシウム二次電池用の電解液には、充分な量のマグネシウムイオンを保持し、かつ負極(金属マグネシウム)との間において溶解反応および析出反応を効率的に生じさせるという特性が求められる。
In a magnesium secondary battery, metallic magnesium dissolves as magnesium ions during discharge, and conversely, magnesium ions precipitate as metallic magnesium during charging. For this reason, the electrolyte solution for a magnesium secondary battery is required to have a characteristic of retaining a sufficient amount of magnesium ions and efficiently causing a dissolution reaction and a precipitation reaction with the negative electrode (metallic magnesium). .
このような電解液の例として、特許文献1は、スルホンからなる溶媒にマグネシウム塩を溶解させた電解液を開示している。同文献はまた、上記電解液の製造方法として、(1)マグネシウム塩が溶解することのできる低沸点溶媒(例えば、アルコール)にマグネシウム塩を溶解させる工程、(2)(1)で得た溶液にスルホンを溶解させる工程、(3)(2)で得た溶液から上記低沸点溶媒を除去する工程、を有する製造方法を開示している。
As an example of such an electrolytic solution, Patent Document 1 discloses an electrolytic solution in which a magnesium salt is dissolved in a solvent made of sulfone. The literature also describes, as a method for producing the electrolytic solution, (1) a step of dissolving a magnesium salt in a low-boiling solvent (for example, alcohol) in which the magnesium salt can be dissolved, (2) a solution obtained in (1) And (3) a step of removing the low boiling point solvent from the solution obtained in (2).
また、特許文献2は、マグネシウムイオン、ハロゲンおよび非水系溶媒を含むイオン電導媒体を開示している。同文献によれば、上記イオン電導媒体中では、ハロゲンと非水系溶媒とが分子錯体を形成している。
Patent Document 2 discloses an ion conductive medium containing magnesium ions, a halogen, and a non-aqueous solvent. According to this document, halogen and a non-aqueous solvent form a molecular complex in the ion conductive medium.
しかしながら、上述のような従来技術には、電解液中のマグネシウムイオン濃度を充分に高くすることができないために、電池出力の点において改善の余地が残されていた。
However, the conventional techniques as described above have room for improvement in terms of battery output because the magnesium ion concentration in the electrolytic solution cannot be sufficiently increased.
本発明の一態様は、高いマグネシウムイオン濃度を保持することができる電解液を提供することを目的とする。
An object of one embodiment of the present invention is to provide an electrolytic solution capable of maintaining a high magnesium ion concentration.
本発明者らは、金属マグネシウムおよび単体ハロゲンを溶媒に溶解させる方法により製造された電解液によって、上記課題が解決されることを見出した。すなわち、本発明は以下を包含する。
The present inventors have found that the above problem can be solved by an electrolytic solution produced by a method in which metallic magnesium and simple halogen are dissolved in a solvent. That is, the present invention includes the following.
<1>
溶媒、金属マグネシウムおよび単体ハロゲンを混合してなる電解液。 <1>
An electrolytic solution obtained by mixing a solvent, magnesium metal and simple halogen.
溶媒、金属マグネシウムおよび単体ハロゲンを混合してなる電解液。 <1>
An electrolytic solution obtained by mixing a solvent, magnesium metal and simple halogen.
<2>
溶媒と、マグネシウムイオンと、ハロゲン化物イオンとを含んでいる、<1>に記載の電解液。 <2>
The electrolyte solution according to <1>, which contains a solvent, magnesium ions, and halide ions.
溶媒と、マグネシウムイオンと、ハロゲン化物イオンとを含んでいる、<1>に記載の電解液。 <2>
The electrolyte solution according to <1>, which contains a solvent, magnesium ions, and halide ions.
<3>
上記電解液の全量に対して、マグネシウムイオンを0.5mol/L以上含んでいる、<1>または<2>に記載の電解液。 <3>
The electrolytic solution according to <1> or <2>, which contains 0.5 mol / L or more of magnesium ions with respect to the total amount of the electrolytic solution.
上記電解液の全量に対して、マグネシウムイオンを0.5mol/L以上含んでいる、<1>または<2>に記載の電解液。 <3>
The electrolytic solution according to <1> or <2>, which contains 0.5 mol / L or more of magnesium ions with respect to the total amount of the electrolytic solution.
<4>
軟X線蛍光XAFS法によって分析した際に、配位数が4であるマグネシウム原子が、全マグネシウム原子の数の95%以上を占めている、<1>~<3>のいずれか1つに記載の電解液。 <4>
In any one of <1> to <3>, the magnesium atom having a coordination number of 4 accounts for 95% or more of the total number of magnesium atoms when analyzed by the soft X-ray fluorescence XAFS method. Electrolyte of description.
軟X線蛍光XAFS法によって分析した際に、配位数が4であるマグネシウム原子が、全マグネシウム原子の数の95%以上を占めている、<1>~<3>のいずれか1つに記載の電解液。 <4>
In any one of <1> to <3>, the magnesium atom having a coordination number of 4 accounts for 95% or more of the total number of magnesium atoms when analyzed by the soft X-ray fluorescence XAFS method. Electrolyte of description.
<5>
上記溶媒は、有機溶媒またはイオン液体である、<1>~<4>のいずれか1つに記載の電解液。 <5>
The electrolyte solution according to any one of <1> to <4>, wherein the solvent is an organic solvent or an ionic liquid.
上記溶媒は、有機溶媒またはイオン液体である、<1>~<4>のいずれか1つに記載の電解液。 <5>
The electrolyte solution according to any one of <1> to <4>, wherein the solvent is an organic solvent or an ionic liquid.
<6>
上記溶媒は、スルホン系溶媒である、<1>~<5>のいずれか1つに記載の電解液。 <6>
The electrolyte solution according to any one of <1> to <5>, wherein the solvent is a sulfone solvent.
上記溶媒は、スルホン系溶媒である、<1>~<5>のいずれか1つに記載の電解液。 <6>
The electrolyte solution according to any one of <1> to <5>, wherein the solvent is a sulfone solvent.
<7>
ハロゲン化物イオンとして、臭化物イオンまたはヨウ化物イオンを含んでいる、<1>~<6>のいずれか1つに記載の電解液。 <7>
The electrolyte solution according to any one of <1> to <6>, which contains bromide ions or iodide ions as halide ions.
ハロゲン化物イオンとして、臭化物イオンまたはヨウ化物イオンを含んでいる、<1>~<6>のいずれか1つに記載の電解液。 <7>
The electrolyte solution according to any one of <1> to <6>, which contains bromide ions or iodide ions as halide ions.
<8>
<1>~<7>のいずれか1つに記載の電解液を含んでいる、二次電池。 <8>
A secondary battery comprising the electrolytic solution according to any one of <1> to <7>.
<1>~<7>のいずれか1つに記載の電解液を含んでいる、二次電池。 <8>
A secondary battery comprising the electrolytic solution according to any one of <1> to <7>.
<9>
溶媒、金属マグネシウムおよび単体ハロゲンを混合する工程を含む、電解液の製造方法。 <9>
The manufacturing method of electrolyte solution including the process of mixing a solvent, metallic magnesium, and a single-piece | unit halogen.
溶媒、金属マグネシウムおよび単体ハロゲンを混合する工程を含む、電解液の製造方法。 <9>
The manufacturing method of electrolyte solution including the process of mixing a solvent, metallic magnesium, and a single-piece | unit halogen.
<10>
上記電解液の全量に対して、マグネシウムイオンを0.5mol/L以上含んでいる、<9>に記載の電解液の製造方法。 <10>
<9> The method for producing an electrolytic solution according to <9>, wherein magnesium ion is contained in an amount of 0.5 mol / L or more with respect to the total amount of the electrolytic solution.
上記電解液の全量に対して、マグネシウムイオンを0.5mol/L以上含んでいる、<9>に記載の電解液の製造方法。 <10>
<9> The method for producing an electrolytic solution according to <9>, wherein magnesium ion is contained in an amount of 0.5 mol / L or more with respect to the total amount of the electrolytic solution.
<11>
上記電解液を軟X線蛍光XAFS法によって分析した際に、配位数が4であるマグネシウム原子が、全マグネシウム原子の数の95%以上を占めている、<9>または<10>に記載の電解液の製造方法。 <11>
<9> or <10>, wherein when the electrolyte solution is analyzed by a soft X-ray fluorescence XAFS method, magnesium atoms having a coordination number of 4 occupy 95% or more of the total number of magnesium atoms The manufacturing method of the electrolyte solution.
上記電解液を軟X線蛍光XAFS法によって分析した際に、配位数が4であるマグネシウム原子が、全マグネシウム原子の数の95%以上を占めている、<9>または<10>に記載の電解液の製造方法。 <11>
<9> or <10>, wherein when the electrolyte solution is analyzed by a soft X-ray fluorescence XAFS method, magnesium atoms having a coordination number of 4 occupy 95% or more of the total number of magnesium atoms The manufacturing method of the electrolyte solution.
<12>
上記溶媒は、有機溶媒またはイオン液体である、<9>~<11>のいずれか1つに記載の電解液の製造方法。 <12>
The method for producing an electrolytic solution according to any one of <9> to <11>, wherein the solvent is an organic solvent or an ionic liquid.
上記溶媒は、有機溶媒またはイオン液体である、<9>~<11>のいずれか1つに記載の電解液の製造方法。 <12>
The method for producing an electrolytic solution according to any one of <9> to <11>, wherein the solvent is an organic solvent or an ionic liquid.
<13>
上記溶媒は、スルホン系溶媒である、<9>~<12>のいずれか1つに記載の電解液の製造方法。 <13>
The method for producing an electrolytic solution according to any one of <9> to <12>, wherein the solvent is a sulfone solvent.
上記溶媒は、スルホン系溶媒である、<9>~<12>のいずれか1つに記載の電解液の製造方法。 <13>
The method for producing an electrolytic solution according to any one of <9> to <12>, wherein the solvent is a sulfone solvent.
<14>
上記単体ハロゲンは、臭素分子またはヨウ素分子である、<9>~<13>のいずれか1項に記載の電解液の製造方法。 <14>
The method for producing an electrolytic solution according to any one of <9> to <13>, wherein the single halogen is a bromine molecule or an iodine molecule.
上記単体ハロゲンは、臭素分子またはヨウ素分子である、<9>~<13>のいずれか1項に記載の電解液の製造方法。 <14>
The method for producing an electrolytic solution according to any one of <9> to <13>, wherein the single halogen is a bromine molecule or an iodine molecule.
本発明の一態様によれば、高いマグネシウムイオン濃度を保持することができる電解液が提供される。
According to one embodiment of the present invention, an electrolytic solution that can maintain a high magnesium ion concentration is provided.
本発明の一実施形態について説明すると以下の通りであるが、本発明はこれに限定されない。本発明は、以下に説明する各構成に限定されず、特許請求の範囲に示した範囲で種々の変更が可能である。したがって、異なる実施形態および実施例にそれぞれ開示された技術的手段を、適宜組み合わせて得られる実施形態および実施例についても、本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが、本明細書中において参考文献として援用される。
An embodiment of the present invention will be described as follows, but the present invention is not limited to this. This invention is not limited to each structure demonstrated below, A various change is possible in the range shown to the claim. Therefore, embodiments and examples obtained by appropriately combining technical means disclosed in different embodiments and examples are also included in the technical scope of the present invention. Moreover, all the literatures described in this specification are used as a reference in this specification.
本明細書中、数値範囲に関して「A~B」と記載した場合、当該記載は「A以上B以下」を意図する。
In this specification, when “A to B” is described with respect to a numerical range, the description is intended to be “A to B”.
本発明の一実施形態に係る電解液は、溶媒、金属マグネシウムおよび単体ハロゲンを混合してなる電解液である。また、本発明の一実施形態に係る電解液は、溶媒と、マグネシウムイオンと、ハロゲン化物イオンとを含んでいる電解液でもある。以下、各成分について順に説明する。
The electrolytic solution according to an embodiment of the present invention is an electrolytic solution obtained by mixing a solvent, metallic magnesium, and a single halogen. Moreover, the electrolyte solution which concerns on one Embodiment of this invention is also an electrolyte solution containing a solvent, magnesium ion, and halide ion. Hereinafter, each component will be described in order.
〔1.溶媒〕
本発明の一実施形態に係る電解液が含んでいる溶媒は、電解液を製造する際に通常用いられる溶媒であるならば、特に限定されない。このような溶媒としては、有機溶媒、イオン液体などが挙げられる。 [1. solvent〕
If the solvent which the electrolyte solution which concerns on one Embodiment of this invention contains is a solvent normally used when manufacturing electrolyte solution, it will not specifically limit. Examples of such solvents include organic solvents and ionic liquids.
本発明の一実施形態に係る電解液が含んでいる溶媒は、電解液を製造する際に通常用いられる溶媒であるならば、特に限定されない。このような溶媒としては、有機溶媒、イオン液体などが挙げられる。 [1. solvent〕
If the solvent which the electrolyte solution which concerns on one Embodiment of this invention contains is a solvent normally used when manufacturing electrolyte solution, it will not specifically limit. Examples of such solvents include organic solvents and ionic liquids.
上記有機溶媒の具体例としては、スルホン系溶媒(ジメチルスルホン、メチルイソプロピルスルホン、エチルメチルスルホン、エチルイソプロピルスルホン、エチルイソブチルスルホン(EiBS)、ジプロピルスルホン、イソプロピル-s-ブチルスルホン(iPsBS)、イソプロピルイソブチルスルホン(iPiBS)、ブチルイソブチルスルホン(BiBS)、スルホランなど)、エーテル系溶媒(2-メチルテトラヒドロフラン、ジメトキシエタン、ジオキソラン、モノグライム(G1)、ジグライム(G2)、トリグライム(G3)、テトラグライム(G4)など)などが挙げられる。他のエーテル系溶媒の例としては、ジメトキシエタンとジオキソランとの混合溶媒が挙げられる。電解液の電気化学的性質が優れるという観点からは、スルホン系溶媒の中では、メチルイソプロピルスルホン、エチルイソプロピルスルホン、ジプロピルスルホン、スルホランが好ましく、エチルイソプロピルスルホンがより好ましい。同様の観点から、エーテル系溶媒の中では、2-メチルテトラヒドロフランが好ましい。
Specific examples of the organic solvent include sulfone solvents (dimethylsulfone, methylisopropylsulfone, ethylmethylsulfone, ethylisopropylsulfone, ethylisobutylsulfone (EiBS), dipropylsulfone, isopropyl-s-butylsulfone (iPsBS), isopropyl Isobutyl sulfone (iPiBS), butyl isobutyl sulfone (BiBS), sulfolane, etc.), ether solvents (2-methyltetrahydrofuran, dimethoxyethane, dioxolane, monoglyme (G1), diglyme (G2), triglyme (G3), tetraglyme (G4) ) Etc.). Examples of other ether solvents include a mixed solvent of dimethoxyethane and dioxolane. From the viewpoint of excellent electrochemical properties of the electrolytic solution, among the sulfone solvents, methyl isopropyl sulfone, ethyl isopropyl sulfone, dipropyl sulfone, and sulfolane are preferable, and ethyl isopropyl sulfone is more preferable. From the same viewpoint, among the ether solvents, 2-methyltetrahydrofuran is preferable.
