WO2018142854A1 - Fll circuit and squid sensor - Google Patents
Fll circuit and squid sensor Download PDFInfo
- Publication number
- WO2018142854A1 WO2018142854A1 PCT/JP2018/000278 JP2018000278W WO2018142854A1 WO 2018142854 A1 WO2018142854 A1 WO 2018142854A1 JP 2018000278 W JP2018000278 W JP 2018000278W WO 2018142854 A1 WO2018142854 A1 WO 2018142854A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- output voltage
- integration
- value
- integrating
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/035—Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
Definitions
- the present invention relates to an FLL circuit and a SQUID sensor.
- a superconducting quantum interference device which is a loop-like element in which two superconductors are Josephson joined at two locations, can detect a minute magnetic field.
- the SQUID functions as a converter that converts the magnitude of the magnetic field into a voltage.
- the voltage is very small and easily affected by environmental noise.
- a sensor using SQUID (hereinafter referred to as SQUID sensor) uses a stabilization circuit called an FLL (Flux Locked Loop) circuit.
- the FLL circuit amplifies the output voltage of the SQUID with an amplifier circuit, and smoothes the amplified output voltage with an integrating circuit.
- the smoothed voltage is negatively fed back to the SQUID as a feedback magnetic flux through the feedback resistor and the coil.
- the output voltage of the FLL circuit does not depend on variations in the device characteristics of the SQUID itself, and becomes a value proportional to the magnitude of the magnetic field.
- the integrating circuit of the FLL circuit includes a resistor and a capacitor, and in order to detect a minute magnetic field with high sensitivity, the time constant of the resistor and the capacitor may be increased.
- the time constant of the integration circuit is increased, there is a problem that the tracking of the FLL circuit is delayed with respect to a sudden change in the magnetic field, and the stability of the detection of the magnetic field is lowered.
- an object of the present invention is to provide an FLL circuit and a SQUID sensor that can improve the stability of detection of a magnetic field.
- a first output voltage having a first time constant and output from a SQUID or a second output voltage obtained by amplifying the first output voltage is time-integrated, and a first integration signal is obtained.
- the second integration circuit When the second integration circuit to output and the first value indicating the speed of change of the first output voltage is greater than a threshold value, the second integration circuit is operated, and the first value is A control circuit for stopping the operation of the second integration circuit when it is smaller than a threshold value; a coil for generating a feedback magnetic flux to be supplied to the SQUID based on the first integration signal or the second integration signal; , A FLL circuit is provided.
- a SQUID sensor is provided.
- the stability of magnetic field detection can be improved.
- FIG. 1 is a diagram illustrating an example of the SQUID sensor and the FLL circuit according to the first embodiment.
- the SQUID sensor 10 includes a SQUID 11, an FLL circuit 12, and an AD (Analog to Digital) conversion circuit 13.
- the SQUID 11 outputs an output voltage based on the input magnetic field ⁇ and the feedback magnetic flux ⁇ f.
- the FLL circuit 12 is a circuit that stabilizes the output voltage of the SQUID 11.
- the AD conversion circuit 13 performs AD conversion on the output voltage of the FLL circuit 12 and outputs a digital value as a detection result of the magnetic field ⁇ .
- the FLL circuit 12 includes an amplifier circuit 12a, a bias power supply 12b, integration circuits 12c and 12d, a switch 12e, a control circuit 12f, resistors 12g and 12h, a coil 12i, and a switch 12j.
- the amplifier circuit 12a receives the output voltage of the SQUID 11 and the bias voltage Vb generated by the bias power supply 12b, and amplifies the output voltage of the SQUID 11. In order to detect a minute change in the magnetic field ⁇ , it is desirable to use a low-noise preamplifier as the amplifier circuit 12a.
- the integration circuits 12c and 12d have a function of smoothing the output voltage of the amplification circuit 12a by time integration.
- the integration circuit 12c has a time constant ⁇ 1, and outputs an integration signal obtained by time-integrating the output signal of the amplification circuit 12a.
- the integrating circuit 12d has a time constant ⁇ 2 smaller than the time constant ⁇ 1, and is connected to the output terminal of the amplifier circuit 12a via the switch 12e. That is, the output voltage of the amplifier circuit 12a is supplied to the integrating circuit 12d via the switch 12e.
- the integration circuit 12d outputs an integration signal obtained by time-integrating the output voltage of the amplification circuit 12a when the switch 12e is on.
- the control circuit 12f operates the integration circuit 12d when a value indicating the speed of change of the output voltage of the SQUID 11 (for example, a positive differential value or an absolute value of a negative differential value described later) is larger than a threshold value. Further, the control circuit 12f stops the operation of the integrating circuit 12d when the value indicating the change speed of the output voltage is smaller than the threshold value.
- a value indicating the speed of change of the output voltage of the SQUID 11 for example, a positive differential value or an absolute value of a negative differential value described later
- control circuit 12f operates the integration circuit 12d by turning on the switch 12e when the value indicating the change speed of the output voltage is larger than the threshold value.
- control circuit 12f stops the operation of the integrating circuit 12d by turning off the switch 12e when the value indicating the change speed of the output voltage is smaller than the threshold value.
- the control circuit 12f obtains a value representing the speed of change of the output voltage by, for example, differentiating the output voltage of the SQUID 11 with time.
- a positive differential value is obtained
- a negative differential value is obtained.
- the control circuit 12f turns on the switch 12e, and the absolute value of the positive differential value or the negative differential value is smaller than the threshold value. If it is smaller, the switch 12e is turned off.
- the control circuit 12f turns on the switch 12e when the negative differential value is smaller than the negative threshold value, and turns off the switch 12e when the negative differential value is larger than the negative threshold value. May be.
- control circuit 12f can operate the integrating circuit 12d when detecting a rapid change of the output voltage of the SQUID 11 to the positive side and a rapid change to the negative side.
- the control circuit 12f can be realized using, for example, a differentiation circuit and a comparison circuit (see FIG. 3).
- the output voltage output from the SQUID 11 is input to the control circuit 12f.
- the control circuit 12f may control the switch 12e based on the output signal of the amplifier circuit 12a. .
- One end of the coil 12i is connected to the output terminal of the integrating circuit 12c through the resistor 12g, and is connected to the output terminal of the integrating circuit 12d through the resistor 12h. The other end of the coil 12i is grounded.
- the coil 12i generates a feedback magnetic flux ⁇ f to be supplied to the SQUID 11 based on the integration signal output from the integration circuit 12c or the integration circuit 12d.
- the switch 12j supplies one of the integration signals output from the integration circuit 12c and the integration circuit 12d to the AD conversion circuit 13 based on the control signal output from the control circuit 12f.
- the switch 12j connects the integration circuit 12d and the AD conversion circuit 13, and disconnects the integration circuit 12c and the AD conversion circuit 13.
- the switch 12j disconnects the integration circuit 12d and the AD conversion circuit 13 and connects the integration circuit 12c and the AD conversion circuit 13.
- the switch 12e and the switch 12j can be realized using, for example, a MOSFET (Metal-Oxide Semiconductor Field Effect Transistor).
- MOSFET Metal-Oxide Semiconductor Field Effect Transistor
- one of the source terminal or the drain terminal of the nMOS is connected to the output terminal of the amplifier circuit 12a, the other is connected to the integrating circuit 12d, and the gate terminal Is connected to the control circuit 12f.
- H (High) level the nMOS is turned on.
- the logic level of the control signal is L (Low) level
- the nMOS is turned off. .
- an nMOS and a p-channel MOSFET (hereinafter abbreviated as pMOS) can be used.
- one of the source terminal or the drain terminal of the pMOS is connected to the integration circuit 12c, the other is connected to the AD conversion circuit 13, and the gate terminal is connected to the control circuit 12f.
- one of the source terminal or the drain terminal of the nMOS is connected to the integrating circuit 12d, the other is connected to the AD conversion circuit 13, and the gate terminal is connected to the control circuit 12f.
- the AD conversion circuit 13 may select one of the integration signal output from the integration circuit 12c and the integration signal output from the integration circuit 12d based on the control signal output from the control circuit 12f and perform AD conversion. . In that case, the switch 12j may not be provided.
- the integration circuits 12c and 12d output an integration signal having an appropriate magnitude as a detection result (analog value)
- the amplification circuit 12a may be omitted.
- the output voltage of the SQUID 11 is supplied to the integrating circuit 12c and also supplied to the integrating circuit 12d via the switch 12e.
- SQUID11 and the coil 12i are provided in the cooling device (for example, Dewar cooler) which cools SQUID11 with liquid nitrogen.
- the cooling device for example, Dewar cooler
- FIG. 2 is a diagram illustrating an example of the integration circuit. Although FIG. 2 shows an example of the integrating circuit 12d, the integrating circuit 12c can also be realized with the same circuit configuration.
- the integrating circuit 12d has an input terminal 12d1, a resistor 12d2, a capacitor 12d3, an operational amplifier 12d4, and an output terminal 12d5.
- One end of the resistor 12d2 is connected to the input terminal 12d1, and the other end of the resistor 12d2 is connected to one end of the capacitor 12d3 and the inverting input terminal (denoted as “ ⁇ ”) of the operational amplifier 12d4.
- the other end of the capacitor 12d3 is connected to the output terminal 12d5 and the output terminal of the operational amplifier 12d4.
- a non-inverting input terminal (denoted as “+”) of the operational amplifier 12d4 is grounded.
- an integration signal obtained by time-integrating the output signal of the amplification circuit 12a input from the input terminal 12d1 is output from the output terminal 12d5.
- the resistance value of the resistor 12d2 is R and the capacitance of the capacitor 12d3 is C
- the time constant ⁇ 2 of the integrating circuit 12d is R ⁇ C.
- FIG. 3 is a diagram illustrating an example of the control circuit.
- the control circuit 12f includes a differentiation circuit 12f1 and a comparison circuit 12f2.
- the differentiating circuit 12f1 outputs a differential value (a value proportional to the change of the output voltage) indicating the speed of change of the output voltage of the SQUID 11.
- the comparison circuit 12f2 outputs a control signal for turning on the switch 12e when the differentiation value output from the differentiation circuit 12f1 is positive and larger than a positive threshold value or when the differentiation value is negative and smaller than a negative threshold value.
- the comparison circuit 12f2 outputs a control signal for turning off the switch 12e.
- FIG. 4 is a diagram illustrating an example of a differentiation circuit.
- the differentiation circuit 12f1 has an input terminal 12f11, a capacitor 12f12, a resistor 12f13, an operational amplifier 12f14, and an output terminal 12f15.
- One end of the capacitor 12f12 is connected to the input terminal 12f11, and the other end of the capacitor 12f12 is connected to one end of the resistor 12f13 and the inverting input terminal of the operational amplifier 12f14.
- the other end of the resistor 12f13 is connected to the output terminal 12f15 and the output terminal of the operational amplifier 12f14.
- the non-inverting input terminal of the operational amplifier 12f14 is grounded.
- FIG. 5 is a diagram illustrating an example of the comparison circuit.
- the comparison circuit 12f2 has an input terminal 12f21, comparison circuits 12f22 and 12f23, an OR circuit 12f24, and an output terminal 12f25.
- the comparison circuit 12f22 compares the differential value input from the input terminal 12f21 with the positive threshold value Vref +, and outputs a voltage having a logic level of H level when the differential value is greater than the threshold value Vref +. In other cases, the comparison circuit 12f22 outputs a voltage having a logic level of L level.
- the comparison circuit 12f23 compares the differential value input from the input terminal 12f21 with a negative threshold value Vref ⁇ , and outputs a voltage having a logic level of H level when the differential value is smaller than the threshold value Vref ⁇ . In other cases, the comparison circuit 12f23 outputs a voltage having a logic level of L level.
- One input terminal of the OR circuit 12f24 is connected to the output terminal of the comparison circuit 12f22, and the other input terminal of the OR circuit 12f24 is connected to the output terminal of the comparison circuit 12f23.
- the output terminal of the OR circuit 12f24 is connected to the output terminal 12f25.
- the OR circuit 12f24 outputs an H level voltage as a control signal and turns on the switch 12e when the logical level of the output voltage of at least one of the comparison circuits 12f22 and 12f23 is the H level.
- the OR circuit 12f24 outputs the L level voltage as a control signal and turns off the switch 12e when the logical levels of the output voltages of both the comparison circuits 12f22 and 12f23 are L level.
- FIG. 6 is a timing chart showing an operation example of the SQUID sensor when the change in the magnetic field is relatively gradual.
- FIG. 6 shows an example of the time change of the magnetic field ⁇ , the output voltage of the SQUID 11, the output voltage (differential value) of the differentiation circuit 12f1, and the output voltage (control signal) of the comparison circuit 12f2. Further, an example of the time change of the output voltage (integrated signal) of the integrating circuit 12c with the time constant ⁇ 1 and the output voltage (integrated signal) of the integrating circuit 12d with the time constant ⁇ 2 is shown.
- the magnetic field ⁇ increases and decreases between timing t1 and timing t2.
- the output voltage of the SQUID 11 also increases.
- the increase in the output voltage of the SQUID 11 is also gradual.
- the output voltage (positive differential value) of the differentiation circuit 12f1 becomes smaller than the threshold value Vref +
- the logic level of the output voltage of the comparison circuit 12f2 becomes L level, and the switch 12e is turned off.
- the integration circuit 12d does not operate, and the output voltage of the integration circuit 12d does not rise.
- the output voltage of the integrating circuit 12c rises gently. Based on the output voltage of the integrating circuit 12c, a feedback magnetic flux ⁇ f is generated in the coil 12i and negatively fed back to the SQUID 11.
- the output voltage of the SQUID 11 When the magnetic field ⁇ starts to drop, the output voltage of the SQUID 11 also drops.
- the output voltage drop of the SQUID 11 is also gradual.
- the output voltage (negative differential value) of the differentiation circuit 12f1 becomes larger than the threshold value Vref ⁇ , the logic level of the output voltage of the comparison circuit 12f2 remains L level, and the switch 12e remains off. .
- the output voltage of the integrating circuit 12d does not rise.
