WO2018142708A1 - Method for setting reference value, information processing device, and image recording device - Google Patents

Method for setting reference value, information processing device, and image recording device Download PDF

Info

Publication number
WO2018142708A1
WO2018142708A1 PCT/JP2017/040179 JP2017040179W WO2018142708A1 WO 2018142708 A1 WO2018142708 A1 WO 2018142708A1 JP 2017040179 W JP2017040179 W JP 2017040179W WO 2018142708 A1 WO2018142708 A1 WO 2018142708A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
recording
color
color value
data
Prior art date
Application number
PCT/JP2017/040179
Other languages
French (fr)
Japanese (ja)
Inventor
健一郎 平本
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018565946A priority Critical patent/JP6908057B2/en
Publication of WO2018142708A1 publication Critical patent/WO2018142708A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2146Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding for line print heads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/48Picture signal generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J2025/008Actions or mechanisms not otherwise provided for comprising a plurality of print heads placed around a drum

Definitions

  • the present invention relates to a reference value setting method, an information processing apparatus, and an image recording apparatus.
  • each of a plurality of recording elements provided at different positions in a predetermined direction performs an output operation according to an input value of image data, and outputs pixels to a recording medium with a predetermined number of recording gradations.
  • an image recording apparatus for recording an image on the recording medium.
  • a method of outputting colored pixels in an image recording apparatus there is a method of discharging color ink from a nozzle provided in a recording element to a recording medium with a liquid amount corresponding to an input value per unit area.
  • reference data in which reference values for correcting an error between the color value of the color indicated by the input value and the color value of the pixel color output by the recording element are arranged. Table) and using the reference data to correct the input value of the image data to the corrected input value, the color value of the color indicated by the input value and the color value of the color of the pixel output by the printing element are obtained.
  • a technique of matching for example, Patent Document 1.
  • the invention of the reference value setting method comprises: A plurality of recording elements that are provided at different positions in a predetermined direction and that each perform an output operation for outputting colored pixels to a recording medium, and the plurality of recording elements based on a corrected input value obtained by correcting an input value
  • the input value in the image recording apparatus comprising: a recording control unit configured to record the image by outputting the pixels to the recording medium with a color having a predetermined recording gradation number by causing the recording element to perform the output operation.
  • the color value of the color value data and the color value of the generated low bit number color value data in the bit number reduction process up to the previous stage Acquire the accumulated value of the error value caused by the difference, and generate low-bit number color value data in which the color value is adjusted based on the accumulated value,
  • the reference value is set based on the generated low bit number color value data.
  • the predetermined number is one.
  • the predetermined number is two or more.
  • the color value corresponding to the correction input value corresponds to a value obtained by averaging the color values corresponding to the correction input values for each of two or more recording elements included in each of the plurality of recording element sections.
  • the output color value acquisition step for each of the plurality of recording element sections, the output color value of the recording gradation number is acquired based on the input value of the recording gradation number
  • the reference value setting step low bit number color value data of the recording gradation number is generated based on the color value data of the recording gradation number corresponding to each of the plurality of recording element sections, and the plurality of recording gradation values is generated.
  • the reference value capable of acquiring a correction input value corresponding to the input value of the recording gradation number is set.
  • the predetermined number of gradations is determined based on an input value of a predetermined number of gradations corresponding to a part of the gradations of the recording gradation number.
  • low bit number color value data of the predetermined gradation number is generated based on the color value data of the predetermined gradation number corresponding to each of the plurality of recording element sections, and the plurality of recording elements For each element section, the reference value that can obtain a corrected input value corresponding to the input value of the predetermined number of gradations is set.
  • an information processing apparatus configured to perform the output operation.
  • An information processing apparatus for setting a reference value referred to for correction of For each of the plurality of recording element sections obtained by dividing the plurality of recording elements for each predetermined number of recording elements in the predetermined direction, the pixels output based on a predetermined input value by the recording elements included in the recording element section
  • Output color value acquisition means for acquiring an output color value representing a color with a gradation number larger than the recording gradation number
  • Reference value setting means for setting the reference value capable of acquiring a corrected input value corresponding to the predetermined input value based on the output color value for each of the plurality of printing element sections;
  • the reference value setting means includes Based on the color value data of the color value acquired based on the output color value and corresponding to the corrected input value, a bit number reduction process for generating low bit number color value data having a smaller number of bits than the color value data.
  • the color value of the color value data and the color value of the generated low bit number color value data in the bit number reduction process up to the previous stage Acquire the accumulated value of the error value caused by the difference, and generate low-bit number color value data in which the color value is adjusted based on the accumulated value,
  • the reference value is set based on the generated low bit number color value data.
  • the invention of the image recording apparatus provides: An information processing apparatus according to claim 7; A plurality of recording elements that are provided at different positions in a predetermined direction and each perform an output operation for outputting colored pixels to a recording medium; A storage unit for storing reference data in which reference values set by the information processing apparatus are arranged; Based on the reference data stored in the storage unit, an input value is corrected to a corrected input value, and the output operation is performed by each of the plurality of recording elements based on the corrected input value, whereby predetermined recording is performed.
  • FIG. 1 It is a figure which shows schematic structure of an inkjet recording device. It is a schematic diagram which shows the structure of a head unit. It is a block diagram which shows the main function structures of an inkjet recording device. It is a figure which shows the example of an output color value table. It is a figure explaining the example of the content of a correction table. It is a figure explaining the example of the content of a correction table. It is a figure which shows the test chart used for the production
  • FIG. 10 is a flowchart illustrating a control procedure of reference value setting processing according to Modification 1. It is a figure which shows the example of the content of the correction table which concerns on the modification 2.
  • FIG. 10 is a flowchart showing a control procedure of reference value setting processing according to Modification 2. It is a figure which shows the other example of content of a correction table.
  • the recording apparatus 1 includes a paper feeding unit 10, an image forming unit 20, a paper discharge unit 30, and a control unit 40. Under the control of the control unit 40, the recording apparatus 1 conveys the recording medium P stored in the paper feeding unit 10 to the image forming unit 20, and the image forming unit 20 ejects ink onto the recording medium P to form an image.
  • the recording medium P on which recording is performed and an image is recorded is conveyed to the paper discharge unit 30.
  • the recording apparatus 1 records the recording medium P with a predetermined number of recording gradations (256 in this embodiment) for each of the four colors of yellow (Y), magenta (M), cyan (C), and black (K).
  • a color image is recorded on the recording medium P by overlapping and outputting the color on the recording medium P.
  • the recording medium P in addition to paper such as plain paper and coated paper, various media capable of fixing ink landed on the surface, such as cloth or sheet-like resin, can be used.
  • the image forming unit 20 includes a transport unit 21, a delivery unit 22, a heating unit 23, a head unit 24, a fixing unit 25, an image reading unit 26, a delivery unit 27, and the like.
  • the transport unit 21 holds the recording medium P placed on the transport surface of the cylindrical transport drum 211, and the transport drum 211 has a rotating shaft (cylindrical shaft) extending in the X direction perpendicular to the drawing in FIG.
  • the recording medium P on the transport drum 211 is transported in the transport direction along the transport surface by rotating around and rotating around the center.
  • the transport drum 211 includes a claw portion and a suction portion (not shown) for holding the recording medium P on the transport surface.
  • the recording medium P is held on the conveyance surface by the end being pressed by the claw portion and sucked to the conveyance surface by the intake portion.
  • the delivery unit 22 is provided at a position between the medium supply unit 12 and the conveyance unit 21 of the paper supply unit 10, and picks up one end of the recording medium P conveyed from the medium supply unit 12 by the swing arm unit 221. Then, it is delivered to the transport unit 21 via the delivery drum 222.
  • the head unit 24 is disposed on the recording medium P from a nozzle opening provided on an ink discharge surface facing the conveyance surface of the conveyance drum 211 at an appropriate timing according to the rotation of the conveyance drum 211 on which the recording medium P is held.
  • the image is recorded by ejecting ink.
  • the head unit 24 is disposed such that the ink discharge surface and the transport surface are separated by a predetermined distance.
  • four head units 24 respectively corresponding to four color inks Y, M, C, and K have colors Y, M, C, and K from the upstream side in the conveyance direction of the recording medium P. Are arranged at predetermined intervals in this order.
  • FIG. 2 is a schematic diagram showing the configuration of the head unit 24.
  • FIG. 2 is a plan view of the entire head unit 24 as viewed from the side facing the conveyance surface of the conveyance drum 211.
  • the head unit 24 includes 16 recording heads 242 in which a plurality of recording elements 243 that perform ink discharging operation (output operation) for discharging ink are arranged in the X direction (predetermined direction).
  • Each of the recording elements 243 includes a pressure chamber for storing ink, a piezoelectric element provided on a wall surface of the pressure chamber, an electrode for applying a voltage to the piezoelectric element to generate an electric field, and a pressure communicating with the pressure chamber. And a nozzle for ejecting ink in the room.
  • FIG. 2 shows the positions of the ink discharge ports of the nozzles that are the constituent elements of the recording element 243.
  • the arrangement direction of the recording elements 243 in each recording head 242 is not limited to the X direction, and may be a direction that intersects the conveyance direction (Y direction) of the recording medium P at an angle other than a right angle.
  • each head module 242M In the head unit 24, two 16 recording heads 242 are combined, and eight head modules 242M each configured by the combination of the recording heads 242 are provided.
  • the two recording heads 242 are arranged in such a positional relationship that the nozzles of the two recording heads 242 are alternately arranged in the X direction.
  • each head module 242M can perform recording at a resolution of 1200 dpi (dot per inch) in the width direction.
  • the eight head modules 242M have a positional relationship in which the recording elements 243 are arranged over the recording width of the image on the recording medium P in the X direction so that the arrangement ranges in the width direction partially overlap each other.
  • ink is ejected by the recording elements 243 of one of the head modules 242M at each position in the X direction.
  • Each recording element 243 used for recording an image provided in the head unit 24 is specified by an array number (nozzle number: 0 to n end ) according to the array order of the nozzles in the X direction of the recording element 243.
  • the head unit 24 is used at a fixed position during image recording, and sequentially ejects ink at different intervals (conveyance direction intervals) to different positions in the conveyance direction according to the conveyance of the recording medium P. Record an image using the single pass method.
  • the configuration of the head unit 24 is not limited to the above configuration as long as the plurality of recording elements 243 are provided at different positions in the X direction.
  • the recording heads 242 may be arranged in a staggered pattern. Further, the head unit 24 may be configured by a single recording head 242.
  • ink having a property of changing in phase to a gel or sol depending on the temperature and being cured by irradiating energy rays such as ultraviolet rays is used.
  • ink that is gel-like at room temperature and becomes sol-like when heated is used.
  • the head unit 24 includes an ink heating unit (not shown) that heats the ink stored in the head unit 24.
  • the ink heating unit operates under the control of the control unit 40, and supplies the ink to a sol-like temperature. Heat.
  • the recording head 242 discharges ink that has been heated to form a sol.
  • the fixing unit 25 has an energy beam irradiation unit arranged over the width of the conveyance unit 21 in the X direction, and the recording medium P placed on the conveyance unit 21 receives ultraviolet rays or the like from the energy beam irradiation unit.
  • the ink ejected on the recording medium P is cured and fixed by irradiating energy rays.
  • the energy ray irradiating unit of the fixing unit 25 is arranged to face the conveying surface between the arrangement position of the head unit 24 and the arrangement position of the delivery drum 271 of the delivery unit 27 in the conveying direction.
  • the image reading unit 26 is arranged so as to be able to read the surface of the recording medium P on the conveyance surface at a position between the ink fixing position by the fixing unit 25 and the arrangement position of the transfer drum 271 in the conveyance direction.
  • the image recorded on the recording medium P conveyed by the above is read in a predetermined reading range, and imaging data of the image is output.
  • the image reading unit 26 includes a light source that emits light to the recording medium P conveyed by the conveying drum 211 and an image sensor that detects the intensity of reflected light of the light incident on the recording medium P. Line sensors arranged in a direction.
  • the line sensor three rows of image pickup devices each including image pickup devices arranged in the width direction are provided, and R (red), G (green), and B of the incident light are provided by the image pickup devices of each image pickup device row.
  • a signal corresponding to the intensity of the wavelength component of (blue) is output.
  • Imaging elements corresponding to R, G, and B are, for example, R, G, or B in a light receiving portion of a CCD (Charge Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor that includes a photodiode as a photoelectric conversion element.
  • a filter in which a color filter that transmits light having a wavelength component of is arranged can be used.
  • the reading resolution of each image sensor of the line sensor is, for example, 600 dpi in the width direction. That is, this image sensor may acquire an image with a resolution lower than the resolution corresponding to the nozzle arrangement interval.
  • the signal output from the line sensor is subjected to current-voltage conversion, amplification, noise removal, analog-digital conversion, and the like in an analog front end (not shown), and is output to the control unit 40 as imaging data indicating the luminance value of the read image.
  • the configuration of the image reading unit 26 is not limited to this, and for example, an area sensor may be used instead of the line sensor.
  • the delivery unit 27 includes a belt loop 272 having an annular belt supported on the inside by two rollers, and a cylindrical delivery drum 271 that delivers the recording medium P from the transport unit 21 to the belt loop 272.
  • the recording medium P transferred from the transport unit 21 onto the belt loop 272 by the transfer drum 271 is transported by the belt loop 272 and sent to the paper discharge unit 30.
  • the paper discharge unit 30 includes a plate-shaped paper discharge tray 31 on which the recording medium P sent out from the image forming unit 20 by the delivery unit 27 is placed.
  • FIG. 3 is a block diagram showing the main functional configuration of the inkjet recording apparatus 100.
  • the recording apparatus 1 of the inkjet recording apparatus 100 includes a heating unit 23, a head unit 24 having a recording head driving unit 241 and a recording head 242, a fixing unit 25, an image reading unit 26, and a control unit 40 (recording control unit).
  • the recording head driving unit 241 supplies pixel signals of image data from the nozzles of the recording head 242 by supplying a driving signal for deforming the piezoelectric element according to the image data to the recording element 243 of the recording head 242 at an appropriate timing. An amount of ink corresponding to the value is ejected.
  • the control unit 40 includes a CPU 41 (Central Processing Unit), a RAM 42 (Random Access Memory), a ROM 43 (Read Only Memory), and a storage unit 44, and performs overall control of the entire operation of the recording apparatus 1.
  • CPU 41 Central Processing Unit
  • RAM 42 Random Access Memory
  • ROM 43 Read Only Memory
  • the CPU 41 reads various control programs and setting data stored in the ROM 43, stores them in the RAM 42, and executes the programs to perform various arithmetic processes.
  • the RAM 42 provides a working memory space to the CPU 41 and stores temporary data.
  • the RAM 42 may include a nonvolatile memory.
  • the ROM 43 stores various control programs executed by the CPU 41, setting data, and the like.
  • a rewritable nonvolatile memory such as an EEPROM (Electrically Erasable Programmable Read Only Memory) or a flash memory may be used.
  • the storage unit 44 In the storage unit 44, a print job input from the information processing apparatus 2 via the input / output interface 53, image data of an image recorded by the print job, imaging data output from the image reading unit 26, and a description will be given later. Test chart image data and the like are stored. In addition, the storage unit 44 stores a correction table 44a as reference data that is referred to in correction of image data to be described later. As the storage unit 44, for example, an HDD (Hard Disk Drive) is used, and a DRAM (Dynamic Random Access Memory) or the like may be used in combination.
  • HDD Hard Disk Drive
  • DRAM Dynamic Random Access Memory
  • the transport drive unit 51 supplies a drive signal to a transport drum motor provided on the transport drum 211 based on a control signal supplied from the control unit 40 to rotate the transport drum 211 at a predetermined speed and timing. Further, the transport drive unit 51 supplies a drive signal to a motor for operating the medium supply unit 12, the delivery unit 22, and the delivery unit 27 based on the control signal supplied from the control unit 40, and the recording medium P Is supplied to the transport unit 21 and discharged from the transport unit 21.
  • the image processing unit 52 performs predetermined image processing on the image data stored in the storage unit 44 and causes the storage unit 44 to store the obtained image data.
  • This image processing includes color conversion processing, gradation correction processing, halftone processing, and the like in addition to correction processing for correcting image data by applying the correction table 44a to the image data.
  • the input / output interface 53 is connected to the input / output interface 72 of the information processing apparatus 2 and mediates transmission / reception of data between the control unit 40 and the control unit 60 of the information processing apparatus 2.
  • the input / output interface 53 is configured by any one of various serial interfaces, various parallel interfaces, or a combination thereof.
  • the bus 54 is a path for transmitting and receiving signals between the control unit 40 and other components.
  • the information processing apparatus 2 of the inkjet recording apparatus 100 includes a control unit 60 (output color value acquisition unit, reference value setting unit), an operation display unit 71, an input / output interface 72, a bus 73, and the like.
  • the information processing apparatus 2 is configured by a personal computer such as a desktop type or a notebook type.
  • the control unit 60 includes a CPU 61, a RAM 62, a ROM 63, and a storage unit 64.
  • the CPU 61 reads various control programs and setting data stored in the ROM 63, stores them in the RAM 62, and executes the programs to perform various arithmetic processes.
  • the RAM 62 provides a working memory space to the CPU 61 and stores temporary data.
  • the RAM 62 may include a nonvolatile memory.
  • the ROM 63 stores various control programs executed by the CPU 61, setting data, and the like.
  • a rewritable nonvolatile memory such as an EEPROM or a flash memory may be used.
  • the storage unit 64 stores PDL (Page Description Language) data relating to an image to be recorded input from the external device 200 via the input / output interface 72, imaging data of a test chart generated in the recording device 1, and the like. Is done.
  • PDL Peage Description Language
  • As the storage unit 64 for example, an HDD is used, and a DRAM or the like may be used in combination.
  • the control unit 60 having such a configuration controls the overall operation of the information processing apparatus 2. For example, the control unit 60 converts the PDL data input from the external device 200 into a raster format and outputs it to the control unit 40 of the recording apparatus 1. Further, the control unit 60 generates a correction table 44 a based on the imaging data of a predetermined test chart input from the recording device 1 and outputs the correction table 44 a to the control unit 40 of the recording device 1. A method for generating the correction table 44a will be described in detail later.
  • the operation display unit 71 includes a display device such as a liquid crystal display or an organic EL display, and an input device such as a keyboard, a mouse, and a touch panel arranged on the screen of the display device.
  • the operation display unit 71 displays various information on the display device, converts a user input operation to the input device into an operation signal, and outputs the operation signal to the control unit 60.
  • the input / output interface 72 mediates data transmission / reception between the control unit 60 and the control unit 40 of the recording apparatus 1 and between the control unit 60 and the external device 200.
  • the input / output interface 72 is configured by any one of various serial interfaces, various parallel interfaces, or a combination thereof, for example.
  • the bus 73 is a path for transmitting and receiving signals between the control unit 60 and other components.
  • the external device 200 is a personal computer, for example, and supplies PDL data or the like to the control unit 60 via the input / output interface 72.
  • the inkjet recording apparatus 100 when a print job and raster image data of an image recorded by the print job are stored in the storage unit 44 of the recording apparatus 1, an image recording operation according to the print job is performed in the recording apparatus 1.
  • the image data related to the print job of the present embodiment is data in which 8-bit (that is, 256 gradations from 0 to 255) input values (color values) are set in each pixel data.
  • pixels of a color corresponding to the input value of the pixel data are output on the recording medium P by the ink ejection operation of the recording element 243 according to each pixel data included in the image data.
  • An image in which a large number of pixels are combined is recorded on the recording medium P.
  • ink is ejected from the recording elements 243 with a distribution corresponding to pseudo halftone image data obtained by halftone processing 256-tone image data.
  • pixels of a color corresponding to the pixel data of the original image data are formed on the recording medium P by the pseudo halftone method.
  • the pixels described above do not necessarily correspond to individual ink droplets ejected from the recording element 243 and landed on the recording medium P.
  • FIG. 4A is an output color value table in which the color value (output value) of the pixel color actually output by ink ejection of the recording element 243 of each nozzle number according to the input value of 256 gradations is represented by 16 bits. It is a figure which shows an example. In order to make it easy to understand the correspondence between the color values in FIG.
  • a lightness formula using the target lightness value L * of each color (b * for yellow or XYZ-Z value instead of XYZ-Y value). It is normalized by the formula that substitutes
  • the notation is a floating point notation obtained by dividing 0 to 65535 by 257. In this example, the density is almost stable in the vicinity of the target brightness. If the target brightness is reduced depending on the position, adjustment or driving can be performed by gradation correction processing described below so that the target brightness value (darkness) is satisfied even in a thin nozzle region in the input range of 8-bit input value 0 to 255. If the voltage is adjusted or applied, the following can be handled similarly. In FIG.
  • the color value of the color output when the input value is the thirteenth gradation does not necessarily become the thirteenth gradation accurately.
  • Such variations in color values cause streak-like color unevenness in the recorded image, which causes a reduction in image quality. Therefore, in the image recording operation in the recording apparatus 1, in order to output the pixel of the color of the input value given by the image data in an accurate color, the image data is first corrected by applying a correction table to the image data. Corrected image data is generated, and an image is recorded based on the corrected image data.
  • FIG. 4B is a diagram showing an example of the contents of a correction table generated based on the output color value table of FIG. 4A.
  • this correction table for each of the N recording elements provided in the head unit 24, 256 gradations from the minimum color value (0) to the maximum color value (255) of the color corresponding to the head unit 24 are obtained. Reference values corresponding to each of the color values (image data input values) are individually set. This reference value is a value that represents a correction value (correction input value) of the input value for matching the color value of the color output from each recording element 243 with the color value of the color of the input value in 16 bits.
  • the notation is a floating-point notation obtained by dividing 0 to 65535 by 257
  • the actual 16-bit reference value is a value obtained by multiplying the value in the table by 257.
  • the reference value corresponding to the input value of the thirteenth gradation for the printing element 243 with the nozzle number 1 is 12.1. This reference value is obtained by calculating an input value at which the 13th gradation output is actually performed by the recording element 243 having the nozzle number 1 based on the output color value table of FIG. 4A.
  • the input value of the image data corresponds in the correction table 44a.
  • the correction table 44a is provided corresponding to each of the four head units 24 (that is, corresponding to each color of Y, M, C, and K), and in FIG. A correction table 44a is shown. A method of generating the correction table 44a of FIG. 5 by reducing the bit of the correction table of FIG. 4B will be described in detail later.
  • the input value of the image data is corrected to a correction input value set in advance based on the actual color output result by each recording element 243, and ink is ejected by the recording element 243 based on this correction input value.
  • the color value indicated by the input value of the image data and the color value of the color of the pixel output by the ink ejection from the recording element 243 can be matched.
  • the input value of the image data for each of the recording elements 243 from the nozzle numbers 0 to n end to the corrected input value corresponding to the input value, the input value of the entire image data is corrected, and corrected image data is generated.
  • corrected image data is generated for each color image data of Y, M, C, and K, respectively.
  • the corrected image data is subjected to image processing such as gradation correction processing (gamma correction or the like) as necessary, and then the 8-bit image data for each pixel is converted to 1 bit for each pixel ( Halftone processing is performed for conversion to pseudo-halftone image data of (2 gradations).
  • the method of halftone processing is not particularly limited, but a random dither method that binarizes gradation values according to a random threshold value in each pixel, each pixel according to each of the threshold values arranged in a matrix
  • a systematic dither method for binarizing the tone values of the pixels, an error diffusion method for allocating an error generated in the binarization processing of the tone values of each pixel to surrounding pixels, or the like can be used.
  • ink is ejected onto the recording medium P by the recording elements 243 of the four head units 24 to record an image.
  • the correction table 44a is generated in the information processing apparatus 2.
  • the correction table 44 a is generated when the inkjet recording apparatus 100 (or recording apparatus 1) is produced or shipped, and when the head unit 24 is replaced. Further, when a predetermined period has passed since the most recent generation of the correction table 44a (for example, when image recording is performed on a predetermined number of recording media P), the correction table 44a is generated and the existing correction table 44a is overwritten. Also good.
  • an output color value table (FIG. 4A) indicating the color values of the colors actually output according to the input values of 256 gradations is generated by each recording element 243, and the output color value Based on the table, the reference value (FIG. 5) of the correction table 44a is set.
  • a predetermined test chart is recorded on the recording medium P by the head unit 24 of the recording apparatus 1, the test chart is read by the image reading unit 26, and imaging data of the test chart is obtained. Generated.
  • FIG. 6A is a diagram illustrating an example of the test chart G.
  • FIG. 6B is an enlarged view of a part of the test chart G in FIG. 6A.
  • the test chart G shows the range from the minimum color value (0) to the maximum color value (255) among the color values of 256 tones that can be recorded by the head unit 24. It consists of color bands G0 to G16 having 17 color values divided equally. Among these, in the color band G0, ink is not ejected and white is represented by the ground color of the recording medium P.
  • Each of the color bands G1 to G16 is recorded by ejecting ink based on image data of the same input value by the recording elements 243 of the nozzle numbers 0 to n end of the head unit 24. Accordingly, the color bands G1 to G16 are recorded in a state where the variation in the color value of the output color by the recording element 243 described above is reflected.
  • the width in the X direction of each of the color bands G0 to G16 corresponds to the arrangement range of the recording elements 243 of the head unit 24.
  • the width r (FIG. 6B) in the Y direction of each of the color bands G0 to G16 is not particularly limited, but is set to a size that allows the image reading unit 26 to acquire imaging data of 256 pixels or 512 pixels.
  • the luminance value at each pixel of the imaging data is converted into a colorimetric value gradation value (hereinafter referred to as a colorimetric gradation value).
  • the magnitude of the luminance value acquired by the image sensor of the image reading unit 26 is not necessarily proportional to the color density (density gradation) perceived by human vision. Therefore, a conversion table that converts the luminance value acquired by the image sensor into colorimetric gradation values that are equivalent to human visual sensitivity is prepared in advance, and the luminance value is measured by applying this conversion table to the imaging data. Convert to color gradation value.
  • the luminance value by the G imaging element is associated with the L * component of the colorimetric value in the L * a * b * color system.
  • the luminance value is converted into a colorimetric gradation value of 8 bits (256 gradations).
  • an index for example, b
  • the luminance value is converted into an 8-bit colorimetric gradation value.
  • a 16-bit colorimetric gradation value distribution in the X direction in each of the color bands G1 to G16 of the test chart G is acquired based on the 8-bit imaging data converted into the colorimetric gradation values.
  • 256 different 8-bit colorimetric gradation values are added to each other across the width r in the Y direction shown in FIG. Get the colorimetric gradation value of the bit.
  • the number of bits of colorimetric gradation values and the number of additions may be adjusted so that the number of bits after addition is 16 bits.
  • a colorimetric gradation value is acquired in 10 bits
  • a 16-bit colorimetric gradation value is acquired by adding 64 10-bit colorimetric gradation values over the width r of the color band G0 to G16. May be.
  • a predetermined filtering process is performed on the data array. Specifically, a median filter is applied to remove streak components in units of recording elements. Further, by applying a low-pass filter, the frequency components higher than the frequency band are removed while leaving the color unevenness of the desired frequency band to be corrected by the correction table 44a.
  • the correction table 44a is generated so that the average chromaticity in the range of about 10 to 100 nozzles is adjusted, high-frequency component noise of less than 10 nozzles is removed by a low-pass filter. To do.
  • the process of converting the luminance value of the imaging data into the colorimetric gradation value may be performed at a timing different from the above. For example, for each of the color bands G1 to G16, by first adding the luminance value of the imaging data at each position in the X direction with respect to the Y direction to acquire the 16-bit luminance value distribution in the X direction, The value may be converted into a colorimetric gradation value. Alternatively, the luminance value may be converted into a colorimetric gradation value after the above filtering process is further performed on the data array of the 16-bit luminance value distribution in the X direction.
  • the number of pixels in the data array of colorimetric gradation values (in the X direction) is converted from the number of image sensors in the image reading unit 26 to the number of nozzles (N) in the head unit 24.
  • the distribution of the colorimetric gradation values in the data array based on the correspondence between the arrangement position of the image sensor in the X direction of the image reading unit 26 and the arrangement position of the nozzle of each recording element 243 in the head unit 24. From this, a data array composed of 16-bit colorimetric gradation value data corresponding to the recording elements 243 of the respective nozzle numbers 0 to n end is generated.
  • This conversion process may be performed at an earlier stage such as before the conversion process from the luminance value to the colorimetric gradation value described above.
  • the 16 colorimetric gradation values corresponding to the color bands G1 to G16 are converted into gradations of the recording gradation number by the recording apparatus 1, that is, 256 gradations.
  • This conversion can be performed by linearly interpolating colorimetric gradation values between adjacent gradations.
  • an output color value (that is, an input value) represented by a 16-bit colorimetric gradation value corresponding to an input value of 256 gradations for each of the N recording elements 243. (Color value output by the recording element 243) is acquired in response to the output color value data.
  • the N ⁇ 256 16-bit output color value data forms the output color value table of FIG. 4A.
  • the colorimetric gradation value is represented by 65536 gradations, and the number of gradations is larger than the recording gradation number (256 gradations) of the inkjet recording apparatus 100. Yes.
  • 16-bit corrected input values (refer to reference values) corresponding to the 256 gradation input values for each of the N printing elements 243 by the above-described method. Value) and a 16-bit correction table (FIG. 4B) is generated.
  • a bit number reduction process for reducing the number of bits from 16 bits to 8 bits is performed on each of the corrected input value data in the obtained 16-bit correction table.
  • 16-bit correction input value data before the bit number reduction process is referred to as high bit number correction input value data (color value data)
  • the correction input value data converted into 8 bits by the bit number reduction process is represented by a low bit number.
  • corrected input value data low bit number color value data
  • the data table in which the low bit number correction input value data is arranged is the correction table 44a shown in FIG.
  • the correction table of FIG. 4B is referred to as a high bit number correction table, and is distinguished from the correction table 44a of FIG.
  • the reduction of the number of bits of the high bit number correction input value data is performed in units of a data array composed of N high bit number correction input value data arranged in the recording element arrangement direction in the high bit number correction table.
  • the number-of-bits reduction processing for each of the N high-bit number correction input value data in each data array is performed in the order according to the arrangement order of the N recording elements 243 in the X direction, that is, in the order of the nozzle numbers of the recording elements 243. Is called.
  • the bit number is reduced by expressing the quotient obtained by dividing the high bit number corrected input value data by 257 with 8 bits. This process corresponds to a process of extracting the upper 8 bits of the high bit number corrected input value data.
  • each bit number reduction process performed in the order according to the arrangement order it is obtained by subtracting the color value of the generated 8-bit low bit number corrected input value data from the color value of the high bit number corrected input value data.
  • the calculated difference is calculated as an error value, and in the bit number reduction process for the recording element 243 excluding the head, the color value is adjusted based on the accumulated error value generated in the previous bit number reduction process.
  • Low bit number corrected input value data is generated. Specifically, in each bit number reduction process, the calculated error value is carried over (carried over) to the next bit number reduction process.
  • the accumulated value of the inherited error value is changed from the color value of the high bit number correction input value data in the bit number reduction process at the stage to the low bit number correction input value before adjustment.
  • a predetermined reference range in this case, the above value when the color value is expressed in 16 bits is 128 or more
  • the generated low 1 is added to the bit number correction input value data (in 8-bit notation).
  • the adjusted low bit number correction input value data has a higher value than the color value of the high bit number correction input value data.
  • the final error value at the stage is a negative value. Specifically, the error value at this stage is further increased to 257 (low) from the difference value obtained by subtracting the color value of the low bit number corrected input value data before adjustment from the color value of the high bit number corrected input value data. This is a value obtained by subtracting the equivalent value in the adjustment of the bit number correction input value data. Then, the added value of this error value and the accumulated error value up to the previous stage is taken over by the bit number reduction process in the next stage. In the following, the accumulated error value taken over to the next stage is also referred to as a gradation expression error.
  • Such bit number reduction processing is performed for each data array corresponding to each of 256 gradation input values in the high bit number correction table.
  • a correction table 44a in which 8-bit low bit number correction input value data respectively corresponding to 256 gradation input values is arranged for each of the N recording elements 243 is generated.
  • the generated correction table 44a is stored in the storage unit 44 of the recording apparatus 1.
  • FIG. 7A shows the color value distribution of the high bit number correction input value data D16 in the high bit number correction table and the color value distribution of the low bit number correction input value data D8 generated by the bit number reduction processing of this embodiment.
  • FIG. 7B shows the same color value distribution of the high bit number corrected input value data D16 as in FIG. 7A and the color value distribution of the low bit number corrected input value data D8a obtained by the conventional bit number reduction processing.
  • FIG. in the conventional example of FIG. 7B a simple process is used in which the color value of the high bit number correction input value data D ⁇ b> 16 is rounded off to the next decimal point and the error value due to the bit number reduction is not transferred to the next stage.
  • 7A and 7B indicates the color value of the correction input value data for the input value of the 13th gradation among the input values of 256 gradations.
  • the high bit number correction input value data D16 is depicted in a simplified manner so that it changes in four steps between the gradations of the color value related to the input value, but in actuality, in 256 steps between the gradations. Change.
  • the color value of the low bit number corrected input value data D8a is changed only in the section where the color value of the high bit number corrected input value data D16 is larger than 13.5.
  • the transition to 14 gradations is constant at the 13th gradation in other sections.
  • the high bit number correction input value data D16 Depending on the accumulated value of the difference between the color value and the color value of the input value (13th gradation), the color value of the low bit number corrected input value data D8 is between the 13th gradation and the 14th gradation. Transition frequently.
  • the average chromaticity of the low bit number correction input value data D8 in the range of about 10 to 100 nozzles substantially matches the average chromaticity of the high bit number correction input value data D16 in the range.
  • the correction input value transition frequency is high, and therefore, the effect that the portion where the correction input value transitions is difficult to be visually recognized as color unevenness. Played.
  • FIG. 8 is a flowchart showing the control procedure of the correction table generation process.
  • the control unit 40 of the recording apparatus 1 causes the head unit 24 to record the test chart G on the recording medium P based on the image data of the test chart G (step S101). That is, the control unit 40 outputs a control signal to the conveyance driving unit 51 to operate the paper feeding unit 10, the delivery unit 22, and the conveyance unit 21 to place the recording medium P on the conveyance surface of the conveyance drum 211. Then, the conveyance drum 211 is rotated to convey the recording medium P.
  • control unit 40 causes the recording head driving unit 241 to supply the image data of the test chart G stored in the storage unit 44 to the recording head 242 at an appropriate timing according to the rotation of the transport drum 211, thereby the head unit. 24, ink is ejected onto the recording medium P to record the test chart G on the recording medium P.
  • the control unit 40 causes the image reading unit 26 to image the recorded test chart G (step S102). That is, the control unit 40 starts imaging by the image reading unit 26 at a timing when the test chart G on the recording medium P moves to an imaging position by the image reading unit 26 according to the rotation of the transport drum 211.
  • the control unit 40 repeatedly acquires signals from the image sensor of the image reading unit 26 at predetermined time intervals, generates imaging data of the test chart G, and stores the data in the storage unit 44 and the storage unit 64 of the information processing device 2.
  • the control unit 60 of the information processing apparatus 2 applies a predetermined conversion table to the luminance value in each pixel of the imaging data of the test chart G to convert it into an 8-bit colorimetric gradation value (step S103). Further, the control unit 60 adds 256 8-bit colorimetric gradation values at 256 positions different from each other in the Y direction at each position in the X direction of the color bands G1 to G16 of the test chart G, thereby obtaining 16 in the X direction. A bit colorimetric gradation value distribution is acquired (step S104).
  • the control unit 60 performs predetermined smoothing processing such as a median filter and a low-pass filter on the data array in the X direction of the 16-bit colorimetric gradation values (step S105), and the 16-bit colorimetric gradation value data
  • the number of pixels in the array is converted from the number of image sensors in the image reading unit 26 to the number of nozzles (N) in the head unit 24 (step S106).
  • the control unit 60 performs linear interpolation processing on the 16 gradation colorimetric gradation values corresponding to the color bands G1 to G16, thereby obtaining the 16 gradation colorimetric gradation values.
  • the number of recorded gradations is converted to 256 gradations, that is, 256 gradations (step S107).
  • the control unit 60 performs colorimetric gradation values (output color values) respectively corresponding to the 256 gradation input values for each of the N recording elements 243 through the processing from step S101 to step S107.
  • the output color value data is generated by the acquisition, and the output color value table in which N ⁇ 256 output color value data is arranged is stored in the storage unit 64 (output color value acquisition step).
  • the control unit 60 executes a reference value setting process (step S108).
  • FIG. 9 is a flowchart showing the control procedure of the reference value setting process called in the correction table generation process.
  • the control unit 60 sets the variable “in” related to the color value of the input value, the variable “n” related to the nozzle number, and the variable “Error” related to the gradation expression error. ”, A two-dimensional 16-bit data array LUTin [in] [n] and an 8-bit data array LUTout [in] [n] with the input value in and the nozzle number n as variables are set.
  • control unit 60 When the reference value setting process is started, the control unit 60, based on the output color value data of the output color value table, for each of the N recording elements 243, 16 bits corresponding to the input value of 256 gradations. Are calculated and stored in the data array LUTin [in] [n] (step S201).
  • the control unit 60 substitutes 0 for the input value in (step S202). Further, the control unit 60 determines whether or not the input value in is less than 256 (step S203), and if it is determined that the input value in is less than 256 (“YES” in step S203), the gradation expression error 0 is substituted into Error and nozzle number n (step S204).
  • the controller 60 determines whether the nozzle number n is equal to or less than the maximum nozzle number (n end ) (step S205). When it is determined that the nozzle number n is equal to or less than n end (“YES” in step S205), the control unit 60 adds the input value in and the predetermined 16-bit data (hereinafter referred to as “data16”). 16-bit correction input value data (LUTin [in] [n]) corresponding to the nozzle number n is substituted (step S206), and data 16 is set to 257 in predetermined 8-bit data (hereinafter referred to as “data8”). The divided quotient is substituted (step S207). The processing in step S207 corresponds to processing for extracting the lower 8 bits of data16 and lowering the bits.
  • the control unit 60 substitutes a value obtained by subtracting data8 ⁇ 257 from the sum of the current gradation expression error Error and data16 to the gradation expression error Error (step S208).
  • the control unit 60 determines whether or not the gradation expression error Error is 128 or more (step S209). If it is determined that the gradation expression error Error is 128 or more (“YES” in step S209), data8 is 255 or more. Is determined (step S210). When it is determined that data8 is 255 or more (“YES” in step S210), the controller 60 substitutes 255 for data8 (step S211), and when it is determined that data8 is less than 255. (“NO” in step S210), data8 + 1 is assigned to data8, and a value obtained by subtracting 257 from the current gradation expression error Error is assigned to the gradation expression error Error (step S212).
  • step S211 or step S212 ends, or when the gradation expression error Error is determined to be less than 128 in the process of step S209 (“NO” in step S209), the control unit 60 uses the input value.
  • Data8 as low bit number correction input value data is stored in the 8-bit data array LUTout [in] [n] corresponding to in and nozzle number n (step S213).
  • step S214 the control unit 60 adds 1 to the nozzle number n (step S214), and returns the process to step S205.
  • step S205 If it is determined in step S205 that the nozzle number n is greater than n end (“NO” in step S205), the control unit 60 adds 1 to the input value in (step S215), and performs the process. Return to step S203.
  • step S215 By repeating the processing from step S203 to step S215, low-bit number correction input value data indicating the reference value of the correction table 44a is sequentially stored in the 8-bit data array LUTout [in] [n].
  • the processing from step S203 to step S215 corresponds to a reference value setting step.
  • step S203 When it is determined in the process of step S203 that the input value in is 256 or more (“NO” in step S203), the control unit 60 stores the low value stored in the 8-bit data array LUTout [in] [n]. A correction table 44a using the bit number correction input value data as a reference value is stored in the storage unit 44 of the recording apparatus 1, and the reference value setting process and the correction table generation process are terminated.
  • the image recording process is executed when a print job and image data are input from the information processing apparatus 2 to the control unit 40 via the input / output interface 53.
  • FIG. 10 is a flowchart showing the control procedure of the image recording process.
  • the control unit 40 When the image recording process is started, the control unit 40 generates the corrected image data by applying the correction table 44a to the image data of the image to be recorded (step S301). That is, the control unit 40 corrects the input value (color value) of the pixel corresponding to each recording element 243 in the image data to the reference value associated with the input value and the nozzle number of the recording element 243 in the correction table 44a. As a result, corrected image data is generated.
  • the control unit 40 performs a halftone process for converting the corrected image data of 8 bits for each pixel into pseudo halftone image data of 1 bit for each pixel (step S302).
  • various image processing such as gradation correction processing such as gamma correction may be performed by the image processing unit 52 as necessary.
  • the control unit 40 causes the head unit 24 to execute an image recording operation related to the print job based on the image data generated in step S303 (step S303).
  • the processing operation of the control unit 40 in step S303 is the same as the processing operation in step S101 of the correction table generation process except for the image data to be used.
  • the control unit 40 sends the recording medium P to the paper discharge unit 30 and ends the image recording process.
  • Modification 1 Next, the modification 1 of the said embodiment is demonstrated.
  • This modification differs from the above embodiment in that the reference values included in the correction table 44a are set only for some of the recording elements 243. Below, it demonstrates centering on difference with the said embodiment.
  • FIG. 11 is a diagram showing an example of the contents of the correction table 44a according to this modification.
  • reference values are set only for the representative recording elements corresponding to the nozzle numbers n for every 8 nozzles (every 7 nozzles).
  • the reference value is set only for the printing element 243 whose nozzle number n is ns ⁇ 8 (ns is a natural number satisfying 0 ⁇ ns ⁇ n end / 8).
  • ns represents a representative recording element number (representative nozzle number).
  • the representative recording element may be set for each nozzle number of 7 or less or 9 or more.
  • each recording element section of this modification includes eight recording elements 243. Note that an aspect in which each recording element section includes a single recording element 243 corresponds to the above-described embodiment.
  • the correction table generation process of this modification differs from the correction table generation process of the above-described embodiment shown in FIG. 8 in part of the processing procedure of the reference value setting process (step S108).
  • FIG. 12 is a flowchart showing the control procedure of the reference value setting process called in the correction table generation process of the present modification.
  • steps S204 to S208, step S213, and step S214 in the reference value setting process of the above-described embodiment shown in FIG. 9 are changed to steps S204a to S208a, step S213a, and step S214a, respectively. It is a thing.
  • differences from the reference value setting process of FIG. 9 will be described.
  • control unit 60 when it is determined that the input value in is less than 256 (“YES” in step S203), the control unit 60 relates to the gradation expression error Error and the representative nozzle number. 0 is substituted into the variable ns (step S204a), and it is determined whether or not the representative nozzle number ns is n end / 8 or less (step S205a).
  • the control unit 60 substitutes the quotient obtained by dividing data_avg16 by 257 into 8-bit data (data8) (step S207a), and calculates the data8 ⁇ from the sum of the current gradation expression error Error and data_avg16 to the gradation expression error Error. A value obtained by subtracting 257 is substituted (step S208a).
  • step S211 or step S212 ends, or when the gradation expression error Error is determined to be less than 128 in the process of step S209 (“NO” in step S209), the control unit 60 uses the input value.
  • Data8 as the low-bit number correction input value data is stored in the 8-bit data array LUTout [in] [ns] corresponding to in and the representative nozzle number ns (step S213a).
  • step S213a the control unit 60 adds 1 to the representative nozzle number ns (step S214a), and returns the process to step S205a.
  • the bit number reduction process is performed in units of recording element sections. That is, a 16-bit average value of the corrected input value data corresponding to each recording element 243 included in the recording element section is acquired, and a bit number reduction process for reducing the number of bits of the average value to 8 bits is performed for each recording element section. To be done. Then, when the difference between the average color values before and after the bit number reduction processing is succeeded to the next stage and the accumulated value of the inherited differences exceeds 128, data 8 as low bit number correction input value data is used. 1 is added to. Note that instead of using the average value of the corrected input value data in the printing element classification as described above, the reference value may be determined using the added value before the average of the corrected input value data.
  • step S206a an added value of eight correction input value data in the printing element classification is calculated, and in step S207a, a quotient obtained by dividing the added value by 257 ⁇ 8 is substituted for data8, and in step S208a. Then, a value obtained by subtracting data 8 ⁇ 257 ⁇ 8 from the sum of the current gradation expression error Error and the integrated value is substituted into the gradation expression error Error.
  • step S209 the gradation expression error Error is 128 ⁇ 8 or more.
  • step S212 257 ⁇ 8 may be subtracted from the gradation expression error Error.
  • Modification 2 Next, Modification 2 of the above embodiment will be described.
  • This modified example is the above-described modified example 1 in that the reference values included in the correction table 44a are set only for some of the recording elements, in addition to being set only for some of the recording elements. And different. That is, the present modification corresponds to an aspect in which the input value for which the reference value is set in the correction table 44a is thinned out in the first modification.
  • differences from the first modification will be described.
  • FIG. 13 is a diagram showing an example of the contents of the correction table 44a according to this modification.
  • reference values are set only for the representative recording elements whose nozzle number n is ns ⁇ 8, and are within the input value range of 0 to 255.
  • input values periodically selected at intervals of predetermined input value thinning-out numbers such as “0”, “5”, “10”,..., “250”, “255” are selected as representative input values, and reference values corresponding to the representative input values are set.
  • the reference value is set only for the representative input value whose input value in is ins ⁇ 5 (ins is a natural number satisfying 0 ⁇ ins ⁇ 52).
  • ins represents a representative input value number (representative input value number).
  • the representative recording element in the recording element unit including the target recording element is specified. Further, two representative input values that approximate the input value of the image data to be corrected are specified as the first input value and the second input value. Then, two reference values set corresponding to the first input value and the second input value with respect to the identified representative recording element are obtained as the first input value, the second input value, and the input value of the image data.
  • a reference value is determined by performing linear interpolation according to the relationship, and an input value of image data is corrected to the reference value. If the input value of the image data is one of the representative input values, a reference value determined for the representative input value may be used.
  • the input value thinning-out number is not limited to 5, and may be 4 or less or 6 or more. Further, the reference value may be thinned out only in the gradation direction of the input value without thinning out the reference value in the recording element direction.
  • the correction table generation process of the present modification is different from the correction table generation process of the first modification and part of the processing procedure of the reference value setting process.
  • FIG. 14 is a flowchart showing the control procedure of the reference value setting process called in the correction table generation process of the present modification.
  • step S202, step S203, step S213a, and step S215 in the reference value setting process of modification 1 shown in FIG. 12 are changed to step S202b, step S203b, step S213b, and step S215b, respectively. It is changed and step S216 is added.
  • differences from the reference value setting process of FIG. 12 will be described.
  • the control unit 60 substitutes 0 for the variable ins related to the representative input value (step S202b). Further, the control unit 60 determines whether or not the representative input value ins is less than 52 (step S203b). If it is determined that the representative input value ins is less than 52 (“YES” in step S203b), the input value in Is substituted for ins ⁇ 5 (step S216). By the processing from step S204a to step S214a below, a reference value (low bit number corrected input value data) corresponding to each representative recording element is set for each representative input value whose input value in is ins ⁇ 5. .
  • control unit 60 stores data8 as the low bit number correction input value data in the 8-bit data array LUTout [ins] [ns] corresponding to the representative input value ins and the representative nozzle number ns.
  • step S205a If it is determined in step S205a that the representative nozzle number ns is larger than n end / 8 (“NO” in step S205a), the control unit 60 adds 1 to the representative input value ins (step S215b). ), The process returns to step S203b.
  • step S203b When it is determined in the process of step S203b that the representative input value ins is 52 or more (“NO” in step S203b), the control unit 60 stores the 8-bit data array LUTout [ins] [ns].
  • the correction table 44a using the low bit number correction input value data as a reference value is stored in the storage unit 44 of the recording apparatus 1, and the reference value setting process and the correction table generation process are terminated.
  • Modification 3 of the above embodiment will be described.
  • a 16-bit correction table is generated based on the 16-bit output color value table, and the correction table 44a is generated by reducing the correction input value of the correction table to 8 bits. did.
  • 8-bit low bit number correction input value data is directly generated from the high bit number output color value data of the 16-bit output color value table, and the obtained low bit number correction input value data is obtained. Based on the above, the correction table 44a is generated.
  • the reference value setting method of the present embodiment includes a plurality of recording elements 243 that are provided at different positions in the X direction and each perform an output operation for outputting colored pixels to the recording medium P.
  • a pixel is output to the recording medium P with a color having a predetermined number of recording gradations.
  • a reference value setting method that is referred to for correction of an input value in an inkjet recording apparatus 100 (image recording apparatus) that includes a control unit 40 (recording control unit) that records a plurality of recording elements 243.
  • Output color value acquisition step for acquiring an output color value that represents a prime color with a number of gradations larger than the number of recording gradations, corresponding to a predetermined input value based on the output color value for each of a plurality of recording element sections
  • a reference value setting step for setting a reference value from which a corrected input value can be acquired.
  • the number of bits up to the previous stage A low bit in which the accumulated value of the error value caused by the difference between the color value of the color value data and the color value data of the generated low-bit number color value data is obtained in the reduction process, and the color value is adjusted based on the accumulated value Numerical color value data is generated, and a reference value is set based on the generated low-bit numerical color value data.
  • the number of bits of the color value data is reduced, and an error value corresponding to the color value difference before and after the bit number reduction is passed on to the subsequent stage.
  • the information on the color value of the color value data that will be lost due to the reduction in the number of bits corresponds to a low number of bits over a plurality of recording elements 243 (recording element classifications in Modifications 1 and 2) such as about 10 to 100 in the subsequent stage. It can be reflected and reflected in the color value data.
  • the reference value corresponding to each recording element 243 is set and the correction table 44a is generated based on the low bit number color value data after the bit number reduction processing, the data amount of the correction table 44a is set.
  • the increase can be suppressed. Therefore, according to the above method, it is possible to set the reference value that can more reliably suppress the degradation of the image quality of the recorded image while suppressing the increase in the data amount.
  • the predetermined number is 1, and one recording element 243 is included in each recording element section.
  • the correction table 44a reflecting the characteristic variation of each recording element 243.
  • the predetermined number is 2 or more, and each recording element section includes two or more recording elements 243.
  • the number of low-bit number color value data generated for one input value is reduced, so that the number of data in the printing element section direction in the correction table 44a can be thinned out. Therefore, the data amount of the correction table 44a can be further reduced.
  • the color value corresponding to the correction input value is a color value corresponding to the correction input value for each of two or more recording elements 243 included in each of the plurality of recording element sections. Corresponds to the average value of. As a result, the amount of information included in the high bit number correction input value data corresponding to each recording element section is increased more than the amount of information included in the high bit number correction input value data corresponding to a single recording element 243. Can do. Therefore, the color value of the low bit number color value data generated based on the high bit number correction input value data and the reference value in the correction table 44a based on the low bit number color value data are set to more accurate values. can do.
  • the output color value of the recording gradation number is acquired based on the input value of the recording gradation number for each of the plurality of recording element sections, and the reference value
  • low bit number color value data having a recording gradation number is generated based on color value data having a recording gradation number corresponding to each of the plurality of recording element sections, and recording is performed for each of the plurality of recording element sections.
  • a reference value capable of acquiring a correction input value corresponding to the input value of the number of gradations is set. As a result, it is possible to generate a correction table 44a that can obtain an appropriate input correction value for each of the input values of the number of recording gradations.
  • the predetermined gradation is determined based on the input value of the predetermined gradation number corresponding to a part of the gradations of the recording gradation number.
  • the low-bit-number color value data of the predetermined gradation number is obtained based on the color value data of the predetermined gradation number corresponding to each of the plurality of recording element sections.
  • a reference value that can obtain a corrected input value corresponding to the input value of the predetermined number of gradations is set. Thereby, the number of data in the gradation direction in the correction table 44a can be thinned out. Therefore, the data amount of the correction table 44a can be further reduced.
  • the information processing apparatus 2 of the above embodiment includes a control unit 60, and each of the plurality of recording element sections obtained by dividing the plurality of recording elements 243 for each predetermined number of recording elements 243 in the X direction.
  • Output color value representing the color of the pixel output based on a predetermined input value by the recording element 243 included in the recording element section with a gradation number larger than the recording gradation number (output color value acquisition)
  • a reference value capable of acquiring a corrected input value corresponding to a predetermined input value based on the output color value for each of the plurality of recording element sections reference value setting means
  • the control unit 60 has a bit number smaller than that of the color value data based on the color value data (high bit number correction input value data) of the color value acquired based on the output color value and corresponding to the correction input value.
  • the bit number reduction processing for generating data is performed for each of the plurality of recording element sections in the order according to the arrangement order of the plurality of recording element sections in the X direction, and the recording element section excluding the head in the arrangement order is selected.
  • the cumulative value of the error value generated by the difference between the color value of the color value data and the color value of the generated low bit number color value data in the previous bit number reduction process is acquired, Low bit number color value data in which the color value is adjusted based on the accumulated value is generated, and a reference value is set based on the generated low bit number color value data.
  • the information processing apparatus 2 having such a configuration, it is possible to set a reference value that can more reliably suppress a decrease in image quality of a recorded image while suppressing an increase in data amount.
  • the inkjet recording apparatus 100 of the above embodiment is provided with a plurality of recording elements 243 that are provided at different positions from the information processing apparatus 2 in the X direction and each perform an output operation for outputting colored pixels to the recording medium P.
  • a storage unit 44 that stores a correction table 44 a (reference data) in which reference values set by the information processing device 2 are arranged, and a control unit 40.
  • the control unit 40 is stored in the storage unit 44.
  • the input value is corrected to the corrected input value based on the correction table 44a, and the output operation is performed by each of the plurality of recording elements 243 based on the corrected input value. Is output to the recording medium P to record an image (recording control means).
  • the information processing device 2 generates the correction table 44a in which the increase in the data amount is suppressed and stores the correction table 44a in the storage unit 44. Therefore, it is possible to suppress an increase in the capacity of the storage unit 44, and to increase the capacity. The cost increase accompanying this can be suppressed.
  • the present invention is not limited to the above-described embodiments and modifications, and various modifications can be made.
  • the reference value of the correction table 44a has been described using an example in which the input value is a corrected input value.
  • the present invention is not limited to this.
  • the reference value of the correction table 44a may indicate a correction amount for the input value.
  • the correction input value can be acquired by adding the correction amount indicated in the reference value to the input value.
  • bit number reduction processing in the above embodiment and each modified example, the example in which the lower 8 bits of the color value data (high bit number correction input value data) are rounded down has been described. Instead, rounding up and rounding off are performed. , Rounding to the nearest even number may be applied. For example, in the bit number reduction process that rounds up the lower 8 bits, the negative difference between the color values before and after the bit number reduction is accumulated in the next stage, so when the accumulated value falls below a predetermined value, the low bit number color value data is Adjustment to be reduced may be performed.
  • a value corresponding to the color value difference may be taken over. For example, a value obtained by rounding the lower-order bits of the color value difference may be taken over.
  • the accumulated value of the error value up to the previous stage is changed from the color value data of the color value data in the bit number reduction process of the stage to the low bit number color value data before adjustment.
  • the low bit number color value data was adjusted, but this is not the only case, and the value is reduced only according to the accumulated error value up to the previous stage.
  • the bit number color value data may be adjusted.
  • the input value of the image data is not limited to 8 bits (256 gradations) and may be 7 bits or less or 9 bits or more. Further, the low bit number color value data after the bit number reduction process does not have to match the bit number of the input value. For example, 16-bit color value data generated for an 8-bit input value may be reduced to 10 bits, and the correction table 44a may be generated based on the 10-bit low bit number color value data.
  • the inkjet recording apparatus 100 has been described as an example of the image recording apparatus, but the present invention is not limited to this.
  • the output of colored pixels can be output according to the output operation of the recording element, such as an electrophotographic image recording apparatus that transfers an image of toner particles applied to an electrostatic latent image forming area on a photosensitive drum to a recording medium.
  • the present invention can be applied to various types of image recording apparatuses.
  • a recording element is constituted by a light emitting element used for forming an electrostatic latent image.
  • the present invention can be used for a reference value setting method, an information processing apparatus, and an image recording apparatus.