上記イオン液体の例としては、DEMETFSI(Diethylmethyl(2-methoxyethyl)ammoniumbis(trifluoromethylsulfonyl)imide)、DEMEBF4(Diethylmethyl(2-methoxyethyl)ammoniumtetrafluoroborate)、EMIBF4(1-Ethyl-3-methylimidazoliumtetrafluoroborate)、EMITFSI(1-Ethyl-3-methylimidazolium(bis(trifluoromethanesulfonyl)imide))EMIFSI(1-Ethyl-3-methylimidazolium(bis(fluorosulfonyl)imide))などが挙げられる。電解液の電気化学的性質が優れるという観点からは、イオン液体の中では、DEMETFSIが好ましい。
Examples of the ionic liquid include DEMETFSI (Dimethylmethyl (2-methoxyethyl) ammoniumbis (trifluoromethylsulfonyl) imide), DEMEBF4 (Diethylmethyl (2-methoxyethyl) ammoniumtetrafluoroborate), EMIBF4 (1-Ethyl-3-methylimidazoliumtetrafluoroborate), EMITFSI (1-Ethyl -3-methylimidazolium (bis (trifluoromethanesulfonyl) imide)) EMISI (1-Ethyl-3-methylimidazolium (bis (fluorosulfonyl) imide)) and the like. From the viewpoint that the electrochemical properties of the electrolytic solution are excellent, DEMETFSI is preferable among the ionic liquids.
上述した溶媒の中では、電解液の電気化学的性質が優れるという観点から、有機溶媒またはイオン液体が好ましい。充放電に伴うマグネシウムの溶解反応および析出反応を繰り返し行わせることができる点をも考慮すると、スルホン系溶媒およびエーテル系溶媒がより好ましい。揮発性が低い点、毒性が低い点、水分の混入が許容される点をもさらに考慮すると、スルホン系溶媒がさらに好ましい。
Among the solvents described above, an organic solvent or an ionic liquid is preferable from the viewpoint that the electrochemical properties of the electrolytic solution are excellent. In consideration of the fact that the magnesium dissolution reaction and precipitation reaction that accompany charging and discharging can be repeated, sulfone solvents and ether solvents are more preferable. In consideration of the low volatility, the low toxicity, and the permissible water content, the sulfone solvent is more preferable.
したがって、上記に例示した溶媒の中では、メチルイソプロピルスルホン、エチルイソプロピルスルホン、ジプロピルスルホン、スルホランが特に好ましく、エチルイソプロピルスルホンがさらに特に好ましい。
Therefore, among the solvents exemplified above, methyl isopropyl sulfone, ethyl isopropyl sulfone, dipropyl sulfone, and sulfolane are particularly preferable, and ethyl isopropyl sulfone is further particularly preferable.
上述した溶媒は、1種類のみが含まれていてもよいし、2種類以上が含まれていてもよい。
The solvent mentioned above may contain only one type, or two or more types.
〔2.マグネシウムイオン〕
本発明の一実施形態に係る電解液は、マグネシウムイオンを含んでいる。マグネシウム二次電池は、放電の際には負極の金属マグネシウムがマグネシウムイオンとして電解液中に溶解し、充電の際には電解液中のマグネシウムイオンが金属マグネシウムとして負極に析出する。このため、電池出力を高めるためには、電解液中のマグネシウムイオン濃度を充分に高くする必要がある。 [2. Magnesium ion)
The electrolytic solution according to one embodiment of the present invention contains magnesium ions. In the magnesium secondary battery, the metallic magnesium of the negative electrode is dissolved in the electrolytic solution as magnesium ions during discharge, and the magnesium ion in the electrolytic solution is deposited on the negative electrode as metallic magnesium during charging. For this reason, in order to increase the battery output, it is necessary to sufficiently increase the magnesium ion concentration in the electrolytic solution.
本発明の一実施形態に係る電解液は、マグネシウムイオンを含んでいる。マグネシウム二次電池は、放電の際には負極の金属マグネシウムがマグネシウムイオンとして電解液中に溶解し、充電の際には電解液中のマグネシウムイオンが金属マグネシウムとして負極に析出する。このため、電池出力を高めるためには、電解液中のマグネシウムイオン濃度を充分に高くする必要がある。 [2. Magnesium ion)
The electrolytic solution according to one embodiment of the present invention contains magnesium ions. In the magnesium secondary battery, the metallic magnesium of the negative electrode is dissolved in the electrolytic solution as magnesium ions during discharge, and the magnesium ion in the electrolytic solution is deposited on the negative electrode as metallic magnesium during charging. For this reason, in order to increase the battery output, it is necessary to sufficiently increase the magnesium ion concentration in the electrolytic solution.
本発明の一実施形態に係る電解液中のマグネシウムイオン濃度は、電解液の全量に対して、0.50mol/L以上が好ましく、0.55mol/L以上がより好ましく、0.75mol/Lがさらに好ましい。電解液中のマグネシウムイオン濃度が0.50mol/L以上ならば、電池を作製した際に、充分な電池出力を得られる。
The magnesium ion concentration in the electrolytic solution according to an embodiment of the present invention is preferably 0.50 mol / L or more, more preferably 0.55 mol / L or more, and 0.75 mol / L with respect to the total amount of the electrolytic solution. Further preferred. If the magnesium ion concentration in the electrolytic solution is 0.50 mol / L or more, sufficient battery output can be obtained when the battery is manufactured.
一方、製造に要する時間およびコストなどを考慮すると、本発明の一実施形態に係る電解液中のマグネシウムイオン濃度は、電解液の全量に対して、1.00mol/L以下程度が適当である。もっとも、この値は単なる例示であり、本発明を何ら制限する意図はない。
On the other hand, considering the time and cost required for production, the magnesium ion concentration in the electrolytic solution according to an embodiment of the present invention is suitably about 1.00 mol / L or less with respect to the total amount of the electrolytic solution. However, this value is merely an example and is not intended to limit the present invention.
マグネシウムイオンを含む電解液においては、1個のマグネシウム原子に対する溶媒分子の配位数が、4であることが好ましい。このような状態のマグネシウム原子は、1個のマグネシウム原子に対する溶媒分子の配位数が6であるマグネシウム原子と比較して、(1)溶媒への溶解度が高くなり、マグネシウムイオン濃度を高めることができる点、ならびに(2)マグネシウム原子の反応活性が高く、充放電に伴うマグネシウムの溶解および析出が進行しやすい点、において優れている(上記の現象については、[Saha P et. al (2014) "Rechargeable magnesium battery: Currentstatus and key challenges for the future", Progress in Materials Science,Vol.66, pp.1-86]を参照)。
In the electrolytic solution containing magnesium ions, the coordination number of solvent molecules with respect to one magnesium atom is preferably 4. A magnesium atom in such a state has (1) higher solubility in a solvent and higher magnesium ion concentration than a magnesium atom having a coordination number of 6 solvent molecules to one magnesium atom. (2) It is excellent in that the reaction activity of magnesium atom is high and the dissolution and precipitation of magnesium accompanying charge / discharge is easy to proceed (for the above phenomenon, see [Saha P et. Al (2014) "Rechargeable" magnesium "battery:" Currentstatus "and" key "challenges" for "the" future "," Progress "in" Materials "Science, Vol.66," pp.1-86]).
電解液中のマグネシウム原子に対する溶媒の配位数は、例えば、軟X線蛍光XAFS法により知ることができる(より詳細には、実施例3を参照)。マグネシウム原子に対する第一近接原子に対応するピーク強度を測定すると、配位数が4であるマグネシウム原子の割合も算出することができる。
The coordination number of the solvent with respect to the magnesium atom in the electrolytic solution can be known, for example, by the soft X-ray fluorescence XAFS method (for details, see Example 3). When the peak intensity corresponding to the first adjacent atom with respect to the magnesium atom is measured, the proportion of the magnesium atom having the coordination number of 4 can also be calculated.
ここで、軟X線蛍光XAFS法とは、試料に軟X線を照射し、二次的に放出される蛍光X線を測定、解析する技術である。試料中において特定の原子がどのような構造を取っているかは、上記蛍光X線を解析し、動径構造関数を求めることにより、知ることができる。より詳細な理論および方法論については、例えば[宇田川康夫編『X線吸収微細構造:XAFSの測定と解析』学会出版センター、1993年;太田俊明編著『X線吸収分光法:XAFSとその応用』アイピーシー、2002年]に記載されている。
Here, the soft X-ray fluorescence XAFS method is a technique for irradiating a sample with soft X-rays and measuring and analyzing the fluorescent X-rays emitted secondarily. The structure of a specific atom in a sample can be known by analyzing the fluorescent X-ray and obtaining a radial structure function. For more detailed theories and methodologies, see, for example, “Yasuo Udagawa,“ X-ray absorption fine structure: XAFS measurement and analysis ”, Society of Science Publishing Center, 1993; Toshiaki Ota,“ X-ray absorption spectroscopy: XAFS and its applications ” PC, 2002].
本発明の一実施形態に係る電解液においては、軟X線蛍光XAFS法によって分析した際に、配位数が4であるマグネシウム原子が、全マグネシウム原子の95%以上を占めていることが好ましく、97%以上を占めていることがより好ましく、99%以上を占めていることがさらに好ましい。配位数が4であるマグネシウム原子が全マグネシウム原子の95%以上を占めているならば、溶媒に対するマグネシウムの溶解度、およびマグネシウム原子の反応活性が充分に高いと言える。
In the electrolytic solution according to an embodiment of the present invention, it is preferable that magnesium atoms having a coordination number of 4 occupy 95% or more of the total magnesium atoms when analyzed by the soft X-ray fluorescence XAFS method. More preferably 97% or more, and even more preferably 99% or more. If magnesium atoms having a coordination number of 4 occupy 95% or more of all magnesium atoms, it can be said that the solubility of magnesium in the solvent and the reaction activity of magnesium atoms are sufficiently high.
一方、製造に要する時間およびコストなどを考慮すると、本発明の一実施形態に係る電解液においては、軟X線蛍光XAFS法によって分析した際に、配位数が4であるマグネシウム原子は、全マグネシウム原子の99.9%以下程度が適当である。もっとも、この値は単なる例示であり、本発明を何ら制限する意図はない。
On the other hand, considering the time and cost required for production, in the electrolytic solution according to one embodiment of the present invention, when analyzed by the soft X-ray fluorescence XAFS method, About 99.9% or less of the magnesium atom is appropriate. However, this value is merely an example and is not intended to limit the present invention.
〔3.ハロゲン化物イオン〕
本発明の一実施形態に係る電解液は、ハロゲン化物イオンを含んでいる。マグネシウム電極を腐食しないという観点からは、溶媒中には、イオン化していない単体ハロゲンが存在しないことが好ましい。なお、後述する本発明の一実施形態に係る製造方法によると、単体ハロゲンは溶媒中で金属マグネシウムにより還元されるので、ハロゲン化物イオンの状態で存在することになる。 [3. (Halide ion)
The electrolytic solution according to one embodiment of the present invention contains halide ions. From the viewpoint of not corroding the magnesium electrode, it is preferable that no non-ionized single halogen exists in the solvent. In addition, according to the manufacturing method which concerns on one Embodiment of this invention mentioned later, since a single-piece | unit halogen is reduce | restored by metallic magnesium in a solvent, it will exist in the state of a halide ion.
本発明の一実施形態に係る電解液は、ハロゲン化物イオンを含んでいる。マグネシウム電極を腐食しないという観点からは、溶媒中には、イオン化していない単体ハロゲンが存在しないことが好ましい。なお、後述する本発明の一実施形態に係る製造方法によると、単体ハロゲンは溶媒中で金属マグネシウムにより還元されるので、ハロゲン化物イオンの状態で存在することになる。 [3. (Halide ion)
The electrolytic solution according to one embodiment of the present invention contains halide ions. From the viewpoint of not corroding the magnesium electrode, it is preferable that no non-ionized single halogen exists in the solvent. In addition, according to the manufacturing method which concerns on one Embodiment of this invention mentioned later, since a single-piece | unit halogen is reduce | restored by metallic magnesium in a solvent, it will exist in the state of a halide ion.
本明細書において、「単体ハロゲン」とは、フッ素分子(F2)、塩素分子(Cl2)、臭素分子(Br2)またはヨウ素分子(I2)を意図する。本明細書において、「ハロゲン化物イオン」とは、フッ化物イオン(F-)、塩化物イオン(Cl-)、臭化物イオン(Br-)またはヨウ化物イオン(I-)を意図する。
In this specification, “single halogen” means a fluorine molecule (F 2 ), a chlorine molecule (Cl 2 ), a bromine molecule (Br 2 ), or an iodine molecule (I 2 ). In this specification, “halide ion” means fluoride ion (F − ), chloride ion (Cl − ), bromide ion (Br − ) or iodide ion (I − ).
単体ハロゲンおよびハロゲン化物イオンの安定性の観点からは、本発明の一実施形態に係る電解液に溶解しているハロゲン化物イオンは、臭化物イオンまたはヨウ化物イオンが好ましく、ヨウ化物イオンがより好ましい。
From the viewpoint of the stability of the single halogen and halide ions, the halide ions dissolved in the electrolyte solution according to one embodiment of the present invention are preferably bromide ions or iodide ions, and more preferably iodide ions.
本発明の一実施形態に係る電解液に溶解しているハロゲン化物イオンの濃度は、特に限定されない。電解液の生成収率を向上させる観点からは、本発明の一実施形態に係る電解液に溶解しているハロゲン化物イオンの濃度は、0.5mol/L以上が好ましく、0.55mol/L以上がより好ましく、0.75mol/L以上がさらに好ましい。
The concentration of halide ions dissolved in the electrolytic solution according to one embodiment of the present invention is not particularly limited. From the viewpoint of improving the production yield of the electrolytic solution, the concentration of halide ions dissolved in the electrolytic solution according to one embodiment of the present invention is preferably 0.5 mol / L or more, and 0.55 mol / L or more. Is more preferable, and 0.75 mol / L or more is more preferable.