- the output voltage of the integrating circuit 12c drops due to the action of negative feedback.
- the switch 12j since the logic level of the output voltage of the comparison circuit 12f2 serving as a control signal for the switch 12j remains L level, the switch 12j connects the integration circuit 12c and the AD conversion circuit 13, The connection between the integration circuit 12d and the AD conversion circuit 13 is disconnected. Therefore, the AD conversion circuit 13 converts the output voltage of the integration circuit 12c into a digital value and outputs the digital value as a detection result of the magnetic field ⁇ .
- the integration circuit 12c having a larger time constant than the integration circuit 12d, the SN (Signal-Noise) ratio becomes large, and the minute magnetic field ⁇ . But it can be detected with high sensitivity. That is, the detection sensitivity of the SQUID sensor 10 can be improved.
- FIG. 7 is a timing chart illustrating an operation example of the SQUID sensor when the change in the magnetic field is relatively fast. 7, similarly to FIG. 6, the magnetic field ⁇ , the output voltage of the SQUID 11, the output voltage of the differentiation circuit 12 f 1, the output voltage of the comparison circuit 12 f 2, the output voltage of the integration circuit 12 c of the time constant ⁇ 1, and the integration circuit of the time constant ⁇ 2 An example of the time variation of the 12d output voltage is shown.
- the magnetic field ⁇ increases and decreases between timing t3 and timing t4.
- the magnetic field ⁇ changes in a shorter time than the example of FIG.
- the output voltage of the SQUID 11 also increases. Since the change of the magnetic field ⁇ is faster than that in the case of FIG. 6, the increase of the output voltage of the SQUID 11 is also faster than that in the case of FIG.
- the output voltage (positive differential value) of the differentiating circuit 12f1 is larger than the threshold value Vref +, the logic level of the output voltage of the comparing circuit 12f2 is H level, and the switch 12e is turned on. To do.
- the integrating circuit 12d operates and the output voltage of the integrating circuit 12d increases. Further, the output voltage of the integrating circuit 12c also rises gently.
- the time constant ⁇ 2 of the integrating circuit 12d is smaller than the time constant ⁇ 1 of the integrating circuit 12c, the speed at which the output voltage of the integrating circuit 12d increases is faster than the speed at which the output voltage of the integrating circuit 12c increases. Therefore, in the coil 12i, a feedback magnetic flux ⁇ f based mainly on the output voltage of the integrating circuit 12d is generated and negatively fed back to the SQUID 11.
- the output voltage of the integrating circuit 12d becomes proportional to the magnetic field ⁇ by the action of this negative feedback.
- the magnetic field ⁇ is a function of time ⁇ (t)
- the output voltage of the integrating circuit 12d is a function of time Vout2 (t)
- the resistance value of the resistor 12h is Rf2
- the mutual inductance of the coil 12i is Mf
- Vout2 (t) ( Rf2 / Mf) ⁇ ⁇ (t).
- the logic level of the output voltage of the comparison circuit 12f2 serving as a control signal for the switch 12j is almost H level during the period from the timing t3 to the timing t4 when the magnetic field ⁇ changes. Therefore, the switch 12j connects the integration circuit 12d and the AD conversion circuit 13 during most of the period from the timing t3 to the timing t4, and disconnects the connection between the integration circuit 12c and the AD conversion circuit 13. Therefore, the AD conversion circuit 13 mainly converts the output voltage of the integration circuit 12d into a digital value, and outputs the digital value as a detection result of the magnetic field ⁇ .
- the output voltage of the integrating circuit 12c cannot follow the rapid change of the magnetic field ⁇ , but the output voltage of the integrating circuit 12d can follow the rapid change of the magnetic field ⁇ .
- the followability to magnetic field changes is improved, and the stability of magnetic field detection is improved. That is, by improving the followability to the magnetic field change, the response speed (slew rate) of the SQUID sensor 10 is improved, and the rapidly changing magnetic field ⁇ can be detected stably.
- the slew rate can be expressed by the maximum value of the time change of the magnetic field that can be followed.
- the detection sensitivity of the SQUID sensor 10 can be improved by the operation of the integration circuit 12c with the time constant ⁇ 1, and thus the SQUID sensor of the first embodiment. 10 can realize a highly sensitive and stable magnetic field detection.
- the time constant ⁇ 2 is 1 ⁇ 4 of the time constant ⁇ 1.
- the slew rate is 10 mT / sec and the detection sensitivity is 15 fT / Hz 1/2 when magnetic field detection is performed using one integration circuit 12 c without using the integration circuit 12 d.
- the slew rate is set to 40 mT / sec and the detection sensitivity is set to 25 fT / Hz by further operating the integration circuit 12d in addition to the integration circuit 12c when a sudden magnetic field change as shown in FIG. 7 occurs. It can be 1/2 . That is, a four times higher slew rate characteristic can be realized without deteriorating the detection sensitivity. This means that, for example, when the SQUID sensor 10 is used for ore exploration, the exploration time can be reduced to 1 ⁇ 4, and exploration efficiency can be improved.
- the integrating circuit 12c is operated even when the output voltage of the differentiating circuit 12f1 is larger than the threshold value Vref + or smaller than the threshold value Vref ⁇ . However, the integrating circuit 12c is not operated. May be. In that case, a switch is provided between the output terminal of the amplifier circuit 12a and the integrating circuit 12c, and the control circuit 12f turns off the switch when turning on the switch 12e.
- the magnetic field ⁇ is directly input to the SQUID 11.
- the detection coil that detects the magnetic field ⁇ and the signal magnetic flux based on the magnetic field ⁇ detected by the detection coil are generated and supplied to the SQUID 11.
- An input coil can be used.
- the FLL circuit 12 including the two integration circuits 12c and 12d is shown.
- the number of integration circuits is not limited to two, and may be three or more. Examples thereof will be described below.
- FIG. 8 is a diagram illustrating an example of the SQUID sensor and the FLL circuit according to the second embodiment.
- the SQUID sensor 20 includes a SQUID 21, an FLL circuit 22, and an AD conversion circuit 23.
- the SQUID 21 outputs an output voltage based on the input magnetic field ⁇ and the feedback magnetic flux ⁇ f.
- the FLL circuit 22 is a circuit that stabilizes the output voltage of the SQUID 21.
- the AD conversion circuit 23 AD-converts the output voltage of the FLL circuit 22 and outputs a digital value as a detection result of the magnetic field ⁇ .
- the FLL circuit 22 includes an amplifier circuit 22a, a bias power source 22b, integration circuits 22c, 22d, and 22e, switches 22f and 22g, a control circuit 22h, resistors 22i, 22j, and 22k, and a coil 22l.
- the amplification circuit 22a receives the output voltage of the SQUID 21 and the bias voltage Vb generated by the bias power supply 22b, and amplifies the output voltage of the SQUID 21. In order to detect a minute change in the magnetic field ⁇ , it is desirable to use a low-noise preamplifier as the amplifier circuit 22a.
- the integration circuits 22c, 22d, and 22e have a function of smoothing the output signal of the amplification circuit 22a by time integration.
- the integration circuit 22c has a time constant ⁇ 3 and outputs an integration signal obtained by time-integrating the output signal of the amplification circuit 22a.
- the integrating circuit 22d has a time constant ⁇ 4 smaller than the time constant ⁇ 3, and is connected to the output terminal of the amplifying circuit 22a via a switch 22f. That is, the output voltage of the amplification circuit 22a is supplied to the integration circuit 22d via the switch 22f.
- the integration circuit 22d outputs an integration signal obtained by time-integrating the output signal of the amplification circuit 22a when the switch 22f is on.
- the integrating circuit 22e has a time constant ⁇ 5 smaller than the time constant ⁇ 4, and is connected to the output terminal of the amplifying circuit 22a via a switch 22g. That is, the output voltage of the amplification circuit 22a is supplied to the integration circuit 22e via the switch 22g.
- the integration circuit 22e outputs an integration signal obtained by time-integrating the output signal of the amplification circuit 22a when the switch 22g is on.
- the control circuit 22h has a smaller value among the plurality of integration circuits 22c to 22e as the value indicating the speed of change of the output voltage of the SQUID 11 (for example, the absolute value of the positive differential value or the negative differential value) increases.
- An integration circuit having a time constant is operated.
- the control circuit 22h includes a differentiation circuit 22h1 and comparison circuits 22h2 and 22h3.
- the differentiating circuit 22h1 obtains a value representing the speed of change of the output voltage by time-differentiating the output voltage of the SQUID 21.
- the differentiation circuit 22h1 can be realized by a circuit similar to the differentiation circuit 12f1 shown in FIG.
- the comparison circuit 22h2 is a control signal for turning on the switch 22f when the positive differential value output from the differentiation circuit 22h1 is larger than the positive threshold value Vref1 + or the negative differential value is smaller than the negative threshold value Vref1-. Is output. In other cases, the comparison circuit 22h2 outputs a control signal for turning off the switch 22f.
- the comparison circuit 22h3 outputs a control signal for turning on the switch 22g when the positive differential value output from the differentiation circuit 22h1 is larger than the positive threshold value Vref2 + or the negative differential value is smaller than the negative threshold value Vref2-. Output. In other cases, the comparison circuit 22h3 outputs a control signal for turning off the switch 22g.
- the threshold value Vref2 + is larger than the threshold value Vref1 +, and the threshold value Vref2- is smaller than the threshold value Vref1-.
- the comparison circuits 22h2 and 22h3 can be realized by a circuit similar to the comparison circuit 12f2 shown in FIG.
- control circuit 22h receives the output voltage output from the SQUID 21, but may control the switches 22f and 22g based on the output signal of the amplifier circuit 22a.
- One end of the coil 22l is connected to the output terminal of the integrating circuit 22c through the resistor 22i, the output terminal of the integrating circuit 22d through the resistor 22j, and the output terminal of the integrating circuit 22e through the resistor 22k.
- the other end of the coil 22l is grounded.
- the coil 22l generates a feedback magnetic flux ⁇ f to be supplied to the SQUID 21 based on the integration signal output from the integration circuit 22c, the integration circuit 22d, and the integration circuit 22e.
- the integration signals output from the integration circuits 22c to 22e are supplied to the AD conversion circuit 23.
- the AD conversion circuit 23 selects an integration signal output from any of the integration circuits 22c to 22e based on the control signal output from the comparison circuits 22h2 and 22h3, and performs AD conversion. For example, when the control circuit 22h outputs a control signal for turning on the switch 22g and a control signal for turning on the switch 22f, the AD conversion circuit 23 selects the integration signal output from the integration circuit 22e and performs AD conversion. When the control circuit 22h outputs a control signal for turning on the switch 22f and a control signal for turning off the switch 22g, the AD conversion circuit 23 selects the integration signal output by the integration circuit 22d and performs AD conversion. When the control circuit 22h outputs a control signal for turning off the switch 22f and a control signal for turning off the switch 22g, the AD conversion circuit 23 selects the integration signal output from the integration circuit 22c and performs AD conversion.
- the switches 22f and 22g can be realized using, for example, a MOSFET.
- the AD conversion circuit 23 selecting an integration signal to be AD converted based on the two control signals output from the control circuit, a switch is provided in the FLL circuit 22 and AD conversion is performed based on the two control signals The integration signal supplied to the circuit 23 may be selected.
- the amplification circuit 22a may be omitted.
- the output voltage of the SQUID 21 is supplied to the integrating circuit 22c, supplied to the integrating circuit 22d through the switch 22f, and supplied to the integrating circuit 22e through the switch 22g.
- an integration circuit having a small time constant operates from the three integration circuits 22c to 22e as the magnetic field change becomes faster. For example, when the change in the magnetic field is faster as the positive differential value output from the differentiation circuit 22h1 is larger than the threshold value Vref2 + or the negative differential value is smaller than the threshold value Vref2-, the integration circuit 22e having the smallest time constant operates. To do.
- the integrating circuit 22d operates.
- the time constant of the integration circuits 22c to 22e is the largest. Only the large integration circuit 22c operates.
- the same effects as those of the SQUID sensor 10 and the FLL circuit 12 of the first embodiment can be obtained, and various magnetic field change speeds can be obtained. You can select the slew rate corresponding to the size.
- FIG. 9 is a diagram illustrating an application example to an apparatus for exploring a metal deposit.
- FIG. 9 shows an example in which the exploration device 31 is mounted on the vehicle 30.
- the exploration device 31 includes a SQUID 31a, an FLL circuit 31b, an AD conversion circuit 31c, and a display device 31d.
- the voltage converted by the SQUID 31a is stabilized by the FLL circuit 31b and supplied to the AD conversion circuit 31c.
- the AD converter circuit 31c converts the output voltage (integrated signal) of the FLL circuit 31b into a digital value. Based on the digital value, for example, the time change of the magnetic field is displayed on the display device 31d under the control of a processor (not shown). Is done.
- the exploration device 31 explores the metal deposits 32a and 32b that generate the magnetic field existing in the ground
- the change speed of the magnetic field detected by the exploration device 31 increases as the speed of the vehicle 30 increases.
- the FLL circuit 12 of the first embodiment or the FLL circuit 22 of the second embodiment as the FLL circuit 31b, it becomes possible to follow a change in the magnetic field, so that stable magnetic field detection is possible.
- the metal deposit 32b exists deeper in the ground than the metal deposit 32a, and the magnetic field detected by the exploration device 31 is small.
- the FLL circuit 12 of the first embodiment or the FLL circuit 22 of the second embodiment as the FLL circuit 31b, the magnetic field can be detected without reducing the detection sensitivity. Can be detected with high sensitivity.
- SQUID sensor 11 SQUID 12 FLL circuit 12a Amplifier circuit 12b Bias power supply 12c, 12d Integration circuit 12e, 12j Switch 12f Control circuit 12g, 12h Resistance 12i Coil 13 AD converter circuit Vb Bias voltage ⁇ Magnetic field ⁇ f Feedback magnetic flux ⁇ 1, ⁇ 2 Time constant
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
[Problem] To improve stability in detecting a magnetic field. [Solution] An integration circuit 12c has a time constant τ1, time-integrates a first output voltage output from a SQUID 11 or a second output voltage obtained by amplifying the first output voltage, and outputs a first integration signal. An integration circuit 12d has a time constant τ2, which is smaller than the time constant τ1, and outputs a second integration signal obtained by time-integrating the first output voltage or the second output voltage. A control circuit 12f operates the integration circuit 12d when a first value, which indicates a rate of change of the first output voltage, is greater than a threshold, and stops an operation of the integration circuit 12d when the first value is less than the threshold. A coil 12i generates a feedback magnetic flux φf, which is supplied to the SQUID 11, on the basis of the first integration signal or the second integration signal.
