WO2018142615A1 - Electrochemical system and chromium recovery method for electrochemical system - Google Patents

Electrochemical system and chromium recovery method for electrochemical system Download PDF

Info

Publication number
WO2018142615A1
WO2018142615A1 PCT/JP2017/004231 JP2017004231W WO2018142615A1 WO 2018142615 A1 WO2018142615 A1 WO 2018142615A1 JP 2017004231 W JP2017004231 W JP 2017004231W WO 2018142615 A1 WO2018142615 A1 WO 2018142615A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
chromium
oxide
electrochemical cell
oxygen electrode
Prior art date
Application number
PCT/JP2017/004231
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 松永
亀田 常治
吉野 正人
憲和 長田
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2017/004231 priority Critical patent/WO2018142615A1/en
Priority to JP2018565225A priority patent/JP6833876B2/en
Publication of WO2018142615A1 publication Critical patent/WO2018142615A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Embodiments of the present invention relate to an electrochemical system and a chromium recovery method of the electrochemical system.
  • a solid oxide type electrochemical cell uses a solid oxide having oxygen ion conductivity at a relatively high temperature (eg, 600 to 1000 ° C.) as an electrolyte, and is a fuel cell (solid electrolyte fuel cell: SOFC) or an electrolytic cell. It operates as (solid oxide electrolytic cell: SOEC).
  • SOFC solid electrolyte fuel cell: SOFC
  • the SOFC reacts a reducing agent (such as hydrogen or hydrocarbon) with an oxidizing agent (such as oxygen) through an electrolyte, and extracts the reaction energy as electricity.
  • SOEC electrolyzes high-temperature water vapor to obtain hydrogen and oxygen.
  • Chromium poisoning of the oxygen electrode Chromium is generally contained in metal constituent materials such as gas pipes and separators, and becomes an oxide at high temperatures. The chromium oxide is separated from the metal constituent material, contacts the oxygen electrode, reacts with the constituent material, and is deposited on the oxygen electrode. This deposit may inhibit the reaction at the oxygen electrode.
  • the problem to be solved by the present invention is to provide an electrochemical system and a method for recovering chromium of the electrochemical system, in which characteristic deterioration caused by chromium is reduced.
  • the electrochemical system includes at least one electrochemical cell, a supply line, a heating unit, and a chromium recovery unit.
  • the electrochemical cell has a solid oxide electrolyte layer and an oxygen electrode and a hydrogen electrode arranged on both sides thereof.
  • the supply line is made of a metal containing at least part of chromium, and supplies gas to the oxygen electrode of the at least one electrochemical cell.
  • the heating unit is disposed on the supply line and heats the gas.
  • the chromium recovery unit is disposed between the heating unit on the supply line and the electrochemical cell, and recovers chromium oxide in the gas.
  • FIG. 1 is a block diagram showing a solid oxide electrochemical system according to the first embodiment.
  • 1 is a schematic diagram illustrating a configuration of an electrochemical cell stack 10.
  • FIG. 4 is a plan view showing details of a cell unit 11 of the electrochemical cell stack 10.
  • FIG. 2 is an exploded cross-sectional view showing details of a cell unit 11 of an electrochemical cell stack 10.
  • FIG. 2 is a cross-sectional view schematically illustrating an example of a chromium recovery unit 20.
  • FIG. It is a perspective view showing typically an example of chromium recovery unit 20a.
  • It is a block diagram showing the solid oxide type electrochemical system which concerns on 2nd Embodiment.
  • FIG. 1 is a block diagram showing a solid oxide electrochemical system according to the first embodiment.
  • the solid oxide electrochemical system includes an electrochemical cell stack 10, a chromium recovery unit 20, heat exchangers 30a and 30b, and an external power source 40.
  • FIG. 2 is a schematic diagram showing the configuration of the electrochemical cell stack 10.
  • 3A and 3B are a plan view and an exploded sectional view showing details of the cell unit 11 of the electrochemical cell stack 10, respectively.
  • 3A shows a state in which a separator 16b, an insulating sheet 17, and a current collector 18b described later are excluded from the cell unit 11.