一方、製造に要する時間およびコストなどを考慮すると、本発明の一実施形態に係る電解液中のハロゲン化物イオンの濃度は、電解液の全量に対して、0.90mol/L以下程度が適当である。もっとも、この値は単なる例示であり、本発明を何ら制限する意図はない。
On the other hand, considering the time and cost required for production, the concentration of halide ions in the electrolytic solution according to one embodiment of the present invention is suitably about 0.90 mol / L or less with respect to the total amount of the electrolytic solution. is there. However, this value is merely an example and is not intended to limit the present invention.
上述したハロゲン化物イオンは、1種類のみが含まれていてもよいし、2種類以上が含まれていてもよい。
Only one type of halide ion described above may be included, or two or more types may be included.
〔4.他の成分〕
本発明の一実施形態に係る電解液は、上述した以外の成分を含んでいてよい。このような成分の例としては、ルイス塩基(マグネシウムエトキシドなど)などが挙げられる。 [4. Other ingredients]
The electrolytic solution according to one embodiment of the present invention may contain components other than those described above. Examples of such components include Lewis bases (such as magnesium ethoxide).
本発明の一実施形態に係る電解液は、上述した以外の成分を含んでいてよい。このような成分の例としては、ルイス塩基(マグネシウムエトキシドなど)などが挙げられる。 [4. Other ingredients]
The electrolytic solution according to one embodiment of the present invention may contain components other than those described above. Examples of such components include Lewis bases (such as magnesium ethoxide).
〔5.製造方法〕
本発明の一実施形態に係る電解液の製造方法は、溶媒、金属マグネシウムおよび単体ハロゲンを混合する工程を含む。それぞれの成分を混合する順序は、特に限定されない。すなわち、溶媒と金属マグネシウムとを先に混合してもよいし、溶媒と単体ハロゲンとを先に混合してもよいし、金属マグネシウムと単体ハロゲンを先に混合してもよい。また、3成分を同時に溶媒と混合してもよい。電解液の生成収率を向上させる観点からは、先に単体ハロゲンと溶媒とを混合し、次いで金属マグネシウムと溶媒とを混合することが好ましい。なお、本発明の一実施形態に係る電解液の製造方法は、他の工程を含んでもよい。 [5. Production method〕
The manufacturing method of the electrolyte solution which concerns on one Embodiment of this invention includes the process of mixing a solvent, metallic magnesium, and single-piece | unit halogen. The order in which each component is mixed is not particularly limited. That is, the solvent and metal magnesium may be mixed first, the solvent and single halogen may be mixed first, or the metal magnesium and single halogen may be mixed first. Moreover, you may mix three components with a solvent simultaneously. From the viewpoint of improving the production yield of the electrolytic solution, it is preferable to mix the simple halogen and the solvent first, and then mix the magnesium metal and the solvent. In addition, the manufacturing method of the electrolyte solution which concerns on one Embodiment of this invention may also include another process.
本発明の一実施形態に係る電解液の製造方法は、溶媒、金属マグネシウムおよび単体ハロゲンを混合する工程を含む。それぞれの成分を混合する順序は、特に限定されない。すなわち、溶媒と金属マグネシウムとを先に混合してもよいし、溶媒と単体ハロゲンとを先に混合してもよいし、金属マグネシウムと単体ハロゲンを先に混合してもよい。また、3成分を同時に溶媒と混合してもよい。電解液の生成収率を向上させる観点からは、先に単体ハロゲンと溶媒とを混合し、次いで金属マグネシウムと溶媒とを混合することが好ましい。なお、本発明の一実施形態に係る電解液の製造方法は、他の工程を含んでもよい。 [5. Production method〕
The manufacturing method of the electrolyte solution which concerns on one Embodiment of this invention includes the process of mixing a solvent, metallic magnesium, and single-piece | unit halogen. The order in which each component is mixed is not particularly limited. That is, the solvent and metal magnesium may be mixed first, the solvent and single halogen may be mixed first, or the metal magnesium and single halogen may be mixed first. Moreover, you may mix three components with a solvent simultaneously. From the viewpoint of improving the production yield of the electrolytic solution, it is preferable to mix the simple halogen and the solvent first, and then mix the magnesium metal and the solvent. In addition, the manufacturing method of the electrolyte solution which concerns on one Embodiment of this invention may also include another process.
本発明の一実施形態に係る電解液の製造方法によれば、溶媒中において、金属マグネシウムを還元剤、単体ハロゲンを酸化剤とする酸化還元反応が発生し、マグネシウムイオンが生じる。これは、マグネシウム塩を溶媒に溶解させる従来の製造方法(例えば、特許文献1に記載されている製造方法)とは大きく異なる。本発明者らは、上記製造方法により、従来の製造方法よりもマグネシウム濃度が高い電解液を製造できることを見出し、本発明を完成させるに至った。
According to the method for producing an electrolytic solution according to one embodiment of the present invention, a redox reaction using metallic magnesium as a reducing agent and single halogen as an oxidizing agent occurs in a solvent, and magnesium ions are generated. This is greatly different from a conventional manufacturing method (for example, a manufacturing method described in Patent Document 1) in which a magnesium salt is dissolved in a solvent. The present inventors have found that an electrolytic solution having a magnesium concentration higher than that of the conventional manufacturing method can be manufactured by the above manufacturing method, and have completed the present invention.
なお、酸素、窒素、水分、有機溶剤揮発物との反応を防ぐため、単体ハロゲンの計量および単体ハロゲンと溶媒との混合は、不活性ガス雰囲気下で行うことが好ましい。このような環境は、例えばグローブボックスを用いることによって、得ることができる。
In order to prevent reaction with oxygen, nitrogen, moisture, and organic solvent volatiles, it is preferable to measure the single halogen and mix the single halogen and the solvent in an inert gas atmosphere. Such an environment can be obtained, for example, by using a glove box.
[5-1.金属マグネシウム]
本発明の一実施形態に係る電解液の製造方法で用いる金属マグネシウムは、マグネシウムを主成分とする金属(例えば、金属の全重量を100重量%として、マグネシウムが95重量%以上を占める金属)であるならば、特に純度は限定されない。不純物による予期せぬ反応を最小限に止める観点からは、金属マグネシウムの純度は、96重量%以上が好ましく、98重量%以上がより好ましく、99.9重量%以上がさらに好ましい。 [5-1. Metal magnesium]
The magnesium metal used in the method for producing an electrolytic solution according to an embodiment of the present invention is a metal containing magnesium as a main component (for example, a metal in which magnesium accounts for 95% by weight or more with 100% by weight of the total weight of the metal) If there is, the purity is not particularly limited. From the viewpoint of minimizing unexpected reactions due to impurities, the purity of the metallic magnesium is preferably 96% by weight or more, more preferably 98% by weight or more, and further preferably 99.9% by weight or more.
本発明の一実施形態に係る電解液の製造方法で用いる金属マグネシウムは、マグネシウムを主成分とする金属(例えば、金属の全重量を100重量%として、マグネシウムが95重量%以上を占める金属)であるならば、特に純度は限定されない。不純物による予期せぬ反応を最小限に止める観点からは、金属マグネシウムの純度は、96重量%以上が好ましく、98重量%以上がより好ましく、99.9重量%以上がさらに好ましい。 [5-1. Metal magnesium]
The magnesium metal used in the method for producing an electrolytic solution according to an embodiment of the present invention is a metal containing magnesium as a main component (for example, a metal in which magnesium accounts for 95% by weight or more with 100% by weight of the total weight of the metal) If there is, the purity is not particularly limited. From the viewpoint of minimizing unexpected reactions due to impurities, the purity of the metallic magnesium is preferably 96% by weight or more, more preferably 98% by weight or more, and further preferably 99.9% by weight or more.
一方、製造に要する時間およびコストなどを考慮すると、上記金属マグネシウムの純度は、99.99重量%以下程度が適当である。もっとも、この値は単なる例示であり、本発明を何ら制限する意図はない。
On the other hand, considering the time and cost required for production, the purity of the metal magnesium is suitably about 99.99% by weight or less. However, this value is merely an example and is not intended to limit the present invention.
本発明の一実施形態に係る電解液の製造方法で用いる金属マグネシウムの量は、単体ハロゲンの量に対して大過剰(例えば、単体ハロゲンの重量の4倍以上)であることが好ましい。金属マグネシウムの量を単体ハロゲンの量に対して大過剰にすることにより、単体ハロゲンが完全に反応し、溶媒中に残存した単体ハロゲンによる電極の腐食を防ぐことができる。
The amount of magnesium metal used in the method for producing an electrolytic solution according to one embodiment of the present invention is preferably large excess (for example, 4 times or more the weight of the single halogen) with respect to the single halogen. By making the amount of metallic magnesium large excess with respect to the amount of single halogen, the single halogen can be completely reacted and corrosion of the electrode by the single halogen remaining in the solvent can be prevented.
[5-2.単体ハロゲン]
本発明の一実施形態に係る電解液の製造方法で用いる単体ハロゲンは、〔3〕で説明した通りである。 [5-2. Single halogen]
The single halogen used in the method for producing an electrolytic solution according to one embodiment of the present invention is as described in [3].
本発明の一実施形態に係る電解液の製造方法で用いる単体ハロゲンは、〔3〕で説明した通りである。 [5-2. Single halogen]
The single halogen used in the method for producing an electrolytic solution according to one embodiment of the present invention is as described in [3].
本発明の一実施形態に係る電解液の製造方法で用いる単体ハロゲンは、単体ハロゲンが主成分であれば(例えば、不純物も含む全重量を100重量%として、単体ハロゲンが99重量%以上を占めれば)、特に純度は限定されない。不純物による予期せぬ反応を最小限に止める観点からは、単体ハロゲン純度は、99重量%以上が好ましく、99.9重量%以上がより好ましく、99.99重量%以上がさらに好ましい。
If the single halogen used in the method for producing an electrolyte solution according to an embodiment of the present invention is a single halogen as a main component (for example, the total weight including impurities is 100 wt%, the single halogen occupies 99 wt% or more). The purity is not particularly limited. From the viewpoint of minimizing unexpected reactions due to impurities, the single-body halogen purity is preferably 99% by weight or more, more preferably 99.9% by weight or more, and even more preferably 99.99% by weight or more.
一方、製造に要する時間およびコストなどを考慮すると、上記単体ハロゲンの純度は、99.999重量%以下程度が適当である。もっとも、この値は単なる例示であり、本発明を何ら制限する意図はない。
On the other hand, considering the time and cost required for production, the purity of the single halogen is suitably about 99.999% by weight or less. However, this value is merely an example and is not intended to limit the present invention.
なお、本発明の一実施形態に係る電解液の製造方法において、単体ハロゲンは、1種類のみを用いてもよいし、2種類以上を併用してもよい。
In addition, in the manufacturing method of the electrolyte solution which concerns on one Embodiment of this invention, single type | mold halogen may use only 1 type and may use 2 or more types together.
[5-3.溶媒]
本発明の一実施形態に係る電解液の製造方法で用いる溶媒は、〔1〕で説明した通りである。 [5-3. solvent]
The solvent used in the method for producing an electrolytic solution according to one embodiment of the present invention is as described in [1].
本発明の一実施形態に係る電解液の製造方法で用いる溶媒は、〔1〕で説明した通りである。 [5-3. solvent]
The solvent used in the method for producing an electrolytic solution according to one embodiment of the present invention is as described in [1].
[5-4.製造方法の例]
本発明の一実施形態に係る電解液の製造方法は、例えば以下の通りである。より具体的な製造方法の例は、下記〔製造例〕に記載されている。 [5-4. Example of manufacturing method]
The manufacturing method of the electrolyte solution which concerns on one Embodiment of this invention is as follows, for example. A more specific example of the production method is described in [Production Example] below.
本発明の一実施形態に係る電解液の製造方法は、例えば以下の通りである。より具体的な製造方法の例は、下記〔製造例〕に記載されている。 [5-4. Example of manufacturing method]
The manufacturing method of the electrolyte solution which concerns on one Embodiment of this invention is as follows, for example. A more specific example of the production method is described in [Production Example] below.
まず、溶媒にハロゲンを加え、溶解(または分散)させる。次いで、金属マグネシウムを溶液に添加する。得られた溶液を大気圧下で撹拌することにより、溶媒中のハロゲンと金属マグネシウムとの間に、酸化還元反応が生じる。上記反応を充分に進行させる(10~24時間程度)ことにより、本発明の一実施形態に係る電解液を製造することができる。
First, halogen is added to a solvent and dissolved (or dispersed). Metal magnesium is then added to the solution. By stirring the obtained solution under atmospheric pressure, an oxidation-reduction reaction occurs between the halogen in the solvent and the magnesium metal. By sufficiently allowing the above reaction to proceed (about 10 to 24 hours), the electrolytic solution according to one embodiment of the present invention can be produced.
〔6.二次電池〕
本発明の一実施形態に係る電解液に、正極および負極を組み合わせることにより、二次電池を作製することができる。正極、負極およびその他の部材(セパレーターなど)の材料、形状などは、当業者によって適宜選択されうる。より具体的な作製方法の例は、下記〔実施例5〕に記載されている。 [6. Secondary battery)
A secondary battery can be produced by combining a positive electrode and a negative electrode with the electrolytic solution according to one embodiment of the present invention. The material, shape, and the like of the positive electrode, the negative electrode, and other members (separator, etc.) can be appropriately selected by those skilled in the art. An example of a more specific manufacturing method is described in [Example 5] below.
本発明の一実施形態に係る電解液に、正極および負極を組み合わせることにより、二次電池を作製することができる。正極、負極およびその他の部材(セパレーターなど)の材料、形状などは、当業者によって適宜選択されうる。より具体的な作製方法の例は、下記〔実施例5〕に記載されている。 [6. Secondary battery)
A secondary battery can be produced by combining a positive electrode and a negative electrode with the electrolytic solution according to one embodiment of the present invention. The material, shape, and the like of the positive electrode, the negative electrode, and other members (separator, etc.) can be appropriately selected by those skilled in the art. An example of a more specific manufacturing method is described in [Example 5] below.
マグネシウム二次電池を作製する場合、負極の材料は、通常は金属マグネシウムである。正極の材料としては、例えば、五酸化バナジウム、硫化モリブデン、マグネシウム含有酸化物、遷移金属酸化物などが挙げられる。
When producing a magnesium secondary battery, the material of the negative electrode is usually metallic magnesium. Examples of the material for the positive electrode include vanadium pentoxide, molybdenum sulfide, magnesium-containing oxide, and transition metal oxide.