Description
本発明は、FLL回路及びSQUIDセンサに関する。
The present invention relates to an FLL circuit and a SQUID sensor.
2つの超伝導体を2箇所でジョセフソン接合したループ状の素子であるSQUID(Superconducting Quantum Interference Device)は、微小な磁場を検出できることが知ら
れている。 It is known that a superconducting quantum interference device (SQUID), which is a loop-like element in which two superconductors are Josephson joined at two locations, can detect a minute magnetic field.
れている。 It is known that a superconducting quantum interference device (SQUID), which is a loop-like element in which two superconductors are Josephson joined at two locations, can detect a minute magnetic field.
SQUIDは磁場の大きさを電圧に変換する変換器として機能する。しかしその電圧は微小で、環境ノイズの影響を受けやすい。そのため、SQUIDを用いたセンサ(以下SQUIDセンサという)では、FLL(Flux Locked Loop)回路と呼ばれる安定化回路が用いられる。FLL回路は、SQUIDの出力電圧を増幅回路で増幅し、増幅した出力電圧を積分回路で平滑化する。平滑化された電圧は、フィードバック抵抗とコイルを介して、SQUIDに帰還磁束としてネガティブフィードバックされる。これによって、FLL回路の出力電圧は、SQUID自身のデバイス特性変動に依存しなくなり、磁場の大きさに比例した値となる。
The SQUID functions as a converter that converts the magnitude of the magnetic field into a voltage. However, the voltage is very small and easily affected by environmental noise. For this reason, a sensor using SQUID (hereinafter referred to as SQUID sensor) uses a stabilization circuit called an FLL (Flux Locked Loop) circuit. The FLL circuit amplifies the output voltage of the SQUID with an amplifier circuit, and smoothes the amplified output voltage with an integrating circuit. The smoothed voltage is negatively fed back to the SQUID as a feedback magnetic flux through the feedback resistor and the coil. As a result, the output voltage of the FLL circuit does not depend on variations in the device characteristics of the SQUID itself, and becomes a value proportional to the magnitude of the magnetic field.
ところで、FLL回路の積分回路は抵抗とキャパシタを含み、微小な磁場を高感度に検出するためには、抵抗とキャパシタによる時定数を大きくすればよい。
しかし、積分回路の時定数を大きくした場合、磁場の急激な変化に対してFLL回路の追従が遅れ、磁場の検出の安定性が下がる問題がある。 By the way, the integrating circuit of the FLL circuit includes a resistor and a capacitor, and in order to detect a minute magnetic field with high sensitivity, the time constant of the resistor and the capacitor may be increased.
However, when the time constant of the integration circuit is increased, there is a problem that the tracking of the FLL circuit is delayed with respect to a sudden change in the magnetic field, and the stability of the detection of the magnetic field is lowered.
しかし、積分回路の時定数を大きくした場合、磁場の急激な変化に対してFLL回路の追従が遅れ、磁場の検出の安定性が下がる問題がある。 By the way, the integrating circuit of the FLL circuit includes a resistor and a capacitor, and in order to detect a minute magnetic field with high sensitivity, the time constant of the resistor and the capacitor may be increased.
However, when the time constant of the integration circuit is increased, there is a problem that the tracking of the FLL circuit is delayed with respect to a sudden change in the magnetic field, and the stability of the detection of the magnetic field is lowered.
1つの側面では、本発明は、磁場の検出の安定性を向上できるFLL回路及びSQUIDセンサを提供することを目的とする。
In one aspect, an object of the present invention is to provide an FLL circuit and a SQUID sensor that can improve the stability of detection of a magnetic field.
1つの実施態様では、第1の時定数を有し、SQUIDが出力する第1の出力電圧または前記第1の出力電圧を増幅した第2の出力電圧を時間積分し、第1の積分信号を出力する第1の積分回路と、前記第1の時定数よりも小さい第2の時定数を有し、前記第1の出力電圧または前記第2の出力電圧を時間積分した第2の積分信号を出力する第2の積分回路と、前記第1の出力電圧の変化の速さを表す第1の値が閾値よりも大きい場合に前記第2の積分回路を動作させ、前記第1の値が前記閾値よりも小さい場合に前記第2の積分回路の動作を停止する制御回路と、前記第1の積分信号または前記第2の積分信号に基づいて、前記SQUIDに供給する帰還磁束を発生するコイルと、を有するFLL回路が提供される。
In one embodiment, a first output voltage having a first time constant and output from a SQUID or a second output voltage obtained by amplifying the first output voltage is time-integrated, and a first integration signal is obtained. A first integration circuit that outputs, and a second integration signal that has a second time constant smaller than the first time constant, and that is obtained by time-integrating the first output voltage or the second output voltage. When the second integration circuit to output and the first value indicating the speed of change of the first output voltage is greater than a threshold value, the second integration circuit is operated, and the first value is A control circuit for stopping the operation of the second integration circuit when it is smaller than a threshold value; a coil for generating a feedback magnetic flux to be supplied to the SQUID based on the first integration signal or the second integration signal; , A FLL circuit is provided.
また、1つの実施態様では、SQUIDセンサが提供される。
Also, in one embodiment, a SQUID sensor is provided.
1つの側面では、磁場の検出の安定性を向上できる。
In one aspect, the stability of magnetic field detection can be improved.
以下、発明を実施するための形態を、図面を参照しつつ説明する。
(第1の実施の形態)
図1は、第1の実施の形態のSQUIDセンサ及びFLL回路の一例を示す図である。 Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a diagram illustrating an example of the SQUID sensor and the FLL circuit according to the first embodiment.
(第1の実施の形態)
図1は、第1の実施の形態のSQUIDセンサ及びFLL回路の一例を示す図である。 Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a diagram illustrating an example of the SQUID sensor and the FLL circuit according to the first embodiment.
SQUIDセンサ10は、SQUID11、FLL回路12、AD(Analog to Digital)変換回路13を有する。
SQUID11は、入力される磁場φと、帰還磁束φfとに基づいた出力電圧を出力する。 The SQUID sensor 10 includes a SQUID 11, anFLL circuit 12, and an AD (Analog to Digital) conversion circuit 13.
The SQUID 11 outputs an output voltage based on the input magnetic field φ and the feedback magnetic flux φf.
SQUID11は、入力される磁場φと、帰還磁束φfとに基づいた出力電圧を出力する。 The SQUID sensor 10 includes a SQUID 11, an
The SQUID 11 outputs an output voltage based on the input magnetic field φ and the feedback magnetic flux φf.
FLL回路12は、SQUID11の出力電圧を安定化する回路である。
AD変換回路13は、FLL回路12の出力電圧をAD変換し、磁場φの検出結果としてデジタル値を出力する。 TheFLL circuit 12 is a circuit that stabilizes the output voltage of the SQUID 11.
TheAD conversion circuit 13 performs AD conversion on the output voltage of the FLL circuit 12 and outputs a digital value as a detection result of the magnetic field φ.
AD変換回路13は、FLL回路12の出力電圧をAD変換し、磁場φの検出結果としてデジタル値を出力する。 The
The
FLL回路12は、増幅回路12a、バイアス電源12b、積分回路12c,12d、スイッチ12e、制御回路12f、抵抗12g,12h、コイル12i、スイッチ12jを有する。
The FLL circuit 12 includes an amplifier circuit 12a, a bias power supply 12b, integration circuits 12c and 12d, a switch 12e, a control circuit 12f, resistors 12g and 12h, a coil 12i, and a switch 12j.
増幅回路12aは、SQUID11の出力電圧と、バイアス電源12bが生成するバイアス電圧Vbを受け、SQUID11の出力電圧を増幅する。微小な磁場φの変化を検出するために、増幅回路12aとして、低雑音のプリアンプを用いることが望ましい。
The amplifier circuit 12a receives the output voltage of the SQUID 11 and the bias voltage Vb generated by the bias power supply 12b, and amplifies the output voltage of the SQUID 11. In order to detect a minute change in the magnetic field φ, it is desirable to use a low-noise preamplifier as the amplifier circuit 12a.
積分回路12c,12dは、増幅回路12aの出力電圧を時間積分することで平滑化する機能をもつ。
積分回路12cは、時定数τ1を有し、増幅回路12aの出力信号を時間積分した積分信号を出力する。 The integration circuits 12c and 12d have a function of smoothing the output voltage of the amplification circuit 12a by time integration.
Theintegration circuit 12c has a time constant τ1, and outputs an integration signal obtained by time-integrating the output signal of the amplification circuit 12a.
積分回路12cは、時定数τ1を有し、増幅回路12aの出力信号を時間積分した積分信号を出力する。 The
The
積分回路12dは、時定数τ1よりも小さい時定数τ2を有し、増幅回路12aの出力端子にスイッチ12eを介して接続されている。つまり、積分回路12dには、増幅回路12aの出力電圧がスイッチ12eを介して供給される。積分回路12dは、スイッチ12eがオンのときに増幅回路12aの出力電圧を時間積分した積分信号を出力する。
The integrating circuit 12d has a time constant τ2 smaller than the time constant τ1, and is connected to the output terminal of the amplifier circuit 12a via the switch 12e. That is, the output voltage of the amplifier circuit 12a is supplied to the integrating circuit 12d via the switch 12e. The integration circuit 12d outputs an integration signal obtained by time-integrating the output voltage of the amplification circuit 12a when the switch 12e is on.
制御回路12fは、SQUID11の出力電圧の変化の速さを表す値(たとえば、後述の正の微分値または負の微分値の絶対値)が閾値よりも大きい場合に積分回路12dを動
作させる。また、制御回路12fは、出力電圧の変化の速さを表す値が閾値よりも小さい場合に積分回路12dの動作を停止する。 Thecontrol circuit 12f operates the integration circuit 12d when a value indicating the speed of change of the output voltage of the SQUID 11 (for example, a positive differential value or an absolute value of a negative differential value described later) is larger than a threshold value. Further, the control circuit 12f stops the operation of the integrating circuit 12d when the value indicating the change speed of the output voltage is smaller than the threshold value.
作させる。また、制御回路12fは、出力電圧の変化の速さを表す値が閾値よりも小さい場合に積分回路12dの動作を停止する。 The
図1の例では、制御回路12fは、出力電圧の変化の速さを表す値が閾値よりも大きい場合にスイッチ12eをオンすることで積分回路12dを動作させる。また、制御回路12fは、出力電圧の変化の速さを表す値が閾値よりも小さい場合にスイッチ12eをオフすることで積分回路12dの動作を停止する。
In the example of FIG. 1, the control circuit 12f operates the integration circuit 12d by turning on the switch 12e when the value indicating the change speed of the output voltage is larger than the threshold value. In addition, the control circuit 12f stops the operation of the integrating circuit 12d by turning off the switch 12e when the value indicating the change speed of the output voltage is smaller than the threshold value.
制御回路12fは、たとえば、SQUID11の出力電圧を時間微分することで、出力電圧の変化の速さを表す値を求める。SQUID11の出力電圧が上昇するときには、正の微分値が得られ、SQUID11の出力電圧が下降するときには、負の微分値が得られる。制御回路12fは、たとえば、正の微分値または負の微分値の絶対値が、閾値よりも大きい場合にスイッチ12eをオンし、正の微分値または負の微分値の絶対値が、閾値よりも小さい場合にスイッチ12eをオフする。なお、制御回路12fは、負の微分値が、負の閾値よりも小さい場合に、スイッチ12eをオンし、負の微分値が、負の閾値よりも大きい場合に、スイッチ12eをオフするようにしてもよい。
The control circuit 12f obtains a value representing the speed of change of the output voltage by, for example, differentiating the output voltage of the SQUID 11 with time. When the output voltage of SQUID 11 increases, a positive differential value is obtained, and when the output voltage of SQUID 11 decreases, a negative differential value is obtained. For example, when the absolute value of the positive differential value or the negative differential value is larger than the threshold value, the control circuit 12f turns on the switch 12e, and the absolute value of the positive differential value or the negative differential value is smaller than the threshold value. If it is smaller, the switch 12e is turned off. The control circuit 12f turns on the switch 12e when the negative differential value is smaller than the negative threshold value, and turns off the switch 12e when the negative differential value is larger than the negative threshold value. May be.
これによって、制御回路12fは、SQUID11の出力電圧の正側への急速な変化と、負側への急速な変化を検出した場合に、積分回路12dを動作させることができる。制御回路12fは、たとえば、微分回路と比較回路を用いて実現できる(図3参照)。
Thereby, the control circuit 12f can operate the integrating circuit 12d when detecting a rapid change of the output voltage of the SQUID 11 to the positive side and a rapid change to the negative side. The control circuit 12f can be realized using, for example, a differentiation circuit and a comparison circuit (see FIG. 3).
なお、図1の例では、制御回路12fには、SQUID11が出力する出力電圧が入力されているが、制御回路12fは、増幅回路12aの出力信号に基づいて、スイッチ12eを制御してもよい。
In the example of FIG. 1, the output voltage output from the SQUID 11 is input to the control circuit 12f. However, the control circuit 12f may control the switch 12e based on the output signal of the amplifier circuit 12a. .
コイル12iの一端は、抵抗12gを介して積分回路12cの出力端子に接続されているとともに、抵抗12hを介して積分回路12dの出力端子に接続されている。コイル12iの他端は接地されている。コイル12iは、積分回路12cまたは積分回路12dが出力する積分信号に基づいて、SQUID11に供給する帰還磁束φfを発生する。
One end of the coil 12i is connected to the output terminal of the integrating circuit 12c through the resistor 12g, and is connected to the output terminal of the integrating circuit 12d through the resistor 12h. The other end of the coil 12i is grounded. The coil 12i generates a feedback magnetic flux φf to be supplied to the SQUID 11 based on the integration signal output from the integration circuit 12c or the integration circuit 12d.