  • FIG. 1 shows a state in which a separator 16b, an insulating sheet 17, and a current collector 18b described later are excluded from the cell unit 11.
  • the solid oxide electrochemical system performs power generation or electrolysis using the hydrogen electrode gas G10 and the oxygen electrode gas G20, and discharges the hydrogen electrode waste gas G11 and the oxygen electrode waste gas G21.
  • the cell unit 11 has a through hole H through which these gases pass. Further, a hydrogen electrode gas supply line and an oxygen electrode gas supply line (pipe) are used to supply the hydrogen electrode gas G10 and the oxygen electrode gas G20 to the electrochemical cell stack 10, respectively.
  • a reducing gas such as hydrogen or hydrocarbon
  • an oxidizing gas such as oxygen
  • the hydrogen electrode waste gas G11 contains unreacted reducing gas and water vapor generated by the power generation reaction.
  • the oxygen electrode waste gas G21 contains an unreacted oxidizing gas.
  • the hydrogen electrode waste gas G11 includes unreacted water vapor and hydrogen gas generated by electrolysis.
  • the oxygen electrode waste gas G21 contains oxygen gas generated by electrolysis.
  • the electrochemical cell stack 10 normally operates at a high temperature of about 600 to 1000 ° C., as will be described later, the hydrogen electrode gas G10 and the oxygen electrode gas G20 are heated by a heating mechanism (heat exchangers 30a, 30b, etc.). Then, it is supplied to the electrochemical cell stack 10. Therefore, members such as a supply line (piping) and a heating mechanism for the high-temperature hydrogen electrode gas G10 and the oxygen electrode gas G20 are made of a metal material (metal containing chromium, for example, stainless steel) having excellent oxidation resistance at high temperatures. It is customary to form. A chromium oxide layer having a certain thickness is formed on the surface of the member, and further oxidation (corrosion) is prevented. In addition, the heating mechanism of the hydrogen electrode gas G10 is not shown for easy understanding.
  • the electrochemical cell stack 10 includes a cell unit 11, bus bars 12a and 12b, and end plates 13a and 13b. A plurality of cell units 11 are stacked, and bus bars 12a and 12b and end plates 13a and 13b are arranged above and below them.
  • the cell unit 11 includes a solid oxide electrochemical cell (single cell) 15, separators 16a and 16b, an insulating sheet 17, and current collectors 18a and 18b, and performs power generation and electrolysis.
  • the bus bars 12a and 12b are conductive terminals for extracting electric power from the plurality of solid oxide electrochemical cells 15 during power generation and supplying current during electrolysis. End plates 13 a and 13 b fix bus bars 12 a and 12 b above and below a plurality of solid oxide electrochemical cells 15. As a result, electrical connection and gas sealing in the entire electrochemical cell stack 10 are ensured.
  • the solid oxide electrochemical cell 15 is a unit cell that functions as an SOFC or SOEC, and a plurality of the solid oxide electrochemical cells 15 are used in order to increase the output.
  • the solid oxide electrochemical cell 15 includes a hydrogen electrode 151, an electrolyte layer 152, and an oxygen electrode 153.
  • An oxygen electrode 153 and a hydrogen electrode 151 are disposed on both sides of the solid oxide electrolyte layer 152. Electricity is generated by supplying a reducing gas and an oxidizing gas to the hydrogen electrode 151 and the oxygen electrode 153 of the solid oxide electrochemical cell 15, respectively. Alternatively, water vapor is supplied to the hydrogen electrode 151 for electrolysis.
  • the hydrogen electrode 151 includes particles of a hydrogen electrode catalytic metal and oxygen ion conductive oxide particles.
  • a hydrogen electrode catalyst metal metal oxides, such as metals, such as nickel, silver, or platinum, nickel oxide, or cobalt oxide, are mentioned, for example.
  • the oxygen ion conductive oxide is a ceramic, for example, a ceria-based oxide such as samaria-stabilized ceria (SDC) or gadolinia-stabilized ceria (GDC), or a zirconia-based oxide such as yttria-stabilized zirconia (YSZ). Can be mentioned.