また、本発明の一実施形態に係る電解液は、水分を含むことを許容するので、空気二次電池を作製することもできる。この場合、負極の材料は、通常は金属マグネシウムである。正極の材料(触媒層を含む)としては、例えば、炭素(C)の他に、白金(Pt)、ルテニウム(Ru)、イリジウム(Ir)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、タングステン(W)、鉛(Pb)、鉄(Fe)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)、ガリウム(Ga)、アルミニウム(Al)などの金属およびその化合物、ならびにこれらの合金などが挙げられる。このうち、正極材量として例えば炭素を採用した場合、レアメタルを使用しない二次電池の作製が可能となる。
Moreover, since the electrolytic solution according to an embodiment of the present invention allows moisture to be contained, an air secondary battery can also be manufactured. In this case, the material of the negative electrode is usually metallic magnesium. Examples of the positive electrode material (including the catalyst layer) include, in addition to carbon (C), platinum (Pt), ruthenium (Ru), iridium (Ir), rhodium (Rh), palladium (Pd), and osmium (Os). ), Tungsten (W), lead (Pb), iron (Fe), chromium (Cr), cobalt (Co), nickel (Ni), manganese (Mn), vanadium (V), molybdenum (Mo), gallium (Ga) ), Metals such as aluminum (Al) and their compounds, and alloys thereof. Among these, when carbon is employed as the amount of the positive electrode material, for example, a secondary battery that does not use a rare metal can be manufactured.
〔7.従来技術に対する長所〕
本発明の最も効果的と考えられる一態様について、従来技術との差異を以下に説明する。上記態様は、スルホン系溶媒に、単体ハロゲンを溶解させ、次いで上記単体ハロゲンが完全に反応するのに充分な量の金属マグネシウムを混合して調製された電解液である。ただし、種々の条件および目的によっては、他の態様が最適でありうることを付記する。 [7. Advantages over conventional technology
Differences from the prior art will be described below with respect to one aspect considered to be the most effective of the present invention. The above embodiment is an electrolytic solution prepared by dissolving a simple halogen in a sulfone solvent and then mixing a sufficient amount of metallic magnesium so that the simple halogen is completely reacted. However, it should be noted that other embodiments may be optimal depending on various conditions and purposes.
本発明の最も効果的と考えられる一態様について、従来技術との差異を以下に説明する。上記態様は、スルホン系溶媒に、単体ハロゲンを溶解させ、次いで上記単体ハロゲンが完全に反応するのに充分な量の金属マグネシウムを混合して調製された電解液である。ただし、種々の条件および目的によっては、他の態様が最適でありうることを付記する。 [7. Advantages over conventional technology
Differences from the prior art will be described below with respect to one aspect considered to be the most effective of the present invention. The above embodiment is an electrolytic solution prepared by dissolving a simple halogen in a sulfone solvent and then mixing a sufficient amount of metallic magnesium so that the simple halogen is completely reacted. However, it should be noted that other embodiments may be optimal depending on various conditions and purposes.
[高いマグネシウムイオン濃度と、低い毒性および水分の許容との両立]
従来のマグネシウムイオン含有電解液は、溶媒としてエーテル系溶媒またはスルホン系溶媒を採用して開発が進められていた。このうち、エーテル系溶媒を用いる電解液は、高いマグネシウムイオン濃度を達成できるものの、毒性および揮発性が高く、かつ水分を含むと配位構造が崩れるため不活性となる欠点があった。このため、エーテル系溶媒を用いる電解液は、実用化の点において問題があった。一方、スルホン系溶媒を用いる電解液は、毒性および揮発性が低く、ある程度の水分を含むことが許容されるが、マグネシウムイオン濃度を高くすることが困難であった。 [Compatibility of high magnesium ion concentration with low toxicity and moisture tolerance]
Conventional magnesium ion-containing electrolytes have been developed by employing ether solvents or sulfone solvents as solvents. Among these, although the electrolyte solution using an ether solvent can achieve a high magnesium ion concentration, it has a drawback that it becomes inactive because it has high toxicity and volatility and the coordination structure is destroyed when it contains water. For this reason, the electrolytic solution using an ether solvent has a problem in practical use. On the other hand, an electrolyte solution using a sulfone solvent has low toxicity and low volatility and is allowed to contain a certain amount of moisture, but it has been difficult to increase the magnesium ion concentration.
従来のマグネシウムイオン含有電解液は、溶媒としてエーテル系溶媒またはスルホン系溶媒を採用して開発が進められていた。このうち、エーテル系溶媒を用いる電解液は、高いマグネシウムイオン濃度を達成できるものの、毒性および揮発性が高く、かつ水分を含むと配位構造が崩れるため不活性となる欠点があった。このため、エーテル系溶媒を用いる電解液は、実用化の点において問題があった。一方、スルホン系溶媒を用いる電解液は、毒性および揮発性が低く、ある程度の水分を含むことが許容されるが、マグネシウムイオン濃度を高くすることが困難であった。 [Compatibility of high magnesium ion concentration with low toxicity and moisture tolerance]
Conventional magnesium ion-containing electrolytes have been developed by employing ether solvents or sulfone solvents as solvents. Among these, although the electrolyte solution using an ether solvent can achieve a high magnesium ion concentration, it has a drawback that it becomes inactive because it has high toxicity and volatility and the coordination structure is destroyed when it contains water. For this reason, the electrolytic solution using an ether solvent has a problem in practical use. On the other hand, an electrolyte solution using a sulfone solvent has low toxicity and low volatility and is allowed to contain a certain amount of moisture, but it has been difficult to increase the magnesium ion concentration.
また、従来技術においては、溶媒中のマグネシウムイオンは、マグネシウム塩を溶解させることによって生じさせていた。しかし、スルホン系溶媒に対するマグネシウム塩の溶解度は低いため、補助溶媒および/または添加剤を併用する必要があった(例えば、特許文献1は、補助溶媒としてアルコールを使用している)。
In the prior art, magnesium ions in the solvent are generated by dissolving the magnesium salt. However, since the solubility of the magnesium salt in the sulfone solvent is low, it is necessary to use an auxiliary solvent and / or an additive together (for example, Patent Document 1 uses alcohol as the auxiliary solvent).
これに対し、上記態様によると、実用化に耐える(電池寿命が長い)スルホン系溶媒を使用しつつ、0.50mol/Lを超える高いマグネシウムイオン濃度を達成することができる。また、補助溶媒および/または添加剤を用いずにマグネシウムイオンを生じさせるので、製造工程数を減少させることができる。
On the other hand, according to the above-described embodiment, a high magnesium ion concentration exceeding 0.50 mol / L can be achieved while using a sulfone solvent that can withstand practical use (long battery life). Further, since magnesium ions are generated without using an auxiliary solvent and / or an additive, the number of production steps can be reduced.
[過電圧の低減]
一般的に、マグネシウム二次電池には、マグネシウムが溶解または析出する電位差になっても、反応抵抗が生じ、電流が発生しないという問題(過電圧)が存在していた。この問題を解決するための手法として、単体ハロゲンを電解液に共存させる手法が存在する(例えば、特許文献2)。しかし上記手法には、単体ハロゲンがマグネシウム電極を腐食するという問題点が残されていた。 [Reduction of overvoltage]
In general, a magnesium secondary battery has a problem (overvoltage) in that reaction resistance occurs and no current is generated even when a potential difference occurs where magnesium is dissolved or precipitated. As a technique for solving this problem, there is a technique in which a single halogen coexists in an electrolytic solution (for example, Patent Document 2). However, the above method still has a problem that single halogen corrodes the magnesium electrode.
一般的に、マグネシウム二次電池には、マグネシウムが溶解または析出する電位差になっても、反応抵抗が生じ、電流が発生しないという問題(過電圧)が存在していた。この問題を解決するための手法として、単体ハロゲンを電解液に共存させる手法が存在する(例えば、特許文献2)。しかし上記手法には、単体ハロゲンがマグネシウム電極を腐食するという問題点が残されていた。 [Reduction of overvoltage]
In general, a magnesium secondary battery has a problem (overvoltage) in that reaction resistance occurs and no current is generated even when a potential difference occurs where magnesium is dissolved or precipitated. As a technique for solving this problem, there is a technique in which a single halogen coexists in an electrolytic solution (for example, Patent Document 2). However, the above method still has a problem that single halogen corrodes the magnesium electrode.
これに対し、上記態様は、製造段階で単体ハロゲンが完全に反応するため、電極の腐食は生じない。しかも、後述の実施例で示されるように、過電圧もほぼ発生しないか、小さな値に止めることに成功している。
On the other hand, in the above embodiment, corrosion of the electrode does not occur because the single halogen completely reacts in the manufacturing stage. In addition, as shown in the examples described later, the overvoltage hardly occurs or succeeds in stopping at a small value.
[高い実容量]
上記実施態様は、マグネシウム電極/マグネシウム含有電解液系としては、高い実容量を記録している。マグネシウム電極/マグネシウム含有電解液系の理論容量(マグネシウム電極を全て溶解および析出させた際に取り出せる電気量)は、3881mAh/cm3である。上記態様によると、利用率50%(1941mAh/cm3)相当の実容量を、99.8%のサイクル効率で達成することができた(実施例4-1参照)。 [High actual capacity]
In the above embodiment, a high actual capacity is recorded as the magnesium electrode / magnesium-containing electrolyte system. The theoretical capacity of the magnesium electrode / magnesium-containing electrolyte system (the amount of electricity that can be taken out when all the magnesium electrodes are dissolved and deposited) is 3881 mAh / cm 3 . According to the above aspect, an actual capacity equivalent to 50% utilization (1941 mAh / cm 3 ) could be achieved with a cycle efficiency of 99.8% (see Example 4-1).
上記実施態様は、マグネシウム電極/マグネシウム含有電解液系としては、高い実容量を記録している。マグネシウム電極/マグネシウム含有電解液系の理論容量(マグネシウム電極を全て溶解および析出させた際に取り出せる電気量)は、3881mAh/cm3である。上記態様によると、利用率50%(1941mAh/cm3)相当の実容量を、99.8%のサイクル効率で達成することができた(実施例4-1参照)。 [High actual capacity]
In the above embodiment, a high actual capacity is recorded as the magnesium electrode / magnesium-containing electrolyte system. The theoretical capacity of the magnesium electrode / magnesium-containing electrolyte system (the amount of electricity that can be taken out when all the magnesium electrodes are dissolved and deposited) is 3881 mAh / cm 3 . According to the above aspect, an actual capacity equivalent to 50% utilization (1941 mAh / cm 3 ) could be achieved with a cycle efficiency of 99.8% (see Example 4-1).
〔8.本発明の他の態様〕
他の態様において、本発明は以下の構成を包含している。
<1>溶媒と、マグネシウムイオンと、ハロゲン化物イオンとを含んでいる、電解液。
<2>上記電解液の全量に対して、マグネシウムイオンを0.5mol/L以上含んでいる、<1>に記載の電解液。
<3>軟X線蛍光XAFS法によって分析した際に、配位数が4であるマグネシウム原子が、全マグネシウム原子の数の95%以上を占めている、<1>または<2>に記載の電解液。
<4>上記溶媒は、有機溶媒またはイオン液体である、<1>~<3>のいずれか1つに記載の電解液。
<5>上記溶媒は、スルホン系溶媒である、<1>~<4>のいずれか1つに記載の電解液。
<6>上記ハロゲン化物イオンは、臭化物イオンまたはヨウ化物イオンである、<1>~<5>のいずれか1つに記載の電解液。
<7><1>~<6>のいずれか1つに記載の電解液を含んでいる、二次電池。
<8>溶媒、金属マグネシウムおよび単体ハロゲンを混合する工程を含む、電解液の製造方法。
<9>上記電解液の全量に対して、マグネシウムイオンを0.5mol/L以上含んでいる、<8>に記載の電解液の製造方法。
<10>上記電解液を軟X線蛍光XAFS法によって分析した際に、配位数が4であるマグネシウム原子が、全マグネシウム原子の数の95%以上を占めている、<8>または<9>に記載の電解液の製造方法。
<11>上記溶媒は、有機溶媒またはイオン液体である、<8>~<10>のいずれか1つに記載の電解液の製造方法。
<12>上記溶媒は、スルホン系溶媒である、<8>~<11>のいずれか1つに記載の電解液の製造方法。
<13>上記単体ハロゲンは、臭素分子またはヨウ素分子である、<8>~<12>のいずれか1項に記載の電解液の製造方法。 [8. Other Embodiments of the Present Invention]
In another aspect, the present invention includes the following configurations.
<1> An electrolytic solution containing a solvent, magnesium ions, and halide ions.
<2> The electrolyte solution according to <1>, which contains 0.5 mol / L or more of magnesium ions with respect to the total amount of the electrolyte solution.
<3> The magnesium atom having a coordination number of 4 accounts for 95% or more of the total number of magnesium atoms when analyzed by the soft X-ray fluorescence XAFS method, according to <1> or <2> Electrolytic solution.
<4> The electrolytic solution according to any one of <1> to <3>, wherein the solvent is an organic solvent or an ionic liquid.
<5> The electrolytic solution according to any one of <1> to <4>, wherein the solvent is a sulfone solvent.
<6> The electrolytic solution according to any one of <1> to <5>, wherein the halide ion is a bromide ion or an iodide ion.
<7> A secondary battery comprising the electrolytic solution according to any one of <1> to <6>.
<8> A method for producing an electrolytic solution, comprising a step of mixing a solvent, metallic magnesium, and simple halogen.
<9> The method for producing an electrolytic solution according to <8>, wherein magnesium ions are contained in an amount of 0.5 mol / L or more with respect to the total amount of the electrolytic solution.
<10> When the electrolyte is analyzed by a soft X-ray fluorescence XAFS method, magnesium atoms having a coordination number of 4 occupy 95% or more of the total number of magnesium atoms, <8> or <9 The manufacturing method of electrolyte solution as described in>.
<11> The method for producing an electrolytic solution according to any one of <8> to <10>, wherein the solvent is an organic solvent or an ionic liquid.
<12> The method for producing an electrolytic solution according to any one of <8> to <11>, wherein the solvent is a sulfone solvent.
<13> The method for producing an electrolytic solution according to any one of <8> to <12>, wherein the single halogen is a bromine molecule or an iodine molecule.