Abstract

Provided are a method for setting a reference value, an information processing device, and an image recording device with which it is possible to set a reference value that enables more reliable suppression of reductions in the picture quality of a recorded image while suppressing an increase in data volume. The method for setting reference values includes: a step for acquiring an output color value that represents a pixel color outputted by a recording element included in each of a plurality of recording element sections; and a step for carrying out a bit count reduction process for generating, from color value data based on the output color value, low-bit-count color value data the bit count of which is less than that of the color value data, in the order in which the plurality of recording element sections are arrayed, and in the bit count reduction process where the beginning in the array order is excluded, acquiring the cumulative value of error values generated in correspondence with a difference in the color values of the color value data and the low-bit-count color value data in the bit count reduction process up to the preceding stage, generating low-bit-count color value data that has undergone a color value adjustment based on the cumulative value, and setting a reference value on the basis of the generated low-bit-count output color value data.

Description

参照値の設定方法、情報処理装置及び画像記録装置Reference value setting method, information processing apparatus, and image recording apparatus
 本発明は、参照値の設定方法、情報処理装置及び画像記録装置に関する。 The present invention relates to a reference value setting method, an information processing apparatus, and an image recording apparatus.
 従来、所定方向について互いに異なる位置に設けられた複数の記録素子の各々により、画像データの入力値に応じた出力動作を行って所定の記録階調数の色で画素を記録媒体に出力することで、当該記録媒体上に画像を記録する画像記録装置がある。画像記録装置において有色の画素を出力する方式としては、記録素子に設けられたノズルから記録媒体に対して、単位面積当たりに入力値に応じた液量でカラーインクを吐出する方式などがある。 Conventionally, each of a plurality of recording elements provided at different positions in a predetermined direction performs an output operation according to an input value of image data, and outputs pixels to a recording medium with a predetermined number of recording gradations. There is an image recording apparatus for recording an image on the recording medium. As a method of outputting colored pixels in an image recording apparatus, there is a method of discharging color ink from a nozzle provided in a recording element to a recording medium with a liquid amount corresponding to an input value per unit area.
 このような画像記録装置では、入力値が示す色の色値と、記録素子により出力された画素の色の色値との間の誤差を補正するための参照値が配列された参照データ(補正テーブル)を生成し、参照データを用いて画像データの入力値を補正入力値に補正することで、入力値が示す色の色値と、記録素子により出力される画素の色の色値とを一致させる技術がある(例えば、特許文献1)。 In such an image recording apparatus, reference data (correction) in which reference values for correcting an error between the color value of the color indicated by the input value and the color value of the pixel color output by the recording element are arranged. Table) and using the reference data to correct the input value of the image data to the corrected input value, the color value of the color indicated by the input value and the color value of the color of the pixel output by the printing element are obtained. There is a technique of matching (for example, Patent Document 1).
特開2006-270771号公報JP 2006-270771 A
 しかしながら、入力値が示す色の色値と、記録素子により補正入力値に応じて出力される画素の色の色値との間には、補正入力値に含まれる量子誤差に起因するずれが生じ得る。このため、上記従来の技術では、記録画像において上記の色値のずれに起因した色むらが発生して画質が低下するのを確実に抑制することができないという課題がある。
 一方、参照データにおいて補正入力値の決定に用いられる参照値の階調数を増やしていくことで、より正確な補正入力値を取得して上記量子誤差に起因する色値のずれを抑制しようとすると、参照データのデータ量が増大してしまうという課題がある。
However, a deviation caused by a quantum error included in the correction input value occurs between the color value of the color indicated by the input value and the color value of the pixel color output according to the correction input value by the printing element. obtain. For this reason, the above-described conventional technique has a problem in that it is impossible to reliably suppress deterioration in image quality due to color unevenness caused by the color value deviation in the recorded image.
On the other hand, by increasing the number of gradations of the reference value used for determining the correction input value in the reference data, an attempt is made to acquire a more accurate correction input value and suppress the color value shift caused by the quantum error. Then, there exists a subject that the data amount of reference data will increase.
 この発明の目的は、記録画像の画質の低下をより確実に抑制することが可能な参照値を、データ量の増大を抑えつつ設定することができる参照値の設定方法、情報処理装置及び画像記録装置を提供することにある。 An object of the present invention is to provide a reference value setting method, an information processing apparatus, and an image recording capable of setting a reference value capable of more reliably suppressing a decrease in image quality of a recorded image while suppressing an increase in data amount. To provide an apparatus.
 上記目的を達成するため、請求項1に記載の参照値の設定方法の発明は、
 所定方向について互いに異なる位置に設けられ、有色の画素を記録媒体に出力するための出力動作を各々行う複数の記録素子と、入力値を補正して得られた補正入力値に基づいて前記複数の記録素子の各々により前記出力動作を行わせることで、所定の記録階調数の色で画素を記録媒体に出力させて画像を記録させる記録制御手段と、を備えた画像記録装置における前記入力値の補正のために参照される参照値の設定方法であって、
 前記複数の記録素子を前記所定方向について所定数の記録素子ごとに区分した複数の記録素子区分の各々について、当該記録素子区分に含まれる記録素子により所定の入力値に基づいて出力された画素の色を前記記録階調数よりも大きい階調数で表す出力色値を取得する出力色値取得ステップ、
 前記複数の記録素子区分の各々についての前記出力色値に基づいて、前記所定の入力値に対応する補正入力値を取得可能な前記参照値を設定する参照値設定ステップ、
 を含み、
 前記参照値設定ステップでは、
 前記出力色値に基づいて取得され前記補正入力値に対応する色値の色値データに基づいて、当該色値データよりもビット数が少ない低ビット数色値データを生成するビット数低減処理を、前記複数の記録素子区分の前記所定方向についての配列順に従った順序で前記複数の記録素子区分の各々を対象として行い、
 前記配列順における先頭を除いた記録素子区分を対象とした前記ビット数低減処理では、前段までのビット数低減処理において色値データの色値及び生成された低ビット数色値データの色値の差分により生じた誤差値の累積値を取得し、当該累積値に基づく色値の調整がなされた低ビット数色値データを生成し、
 生成された前記低ビット数色値データに基づいて前記参照値を設定する。
In order to achieve the above object, the invention of the reference value setting method according to claim 1 comprises:
A plurality of recording elements that are provided at different positions in a predetermined direction and that each perform an output operation for outputting colored pixels to a recording medium, and the plurality of recording elements based on a corrected input value obtained by correcting an input value The input value in the image recording apparatus, comprising: a recording control unit configured to record the image by outputting the pixels to the recording medium with a color having a predetermined recording gradation number by causing the recording element to perform the output operation. A reference value setting method referred to for correction of
For each of the plurality of recording element sections obtained by dividing the plurality of recording elements for each predetermined number of recording elements in the predetermined direction, the pixels output based on a predetermined input value by the recording elements included in the recording element section An output color value acquisition step of acquiring an output color value representing a color with a gradation number larger than the recording gradation number;
A reference value setting step for setting the reference value from which a correction input value corresponding to the predetermined input value can be acquired based on the output color value for each of the plurality of printing element sections;
Including
In the reference value setting step,
Based on the color value data of the color value acquired based on the output color value and corresponding to the corrected input value, a bit number reduction process for generating low bit number color value data having a smaller number of bits than the color value data. Performing each of the plurality of recording element sections in an order according to the arrangement order of the predetermined direction of the plurality of recording element sections,
In the bit number reduction process for the printing element classification except the head in the arrangement order, the color value of the color value data and the color value of the generated low bit number color value data in the bit number reduction process up to the previous stage Acquire the accumulated value of the error value caused by the difference, and generate low-bit number color value data in which the color value is adjusted based on the accumulated value,
The reference value is set based on the generated low bit number color value data.
 請求項2に記載の発明は、請求項1に記載の参照値の設定方法において、
 前記所定数は1である。
According to a second aspect of the present invention, in the reference value setting method according to the first aspect,
The predetermined number is one.
 請求項3に記載の発明は、請求項1に記載の参照値の設定方法において、
 前記所定数は2以上である。
According to a third aspect of the present invention, in the reference value setting method according to the first aspect,
The predetermined number is two or more.
 請求項4に記載の発明は、請求項3に記載の参照値の設定方法において、
 前記補正入力値に対応する色値は、前記複数の記録素子区分の各々に含まれる2以上の記録素子のそれぞれについての補正入力値に対応する色値を平均した値に対応する。
According to a fourth aspect of the present invention, in the reference value setting method according to the third aspect,
The color value corresponding to the correction input value corresponds to a value obtained by averaging the color values corresponding to the correction input values for each of two or more recording elements included in each of the plurality of recording element sections.
 請求項5に記載の発明は、請求項1から4のいずれか一項に記載の参照値の設定方法において、
 前記出力色値取得ステップでは、前記複数の記録素子区分の各々について、前記記録階調数の入力値に基づいて前記記録階調数の前記出力色値を取得し、
 前記参照値設定ステップでは、前記複数の記録素子区分の各々に対応する前記記録階調数の色値データに基づいて前記記録階調数の低ビット数色値データを生成し、前記複数の記録素子区分の各々について、前記記録階調数の入力値に対応する補正入力値を取得可能な前記参照値を設定する。
According to a fifth aspect of the present invention, in the reference value setting method according to any one of the first to fourth aspects,
In the output color value acquisition step, for each of the plurality of recording element sections, the output color value of the recording gradation number is acquired based on the input value of the recording gradation number,
In the reference value setting step, low bit number color value data of the recording gradation number is generated based on the color value data of the recording gradation number corresponding to each of the plurality of recording element sections, and the plurality of recording gradation values is generated. For each of the element classifications, the reference value capable of acquiring a correction input value corresponding to the input value of the recording gradation number is set.
 請求項6に記載の発明は、請求項1から4のいずれか一項に記載の参照値の設定方法において、
 前記出力色値取得ステップでは、前記複数の記録素子区分の各々について、前記記録階調数の階調のうちの一部に対応する所定階調数の入力値に基づいて前記所定階調数の前記出力色値を取得し、
 前記参照値設定ステップでは、前記複数の記録素子区分の各々に対応する前記所定階調数の色値データに基づいて前記所定階調数の低ビット数色値データを生成し、前記複数の記録素子区分の各々について、前記所定階調数の入力値に対応する補正入力値を取得可能な前記参照値を設定する。
According to a sixth aspect of the present invention, in the method for setting a reference value according to any one of the first to fourth aspects,
In the output color value obtaining step, for each of the plurality of recording element sections, the predetermined number of gradations is determined based on an input value of a predetermined number of gradations corresponding to a part of the gradations of the recording gradation number. Obtaining the output color value;
In the reference value setting step, low bit number color value data of the predetermined gradation number is generated based on the color value data of the predetermined gradation number corresponding to each of the plurality of recording element sections, and the plurality of recording elements For each element section, the reference value that can obtain a corrected input value corresponding to the input value of the predetermined number of gradations is set.
 また、上記目的を達成するため、請求項7に記載の情報処理装置の発明は、
 所定方向について互いに異なる位置に設けられ、有色の画素を記録媒体に出力するための出力動作を各々行う複数の記録素子と、入力値を補正して得られた補正入力値に基づいて前記複数の記録素子の各々により前記出力動作を行わせることで、所定の記録階調数の色で画素を記録媒体に出力させて画像を記録させる記録制御手段と、を備えた画像記録装置における前記入力値の補正のために参照される参照値を設定する情報処理装置であって、
 前記複数の記録素子を前記所定方向について所定数の記録素子ごとに区分した複数の記録素子区分の各々について、当該記録素子区分に含まれる記録素子により所定の入力値に基づいて出力された画素の色を前記記録階調数よりも大きい階調数で表す出力色値を取得する出力色値取得手段と、
 前記複数の記録素子区分の各々についての前記出力色値に基づいて、前記所定の入力値に対応する補正入力値を取得可能な前記参照値を設定する参照値設定手段と、
 を備え、
 前記参照値設定手段は、
 前記出力色値に基づいて取得され前記補正入力値に対応する色値の色値データに基づいて、当該色値データよりもビット数が少ない低ビット数色値データを生成するビット数低減処理を、前記複数の記録素子区分の前記所定方向についての配列順に従った順序で前記複数の記録素子区分の各々を対象として行い、
 前記配列順における先頭を除いた記録素子区分を対象とした前記ビット数低減処理では、前段までのビット数低減処理において色値データの色値及び生成された低ビット数色値データの色値の差分により生じた誤差値の累積値を取得し、当該累積値に基づく色値の調整がなされた低ビット数色値データを生成し、
 生成された前記低ビット数色値データに基づいて前記参照値を設定する。
In order to achieve the above object, an information processing apparatus according to claim 7
A plurality of recording elements that are provided at different positions in a predetermined direction and that each perform an output operation for outputting colored pixels to a recording medium, and the plurality of recording elements based on a corrected input value obtained by correcting an input value The input value in the image recording apparatus, comprising: a recording control unit configured to record the image by outputting the pixels to the recording medium with a color having a predetermined recording gradation number by causing the recording element to perform the output operation. An information processing apparatus for setting a reference value referred to for correction of
For each of the plurality of recording element sections obtained by dividing the plurality of recording elements for each predetermined number of recording elements in the predetermined direction, the pixels output based on a predetermined input value by the recording elements included in the recording element section Output color value acquisition means for acquiring an output color value representing a color with a gradation number larger than the recording gradation number;
Reference value setting means for setting the reference value capable of acquiring a corrected input value corresponding to the predetermined input value based on the output color value for each of the plurality of printing element sections;
With
The reference value setting means includes
Based on the color value data of the color value acquired based on the output color value and corresponding to the corrected input value, a bit number reduction process for generating low bit number color value data having a smaller number of bits than the color value data. Performing each of the plurality of recording element sections in an order according to the arrangement order of the predetermined direction of the plurality of recording element sections,
In the bit number reduction process for the printing element classification except the head in the arrangement order, the color value of the color value data and the color value of the generated low bit number color value data in the bit number reduction process up to the previous stage Acquire the accumulated value of the error value caused by the difference, and generate low-bit number color value data in which the color value is adjusted based on the accumulated value,
The reference value is set based on the generated low bit number color value data.
 また、上記目的を達成するため、請求項8に記載の画像記録装置の発明は、
 請求項7に記載の情報処理装置と、
 所定方向について互いに異なる位置に設けられ、有色の画素を記録媒体に出力するための出力動作を各々行う複数の記録素子と、
 前記情報処理装置により設定された参照値が配列された参照データを記憶する記憶部と、
 前記記憶部に記憶された前記参照データに基づいて入力値を補正入力値に補正し、当該補正入力値に基づいて前記複数の記録素子の各々により前記出力動作を行わせることで、所定の記録階調数の色で画素を記録媒体に出力させて画像を記録させる記録制御手段と、
 を備える。
In order to achieve the above object, the invention of the image recording apparatus according to claim 8 provides:
An information processing apparatus according to claim 7;
A plurality of recording elements that are provided at different positions in a predetermined direction and each perform an output operation for outputting colored pixels to a recording medium;
A storage unit for storing reference data in which reference values set by the information processing apparatus are arranged;
Based on the reference data stored in the storage unit, an input value is corrected to a corrected input value, and the output operation is performed by each of the plurality of recording elements based on the corrected input value, whereby predetermined recording is performed. Recording control means for recording an image by outputting pixels to a recording medium with colors of the number of gradations;
Is provided.
 本発明に従うと、記録画像の画質の低下をより確実に抑制することが可能な参照値を、データ量の増大を抑えつつ設定することができるという効果がある。 According to the present invention, there is an effect that it is possible to set a reference value that can more reliably suppress a decrease in the image quality of a recorded image while suppressing an increase in data amount.
インクジェット記録装置の概略構成を示す図である。It is a figure which shows schematic structure of an inkjet recording device. ヘッドユニットの構成を示す模式図である。It is a schematic diagram which shows the structure of a head unit. インクジェット記録装置の主要な機能構成を示すブロック図である。It is a block diagram which shows the main function structures of an inkjet recording device. 出力色値テーブルの例を示す図である。It is a figure which shows the example of an output color value table. 補正テーブルの内容例を説明する図である。It is a figure explaining the example of the content of a correction table. 補正テーブルの内容例を説明する図である。It is a figure explaining the example of the content of a correction table. 補正テーブルの生成に用いられるテストチャートを示す図である。It is a figure which shows the test chart used for the production | generation of a correction table. テストチャートの一部を拡大して示す図である。It is a figure which expands and shows a part of test chart. 補正テーブルによる色むら低減効果を説明する図である。It is a figure explaining the color nonuniformity reduction effect by a correction table. 補正テーブルによる色むら低減効果を説明する図である。It is a figure explaining the color nonuniformity reduction effect by a correction table. 補正テーブル生成処理の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of a correction table production | generation process. 参照値設定処理の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of a reference value setting process. 画像記録処理の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of an image recording process. 変形例1に係る補正テーブルの内容例を示す図である。It is a figure which shows the example of the content of the correction table which concerns on the modification 1. FIG. 変形例1に係る参照値設定処理の制御手順を示すフローチャートである。10 is a flowchart illustrating a control procedure of reference value setting processing according to Modification 1. 変形例2に係る補正テーブルの内容例を示す図である。It is a figure which shows the example of the content of the correction table which concerns on the modification 2. FIG. 変形例2に係る参照値設定処理の制御手順を示すフローチャートである。10 is a flowchart showing a control procedure of reference value setting processing according to Modification 2. 補正テーブルの他の内容例を示す図である。It is a figure which shows the other example of content of a correction table.
 以下、本発明の参照値の設定方法、情報処理装置及び画像記録装置に係る実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of a reference value setting method, an information processing apparatus, and an image recording apparatus according to the present invention will be described with reference to the drawings.
 図1は、インクジェット記録装置100の概略構成を示す図である。
 インクジェット記録装置100(画像記録装置)は、記録媒体Pに対する画像の記録を行う記録装置1と、ユーザーによる入力操作に応じて記録装置1における動作の制御の設定に用いられる各種設定データの生成処理を行う情報処理装置2とを備える。
FIG. 1 is a diagram showing a schematic configuration of the ink jet recording apparatus 100.
The ink jet recording apparatus 100 (image recording apparatus) includes a recording apparatus 1 that records an image on a recording medium P, and a process for generating various setting data used for setting operation control in the recording apparatus 1 according to an input operation by a user. And an information processing device 2 for performing
 記録装置1は、給紙部10と、画像形成部20と、排紙部30と、制御部40とを備える。記録装置1は、制御部40による制御下で、給紙部10に格納された記録媒体Pを画像形成部20に搬送し、画像形成部20で記録媒体P上にインクを吐出して画像を記録し、画像が記録された記録媒体Pを排紙部30に搬送する。詳しくは、記録装置1は、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の4色についてそれぞれ所定の記録階調数(本実施形態では、256)で記録媒体P上に色を重ねて出力することで当該記録媒体P上にカラー画像を記録する。記録媒体Pとしては、普通紙や塗工紙といった紙のほか、布帛又はシート状の樹脂等、表面に着弾したインクを定着させることが可能な種々の媒体を用いることができる。 The recording apparatus 1 includes a paper feeding unit 10, an image forming unit 20, a paper discharge unit 30, and a control unit 40. Under the control of the control unit 40, the recording apparatus 1 conveys the recording medium P stored in the paper feeding unit 10 to the image forming unit 20, and the image forming unit 20 ejects ink onto the recording medium P to form an image. The recording medium P on which recording is performed and an image is recorded is conveyed to the paper discharge unit 30. Specifically, the recording apparatus 1 records the recording medium P with a predetermined number of recording gradations (256 in this embodiment) for each of the four colors of yellow (Y), magenta (M), cyan (C), and black (K). A color image is recorded on the recording medium P by overlapping and outputting the color on the recording medium P. As the recording medium P, in addition to paper such as plain paper and coated paper, various media capable of fixing ink landed on the surface, such as cloth or sheet-like resin, can be used.
 給紙部10は、記録媒体Pを格納する給紙トレー11と、給紙トレー11から画像形成部20に記録媒体Pを搬送して供給する媒体供給部12とを有する。媒体供給部12は、内側が2本のローラーにより支持された輪状のベルトを備え、このベルト上に記録媒体Pを載置した状態でローラーを回転させることで記録媒体Pを給紙トレー11から画像形成部20へ搬送する。 The paper feed unit 10 includes a paper feed tray 11 that stores the recording medium P, and a medium supply unit 12 that conveys and supplies the recording medium P from the paper feed tray 11 to the image forming unit 20. The medium supply unit 12 includes a ring-shaped belt supported on the inside by two rollers, and the recording medium P is removed from the paper feed tray 11 by rotating the roller while the recording medium P is placed on the belt. It is conveyed to the image forming unit 20.
 画像形成部20は、搬送部21と、受け渡しユニット22と、加熱部23と、ヘッドユニット24と、定着部25と、画像読取部26と、デリバリー部27などを有する。 The image forming unit 20 includes a transport unit 21, a delivery unit 22, a heating unit 23, a head unit 24, a fixing unit 25, an image reading unit 26, a delivery unit 27, and the like.
 搬送部21は、円筒状の搬送ドラム211の搬送面上に載置された記録媒体Pを保持し、搬送ドラム211が図1における図面に垂直なX方向に延びた回転軸(円筒軸)を中心に回転して周回移動することで搬送ドラム211上の記録媒体Pを搬送面に沿った搬送方向に搬送する。搬送ドラム211は、その搬送面上で記録媒体Pを保持するための図示しない爪部及び吸気部を備える。記録媒体Pは、爪部により端部が押さえられ、かつ吸気部により搬送面に吸い寄せられることで搬送面に保持される。 The transport unit 21 holds the recording medium P placed on the transport surface of the cylindrical transport drum 211, and the transport drum 211 has a rotating shaft (cylindrical shaft) extending in the X direction perpendicular to the drawing in FIG. The recording medium P on the transport drum 211 is transported in the transport direction along the transport surface by rotating around and rotating around the center. The transport drum 211 includes a claw portion and a suction portion (not shown) for holding the recording medium P on the transport surface. The recording medium P is held on the conveyance surface by the end being pressed by the claw portion and sucked to the conveyance surface by the intake portion.
 受け渡しユニット22は、給紙部10の媒体供給部12と搬送部21との間の位置に設けられ、媒体供給部12から搬送された記録媒体Pの一端をスイングアーム部221で保持して取り上げ、受け渡しドラム222を介して搬送部21に引き渡す。 The delivery unit 22 is provided at a position between the medium supply unit 12 and the conveyance unit 21 of the paper supply unit 10, and picks up one end of the recording medium P conveyed from the medium supply unit 12 by the swing arm unit 221. Then, it is delivered to the transport unit 21 via the delivery drum 222.
 加熱部23は、受け渡しドラム222の配置位置とヘッドユニット24の配置位置との間に設けられ、搬送部21により搬送される記録媒体Pが所定の温度範囲内の温度となるように当該記録媒体Pを加熱する。加熱部23は、例えば、赤外線ヒーター等を有し、制御部40(図3)から供給される制御信号に基づいて赤外線ヒーターに通電して当該赤外線ヒーターを発熱させる。 The heating unit 23 is provided between the arrangement position of the delivery drum 222 and the arrangement position of the head unit 24, and the recording medium P conveyed by the conveyance unit 21 has a temperature within a predetermined temperature range. Heat P. The heating unit 23 includes, for example, an infrared heater, and energizes the infrared heater based on a control signal supplied from the control unit 40 (FIG. 3) to cause the infrared heater to generate heat.
 ヘッドユニット24は、記録媒体Pが保持された搬送ドラム211の回転に応じた適切なタイミングで、搬送ドラム211の搬送面に対向するインク吐出面に設けられたノズル開口部から記録媒体Pに対してインクを吐出することにより画像を記録する。ヘッドユニット24は、インク吐出面と搬送面とが所定の距離だけ離隔されるように配置される。本実施形態のインクジェット記録装置100では、Y,M,C,Kの4色のインクにそれぞれ対応する4つのヘッドユニット24が記録媒体Pの搬送方向上流側からY,M,C,Kの色の順に所定の間隔で並ぶように配列されている。 The head unit 24 is disposed on the recording medium P from a nozzle opening provided on an ink discharge surface facing the conveyance surface of the conveyance drum 211 at an appropriate timing according to the rotation of the conveyance drum 211 on which the recording medium P is held. The image is recorded by ejecting ink. The head unit 24 is disposed such that the ink discharge surface and the transport surface are separated by a predetermined distance. In the ink jet recording apparatus 100 according to the present embodiment, four head units 24 respectively corresponding to four color inks Y, M, C, and K have colors Y, M, C, and K from the upstream side in the conveyance direction of the recording medium P. Are arranged at predetermined intervals in this order.
 図2は、ヘッドユニット24の構成を示す模式図である。図2は、ヘッドユニット24の全体を搬送ドラム211の搬送面に相対する側から見た平面図である。
 本実施形態では、ヘッドユニット24は、インクを吐出するインク吐出動作(出力動作)を行う複数の記録素子243がX方向(所定方向)に配列された16個の記録ヘッド242を備える。記録素子243は、それぞれ、インクを貯留する圧力室と、圧力室の壁面に設けられた圧電素子と、圧電素子に電圧を印加して電界を生じさせるための電極と、圧力室に連通し圧力室内のインクを吐出するノズルとを有する。この記録素子243は、圧電素子を変形動作させる駆動信号が入力されると、圧電素子の変形により圧力室が変形して圧力室内の圧力が変化し、圧力室に連通するノズルからインクを吐出する。ノズルから吐出されるインクの量は、駆動信号の電圧の振幅を変更することにより調整することができる。図2では、記録素子243の構成要素であるノズルのインク吐出口の位置が示されている。なお、各記録ヘッド242における記録素子243の配列方向は、X方向に限られず、記録媒体Pの搬送方向(Y方向)と直角以外の角度で交差する方向であってもよい。
FIG. 2 is a schematic diagram showing the configuration of the head unit 24. FIG. 2 is a plan view of the entire head unit 24 as viewed from the side facing the conveyance surface of the conveyance drum 211.
In the present embodiment, the head unit 24 includes 16 recording heads 242 in which a plurality of recording elements 243 that perform ink discharging operation (output operation) for discharging ink are arranged in the X direction (predetermined direction). Each of the recording elements 243 includes a pressure chamber for storing ink, a piezoelectric element provided on a wall surface of the pressure chamber, an electrode for applying a voltage to the piezoelectric element to generate an electric field, and a pressure communicating with the pressure chamber. And a nozzle for ejecting ink in the room. When a drive signal for deforming the piezoelectric element is input to the recording element 243, the pressure chamber is deformed by the deformation of the piezoelectric element and the pressure in the pressure chamber is changed, and ink is ejected from the nozzle communicating with the pressure chamber. . The amount of ink ejected from the nozzle can be adjusted by changing the amplitude of the voltage of the drive signal. FIG. 2 shows the positions of the ink discharge ports of the nozzles that are the constituent elements of the recording element 243. The arrangement direction of the recording elements 243 in each recording head 242 is not limited to the X direction, and may be a direction that intersects the conveyance direction (Y direction) of the recording medium P at an angle other than a right angle.