  • a solid oxide of the electrolyte layer 152 described later may be used.
  • the electrolyte layer 152 is a solid oxide layer having electronic insulation and oxygen ion conductivity.
  • the solid oxide include stabilized zirconia, perovskite oxide, and ceria (CeO 2 ) -based electrolyte solid solution.
  • Stabilized zirconia is zirconia in which a stabilizer is dissolved in zirconia.
  • the stabilizer for example, Y 2 O 3, Sc 2 O 3, Yb 2 O 3, Gd 2 O 3, Nd 2 O 3, CaO, MgO or the like can be mentioned.
  • the perovskite oxide include LaSrGaMg oxide, LaSrGaMgCo oxide, and LaSrGaMgCoFe oxide.
  • ceria-based electrolyte solid solution a solid solution in which Sm 2 O 3 , Gd 2 O 3 , Y 2 O 3 , La 2 O 3 , or the like is dissolved in a material containing CeO 2 can be given.
  • the electrolyte layer 152 has electronic insulation and oxygen ion conductivity within a temperature range of 600 to 1000 ° C., for example. Within this temperature range, oxygen ions can pass through the electrolyte layer 152.
  • the oxygen electrode 153 is made of a material that can efficiently dissociate oxygen and has electron conductivity.
  • the material include lanthanum, strontium, manganese (LaSrMn) -based perovskite oxide (LSM), LaSrCo oxide (LSC), LaSrCoFe oxide (LSCF), LaSrFe oxide (LSF), LaSrMnCo oxide (LSMCoCo oxide).
  • LaSrMnCr oxide LaCoMn oxide (LCM), LaSrCu oxide (LSC), LaSrFeNi oxide (LSFN), LaNiFe oxide (LNF), LaBaCo oxide (LBC), LaNiCo oxide (LNC) LaSrAlFe oxide (LSAF), LaSrCoNiCu oxide (LSCNC), LaSrFeNiCu oxide (LSFNC), LaNi oxide (LN), GdSrCo oxide (GSC), GdSrMn oxide (GSM) PrCaMn oxide (PCaM), PrSrMn oxide (PSM), PrBaCo oxide (PBC), SmSrCo oxide (SSC), NdSmCo oxide (NSC), BiSrCaCu oxide (BSCC), BaLaFeCo oxide (BLFC), BaSrFeCo An oxide (BSFC), a YSrFeCo oxide (YLFC), a YCuCoFe oxide (YCCF), or
  • the oxygen electrode 153 may be a mixture of these oxides.
  • it may be formed of LSM-YSZ, LSCF-SDC, LSCF-GDC, LSCF-YDC, LSCF-LDC, LSCF-CDC, LSM-ScSZ, LSM-SDC, LSM-GDC, or the like.
  • components such as Pt, Ru, Au, Ag, and Pd may be added to the oxygen electrode 153, for example.
  • the separators 16a and 16b are for blocking the solid oxide electrochemical cell 15 from the outside, and are made of a metal having conductivity and heat resistance (for example, stainless steel).
  • the separator 16 a has a recess 161, a groove 162, and a through hole H.
  • the solid oxide electrochemical cell 15 is accommodated in the recess 161.
  • a plurality of grooves 162 are arranged in the recess 161, and the hydrogen electrode gas G10 flows in the vertical direction of FIG. 3A.
  • the separator 16 b has a groove 163.
  • a plurality of grooves 163 are arranged, and the oxygen electrode gas G20 flows in the left-right direction in FIG. 3A.
  • the hydrogen electrode gas G10 and the hydrogen electrode exhaust gas G11 flow into and out of the groove 162 from the pair of upper and lower through holes H in FIG. 3A.
  • the hydrogen electrode gas G ⁇ b> 10 is supplied from one of these through holes H to the hydrogen electrode 151 through the groove 162.
  • the reacted hydrogen electrode gas (hydrogen electrode exhaust gas) G11 passes through the groove 162 and is discharged from the other through hole H.