他の態様において、本発明は以下の構成を包含している。
<1>溶媒と、マグネシウムイオンと、ハロゲン化物イオンとを含んでいる、電解液。
<2>上記電解液の全量に対して、マグネシウムイオンを0.5mol/L以上含んでいる、<1>に記載の電解液。
<3>軟X線蛍光XAFS法によって分析した際に、配位数が4であるマグネシウム原子が、全マグネシウム原子の数の95%以上を占めている、<1>または<2>に記載の電解液。
<4>上記溶媒は、有機溶媒またはイオン液体である、<1>~<3>のいずれか1つに記載の電解液。
<5>上記溶媒は、スルホン系溶媒である、<1>~<4>のいずれか1つに記載の電解液。
<6>上記ハロゲン化物イオンは、臭化物イオンまたはヨウ化物イオンである、<1>~<5>のいずれか1つに記載の電解液。
<7><1>~<6>のいずれか1つに記載の電解液を含んでいる、二次電池。
<8>溶媒、金属マグネシウムおよび単体ハロゲンを混合する工程を含む、電解液の製造方法。
<9>上記電解液の全量に対して、マグネシウムイオンを0.5mol/L以上含んでいる、<8>に記載の電解液の製造方法。
<10>上記電解液を軟X線蛍光XAFS法によって分析した際に、配位数が4であるマグネシウム原子が、全マグネシウム原子の数の95%以上を占めている、<8>または<9>に記載の電解液の製造方法。
<11>上記溶媒は、有機溶媒またはイオン液体である、<8>~<10>のいずれか1つに記載の電解液の製造方法。
<12>上記溶媒は、スルホン系溶媒である、<8>~<11>のいずれか1つに記載の電解液の製造方法。
<13>上記単体ハロゲンは、臭素分子またはヨウ素分子である、<8>~<12>のいずれか1項に記載の電解液の製造方法。 [8. Other Embodiments of the Present Invention]
In another aspect, the present invention includes the following configurations.
<1> An electrolytic solution containing a solvent, magnesium ions, and halide ions.
<2> The electrolyte solution according to <1>, which contains 0.5 mol / L or more of magnesium ions with respect to the total amount of the electrolyte solution.
<3> The magnesium atom having a coordination number of 4 accounts for 95% or more of the total number of magnesium atoms when analyzed by the soft X-ray fluorescence XAFS method, according to <1> or <2> Electrolytic solution.
<4> The electrolytic solution according to any one of <1> to <3>, wherein the solvent is an organic solvent or an ionic liquid.
<5> The electrolytic solution according to any one of <1> to <4>, wherein the solvent is a sulfone solvent.
<6> The electrolytic solution according to any one of <1> to <5>, wherein the halide ion is a bromide ion or an iodide ion.
<7> A secondary battery comprising the electrolytic solution according to any one of <1> to <6>.
<8> A method for producing an electrolytic solution, comprising a step of mixing a solvent, metallic magnesium, and simple halogen.
<9> The method for producing an electrolytic solution according to <8>, wherein magnesium ions are contained in an amount of 0.5 mol / L or more with respect to the total amount of the electrolytic solution.
<10> When the electrolyte is analyzed by a soft X-ray fluorescence XAFS method, magnesium atoms having a coordination number of 4 occupy 95% or more of the total number of magnesium atoms, <8> or <9 The manufacturing method of electrolyte solution as described in>.
<11> The method for producing an electrolytic solution according to any one of <8> to <10>, wherein the solvent is an organic solvent or an ionic liquid.
<12> The method for producing an electrolytic solution according to any one of <8> to <11>, wherein the solvent is a sulfone solvent.
<13> The method for producing an electrolytic solution according to any one of <8> to <12>, wherein the single halogen is a bromine molecule or an iodine molecule.
〔製造例〕
本発明の一実施形態に係る電解液を、以下の手法により調製した。なお、試薬の計量および試薬と溶媒との混合は、グローブボックス内(アルゴン雰囲気、露点:-80~-90℃)で行った。 [Production example]
An electrolytic solution according to an embodiment of the present invention was prepared by the following method. The measurement of the reagent and the mixing of the reagent and the solvent were performed in a glove box (argon atmosphere, dew point: −80 to −90 ° C.).
本発明の一実施形態に係る電解液を、以下の手法により調製した。なお、試薬の計量および試薬と溶媒との混合は、グローブボックス内(アルゴン雰囲気、露点:-80~-90℃)で行った。 [Production example]
An electrolytic solution according to an embodiment of the present invention was prepared by the following method. The measurement of the reagent and the mixing of the reagent and the solvent were performed in a glove box (argon atmosphere, dew point: −80 to −90 ° C.).
溶媒として、モレキュラーシーブによって脱水したエチルイソプロピルスルホン(東京化成製)10mLを計量した。上記溶媒をスターラーで撹拌しながら、ヨウ素(和光純薬製)1.27gを加えた。ヨウ素が溶媒に完全に分散した後で、金属マグネシウム粉末を0.486g加えた。反応が進むにつれ、ヨウ素に由来する紫色が薄まるのが観察された。金属マグネシウム粉末を加えてから約12時間後、紫色が完全に消失し、溶液が透明になった時点で、反応が完了したと判断した。上記溶液を、大気が混入しない状態を保ちながらグローブボックス外に出し、遠心分離機(アズワン製、AS165W)で遠心分離(7500rpm、15分間)した。これにより、未反応の金属マグネシウムを沈降させた上澄み液として、本発明の一実施形態に係る電解液(以下、「電解液A」と表記する)を得た。
As a solvent, 10 mL of ethyl isopropyl sulfone (manufactured by Tokyo Chemical Industry) dehydrated by molecular sieve was weighed. While stirring the above solvent with a stirrer, 1.27 g of iodine (manufactured by Wako Pure Chemical Industries, Ltd.) was added. After iodine was completely dispersed in the solvent, 0.486 g of metal magnesium powder was added. It was observed that the purple color derived from iodine faded as the reaction proceeded. About 12 hours after adding the magnesium metal powder, the reaction was judged complete when the purple color disappeared completely and the solution became transparent. The above solution was taken out of the glove box while maintaining a state in which air was not mixed, and centrifuged (7500 rpm, 15 minutes) with a centrifuge (AS165W, manufactured by ASONE). Thus, an electrolyte solution according to an embodiment of the present invention (hereinafter referred to as “electrolyte solution A”) was obtained as a supernatant liquid in which unreacted metallic magnesium was precipitated.
調製した電解液Aのマグネシウム濃度は、0.55mol/Lであった。なお、同様の製造方法により、マグネシウム濃度は最大で3.5mol/Lまで高められることを確認した。
The magnesium concentration of the prepared electrolytic solution A was 0.55 mol / L. In addition, it was confirmed that the magnesium concentration was increased to 3.5 mol / L at the maximum by the same manufacturing method.
〔実施例1〕
電解液Aの電気化学的特性を調べるために、サイクリックボルタンメトリー(CV)測定を行った。 [Example 1]
In order to examine the electrochemical characteristics of the electrolyte A, cyclic voltammetry (CV) measurement was performed.
電解液Aの電気化学的特性を調べるために、サイクリックボルタンメトリー(CV)測定を行った。 [Example 1]
In order to examine the electrochemical characteristics of the electrolyte A, cyclic voltammetry (CV) measurement was performed.
測定には三極式セル(電解液量0.7mL;BAS製、VC-4)を用いた。作用極としてニッケル(Ni)基板(直径10mm)、対極および参照極としてマグネシウム(Mg)ペレット(直径12mm;レアメタリック製)およびマグネシウムワイヤー(直径1.6mm;レアメタリック製)を用いた。測定は室温、大気圧下で行った。
For the measurement, a triode cell (electrolyte volume 0.7 mL; manufactured by BAS, VC-4) was used. A nickel (Ni) substrate (diameter 10 mm) was used as a working electrode, and magnesium (Mg) pellets (diameter 12 mm; manufactured by Rare Metallic) and magnesium wires (diameter 1.6 mm; manufactured by Rare Metallic) were used as a counter electrode and a reference electrode. The measurement was performed at room temperature and atmospheric pressure.
測定は、以下のサイクルで電位を掃引することにより行った。
Measurement was performed by sweeping the potential in the following cycle.
(1)開始時には、電極間を開回路状態(OCV)とした。
(1) At the start, the electrodes were placed in an open circuit state (OCV).
(2)まず、参照電極の電位に対する作用極の電位を、還元側へ-0.7Vまで低下させた。この間、マグネシウムイオンは金属マグネシウムとして析出した。
(2) First, the potential of the working electrode with respect to the potential of the reference electrode was decreased to −0.7 V toward the reduction side. During this time, magnesium ions precipitated as metallic magnesium.
(3)次に、参照電極の電位に対する作用極の電位を、酸化側へ2.0Vまで上昇させた。この間、金属マグネシウムはマグネシウムイオンとして溶解した。
(3) Next, the potential of the working electrode with respect to the potential of the reference electrode was increased to 2.0 V toward the oxidation side. During this time, magnesium metal was dissolved as magnesium ions.
(4)最後に、電極間をOCVに戻した。
(4) Finally, the electrode gap was returned to OCV.
すなわち、参照電極を基準とする作用極の電位を、OCV→-0.7V→+1.0~2.0V程度→OCVの順に変化させた。電位を挿引する速度は、20mV/sとした。
That is, the potential of the working electrode with respect to the reference electrode was changed in the order of OCV → −0.7V → about +1.0 to 2.0V → OCV. The speed at which the potential was inserted was 20 mV / s.
(結果)
結果を表すサイクリックボルタモグラムを、図1の(a)に示す。同図によると、電位を負の方向へ掃引する際に、0Vの時点から応答電流が発生している(点Aを参照)。このことは、熱力学的にマグネシウムの析出が始まる理論上の電位において、実際にマグネシウムの析出が始まっていることを示している。すなわち、過電圧が発生することなく、マグネシウムの析出反応が進行していることを示している。同様に、電位を正方向に掃引する際にも、過電圧が発生することなくマグネシウムの溶解反応が進行していることが、図1の(a)から読み取れる(点Bを参照)。 (result)
A cyclic voltammogram representing the result is shown in FIG. According to the figure, when the potential is swept in the negative direction, a response current is generated from the time of 0 V (see point A). This indicates that magnesium precipitation actually starts at a theoretical potential at which magnesium precipitation begins thermodynamically. That is, it shows that the precipitation reaction of magnesium proceeds without causing overvoltage. Similarly, when the potential is swept in the positive direction, it can be read from FIG. 1A (see point B) that the magnesium dissolution reaction proceeds without causing overvoltage.
結果を表すサイクリックボルタモグラムを、図1の(a)に示す。同図によると、電位を負の方向へ掃引する際に、0Vの時点から応答電流が発生している(点Aを参照)。このことは、熱力学的にマグネシウムの析出が始まる理論上の電位において、実際にマグネシウムの析出が始まっていることを示している。すなわち、過電圧が発生することなく、マグネシウムの析出反応が進行していることを示している。同様に、電位を正方向に掃引する際にも、過電圧が発生することなくマグネシウムの溶解反応が進行していることが、図1の(a)から読み取れる(点Bを参照)。 (result)
A cyclic voltammogram representing the result is shown in FIG. According to the figure, when the potential is swept in the negative direction, a response current is generated from the time of 0 V (see point A). This indicates that magnesium precipitation actually starts at a theoretical potential at which magnesium precipitation begins thermodynamically. That is, it shows that the precipitation reaction of magnesium proceeds without causing overvoltage. Similarly, when the potential is swept in the positive direction, it can be read from FIG. 1A (see point B) that the magnesium dissolution reaction proceeds without causing overvoltage.
これに対し、従来技術である特許文献1に記載されている電解液のサイクリックボルタモグラムを、図1の(b)に示す。上記電解液は、脱水メタノールに塩化マグネシウム(II)を溶解させ、さらにエチル-n-プロピルスルホン(EnPS)と混合した後、減圧によりメタノールを除去して調製したものである。
On the other hand, a cyclic voltammogram of the electrolytic solution described in Patent Document 1 which is a prior art is shown in FIG. The above electrolyte was prepared by dissolving magnesium chloride (II) in dehydrated methanol, mixing it with ethyl-n-propylsulfone (EnPS), and removing the methanol under reduced pressure.
図1の(b)によると、電位を負方向に掃引した際の応答電流は、-1V付近から発生している(点Cを参照)。つまり、0V~1Vの間においては反応抵抗が発生し、マグネシウムの析出が始まっていないことになる(過電圧が発生している)。同様に、電位を正方向に掃引した際も、若干ながら過電圧の発生が見られる(点Dを参照)。この違いは、特許文献1に記載されている電解液では、溶媒分子が6配位しているマグネシウム原子と、溶媒分子が4配位しているマグネシウム原子とが混在していることに由来すると考えられる。
According to FIG. 1 (b), the response current when the potential is swept in the negative direction is generated from around −1V (see point C). That is, a reaction resistance is generated between 0V and 1V, and the precipitation of magnesium does not start (overvoltage is generated). Similarly, when the potential is swept in the positive direction, a slight overvoltage is observed (see point D). This difference is derived from the fact that in the electrolytic solution described in Patent Document 1, magnesium atoms having six coordinated solvent molecules and magnesium atoms having four coordinated solvent molecules are mixed. Conceivable.
また、図1の(a)における電流密度は、A/cm2オーダーであるのに対し、図1の(b)における電流密度は、mA/cm2オーダーである。すなわち、電解液Aは、従来技術の1000倍程度の電流を取り出すことに成功している。
In addition, the current density in FIG. 1A is on the order of A / cm 2 , whereas the current density in FIG. 1B is on the order of mA / cm 2 . That is, the electrolytic solution A has succeeded in extracting a current about 1000 times that of the prior art.
〔実施例2〕
電解液Aから、金属マグネシウムが析出することを確認した。 [Example 2]
From the electrolytic solution A, it was confirmed that metallic magnesium was deposited.
電解液Aから、金属マグネシウムが析出することを確認した。 [Example 2]
From the electrolytic solution A, it was confirmed that metallic magnesium was deposited.
[実施例2-1]
電子顕微鏡により、金属マグネシウムが析出していることを確認した。 [Example 2-1]
It was confirmed by electron microscopy that metallic magnesium was deposited.
電子顕微鏡により、金属マグネシウムが析出していることを確認した。 [Example 2-1]
It was confirmed by electron microscopy that metallic magnesium was deposited.
電解液Aを三極式セル(電解液量2.0mL;BAS製、VC-4)に注入し、作用極にニッケル製電極を、対極および参照極にマグネシウム金属を、それぞれ挿入した。次に、1mA/cm2の電流を、作用極と対極との間に、10分間流した。その後、析出物が付着した作用極をEiPSに浸漬して洗浄し、減圧乾燥後、作用極上の上記析出物を走査型電子顕微鏡(Hitachi hightech製)により観察した。電子銃フィラメントの加速電圧は15kV、電流は40.0mAであった。
Electrolytic solution A was injected into a triode cell (electrolytic solution amount 2.0 mL; manufactured by BAS, VC-4), a nickel electrode was inserted into the working electrode, and magnesium metal was inserted into the counter electrode and the reference electrode. Next, a current of 1 mA / cm 2 was passed between the working electrode and the counter electrode for 10 minutes. Thereafter, the working electrode to which the deposit was attached was immersed in EiPS, washed, dried under reduced pressure, and then the deposit on the working electrode was observed with a scanning electron microscope (manufactured by Hitachi hightech). The acceleration voltage of the electron gun filament was 15 kV, and the current was 40.0 mA.