スイッチ12jは、制御回路12fが出力する制御信号に基づいて、積分回路12cと積分回路12dが出力する積分信号の一方を、AD変換回路13に供給する。制御回路12fがスイッチ12eをオンするときには、スイッチ12jは、積分回路12dとAD変換回路13とを接続し、積分回路12cとAD変換回路13との接続を切断する。制御回路12fがスイッチ12eをオフするときには、スイッチ12jは、積分回路12dとAD変換回路13との接続を切断し、積分回路12cとAD変換回路13とを接続する。
The switch 12j supplies one of the integration signals output from the integration circuit 12c and the integration circuit 12d to the AD conversion circuit 13 based on the control signal output from the control circuit 12f. When the control circuit 12f turns on the switch 12e, the switch 12j connects the integration circuit 12d and the AD conversion circuit 13, and disconnects the integration circuit 12c and the AD conversion circuit 13. When the control circuit 12f turns off the switch 12e, the switch 12j disconnects the integration circuit 12d and the AD conversion circuit 13 and connects the integration circuit 12c and the AD conversion circuit 13.
なお、スイッチ12eやスイッチ12jは、たとえば、MOSFET(Metal-Oxide Semiconductor Field Effect Transistor)を用いて実現できる。
スイッチ12eとしてnチャネル型MOSFET(以下nMOSと略す)を用いた場合、nMOSのソース端子またはドレイン端子の一方が、増幅回路12aの出力端子に接続され、他方が積分回路12dに接続され、ゲート端子が制御回路12fに接続される。そして、制御回路12fが出力する制御信号の論理レベルがH(High)レベルの場合に、nMOSがオン状態となり、制御信号の論理レベルがL(Low)レベルの場合に、nMOSがオフ状態となる。 Theswitch 12e and the switch 12j can be realized using, for example, a MOSFET (Metal-Oxide Semiconductor Field Effect Transistor).
When an n-channel MOSFET (hereinafter abbreviated as nMOS) is used as theswitch 12e, one of the source terminal or the drain terminal of the nMOS is connected to the output terminal of the amplifier circuit 12a, the other is connected to the integrating circuit 12d, and the gate terminal Is connected to the control circuit 12f. When the logic level of the control signal output from the control circuit 12f is H (High) level, the nMOS is turned on. When the logic level of the control signal is L (Low) level, the nMOS is turned off. .
スイッチ12eとしてnチャネル型MOSFET(以下nMOSと略す)を用いた場合、nMOSのソース端子またはドレイン端子の一方が、増幅回路12aの出力端子に接続され、他方が積分回路12dに接続され、ゲート端子が制御回路12fに接続される。そして、制御回路12fが出力する制御信号の論理レベルがH(High)レベルの場合に、nMOSがオン状態となり、制御信号の論理レベルがL(Low)レベルの場合に、nMOSがオフ状態となる。 The
When an n-channel MOSFET (hereinafter abbreviated as nMOS) is used as the
スイッチ12jとして、nMOSとpチャネル型MOSFET(以下pMOSと略す)を用いることができる。その場合、pMOSのソース端子またはドレイン端子の一方が、積分回路12cに接続され、他方がAD変換回路13に接続され、ゲート端子が制御回路12fに接続される。また、nMOSのソース端子またはドレイン端子の一方が、積分回
路12dに接続され、他方がAD変換回路13に接続され、ゲート端子が制御回路12fに接続される。そして、制御回路12fが出力する制御信号の論理レベルがHレベルの場合に、nMOSがオン状態、pMOSがオフ状態となり、制御信号の論理レベルがLレベルの場合に、nMOSがオフ状態、pMOSがオン状態となる。 As theswitch 12j, an nMOS and a p-channel MOSFET (hereinafter abbreviated as pMOS) can be used. In that case, one of the source terminal or the drain terminal of the pMOS is connected to the integration circuit 12c, the other is connected to the AD conversion circuit 13, and the gate terminal is connected to the control circuit 12f. Also, one of the source terminal or the drain terminal of the nMOS is connected to the integrating circuit 12d, the other is connected to the AD conversion circuit 13, and the gate terminal is connected to the control circuit 12f. When the logic level of the control signal output from the control circuit 12f is H level, the nMOS is turned on and the pMOS is turned off. When the logic level of the control signal is L level, the nMOS is turned off and the pMOS is turned on. Turns on.
路12dに接続され、他方がAD変換回路13に接続され、ゲート端子が制御回路12fに接続される。そして、制御回路12fが出力する制御信号の論理レベルがHレベルの場合に、nMOSがオン状態、pMOSがオフ状態となり、制御信号の論理レベルがLレベルの場合に、nMOSがオフ状態、pMOSがオン状態となる。 As the
なお、AD変換回路13が、制御回路12fが出力する制御信号に基づいて、積分回路12cが出力する積分信号と、積分回路12dが出力する積分信号の一方を選択してAD変換してもよい。その場合、スイッチ12jはなくてもよい。
The AD conversion circuit 13 may select one of the integration signal output from the integration circuit 12c and the integration signal output from the integration circuit 12d based on the control signal output from the control circuit 12f and perform AD conversion. . In that case, the switch 12j may not be provided.
また、たとえば、SQUID11の出力電圧がある程度大きく、積分回路12c,12dが、検出結果(アナログ値)として適切な大きさの積分信号を出力する場合、増幅回路12aはなくてもよい。その場合、SQUID11の出力電圧が、積分回路12cに供給されるとともに、スイッチ12eを介して積分回路12dに供給される。
For example, when the output voltage of the SQUID 11 is large to some extent and the integration circuits 12c and 12d output an integration signal having an appropriate magnitude as a detection result (analog value), the amplification circuit 12a may be omitted. In that case, the output voltage of the SQUID 11 is supplied to the integrating circuit 12c and also supplied to the integrating circuit 12d via the switch 12e.
なお、図示を省略しているが、たとえば、SQUID11とコイル12iは、液体窒素によりSQUID11を冷却する冷却装置(たとえば、デュワー冷却器)内に設けられる。
In addition, although illustration is abbreviate | omitted, for example, SQUID11 and the coil 12i are provided in the cooling device (for example, Dewar cooler) which cools SQUID11 with liquid nitrogen.
(積分回路12c,12dの一例)
図2は、積分回路の一例を示す図である。
図2では、積分回路12dの例が示されているが、積分回路12cについても同様の回路構成で実現できる。 (Example of integration circuits 12c and 12d)
FIG. 2 is a diagram illustrating an example of the integration circuit.
Although FIG. 2 shows an example of the integratingcircuit 12d, the integrating circuit 12c can also be realized with the same circuit configuration.
図2は、積分回路の一例を示す図である。
図2では、積分回路12dの例が示されているが、積分回路12cについても同様の回路構成で実現できる。 (Example of
FIG. 2 is a diagram illustrating an example of the integration circuit.
Although FIG. 2 shows an example of the integrating
積分回路12dは、入力端子12d1、抵抗12d2、キャパシタ12d3、オペアンプ12d4、出力端子12d5を有する。
抵抗12d2の一端は入力端子12d1に接続されており、抵抗12d2の他端は、キャパシタ12d3の一端及び、オペアンプ12d4の反転入力端子(“-”と表記されている)に接続されている。キャパシタ12d3の他端は、出力端子12d5及びオペアンプ12d4の出力端子に接続されている。オペアンプ12d4の非反転入力端子(“+”と表記されている)は、接地されている。 The integratingcircuit 12d has an input terminal 12d1, a resistor 12d2, a capacitor 12d3, an operational amplifier 12d4, and an output terminal 12d5.
One end of the resistor 12d2 is connected to the input terminal 12d1, and the other end of the resistor 12d2 is connected to one end of the capacitor 12d3 and the inverting input terminal (denoted as “−”) of the operational amplifier 12d4. The other end of the capacitor 12d3 is connected to the output terminal 12d5 and the output terminal of the operational amplifier 12d4. A non-inverting input terminal (denoted as “+”) of the operational amplifier 12d4 is grounded.
抵抗12d2の一端は入力端子12d1に接続されており、抵抗12d2の他端は、キャパシタ12d3の一端及び、オペアンプ12d4の反転入力端子(“-”と表記されている)に接続されている。キャパシタ12d3の他端は、出力端子12d5及びオペアンプ12d4の出力端子に接続されている。オペアンプ12d4の非反転入力端子(“+”と表記されている)は、接地されている。 The integrating
One end of the resistor 12d2 is connected to the input terminal 12d1, and the other end of the resistor 12d2 is connected to one end of the capacitor 12d3 and the inverting input terminal (denoted as “−”) of the operational amplifier 12d4. The other end of the capacitor 12d3 is connected to the output terminal 12d5 and the output terminal of the operational amplifier 12d4. A non-inverting input terminal (denoted as “+”) of the operational amplifier 12d4 is grounded.
このような積分回路12dでは、入力端子12d1から入力される増幅回路12aの出力信号を時間積分した積分信号が、出力端子12d5から出力される。抵抗12d2の抵抗値をR、キャパシタ12d3のキャパシタンスをCとすると、積分回路12dの時定数τ2は、R×Cである。
In such an integration circuit 12d, an integration signal obtained by time-integrating the output signal of the amplification circuit 12a input from the input terminal 12d1 is output from the output terminal 12d5. When the resistance value of the resistor 12d2 is R and the capacitance of the capacitor 12d3 is C, the time constant τ2 of the integrating circuit 12d is R × C.
(制御回路12fの一例)
図3は、制御回路の一例を示す図である。
制御回路12fは、微分回路12f1と比較回路12f2を有する。 (Example ofcontrol circuit 12f)
FIG. 3 is a diagram illustrating an example of the control circuit.
Thecontrol circuit 12f includes a differentiation circuit 12f1 and a comparison circuit 12f2.
図3は、制御回路の一例を示す図である。
制御回路12fは、微分回路12f1と比較回路12f2を有する。 (Example of
FIG. 3 is a diagram illustrating an example of the control circuit.
The
微分回路12f1は、SQUID11の出力電圧の変化の速さを表す微分値(出力電圧の変化に比例した値)を出力する。
比較回路12f2は、微分回路12f1が出力する微分値が正で、正の閾値よりも大きいか、微分値が負で、負の閾値よりも小さい場合に、スイッチ12eをオンする制御信号を出力する。微分値が正で、正の閾値よりも小さいか、微分値が負で、負の閾値よりも大きい場合に、比較回路12f2は、スイッチ12eをオフする制御信号を出力する。 The differentiating circuit 12f1 outputs a differential value (a value proportional to the change of the output voltage) indicating the speed of change of the output voltage of theSQUID 11.
The comparison circuit 12f2 outputs a control signal for turning on theswitch 12e when the differentiation value output from the differentiation circuit 12f1 is positive and larger than a positive threshold value or when the differentiation value is negative and smaller than a negative threshold value. . When the differential value is positive and smaller than the positive threshold value or the differential value is negative and larger than the negative threshold value, the comparison circuit 12f2 outputs a control signal for turning off the switch 12e.
比較回路12f2は、微分回路12f1が出力する微分値が正で、正の閾値よりも大きいか、微分値が負で、負の閾値よりも小さい場合に、スイッチ12eをオンする制御信号を出力する。微分値が正で、正の閾値よりも小さいか、微分値が負で、負の閾値よりも大きい場合に、比較回路12f2は、スイッチ12eをオフする制御信号を出力する。 The differentiating circuit 12f1 outputs a differential value (a value proportional to the change of the output voltage) indicating the speed of change of the output voltage of the
The comparison circuit 12f2 outputs a control signal for turning on the
図4は、微分回路の一例を示す図である。
微分回路12f1は、入力端子12f11、キャパシタ12f12、抵抗12f13、オペアンプ12f14、出力端子12f15を有する。 FIG. 4 is a diagram illustrating an example of a differentiation circuit.
The differentiation circuit 12f1 has an input terminal 12f11, a capacitor 12f12, a resistor 12f13, an operational amplifier 12f14, and an output terminal 12f15.
微分回路12f1は、入力端子12f11、キャパシタ12f12、抵抗12f13、オペアンプ12f14、出力端子12f15を有する。 FIG. 4 is a diagram illustrating an example of a differentiation circuit.
The differentiation circuit 12f1 has an input terminal 12f11, a capacitor 12f12, a resistor 12f13, an operational amplifier 12f14, and an output terminal 12f15.
キャパシタ12f12の一端は入力端子12f11に接続されており、キャパシタ12f12の他端は、抵抗12f13の一端及び、オペアンプ12f14の反転入力端子に接続されている。抵抗12f13の他端は、出力端子12f15及びオペアンプ12f14の出力端子に接続されている。オペアンプ12f14の非反転入力端子は、接地されている。
One end of the capacitor 12f12 is connected to the input terminal 12f11, and the other end of the capacitor 12f12 is connected to one end of the resistor 12f13 and the inverting input terminal of the operational amplifier 12f14. The other end of the resistor 12f13 is connected to the output terminal 12f15 and the output terminal of the operational amplifier 12f14. The non-inverting input terminal of the operational amplifier 12f14 is grounded.
このような微分回路12f1では、入力端子12f11から入力されるSQUID11の出力電圧を時間微分した微分値が、出力端子12f15から出力される。
図5は、比較回路の一例を示す図である。 In such a differentiation circuit 12f1, a differential value obtained by time-differentiating the output voltage of theSQUID 11 input from the input terminal 12f11 is output from the output terminal 12f15.
FIG. 5 is a diagram illustrating an example of the comparison circuit.
図5は、比較回路の一例を示す図である。 In such a differentiation circuit 12f1, a differential value obtained by time-differentiating the output voltage of the
FIG. 5 is a diagram illustrating an example of the comparison circuit.