 ヘッドユニット24では、16個の記録ヘッド242が2つずつ組み合わされて、当該記録ヘッド242の組み合わせによりそれぞれ構成される8つのヘッドモジュール242Mが設けられている。各ヘッドモジュール242Mでは、2つの記録ヘッド242のノズルがX方向について交互に配置されるような位置関係で2つの記録ヘッド242が配置されている。このように記録素子243が配列されることにより、各ヘッドモジュール242Mでは、幅方向について1200dpi(dot per inch)の解像度での記録が可能となっている。
 また、8つのヘッドモジュール242Mは、X方向について記録媒体Pにおける画像の記録幅に亘って記録素子243が配置されるような位置関係で、幅方向についての配置範囲が互いに一部重複するように千鳥格子状に配置されてラインヘッドを構成している。隣接ヘッドモジュール間でX方向についての記録素子243の配置範囲が重複する部分では、X方向の各位置において、いずれか一方のヘッドモジュール242Mの記録素子243によりインクが吐出される。
In the head unit 24, two 16 recording heads 242 are combined, and eight head modules 242M each configured by the combination of the recording heads 242 are provided. In each head module 242M, the two recording heads 242 are arranged in such a positional relationship that the nozzles of the two recording heads 242 are alternately arranged in the X direction. By arranging the recording elements 243 in this manner, each head module 242M can perform recording at a resolution of 1200 dpi (dot per inch) in the width direction.
Further, the eight head modules 242M have a positional relationship in which the recording elements 243 are arranged over the recording width of the image on the recording medium P in the X direction so that the arrangement ranges in the width direction partially overlap each other. It is arranged in a staggered pattern to constitute a line head. In a portion where the arrangement ranges of the recording elements 243 in the X direction overlap between adjacent head modules, ink is ejected by the recording elements 243 of one of the head modules 242M at each position in the X direction.
 ヘッドユニット24に設けられた画像の記録に用いられる各記録素子243は、記録素子243におけるノズルのX方向についての配列順に従った配列番号(ノズル番号:0~nend)で特定される。また、本実施形態では、画像の記録に用いられる記録素子243の数N(=nend+1)(ノズル数)は、約28000である。 Each recording element 243 used for recording an image provided in the head unit 24 is specified by an array number (nozzle number: 0 to n end ) according to the array order of the nozzles in the X direction of the recording element 243. In this embodiment, the number N (= n end +1) (number of nozzles) of the recording elements 243 used for image recording is about 28000.
 ヘッドユニット24は、画像の記録時には位置が固定されて用いられ、記録媒体Pの搬送に応じて搬送方向の異なる位置に所定の間隔(搬送方向間隔)で順次インクを吐出していくことで、シングルパス方式で画像を記録する。
 なお、ヘッドユニット24の構成は、複数の記録素子243がX方向について互いに異なる位置に設けられていれば上記の構成に限られない。例えば、ヘッドモジュール242Mに代えて記録ヘッド242が千鳥格子状に配置された構成であってもよい。また、単一の記録ヘッド242によりヘッドユニット24が構成されていてもよい。
The head unit 24 is used at a fixed position during image recording, and sequentially ejects ink at different intervals (conveyance direction intervals) to different positions in the conveyance direction according to the conveyance of the recording medium P. Record an image using the single pass method.
The configuration of the head unit 24 is not limited to the above configuration as long as the plurality of recording elements 243 are provided at different positions in the X direction. For example, instead of the head module 242M, the recording heads 242 may be arranged in a staggered pattern. Further, the head unit 24 may be configured by a single recording head 242.
 記録素子243のノズルから吐出されるインクとしては、温度によってゲル状又はゾル状に相変化し、紫外線等のエネルギー線を照射することにより硬化する性質を有するものが用いられる。本実施形態では、常温でゲル状であり加熱されることによりゾル状となるインクが用いられる。ヘッドユニット24は、ヘッドユニット24内に貯留されるインクを加熱する図示略のインク加熱部を備え、当該インク加熱部は、制御部40による制御下で動作し、ゾル状となる温度にインクを加熱する。記録ヘッド242は、加熱されてゾル状となったインクを吐出する。 As the ink ejected from the nozzles of the recording element 243, ink having a property of changing in phase to a gel or sol depending on the temperature and being cured by irradiating energy rays such as ultraviolet rays is used. In the present embodiment, ink that is gel-like at room temperature and becomes sol-like when heated is used. The head unit 24 includes an ink heating unit (not shown) that heats the ink stored in the head unit 24. The ink heating unit operates under the control of the control unit 40, and supplies the ink to a sol-like temperature. Heat. The recording head 242 discharges ink that has been heated to form a sol.
 定着部25は、搬送部21のX方向の幅に亘って配置されたエネルギー線照射部を有し、搬送部21に載置された記録媒体Pに対して当該エネルギー線照射部から紫外線等のエネルギー線を照射して記録媒体P上に吐出されたインクを硬化させて定着させる。定着部25のエネルギー線照射部は、搬送方向についてヘッドユニット24の配置位置からデリバリー部27の受け渡しドラム271の配置位置までの間において搬送面と対向して配置される。 The fixing unit 25 has an energy beam irradiation unit arranged over the width of the conveyance unit 21 in the X direction, and the recording medium P placed on the conveyance unit 21 receives ultraviolet rays or the like from the energy beam irradiation unit. The ink ejected on the recording medium P is cured and fixed by irradiating energy rays. The energy ray irradiating unit of the fixing unit 25 is arranged to face the conveying surface between the arrangement position of the head unit 24 and the arrangement position of the delivery drum 271 of the delivery unit 27 in the conveying direction.
 画像読取部26は、搬送方向について定着部25によるインクの定着位置から受け渡しドラム271の配置位置までの間の位置において、搬送面上の記録媒体Pの表面を読み取り可能に配置され、搬送ドラム211により搬送される記録媒体Pに記録されている画像を所定の読取範囲で読み取って当該画像の撮像データを出力する。
 本実施形態では、画像読取部26は、搬送ドラム211により搬送される記録媒体Pに対して光を照射する光源と、記録媒体Pに入射した光の反射光の強度を検出する撮像素子がX方向に配列されたラインセンサーとを備える。詳しくは、ラインセンサーでは、幅方向に配列された撮像素子からなる撮像素子列が3列設けられ、各撮像素子列の撮像素子により、入射光のうちR(レッド)、G(グリーン)、B(ブルー)の波長成分の強度に応じた信号がそれぞれ出力される。R,G,Bにそれぞれ対応する撮像素子は、例えば、光電変換素子としてフォトダイオードを備えるCCD(Charge Coupled Device)センサー又はCMOS(Complementary Metal Oxide Semiconductor)センサーの受光部に、R,G,又はBの波長成分の光を透過するカラーフィルターが配置されたものを用いることができる。ラインセンサーの各撮像素子による読み取り解像度は、例えば、幅方向に600dpiである。すなわち、このイメージセンサーは、ノズルの配列間隔に対応する解像度よりも低い解像度で画像を取得するものであってもよい。
 ラインセンサーから出力された信号は、図示略のアナログフロントエンドにおいて電流電圧変換、増幅、雑音除去、アナログデジタル変換等がなされ、読取画像の輝度値を示す撮像データとして制御部40に出力される。
 なお、画像読取部26の構成はこれに限られず、例えばラインセンサーに代えてエリアセンサーが用いられてもよい。
The image reading unit 26 is arranged so as to be able to read the surface of the recording medium P on the conveyance surface at a position between the ink fixing position by the fixing unit 25 and the arrangement position of the transfer drum 271 in the conveyance direction. The image recorded on the recording medium P conveyed by the above is read in a predetermined reading range, and imaging data of the image is output.
In the present embodiment, the image reading unit 26 includes a light source that emits light to the recording medium P conveyed by the conveying drum 211 and an image sensor that detects the intensity of reflected light of the light incident on the recording medium P. Line sensors arranged in a direction. Specifically, in the line sensor, three rows of image pickup devices each including image pickup devices arranged in the width direction are provided, and R (red), G (green), and B of the incident light are provided by the image pickup devices of each image pickup device row. A signal corresponding to the intensity of the wavelength component of (blue) is output. Imaging elements corresponding to R, G, and B are, for example, R, G, or B in a light receiving portion of a CCD (Charge Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor that includes a photodiode as a photoelectric conversion element. A filter in which a color filter that transmits light having a wavelength component of is arranged can be used. The reading resolution of each image sensor of the line sensor is, for example, 600 dpi in the width direction. That is, this image sensor may acquire an image with a resolution lower than the resolution corresponding to the nozzle arrangement interval.
The signal output from the line sensor is subjected to current-voltage conversion, amplification, noise removal, analog-digital conversion, and the like in an analog front end (not shown), and is output to the control unit 40 as imaging data indicating the luminance value of the read image.
Note that the configuration of the image reading unit 26 is not limited to this, and for example, an area sensor may be used instead of the line sensor.
 デリバリー部27は、内側が2本のローラーにより支持された輪状のベルトを有するベルトループ272と、記録媒体Pを搬送部21からベルトループ272に受け渡す円筒状の受け渡しドラム271とを有し、受け渡しドラム271により搬送部21からベルトループ272上に受け渡された記録媒体Pをベルトループ272により搬送して排紙部30に送出する。 The delivery unit 27 includes a belt loop 272 having an annular belt supported on the inside by two rollers, and a cylindrical delivery drum 271 that delivers the recording medium P from the transport unit 21 to the belt loop 272. The recording medium P transferred from the transport unit 21 onto the belt loop 272 by the transfer drum 271 is transported by the belt loop 272 and sent to the paper discharge unit 30.
 排紙部30は、デリバリー部27により画像形成部20から送り出された記録媒体Pが載置される板状の排紙トレー31を有する。 The paper discharge unit 30 includes a plate-shaped paper discharge tray 31 on which the recording medium P sent out from the image forming unit 20 by the delivery unit 27 is placed.
 図3は、インクジェット記録装置100の主要な機能構成を示すブロック図である。
 インクジェット記録装置100の記録装置1は、加熱部23と、記録ヘッド駆動部241及び記録ヘッド242を有するヘッドユニット24と、定着部25と、画像読取部26と、制御部40(記録制御手段)と、搬送駆動部51と、画像処理部52と、入出力インターフェース53と、バス54などを備える。
FIG. 3 is a block diagram showing the main functional configuration of the inkjet recording apparatus 100.
The recording apparatus 1 of the inkjet recording apparatus 100 includes a heating unit 23, a head unit 24 having a recording head driving unit 241 and a recording head 242, a fixing unit 25, an image reading unit 26, and a control unit 40 (recording control unit). A transport driving unit 51, an image processing unit 52, an input / output interface 53, a bus 54, and the like.
 記録ヘッド駆動部241は、記録ヘッド242の記録素子243に対して適切なタイミングで画像データに応じて圧電素子を変形動作させる駆動信号を供給することにより、記録ヘッド242のノズルから画像データの画素値に応じた量のインクを吐出させる。 The recording head driving unit 241 supplies pixel signals of image data from the nozzles of the recording head 242 by supplying a driving signal for deforming the piezoelectric element according to the image data to the recording element 243 of the recording head 242 at an appropriate timing. An amount of ink corresponding to the value is ejected.
 制御部40は、CPU41(Central Processing Unit)、RAM42(Random Access Memory)、ROM43(Read Only Memory)及び記憶部44を有し、記録装置1の全体動作を統括制御する。 The control unit 40 includes a CPU 41 (Central Processing Unit), a RAM 42 (Random Access Memory), a ROM 43 (Read Only Memory), and a storage unit 44, and performs overall control of the entire operation of the recording apparatus 1.
 CPU41は、ROM43に記憶された各種制御用のプログラムや設定データを読み出してRAM42に記憶させ、当該プログラムを実行して各種演算処理を行う。 The CPU 41 reads various control programs and setting data stored in the ROM 43, stores them in the RAM 42, and executes the programs to perform various arithmetic processes.
 RAM42は、CPU41に作業用のメモリー空間を提供し、一時データを記憶する。RAM42は、不揮発性メモリーを含んでいてもよい。 The RAM 42 provides a working memory space to the CPU 41 and stores temporary data. The RAM 42 may include a nonvolatile memory.
 ROM43は、CPU41により実行される各種制御用のプログラムや設定データ等を格納する。なお、ROM43に代えてEEPROM(Electrically Erasable Programmable Read Only Memory)やフラッシュメモリー等の書き換え可能な不揮発性メモリーが用いられてもよい。 The ROM 43 stores various control programs executed by the CPU 41, setting data, and the like. Instead of the ROM 43, a rewritable nonvolatile memory such as an EEPROM (Electrically Erasable Programmable Read Only Memory) or a flash memory may be used.
 記憶部44には、入出力インターフェース53を介して情報処理装置2から入力されたプリントジョブ及び当該プリントジョブにより記録される画像の画像データ、画像読取部26から出力された撮像データ、及び後述するテストチャートの画像データなどが記憶される。また、記憶部44には、後述する画像データの補正において参照される参照データとしての補正テーブル44aが記憶される。記憶部44としては、例えばHDD(Hard Disk Drive)が用いられ、また、DRAM(Dynamic Random Access Memory)などが併用されてもよい。 In the storage unit 44, a print job input from the information processing apparatus 2 via the input / output interface 53, image data of an image recorded by the print job, imaging data output from the image reading unit 26, and a description will be given later. Test chart image data and the like are stored. In addition, the storage unit 44 stores a correction table 44a as reference data that is referred to in correction of image data to be described later. As the storage unit 44, for example, an HDD (Hard Disk Drive) is used, and a DRAM (Dynamic Random Access Memory) or the like may be used in combination.
 搬送駆動部51は、制御部40から供給される制御信号に基づいて、搬送ドラム211に設けられた搬送ドラムモーターに駆動信号を供給して搬送ドラム211を所定の速度及びタイミングで回転させる。また、搬送駆動部51は、制御部40から供給される制御信号に基づいて媒体供給部12、受け渡しユニット22、及びデリバリー部27を動作させるためのモーターに駆動信号を供給して、記録媒体Pの搬送部21への供給及び搬送部21からの排出を行わせる。 The transport drive unit 51 supplies a drive signal to a transport drum motor provided on the transport drum 211 based on a control signal supplied from the control unit 40 to rotate the transport drum 211 at a predetermined speed and timing. Further, the transport drive unit 51 supplies a drive signal to a motor for operating the medium supply unit 12, the delivery unit 22, and the delivery unit 27 based on the control signal supplied from the control unit 40, and the recording medium P Is supplied to the transport unit 21 and discharged from the transport unit 21.
 画像処理部52は、記憶部44に記憶された画像データに対して所定の画像処理を行って、得られた画像データを記憶部44に記憶させる。この画像処理には、画像データに補正テーブル44aを適用して画像データを補正する補正処理のほか、色変換処理、階調補正処理、ハーフトーン処理などが含まれる。 The image processing unit 52 performs predetermined image processing on the image data stored in the storage unit 44 and causes the storage unit 44 to store the obtained image data. This image processing includes color conversion processing, gradation correction processing, halftone processing, and the like in addition to correction processing for correcting image data by applying the correction table 44a to the image data.
 入出力インターフェース53は、情報処理装置2の入出力インターフェース72と接続され、制御部40と情報処理装置2の制御部60との間のデータの送受信を媒介する。入出力インターフェース53は、例えば各種シリアルインターフェース、各種パラレルインターフェースのいずれか又はこれらの組み合わせで構成される。 The input / output interface 53 is connected to the input / output interface 72 of the information processing apparatus 2 and mediates transmission / reception of data between the control unit 40 and the control unit 60 of the information processing apparatus 2. The input / output interface 53 is configured by any one of various serial interfaces, various parallel interfaces, or a combination thereof.
 バス54は、制御部40と他の構成との間で信号の送受信を行うための経路である。 The bus 54 is a path for transmitting and receiving signals between the control unit 40 and other components.
 インクジェット記録装置100の情報処理装置2は、制御部60(出力色値取得手段、参照値設定手段)と、操作表示部71と、入出力インターフェース72と、バス73などを備える。情報処理装置2は、例えばデスクトップ型やノート型等のパーソナルコンピューターにより構成される。 The information processing apparatus 2 of the inkjet recording apparatus 100 includes a control unit 60 (output color value acquisition unit, reference value setting unit), an operation display unit 71, an input / output interface 72, a bus 73, and the like. The information processing apparatus 2 is configured by a personal computer such as a desktop type or a notebook type.
 制御部60は、CPU61、RAM62、ROM63及び記憶部64を有する。 The control unit 60 includes a CPU 61, a RAM 62, a ROM 63, and a storage unit 64.
 CPU61は、ROM63に記憶された各種制御用のプログラムや設定データを読み出してRAM62に記憶させ、当該プログラムを実行して各種演算処理を行う。 The CPU 61 reads various control programs and setting data stored in the ROM 63, stores them in the RAM 62, and executes the programs to perform various arithmetic processes.
 RAM62は、CPU61に作業用のメモリー空間を提供し、一時データを記憶する。RAM62は、不揮発性メモリーを含んでいてもよい。 The RAM 62 provides a working memory space to the CPU 61 and stores temporary data. The RAM 62 may include a nonvolatile memory.
 ROM63は、CPU61により実行される各種制御用のプログラムや設定データ等を格納する。なお、ROM63に代えてEEPROMやフラッシュメモリー等の書き換え可能な不揮発性メモリーが用いられてもよい。 The ROM 63 stores various control programs executed by the CPU 61, setting data, and the like. Instead of the ROM 63, a rewritable nonvolatile memory such as an EEPROM or a flash memory may be used.
 記憶部64には、入出力インターフェース72を介して外部装置200から入力された記録対象の画像に係るPDL(Page Description Language)データや、記録装置1において生成されたテストチャートの撮像データなどが記憶される。記憶部64としては、例えばHDDが用いられ、また、DRAMなどが併用されてもよい。 The storage unit 64 stores PDL (Page Description Language) data relating to an image to be recorded input from the external device 200 via the input / output interface 72, imaging data of a test chart generated in the recording device 1, and the like. Is done. As the storage unit 64, for example, an HDD is used, and a DRAM or the like may be used in combination.
 このような構成を有する制御部60は、情報処理装置2の全体動作を統括制御する。例えば、制御部60は、外部装置200から入力されたPDLデータをラスター形式に変換して記録装置1の制御部40に出力する。また、制御部60は、記録装置1から入力された所定のテストチャートの撮像データに基づいて補正テーブル44aを生成して記録装置1の制御部40に出力する。補正テーブル44aの生成方法については、後に詳述する。 The control unit 60 having such a configuration controls the overall operation of the information processing apparatus 2. For example, the control unit 60 converts the PDL data input from the external device 200 into a raster format and outputs it to the control unit 40 of the recording apparatus 1. Further, the control unit 60 generates a correction table 44 a based on the imaging data of a predetermined test chart input from the recording device 1 and outputs the correction table 44 a to the control unit 40 of the recording device 1. A method for generating the correction table 44a will be described in detail later.
 操作表示部71は、液晶ディスプレイや有機ELディスプレイといった表示装置と、キーボード、マウス、及び表示装置の画面に重ねられて配置されたタッチパネルといった入力装置とを備える。操作表示部71は、表示装置において各種情報を表示させ、また入力装置に対するユーザーの入力操作を操作信号に変換して制御部60に出力する。 The operation display unit 71 includes a display device such as a liquid crystal display or an organic EL display, and an input device such as a keyboard, a mouse, and a touch panel arranged on the screen of the display device. The operation display unit 71 displays various information on the display device, converts a user input operation to the input device into an operation signal, and outputs the operation signal to the control unit 60.
 入出力インターフェース72は、制御部60と記録装置1の制御部40との間、及び制御部60と外部装置200との間のデータの送受信を媒介する。入出力インターフェース72は、例えば各種シリアルインターフェース、各種パラレルインターフェースのいずれか又はこれらの組み合わせで構成される。 The input / output interface 72 mediates data transmission / reception between the control unit 60 and the control unit 40 of the recording apparatus 1 and between the control unit 60 and the external device 200. The input / output interface 72 is configured by any one of various serial interfaces, various parallel interfaces, or a combination thereof, for example.
 バス73は、制御部60と他の構成との間で信号の送受信を行うための経路である。 The bus 73 is a path for transmitting and receiving signals between the control unit 60 and other components.
 外部装置200は、例えばパーソナルコンピューターであり、入出力インターフェース72を介してPDLデータ等を制御部60に供給する。 The external device 200 is a personal computer, for example, and supplies PDL data or the like to the control unit 60 via the input / output interface 72.
 次に、インクジェット記録装置100における画像の記録動作、及び当該記録動作において行われる補正テーブル44aを用いた画像データの補正について説明する。
 インクジェット記録装置100では、記録装置1の記憶部44にプリントジョブ及び当該プリントジョブにより記録される画像のラスター形式の画像データが記憶されると、記録装置1においてプリントジョブに従った画像の記録動作が開始される。ここで、本実施形態のプリントジョブに係る画像データは、各画素データにおいて8ビットの(すなわち0~255の256階調の)入力値(色値)が設定されたデータである。インクジェット記録装置100による画像の記録動作では、画像データに含まれる各画素データに応じて、画素データの入力値に応じた色の画素が記録素子243のインク吐出動作により記録媒体P上に出力され、この画素が多数組み合わされた画像が記録媒体P上に記録される。なお、本実施形態のインクジェット記録装置100では、後述するように、256階調の画像データをハーフトーン処理して得られた疑似中間調画像データに応じた分布で記録素子243からインクを吐出することで、元の画像データの画素データに対応する色の画素が疑似中間調方式で記録媒体P上に形成される。このため、上述の画素は、記録素子243から吐出されて記録媒体P上に着弾した個々のインク液滴とは必ずしも対応しない。
Next, an image recording operation in the inkjet recording apparatus 100 and image data correction using the correction table 44a performed in the recording operation will be described.
In the inkjet recording apparatus 100, when a print job and raster image data of an image recorded by the print job are stored in the storage unit 44 of the recording apparatus 1, an image recording operation according to the print job is performed in the recording apparatus 1. Is started. Here, the image data related to the print job of the present embodiment is data in which 8-bit (that is, 256 gradations from 0 to 255) input values (color values) are set in each pixel data. In the image recording operation by the ink jet recording apparatus 100, pixels of a color corresponding to the input value of the pixel data are output on the recording medium P by the ink ejection operation of the recording element 243 according to each pixel data included in the image data. An image in which a large number of pixels are combined is recorded on the recording medium P. In the ink jet recording apparatus 100 of the present embodiment, as will be described later, ink is ejected from the recording elements 243 with a distribution corresponding to pseudo halftone image data obtained by halftone processing 256-tone image data. As a result, pixels of a color corresponding to the pixel data of the original image data are formed on the recording medium P by the pseudo halftone method. For this reason, the pixels described above do not necessarily correspond to individual ink droplets ejected from the recording element 243 and landed on the recording medium P.
 記録装置1では、記録ヘッド駆動部241の印加電圧のずれや、記録ヘッド駆動部241により駆動される負荷(圧電素子)の特性のばらつきなどに起因して、画像データの同一の入力値に基づいて各記録素子243により同一の色値の色で画素を出力させようとしても、出力される画素の色(以下では、単に出力される色とも記す)の色値にばらつきが生じる。
 図4Aは、256階調の入力値に応じて各ノズル番号の記録素子243のインク吐出により実際に出力された画素の色の色値(出力値)を16ビットで表した出力色値テーブルの例を示す図である。図4Aにおける色値は、入力値との対応を分かりやすくするため、各色の目標明度値L*(イエローの場合はb*、もしくはXYZ-Y値の代わりにXYZ-Z値を用いて明度式を代替した式)で正規化している。また、表記は0~65535を257で除した浮動小数表記としている。また本例では、目標明度付近はほぼ濃さが安定している例を示している。位置により目標明度が薄くなる状況であれば、8ビット入力値0~255の入力範囲で薄いノズル部位でも目標の明度値(濃さ)を満たすよう後述の階調補正処理により調整したり、駆動電圧を調整したりして適用すれば以下は同様に扱うことができる。図4Aでは、例えば、入力値が第13階調である場合に出力される色の色値は、必ずしも正確に第13階調になるとは限らないことがわかる。このような色値のばらつきは、記録画像において筋状の色むらを生じさせるため、画質低下の原因となる。そこで、記録装置1における画像の記録動作では、画像データで与えられた入力値の色の画素を正確な色で出力させるために、まず画像データに補正テーブルを適用することで画像データを補正して補正画像データを生成し、当該補正画像データに基づいて画像を記録する。
In the recording apparatus 1, based on the same input value of image data due to a shift in applied voltage of the recording head driving unit 241, variation in characteristics of a load (piezoelectric element) driven by the recording head driving unit 241, and the like. Therefore, even if each recording element 243 tries to output pixels with the same color value, the color values of the output pixel colors (hereinafter also simply referred to as output colors) vary.
FIG. 4A is an output color value table in which the color value (output value) of the pixel color actually output by ink ejection of the recording element 243 of each nozzle number according to the input value of 256 gradations is represented by 16 bits. It is a figure which shows an example. In order to make it easy to understand the correspondence between the color values in FIG. 4A and the input values, a lightness formula using the target lightness value L * of each color (b * for yellow or XYZ-Z value instead of XYZ-Y value). It is normalized by the formula that substitutes The notation is a floating point notation obtained by dividing 0 to 65535 by 257. In this example, the density is almost stable in the vicinity of the target brightness. If the target brightness is reduced depending on the position, adjustment or driving can be performed by gradation correction processing described below so that the target brightness value (darkness) is satisfied even in a thin nozzle region in the input range of 8-bit input value 0 to 255. If the voltage is adjusted or applied, the following can be handled similarly. In FIG. 4A, for example, it can be seen that the color value of the color output when the input value is the thirteenth gradation does not necessarily become the thirteenth gradation accurately. Such variations in color values cause streak-like color unevenness in the recorded image, which causes a reduction in image quality. Therefore, in the image recording operation in the recording apparatus 1, in order to output the pixel of the color of the input value given by the image data in an accurate color, the image data is first corrected by applying a correction table to the image data. Corrected image data is generated, and an image is recorded based on the corrected image data.
 図4Bは、図4Aの出力色値テーブルに基づいて生成された補正テーブルの内容例を示す図である。
 この補正テーブルでは、ヘッドユニット24に設けられたN個の記録素子の各々について、ヘッドユニット24に対応する色の最小の色値(0)から最大の色値(255)までの256階調の色値(画像データの入力値)の各々に対応する参照値が個別に設定されている。この参照値は、各記録素子243から出力される色の色値を、入力値の色の色値と一致させるための入力値の補正値(補正入力値)を16ビットで表す値である。上記と同様、表記は0~65535を257で除した浮動小数表記としており、実際の16ビット参照値は表の値を257倍した値である。
 例えば、ノズル番号が1である記録素子243についての第13階調の入力値に対応する参照値は、第12.1…階調とされている。この参照値は、ノズル番号が1である記録素子243により実際に第13階調の出力が行われる入力値を、図4Aの出力色値テーブルに基づいて算出することで得られる。
FIG. 4B is a diagram showing an example of the contents of a correction table generated based on the output color value table of FIG. 4A.
In this correction table, for each of the N recording elements provided in the head unit 24, 256 gradations from the minimum color value (0) to the maximum color value (255) of the color corresponding to the head unit 24 are obtained. Reference values corresponding to each of the color values (image data input values) are individually set. This reference value is a value that represents a correction value (correction input value) of the input value for matching the color value of the color output from each recording element 243 with the color value of the color of the input value in 16 bits. As described above, the notation is a floating-point notation obtained by dividing 0 to 65535 by 257, and the actual 16-bit reference value is a value obtained by multiplying the value in the table by 257.
For example, the reference value corresponding to the input value of the thirteenth gradation for the printing element 243 with the nozzle number 1 is 12.1. This reference value is obtained by calculating an input value at which the 13th gradation output is actually performed by the recording element 243 having the nozzle number 1 based on the output color value table of FIG. 4A.
 図4Bに示されるような16ビットの補正入力値が参照値として配列された補正テーブルによれば、正確な補正入力値を取得することができるが、ビット数が多くデータ量が大きいため、記憶部44の記憶容量を圧迫し、また補正テーブルを用いた補正処理に必要な回路構成が複雑になるという問題がある。
 そこで、本実施形態では、図4Bの補正テーブルにおける各補正入力値のビット数を低減させることで、図5に示されるような8ビットの補正入力値が参照値として配列された補正テーブル44aを生成する。この低ビット化後の補正テーブル44aは、記憶部44に記憶されて、画像データの補正処理に用いられる。図5の例では、例えばノズル番号が1である記録素子243に対する画像データの入力値に係る色値が第13階調である場合には、画像データの当該入力値が、補正テーブル44aにおいて対応する参照値に基づき第12階調に補正される。補正テーブル44aは、4つのヘッドユニット24の各々に対応して(すなわち、Y,M,C,Kの各色に対応して)設けられており、図5ではこのうち1つのヘッドユニット24に対応する補正テーブル44aが示されている。図4Bの補正テーブルを低ビット化させて図5の補正テーブル44aを生成する方法については、後に詳述する。
According to the correction table in which 16-bit correction input values as shown in FIG. 4B are arranged as reference values, an accurate correction input value can be obtained. However, since the number of bits is large and the amount of data is large, storage is performed. There is a problem that the storage capacity of the unit 44 is compressed and the circuit configuration necessary for the correction processing using the correction table becomes complicated.