  • the oxygen electrode gas G20 and the oxygen electrode exhaust gas G21 flow into and out of the groove 163 from the pair of left and right through holes H in FIG. 3A.
  • the oxygen electrode gas G ⁇ b> 20 is supplied from one of these through holes H to the oxygen electrode 153 through the groove 163.
  • the reacted oxygen electrode gas (oxygen electrode exhaust gas) G21 is discharged from the other through hole H through the groove 163.
  • the insulating sheet 17 electrically insulates between the separators 16a and 16b.
  • Current collectors 18a and 18b electrically connect hydrogen electrode 151 and oxygen electrode 153 to corresponding separators 16a and 16b, respectively.
  • members such as a gas supply line (piping) and a heating mechanism are formed of a metal containing chromium, and are protected from corrosion at high temperatures by the chromium oxide layer.
  • this oxide may leave the member and move by the oxygen electrode gas G20. That is, a part of the chromium oxide is sublimated (in a gaseous state) or broken into a fine powder and scattered (in a solid state).
  • the chromium oxide released from the member reaches the oxygen electrode 153, reacts and precipitates, and inhibits the reaction at the oxygen electrode 153.
  • FIG. 4 is a cross-sectional view schematically illustrating an example of the chromium recovery unit 20.
  • the chromium recovery unit 20 is disposed between the heat exchanger 30a (heating unit) and the electrochemical cell stack 10, and recovers and fixes the chromium oxide in the oxygen electrode gas G20.
  • the chromium recovery unit 20 includes an outer shell 21, a gas supply port 22, a gas discharge port 23, a partition wall 24, an insulating layer 25, an absorption layer 26, and an electrode 27.
  • the outer shell 21 and the partition wall 24 can be made of a material having conductivity and heat resistance (for example, metal).
  • the outer shell 21 blocks the inside from the outside.
  • the gas supply port 22 and the gas discharge port 23 are gas outlets for supplying and discharging the oxygen electrode gas G ⁇ b> 20 into the outer shell 21.
  • the partition wall 24 divides the inside of the outer shell 21 into a plurality of sections to increase the surface area in the outer shell 21 (the area of the absorption layer 26).
  • the partition wall 24 corresponds to a member having a predetermined surface.
  • the partition wall 24 has a flow path 241 (for example, a through hole) for connecting adjacent partitions.
  • an insulating layer 25, an absorption layer 26, and an electrode 27 are formed on the surface of the partition wall 24, on the surface of the partition wall 24, an insulating layer 25, an absorption layer 26, and an electrode 27 are formed. Note that the insulating layer 25, the absorption layer 26, and the electrode 27 can also be formed inside the outer shell 21.
  • the insulating layer 25 electrically insulates between the absorption layer 26 and the partition wall 24 (and the outer shell 21). As described later, the absorption of chromium can be promoted by keeping the absorption layer 26 at a negative potential.
  • the absorption layer 26 is a layer of the substance M that reacts with the chromium oxide in the oxidizing electrode gas G10 to generate the oxide C1. Chromium in the oxidizing gas reacts with the substance M in the absorption layer 26 to generate a stable oxide C1, thereby adsorbing and fixing chromium.
  • the vapor pressure P1 of the oxide C1 is equal to or lower than the vapor pressure P2 of the compound C2 formed by the reaction of the chromium oxide in the oxidizing electrode gas G10 with the oxygen electrode 153 (P1 ⁇ P2). If the vapor pressure is such a relationship, the chromium oxide in the gas G10 is accumulated in the absorption layer 26. If such a relationship is broken, the chromium oxide in the gas G10 is not accumulated in the absorption layer 26 finally, but is accumulated in the oxygen electrode 153 of the electrochemical cell stack 10.
  • the magnitude relationship between the vapor pressures may be the result of comparing the vapor pressure at the same temperature with the generated oxide C1 and the compound C2 being different, or the generated oxide C1 and the compound C2 being the same, You may achieve by making the temperature of the absorption layer 26 lower than the oxygen electrode 153.
  • the following materials (1) and (2) can be used.