比較回路12f2は、入力端子12f21、比較回路12f22,12f23、OR回路12f24、出力端子12f25を有する。
比較回路12f22は、入力端子12f21から入力される微分値と、正の閾値Vref+とを比較し、微分値が、閾値Vref+よりも大きい場合に、論理レベルがHレベルの電圧を出力する。それ以外の場合には、比較回路12f22は、論理レベルがLレベルの電圧を出力する。 The comparison circuit 12f2 has an input terminal 12f21, comparison circuits 12f22 and 12f23, an OR circuit 12f24, and an output terminal 12f25.
The comparison circuit 12f22 compares the differential value input from the input terminal 12f21 with the positive threshold value Vref +, and outputs a voltage having a logic level of H level when the differential value is greater than the threshold value Vref +. In other cases, the comparison circuit 12f22 outputs a voltage having a logic level of L level.
比較回路12f22は、入力端子12f21から入力される微分値と、正の閾値Vref+とを比較し、微分値が、閾値Vref+よりも大きい場合に、論理レベルがHレベルの電圧を出力する。それ以外の場合には、比較回路12f22は、論理レベルがLレベルの電圧を出力する。 The comparison circuit 12f2 has an input terminal 12f21, comparison circuits 12f22 and 12f23, an OR circuit 12f24, and an output terminal 12f25.
The comparison circuit 12f22 compares the differential value input from the input terminal 12f21 with the positive threshold value Vref +, and outputs a voltage having a logic level of H level when the differential value is greater than the threshold value Vref +. In other cases, the comparison circuit 12f22 outputs a voltage having a logic level of L level.
比較回路12f23は、入力端子12f21から入力される微分値と、負の閾値Vref-とを比較し、微分値が、閾値Vref-よりも小さい場合に、論理レベルがHレベルの電圧を出力する。それ以外の場合には、比較回路12f23は、論理レベルがLレベルの電圧を出力する。
The comparison circuit 12f23 compares the differential value input from the input terminal 12f21 with a negative threshold value Vref−, and outputs a voltage having a logic level of H level when the differential value is smaller than the threshold value Vref−. In other cases, the comparison circuit 12f23 outputs a voltage having a logic level of L level.
OR回路12f24の一方の入力端子は、比較回路12f22の出力端子に接続されており、OR回路12f24の他方の入力端子は、比較回路12f23の出力端子に接続されている。OR回路12f24の出力端子は、出力端子12f25に接続されている。
One input terminal of the OR circuit 12f24 is connected to the output terminal of the comparison circuit 12f22, and the other input terminal of the OR circuit 12f24 is connected to the output terminal of the comparison circuit 12f23. The output terminal of the OR circuit 12f24 is connected to the output terminal 12f25.
OR回路12f24は、比較回路12f22,12f23の少なくとも一方の出力電圧の論理レベルがHレベルである場合には、Hレベルの電圧を、制御信号として出力し、スイッチ12eをオンする。OR回路12f24は、比較回路12f22,12f23の両方の出力電圧の論理レベルがLレベルである場合には、Lレベルの電圧を、制御信号として出力し、スイッチ12eをオフする。
The OR circuit 12f24 outputs an H level voltage as a control signal and turns on the switch 12e when the logical level of the output voltage of at least one of the comparison circuits 12f22 and 12f23 is the H level. The OR circuit 12f24 outputs the L level voltage as a control signal and turns off the switch 12e when the logical levels of the output voltages of both the comparison circuits 12f22 and 12f23 are L level.
以下、第1の実施の形態のSQUIDセンサ10の動作例を説明する。
(SQUIDセンサ10の動作例)
図6は、磁場の変化が比較的緩やかな場合のSQUIDセンサの動作例を示すタイミングチャートである。 Hereinafter, an operation example of the SQUID sensor 10 according to the first embodiment will be described.
(Operation example of SQUID sensor 10)
FIG. 6 is a timing chart showing an operation example of the SQUID sensor when the change in the magnetic field is relatively gradual.
(SQUIDセンサ10の動作例)
図6は、磁場の変化が比較的緩やかな場合のSQUIDセンサの動作例を示すタイミングチャートである。 Hereinafter, an operation example of the SQUID sensor 10 according to the first embodiment will be described.
(Operation example of SQUID sensor 10)
FIG. 6 is a timing chart showing an operation example of the SQUID sensor when the change in the magnetic field is relatively gradual.
図6には、磁場φ、SQUID11の出力電圧、微分回路12f1の出力電圧(微分値)、比較回路12f2の出力電圧(制御信号)の時間変化の例が示されている。さらに、時定数τ1の積分回路12cの出力電圧(積分信号)、時定数τ2の積分回路12dの出力電圧(積分信号)の時間変化の例が示されている。
FIG. 6 shows an example of the time change of the magnetic field φ, the output voltage of the SQUID 11, the output voltage (differential value) of the differentiation circuit 12f1, and the output voltage (control signal) of the comparison circuit 12f2. Further, an example of the time change of the output voltage (integrated signal) of the integrating circuit 12c with the time constant τ1 and the output voltage (integrated signal) of the integrating circuit 12d with the time constant τ2 is shown.
図6の例では、タイミングt1からタイミングt2の間で磁場φの増加及び減少が生じている。
磁場φが大きくなり始めると、SQUID11の出力電圧も上昇する。図6の例では、磁場φの変化が比較的緩やかであるため、SQUID11の出力電圧の上昇も緩やかである。このとき、微分回路12f1の出力電圧(正の微分値)が、閾値Vref+よりも小さくなるため、比較回路12f2の出力電圧の論理レベルはLレベルとなり、スイッチ12eはオフする。これにより、積分回路12dは動作せず、積分回路12dの出力電圧は
上昇しない。一方、積分回路12cの出力電圧は、緩やかに上昇する。そして、積分回路12cの出力電圧に基づいて、コイル12iで帰還磁束φfが発生し、SQUID11にネガティブフィードバックされる。 In the example of FIG. 6, the magnetic field φ increases and decreases between timing t1 and timing t2.
When the magnetic field φ starts to increase, the output voltage of theSQUID 11 also increases. In the example of FIG. 6, since the change of the magnetic field φ is relatively gradual, the increase in the output voltage of the SQUID 11 is also gradual. At this time, since the output voltage (positive differential value) of the differentiation circuit 12f1 becomes smaller than the threshold value Vref +, the logic level of the output voltage of the comparison circuit 12f2 becomes L level, and the switch 12e is turned off. Thereby, the integration circuit 12d does not operate, and the output voltage of the integration circuit 12d does not rise. On the other hand, the output voltage of the integrating circuit 12c rises gently. Based on the output voltage of the integrating circuit 12c, a feedback magnetic flux φf is generated in the coil 12i and negatively fed back to the SQUID 11.
磁場φが大きくなり始めると、SQUID11の出力電圧も上昇する。図6の例では、磁場φの変化が比較的緩やかであるため、SQUID11の出力電圧の上昇も緩やかである。このとき、微分回路12f1の出力電圧(正の微分値)が、閾値Vref+よりも小さくなるため、比較回路12f2の出力電圧の論理レベルはLレベルとなり、スイッチ12eはオフする。これにより、積分回路12dは動作せず、積分回路12dの出力電圧は
上昇しない。一方、積分回路12cの出力電圧は、緩やかに上昇する。そして、積分回路12cの出力電圧に基づいて、コイル12iで帰還磁束φfが発生し、SQUID11にネガティブフィードバックされる。 In the example of FIG. 6, the magnetic field φ increases and decreases between timing t1 and timing t2.
When the magnetic field φ starts to increase, the output voltage of the
このネガティブフィードバックの作用によって、磁場φによるSQUID11への入力磁束と帰還磁束φfとが互いに打ち消し合い、SQUID11に鎖交する磁束はゼロになるように(SQUID11の出力電圧がゼロになるように)安定化される。この安定化状態では、積分回路12cの出力電圧は磁場φに比例するようになる。
By this negative feedback action, the input magnetic flux to the SQUID 11 due to the magnetic field φ and the feedback magnetic flux φf cancel each other, and the magnetic flux interlinking with the SQUID 11 becomes zero (so that the output voltage of the SQUID 11 becomes zero). It becomes. In this stabilized state, the output voltage of the integrating circuit 12c is proportional to the magnetic field φ.
磁場φを時間の関数φ(t)、積分回路12cの出力電圧を時間の関数Vout1(t)、抵抗12gの抵抗値をRf1、コイル12iの相互インダクタンスをMfとすると、Vout1(t)=(Rf1/Mf)・φ(t)となる。
When the magnetic field φ is a function of time φ (t), the output voltage of the integrating circuit 12c is a function of time Vout1 (t), the resistance value of the resistor 12g is Rf1, and the mutual inductance of the coil 12i is Mf, Vout1 (t) = ( Rf1 / Mf) · φ (t).
磁場φが下がり始めると、SQUID11の出力電圧も下降する。ここでも図6に示すように、磁場φの変化が比較的緩やかであるため、SQUID11の出力電圧の下降も緩やかである。このとき、微分回路12f1の出力電圧(負の微分値)が、閾値Vref-よりも大きくなるため、比較回路12f2の出力電圧の論理レベルはLレベルのままとなり、スイッチ12eはオフのままである。これにより、積分回路12dの出力電圧は上昇しない。一方、積分回路12cの出力電圧は、ネガティブフィードバックの作用によって下降する。
When the magnetic field φ starts to drop, the output voltage of the SQUID 11 also drops. Here, as shown in FIG. 6, since the change in the magnetic field φ is relatively gradual, the output voltage drop of the SQUID 11 is also gradual. At this time, since the output voltage (negative differential value) of the differentiation circuit 12f1 becomes larger than the threshold value Vref−, the logic level of the output voltage of the comparison circuit 12f2 remains L level, and the switch 12e remains off. . Thereby, the output voltage of the integrating circuit 12d does not rise. On the other hand, the output voltage of the integrating circuit 12c drops due to the action of negative feedback.
また、図6の例では、スイッチ12jに対する制御信号となる比較回路12f2の出力電圧の論理レベルはLレベルのままであるため、スイッチ12jは、積分回路12cとAD変換回路13とを接続し、積分回路12dとAD変換回路13との接続を切断する。このため、AD変換回路13は、積分回路12cの出力電圧をデジタル値に変換して、そのデジタル値を磁場φの検出結果として出力する。
In the example of FIG. 6, since the logic level of the output voltage of the comparison circuit 12f2 serving as a control signal for the switch 12j remains L level, the switch 12j connects the integration circuit 12c and the AD conversion circuit 13, The connection between the integration circuit 12d and the AD conversion circuit 13 is disconnected. Therefore, the AD conversion circuit 13 converts the output voltage of the integration circuit 12c into a digital value and outputs the digital value as a detection result of the magnetic field φ.
このように、磁場φの変化が比較的緩やかである場合には、積分回路12dよりも時定数が大きい積分回路12cを用いることで、SN(Signal-Noise)比が大きくなり、微小な磁場φでも高感度に検出できるようになる。つまり、SQUIDセンサ10の検出感度を向上できる。
Thus, when the change of the magnetic field φ is relatively gradual, by using the integration circuit 12c having a larger time constant than the integration circuit 12d, the SN (Signal-Noise) ratio becomes large, and the minute magnetic field φ. But it can be detected with high sensitivity. That is, the detection sensitivity of the SQUID sensor 10 can be improved.
図7は、磁場の変化が比較的速い場合のSQUIDセンサの動作例を示すタイミングチャートである。
図7には、図6と同様に、磁場φ、SQUID11の出力電圧、微分回路12f1の出力電圧、比較回路12f2の出力電圧、時定数τ1の積分回路12cの出力電圧、時定数τ2の積分回路12dの出力電圧の時間変化の例が示されている。 FIG. 7 is a timing chart illustrating an operation example of the SQUID sensor when the change in the magnetic field is relatively fast.
7, similarly to FIG. 6, the magnetic field φ, the output voltage of theSQUID 11, the output voltage of the differentiation circuit 12 f 1, the output voltage of the comparison circuit 12 f 2, the output voltage of the integration circuit 12 c of the time constant τ 1, and the integration circuit of the time constant τ 2 An example of the time variation of the 12d output voltage is shown.
図7には、図6と同様に、磁場φ、SQUID11の出力電圧、微分回路12f1の出力電圧、比較回路12f2の出力電圧、時定数τ1の積分回路12cの出力電圧、時定数τ2の積分回路12dの出力電圧の時間変化の例が示されている。 FIG. 7 is a timing chart illustrating an operation example of the SQUID sensor when the change in the magnetic field is relatively fast.
7, similarly to FIG. 6, the magnetic field φ, the output voltage of the
図7の例では、タイミングt3からタイミングt4の間で磁場φの増加及び減少が生じている。図7の例では、図6の例よりも磁場φが短い時間で変化している。
磁場φが大きくなり始めると、SQUID11の出力電圧も上昇する。磁場φの変化が図6の場合と比べて速いため、SQUID11の出力電圧の上昇も、図6の場合と比べて速い。このとき、図7の例では、微分回路12f1の出力電圧(正の微分値)が、閾値Vref+よりも大きくなっており、比較回路12f2の出力電圧の論理レベルはHレベルとなり、スイッチ12eはオンする。これにより、積分回路12dが動作し、積分回路12dの出力電圧が上昇する。また、積分回路12cの出力電圧も緩やかに上昇する。 In the example of FIG. 7, the magnetic field φ increases and decreases between timing t3 and timing t4. In the example of FIG. 7, the magnetic field φ changes in a shorter time than the example of FIG.
When the magnetic field φ starts to increase, the output voltage of theSQUID 11 also increases. Since the change of the magnetic field φ is faster than that in the case of FIG. 6, the increase of the output voltage of the SQUID 11 is also faster than that in the case of FIG. At this time, in the example of FIG. 7, the output voltage (positive differential value) of the differentiating circuit 12f1 is larger than the threshold value Vref +, the logic level of the output voltage of the comparing circuit 12f2 is H level, and the switch 12e is turned on. To do. As a result, the integrating circuit 12d operates and the output voltage of the integrating circuit 12d increases. Further, the output voltage of the integrating circuit 12c also rises gently.