Therefore, in the present embodiment, by reducing the number of bits of each correction input value in the correction table of FIG. 4B, a correction table 44a in which 8-bit correction input values as shown in FIG. Generate. The correction table 44a after the bit reduction is stored in the storage unit 44 and is used for image data correction processing. In the example of FIG. 5, for example, when the color value related to the input value of the image data for the printing element 243 having the nozzle number 1 is the 13th gradation, the input value of the image data corresponds in the correction table 44a. Based on the reference value to be corrected to the 12th gradation. The correction table 44a is provided corresponding to each of the four head units 24 (that is, corresponding to each color of Y, M, C, and K), and in FIG. A correction table 44a is shown. A method of generating the correction table 44a of FIG. 5 by reducing the bit of the correction table of FIG. 4B will be described in detail later.
 このように、画像データの入力値を、各記録素子243による実際の色の出力結果に基づいて予め設定された補正入力値に補正し、この補正入力値に基づいて記録素子243によりインク吐出を行わせることで、画像データの入力値が示す色値と、記録素子243からのインク吐出により出力される画素の色の色値とを一致させることができるようになっている。
 ノズル番号0~nendまでの各記録素子243に対する画像データの入力値を、入力値に対応する補正入力値に補正することで、画像データ全体の入力値が補正され、補正画像データが生成される。また、Y,M,C,Kの各色の画像データに対してそれぞれ補正画像データが生成される。
In this manner, the input value of the image data is corrected to a correction input value set in advance based on the actual color output result by each recording element 243, and ink is ejected by the recording element 243 based on this correction input value. By doing so, the color value indicated by the input value of the image data and the color value of the color of the pixel output by the ink ejection from the recording element 243 can be matched.
By correcting the input value of the image data for each of the recording elements 243 from the nozzle numbers 0 to n end to the corrected input value corresponding to the input value, the input value of the entire image data is corrected, and corrected image data is generated. The Also, corrected image data is generated for each color image data of Y, M, C, and K, respectively.
 補正画像データが生成されると、補正画像データに対して必要に応じて階調補正処理(ガンマ補正等)などの画像処理がなされた後、各画素8ビットの画像データを各画素1ビット(2階調)の疑似中間調画像データに変換するハーフトーン処理が行われる。ハーフトーン処理の方式は、特には限られないが、各画素においてランダムな閾値に応じて階調値の2値化を行うランダムディザ法、マトリクス状に配列された閾値の各々に応じて各画素の階調値の2値化を行う組織的ディザ法、各画素の階調値の2値化処理において生じた誤差を周辺の画素に割り振る誤差拡散法などを用いることができる。
 そして、ハーフトーン処理後のY,M,C,Kの画像データに基づいて、4つのヘッドユニット24の記録素子243により記録媒体P上にインクが吐出されて画像が記録される。
When the corrected image data is generated, the corrected image data is subjected to image processing such as gradation correction processing (gamma correction or the like) as necessary, and then the 8-bit image data for each pixel is converted to 1 bit for each pixel ( Halftone processing is performed for conversion to pseudo-halftone image data of (2 gradations). The method of halftone processing is not particularly limited, but a random dither method that binarizes gradation values according to a random threshold value in each pixel, each pixel according to each of the threshold values arranged in a matrix For example, a systematic dither method for binarizing the tone values of the pixels, an error diffusion method for allocating an error generated in the binarization processing of the tone values of each pixel to surrounding pixels, or the like can be used.
Then, based on the Y, M, C, and K image data after the halftone process, ink is ejected onto the recording medium P by the recording elements 243 of the four head units 24 to record an image.
 次に、補正テーブル44aの生成方法について説明する。本実施形態では、この補正テーブル44aの生成は、情報処理装置2において行われる。
 補正テーブル44aは、インクジェット記録装置100(又は記録装置1)の生産時や出荷時、及びヘッドユニット24の交換時に生成される。また、直近の補正テーブル44aの生成から所定期間が経過した場合(例えば、所定枚数の記録媒体Pに対する画像記録を行った場合)に補正テーブル44aを生成して既存の補正テーブル44aを上書きしてもよい。
Next, a method for generating the correction table 44a will be described. In the present embodiment, the correction table 44a is generated in the information processing apparatus 2.
The correction table 44 a is generated when the inkjet recording apparatus 100 (or recording apparatus 1) is produced or shipped, and when the head unit 24 is replaced. Further, when a predetermined period has passed since the most recent generation of the correction table 44a (for example, when image recording is performed on a predetermined number of recording media P), the correction table 44a is generated and the existing correction table 44a is overwritten. Also good.
 補正テーブル44aの生成では、まず、各記録素子243により256階調の入力値に応じて実際に出力される色の色値を示す出力色値テーブル(図4A)が生成され、当該出力色値テーブルに基づいて補正テーブル44aの参照値(図5)が設定される。
 このうち出力色値テーブルの生成では、まず記録装置1のヘッドユニット24により所定のテストチャートが記録媒体P上に記録され、当該テストチャートが画像読取部26により読み取られてテストチャートの撮像データが生成される。
In the generation of the correction table 44a, first, an output color value table (FIG. 4A) indicating the color values of the colors actually output according to the input values of 256 gradations is generated by each recording element 243, and the output color value Based on the table, the reference value (FIG. 5) of the correction table 44a is set.
Among these, in the generation of the output color value table, first, a predetermined test chart is recorded on the recording medium P by the head unit 24 of the recording apparatus 1, the test chart is read by the image reading unit 26, and imaging data of the test chart is obtained. Generated.
 図6Aは、テストチャートGの例を示す図である。また、図6Bは、図6AのテストチャートGの一部を拡大して示す図である。
 図6Aに示されるように、テストチャートGは、ヘッドユニット24により記録可能な256階調の色の色値のうち、最小の色値(0)から最大の色値(255)までの間を等分した17の色値の色帯G0~G16からなる。このうち色帯G0では、インクの吐出が行われず記録媒体Pの地色により白色が表されている。色帯G1~G16の各々は、ヘッドユニット24のノズル番号0~nendの各記録素子243により同一の入力値の画像データに基づいてインクを吐出することで記録される。したがって、色帯G1~G16は、上述した記録素子243による出力色の色値のばらつきが反映された状態で記録される。色帯G0~G16の各々のX方向の幅は、ヘッドユニット24の記録素子243の配置範囲に対応する。また、色帯G0~G16の各々のY方向の幅r(図6B)は、特には限られないが、画像読取部26により256画素や512画素の撮像データを取得可能な大きさとされる。
FIG. 6A is a diagram illustrating an example of the test chart G. FIG. 6B is an enlarged view of a part of the test chart G in FIG. 6A.
As shown in FIG. 6A, the test chart G shows the range from the minimum color value (0) to the maximum color value (255) among the color values of 256 tones that can be recorded by the head unit 24. It consists of color bands G0 to G16 having 17 color values divided equally. Among these, in the color band G0, ink is not ejected and white is represented by the ground color of the recording medium P. Each of the color bands G1 to G16 is recorded by ejecting ink based on image data of the same input value by the recording elements 243 of the nozzle numbers 0 to n end of the head unit 24. Accordingly, the color bands G1 to G16 are recorded in a state where the variation in the color value of the output color by the recording element 243 described above is reflected. The width in the X direction of each of the color bands G0 to G16 corresponds to the arrangement range of the recording elements 243 of the head unit 24. The width r (FIG. 6B) in the Y direction of each of the color bands G0 to G16 is not particularly limited, but is set to a size that allows the image reading unit 26 to acquire imaging data of 256 pixels or 512 pixels.
 テストチャートGの撮像データが取得されると、撮像データの各画素における輝度値を、測色値の階調値(以下では測色階調値と記す)に変換する。画像読取部26の撮像素子により取得される輝度値の大小は、人間が視覚により知覚する色彩の濃さ(濃度階調)に必ずしも比例しない。そこで、撮像素子により取得された輝度値を人間の視覚感度に対して均等な測色階調値に変換する変換テーブルを予め用意し、撮像データにこの変換テーブルを適用することで輝度値を測色階調値に変換する。
 具体的には、M,C,KのテストチャートGの撮像データについては、Gの撮像素子による輝度値と、L*a*b*表色系における測色値のL*成分とが対応付けられた変換テーブルを適用することで、輝度値を8ビットの(256階調の)測色階調値に変換する。また、YのテストチャートGの撮像データについては、Bの撮像素子による輝度値と、L*a*b*表色系における測色値においてBの輝度値に対応して変化する指標(例えばb*成分)とが対応付けられた変換テーブルを適用することで、輝度値を8ビットの測色階調値に変換する。
When the imaging data of the test chart G is acquired, the luminance value at each pixel of the imaging data is converted into a colorimetric value gradation value (hereinafter referred to as a colorimetric gradation value). The magnitude of the luminance value acquired by the image sensor of the image reading unit 26 is not necessarily proportional to the color density (density gradation) perceived by human vision. Therefore, a conversion table that converts the luminance value acquired by the image sensor into colorimetric gradation values that are equivalent to human visual sensitivity is prepared in advance, and the luminance value is measured by applying this conversion table to the imaging data. Convert to color gradation value.
Specifically, with respect to the imaging data of the test chart G of M, C, and K, the luminance value by the G imaging element is associated with the L * component of the colorimetric value in the L * a * b * color system. By applying the conversion table thus obtained, the luminance value is converted into a colorimetric gradation value of 8 bits (256 gradations). For the image data of the Y test chart G, an index (for example, b) that changes in correspondence with the luminance value of B in the luminance value of the B image sensor and the colorimetric value in the L * a * b * color system. By applying a conversion table associated with * component), the luminance value is converted into an 8-bit colorimetric gradation value.
 続いて、測色階調値に変換された8ビットの撮像データに基づいて、テストチャートGの色帯G1~G16の各々におけるX方向についての16ビットの測色階調値分布を取得する。ここでは、色帯G1~G16の各々について、X方向の各位置において図6Bに示されるY方向の幅rに亘って互いに異なる256箇所の8ビット測色階調値を足し合わせることで、16ビットの測色階調値を取得する。なお、これに代えて、測色階調値のビット数及び加算数を、加算後のビット数が16ビットとなるように調整してもよい。例えば、測色階調値を10ビットで取得し、色帯G0~G16の幅rに亘って64箇所の10ビット測色階調値を足し合わせることで16ビット測色階調値を取得してもよい。 Subsequently, a 16-bit colorimetric gradation value distribution in the X direction in each of the color bands G1 to G16 of the test chart G is acquired based on the 8-bit imaging data converted into the colorimetric gradation values. Here, for each of the color bands G1 to G16, 256 different 8-bit colorimetric gradation values are added to each other across the width r in the Y direction shown in FIG. Get the colorimetric gradation value of the bit. Instead of this, the number of bits of colorimetric gradation values and the number of additions may be adjusted so that the number of bits after addition is 16 bits. For example, a colorimetric gradation value is acquired in 10 bits, and a 16-bit colorimetric gradation value is acquired by adding 64 10-bit colorimetric gradation values over the width r of the color band G0 to G16. May be.
 色帯G1~G16の各々について、16ビット測色階調値のX方向についてのデータ配列が取得されると、当該データ配列に対して所定のフィルター処理を行う。具体的には、メディアンフィルターを適用して記録素子単位のストリーク成分を除去する。また、ローパスフィルターを適用することで、補正テーブル44aによる補正の対象となる所望の周波数帯の色むらを残しつつ、当該周波数帯よりも高い周波数成分を除去する。本実施形態では、後述するように、10~100ノズル程度の範囲での平均色度が調整されるように補正テーブル44aが生成されるため、10ノズル未満といった高周波成分のノイズをローパスフィルターにより除去する。 For each of the color bands G1 to G16, when a data array in the X direction of 16-bit colorimetric gradation values is acquired, a predetermined filtering process is performed on the data array. Specifically, a median filter is applied to remove streak components in units of recording elements. Further, by applying a low-pass filter, the frequency components higher than the frequency band are removed while leaving the color unevenness of the desired frequency band to be corrected by the correction table 44a. In this embodiment, as will be described later, since the correction table 44a is generated so that the average chromaticity in the range of about 10 to 100 nozzles is adjusted, high-frequency component noise of less than 10 nozzles is removed by a low-pass filter. To do.
 なお、撮像データの輝度値を測色階調値に変換する処理は、上記とは異なるタイミングで行ってもよい。例えば、まず色帯G1~G16の各々について、X方向の各位置で撮像データの輝度値をY方向について加算することで、X方向の16ビット輝度値分布を取得した後で、取得された輝度値を測色階調値に変換してもよい。あるいは、X方向の16ビット輝度値分布のデータ配列に対してさらに上記のフィルター処理を行った後で、輝度値を測色階調値に変換してもよい。 Note that the process of converting the luminance value of the imaging data into the colorimetric gradation value may be performed at a timing different from the above. For example, for each of the color bands G1 to G16, by first adding the luminance value of the imaging data at each position in the X direction with respect to the Y direction to acquire the 16-bit luminance value distribution in the X direction, The value may be converted into a colorimetric gradation value. Alternatively, the luminance value may be converted into a colorimetric gradation value after the above filtering process is further performed on the data array of the 16-bit luminance value distribution in the X direction.
 続いて、色帯G1~G16の各々について、測色階調値の(X方向の)データ配列の画素数を、画像読取部26の撮像素子数からヘッドユニット24におけるノズル数(N)に変換する。すなわち、画像読取部26の撮像素子のX方向についての配置位置と、ヘッドユニット24における各記録素子243のノズルの配置位置との対応関係に基づいて、上記データ配列における測色階調値の分布から、0~nendの各ノズル番号の記録素子243に対応する16ビット測色階調値データからなるデータ配列を生成する。なお、この変換処理は、上述した輝度値から測色階調値への変換処理の前など、より早い段階で行ってもよい。 Subsequently, for each of the color bands G1 to G16, the number of pixels in the data array of colorimetric gradation values (in the X direction) is converted from the number of image sensors in the image reading unit 26 to the number of nozzles (N) in the head unit 24. To do. That is, the distribution of the colorimetric gradation values in the data array based on the correspondence between the arrangement position of the image sensor in the X direction of the image reading unit 26 and the arrangement position of the nozzle of each recording element 243 in the head unit 24. From this, a data array composed of 16-bit colorimetric gradation value data corresponding to the recording elements 243 of the respective nozzle numbers 0 to n end is generated. This conversion process may be performed at an earlier stage such as before the conversion process from the luminance value to the colorimetric gradation value described above.
 続いて、色帯G1~G16に対応する16階調の測色階調値を、記録装置1による記録階調数の階調、すなわち256階調に変換する。この変換は、隣接する階調間で測色階調値を線形補間することにより行うことができる。 Subsequently, the 16 colorimetric gradation values corresponding to the color bands G1 to G16 are converted into gradations of the recording gradation number by the recording apparatus 1, that is, 256 gradations. This conversion can be performed by linearly interpolating colorimetric gradation values between adjacent gradations.
 このような一連の処理により、N個の記録素子243の各々に対して、256階調の入力値にそれぞれ対応する16ビットの測色階調値により表される出力色値(すなわち、入力値に応じて記録素子243により出力された色値)が取得され、出力色値データが生成される。また、このN×256個の16ビットの出力色値データにより、図4Aの出力色値テーブルが構成される。出力色値テーブルの各出力色値データでは、測色階調値は65536階調で表されており、階調数がインクジェット記録装置100の記録階調数(256階調)よりも多くなっている。 Through such a series of processing, an output color value (that is, an input value) represented by a 16-bit colorimetric gradation value corresponding to an input value of 256 gradations for each of the N recording elements 243. (Color value output by the recording element 243) is acquired in response to the output color value data. The N × 256 16-bit output color value data forms the output color value table of FIG. 4A. In each output color value data of the output color value table, the colorimetric gradation value is represented by 65536 gradations, and the number of gradations is larger than the recording gradation number (256 gradations) of the inkjet recording apparatus 100. Yes.
 次に、出力色値テーブルの各出力色値データに基づいて、上述の方法により、N個の記録素子243の各々について、256階調の入力値にそれぞれ対応する16ビットの補正入力値(参照値)を算出し、16ビットの補正テーブル(図4B)を生成する。 Next, on the basis of the output color value data in the output color value table, 16-bit corrected input values (refer to reference values) corresponding to the 256 gradation input values for each of the N printing elements 243 by the above-described method. Value) and a 16-bit correction table (FIG. 4B) is generated.
 次に、得られた16ビットの補正テーブルにおける補正入力値データの各々に対して、ビット数を16ビットから8ビットに低減させるビット数低減処理を行う。以下では、ビット数低減処理前の16ビットの補正入力値データを高ビット数補正入力値データ(色値データ)と記し、ビット数低減処理により8ビット化された補正入力値データを低ビット数補正入力値データ(低ビット数色値データ)と記す。この低ビット数補正入力値データが配列されたデータテーブルが、上述の図5に示された補正テーブル44aである。以下では、図4Bの補正テーブルを高ビット数補正テーブルと記して、図5の補正テーブル44aと区別する。 Next, a bit number reduction process for reducing the number of bits from 16 bits to 8 bits is performed on each of the corrected input value data in the obtained 16-bit correction table. Hereinafter, 16-bit correction input value data before the bit number reduction process is referred to as high bit number correction input value data (color value data), and the correction input value data converted into 8 bits by the bit number reduction process is represented by a low bit number. This is referred to as corrected input value data (low bit number color value data). The data table in which the low bit number correction input value data is arranged is the correction table 44a shown in FIG. Hereinafter, the correction table of FIG. 4B is referred to as a high bit number correction table, and is distinguished from the correction table 44a of FIG.
 高ビット数補正入力値データのビット数の低減は、高ビット数補正テーブルのうち、記録素子配列方向に配列されたN個の高ビット数補正入力値データからなるデータ配列を単位として行われる。各データ配列におけるN個の高ビット数補正入力値データの各々に対するビット数低減処理は、N個の記録素子243のX方向についての配列順に従った順序で、すなわち記録素子243のノズル番号順に行われる。
 ビット数低減処理におけるビット数の低減は、高ビット数補正入力値データを257で除した商を8ビットで表すことで行われる。この処理は、高ビット数補正入力値データの上位8ビットを抽出する処理に相当する。
The reduction of the number of bits of the high bit number correction input value data is performed in units of a data array composed of N high bit number correction input value data arranged in the recording element arrangement direction in the high bit number correction table. The number-of-bits reduction processing for each of the N high-bit number correction input value data in each data array is performed in the order according to the arrangement order of the N recording elements 243 in the X direction, that is, in the order of the nozzle numbers of the recording elements 243. Is called.
In the bit number reduction process, the bit number is reduced by expressing the quotient obtained by dividing the high bit number corrected input value data by 257 with 8 bits. This process corresponds to a process of extracting the upper 8 bits of the high bit number corrected input value data.
 また、上記配列順に従った順序で行われる各ビット数低減処理では、高ビット数補正入力値データの色値から、生成された8ビットの低ビット数補正入力値データの色値を差し引いて得られる差分が誤差値として算出され、先頭を除いた記録素子243を対象としたビット数低減処理では、前段までのビット数低減処理において生じた誤差値の累積値に基づく色値の調整がなされた低ビット数補正入力値データが生成される。
 具体的には、各ビット数低減処理では、算出された上記の誤差値が、次段のビット数低減処理に引き継がれる(繰り越される)。そして、この次段のビット数低減処理では、引き継がれた誤差値の累積値に、当該段のビット数低減処理における高ビット数補正入力値データの色値から調整前の低ビット数補正入力値データを差し引いた差分値を加算した値が所定の基準範囲を超えた場合に(ここでは、色値を16ビットで表記したときの上記値が128以上となった場合に)、生成される低ビット数補正入力値データに(8ビット表記で)1が加算される。なお、このように低ビット数補正入力値データに1が加算される段のビット数低減処理では、高ビット数補正入力値データの色値よりも、調整後の低ビット数補正入力値データの色値の方が大きくなるため、当該段における最終的な誤差値は負の値となる。具体的には、この段における誤差値は、高ビット数補正入力値データの色値から調整前の低ビット数補正入力値データの色値を差し引いて得られた差分値から、さらに257(低ビット数補正入力値データの調整における加算値に相当)を差し引いた値となる。そして、この誤差値と、前段までの誤差値の累積値との加算値が、次段のビット数低減処理に引き継がれる。
 以下では、次段に引き継がれる誤差値の累積値を、階調表現誤差とも記す。
Also, in each bit number reduction process performed in the order according to the arrangement order, it is obtained by subtracting the color value of the generated 8-bit low bit number corrected input value data from the color value of the high bit number corrected input value data. The calculated difference is calculated as an error value, and in the bit number reduction process for the recording element 243 excluding the head, the color value is adjusted based on the accumulated error value generated in the previous bit number reduction process. Low bit number corrected input value data is generated.
Specifically, in each bit number reduction process, the calculated error value is carried over (carried over) to the next bit number reduction process. In the bit number reduction process at the next stage, the accumulated value of the inherited error value is changed from the color value of the high bit number correction input value data in the bit number reduction process at the stage to the low bit number correction input value before adjustment. When the value obtained by adding the difference value obtained by subtracting the data exceeds a predetermined reference range (in this case, the above value when the color value is expressed in 16 bits is 128 or more), the generated low 1 is added to the bit number correction input value data (in 8-bit notation). In this way, in the bit number reduction process at the stage where 1 is added to the low bit number correction input value data, the adjusted low bit number correction input value data has a higher value than the color value of the high bit number correction input value data. Since the color value is larger, the final error value at the stage is a negative value. Specifically, the error value at this stage is further increased to 257 (low) from the difference value obtained by subtracting the color value of the low bit number corrected input value data before adjustment from the color value of the high bit number corrected input value data. This is a value obtained by subtracting the equivalent value in the adjustment of the bit number correction input value data. Then, the added value of this error value and the accumulated error value up to the previous stage is taken over by the bit number reduction process in the next stage.
In the following, the accumulated error value taken over to the next stage is also referred to as a gradation expression error.
 このようなビット数低減処理を、高ビット数補正テーブルにおける256階調の入力値に各々対応するデータ配列に対してそれぞれ行う。これにより、N個の記録素子243の各々に対して、256階調の入力値にそれぞれ対応する8ビットの低ビット数補正入力値データが配列された補正テーブル44aが生成される。生成された補正テーブル44aは、記録装置1の記憶部44に記憶される。 Such bit number reduction processing is performed for each data array corresponding to each of 256 gradation input values in the high bit number correction table. As a result, a correction table 44a in which 8-bit low bit number correction input value data respectively corresponding to 256 gradation input values is arranged for each of the N recording elements 243 is generated. The generated correction table 44a is stored in the storage unit 44 of the recording apparatus 1.
 図7Aは、高ビット数補正テーブルにおける高ビット数補正入力値データD16の色値の分布と、本実施形態のビット数低減処理により生成された低ビット数補正入力値データD8の色値の分布とを比較した図である。また、図7Bは、図7Aと同一の高ビット数補正入力値データD16の色値の分布と、従来のビット数低減処理により得られた低ビット数補正入力値データD8aの色値の分布とを比較した図である。図7Bの従来例では、高ビット数補正入力値データD16の色値の小数点以下を五捨五超入し、ビット数低減による誤差値を次段に引き継がない単純な処理が用いられている。図7A及び図7Bにおける高ビット数補正入力値データD16は、256階調の入力値のうち第13階調の入力値に対する補正入力値データの色値を示している。なお、高ビット数補正入力値データD16は、入力値に係る色値の階調間で4段階に変化するように簡略化して描かれているが、実際には当該階調間で256段階に変化する。 FIG. 7A shows the color value distribution of the high bit number correction input value data D16 in the high bit number correction table and the color value distribution of the low bit number correction input value data D8 generated by the bit number reduction processing of this embodiment. FIG. 7B shows the same color value distribution of the high bit number corrected input value data D16 as in FIG. 7A and the color value distribution of the low bit number corrected input value data D8a obtained by the conventional bit number reduction processing. FIG. In the conventional example of FIG. 7B, a simple process is used in which the color value of the high bit number correction input value data D <b> 16 is rounded off to the next decimal point and the error value due to the bit number reduction is not transferred to the next stage. The high bit number correction input value data D16 in FIGS. 7A and 7B indicates the color value of the correction input value data for the input value of the 13th gradation among the input values of 256 gradations. The high bit number correction input value data D16 is depicted in a simplified manner so that it changes in four steps between the gradations of the color value related to the input value, but in actuality, in 256 steps between the gradations. Change.
 図7Bに示される従来のビット数低減処理では、高ビット数補正入力値データD16の色値が13.5より大きくなっている区間においてのみ、低ビット数補正入力値データD8aの色値が第14階調に遷移し、他の区間では第13階調で一定となっている。このような従来のビット数低減処理では、ノズル配列方向についての広い範囲で高ビット数補正入力値データD16の色度と低ビット数補正入力値データD8aの色度とが乖離する問題が生じる。また、ノズル配列方向についての低ビット数補正入力値データD8aの色値の遷移頻度が小さいため、この低ビット数補正入力値データD8aを参照値とする補正テーブルを用いた入力値の補正では、補正入力値が遷移する箇所が色むらとして視認されやすいという問題がある。 In the conventional bit number reduction process shown in FIG. 7B, the color value of the low bit number corrected input value data D8a is changed only in the section where the color value of the high bit number corrected input value data D16 is larger than 13.5. The transition to 14 gradations is constant at the 13th gradation in other sections. In such a conventional bit number reduction process, there is a problem that the chromaticity of the high bit number corrected input value data D16 and the chromaticity of the low bit number corrected input value data D8a are different in a wide range in the nozzle arrangement direction. Further, since the color value transition frequency of the low bit number correction input value data D8a in the nozzle arrangement direction is small, in the correction of the input value using the correction table using the low bit number correction input value data D8a as a reference value, There is a problem that the portion where the correction input value transitions is easily visually recognized as uneven color.
 これに対し、ビット数低減処理の前後での色値の差分を次段に引き継ぐ本実施形態におけるビット数低減処理によれば、図7Aに示されるように、高ビット数補正入力値データD16の色値と、入力値の色値(第13階調)との差分の累積値に応じて、低ビット数補正入力値データD8の色値が第13階調と第14階調との間を高頻度で遷移する。これにより、10から100ノズル程度の範囲での低ビット数補正入力値データD8の平均色度が、当該範囲における高ビット数補正入力値データD16の平均色度とほぼ一致する。また、このような低ビット数補正入力値データD8を参照値とする補正テーブル44aでは、補正入力値の遷移頻度が高いため、補正入力値が遷移する箇所が色むらとして視認されにくいという効果が奏される。 On the other hand, according to the bit number reduction process in the present embodiment in which the color value difference before and after the bit number reduction process is taken over to the next stage, as shown in FIG. 7A, the high bit number correction input value data D16 Depending on the accumulated value of the difference between the color value and the color value of the input value (13th gradation), the color value of the low bit number corrected input value data D8 is between the 13th gradation and the 14th gradation. Transition frequently. As a result, the average chromaticity of the low bit number correction input value data D8 in the range of about 10 to 100 nozzles substantially matches the average chromaticity of the high bit number correction input value data D16 in the range. Moreover, in the correction table 44a using the low bit number correction input value data D8 as a reference value, the correction input value transition frequency is high, and therefore, the effect that the portion where the correction input value transitions is difficult to be visually recognized as color unevenness. Played.
 続いて、インクジェット記録装置100において実行される補正テーブル生成処理の制御部40及び制御部60による制御手順について説明する。 Subsequently, a control procedure by the control unit 40 and the control unit 60 of the correction table generation process executed in the inkjet recording apparatus 100 will be described.
 図8は、補正テーブル生成処理の制御手順を示すフローチャートである。
 補正テーブル生成処理が開始されると、記録装置1の制御部40は、テストチャートGの画像データに基づいてヘッドユニット24により記録媒体P上にテストチャートGを記録させる(ステップS101)。すなわち、制御部40は、搬送駆動部51に制御信号を出力して、給紙部10、受け渡しユニット22及び搬送部21を動作させて記録媒体Pを搬送ドラム211の搬送面上に載置させ、搬送ドラム211を回転させて記録媒体Pを搬送させる。また、制御部40は、記憶部44に記憶されたテストチャートGの画像データを搬送ドラム211の回転に応じた適切なタイミングで記録ヘッド駆動部241により記録ヘッド242に供給させることにより、ヘッドユニット24により記録媒体Pに対してインクを吐出させて記録媒体P上にテストチャートGを記録させる。
FIG. 8 is a flowchart showing the control procedure of the correction table generation process.