(結果)
撮影された電子顕微鏡像を図2の(a)に示す。画面中央部に、析出した金属マグネシウム(明部)が観察される。なお、暗部は作用極のニッケルである。 (result)
The photographed electron microscope image is shown in FIG. Precipitated magnesium metal (bright part) is observed at the center of the screen. The dark part is the working electrode nickel.
撮影された電子顕微鏡像を図2の(a)に示す。画面中央部に、析出した金属マグネシウム(明部)が観察される。なお、暗部は作用極のニッケルである。 (result)
The photographed electron microscope image is shown in FIG. Precipitated magnesium metal (bright part) is observed at the center of the screen. The dark part is the working electrode nickel.
[実施例2-2]
エネルギー分散型X線分析装置(エダックスジャパン製、Genesis XM2)を用いてエネルギー分散型X線分析(EDX)を行い、析出物の元素を分析した。 [Example 2-2]
Energy dispersive X-ray analysis (EDX) was performed using an energy dispersive X-ray analyzer (Genesis XM2 manufactured by Edax Japan) to analyze the elements of the precipitate.
エネルギー分散型X線分析装置(エダックスジャパン製、Genesis XM2)を用いてエネルギー分散型X線分析(EDX)を行い、析出物の元素を分析した。 [Example 2-2]
Energy dispersive X-ray analysis (EDX) was performed using an energy dispersive X-ray analyzer (Genesis XM2 manufactured by Edax Japan) to analyze the elements of the precipitate.
(結果)
図2の(a)と同じ範囲についてのマッピング分析結果を、図2の(b)に示す。これにより図2の(a)が、ニッケル基板の上に析出した金属マグネシウムであることが示された。また、析出物のマッピングスペクトルを、図2の(c)に示す。マグネシウム特有のスペクトルが強く検出されていることがわかる。なお、Sはスルホン溶媒、Iは電解液由来のスペクトルである。これらの結果より、電極上に金属マグネシウムが析出していることが示された。 (result)
The mapping analysis result for the same range as in FIG. 2A is shown in FIG. Thereby, it was shown that (a) of FIG. 2 is the metallic magnesium deposited on the nickel substrate. The mapping spectrum of the precipitate is shown in FIG. It turns out that the spectrum peculiar to magnesium is detected strongly. In addition, S is a sulfone solvent and I is a spectrum derived from an electrolytic solution. From these results, it was shown that metallic magnesium was deposited on the electrode.
図2の(a)と同じ範囲についてのマッピング分析結果を、図2の(b)に示す。これにより図2の(a)が、ニッケル基板の上に析出した金属マグネシウムであることが示された。また、析出物のマッピングスペクトルを、図2の(c)に示す。マグネシウム特有のスペクトルが強く検出されていることがわかる。なお、Sはスルホン溶媒、Iは電解液由来のスペクトルである。これらの結果より、電極上に金属マグネシウムが析出していることが示された。 (result)
The mapping analysis result for the same range as in FIG. 2A is shown in FIG. Thereby, it was shown that (a) of FIG. 2 is the metallic magnesium deposited on the nickel substrate. The mapping spectrum of the precipitate is shown in FIG. It turns out that the spectrum peculiar to magnesium is detected strongly. In addition, S is a sulfone solvent and I is a spectrum derived from an electrolytic solution. From these results, it was shown that metallic magnesium was deposited on the electrode.
〔実施例3〕
軟X線XAFS法により電解液Aを分析し、中に含まれるマグネシウム原子の状態を調査した。 Example 3
The electrolyte solution A was analyzed by the soft X-ray XAFS method, and the state of magnesium atoms contained therein was investigated.
軟X線XAFS法により電解液Aを分析し、中に含まれるマグネシウム原子の状態を調査した。 Example 3
The electrolyte solution A was analyzed by the soft X-ray XAFS method, and the state of magnesium atoms contained therein was investigated.
電解液A0.2mLを、Be窓付きステンレス製サンプルホルダーに注入し、軟X線XAFS分析設備(高エネルギー加速器研究機構フォトンファクトリー、BL-11)によって分析した。分析したエネルギー領域は、1250~1550eVであった。得られた蛍光X線の中からマグネシウムのK吸収を収集し、データ処理ソフトウェアATHENAによって解析して、動径構造関数を得た。
Electrolyte A0.2mL was poured into a stainless steel sample holder with a Be window and analyzed with a soft X-ray XAFS analysis facility (High Energy Accelerator Research Organization Photon Factory, BL-11). The analyzed energy region was 1250-1550 eV. Magnesium K absorption was collected from the obtained fluorescent X-rays and analyzed by data processing software ATHENA to obtain a radial structure function.
また、比較サンプルとして、軟X線XAFS法により過塩素酸マグネシウム水溶液を分析し、動径構造関数を得た。上記過塩素酸マグネシウム水溶液は、0.55Mとなるように過塩素酸マグネシウム(和光純薬工業製)を水に溶解させ、大気中にてスターラーで攪拌することにより調製した。なお、過塩素酸マグネシウム水溶液は、マグネシウム原子に対して水分子が6配位することが知られている。
As a comparative sample, an aqueous magnesium perchlorate solution was analyzed by a soft X-ray XAFS method to obtain a radial structure function. The magnesium perchlorate aqueous solution was prepared by dissolving magnesium perchlorate (manufactured by Wako Pure Chemical Industries, Ltd.) in water to 0.55 M and stirring with a stirrer in the atmosphere. In addition, it is known that the magnesium perchlorate aqueous solution will coordinate 6 water molecules with respect to a magnesium atom.
(結果)
電解液A(実線)および過塩素酸マグネシウム水溶液(破線)の動径構造関数を、図3に示す。グラフの横軸はマグネシウム原子の中心からの距離を表し、動径構造関数のピークの大きさは原子の個数に比例する。過塩素酸マグネシウム水溶液は、マグネシウム原子に対して水分子が6配位することが知られているから、破線は6配位の場合の関数と見做せる。 (result)
The radial structure functions of the electrolytic solution A (solid line) and the magnesium perchlorate aqueous solution (broken line) are shown in FIG. The horizontal axis of the graph represents the distance from the center of the magnesium atom, and the peak size of the radial structure function is proportional to the number of atoms. In a magnesium perchlorate aqueous solution, it is known that water molecules are six-coordinated to magnesium atoms, and therefore, the broken line can be regarded as a function in the case of six-coordinates.
電解液A(実線)および過塩素酸マグネシウム水溶液(破線)の動径構造関数を、図3に示す。グラフの横軸はマグネシウム原子の中心からの距離を表し、動径構造関数のピークの大きさは原子の個数に比例する。過塩素酸マグネシウム水溶液は、マグネシウム原子に対して水分子が6配位することが知られているから、破線は6配位の場合の関数と見做せる。 (result)
The radial structure functions of the electrolytic solution A (solid line) and the magnesium perchlorate aqueous solution (broken line) are shown in FIG. The horizontal axis of the graph represents the distance from the center of the magnesium atom, and the peak size of the radial structure function is proportional to the number of atoms. In a magnesium perchlorate aqueous solution, it is known that water molecules are six-coordinated to magnesium atoms, and therefore, the broken line can be regarded as a function in the case of six-coordinates.
それぞれの動径構造関数の、第1近接原子に相当するピーク(3Å近傍のピーク)の強度を比較すると、電解液Aのピーク強度と過塩素酸マグネシウム水溶液のピーク強度との比は、4.015:6.000になっている。すなわち、電解液Aでは、大部分のマグネシウム原子の近傍に4つの原子が存在していることになる。これは、マグネシウム原子の周囲に、スルホン溶媒分子が4配位していることを示唆する。
Comparing the intensities of the peaks corresponding to the first adjacent atoms (peaks near 3Å) of the respective radial structure functions, the ratio between the peak intensity of the electrolyte A and the peak intensity of the magnesium perchlorate aqueous solution is 4. 015: 6.00. That is, in the electrolytic solution A, four atoms are present in the vicinity of most of the magnesium atoms. This suggests that the sulfone solvent molecule is 4-coordinated around the magnesium atom.
マグネシウム原子に対する溶媒分子の配位数が、4配位または6配位のいずれかであると仮定して計算すると、マグネシウム原子全体の99.25%が4配位であり、0.75%が6配位であることになる。上述した通り、4配位のマグネシウムは溶媒への溶解度が高く、かつ反応活性が高いため、電解液Aは電解液として好ましい状態であると言える。
Assuming that the coordination number of the solvent molecule to the magnesium atom is either tetracoordinate or hexacoordinate, 99.25% of the total magnesium atom is tetracoordinate and 0.75% is It will be 6-coordinated. As described above, since tetracoordinate magnesium has high solubility in a solvent and high reaction activity, it can be said that the electrolytic solution A is a preferable state as an electrolytic solution.
〔実施例4〕
[実施例4-1]
電池としての作動を想定した条件で、電解液Aに定電流充放電試験を課した。 Example 4
[Example 4-1]
A constant current charge / discharge test was imposed on the electrolytic solution A under conditions assuming operation as a battery.
[実施例4-1]
電池としての作動を想定した条件で、電解液Aに定電流充放電試験を課した。 Example 4
[Example 4-1]
A constant current charge / discharge test was imposed on the electrolytic solution A under conditions assuming operation as a battery.
電解液A0.5mLを2極式セル(宝泉製)に注ぎ、作用極にニッケル製電極、対極に金属マグネシウムをそれぞれ挿入した。充放電の繰り返しに先立ち、10C/cm2の予備充電を行い、金属マグネシウムを析出させた。次いで、(1)作用極から対極へ向けて1.0mA/cm2の電流を500秒間流し、(2)作用極から対極へ向けて1.0mA/cm2の電流を500秒間流す、ことを繰り返し、充放電を再現した。なお、本条件で流れている電流は、最初に析出させた金属マグネシウムのうち5%に、溶解と析出とを繰り返させることに相当する電流である。金属マグネシウムの溶解および析出が繰り返せなくなるまで充放電サイクルを繰り返し、下記式によってサイクル効率を計算した。
Electrolyte solution A0.5mL was poured into a bipolar cell (made by Hosen), and a nickel electrode was inserted into the working electrode and metallic magnesium was inserted into the counter electrode. Prior to repeated charging and discharging, precharging at 10 C / cm 2 was performed to deposit metallic magnesium. Then, (1) the current 1.0 mA / cm 2 flowed 500 seconds toward the working electrode to the counter electrode, (2) passing a current of 1.0 mA / cm 2 for 500 seconds toward the working electrode to the counter electrode, it Repeated charging and discharging. Note that the current flowing under these conditions is a current corresponding to repeating dissolution and precipitation in 5% of the metal magnesium initially precipitated. The charge / discharge cycle was repeated until dissolution and precipitation of metallic magnesium could not be repeated, and the cycle efficiency was calculated according to the following formula.
(結果)
図4の(a)および(b)に、経過を表すグラフを示した。電位が一定になっている箇所では、マグネシウムの溶解または析出が発生している。本試験では、5000サイクル到達時まで、マグネシウムを溶解または析出させることができた。この結果から計算されるサイクル効率は99.8%である。同様に、この結果から計算される実容量は、1940mAh/cm3であった。なお、本試験において発生している過電圧は、約4mVであった。 (result)
The graph showing progress was shown to (a) and (b) of FIG. Where the potential is constant, magnesium dissolution or precipitation occurs. In this test, magnesium could be dissolved or precipitated until reaching 5000 cycles. The cycle efficiency calculated from this result is 99.8%. Similarly, the actual capacity calculated from this result was 1940 mAh / cm 3 . In addition, the overvoltage which generate | occur | produced in this test was about 4 mV.
図4の(a)および(b)に、経過を表すグラフを示した。電位が一定になっている箇所では、マグネシウムの溶解または析出が発生している。本試験では、5000サイクル到達時まで、マグネシウムを溶解または析出させることができた。この結果から計算されるサイクル効率は99.8%である。同様に、この結果から計算される実容量は、1940mAh/cm3であった。なお、本試験において発生している過電圧は、約4mVであった。 (result)
The graph showing progress was shown to (a) and (b) of FIG. Where the potential is constant, magnesium dissolution or precipitation occurs. In this test, magnesium could be dissolved or precipitated until reaching 5000 cycles. The cycle efficiency calculated from this result is 99.8%. Similarly, the actual capacity calculated from this result was 1940 mAh / cm 3 . In addition, the overvoltage which generate | occur | produced in this test was about 4 mV.
[実施例4-2]
電池としての作動を想定した他の条件で、電解液Aに定電流充放電試験を課した。具体的には、電流を流す時間を5000秒間に変更した以外は実施例4-1と同じ条件で、定電流充放電試験を課した。本条件で流れている電流は、最初に析出させた金属マグネシウムのうち50%に、溶解と析出とを繰り返させることに相当する電流である。なお、本実施例における充放電のサイクル数は1100回とし、実施例4-1と同等のサイクル効率となるように調整した。 [Example 4-2]
A constant current charge / discharge test was imposed on the electrolytic solution A under other conditions assuming operation as a battery. Specifically, a constant current charge / discharge test was imposed under the same conditions as in Example 4-1, except that the current flow time was changed to 5000 seconds. The current flowing under these conditions is a current corresponding to repeating dissolution and precipitation in 50% of the metal magnesium initially precipitated. In this example, the number of charge / discharge cycles was 1100, and the cycle efficiency was adjusted to be equivalent to that of Example 4-1.
電池としての作動を想定した他の条件で、電解液Aに定電流充放電試験を課した。具体的には、電流を流す時間を5000秒間に変更した以外は実施例4-1と同じ条件で、定電流充放電試験を課した。本条件で流れている電流は、最初に析出させた金属マグネシウムのうち50%に、溶解と析出とを繰り返させることに相当する電流である。なお、本実施例における充放電のサイクル数は1100回とし、実施例4-1と同等のサイクル効率となるように調整した。 [Example 4-2]
A constant current charge / discharge test was imposed on the electrolytic solution A under other conditions assuming operation as a battery. Specifically, a constant current charge / discharge test was imposed under the same conditions as in Example 4-1, except that the current flow time was changed to 5000 seconds. The current flowing under these conditions is a current corresponding to repeating dissolution and precipitation in 50% of the metal magnesium initially precipitated. In this example, the number of charge / discharge cycles was 1100, and the cycle efficiency was adjusted to be equivalent to that of Example 4-1.