磁場φが大きくなり始めると、SQUID11の出力電圧も上昇する。磁場φの変化が図6の場合と比べて速いため、SQUID11の出力電圧の上昇も、図6の場合と比べて速い。このとき、図7の例では、微分回路12f1の出力電圧(正の微分値)が、閾値Vref+よりも大きくなっており、比較回路12f2の出力電圧の論理レベルはHレベルとなり、スイッチ12eはオンする。これにより、積分回路12dが動作し、積分回路12dの出力電圧が上昇する。また、積分回路12cの出力電圧も緩やかに上昇する。 In the example of FIG. 7, the magnetic field φ increases and decreases between timing t3 and timing t4. In the example of FIG. 7, the magnetic field φ changes in a shorter time than the example of FIG.
When the magnetic field φ starts to increase, the output voltage of the
積分回路12dの時定数τ2は、積分回路12cの時定数τ1よりも小さいため、積分回路12dの出力電圧が上昇する速さは、積分回路12cの出力電圧が上昇する速さよりも速い。そのため、コイル12iでは、主に、積分回路12dの出力電圧に基づいた帰還
磁束φfが発生し、SQUID11にネガティブフィードバックされる。 Since the time constant τ2 of the integratingcircuit 12d is smaller than the time constant τ1 of the integrating circuit 12c, the speed at which the output voltage of the integrating circuit 12d increases is faster than the speed at which the output voltage of the integrating circuit 12c increases. Therefore, in the coil 12i, a feedback magnetic flux φf based mainly on the output voltage of the integrating circuit 12d is generated and negatively fed back to the SQUID 11.
磁束φfが発生し、SQUID11にネガティブフィードバックされる。 Since the time constant τ2 of the integrating
このネガティブフィードバックの作用によって、積分回路12dの出力電圧は磁場φに比例するようになる。磁場φを時間の関数φ(t)、積分回路12dの出力電圧を時間の関数Vout2(t)、抵抗12hの抵抗値をRf2、コイル12iの相互インダクタンスをMfとすると、Vout2(t)=(Rf2/Mf)・φ(t)となる。
The output voltage of the integrating circuit 12d becomes proportional to the magnetic field φ by the action of this negative feedback. When the magnetic field φ is a function of time φ (t), the output voltage of the integrating circuit 12d is a function of time Vout2 (t), the resistance value of the resistor 12h is Rf2, and the mutual inductance of the coil 12i is Mf, Vout2 (t) = ( Rf2 / Mf) · φ (t).
磁場φの変化が小さくなると、微分回路12f1の出力電圧が閾値Vref+よりも小さくなる。このため、比較回路12f2の出力電圧の論理レベルがLレベルとなり、スイッチ12eはオフする。しかし、図7の例では、図6の例と比べて、すぐに磁場φが減少し始め、微分回路12f1の出力電圧(負の微分値)が、閾値Vref-よりも小さくなっている。このため、比較回路12f2の出力電圧の論理レベルが再びHレベルとなり、スイッチ12eは再びオンする。これにより、積分回路12dの出力電圧は、入力磁場の減少に対応して、下降していく。
When the change in the magnetic field φ becomes small, the output voltage of the differentiating circuit 12f1 becomes smaller than the threshold value Vref +. For this reason, the logic level of the output voltage of the comparison circuit 12f2 becomes L level, and the switch 12e is turned off. However, in the example of FIG. 7, compared with the example of FIG. 6, the magnetic field φ starts to decrease immediately, and the output voltage (negative differential value) of the differentiating circuit 12f1 is smaller than the threshold value Vref−. For this reason, the logic level of the output voltage of the comparison circuit 12f2 becomes H level again, and the switch 12e is turned on again. As a result, the output voltage of the integrating circuit 12d decreases corresponding to the decrease in the input magnetic field.
また、図7の例では、スイッチ12jに対する制御信号となる比較回路12f2の出力電圧の論理レベルは、磁場φが変化するタイミングt3からタイミングt4の期間では、ほとんどHレベルである。そのため、スイッチ12jは、タイミングt3からタイミングt4のほとんどの期間で積分回路12dとAD変換回路13とを接続し、積分回路12cとAD変換回路13との接続を切断する。このため、AD変換回路13は、主に積分回路12dの出力電圧をデジタル値に変換して、そのデジタル値を磁場φの検出結果として出力する。
Further, in the example of FIG. 7, the logic level of the output voltage of the comparison circuit 12f2 serving as a control signal for the switch 12j is almost H level during the period from the timing t3 to the timing t4 when the magnetic field φ changes. Therefore, the switch 12j connects the integration circuit 12d and the AD conversion circuit 13 during most of the period from the timing t3 to the timing t4, and disconnects the connection between the integration circuit 12c and the AD conversion circuit 13. Therefore, the AD conversion circuit 13 mainly converts the output voltage of the integration circuit 12d into a digital value, and outputs the digital value as a detection result of the magnetic field φ.
図7に示すように、積分回路12cの出力電圧は、磁場φの急速な変化に追従できていないが、積分回路12dの出力電圧は、磁場φの急速な変化に追従できている。
このように、FLL回路12に時定数が異なる複数の積分回路12c,12dを設け、磁場変化が急な場合に時定数τ2の積分回路12dを動作させる(高速帰還パスを機能させる)ことで、磁場変化への追従性が向上し、磁場検出の安定性が向上する。つまり、磁場変化への追従性が向上することで、SQUIDセンサ10の応答速度(スルーレート)が向上し、急激に変化する磁場φを安定に検出できる。なお、スルーレートは、追従可能な磁場の時間変化の最大値で表せる。 As shown in FIG. 7, the output voltage of the integratingcircuit 12c cannot follow the rapid change of the magnetic field φ, but the output voltage of the integrating circuit 12d can follow the rapid change of the magnetic field φ.
In this way, by providing theFLL circuit 12 with a plurality of integration circuits 12c and 12d having different time constants, and operating the integration circuit 12d with the time constant τ2 when the magnetic field change is sudden (to make the high-speed feedback path function), The followability to magnetic field changes is improved, and the stability of magnetic field detection is improved. That is, by improving the followability to the magnetic field change, the response speed (slew rate) of the SQUID sensor 10 is improved, and the rapidly changing magnetic field φ can be detected stably. The slew rate can be expressed by the maximum value of the time change of the magnetic field that can be followed.
このように、FLL回路12に時定数が異なる複数の積分回路12c,12dを設け、磁場変化が急な場合に時定数τ2の積分回路12dを動作させる(高速帰還パスを機能させる)ことで、磁場変化への追従性が向上し、磁場検出の安定性が向上する。つまり、磁場変化への追従性が向上することで、SQUIDセンサ10の応答速度(スルーレート)が向上し、急激に変化する磁場φを安定に検出できる。なお、スルーレートは、追従可能な磁場の時間変化の最大値で表せる。 As shown in FIG. 7, the output voltage of the integrating
In this way, by providing the
また、前述のように磁場φの変化が比較的緩やかな場合には、時定数τ1の積分回路12cの動作により、SQUIDセンサ10の検出感度を向上できるため、第1の実施の形態のSQUIDセンサ10によれば、高感度で安定な磁場検出が実現できる。
In addition, when the change in the magnetic field φ is relatively gradual as described above, the detection sensitivity of the SQUID sensor 10 can be improved by the operation of the integration circuit 12c with the time constant τ1, and thus the SQUID sensor of the first embodiment. 10 can realize a highly sensitive and stable magnetic field detection.
たとえば、時定数τ2が、時定数τ1の1/4であるとする。また、積分回路12dを用いずに1つの積分回路12cを用いて磁場検出を行う場合のスルーレートが10mT/sec、検出感度が15fT/Hz1/2であるとする。このような場合、図7に示したよ
うな急激な磁場変化が生じたときに積分回路12cの他に積分回路12dをさらに動作させることで、スルーレートを40mT/sec、検出感度を25fT/Hz1/2とするこ
とができる。つまり、検出感度を悪化させることなく、4倍の高スルーレート特性を実現できる。これは、たとえば、SQUIDセンサ10を鉱床探査に用いた場合、探査時間を1/4に短縮できることを意味し、探査効率を向上できる。 For example, it is assumed that the time constant τ2 is ¼ of the time constant τ1. Further, it is assumed that the slew rate is 10 mT / sec and the detection sensitivity is 15 fT / Hz 1/2 when magnetic field detection is performed using oneintegration circuit 12 c without using the integration circuit 12 d. In such a case, the slew rate is set to 40 mT / sec and the detection sensitivity is set to 25 fT / Hz by further operating the integration circuit 12d in addition to the integration circuit 12c when a sudden magnetic field change as shown in FIG. 7 occurs. It can be 1/2 . That is, a four times higher slew rate characteristic can be realized without deteriorating the detection sensitivity. This means that, for example, when the SQUID sensor 10 is used for ore exploration, the exploration time can be reduced to ¼, and exploration efficiency can be improved.
うな急激な磁場変化が生じたときに積分回路12cの他に積分回路12dをさらに動作させることで、スルーレートを40mT/sec、検出感度を25fT/Hz1/2とするこ
とができる。つまり、検出感度を悪化させることなく、4倍の高スルーレート特性を実現できる。これは、たとえば、SQUIDセンサ10を鉱床探査に用いた場合、探査時間を1/4に短縮できることを意味し、探査効率を向上できる。 For example, it is assumed that the time constant τ2 is ¼ of the time constant τ1. Further, it is assumed that the slew rate is 10 mT / sec and the detection sensitivity is 15 fT / Hz 1/2 when magnetic field detection is performed using one
なお、上記の例では、微分回路12f1の出力電圧が閾値Vref+よりも大きい場合、または閾値Vref-よりも小さい場合でも、積分回路12cを動作させるものとしたが、積分回路12cを動作させないようにしてもよい。その場合、増幅回路12aの出力端子と、積分回路12cとの間にスイッチが設けられ、制御回路12fは、スイッチ12eをオンするときには、そのスイッチをオフする。
In the above example, the integrating circuit 12c is operated even when the output voltage of the differentiating circuit 12f1 is larger than the threshold value Vref + or smaller than the threshold value Vref−. However, the integrating circuit 12c is not operated. May be. In that case, a switch is provided between the output terminal of the amplifier circuit 12a and the integrating circuit 12c, and the control circuit 12f turns off the switch when turning on the switch 12e.
また、上記の例では、SQUID11に直接、磁場φが入力されるものとして説明したが、磁場φを検出する検出コイルと、検出コイルが検出した磁場φに基づいて信号磁束を発生しSQUID11に供給する入力コイルを用いることもできる。
In the above example, the magnetic field φ is directly input to the SQUID 11. However, the detection coil that detects the magnetic field φ and the signal magnetic flux based on the magnetic field φ detected by the detection coil are generated and supplied to the SQUID 11. An input coil can be used.
また、上記の例では、2つの積分回路12c,12dを有するFLL回路12を示したが、積分回路の数は、2つに限定されず、3つ以上であってもよい。以下その例を説明する。
In the above example, the FLL circuit 12 including the two integration circuits 12c and 12d is shown. However, the number of integration circuits is not limited to two, and may be three or more. Examples thereof will be described below.
(第2の実施の形態)
図8は、第2の実施の形態のSQUIDセンサ及びFLL回路の一例を示す図である。
SQUIDセンサ20は、SQUID21、FLL回路22、AD変換回路23を有する。 (Second Embodiment)
FIG. 8 is a diagram illustrating an example of the SQUID sensor and the FLL circuit according to the second embodiment.
The SQUID sensor 20 includes aSQUID 21, an FLL circuit 22, and an AD conversion circuit 23.
図8は、第2の実施の形態のSQUIDセンサ及びFLL回路の一例を示す図である。
SQUIDセンサ20は、SQUID21、FLL回路22、AD変換回路23を有する。 (Second Embodiment)
FIG. 8 is a diagram illustrating an example of the SQUID sensor and the FLL circuit according to the second embodiment.
The SQUID sensor 20 includes a
SQUID21は、入力される磁場φと、帰還磁束φfとに基づいた出力電圧を出力する。
FLL回路22は、SQUID21の出力電圧を安定化する回路である。 TheSQUID 21 outputs an output voltage based on the input magnetic field φ and the feedback magnetic flux φf.
TheFLL circuit 22 is a circuit that stabilizes the output voltage of the SQUID 21.
FLL回路22は、SQUID21の出力電圧を安定化する回路である。 The
The
AD変換回路23は、FLL回路22の出力電圧をAD変換し、磁場φの検出結果としてデジタル値を出力する。
FLL回路22は、増幅回路22a、バイアス電源22b、積分回路22c,22d,22e、スイッチ22f,22g、制御回路22h、抵抗22i,22j,22k、コイル22lを有する。 TheAD conversion circuit 23 AD-converts the output voltage of the FLL circuit 22 and outputs a digital value as a detection result of the magnetic field φ.
TheFLL circuit 22 includes an amplifier circuit 22a, a bias power source 22b, integration circuits 22c, 22d, and 22e, switches 22f and 22g, a control circuit 22h, resistors 22i, 22j, and 22k, and a coil 22l.
FLL回路22は、増幅回路22a、バイアス電源22b、積分回路22c,22d,22e、スイッチ22f,22g、制御回路22h、抵抗22i,22j,22k、コイル22lを有する。 The
The
増幅回路22aは、SQUID21の出力電圧と、バイアス電源22bが生成するバイアス電圧Vbを受け、SQUID21の出力電圧を増幅する。微小な磁場φの変化を検出するために、増幅回路22aとして、低雑音のプリアンプを用いることが望ましい。
The amplification circuit 22a receives the output voltage of the SQUID 21 and the bias voltage Vb generated by the bias power supply 22b, and amplifies the output voltage of the SQUID 21. In order to detect a minute change in the magnetic field φ, it is desirable to use a low-noise preamplifier as the amplifier circuit 22a.
積分回路22c,22d,22eは、増幅回路22aの出力信号を時間積分することで平滑化する機能をもつ。
積分回路22cは、時定数τ3を有し、増幅回路22aの出力信号を時間積分した積分信号を出力する。 The integration circuits 22c, 22d, and 22e have a function of smoothing the output signal of the amplification circuit 22a by time integration.