When the correction table generation process is started, the control unit 40 of the recording apparatus 1 causes the head unit 24 to record the test chart G on the recording medium P based on the image data of the test chart G (step S101). That is, the control unit 40 outputs a control signal to the conveyance driving unit 51 to operate the paper feeding unit 10, the delivery unit 22, and the conveyance unit 21 to place the recording medium P on the conveyance surface of the conveyance drum 211. Then, the conveyance drum 211 is rotated to convey the recording medium P. In addition, the control unit 40 causes the recording head driving unit 241 to supply the image data of the test chart G stored in the storage unit 44 to the recording head 242 at an appropriate timing according to the rotation of the transport drum 211, thereby the head unit. 24, ink is ejected onto the recording medium P to record the test chart G on the recording medium P.
 制御部40は、記録されたテストチャートGを画像読取部26により撮像させる(ステップS102)。すなわち、制御部40は、搬送ドラム211の回転に応じて記録媒体P上のテストチャートGが画像読取部26による撮像位置に移動するタイミングで画像読取部26による撮像を開始させる。制御部40は、所定の時間間隔で繰り返し画像読取部26の撮像素子から信号を取得してテストチャートGの撮像データを生成し、記憶部44及び情報処理装置2の記憶部64に記憶させる。 The control unit 40 causes the image reading unit 26 to image the recorded test chart G (step S102). That is, the control unit 40 starts imaging by the image reading unit 26 at a timing when the test chart G on the recording medium P moves to an imaging position by the image reading unit 26 according to the rotation of the transport drum 211. The control unit 40 repeatedly acquires signals from the image sensor of the image reading unit 26 at predetermined time intervals, generates imaging data of the test chart G, and stores the data in the storage unit 44 and the storage unit 64 of the information processing device 2.
 情報処理装置2の制御部60は、テストチャートGの撮像データの各画素における輝度値に所定の変換テーブルを適用して8ビットの測色階調値に変換する(ステップS103)。また、制御部60は、テストチャートGの色帯G1~G16のX方向の各位置において、Y方向について互いに異なる256箇所の8ビット測色階調値を足し合わせることで、X方向についての16ビットの測色階調値分布を取得する(ステップS104)。 The control unit 60 of the information processing apparatus 2 applies a predetermined conversion table to the luminance value in each pixel of the imaging data of the test chart G to convert it into an 8-bit colorimetric gradation value (step S103). Further, the control unit 60 adds 256 8-bit colorimetric gradation values at 256 positions different from each other in the Y direction at each position in the X direction of the color bands G1 to G16 of the test chart G, thereby obtaining 16 in the X direction. A bit colorimetric gradation value distribution is acquired (step S104).
 制御部60は、16ビット測色階調値のX方向についてのデータ配列に対して、メディアンフィルターやローパスフィルターといった所定の平滑化処理を行い(ステップS105)、16ビット測色階調値のデータ配列の画素数を、画像読取部26の撮像素子数からヘッドユニット24におけるノズル数(N)に変換する(ステップS106)。そして、制御部60は、色帯G1~G16に対応する16階調の測色階調値に対して線形補間処理を行うことにより、当該16階調の測色階調値を、記録装置1による記録階調数の階調、すなわち256階調に変換する(ステップS107)。
 制御部60は、以上のステップS101からステップS107までの処理により、N個の記録素子243の各々に対して、256階調の入力値にそれぞれ対応する測色階調値(出力色値)を取得して出力色値データを生成し、N×256の出力色値データが配列された出力色値テーブルを記憶部64に記憶させる(出力色値取得ステップ)。
 ステップS107の処理が終了すると、制御部60は、参照値設定処理を実行する(ステップS108)。
The control unit 60 performs predetermined smoothing processing such as a median filter and a low-pass filter on the data array in the X direction of the 16-bit colorimetric gradation values (step S105), and the 16-bit colorimetric gradation value data The number of pixels in the array is converted from the number of image sensors in the image reading unit 26 to the number of nozzles (N) in the head unit 24 (step S106). Then, the control unit 60 performs linear interpolation processing on the 16 gradation colorimetric gradation values corresponding to the color bands G1 to G16, thereby obtaining the 16 gradation colorimetric gradation values. The number of recorded gradations is converted to 256 gradations, that is, 256 gradations (step S107).
The control unit 60 performs colorimetric gradation values (output color values) respectively corresponding to the 256 gradation input values for each of the N recording elements 243 through the processing from step S101 to step S107. The output color value data is generated by the acquisition, and the output color value table in which N × 256 output color value data is arranged is stored in the storage unit 64 (output color value acquisition step).
When the process of step S107 ends, the control unit 60 executes a reference value setting process (step S108).
 図9は、補正テーブル生成処理で呼び出される参照値設定処理の制御手順を示すフローチャートである。
 参照値設定処理が呼び出されて実行される場合には、制御部60は、入力値の色値に係る変数「in」、ノズル番号に係る変数「n」、階調表現誤差に係る変数「Error」、入力値in及びノズル番号nを変数とする二次元の16ビットデータ配列LUTin[in][n]及び8ビットデータ配列LUTout[in][n]を設定する。
FIG. 9 is a flowchart showing the control procedure of the reference value setting process called in the correction table generation process.
When the reference value setting process is called and executed, the control unit 60 sets the variable “in” related to the color value of the input value, the variable “n” related to the nozzle number, and the variable “Error” related to the gradation expression error. ”, A two-dimensional 16-bit data array LUTin [in] [n] and an 8-bit data array LUTout [in] [n] with the input value in and the nozzle number n as variables are set.
 参照値設定処理が開始されると、制御部60は、出力色値テーブルの出力色値データに基づいて、N個の記録素子243の各々について、256階調の入力値にそれぞれ対応する16ビットの補正入力値を算出し、データ配列LUTin[in][n]に格納する(ステップS201)。 When the reference value setting process is started, the control unit 60, based on the output color value data of the output color value table, for each of the N recording elements 243, 16 bits corresponding to the input value of 256 gradations. Are calculated and stored in the data array LUTin [in] [n] (step S201).
 制御部60は、入力値inに0を代入する(ステップS202)。また、制御部60は、入力値inが256未満であるか否かを判別し(ステップS203)、256未満であると判別された場合には(ステップS203で“YES”)、階調表現誤差Error及びノズル番号nに0を代入する(ステップS204)。 The control unit 60 substitutes 0 for the input value in (step S202). Further, the control unit 60 determines whether or not the input value in is less than 256 (step S203), and if it is determined that the input value in is less than 256 (“YES” in step S203), the gradation expression error 0 is substituted into Error and nozzle number n (step S204).
 制御部60は、ノズル番号nが最大ノズル番号(nend)以下であるか否かを判別する(ステップS205)。ノズル番号nがnend以下であると判別された場合には(ステップS205で“YES”)、制御部60は、所定の16ビットデータ(以下、「data16」と記す)に、入力値in及びノズル番号nに対応する16ビットの補正入力値データ(LUTin[in][n])を代入し(ステップS206)、所定の8ビットデータ(以下、「data8」と記す)に、data16を257で除した商を代入する(ステップS207)。ステップS207の処理は、data16の上位8ビットを抽出して低ビット化する処理に相当する。 The controller 60 determines whether the nozzle number n is equal to or less than the maximum nozzle number (n end ) (step S205). When it is determined that the nozzle number n is equal to or less than n end (“YES” in step S205), the control unit 60 adds the input value in and the predetermined 16-bit data (hereinafter referred to as “data16”). 16-bit correction input value data (LUTin [in] [n]) corresponding to the nozzle number n is substituted (step S206), and data 16 is set to 257 in predetermined 8-bit data (hereinafter referred to as “data8”). The divided quotient is substituted (step S207). The processing in step S207 corresponds to processing for extracting the lower 8 bits of data16 and lowering the bits.
 制御部60は、階調表現誤差Errorに、現在の階調表現誤差Errorとdata16との和からdata8×257を差し引いた値を代入する(ステップS208)。 The control unit 60 substitutes a value obtained by subtracting data8 × 257 from the sum of the current gradation expression error Error and data16 to the gradation expression error Error (step S208).
 制御部60は、階調表現誤差Errorが128以上であるか否かを判別し(ステップS209)、128以上であると判別された場合には(ステップS209で“YES”)、data8が255以上であるか否かを判別する(ステップS210)。制御部60は、data8が255以上であると判別された場合には(ステップS210で“YES”)、data8に255を代入し(ステップS211)、data8が255未満であると判別された場合には(ステップS210で“NO”)、data8にdata8+1を代入するとともに、階調表現誤差Errorに、現在の階調表現誤差Errorから257を差し引いた値を代入する(ステップS212)。 The control unit 60 determines whether or not the gradation expression error Error is 128 or more (step S209). If it is determined that the gradation expression error Error is 128 or more (“YES” in step S209), data8 is 255 or more. Is determined (step S210). When it is determined that data8 is 255 or more (“YES” in step S210), the controller 60 substitutes 255 for data8 (step S211), and when it is determined that data8 is less than 255. (“NO” in step S210), data8 + 1 is assigned to data8, and a value obtained by subtracting 257 from the current gradation expression error Error is assigned to the gradation expression error Error (step S212).
 ステップS211又はステップS212の処理が終了すると、あるいはステップS209の処理において階調表現誤差Errorが128未満であると判別された場合には(ステップS209で“NO”)、制御部60は、入力値in及びノズル番号nに対応する8ビットデータ配列LUTout[in][n]に、低ビット数補正入力値データとしてのdata8を格納する(ステップS213)。ステップS212の処理が終了すると、制御部60は、ノズル番号nに1を加算して(ステップS214)、処理をステップS205に戻す。 When the process of step S211 or step S212 ends, or when the gradation expression error Error is determined to be less than 128 in the process of step S209 (“NO” in step S209), the control unit 60 uses the input value. Data8 as low bit number correction input value data is stored in the 8-bit data array LUTout [in] [n] corresponding to in and nozzle number n (step S213). When the process of step S212 ends, the control unit 60 adds 1 to the nozzle number n (step S214), and returns the process to step S205.
 制御部60は、ステップS205の処理においてノズル番号nがnendより大きいと判別された場合には(ステップS205で“NO”)、入力値inに1を加算して(ステップS215)、処理をステップS203に戻す。ステップS203からステップS215の処理が繰り返されることで、8ビットデータ配列LUTout[in][n]に、補正テーブル44aの参照値を示す低ビット数補正入力値データが順次格納されていく。このステップS203からステップS215の処理が、参照値設定ステップに相当する。 If it is determined in step S205 that the nozzle number n is greater than n end (“NO” in step S205), the control unit 60 adds 1 to the input value in (step S215), and performs the process. Return to step S203. By repeating the processing from step S203 to step S215, low-bit number correction input value data indicating the reference value of the correction table 44a is sequentially stored in the 8-bit data array LUTout [in] [n]. The processing from step S203 to step S215 corresponds to a reference value setting step.
 ステップS203の処理において入力値inが256以上であると判別された場合には(ステップS203で“NO”)、制御部60は、8ビットデータ配列LUTout[in][n]に格納された低ビット数補正入力値データを参照値とする補正テーブル44aを記録装置1の記憶部44に記憶させて、参照値設定処理及び補正テーブル生成処理を終了させる。 When it is determined in the process of step S203 that the input value in is 256 or more (“NO” in step S203), the control unit 60 stores the low value stored in the 8-bit data array LUTout [in] [n]. A correction table 44a using the bit number correction input value data as a reference value is stored in the storage unit 44 of the recording apparatus 1, and the reference value setting process and the correction table generation process are terminated.
 次に、記録装置1において実行される画像記録処理の制御部40による制御手順について説明する。画像記録処理は、入出力インターフェース53を介して情報処理装置2からプリントジョブ及び画像データが制御部40に入力された場合に実行される。 Next, a control procedure by the control unit 40 of the image recording process executed in the recording apparatus 1 will be described. The image recording process is executed when a print job and image data are input from the information processing apparatus 2 to the control unit 40 via the input / output interface 53.
 図10は、画像記録処理の制御手順を示すフローチャートである。
 画像記録処理が開始されると、制御部40は、記録対象の画像の画像データに対して補正テーブル44aを適用して補正画像データを生成する(ステップS301)。すなわち、制御部40は、画像データにおける各記録素子243に対応する画素の入力値(色値)を、補正テーブル44aにおいて当該入力値及び記録素子243のノズル番号と対応付けられた参照値に補正することで補正画像データを生成する。
FIG. 10 is a flowchart showing the control procedure of the image recording process.
When the image recording process is started, the control unit 40 generates the corrected image data by applying the correction table 44a to the image data of the image to be recorded (step S301). That is, the control unit 40 corrects the input value (color value) of the pixel corresponding to each recording element 243 in the image data to the reference value associated with the input value and the nozzle number of the recording element 243 in the correction table 44a. As a result, corrected image data is generated.
 制御部40は、各画素8ビットの補正画像データを各画素1ビットの疑似中間調の画像データに変換するハーフトーン処理を行わせる(ステップS302)。このハーフトーン処理に先立って、必要に応じて画像処理部52によりガンマ補正などの階調補正処理といった各種画像処理を行わせてもよい。 The control unit 40 performs a halftone process for converting the corrected image data of 8 bits for each pixel into pseudo halftone image data of 1 bit for each pixel (step S302). Prior to the halftone processing, various image processing such as gradation correction processing such as gamma correction may be performed by the image processing unit 52 as necessary.
 制御部40は、ステップS303で生成された画像データに基づいてヘッドユニット24によりプリントジョブに係る画像記録動作を実行させる(ステップS303)。ステップS303における制御部40の処理動作は、使用する画像データを除いて補正テーブル生成処理のステップS101における処理動作と同様である。
 記録媒体P上に画像が形成されると、制御部40は、記録媒体Pを排紙部30に送出させて画像記録処理を終了させる。
The control unit 40 causes the head unit 24 to execute an image recording operation related to the print job based on the image data generated in step S303 (step S303). The processing operation of the control unit 40 in step S303 is the same as the processing operation in step S101 of the correction table generation process except for the image data to be used.
When an image is formed on the recording medium P, the control unit 40 sends the recording medium P to the paper discharge unit 30 and ends the image recording process.
 (変形例1)
 次に、上記実施形態の変形例1について説明する。本変形例は、補正テーブル44aに含まれる参照値が、一部の記録素子243に対してのみ設定されている点で上記実施形態と異なる。以下では、上記実施形態との差異点を中心に説明する。
(Modification 1)
Next, the modification 1 of the said embodiment is demonstrated. This modification differs from the above embodiment in that the reference values included in the correction table 44a are set only for some of the recording elements 243. Below, it demonstrates centering on difference with the said embodiment.
 図11は、本変形例に係る補正テーブル44aの内容例を示す図である。
 図11に示されるように、本変形例の補正テーブル44aでは、8ノズルごと(7ノズルおき)のノズル番号nに対応する代表記録素子に対してのみ参照値が設定されている。具体的には、ノズル番号nがns×8(nsは、0≦ns≦nend/8を満たす自然数)である記録素子243に対してのみ参照値が設定されている。ここで、nsは、代表記録素子の番号(代表ノズル番号)を表す。なお、代表記録素子は、7以下又は9以上のノズル番号ごとに設定されてもよい。
FIG. 11 is a diagram showing an example of the contents of the correction table 44a according to this modification.
As shown in FIG. 11, in the correction table 44a of this modification, reference values are set only for the representative recording elements corresponding to the nozzle numbers n for every 8 nozzles (every 7 nozzles). Specifically, the reference value is set only for the printing element 243 whose nozzle number n is ns × 8 (ns is a natural number satisfying 0 ≦ ns ≦ n end / 8). Here, ns represents a representative recording element number (representative nozzle number). The representative recording element may be set for each nozzle number of 7 or less or 9 or more.
 本変形例の補正テーブル44aを適用して画像データの入力値を補正する場合には、ノズル番号nがns×8からns×8+7までの記録素子243については、入力値を、ノズル番号がns×8の代表記録素子に対して設定された参照値に補正する。なお、これに代えて、代表記録素子以外の記録素子243の参照値については、当該記録素子243に近接する2つの代表記録素子に設定された2つの参照値の間を線形補間することにより決定してもよい。
 以下では、各nsに対応する、ノズル番号nがns×8からns×8+7までの記録素子243の区分を記録素子区分とも記す。したがって、本変形例の各記録素子区分には、8つの記録素子243が含まれている。なお、各記録素子区分に単一の記録素子243が含まれる態様は、上述の実施形態に相当する。
In the case where the input value of the image data is corrected by applying the correction table 44a of this modification, the input value and the nozzle number are ns for the printing elements 243 having the nozzle number n of ns × 8 to ns × 8 + 7. Correction is made to the reference value set for the x8 representative recording element. Instead of this, the reference value of the recording element 243 other than the representative recording element is determined by linear interpolation between two reference values set in the two representative recording elements adjacent to the recording element 243. May be.
Hereinafter, the classification of the printing elements 243 corresponding to each ns and having the nozzle number n from ns × 8 to ns × 8 + 7 is also referred to as printing element classification. Accordingly, each recording element section of this modification includes eight recording elements 243. Note that an aspect in which each recording element section includes a single recording element 243 corresponds to the above-described embodiment.
 次に、本変形例の補正テーブル44aの生成処理について説明する。本変形例の補正テーブル生成処理は、図8に示される上記実施形態の補正テーブル生成処理と、参照値設定処理(ステップS108)の処理手順の一部が異なる。 Next, the generation process of the correction table 44a of this modification will be described. The correction table generation process of this modification differs from the correction table generation process of the above-described embodiment shown in FIG. 8 in part of the processing procedure of the reference value setting process (step S108).
 図12は、本変形例の補正テーブル生成処理で呼び出される参照値設定処理の制御手順を示すフローチャートである。
 本変形例の参照値設定処理は、図9に示される上記実施形態の参照値設定処理におけるステップS204~ステップS208、ステップS213、ステップS214をそれぞれステップS204a~ステップS208a、ステップS213a、ステップS214aに変更したものである。以下では、図9の参照値設定処理との差異点について説明する。
FIG. 12 is a flowchart showing the control procedure of the reference value setting process called in the correction table generation process of the present modification.
In the reference value setting process of this modification, steps S204 to S208, step S213, and step S214 in the reference value setting process of the above-described embodiment shown in FIG. 9 are changed to steps S204a to S208a, step S213a, and step S214a, respectively. It is a thing. Hereinafter, differences from the reference value setting process of FIG. 9 will be described.
 本変形例の参照値設定処理では、入力値inが256未満であると判別された場合には(ステップS203で“YES”)、制御部60は、階調表現誤差Error及び代表ノズル番号に係る変数nsに0を代入し(ステップS204a)、代表ノズル番号nsがnend/8以下であるか否かを判別する(ステップS205a)。 In the reference value setting process of this modification, when it is determined that the input value in is less than 256 (“YES” in step S203), the control unit 60 relates to the gradation expression error Error and the representative nozzle number. 0 is substituted into the variable ns (step S204a), and it is determined whether or not the representative nozzle number ns is n end / 8 or less (step S205a).
 代表ノズル番号nsがnend/8以下であると判別された場合には(ステップS205aで“YES”)、制御部60は、n=ns×8から ns×8+7までの各nについての16ビットの補正入力値データ(LUTin[in][n])の16ビット平均値(以下、data_avg16と記す)を算出する(ステップS206a)。具体的には、n=ns×8から ns×8+7までの補正入力値データ(LUTin[in][n])を加算し、当該加算結果を8で除した商をdata_avg16として取得する。 When it is determined that the representative nozzle number ns is equal to or less than n end / 8 (“YES” in step S205a), the control unit 60 has 16 bits for each n from n = ns × 8 to ns × 8 + 7. 16-bit average value (hereinafter referred to as data_avg16) of the corrected input value data (LUTin [in] [n]) is calculated (step S206a). Specifically, correction input value data (LUTin [in] [n]) from n = ns × 8 to ns × 8 + 7 is added, and a quotient obtained by dividing the addition result by 8 is acquired as data_avg16.
 制御部60は、8ビットデータ(data8)に、data_avg16を257で除した商を代入し(ステップS207a)、階調表現誤差Errorに、現在の階調表現誤差Errorとdata_avg16との和からdata8×257を差し引いた値を代入する(ステップS208a)。 The control unit 60 substitutes the quotient obtained by dividing data_avg16 by 257 into 8-bit data (data8) (step S207a), and calculates the data8 × from the sum of the current gradation expression error Error and data_avg16 to the gradation expression error Error. A value obtained by subtracting 257 is substituted (step S208a).
 ステップS211又はステップS212の処理が終了すると、あるいはステップS209の処理において階調表現誤差Errorが128未満であると判別された場合には(ステップS209で“NO”)、制御部60は、入力値in及び代表ノズル番号nsに対応する8ビットデータ配列LUTout[in][ns]に、低ビット数補正入力値データとしてのdata8を格納する(ステップS213a)。ステップS213aの処理が終了すると、制御部60は、代表ノズル番号nsに1を加算して(ステップS214a)、処理をステップS205aに戻す。 When the process of step S211 or step S212 ends, or when the gradation expression error Error is determined to be less than 128 in the process of step S209 (“NO” in step S209), the control unit 60 uses the input value. Data8 as the low-bit number correction input value data is stored in the 8-bit data array LUTout [in] [ns] corresponding to in and the representative nozzle number ns (step S213a). When the process of step S213a ends, the control unit 60 adds 1 to the representative nozzle number ns (step S214a), and returns the process to step S205a.
 このように、本変形例では、ビット数低減処理が記録素子区分単位で行われる。すなわち、記録素子区分に含まれる各記録素子243に対応する補正入力値データの16ビットの平均値が取得され、当該平均値のビット数を8ビットに低減させるビット数低減処理が記録素子区分ごとに行われる。そして、ビット数低減処理の前後での上記平均値の色値の差分が次段に引き継がれ、引き継がれた差分の累積値が128を超えた場合に、低ビット数補正入力値データとしてのdata8に1が加算される。
 なお、上記のように記録素子区分における補正入力値データの平均値を用いる態様に代えて、当該補正入力値データの平均前の加算値を用いて参照値を決定してもよい。この場合には、ステップS206aにおいて、記録素子区分における8つの補正入力値データの加算値を算出し、ステップS207aにおいて、上記加算値を257×8で除した商をdata8に代入し、ステップS208aにおいて、現在の階調表現誤差Errorと上記積算値との和から、data8×257×8を差し引いた値を階調表現誤差Errorに代入し、ステップS209において、階調表現誤差Errorが128×8以上であるか否かを判別し、ステップS212において、階調表現誤差Errorから257×8を差し引けばよい。
As described above, in this modification, the bit number reduction process is performed in units of recording element sections. That is, a 16-bit average value of the corrected input value data corresponding to each recording element 243 included in the recording element section is acquired, and a bit number reduction process for reducing the number of bits of the average value to 8 bits is performed for each recording element section. To be done. Then, when the difference between the average color values before and after the bit number reduction processing is succeeded to the next stage and the accumulated value of the inherited differences exceeds 128, data 8 as low bit number correction input value data is used. 1 is added to.
Note that instead of using the average value of the corrected input value data in the printing element classification as described above, the reference value may be determined using the added value before the average of the corrected input value data. In this case, in step S206a, an added value of eight correction input value data in the printing element classification is calculated, and in step S207a, a quotient obtained by dividing the added value by 257 × 8 is substituted for data8, and in step S208a. Then, a value obtained by subtracting data 8 × 257 × 8 from the sum of the current gradation expression error Error and the integrated value is substituted into the gradation expression error Error. In step S209, the gradation expression error Error is 128 × 8 or more. In step S212, 257 × 8 may be subtracted from the gradation expression error Error.
 (変形例2)
 次に、上記実施形態の変形例2について説明する。本変形例は、補正テーブル44aに含まれる参照値が一部の記録素子に対してのみ設定されている点に加え、一部の入力値に対してのみ設定されている点で上記変形例1と異なる。すなわち、本変形例は、上記変形例1において、補正テーブル44aにおいて参照値が設定される入力値を間引いた態様に相当する。以下では、上記変形例1との差異点について説明する。
(Modification 2)
Next, Modification 2 of the above embodiment will be described. This modified example is the above-described modified example 1 in that the reference values included in the correction table 44a are set only for some of the recording elements, in addition to being set only for some of the recording elements. And different. That is, the present modification corresponds to an aspect in which the input value for which the reference value is set in the correction table 44a is thinned out in the first modification. Hereinafter, differences from the first modification will be described.
 図13は、本変形例に係る補正テーブル44aの内容例を示す図である。
 図13に示されるように、本変形例の補正テーブル44aでは、ノズル番号nがns×8である代表記録素子に対してのみ参照値が設定され、かつ、0~255の入力値の範囲内で、「0」、「5」、「10」、…、「250」、「255」、のように、所定の入力値間引き数(ここでは、5)間隔で周期的に選択された入力値が代表入力値として選択され、代表入力値の各々に対応する参照値が設定されている。換言すれば256階調の入力値inのうち、入力値inがins×5(insは、0≦ins<52を満たす自然数)である代表入力値に対してのみ参照値が設定されている。ここで、insは、代表入力値の番号(代表入力値番号)を表す。
FIG. 13 is a diagram showing an example of the contents of the correction table 44a according to this modification.
As shown in FIG. 13, in the correction table 44a of the present modification, reference values are set only for the representative recording elements whose nozzle number n is ns × 8, and are within the input value range of 0 to 255. Then, input values periodically selected at intervals of predetermined input value thinning-out numbers (here, 5) such as “0”, “5”, “10”,..., “250”, “255” Are selected as representative input values, and reference values corresponding to the representative input values are set. In other words, among the 256 gradation input values in, the reference value is set only for the representative input value whose input value in is ins × 5 (ins is a natural number satisfying 0 ≦ ins <52). Here, ins represents a representative input value number (representative input value number).
 本変形例の補正テーブル44aを適用して画像データの入力値を補正する場合には、まず、対象の記録素子を含む記録素子単位における代表記録素子を特定する。また、補正対象の画像データの入力値に近似する2つの代表入力値を第1入力値及び第2入力値として特定する。そして、特定した代表記録素子に対して第1入力値及び第2入力値に対応して設定された2つの参照値を、第1入力値及び第2入力値と、画像データの入力値との関係に応じて線形補間することにより参照値を決定し、画像データの入力値を当該参照値に補正する。画像データの入力値が代表入力値のいずれかである場合には、当該代表入力値に対して定められた参照値を用いればよい。
 なお、上記の入力値間引き数は、5に限られず、4以下又は6以上であってもよい。また、記録素子方向については参照値を間引かず、入力値の階調方向についてのみ参照値を間引いてもよい。
When correcting the input value of the image data by applying the correction table 44a of this modification, first, the representative recording element in the recording element unit including the target recording element is specified. Further, two representative input values that approximate the input value of the image data to be corrected are specified as the first input value and the second input value. Then, two reference values set corresponding to the first input value and the second input value with respect to the identified representative recording element are obtained as the first input value, the second input value, and the input value of the image data. A reference value is determined by performing linear interpolation according to the relationship, and an input value of image data is corrected to the reference value. If the input value of the image data is one of the representative input values, a reference value determined for the representative input value may be used.
The input value thinning-out number is not limited to 5, and may be 4 or less or 6 or more. Further, the reference value may be thinned out only in the gradation direction of the input value without thinning out the reference value in the recording element direction.
 次に、本変形例の補正テーブル44aの生成処理について説明する。本変形例の補正テーブル生成処理は、上記変形例1の補正テーブル生成処理と、参照値設定処理の処理手順の一部が異なる。 Next, the generation process of the correction table 44a of this modification will be described. The correction table generation process of the present modification is different from the correction table generation process of the first modification and part of the processing procedure of the reference value setting process.
 図14は、本変形例の補正テーブル生成処理で呼び出される参照値設定処理の制御手順を示すフローチャートである。
 本変形例の参照値設定処理は、図12に示される上記変形例1の参照値設定処理におけるステップS202、ステップS203、ステップS213a、ステップS215をそれぞれステップS202b、ステップS203b、ステップS213b、ステップS215bに変更し、ステップS216を追加したものである。以下では、図12の参照値設定処理との差異点について説明する。
FIG. 14 is a flowchart showing the control procedure of the reference value setting process called in the correction table generation process of the present modification.
In the reference value setting process of this modification, step S202, step S203, step S213a, and step S215 in the reference value setting process of modification 1 shown in FIG. 12 are changed to step S202b, step S203b, step S213b, and step S215b, respectively. It is changed and step S216 is added. Hereinafter, differences from the reference value setting process of FIG. 12 will be described.