(結果)
図5に、200サイクル目、400サイクル目、600サイクル目、800サイクル目、1000サイクル目、1100サイクル目の経過を示した。同図より、充放電のサイクルを繰り返しても、マグネシウムの溶解および析出の挙動が安定していることがわかる。1100サイクル到達時点における実容量は、50mAh/cm3であった。なお、本試験において発生している過電圧は、約1Vであった。 (result)
FIG. 5 shows the progress of the 200th cycle, 400th cycle, 600th cycle, 800th cycle, 1000th cycle, and 1100th cycle. From the figure, it can be seen that the dissolution and precipitation behavior of magnesium is stable even when the charge / discharge cycle is repeated. The actual capacity when reaching 1100 cycles was 50 mAh / cm 3 . The overvoltage generated in this test was about 1V.
図5に、200サイクル目、400サイクル目、600サイクル目、800サイクル目、1000サイクル目、1100サイクル目の経過を示した。同図より、充放電のサイクルを繰り返しても、マグネシウムの溶解および析出の挙動が安定していることがわかる。1100サイクル到達時点における実容量は、50mAh/cm3であった。なお、本試験において発生している過電圧は、約1Vであった。 (result)
FIG. 5 shows the progress of the 200th cycle, 400th cycle, 600th cycle, 800th cycle, 1000th cycle, and 1100th cycle. From the figure, it can be seen that the dissolution and precipitation behavior of magnesium is stable even when the charge / discharge cycle is repeated. The actual capacity when reaching 1100 cycles was 50 mAh / cm 3 . The overvoltage generated in this test was about 1V.
〔実施例5〕
電解液A、負極および正極を組み合わせ、マグネシウム二次電池を作製した。さらに、上記マグネシウム二次電池に対して、定電流充放電試験を課した。 Example 5
The electrolyte solution A, the negative electrode, and the positive electrode were combined to produce a magnesium secondary battery. Furthermore, a constant current charge / discharge test was imposed on the magnesium secondary battery.
電解液A、負極および正極を組み合わせ、マグネシウム二次電池を作製した。さらに、上記マグネシウム二次電池に対して、定電流充放電試験を課した。 Example 5
The electrolyte solution A, the negative electrode, and the positive electrode were combined to produce a magnesium secondary battery. Furthermore, a constant current charge / discharge test was imposed on the magnesium secondary battery.
[電池の作製]
負極にマグネシウム(Mg)、正極に五酸化バナジウム(V2O5)、電解液に電解液Aを用いてコイン電池を作製した。上記コイン電池の作製方法は、以下の通りである。コイン電池缶にガスケットを載せ、さらにその上に正極(厚さ30μmのV2O5ペレット)、ポリオレフィン製セパレーター、負極(厚さ200μmのMgペレット)、スペーサー(厚さ500μmのステンレス鋼板)、ワッシャー、コイン電池蓋の順に積層した。その後、電解液Aを100μL注液し、コイン電池缶をかしめて封止した。 [Production of battery]
A coin battery was manufactured using magnesium (Mg) for the negative electrode, vanadium pentoxide (V 2 O 5 ) for the positive electrode, and electrolytic solution A for the electrolytic solution. The method for producing the coin battery is as follows. Place the gasket coin battery can further (Mg pellets thickness 200 [mu] m), (stainless steel plate having a thickness of 500 [mu] m) spacer its cathode on (V 2 O 5 pellets of thickness 30 [mu] m), polyolefin separator, a negative electrode, the washer The coin battery lids were stacked in this order. Thereafter, 100 μL of electrolyte solution A was injected, and the coin battery can was crimped and sealed.
負極にマグネシウム(Mg)、正極に五酸化バナジウム(V2O5)、電解液に電解液Aを用いてコイン電池を作製した。上記コイン電池の作製方法は、以下の通りである。コイン電池缶にガスケットを載せ、さらにその上に正極(厚さ30μmのV2O5ペレット)、ポリオレフィン製セパレーター、負極(厚さ200μmのMgペレット)、スペーサー(厚さ500μmのステンレス鋼板)、ワッシャー、コイン電池蓋の順に積層した。その後、電解液Aを100μL注液し、コイン電池缶をかしめて封止した。 [Production of battery]
A coin battery was manufactured using magnesium (Mg) for the negative electrode, vanadium pentoxide (V 2 O 5 ) for the positive electrode, and electrolytic solution A for the electrolytic solution. The method for producing the coin battery is as follows. Place the gasket coin battery can further (Mg pellets thickness 200 [mu] m), (stainless steel plate having a thickness of 500 [mu] m) spacer its cathode on (V 2 O 5 pellets of thickness 30 [mu] m), polyolefin separator, a negative electrode, the washer The coin battery lids were stacked in this order. Thereafter, 100 μL of electrolyte solution A was injected, and the coin battery can was crimped and sealed.
[定電流充放電試験]
上述の方法により作製したマグネシウム二次電池に対して、(1)1.0mA/cm2の電流を3600秒間流す充電、(2)1.0mA/cm2の電流を3600秒間流す放電、を20サイクル繰り返した。 [Constant current charge / discharge test]
For the magnesium secondary battery manufactured by the above-described method, (1) charging at a current of 1.0 mA / cm 2 for 3600 seconds, (2) discharging at a current of 1.0 mA / cm 2 for 3600 seconds, 20 The cycle was repeated.
上述の方法により作製したマグネシウム二次電池に対して、(1)1.0mA/cm2の電流を3600秒間流す充電、(2)1.0mA/cm2の電流を3600秒間流す放電、を20サイクル繰り返した。 [Constant current charge / discharge test]
For the magnesium secondary battery manufactured by the above-described method, (1) charging at a current of 1.0 mA / cm 2 for 3600 seconds, (2) discharging at a current of 1.0 mA / cm 2 for 3600 seconds, 20 The cycle was repeated.
(結果)
1サイクル目、5サイクル目、10サイクル目、20サイクル目の経過を図6に示した。本実施例で作製した電池の正極は、マグネシウムの挿入反応:V2O5+nMg2++2ne-→MgnV2O5と、マグネシウムの脱離反応:MgnV2O5→V2O5+nMg2++2ne-を繰り返している。図6より、充放電のサイクルを繰り返しても、マグネシウムの挿入反応および脱離反応に対応する曲線が得られており、反応が安定していることがわかる。 (result)
The progress of the 1st cycle, 5th cycle, 10th cycle, and 20th cycle is shown in FIG. The positive electrode of the battery manufactured in this example has magnesium insertion reaction: V 2 O 5 + nMg 2+ + 2ne − → Mg n V 2 O 5 and magnesium elimination reaction: Mg n V 2 O 5 → V 2 O 5. + NMg 2+ + 2ne − is repeated. From FIG. 6, it can be seen that even when the charge / discharge cycle is repeated, curves corresponding to the insertion and desorption reactions of magnesium are obtained, and the reaction is stable.
1サイクル目、5サイクル目、10サイクル目、20サイクル目の経過を図6に示した。本実施例で作製した電池の正極は、マグネシウムの挿入反応:V2O5+nMg2++2ne-→MgnV2O5と、マグネシウムの脱離反応:MgnV2O5→V2O5+nMg2++2ne-を繰り返している。図6より、充放電のサイクルを繰り返しても、マグネシウムの挿入反応および脱離反応に対応する曲線が得られており、反応が安定していることがわかる。 (result)
The progress of the 1st cycle, 5th cycle, 10th cycle, and 20th cycle is shown in FIG. The positive electrode of the battery manufactured in this example has magnesium insertion reaction: V 2 O 5 + nMg 2+ + 2ne − → Mg n V 2 O 5 and magnesium elimination reaction: Mg n V 2 O 5 → V 2 O 5. + NMg 2+ + 2ne − is repeated. From FIG. 6, it can be seen that even when the charge / discharge cycle is repeated, curves corresponding to the insertion and desorption reactions of magnesium are obtained, and the reaction is stable.
〔実施例6〕
[実施例6-1]
溶媒の種類を変更して電解液を作製し、それぞれの電解液を用いてサイクリックボルタンメトリー測定を行った。具体的には、製造例における溶媒を(a)2-メチルテトラヒドロフラン(エーテル系溶媒;東京化成製)、(b)メチルイソプロピルスルホン(MiPS;スルホン系溶媒;東京化成製)、(c)スルホラン(スルホン系溶媒;東京化成製)に変更して電解液を調製し、実施例1と同様の方法でサイクリックボルタンメトリー測定を行った。ただし、2-メチルテトラヒドロフランを溶媒に用いた電解液の測定は、グローブボックス内を用いた極低湿度環境下で行った。 Example 6
[Example 6-1]
Electrolytic solutions were prepared by changing the type of solvent, and cyclic voltammetry measurement was performed using each electrolytic solution. Specifically, the solvents in the production examples are (a) 2-methyltetrahydrofuran (ether solvent; manufactured by Tokyo Chemical Industry), (b) methylisopropylsulfone (MiPS; sulfone solvent; manufactured by Tokyo Chemical Industry), (c) sulfolane ( The electrolyte solution was prepared by changing to a sulfone solvent (manufactured by Tokyo Chemical Industry Co., Ltd.), and cyclic voltammetry measurement was performed in the same manner as in Example 1. However, the measurement of the electrolytic solution using 2-methyltetrahydrofuran as a solvent was performed in an extremely low humidity environment using a glove box.
[実施例6-1]
溶媒の種類を変更して電解液を作製し、それぞれの電解液を用いてサイクリックボルタンメトリー測定を行った。具体的には、製造例における溶媒を(a)2-メチルテトラヒドロフラン(エーテル系溶媒;東京化成製)、(b)メチルイソプロピルスルホン(MiPS;スルホン系溶媒;東京化成製)、(c)スルホラン(スルホン系溶媒;東京化成製)に変更して電解液を調製し、実施例1と同様の方法でサイクリックボルタンメトリー測定を行った。ただし、2-メチルテトラヒドロフランを溶媒に用いた電解液の測定は、グローブボックス内を用いた極低湿度環境下で行った。 Example 6
[Example 6-1]
Electrolytic solutions were prepared by changing the type of solvent, and cyclic voltammetry measurement was performed using each electrolytic solution. Specifically, the solvents in the production examples are (a) 2-methyltetrahydrofuran (ether solvent; manufactured by Tokyo Chemical Industry), (b) methylisopropylsulfone (MiPS; sulfone solvent; manufactured by Tokyo Chemical Industry), (c) sulfolane ( The electrolyte solution was prepared by changing to a sulfone solvent (manufactured by Tokyo Chemical Industry Co., Ltd.), and cyclic voltammetry measurement was performed in the same manner as in Example 1. However, the measurement of the electrolytic solution using 2-methyltetrahydrofuran as a solvent was performed in an extremely low humidity environment using a glove box.
(結果)
図7の(a)~(c)に、それぞれのサイクリックボルタモグラムを示す。これらの図より、溶媒を変更して電解液を調製した場合でも、マグネシウムの溶解および析出が始まる電位は変化していないことがわかる。また、過電圧状態が発生していないこともわかる。この事実は、マグネシウムの溶解および析出に関係するマグネシウム錯体の構造が類似している(溶媒分子による4配位と推定される)ことを示唆している。 (result)
Each cyclic voltammogram is shown in FIGS. 7A to 7C. From these figures, it can be seen that even when the electrolyte was prepared by changing the solvent, the potential at which magnesium dissolution and precipitation began did not change. It can also be seen that no overvoltage condition has occurred. This fact suggests that the structures of magnesium complexes related to magnesium dissolution and precipitation are similar (presumed to be 4-coordinated by solvent molecules).
図7の(a)~(c)に、それぞれのサイクリックボルタモグラムを示す。これらの図より、溶媒を変更して電解液を調製した場合でも、マグネシウムの溶解および析出が始まる電位は変化していないことがわかる。また、過電圧状態が発生していないこともわかる。この事実は、マグネシウムの溶解および析出に関係するマグネシウム錯体の構造が類似している(溶媒分子による4配位と推定される)ことを示唆している。 (result)
Each cyclic voltammogram is shown in FIGS. 7A to 7C. From these figures, it can be seen that even when the electrolyte was prepared by changing the solvent, the potential at which magnesium dissolution and precipitation began did not change. It can also be seen that no overvoltage condition has occurred. This fact suggests that the structures of magnesium complexes related to magnesium dissolution and precipitation are similar (presumed to be 4-coordinated by solvent molecules).
[実施例6-2]
単体ハロゲンを臭素分子に変更し、かつ溶媒の種類を変更して電解液を作製し、それぞれの電解液を用いた際のサイクリックボルタンメトリー測定を行った。具体的には、製造例におけるヨウ素を臭素(5g;和光純薬工業製)に変更し、さらに溶媒を(a)DEMETFSI(Diethylmethyl(2-methoxyethyl)ammoniumbis(trifluoromethylsulfonyl)imide;イオン液体;キシダ化学製)、(b)メチルイソプロピルスルホン(MiPS;スルホン系溶媒;東京化成製)、(c)ジプロピルスルホン(DnPS;スルホン系溶媒;東京化成製)(d)スルホラン(スルホン系溶媒;東京化成製)に変更して電解液を調製し、実施例1と同様の方法でサイクリックボルタンメトリー測定を行った。 [Example 6-2]
Electrolytic solutions were prepared by changing the single halogen to bromine molecules and changing the type of solvent, and cyclic voltammetry measurement was performed when each electrolytic solution was used. Specifically, the iodine in the production example was changed to bromine (5 g; manufactured by Wako Pure Chemical Industries), and the solvent was further changed to (a) DEMETFSI (Diethylmethyl (2-methoxyethyl) ammoniumbis (trifluoromethylsulfonyl) imide; ionic liquid; manufactured by Kishida Chemical Co., Ltd.) ), (B) methyl isopropyl sulfone (MiPS; sulfone solvent; manufactured by Tokyo Kasei), (c) dipropyl sulfone (DnPS; sulfone solvent; manufactured by Tokyo Chemical Industry) (d) sulfolane (sulfone solvent; manufactured by Tokyo Chemical Industry) The electrolyte solution was prepared by changing to, and cyclic voltammetry measurement was performed in the same manner as in Example 1.