Theintegration circuit 22c has a time constant τ3 and outputs an integration signal obtained by time-integrating the output signal of the amplification circuit 22a.
積分回路22cは、時定数τ3を有し、増幅回路22aの出力信号を時間積分した積分信号を出力する。 The
The
積分回路22dは、時定数τ3よりも小さい時定数τ4を有し、増幅回路22aの出力端子にスイッチ22fを介して接続されている。つまり、積分回路22dには、増幅回路22aの出力電圧がスイッチ22fを介して供給される。積分回路22dは、スイッチ22fがオンのときに増幅回路22aの出力信号を時間積分した積分信号を出力する。
The integrating circuit 22d has a time constant τ4 smaller than the time constant τ3, and is connected to the output terminal of the amplifying circuit 22a via a switch 22f. That is, the output voltage of the amplification circuit 22a is supplied to the integration circuit 22d via the switch 22f. The integration circuit 22d outputs an integration signal obtained by time-integrating the output signal of the amplification circuit 22a when the switch 22f is on.
積分回路22eは、時定数τ4よりも小さい時定数τ5を有し、増幅回路22aの出力端子にスイッチ22gを介して接続されている。つまり、積分回路22eには、増幅回路22aの出力電圧がスイッチ22gを介して供給される。積分回路22eは、スイッチ22gがオンのときに増幅回路22aの出力信号を時間積分した積分信号を出力する。
The integrating circuit 22e has a time constant τ5 smaller than the time constant τ4, and is connected to the output terminal of the amplifying circuit 22a via a switch 22g. That is, the output voltage of the amplification circuit 22a is supplied to the integration circuit 22e via the switch 22g. The integration circuit 22e outputs an integration signal obtained by time-integrating the output signal of the amplification circuit 22a when the switch 22g is on.
制御回路22hは、SQUID11の出力電圧の変化の速さを表す値(たとえば、前述の正の微分値または負の微分値の絶対値)が大きくなるほど、複数の積分回路22c~22eのうち、小さい時定数を有する積分回路を動作させる。
The control circuit 22h has a smaller value among the plurality of integration circuits 22c to 22e as the value indicating the speed of change of the output voltage of the SQUID 11 (for example, the absolute value of the positive differential value or the negative differential value) increases. An integration circuit having a time constant is operated.
第2の実施の形態のFLL回路22において、制御回路22hは、微分回路22h1、比較回路22h2,22h3を有する。
微分回路22h1は、SQUID21の出力電圧を時間微分することで、出力電圧の変
化の速さを表す値を求める。SQUID21の出力電圧が上昇するときには、正の微分値が得られ、SQUID21の出力電圧が下降するときには、負の微分値が得られる。微分回路22h1は、図4に示した微分回路12f1と同様の回路で実現できる。 In theFLL circuit 22 of the second embodiment, the control circuit 22h includes a differentiation circuit 22h1 and comparison circuits 22h2 and 22h3.
The differentiating circuit 22h1 obtains a value representing the speed of change of the output voltage by time-differentiating the output voltage of theSQUID 21. When the output voltage of the SQUID 21 increases, a positive differential value is obtained, and when the output voltage of the SQUID 21 decreases, a negative differential value is obtained. The differentiation circuit 22h1 can be realized by a circuit similar to the differentiation circuit 12f1 shown in FIG.
微分回路22h1は、SQUID21の出力電圧を時間微分することで、出力電圧の変
化の速さを表す値を求める。SQUID21の出力電圧が上昇するときには、正の微分値が得られ、SQUID21の出力電圧が下降するときには、負の微分値が得られる。微分回路22h1は、図4に示した微分回路12f1と同様の回路で実現できる。 In the
The differentiating circuit 22h1 obtains a value representing the speed of change of the output voltage by time-differentiating the output voltage of the
比較回路22h2は、微分回路22h1が出力する正の微分値が、正の閾値Vref1+よりも大きいか、負の微分値が、負の閾値Vref1-よりも小さい場合に、スイッチ22fをオンする制御信号を出力する。それ以外の場合には、比較回路22h2は、スイッチ22fをオフする制御信号を出力する。
The comparison circuit 22h2 is a control signal for turning on the switch 22f when the positive differential value output from the differentiation circuit 22h1 is larger than the positive threshold value Vref1 + or the negative differential value is smaller than the negative threshold value Vref1-. Is output. In other cases, the comparison circuit 22h2 outputs a control signal for turning off the switch 22f.
比較回路22h3は、微分回路22h1が出力する正の微分値が、正の閾値Vref2+よりも大きいか、負の微分値が負の閾値Vref2-よりも小さい場合に、スイッチ22gをオンする制御信号を出力する。それ以外の場合には、比較回路22h3は、スイッチ22gをオフする制御信号を出力する。
The comparison circuit 22h3 outputs a control signal for turning on the switch 22g when the positive differential value output from the differentiation circuit 22h1 is larger than the positive threshold value Vref2 + or the negative differential value is smaller than the negative threshold value Vref2-. Output. In other cases, the comparison circuit 22h3 outputs a control signal for turning off the switch 22g.
閾値Vref2+は、閾値Vref1+よりも大きく、閾値Vref2-は、閾値Vref1-よりも小さい。比較回路22h2,22h3は、図5に示した比較回路12f2と同様の回路で実現できる。
The threshold value Vref2 + is larger than the threshold value Vref1 +, and the threshold value Vref2- is smaller than the threshold value Vref1-. The comparison circuits 22h2 and 22h3 can be realized by a circuit similar to the comparison circuit 12f2 shown in FIG.
なお、図8の例では、制御回路22hは、SQUID21が出力する出力電圧を入力しているが、増幅回路22aの出力信号に基づいて、スイッチ22f,22gを制御してもよい。
In the example of FIG. 8, the control circuit 22h receives the output voltage output from the SQUID 21, but may control the switches 22f and 22g based on the output signal of the amplifier circuit 22a.
コイル22lの一端は、抵抗22iを介して積分回路22cの出力端子、抵抗22jを介して積分回路22dの出力端子、抵抗22kを介して積分回路22eの出力端子に接続されている。コイル22lの他端は接地されている。コイル22lは、積分回路22c、積分回路22d、積分回路22eが出力する積分信号に基づいて、SQUID21に供給する帰還磁束φfを発生する。
One end of the coil 22l is connected to the output terminal of the integrating circuit 22c through the resistor 22i, the output terminal of the integrating circuit 22d through the resistor 22j, and the output terminal of the integrating circuit 22e through the resistor 22k. The other end of the coil 22l is grounded. The coil 22l generates a feedback magnetic flux φf to be supplied to the SQUID 21 based on the integration signal output from the integration circuit 22c, the integration circuit 22d, and the integration circuit 22e.
なお、図8の例では、積分回路22c~22eが出力する積分信号は、AD変換回路23に供給される。AD変換回路23は、比較回路22h2,22h3が出力する制御信号に基づいて、積分回路22c~22eの何れかが出力する積分信号を選択してAD変換する。たとえば、制御回路22hがスイッチ22gをオンする制御信号とスイッチ22fをオンする制御信号を出力した場合、AD変換回路23は、積分回路22eが出力する積分信号を選択してAD変換する。また、制御回路22hがスイッチ22fをオンする制御信号とスイッチ22gをオフする制御信号を出力した場合、AD変換回路23は、積分回路22dが出力する積分信号を選択してAD変換する。また、制御回路22hがスイッチ22fをオフする制御信号とスイッチ22gをオフする制御信号を出力した場合、AD変換回路23は、積分回路22cが出力する積分信号を選択してAD変換する。
In the example of FIG. 8, the integration signals output from the integration circuits 22c to 22e are supplied to the AD conversion circuit 23. The AD conversion circuit 23 selects an integration signal output from any of the integration circuits 22c to 22e based on the control signal output from the comparison circuits 22h2 and 22h3, and performs AD conversion. For example, when the control circuit 22h outputs a control signal for turning on the switch 22g and a control signal for turning on the switch 22f, the AD conversion circuit 23 selects the integration signal output from the integration circuit 22e and performs AD conversion. When the control circuit 22h outputs a control signal for turning on the switch 22f and a control signal for turning off the switch 22g, the AD conversion circuit 23 selects the integration signal output by the integration circuit 22d and performs AD conversion. When the control circuit 22h outputs a control signal for turning off the switch 22f and a control signal for turning off the switch 22g, the AD conversion circuit 23 selects the integration signal output from the integration circuit 22c and performs AD conversion.
なお、図1のスイッチ12eと同様、スイッチ22f,22gは、たとえば、MOSFETを用いて実現できる。
また、AD変換回路23が、制御回路が出力する2つの制御信号に基づいてAD変換する積分信号を選択する代わりに、FLL回路22にスイッチを設けて、2つの制御信号に基づいて、AD変換回路23に供給する積分信号を選択するようにしてもよい。 As with theswitch 12e in FIG. 1, the switches 22f and 22g can be realized using, for example, a MOSFET.
Further, instead of theAD conversion circuit 23 selecting an integration signal to be AD converted based on the two control signals output from the control circuit, a switch is provided in the FLL circuit 22 and AD conversion is performed based on the two control signals The integration signal supplied to the circuit 23 may be selected.
また、AD変換回路23が、制御回路が出力する2つの制御信号に基づいてAD変換する積分信号を選択する代わりに、FLL回路22にスイッチを設けて、2つの制御信号に基づいて、AD変換回路23に供給する積分信号を選択するようにしてもよい。 As with the
Further, instead of the
また、たとえば、SQUID21の出力電圧がある程度大きく、積分回路22c~22eが、検出結果(アナログ値)として適切な大きさの積分信号を出力する場合、増幅回路22aはなくてもよい。その場合、SQUID21の出力電圧が、積分回路22cに供給されるとともに、スイッチ22fを介して積分回路22dに供給され、スイッチ22gを介して積分回路22eに供給される。
Further, for example, when the output voltage of the SQUID 21 is large to some extent and the integration circuits 22c to 22e output an integration signal having an appropriate magnitude as a detection result (analog value), the amplification circuit 22a may be omitted. In this case, the output voltage of the SQUID 21 is supplied to the integrating circuit 22c, supplied to the integrating circuit 22d through the switch 22f, and supplied to the integrating circuit 22e through the switch 22g.
上記のようなSQUIDセンサ20及びFLL回路22によれば、磁場変化が速くなるほど、3つの積分回路22c~22eの中から、小さな時定数をもつ積分回路が動作することになる。たとえば、微分回路22h1が出力する正の微分値が、閾値Vref2+より大きい、または負の微分値が閾値Vref2-よりも小さくなるほど磁場変化が速い場合には、時定数の最も小さい積分回路22eが動作する。微分回路22h1が出力する正の微分値が、閾値Vref2+より小さく閾値Vref1+より大きい、または負の微分値が閾値Vref2-よりも大きく閾値Vref1-より小さくなるような磁場変化の場合には、積分回路22dが動作する。微分回路22h1が出力する正の微分値が、閾値Vref1+より小さい、または負の微分値が閾値Vref1-より大きくなるような磁場変化の場合には、積分回路22c~22eのうち、時定数が最も大きい積分回路22cのみが動作する。
According to the SQUID sensor 20 and the FLL circuit 22 as described above, an integration circuit having a small time constant operates from the three integration circuits 22c to 22e as the magnetic field change becomes faster. For example, when the change in the magnetic field is faster as the positive differential value output from the differentiation circuit 22h1 is larger than the threshold value Vref2 + or the negative differential value is smaller than the threshold value Vref2-, the integration circuit 22e having the smallest time constant operates. To do. In the case of a magnetic field change in which the positive differential value output from the differentiating circuit 22h1 is smaller than the threshold value Vref2 + and larger than the threshold value Vref1 +, or the negative differential value is larger than the threshold value Vref2- and smaller than the threshold value Vref1-, the integrating circuit 22d operates. In the case of a magnetic field change in which the positive differential value output from the differentiation circuit 22h1 is smaller than the threshold value Vref1 + or the negative differential value becomes larger than the threshold value Vref1-, the time constant of the integration circuits 22c to 22e is the largest. Only the large integration circuit 22c operates.
このような第2の実施の形態のSQUIDセンサ20及びFLL回路22によれば、第1の実施の形態のSQUIDセンサ10及びFLL回路12と同様の効果が得られるとともに、様々な磁場変化の速さに対応したスルーレートが選択できる。
According to the SQUID sensor 20 and the FLL circuit 22 of the second embodiment, the same effects as those of the SQUID sensor 10 and the FLL circuit 12 of the first embodiment can be obtained, and various magnetic field change speeds can be obtained. You can select the slew rate corresponding to the size.
上記のようなSQUIDセンサ10,20は、金属鉱床の探査や、脳磁場や心臓磁場などの生体磁場計測など、磁場を検出する様々な分野に適用できる。
図9は、金属鉱床を探査する装置への適用例を示す図である。 The SQUID sensors 10 and 20 as described above can be applied to various fields for detecting magnetic fields, such as exploration of metal deposits and measurement of biomagnetic fields such as brain magnetic fields and cardiac magnetic fields.
FIG. 9 is a diagram illustrating an application example to an apparatus for exploring a metal deposit.
図9は、金属鉱床を探査する装置への適用例を示す図である。 The SQUID sensors 10 and 20 as described above can be applied to various fields for detecting magnetic fields, such as exploration of metal deposits and measurement of biomagnetic fields such as brain magnetic fields and cardiac magnetic fields.
FIG. 9 is a diagram illustrating an application example to an apparatus for exploring a metal deposit.
図9には、車両30に探査装置31を搭載した例が示されている。探査装置31は、SQUID31a、FLL回路31b、AD変換回路31c、表示装置31dを有する。
SQUID31aで変換された電圧はFLL回路31bで安定化され、AD変換回路31cに供給される。そして、AD変換回路31cでFLL回路31bの出力電圧(積分信号)がデジタル値に変換され、そのデジタル値に基づいて、たとえば、図示しないプロセッサの制御により、表示装置31dに磁場の時間変化が表示される。 FIG. 9 shows an example in which theexploration device 31 is mounted on the vehicle 30. The exploration device 31 includes a SQUID 31a, an FLL circuit 31b, an AD conversion circuit 31c, and a display device 31d.