 本変形例の参照値設定処理が開始されると、制御部60は、代表入力値に係る変数insに0を代入する(ステップS202b)。また、制御部60は、代表入力値insが52未満であるか否かを判別し(ステップS203b)、52未満であると判別された場合には(ステップS203bで“YES”)、入力値inにins×5を代入する(ステップS216)。以下のステップS204aからステップS214aまでの処理により、入力値inがins×5である代表入力値に対し、各代表記録素子に対応するする参照値(低ビット数補正入力値データ)をそれぞれ設定する。このうちステップS213bの処理では、制御部60は、代表入力値ins及び代表ノズル番号nsに対応する8ビットデータ配列LUTout[ins][ns]に、低ビット数補正入力値データとしてのdata8を格納する When the reference value setting process of the present modification is started, the control unit 60 substitutes 0 for the variable ins related to the representative input value (step S202b). Further, the control unit 60 determines whether or not the representative input value ins is less than 52 (step S203b). If it is determined that the representative input value ins is less than 52 (“YES” in step S203b), the input value in Is substituted for ins × 5 (step S216). By the processing from step S204a to step S214a below, a reference value (low bit number corrected input value data) corresponding to each representative recording element is set for each representative input value whose input value in is ins × 5. . Among these, in the process of step S213b, the control unit 60 stores data8 as the low bit number correction input value data in the 8-bit data array LUTout [ins] [ns] corresponding to the representative input value ins and the representative nozzle number ns. Do
 制御部60は、ステップS205aの処理において代表ノズル番号nsがnend/8より大きいと判別された場合には(ステップS205aで“NO”)、代表入力値insに1を加算して(ステップS215b)、処理をステップS203bに戻す。
 ステップS203bの処理において代表入力値insが52以上であると判別された場合には(ステップS203bで“NO”)、制御部60は、8ビットデータ配列LUTout[ins][ns]に格納された低ビット数補正入力値データを参照値とする補正テーブル44aを記録装置1の記憶部44に記憶させて、参照値設定処理及び補正テーブル生成処理を終了させる。
If it is determined in step S205a that the representative nozzle number ns is larger than n end / 8 (“NO” in step S205a), the control unit 60 adds 1 to the representative input value ins (step S215b). ), The process returns to step S203b.
When it is determined in the process of step S203b that the representative input value ins is 52 or more (“NO” in step S203b), the control unit 60 stores the 8-bit data array LUTout [ins] [ns]. The correction table 44a using the low bit number correction input value data as a reference value is stored in the storage unit 44 of the recording apparatus 1, and the reference value setting process and the correction table generation process are terminated.
 (変形例3)
 次に、上記実施形態の変形例3について説明する。
 上記の実施形態及び各変形例では、16ビットの出力色値テーブルに基づいて16ビットの補正テーブルを生成し、当該補正テーブルの補正入力値を8ビットに低ビット化させて補正テーブル44aを生成した。これに対し、本変形例では、16ビットの出力色値テーブルの高ビット数出力色値データから直接8ビットの低ビット数補正入力値データを生成し、得られた低ビット数補正入力値データに基づいて補正テーブル44aを生成する。
(Modification 3)
Next, Modification 3 of the above embodiment will be described.
In the above embodiment and each modification, a 16-bit correction table is generated based on the 16-bit output color value table, and the correction table 44a is generated by reducing the correction input value of the correction table to 8 bits. did. In contrast, in this modification, 8-bit low bit number correction input value data is directly generated from the high bit number output color value data of the 16-bit output color value table, and the obtained low bit number correction input value data is obtained. Based on the above, the correction table 44a is generated.
 具体的には、本変形例の参照値設定処理では、高ビット数出力色値データのデータ配列における各段に対して、高ビット数出力色値データから16ビットの高ビット数補正入力値データを生成する処理と、生成された高ビット数補正入力値データに基づいて8ビットの低ビット数補正入力値データを生成するビット数低減処理とを併せて行い、得られた低ビット数補正入力値データを8ビットデータ配列LUTout[in][n]に格納する。本変形例においても、ビット数低減処理において生じた誤差値を次段に引き継ぐことで、ビット数の低減により失われることとなる色値の情報を、後段の複数の低ビット数補正入力値データに分散させて反映させることができる。 Specifically, in the reference value setting process of this modification, 16 bits of high bit number corrected input value data from high bit number output color value data is obtained for each stage in the data array of high bit number output color value data. And a bit number reduction process for generating 8-bit low bit number correction input value data based on the generated high bit number correction input value data, and the obtained low bit number correction input Value data is stored in an 8-bit data array LUTout [in] [n]. Also in this modification, by passing the error value generated in the bit number reduction process to the next stage, the color value information that is lost due to the reduction in the number of bits is converted into a plurality of low bit number correction input value data in the subsequent stage. Can be distributed and reflected.
 以上のように、本実施形態の参照値の設定方法は、X方向について互いに異なる位置に設けられ、有色の画素を記録媒体Pに出力するための出力動作を各々行う複数の記録素子243と、入力値を補正して得られた補正入力値に基づいて複数の記録素子243の各々により出力動作を行わせることで、所定の記録階調数の色で画素を記録媒体Pに出力させて画像を記録させる制御部40(記録制御手段)と、を備えたインクジェット記録装置100(画像記録装置)における入力値の補正のために参照される参照値の設定方法であって、複数の記録素子243をX方向について所定数の記録素子243ごとに区分した複数の記録素子区分の各々について、当該記録素子区分に含まれる記録素子243により所定の入力値に基づいて出力された画素の色を記録階調数よりも大きい階調数で表す出力色値を取得する出力色値取得ステップ、複数の記録素子区分の各々についての出力色値に基づいて、所定の入力値に対応する補正入力値を取得可能な参照値を設定する参照値設定ステップ、を含み、参照値設定ステップでは、出力色値に基づいて取得され上記補正入力値に対応する色値の色値データ(高ビット数補正入力値データ)に基づいて、当該色値データよりもビット数が少ない低ビット数色値データ(低ビット数補正入力値データ)を生成するビット数低減処理を、複数の記録素子区分のX方向についての配列順に従った順序で複数の記録素子区分の各々を対象として行い、上記配列順における先頭を除いた記録素子区分を対象としたビット数低減処理では、前段までのビット数低減処理において色値データの色値及び生成された低ビット数色値データの色値の差分により生じた誤差値の累積値を取得し、当該累積値に基づく色値の調整がなされた低ビット数色値データを生成し、生成された低ビット数色値データに基づいて参照値を設定する。
 このような方法によれば、高ビット数の色値データを生成した上で、当該色値データのビット数を低減させ、ビット数低減前後における色値の差分に応じた誤差値を後段に引き継ぐことで、ビット数の低減により失われることとなる色値データの色値の情報を、後段の10から100程度といった複数の記録素子243(変形例1,2では記録素子区分)にわたる低ビット数色値データに分散させて反映させることができる。よって、この低ビット数色値データに基づいて設定された補正テーブル44aの参照値を用いて入力値を補正することで、10から100程度といった複数の記録素子243(記録素子区分)にわたる範囲で視認される出力色値の分布を、当該範囲における入力値の色値の分布に近付けることができる。このように、記録媒体P上の一定以上の範囲で出力される色値の分布が調整されることで、個々の補正入力値に含まれる量子誤差に起因する色むらが記録画像において視認される不具合の発生を抑制することができる。また、ビット数低減処理がなされた後の低ビット数色値データに基づいて、各記録素子243に対応する参照値が設定されて補正テーブル44aが生成されるため、補正テーブル44aのデータ量の増大を抑制することができる。よって、上記の方法によれば、記録画像の画質の低下をより確実に抑制することが可能な参照値を、データ量の増大を抑えつつ設定することができる。
As described above, the reference value setting method of the present embodiment includes a plurality of recording elements 243 that are provided at different positions in the X direction and each perform an output operation for outputting colored pixels to the recording medium P. By causing each of the plurality of recording elements 243 to perform an output operation based on the corrected input value obtained by correcting the input value, a pixel is output to the recording medium P with a color having a predetermined number of recording gradations. A reference value setting method that is referred to for correction of an input value in an inkjet recording apparatus 100 (image recording apparatus) that includes a control unit 40 (recording control unit) that records a plurality of recording elements 243. Is output for each of a plurality of recording element sections divided into a predetermined number of recording elements 243 in the X direction by a recording element 243 included in the recording element section based on a predetermined input value. Output color value acquisition step for acquiring an output color value that represents a prime color with a number of gradations larger than the number of recording gradations, corresponding to a predetermined input value based on the output color value for each of a plurality of recording element sections A reference value setting step for setting a reference value from which a corrected input value can be acquired. In the reference value setting step, the color value data (high value) of the color value acquired based on the output color value and corresponding to the corrected input value Bit number reduction processing for generating low bit number color value data (low bit number correction input value data) having a smaller number of bits than the color value data based on the bit number correction input value data). In the bit number reduction process for each of the plurality of recording element sections in the order according to the arrangement order in the X direction, and for the recording element section excluding the head in the arrangement order, the number of bits up to the previous stage A low bit in which the accumulated value of the error value caused by the difference between the color value of the color value data and the color value data of the generated low-bit number color value data is obtained in the reduction process, and the color value is adjusted based on the accumulated value Numerical color value data is generated, and a reference value is set based on the generated low-bit numerical color value data.
According to such a method, after generating color value data having a high number of bits, the number of bits of the color value data is reduced, and an error value corresponding to the color value difference before and after the bit number reduction is passed on to the subsequent stage. Thus, the information on the color value of the color value data that will be lost due to the reduction in the number of bits corresponds to a low number of bits over a plurality of recording elements 243 (recording element classifications in Modifications 1 and 2) such as about 10 to 100 in the subsequent stage. It can be reflected and reflected in the color value data. Therefore, by correcting the input value using the reference value of the correction table 44a set based on the low bit number color value data, in a range covering a plurality of recording elements 243 (recording element divisions) such as about 10 to 100. The distribution of visually recognized output color values can be brought close to the distribution of color values of input values in the range. In this way, by adjusting the distribution of color values output within a certain range on the recording medium P, color unevenness caused by quantum errors included in individual correction input values is visually recognized in the recorded image. The occurrence of defects can be suppressed. Further, since the reference value corresponding to each recording element 243 is set and the correction table 44a is generated based on the low bit number color value data after the bit number reduction processing, the data amount of the correction table 44a is set. The increase can be suppressed. Therefore, according to the above method, it is possible to set the reference value that can more reliably suppress the degradation of the image quality of the recorded image while suppressing the increase in the data amount.
 また、上記実施形態では、上記所定数は1であり、記録素子区分の各々には一の記録素子243が含まれている。これにより、各記録素子243の特性ばらつきが反映された補正テーブル44aを生成することができる。このような補正テーブル44aを用いて入力値を補正することにより、記録画像の画質の低下をより確実に抑制することが可能な、より正確な補正入力値を取得することができる。 In the above embodiment, the predetermined number is 1, and one recording element 243 is included in each recording element section. Thereby, it is possible to generate the correction table 44a reflecting the characteristic variation of each recording element 243. By correcting the input value using such a correction table 44a, it is possible to acquire a more accurate corrected input value that can more reliably suppress the deterioration of the image quality of the recorded image.
 また、変形例1及び変形例2では、上記所定数は2以上であり、記録素子区分の各々には2以上の記録素子243が含まれている。これにより、一の入力値に対して生成される低ビット数色値データの数が低減されるため、補正テーブル44aにおける記録素子区分方向のデータ数を間引くことができる。よって、補正テーブル44aのデータ量をより低減させることができる。 Further, in Modification 1 and Modification 2, the predetermined number is 2 or more, and each recording element section includes two or more recording elements 243. As a result, the number of low-bit number color value data generated for one input value is reduced, so that the number of data in the printing element section direction in the correction table 44a can be thinned out. Therefore, the data amount of the correction table 44a can be further reduced.
 また、変形例1及び変形例2では、上記補正入力値に対応する色値は、複数の記録素子区分の各々に含まれる2以上の記録素子243のそれぞれについての補正入力値に対応する色値を平均した値に対応する。これにより、各記録素子区分に対応する高ビット数補正入力値データに含まれる情報量を、単一の記録素子243に対応する高ビット数補正入力値データに含まれる情報量よりも増大させることができる。よって、当該高ビット数補正入力値データに基づいて生成される低ビット数色値データの色値、及び当該低ビット数色値データに基づく補正テーブル44aにおける参照値を、より正確な値に設定することができる。 In Modification 1 and Modification 2, the color value corresponding to the correction input value is a color value corresponding to the correction input value for each of two or more recording elements 243 included in each of the plurality of recording element sections. Corresponds to the average value of. As a result, the amount of information included in the high bit number correction input value data corresponding to each recording element section is increased more than the amount of information included in the high bit number correction input value data corresponding to a single recording element 243. Can do. Therefore, the color value of the low bit number color value data generated based on the high bit number correction input value data and the reference value in the correction table 44a based on the low bit number color value data are set to more accurate values. can do.
 また、上記実施形態及び変形例1における出力色値取得ステップでは、複数の記録素子区分の各々について、記録階調数の入力値に基づいて記録階調数の出力色値を取得し、参照値設定ステップでは、複数の記録素子区分の各々に対応する記録階調数の色値データに基づいて記録階調数の低ビット数色値データを生成し、複数の記録素子区分の各々について、記録階調数の入力値に対応する補正入力値を取得可能な参照値を設定する。これにより、記録階調数の入力値の各々についての適切な入力補正値を取得可能な補正テーブル44aを生成することができる。 In the output color value acquisition step in the embodiment and the first modification, the output color value of the recording gradation number is acquired based on the input value of the recording gradation number for each of the plurality of recording element sections, and the reference value In the setting step, low bit number color value data having a recording gradation number is generated based on color value data having a recording gradation number corresponding to each of the plurality of recording element sections, and recording is performed for each of the plurality of recording element sections. A reference value capable of acquiring a correction input value corresponding to the input value of the number of gradations is set. As a result, it is possible to generate a correction table 44a that can obtain an appropriate input correction value for each of the input values of the number of recording gradations.
 また、変形例2における出力色値取得ステップでは、複数の記録素子区分の各々について、記録階調数の階調のうちの一部に対応する所定階調数の入力値に基づいて所定階調数の出力色値を取得し、参照値設定ステップでは、複数の記録素子区分の各々に対応する上記所定階調数の色値データに基づいて上記所定階調数の低ビット数色値データを生成し、複数の記録素子区分の各々について、上記所定階調数の入力値に対応する補正入力値を取得可能な参照値を設定する。これにより、補正テーブル44aにおける階調方向のデータ数を間引くことができる。よって、補正テーブル44aのデータ量をより低減させることができる。 Further, in the output color value acquisition step according to the second modification, for each of the plurality of recording element sections, the predetermined gradation is determined based on the input value of the predetermined gradation number corresponding to a part of the gradations of the recording gradation number. In the reference value setting step, the low-bit-number color value data of the predetermined gradation number is obtained based on the color value data of the predetermined gradation number corresponding to each of the plurality of recording element sections. For each of the plurality of printing element sections, a reference value that can obtain a corrected input value corresponding to the input value of the predetermined number of gradations is set. Thereby, the number of data in the gradation direction in the correction table 44a can be thinned out. Therefore, the data amount of the correction table 44a can be further reduced.
 また、上記実施形態の情報処理装置2は、制御部60を備え、当該制御部60は、複数の記録素子243をX方向について所定数の記録素子243ごとに区分した複数の記録素子区分の各々について、当該記録素子区分に含まれる記録素子243により所定の入力値に基づいて出力された画素の色を記録階調数よりも大きい階調数で表す出力色値を取得し(出力色値取得手段)、複数の記録素子区分の各々についての出力色値に基づいて、所定の入力値に対応する補正入力値を取得可能な参照値を設定し(参照値設定手段)、参照値設定手段としての制御部60は、出力色値に基づいて取得され上記補正入力値に対応する色値の色値データ(高ビット数補正入力値データ)に基づいて、当該色値データよりもビット数が少ない低ビット数色値データを生成するビット数低減処理を、複数の記録素子区分のX方向についての配列順に従った順序で複数の記録素子区分の各々を対象として行い、上記配列順における先頭を除いた記録素子区分を対象としたビット数低減処理では、前段までのビット数低減処理において色値データの色値及び生成された低ビット数色値データの色値の差分により生じた誤差値の累積値を取得し、当該累積値に基づく色値の調整がなされた低ビット数色値データを生成し、生成された低ビット数色値データに基づいて参照値を設定する。このような構成の情報処理装置2によれば、記録画像の画質の低下をより確実に抑制することが可能な参照値を、データ量の増大を抑えつつ設定することができる。 Further, the information processing apparatus 2 of the above embodiment includes a control unit 60, and each of the plurality of recording element sections obtained by dividing the plurality of recording elements 243 for each predetermined number of recording elements 243 in the X direction. Output color value representing the color of the pixel output based on a predetermined input value by the recording element 243 included in the recording element section with a gradation number larger than the recording gradation number (output color value acquisition) And a reference value capable of acquiring a corrected input value corresponding to a predetermined input value based on the output color value for each of the plurality of recording element sections (reference value setting means), and as a reference value setting means The control unit 60 has a bit number smaller than that of the color value data based on the color value data (high bit number correction input value data) of the color value acquired based on the output color value and corresponding to the correction input value. Low bit number color The bit number reduction processing for generating data is performed for each of the plurality of recording element sections in the order according to the arrangement order of the plurality of recording element sections in the X direction, and the recording element section excluding the head in the arrangement order is selected. In the target bit number reduction process, the cumulative value of the error value generated by the difference between the color value of the color value data and the color value of the generated low bit number color value data in the previous bit number reduction process is acquired, Low bit number color value data in which the color value is adjusted based on the accumulated value is generated, and a reference value is set based on the generated low bit number color value data. According to the information processing apparatus 2 having such a configuration, it is possible to set a reference value that can more reliably suppress a decrease in image quality of a recorded image while suppressing an increase in data amount.
 また、上記実施形態のインクジェット記録装置100は、情報処理装置2と、X方向について互いに異なる位置に設けられ、有色の画素を記録媒体Pに出力するための出力動作を各々行う複数の記録素子243と、情報処理装置2により設定された参照値が配列された補正テーブル44a(参照データ)を記憶する記憶部44と、制御部40と、を備え、制御部40は、記憶部44に記憶された補正テーブル44aに基づいて入力値を補正入力値に補正し、当該補正入力値に基づいて複数の記録素子243の各々により出力動作を行わせることで、所定の記録階調数の色で画素を記録媒体Pに出力させて画像を記録させる(記録制御手段)。このような構成のインクジェット記録装置100によれば、記録画像の画質の低下をより確実に抑制することができる。また、情報処理装置2により、データ量の増大が抑えられた補正テーブル44aが生成されて記憶部44に記憶されるため、記憶部44の大容量化を抑えることができ、また当該大容量化に伴うコスト上昇を抑制することができる。 In addition, the inkjet recording apparatus 100 of the above embodiment is provided with a plurality of recording elements 243 that are provided at different positions from the information processing apparatus 2 in the X direction and each perform an output operation for outputting colored pixels to the recording medium P. And a storage unit 44 that stores a correction table 44 a (reference data) in which reference values set by the information processing device 2 are arranged, and a control unit 40. The control unit 40 is stored in the storage unit 44. The input value is corrected to the corrected input value based on the correction table 44a, and the output operation is performed by each of the plurality of recording elements 243 based on the corrected input value. Is output to the recording medium P to record an image (recording control means). According to the ink jet recording apparatus 100 having such a configuration, it is possible to more reliably suppress a decrease in the image quality of a recorded image. In addition, the information processing device 2 generates the correction table 44a in which the increase in the data amount is suppressed and stores the correction table 44a in the storage unit 44. Therefore, it is possible to suppress an increase in the capacity of the storage unit 44, and to increase the capacity. The cost increase accompanying this can be suppressed.
 なお、本発明は、上記実施形態及び各変形例に限られるものではなく、様々な変更が可能である。
 例えば、上記実施形態及び各変形例では、補正テーブル44aの参照値が、入力値の補正入力値である例を用いて説明したが、これに限定する趣旨ではない。例えば、図15に示されるように、補正テーブル44aの参照値は、入力値に対する補正量を示すものであってもよい。この補正テーブル44aでは、入力値に対して参照値に示されている補正量を加算することで補正入力値を取得することができる。
Note that the present invention is not limited to the above-described embodiments and modifications, and various modifications can be made.
For example, in the above-described embodiment and each modified example, the reference value of the correction table 44a has been described using an example in which the input value is a corrected input value. However, the present invention is not limited to this. For example, as shown in FIG. 15, the reference value of the correction table 44a may indicate a correction amount for the input value. In the correction table 44a, the correction input value can be acquired by adding the correction amount indicated in the reference value to the input value.
 また、上記実施形態及び各変形例におけるビット数低減処理では、色値データ(高ビット数補正入力値データ)の下位8ビットを切り捨てる例を用いて説明したが、これに代えて、切り上げ、四捨五入、五捨五超入、最近接偶数への丸めといった端数処理を適用してもよい。例えば、下位8ビットを切り上げるビット数低減処理では、ビット数低減前後における色値の負の差分が次段に累積されるため、累積値が所定値を下回った場合に低ビット数色値データを低減させる調整を行えばよい。 Further, in the bit number reduction processing in the above embodiment and each modified example, the example in which the lower 8 bits of the color value data (high bit number correction input value data) are rounded down has been described. Instead, rounding up and rounding off are performed. , Rounding to the nearest even number may be applied. For example, in the bit number reduction process that rounds up the lower 8 bits, the negative difference between the color values before and after the bit number reduction is accumulated in the next stage, so when the accumulated value falls below a predetermined value, the low bit number color value data is Adjustment to be reduced may be performed.
 また、ビット数低減処理では、ビット数低減前後における色値の差分そのものに代えて、当該色値の差分に応じた値を引き継いでもよい。例えば、当該色値の差分の下位数ビットを丸めた値を引き継ぐこととしてもよい。 Also, in the bit number reduction process, instead of the color value difference itself before and after the bit number reduction, a value corresponding to the color value difference may be taken over. For example, a value obtained by rounding the lower-order bits of the color value difference may be taken over.
 また、上記実施形態及び各変形例におけるビット数低減処理では、前段までの誤差値の累積値に、当該段のビット数低減処理における色値データの色値から調整前の低ビット数色値データを差し引いた差分値を加算した値が所定の基準範囲を超えた場合に低ビット数色値データの調整を行ったが、これに限られず、前段までの誤差値の累積値のみに応じて低ビット数色値データの調整を行ってもよい。 Further, in the bit number reduction process in the embodiment and each modified example, the accumulated value of the error value up to the previous stage is changed from the color value data of the color value data in the bit number reduction process of the stage to the low bit number color value data before adjustment. When the value obtained by subtracting the difference value exceeds the specified reference range, the low bit number color value data was adjusted, but this is not the only case, and the value is reduced only according to the accumulated error value up to the previous stage. The bit number color value data may be adjusted.
 また、画像データの入力値は、8ビット(256階調)に限られず、7ビット以下や9ビット以上であってもよい。
 また、ビット数低減処理後の低ビット数色値データは、入力値のビット数と一致していなくてもよい。例えば、8ビットの入力値に対して生成された16ビットの色値データを10ビットに低減させ、当該10ビットの低ビット数色値データに基づいて補正テーブル44aを生成してもよい。
The input value of the image data is not limited to 8 bits (256 gradations) and may be 7 bits or less or 9 bits or more.
Further, the low bit number color value data after the bit number reduction process does not have to match the bit number of the input value. For example, 16-bit color value data generated for an 8-bit input value may be reduced to 10 bits, and the correction table 44a may be generated based on the 10-bit low bit number color value data.
 また、上記実施形態及び各変形例では、情報処理装置2の制御部60により色値データの生成処理、ビット数低減処理、及び補正テーブル44aの生成処理が行われる例を用いて説明したが、これらの処理は、記録装置1の制御部40により実行されてもよい。また、これらの処理が、インクジェット記録装置100の外部に設けられた情報処理装置により実行される構成としてもよい。 In the above-described embodiment and each modification, the description has been given using the example in which the control unit 60 of the information processing apparatus 2 performs the color value data generation process, the bit number reduction process, and the correction table 44a generation process. These processes may be executed by the control unit 40 of the recording apparatus 1. Further, these processes may be executed by an information processing apparatus provided outside the ink jet recording apparatus 100.
 また、上記各実施形態及び各変形例では、画像記録装置としてインクジェット記録装置100を例に挙げて説明したが、これに限定する趣旨ではない。例えば、感光体ドラム上の静電潜像形成領域に付与されたトナー粒子による像を記録媒体に転写する電子写真方式の画像記録装置といった、記録素子の出力動作に応じて有色の画素の出力を行う種々の方式の画像記録装置に本発明を適用することができる。例えば上記電子写真方式の画像記録装置では、静電潜像の形成に用いられる発光素子により記録素子が構成される。 In each of the above-described embodiments and modifications, the inkjet recording apparatus 100 has been described as an example of the image recording apparatus, but the present invention is not limited to this. For example, the output of colored pixels can be output according to the output operation of the recording element, such as an electrophotographic image recording apparatus that transfers an image of toner particles applied to an electrostatic latent image forming area on a photosensitive drum to a recording medium. The present invention can be applied to various types of image recording apparatuses. For example, in the above-described electrophotographic image recording apparatus, a recording element is constituted by a light emitting element used for forming an electrostatic latent image.
 本発明のいくつかの実施形態を説明したが、本発明の範囲は、上述の実施の形態に限定されるものではなく、特許請求の範囲に記載された発明の範囲とその均等の範囲を含む。 Although several embodiments of the present invention have been described, the scope of the present invention is not limited to the above-described embodiments, and includes the scope of the invention described in the claims and equivalents thereof. .
 本発明は、参照値の設定方法、情報処理装置及び画像記録装置に利用することができる。 The present invention can be used for a reference value setting method, an information processing apparatus, and an image recording apparatus.
1 記録装置
2 情報処理装置
10 給紙部
11 給紙トレー
12 媒体供給部
20 画像形成部
21 搬送部
211 搬送ドラム
22 受け渡しユニット
23 加熱部
24 ヘッドユニット
241 記録ヘッド駆動部
242 記録ヘッド
242M ヘッドモジュール
243 記録素子
25 定着部
26 画像読取部
27 デリバリー部
30 排紙部
31 排紙トレー
40,60 制御部
41,62 CPU
42,62 RAM
43,63 ROM
44,64 記憶部
44a 補正テーブル
51 搬送駆動部
52 画像処理部
53,72 入出力インターフェース
54,73 バス
71 操作表示部
100 インクジェット記録装置
200 外部装置
G テストチャート
G0~G16 色帯
P 記録媒体
DESCRIPTION OF SYMBOLS 1 Recording device 2 Information processing apparatus 10 Paper feed part 11 Paper feed tray 12 Medium supply part 20 Image formation part 21 Conveyance part 211 Conveyance drum 22 Delivery unit 23 Heating part 24 Head unit 241 Recording head drive part 242 Recording head 242M Head module 243 Recording element 25 Fixing unit 26 Image reading unit 27 Delivery unit 30 Paper discharge unit 31 Paper discharge tray 40, 60 Control unit 41, 62 CPU
42, 62 RAM
43, 63 ROM
44, 64 Storage unit 44a Correction table 51 Transport drive unit 52 Image processing unit 53, 72 Input / output interface 54, 73 Bus 71 Operation display unit 100 Inkjet recording device 200 External device G Test chart G0 to G16 Color band P Recording medium