単体ハロゲンを臭素分子に変更し、かつ溶媒の種類を変更して電解液を作製し、それぞれの電解液を用いた際のサイクリックボルタンメトリー測定を行った。具体的には、製造例におけるヨウ素を臭素(5g;和光純薬工業製)に変更し、さらに溶媒を(a)DEMETFSI(Diethylmethyl(2-methoxyethyl)ammoniumbis(trifluoromethylsulfonyl)imide;イオン液体;キシダ化学製)、(b)メチルイソプロピルスルホン(MiPS;スルホン系溶媒;東京化成製)、(c)ジプロピルスルホン(DnPS;スルホン系溶媒;東京化成製)(d)スルホラン(スルホン系溶媒;東京化成製)に変更して電解液を調製し、実施例1と同様の方法でサイクリックボルタンメトリー測定を行った。 [Example 6-2]
Electrolytic solutions were prepared by changing the single halogen to bromine molecules and changing the type of solvent, and cyclic voltammetry measurement was performed when each electrolytic solution was used. Specifically, the iodine in the production example was changed to bromine (5 g; manufactured by Wako Pure Chemical Industries), and the solvent was further changed to (a) DEMETFSI (Diethylmethyl (2-methoxyethyl) ammoniumbis (trifluoromethylsulfonyl) imide; ionic liquid; manufactured by Kishida Chemical Co., Ltd.) ), (B) methyl isopropyl sulfone (MiPS; sulfone solvent; manufactured by Tokyo Kasei), (c) dipropyl sulfone (DnPS; sulfone solvent; manufactured by Tokyo Chemical Industry) (d) sulfolane (sulfone solvent; manufactured by Tokyo Chemical Industry) The electrolyte solution was prepared by changing to, and cyclic voltammetry measurement was performed in the same manner as in Example 1.
(結果)
図8の(a)~(d)に、それぞれのサイクリックボルタモグラムを示す。これらの図より、単体ハロゲンおよび溶媒を変更して電解液を調製した場合でも、DEMETFSIを除く溶媒を使用した場合は、マグネシウムの溶解および析出が始まる電位は、実施例1とほぼ変化なかった。同様に、DEMETFSIを除く溶媒を使用した場合は、過電圧状態が発生していないこともわかる。また、溶媒としてDEMETFSIを使用した場合でも、-0.5V程度から応答電流が発生しており、従来技術(例えば図1の(b)を参照)よりも早い段階でマグネシウムの溶解が始まっていることになる。この事実は、マグネシウムの溶解および析出に関係するマグネシウム錯体の構造が類似している(溶媒分子による4配位と推定される)ことを示唆している。 (result)
Each cyclic voltammogram is shown in FIG. 8 (a) to (d). From these figures, even when the electrolyte was prepared by changing the simple halogen and the solvent, the potential at which magnesium was dissolved and precipitated was almost the same as in Example 1 when a solvent other than DEMETFSI was used. Similarly, it can also be seen that when a solvent other than DEMETFSI is used, no overvoltage condition has occurred. Further, even when DEMETFSI is used as a solvent, a response current is generated from about −0.5 V, and the dissolution of magnesium starts at an earlier stage than the prior art (see, for example, FIG. 1B). It will be. This fact suggests that the structures of magnesium complexes related to magnesium dissolution and precipitation are similar (presumed to be 4-coordinated by solvent molecules).
図8の(a)~(d)に、それぞれのサイクリックボルタモグラムを示す。これらの図より、単体ハロゲンおよび溶媒を変更して電解液を調製した場合でも、DEMETFSIを除く溶媒を使用した場合は、マグネシウムの溶解および析出が始まる電位は、実施例1とほぼ変化なかった。同様に、DEMETFSIを除く溶媒を使用した場合は、過電圧状態が発生していないこともわかる。また、溶媒としてDEMETFSIを使用した場合でも、-0.5V程度から応答電流が発生しており、従来技術(例えば図1の(b)を参照)よりも早い段階でマグネシウムの溶解が始まっていることになる。この事実は、マグネシウムの溶解および析出に関係するマグネシウム錯体の構造が類似している(溶媒分子による4配位と推定される)ことを示唆している。 (result)
Each cyclic voltammogram is shown in FIG. 8 (a) to (d). From these figures, even when the electrolyte was prepared by changing the simple halogen and the solvent, the potential at which magnesium was dissolved and precipitated was almost the same as in Example 1 when a solvent other than DEMETFSI was used. Similarly, it can also be seen that when a solvent other than DEMETFSI is used, no overvoltage condition has occurred. Further, even when DEMETFSI is used as a solvent, a response current is generated from about −0.5 V, and the dissolution of magnesium starts at an earlier stage than the prior art (see, for example, FIG. 1B). It will be. This fact suggests that the structures of magnesium complexes related to magnesium dissolution and precipitation are similar (presumed to be 4-coordinated by solvent molecules).
本発明は、例えば、マグネシウム二次電池に利用することができる。
The present invention can be used for, for example, a magnesium secondary battery.
Claims (14)
- 溶媒、金属マグネシウムおよび単体ハロゲンを混合してなる電解液。 Electrolytic solution made by mixing solvent, metallic magnesium and simple halogen.
- 溶媒、マグネシウムイオンおよびハロゲン化物イオンを含んでいる、請求項1に記載の電解液。 The electrolytic solution according to claim 1, comprising a solvent, magnesium ions and halide ions.
- 上記電解液の全量に対して、マグネシウムイオンを0.5mol/L以上含んでいる、請求項1または2に記載の電解液。 The electrolytic solution according to claim 1 or 2, which contains 0.5 mol / L or more of magnesium ions with respect to the total amount of the electrolytic solution.
- 軟X線蛍光XAFS法によって分析した際に、配位数が4であるマグネシウム原子の数が、全マグネシウム原子の数の95%以上を占めている、請求項1~3のいずれか1項に記載の電解液。 The number of magnesium atoms having a coordination number of 4 occupies 95% or more of the total number of magnesium atoms when analyzed by a soft X-ray fluorescence XAFS method. Electrolyte of description.
- 上記溶媒は、有機溶媒またはイオン液体である、請求項1~4のいずれか1項に記載の電解液。 The electrolyte solution according to any one of claims 1 to 4, wherein the solvent is an organic solvent or an ionic liquid.
- 上記溶媒は、スルホン系溶媒である、請求項1~5のいずれか1項に記載の電解液。 6. The electrolytic solution according to claim 1, wherein the solvent is a sulfone solvent.
- ハロゲン化物イオンとして、臭化物イオンまたはヨウ化物イオンを含んでいる、請求項1~6のいずれか1項に記載の電解液。 The electrolytic solution according to any one of claims 1 to 6, which contains bromide ions or iodide ions as halide ions.
- 請求項1~7のいずれか1項に記載の電解液を含んでいる、二次電池。 A secondary battery containing the electrolytic solution according to any one of claims 1 to 7.
- 溶媒、金属マグネシウムおよび単体ハロゲンを混合する工程を含む、電解液の製造方法。 An electrolytic solution manufacturing method including a step of mixing a solvent, metallic magnesium, and a simple halogen.
- 上記電解液の全量に対して、マグネシウムイオンを0.5mol/L以上含んでいる、請求項9に記載の電解液の製造方法。 10. The method for producing an electrolytic solution according to claim 9, comprising 0.5 mol / L or more of magnesium ions with respect to the total amount of the electrolytic solution.
- 上記電解液を軟X線蛍光XAFS法によって分析した際に、配位数が4であるマグネシウム原子が、全マグネシウム原子の数の95%以上を占めている、請求項9または10に記載の電解液の製造方法。 The electrolysis according to claim 9 or 10, wherein when the electrolytic solution is analyzed by a soft X-ray fluorescence XAFS method, magnesium atoms having a coordination number of 4 occupy 95% or more of the total number of magnesium atoms. Liquid manufacturing method.
- 上記溶媒は、有機溶媒またはイオン液体である、請求項9~11のいずれか1項に記載の電解液の製造方法。 The method for producing an electrolytic solution according to any one of claims 9 to 11, wherein the solvent is an organic solvent or an ionic liquid.
- 上記溶媒は、スルホン系溶媒である、請求項9~12のいずれか1項に記載の電解液の製造方法。 The method for producing an electrolytic solution according to any one of claims 9 to 12, wherein the solvent is a sulfone solvent.
- 上記単体ハロゲンは、臭素分子またはヨウ素分子である、請求項9~13のいずれか1項に記載の電解液の製造方法。 The method for producing an electrolytic solution according to any one of claims 9 to 13, wherein the single halogen is a bromine molecule or an iodine molecule.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/481,892 US20190393555A1 (en) | 2017-01-31 | 2018-01-19 | Electrolyte solution, secondary battery and method for producing electrolyte solution |
JP2018566054A JP7112084B2 (en) | 2017-01-31 | 2018-01-19 | Electrolyte, secondary battery, and method for producing electrolyte |
US17/993,238 US20230089709A1 (en) | 2017-01-31 | 2022-11-23 | Method for producing electrolyte solution |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017016222 | 2017-01-31 | ||
JP2017-016222 | 2017-01-31 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/481,892 A-371-Of-International US20190393555A1 (en) | 2017-01-31 | 2018-01-19 | Electrolyte solution, secondary battery and method for producing electrolyte solution |
US17/993,238 Division US20230089709A1 (en) | 2017-01-31 | 2022-11-23 | Method for producing electrolyte solution |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018142968A1 true WO2018142968A1 (en) | 2018-08-09 |
Family
ID=63039637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/001585 WO2018142968A1 (en) | 2017-01-31 | 2018-01-19 | Electrolyte solution, secondary battery and method for producing electrolyte solution |
Country Status (3)
Country | Link |
---|---|
US (2) | US20190393555A1 (en) |
JP (1) | JP7112084B2 (en) |
WO (1) | WO2018142968A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020161475A (en) * | 2019-03-12 | 2020-10-01 | 国立研究開発法人産業技術総合研究所 | Anolyte for a polyvalent metal secondary battery and a polyvalent metal secondary battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004345970A (en) * | 2003-05-20 | 2004-12-09 | Tosoh Corp | Method for producing vinylbenzoic acid |
JP2009064730A (en) * | 2007-09-07 | 2009-03-26 | Sony Corp | Magnesium ion containing nonaqueous electrolyte, manufacturing method thereof, and electrochemical device |
JP2014072031A (en) * | 2012-09-28 | 2014-04-21 | Sony Corp | Electrolyte, method of manufacturing the same, and electrochemical device |
US20160126589A1 (en) * | 2014-10-31 | 2016-05-05 | Battelle Memorial Institute | Electrolyte for batteries with regenerative solid electrolyte interface |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130252114A1 (en) | 2012-03-20 | 2013-09-26 | Pellion Technologies, Inc. | High voltage rechargeable magnesium cells having a non-aqueous electrolyte |
-
2018
- 2018-01-19 JP JP2018566054A patent/JP7112084B2/en active Active
- 2018-01-19 WO PCT/JP2018/001585 patent/WO2018142968A1/en active Application Filing
- 2018-01-19 US US16/481,892 patent/US20190393555A1/en not_active Abandoned
-
2022
- 2022-11-23 US US17/993,238 patent/US20230089709A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004345970A (en) * | 2003-05-20 | 2004-12-09 | Tosoh Corp | Method for producing vinylbenzoic acid |
JP2009064730A (en) * | 2007-09-07 | 2009-03-26 | Sony Corp | Magnesium ion containing nonaqueous electrolyte, manufacturing method thereof, and electrochemical device |
JP2014072031A (en) * | 2012-09-28 | 2014-04-21 | Sony Corp | Electrolyte, method of manufacturing the same, and electrochemical device |
US20160126589A1 (en) * | 2014-10-31 | 2016-05-05 | Battelle Memorial Institute | Electrolyte for batteries with regenerative solid electrolyte interface |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020161475A (en) * | 2019-03-12 | 2020-10-01 | 国立研究開発法人産業技術総合研究所 | Anolyte for a polyvalent metal secondary battery and a polyvalent metal secondary battery |
JP7418805B2 (en) | 2019-03-12 | 2024-01-22 | 国立研究開発法人産業技術総合研究所 | Anolytes for polyvalent metal secondary batteries and polyvalent metal secondary batteries |
Also Published As
Publication number | Publication date |
---|---|
US20230089709A1 (en) | 2023-03-23 |
US20190393555A1 (en) | 2019-12-26 |
JPWO2018142968A1 (en) | 2019-11-21 |
JP7112084B2 (en) | 2022-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kühnel et al. | “Water-in-salt” electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries | |
Connell et al. | Tuning the reversibility of Mg anodes via controlled surface passivation by H2O/Cl–in organic electrolytes | |
Kwak et al. | A comparative evaluation of redox mediators for Li-O2 batteries: A critical review | |
Metzger et al. | Anodic oxidation of conductive carbon and ethylene carbonate in high-voltage Li-ion batteries quantified by on-line electrochemical mass spectrometry | |
Sahore et al. | Revisiting the mechanism behind transition-metal dissolution from delithiated LiNixMnyCozO2 (NMC) cathodes | |
Dokko et al. | Solvate ionic liquid electrolyte for Li–S batteries | |
US8993178B2 (en) | Magnesium ion-containing nonaqueous electrolytic solution and method for manufacturing the same, and electrochemical device | |
JP5861606B2 (en) | Electrolytic solution, method for producing electrolytic solution, and electrochemical device | |
Lipson et al. | Practical stability limits of magnesium electrolytes | |
Geng et al. | Influence of salt concentration on the properties of sodium‐based electrolytes | |
Sankarasubramanian et al. | Dimethyl sulfoxide-based electrolytes for high-current potassium–oxygen batteries | |
Shiga et al. | Coupling of nitroxyl radical as an electrochemical charging catalyst and ionic liquid for calcium plating/stripping toward a rechargeable calcium–oxygen battery | |
De Sloovere et al. | Deep eutectic solvents as nonflammable electrolytes for durable sodium‐ion batteries | |
Xu et al. | Paving the way for using Li2S batteries | |
Mun et al. | Highly soluble tris (2, 2’-bipyridine) metal bis (trifluoromethanesulfonyl) imide complexes for high energy organic redox flow batteries | |
Kawasaki et al. | Lactone-based liquid electrolytes for fluoride shuttle batteries | |
Peng et al. | A Rechargeable High‐Temperature Molten Salt Iron–Oxygen Battery | |
Kucuk et al. | Influence of LiBOB as an electrolyte additive on the performance of BiF3/C for fluoride shuttle batteries | |
He et al. | Stability and disproportionation of magnesium polysulfides and the effects on the Mg-polysulfide flow battery | |
Shamie et al. | New mechanism for the reduction of vanadyl acetylacetonate to vanadium acetylacetonate for room temperature flow batteries | |
JP6277811B2 (en) | Non-aqueous electrolyte | |
Lin et al. | A comprehensive overview of the electrochemical mechanisms in emerging alkali metal–carbon dioxide batteries | |
US20230089709A1 (en) | Method for producing electrolyte solution | |
Duan et al. | High-performance and dendrite-free Zn/KZnHCF batteries boosted by aqueous electrolyte mixed with ethanol | |
Wang et al. | An energetic K+-S aqueous battery with 96% sulfur redox utilization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18748201 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018566054 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18748201 Country of ref document: EP Kind code of ref document: A1 |