The voltage converted by theSQUID 31a is stabilized by the FLL circuit 31b and supplied to the AD conversion circuit 31c. Then, the AD converter circuit 31c converts the output voltage (integrated signal) of the FLL circuit 31b into a digital value. Based on the digital value, for example, the time change of the magnetic field is displayed on the display device 31d under the control of a processor (not shown). Is done.
SQUID31aで変換された電圧はFLL回路31bで安定化され、AD変換回路31cに供給される。そして、AD変換回路31cでFLL回路31bの出力電圧(積分信号)がデジタル値に変換され、そのデジタル値に基づいて、たとえば、図示しないプロセッサの制御により、表示装置31dに磁場の時間変化が表示される。 FIG. 9 shows an example in which the
The voltage converted by the
たとえば、探査装置31が、地中に存在する磁場を発生する金属鉱床32a,32bを探査する際、車両30の速度が速いほど、探査装置31が検出する磁場の変化速度が速くなる。FLL回路31bとして、第1の実施の形態のFLL回路12や第2の実施の形態のFLL回路22を用いることで、磁場変化に追従できるようになるので、安定した磁場検出が可能になる。
For example, when the exploration device 31 explores the metal deposits 32a and 32b that generate the magnetic field existing in the ground, the change speed of the magnetic field detected by the exploration device 31 increases as the speed of the vehicle 30 increases. By using the FLL circuit 12 of the first embodiment or the FLL circuit 22 of the second embodiment as the FLL circuit 31b, it becomes possible to follow a change in the magnetic field, so that stable magnetic field detection is possible.
なお、金属鉱床32bは、金属鉱床32aよりも地中深くに存在し、探査装置31で検出される磁場は小さい。しかし、FLL回路31bとして、第1の実施の形態のFLL回路12や第2の実施の形態のFLL回路22を用いることで、検出感度を落とさずに磁場検出できるため、このような小さい磁場についても高感度に検出できる。
The metal deposit 32b exists deeper in the ground than the metal deposit 32a, and the magnetic field detected by the exploration device 31 is small. However, by using the FLL circuit 12 of the first embodiment or the FLL circuit 22 of the second embodiment as the FLL circuit 31b, the magnetic field can be detected without reducing the detection sensitivity. Can be detected with high sensitivity.
以上、実施の形態に基づき、本発明のFLL回路及びSQUIDセンサの一観点について説明してきたが、これらは一例にすぎず、上記の記載に限定されるものではない。
As described above, one aspect of the FLL circuit and the SQUID sensor of the present invention has been described based on the embodiments, but these are only examples and are not limited to the above description.
10 SQUIDセンサ
11 SQUID
12 FLL回路
12a 増幅回路
12b バイアス電源
12c,12d 積分回路
12e,12j スイッチ
12f 制御回路
12g,12h 抵抗
12i コイル
13 AD変換回路
Vb バイアス電圧
φ 磁場
φf 帰還磁束
τ1,τ2 時定数 10SQUID sensor 11 SQUID
12FLL circuit 12a Amplifier circuit 12b Bias power supply 12c, 12d Integration circuit 12e, 12j Switch 12f Control circuit 12g, 12h Resistance 12i Coil 13 AD converter circuit Vb Bias voltage φ Magnetic field φf Feedback magnetic flux τ1, τ2 Time constant
11 SQUID
12 FLL回路
12a 増幅回路
12b バイアス電源
12c,12d 積分回路
12e,12j スイッチ
12f 制御回路
12g,12h 抵抗
12i コイル
13 AD変換回路
Vb バイアス電圧
φ 磁場
φf 帰還磁束
τ1,τ2 時定数 10
12
Claims (6)
- 第1の時定数を有し、SQUIDが出力する第1の出力電圧または前記第1の出力電圧を増幅した第2の出力電圧を時間積分し、第1の積分信号を出力する第1の積分回路と、
前記第1の時定数よりも小さい第2の時定数を有し、前記第1の出力電圧または前記第2の出力電圧を時間積分した第2の積分信号を出力する第2の積分回路と、
前記第1の出力電圧の変化の速さを表す第1の値が閾値よりも大きい場合に前記第2の積分回路を動作させ、前記第1の値が前記閾値よりも小さい場合に前記第2の積分回路の動作を停止する制御回路と、
前記第1の積分信号または前記第2の積分信号に基づいて、前記SQUIDに供給する帰還磁束を発生するコイルと、
を有するFLL回路。 A first integration having a first time constant, time-integrating a first output voltage output by the SQUID or a second output voltage obtained by amplifying the first output voltage, and outputting a first integration signal. Circuit,
A second integrating circuit having a second time constant smaller than the first time constant and outputting a second integrated signal obtained by time-integrating the first output voltage or the second output voltage;
The second integration circuit is operated when a first value representing the speed of change of the first output voltage is larger than a threshold value, and when the first value is smaller than the threshold value, the second value is changed. A control circuit for stopping the operation of the integrating circuit;
A coil that generates a feedback magnetic flux to be supplied to the SQUID based on the first integration signal or the second integration signal;
A FLL circuit. - 前記第2の積分回路には、前記第1の出力電圧または前記第2の出力電圧が、スイッチを介して供給され、
前記制御回路は、前記第1の値が前記閾値よりも大きい場合に前記スイッチをオンすることで前記第2の積分回路を動作させ、前記第1の値が前記閾値よりも小さい場合に前記スイッチをオフすることで前記第2の積分回路の動作を停止する、
請求項1に記載のFLL回路。 The second integration circuit is supplied with the first output voltage or the second output voltage via a switch,
The control circuit operates the second integrating circuit by turning on the switch when the first value is larger than the threshold, and the switch when the first value is smaller than the threshold. To stop the operation of the second integration circuit,
The FLL circuit according to claim 1. - 前記制御回路は、前記第1の出力電圧または前記第2の出力電圧を時間微分した微分値を出力する微分回路と、
前記微分値と、正の第1の閾値または負の第2の閾値との大小関係に基づいて前記スイッチのオンオフを制御するための制御信号を出力する比較回路と、
を有する請求項2に記載のFLL回路。 The control circuit outputs a differential value obtained by time-differentiating the first output voltage or the second output voltage;
A comparison circuit that outputs a control signal for controlling on / off of the switch based on a magnitude relationship between the differential value and a positive first threshold value or a negative second threshold value;
The FLL circuit according to claim 2, comprising: - 前記比較回路は、前記微分値が正であり、前記第1の閾値よりも大きい場合、または前記微分値が負であり、前記第2の閾値よりも小さい場合、前記スイッチをオンする前記制御信号を出力し、前記微分値が正であり、前記第1の閾値よりも小さい場合、または前記微分値が負であり、前記第2の閾値よりも大きい場合、前記スイッチをオフする前記制御信号を出力する、
請求項3に記載のFLL回路。 The comparison circuit is configured to turn on the switch when the differential value is positive and larger than the first threshold value, or when the differential value is negative and smaller than the second threshold value. When the differential value is positive and smaller than the first threshold value, or the differential value is negative and larger than the second threshold value, the control signal for turning off the switch is Output,
The FLL circuit according to claim 3. - 前記第1の積分回路と前記第2の積分回路と、を含み、それぞれが異なる時定数を有する複数の積分回路を有し、
前記制御回路は、前記第1の値が大きくなるほど、前記複数の積分回路のうち、小さい時定数を有する積分回路を動作させる、
請求項1乃至4の何れか一項に記載のFLL回路。 A plurality of integrating circuits including the first integrating circuit and the second integrating circuit, each having a different time constant;
The control circuit operates an integration circuit having a small time constant among the plurality of integration circuits as the first value increases.
The FLL circuit according to any one of claims 1 to 4. - 帰還磁束と、入力される磁場とに基づいた第1の出力電圧を出力するSQUIDと、
第1の時定数を有し、前記第1の出力電圧または前記第1の出力電圧を増幅した第2の出力電圧を時間積分し、第1の積分信号を出力する第1の積分回路と、
前記第1の時定数よりも小さい第2の時定数を有し、前記第1の出力電圧または前記第2の出力電圧を時間積分した第2の積分信号を出力する第2の積分回路と、
前記第1の出力電圧の変化の速さを表す第1の値が閾値よりも大きい場合に前記第2の積分回路を動作させ、前記第1の値が前記閾値よりも小さい場合に前記第2の積分回路の動作を停止する制御回路と、
前記第1の積分信号または前記第2の積分信号に基づいて、前記SQUIDに供給する前記帰還磁束を発生するコイルと、
を有するSQUIDセンサ。 A SQUID that outputs a first output voltage based on the feedback magnetic flux and the input magnetic field;
A first integration circuit having a first time constant, time-integrating the first output voltage or the second output voltage obtained by amplifying the first output voltage, and outputting a first integration signal;
A second integrating circuit having a second time constant smaller than the first time constant and outputting a second integrated signal obtained by time-integrating the first output voltage or the second output voltage;
The second integration circuit is operated when a first value representing the speed of change of the first output voltage is larger than a threshold value, and when the first value is smaller than the threshold value, the second value is changed. A control circuit for stopping the operation of the integrating circuit;
A coil that generates the feedback magnetic flux to be supplied to the SQUID based on the first integration signal or the second integration signal;
A SQUID sensor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-015986 | 2017-01-31 | ||
JP2017015986A JP2018124156A (en) | 2017-01-31 | 2017-01-31 | FLL circuit and SQUID sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018142854A1 true WO2018142854A1 (en) | 2018-08-09 |
Family
ID=63040498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/000278 WO2018142854A1 (en) | 2017-01-31 | 2018-01-10 | Fll circuit and squid sensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018124156A (en) |
WO (1) | WO2018142854A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021060378A (en) * | 2019-10-02 | 2021-04-15 | 株式会社リコー | Magnetic field measuring device |
JP2021085675A (en) * | 2019-11-25 | 2021-06-03 | 株式会社リコー | Magnetic field measuring instrument |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0511034A (en) * | 1991-07-03 | 1993-01-19 | Seiko Instr Inc | High-sensitivity fluxmeter |
JPH11264862A (en) * | 1998-03-18 | 1999-09-28 | Seiko Instruments Inc | Superconductive quantum interference element flux meter |
JP2000321343A (en) * | 1999-05-13 | 2000-11-24 | Sumitomo Electric Ind Ltd | Method and device for adjusting magnetic field bias in modulation drive circuit for squid |
US6337567B1 (en) * | 1999-04-22 | 2002-01-08 | Lg Electronics Inc. | Apparatus and method for measuring second-order gradient of magnetic field using super conductor quantum interference device |
JP2002148322A (en) * | 2000-11-09 | 2002-05-22 | Seiko Instruments Inc | Signal detector using superconducting quantum interference element and its measuring method |
JP2015501919A (en) * | 2011-11-14 | 2015-01-19 | ネオセラ リミテッド ライアビリティ カンパニー | DCSQUID-based RF magnetometer that operates over 200MHz bandwidth |
-
2017
- 2017-01-31 JP JP2017015986A patent/JP2018124156A/en active Pending
-
2018
- 2018-01-10 WO PCT/JP2018/000278 patent/WO2018142854A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0511034A (en) * | 1991-07-03 | 1993-01-19 | Seiko Instr Inc | High-sensitivity fluxmeter |
JPH11264862A (en) * | 1998-03-18 | 1999-09-28 | Seiko Instruments Inc | Superconductive quantum interference element flux meter |
US6337567B1 (en) * | 1999-04-22 | 2002-01-08 | Lg Electronics Inc. | Apparatus and method for measuring second-order gradient of magnetic field using super conductor quantum interference device |
JP2000321343A (en) * | 1999-05-13 | 2000-11-24 | Sumitomo Electric Ind Ltd | Method and device for adjusting magnetic field bias in modulation drive circuit for squid |
JP2002148322A (en) * | 2000-11-09 | 2002-05-22 | Seiko Instruments Inc | Signal detector using superconducting quantum interference element and its measuring method |
JP2015501919A (en) * | 2011-11-14 | 2015-01-19 | ネオセラ リミテッド ライアビリティ カンパニー | DCSQUID-based RF magnetometer that operates over 200MHz bandwidth |
Also Published As
Publication number | Publication date |
---|---|
JP2018124156A (en) | 2018-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6577496B2 (en) | SQUID magnetic sensor using a single operational amplifier | |
US7772817B2 (en) | Constant voltage circuit capable of quickly responding to a sudden change of load current | |
US7570044B2 (en) | Signal detecting circuit | |
TWI442206B (en) | Voltage divider circuit and magnetic sensor circuit | |
US9128127B2 (en) | Sensor device | |
US9261569B2 (en) | Sensor device | |
JP4133934B2 (en) | Hysteresis characteristics type digital FLL device by double counter system for SQUID | |
WO2018142854A1 (en) | Fll circuit and squid sensor | |
TWI504915B (en) | Magnetic sensing apparatus | |
US9453888B2 (en) | Sensor device | |
US10816613B2 (en) | Magnetic sensor circuit | |
JP2012063211A (en) | Magnetic detection device | |
JP2011075338A (en) | Magnetic sensor circuit | |
JP2006266909A (en) | Magnetic detector, and electronic azimuth meter using the same | |
JP2002142356A (en) | Power circuit and noncontact ic card | |
KR20000067035A (en) | apparatus and method for second order gradient of magnetic field to use SQUID | |
Schönau et al. | SQIF-based dc SQUID amplifier with intrinsic negative feedback | |
JP2005188947A (en) | Magnetic detector | |
US8773198B2 (en) | Auto-zero amplifier and sensor module using same | |
US7592845B2 (en) | Input signal level detection apparatus and method | |
JP2000046876A (en) | Peak wave detector | |
JP2009047478A (en) | Sensor circuit | |
JP6110639B2 (en) | Sensor threshold value determination circuit | |
US11693066B2 (en) | Signal processing circuit for reducing ripple in an output signal of a spinning current hall sensor and signal processing method | |
US20240288514A1 (en) | Magnetic detection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18747686 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18747686 Country of ref document: EP Kind code of ref document: A1 |