Claims (8)

  1.  所定方向について互いに異なる位置に設けられ、有色の画素を記録媒体に出力するための出力動作を各々行う複数の記録素子と、入力値を補正して得られた補正入力値に基づいて前記複数の記録素子の各々により前記出力動作を行わせることで、所定の記録階調数の色で画素を記録媒体に出力させて画像を記録させる記録制御手段と、を備えた画像記録装置における前記入力値の補正のために参照される参照値の設定方法であって、
     前記複数の記録素子を前記所定方向について所定数の記録素子ごとに区分した複数の記録素子区分の各々について、当該記録素子区分に含まれる記録素子により所定の入力値に基づいて出力された画素の色を前記記録階調数よりも大きい階調数で表す出力色値を取得する出力色値取得ステップ、
     前記複数の記録素子区分の各々についての前記出力色値に基づいて、前記所定の入力値に対応する補正入力値を取得可能な前記参照値を設定する参照値設定ステップ、
     を含み、
     前記参照値設定ステップでは、
     前記出力色値に基づいて取得され前記補正入力値に対応する色値の色値データに基づいて、当該色値データよりもビット数が少ない低ビット数色値データを生成するビット数低減処理を、前記複数の記録素子区分の前記所定方向についての配列順に従った順序で前記複数の記録素子区分の各々を対象として行い、
     前記配列順における先頭を除いた記録素子区分を対象とした前記ビット数低減処理では、前段までのビット数低減処理において色値データの色値及び生成された低ビット数色値データの色値の差分により生じた誤差値の累積値を取得し、当該累積値に基づく色値の調整がなされた低ビット数色値データを生成し、
     生成された前記低ビット数色値データに基づいて前記参照値を設定する参照値の設定方法。
    A plurality of recording elements that are provided at different positions in a predetermined direction and that each perform an output operation for outputting colored pixels to a recording medium, and the plurality of recording elements based on a corrected input value obtained by correcting an input value The input value in the image recording apparatus, comprising: a recording control unit configured to record the image by outputting the pixels to the recording medium with a color having a predetermined recording gradation number by causing the recording element to perform the output operation. A reference value setting method referred to for correction of
    For each of the plurality of recording element sections obtained by dividing the plurality of recording elements for each predetermined number of recording elements in the predetermined direction, the pixels output based on a predetermined input value by the recording elements included in the recording element section An output color value acquisition step of acquiring an output color value representing a color with a gradation number larger than the recording gradation number;
    A reference value setting step for setting the reference value from which a correction input value corresponding to the predetermined input value can be acquired based on the output color value for each of the plurality of printing element sections;
    Including
    In the reference value setting step,
    Based on the color value data of the color value acquired based on the output color value and corresponding to the corrected input value, a bit number reduction process for generating low bit number color value data having a smaller number of bits than the color value data. Performing each of the plurality of recording element sections in an order according to the arrangement order of the predetermined direction of the plurality of recording element sections,
    In the bit number reduction process for the printing element classification except the head in the arrangement order, the color value of the color value data and the color value of the generated low bit number color value data in the bit number reduction process up to the previous stage Acquire the accumulated value of the error value caused by the difference, and generate low-bit number color value data in which the color value is adjusted based on the accumulated value,
    A reference value setting method for setting the reference value based on the generated low bit number color value data.
  2.  前記所定数は1である請求項1に記載の参照値の設定方法。 2. The reference value setting method according to claim 1, wherein the predetermined number is one.
  3.  前記所定数は2以上である請求項1に記載の参照値の設定方法。 2. The reference value setting method according to claim 1, wherein the predetermined number is two or more.
  4.  前記補正入力値に対応する色値は、前記複数の記録素子区分の各々に含まれる2以上の記録素子のそれぞれについての補正入力値に対応する色値を平均した値に対応する請求項3に記載の参照値の設定方法。 The color value corresponding to the correction input value corresponds to a value obtained by averaging the color values corresponding to the correction input values for each of two or more recording elements included in each of the plurality of recording element sections. How to set the reference value described.
  5.  前記出力色値取得ステップでは、前記複数の記録素子区分の各々について、前記記録階調数の入力値に基づいて前記記録階調数の前記出力色値を取得し、
     前記参照値設定ステップでは、前記複数の記録素子区分の各々に対応する前記記録階調数の色値データに基づいて前記記録階調数の低ビット数色値データを生成し、前記複数の記録素子区分の各々について、前記記録階調数の入力値に対応する補正入力値を取得可能な前記参照値を設定する請求項1から4のいずれか一項に記載の参照値の設定方法。
    In the output color value acquisition step, for each of the plurality of recording element sections, the output color value of the recording gradation number is acquired based on the input value of the recording gradation number,
    In the reference value setting step, low bit number color value data of the recording gradation number is generated based on the color value data of the recording gradation number corresponding to each of the plurality of recording element sections, and the plurality of recording gradation values is generated. The reference value setting method according to any one of claims 1 to 4, wherein, for each element classification, the reference value capable of obtaining a correction input value corresponding to the input value of the recording gradation number is set.
  6.  前記出力色値取得ステップでは、前記複数の記録素子区分の各々について、前記記録階調数の階調のうちの一部に対応する所定階調数の入力値に基づいて前記所定階調数の前記出力色値を取得し、
     前記参照値設定ステップでは、前記複数の記録素子区分の各々に対応する前記所定階調数の色値データに基づいて前記所定階調数の低ビット数色値データを生成し、前記複数の記録素子区分の各々について、前記所定階調数の入力値に対応する補正入力値を取得可能な前記参照値を設定する請求項1から4のいずれか一項に記載の参照値の設定方法。
    In the output color value obtaining step, for each of the plurality of recording element sections, the predetermined number of gradations is determined based on an input value of a predetermined number of gradations corresponding to a part of the gradations of the recording gradation number. Obtaining the output color value;
    In the reference value setting step, low bit number color value data of the predetermined gradation number is generated based on the color value data of the predetermined gradation number corresponding to each of the plurality of recording element sections, and the plurality of recording elements The reference value setting method according to any one of claims 1 to 4, wherein the reference value that can acquire a correction input value corresponding to the input value of the predetermined number of gradations is set for each element classification.
  7.  所定方向について互いに異なる位置に設けられ、有色の画素を記録媒体に出力するための出力動作を各々行う複数の記録素子と、入力値を補正して得られた補正入力値に基づいて前記複数の記録素子の各々により前記出力動作を行わせることで、所定の記録階調数の色で画素を記録媒体に出力させて画像を記録させる記録制御手段と、を備えた画像記録装置における前記入力値の補正のために参照される参照値を設定する情報処理装置であって、
     前記複数の記録素子を前記所定方向について所定数の記録素子ごとに区分した複数の記録素子区分の各々について、当該記録素子区分に含まれる記録素子により所定の入力値に基づいて出力された画素の色を前記記録階調数よりも大きい階調数で表す出力色値を取得する出力色値取得手段と、
     前記複数の記録素子区分の各々についての前記出力色値に基づいて、前記所定の入力値に対応する補正入力値を取得可能な前記参照値を設定する参照値設定手段と、
     を備え、
     前記参照値設定手段は、
     前記出力色値に基づいて取得され前記補正入力値に対応する色値の色値データに基づいて、当該色値データよりもビット数が少ない低ビット数色値データを生成するビット数低減処理を、前記複数の記録素子区分の前記所定方向についての配列順に従った順序で前記複数の記録素子区分の各々を対象として行い、
     前記配列順における先頭を除いた記録素子区分を対象とした前記ビット数低減処理では、前段までのビット数低減処理において色値データの色値及び生成された低ビット数色値データの色値の差分により生じた誤差値の累積値を取得し、当該累積値に基づく色値の調整がなされた低ビット数色値データを生成し、
     生成された前記低ビット数色値データに基づいて前記参照値を設定する情報処理装置。
    A plurality of recording elements that are provided at different positions in a predetermined direction and that each perform an output operation for outputting colored pixels to a recording medium, and the plurality of recording elements based on a corrected input value obtained by correcting an input value The input value in the image recording apparatus, comprising: a recording control unit configured to record the image by outputting the pixels to the recording medium with a color having a predetermined recording gradation number by causing the recording element to perform the output operation. An information processing apparatus for setting a reference value referred to for correction of
    For each of the plurality of recording element sections obtained by dividing the plurality of recording elements for each predetermined number of recording elements in the predetermined direction, the pixels output based on a predetermined input value by the recording elements included in the recording element section Output color value acquisition means for acquiring an output color value representing a color with a gradation number larger than the recording gradation number;
    Reference value setting means for setting the reference value capable of acquiring a corrected input value corresponding to the predetermined input value based on the output color value for each of the plurality of printing element sections;
    With
    The reference value setting means includes
    Based on the color value data of the color value acquired based on the output color value and corresponding to the corrected input value, a bit number reduction process for generating low bit number color value data having a smaller number of bits than the color value data. Performing each of the plurality of recording element sections in an order according to the arrangement order of the predetermined direction of the plurality of recording element sections,
    In the bit number reduction process for the printing element classification except the head in the arrangement order, the color value of the color value data and the color value of the generated low bit number color value data in the bit number reduction process up to the previous stage Acquire the accumulated value of the error value caused by the difference, and generate low-bit number color value data in which the color value is adjusted based on the accumulated value,
    An information processing apparatus that sets the reference value based on the generated low bit number color value data.
  8.  請求項7に記載の情報処理装置と、
     所定方向について互いに異なる位置に設けられ、有色の画素を記録媒体に出力するための出力動作を各々行う複数の記録素子と、
     前記情報処理装置により設定された参照値が配列された参照データを記憶する記憶部と、
     前記記憶部に記憶された前記参照データに基づいて入力値を補正入力値に補正し、当該補正入力値に基づいて前記複数の記録素子の各々により前記出力動作を行わせることで、所定の記録階調数の色で画素を記録媒体に出力させて画像を記録させる記録制御手段と、
     を備える画像記録装置。
    An information processing apparatus according to claim 7;
    A plurality of recording elements that are provided at different positions in a predetermined direction and each perform an output operation for outputting colored pixels to a recording medium;
    A storage unit for storing reference data in which reference values set by the information processing apparatus are arranged;
    Based on the reference data stored in the storage unit, an input value is corrected to a corrected input value, and the output operation is performed by each of the plurality of recording elements based on the corrected input value, whereby predetermined recording is performed. Recording control means for recording an image by outputting pixels to a recording medium with colors of the number of gradations;
    An image recording apparatus comprising:
PCT/JP2017/040179 2017-01-31 2017-11-08 Method for setting reference value, information processing device, and image recording device WO2018142708A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018565946A JP6908057B2 (en) 2017-01-31 2017-11-08 Reference value setting method, information processing device and image recording device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017015487 2017-01-31
JP2017-015487 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018142708A1 true WO2018142708A1 (en) 2018-08-09

Family

ID=63040486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040179 WO2018142708A1 (en) 2017-01-31 2017-11-08 Method for setting reference value, information processing device, and image recording device

Country Status (2)

Country Link
JP (1) JP6908057B2 (en)
WO (1) WO2018142708A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021053995A (en) * 2019-09-30 2021-04-08 キヤノン株式会社 Image processing device, image processing method and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162976A (en) * 1989-11-22 1991-07-12 Canon Inc Image recorder
JPH11115227A (en) * 1997-10-17 1999-04-27 Mitsubishi Electric Corp Recorder
US20030071866A1 (en) * 2001-10-15 2003-04-17 Eastman Kodak Company Method for improving printer uniformity
JP2009234210A (en) * 2008-03-28 2009-10-15 Fujifilm Corp Image processing method and image forming device
JP2012066516A (en) * 2010-09-24 2012-04-05 Fujifilm Corp Image recording apparatus, and device, method, and program for calculating correction value
JP2013059938A (en) * 2011-09-14 2013-04-04 Seiko Epson Corp Apparatus, method and program for processing image
JP2016208151A (en) * 2015-04-17 2016-12-08 キヤノン株式会社 Image processing device, image processing method, image forming apparatus having image processing device, and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162976A (en) * 1989-11-22 1991-07-12 Canon Inc Image recorder
JPH11115227A (en) * 1997-10-17 1999-04-27 Mitsubishi Electric Corp Recorder
US20030071866A1 (en) * 2001-10-15 2003-04-17 Eastman Kodak Company Method for improving printer uniformity
JP2009234210A (en) * 2008-03-28 2009-10-15 Fujifilm Corp Image processing method and image forming device
JP2012066516A (en) * 2010-09-24 2012-04-05 Fujifilm Corp Image recording apparatus, and device, method, and program for calculating correction value
JP2013059938A (en) * 2011-09-14 2013-04-04 Seiko Epson Corp Apparatus, method and program for processing image
JP2016208151A (en) * 2015-04-17 2016-12-08 キヤノン株式会社 Image processing device, image processing method, image forming apparatus having image processing device, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021053995A (en) * 2019-09-30 2021-04-08 キヤノン株式会社 Image processing device, image processing method and program
US11760107B2 (en) 2019-09-30 2023-09-19 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and storage medium

Also Published As

Publication number Publication date
JP6908057B2 (en) 2021-07-21
JPWO2018142708A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP5780736B2 (en) Image processing apparatus and image processing method
EP2842749B1 (en) Image processing method, image processing device, image forming device, and inkjet recording device
JP6016588B2 (en) Image processing apparatus, recording apparatus, and image processing method
JP4721118B2 (en) Image processing apparatus and method, and image forming apparatus and method
US11090932B2 (en) Image processing apparatus, image processing method and storage medium
JP5855607B2 (en) Image recording method, apparatus and program
JP6021600B2 (en) Image processing apparatus and image processing method
WO2018052031A1 (en) Ink jet recording apparatus and method for detecting defective nozzle
EP2842750B1 (en) Image processing method, image processing device, image forming device, and inkjet recording device
JP6220029B2 (en) Inkjet printing system, undischarge correction method and program thereof
JP2009089080A (en) Image processing method, and image processing apparatus
JP6012425B2 (en) Image processing apparatus and image processing method
WO2018142708A1 (en) Method for setting reference value, information processing device, and image recording device
JP2014100854A (en) Apparatus and method for image formation and method of calculating correction value
JP2012006207A (en) Ejection-characteristic evaluation apparatus and ejection-characteristic evaluation method for inkjet recording apparatus, and inkjet recording apparatus
JP6018994B2 (en) Inkjet printing system, undischarge correction method and program thereof
US11760107B2 (en) Image processing apparatus, image processing method, and storage medium
JP6109110B2 (en) Unevenness correction apparatus and unevenness correction method
US20080205223A1 (en) Poor recording detection device and image recording apparatus using it
JP7459533B2 (en) Image forming apparatus, image forming method and program
US20240106966A1 (en) Image forming apparatus, control method of image forming apparatus, and storage medium
JP2001310498A (en) Image recorder and image recording method
US20240119244A1 (en) Image forming apparatus, image forming method, and non-transitory computer-readable storage medium
US20210103784A1 (en) Image processing apparatus, image processing method, and storage medium
JP2022133690A (en) Discharge data correction device, image formation apparatus and discharge data correction method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565946

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895491

Country of ref document: EP

Kind code of ref document: A1