  • Metal or metal oxide containing manganese As the substance M, for example, manganese alone, manganese chromium steel, ferromanganese manganese iron ferrite, or the like can be used.
  • Oxide Material Used for Oxygen Electrode 153 Substance M includes, for example, LSM, LSC, LSCF, LSF, LSMCo, LSMCr, LCM, LSC, LSFN, LNF, LBC, LNC, LSAF, LSCNC, LSFNC, LN , GSC, GSM, PCaM, PSM, PBC, SSC, NSC, BSCC, BLFC, BSFC, YLFC, YCCF, or YBC can be used.
  • materials containing Mn, LSM, LSMCo, LSMCr, LCM, GSM, PCaM, and PSM are preferable, and LSM is particularly preferable. Chromium precipitation can be accelerated
  • the constituent materials of the oxygen electrode 153 and the absorption layer 26 may be the same or different.
  • a temperature difference for example, 50 to 100 ° C.
  • the necessity of applying a temperature difference (for example, 50 to 100 ° C.) to the chromium recovery unit 20 (oxygen electrode 153) and the electrochemical cell stack 10 (absorption layer 26) increases.
  • a certain temperature difference for example, 50 to 100 ° C.
  • the absorption layer 26 may be made porous to increase the probability of contact with chromium oxide (vapor or fine powder) in the oxygen electrode gas G20.
  • the porous absorption layer 26 can be formed by applying or molding an oxide material powder.
  • the electrode 27 is a conductor disposed on the absorption layer 26, and applies a negative potential from the external power supply 40 to the absorption layer 26. By making the absorption layer 26 have a negative potential, absorption of chromium can be promoted.
  • the electrode 27 has air permeability (for example, a mesh shape or a porous shape) in order to bring the absorbing layer 26 into contact with the oxidizing gas.
  • FIG. 5 is a perspective view schematically showing another example of the chromium recovery unit 20a.
  • the chromium recovery unit 20 a includes a base 28, an insulating layer 25, an absorption layer 26, and an electrode 27.
  • the base 28 is made of a material having conductivity and heat resistance (for example, a metal such as stainless steel) and has a plurality of through holes 29.
  • An insulating layer 25, an absorption layer 26, and an electrode 27 are stacked in the through hole 29.
  • the gas G20 meanders and flows, whereas in the chromium recovery unit 20a, the gas G20 flows linearly.
  • the chromium in the gas G20 is absorbed by the absorption layer 26 and discharged to the outside. Since the chromium absorption mechanism in the chromium recovery unit 20a is the same as that of the chromium recovery unit 20, detailed description thereof is omitted.
  • the heat exchanger 30a heats the gas G20 using the high-temperature exhaust gas G21 discharged from the electrochemical cell stack 10 and supplies the gas G20 to the chromium recovery unit 20, and is disposed on the supply line to heat the gas. Corresponds to the heating part.
  • the temperature of the heated gas G20 is set to be somewhat lower than the temperature in the electrochemical cell stack 10.
  • the temperature of the absorption layer 26 is lowered to some extent (for example, by making it lower than the operating temperature of the oxygen electrode 153, it becomes possible to effectively recover chromium.
  • the temperature is too high, the chromium that has reacted once detaches and the absorption of chromium does not proceed.
  • the average temperature of the absorption layer 26 (on the surface of the partition wall 24 and on the inner surface of the through hole 29) may be lower than the temperature of the oxygen electrode 153 (the operating temperature of the solid oxide electrochemical cell 15). That is, the temperature of a part of the absorption layer 26 is allowed to be equal to or higher than the temperature of the oxygen electrode 153.
  • the heat exchanger 30 b heats the gas G ⁇ b> 20 exhausted from the chromium recovery unit 20 and supplies it to the electrochemical cell stack 10.
  • the heat exchanger 30b is disposed between the chromium recovery unit 20 and the electrochemical cell 10 on the gas G20 supply line, and functions as a second heating unit that heats the gas G20.
  • the heat exchanger 30b it becomes easier to provide an appropriate temperature difference between the chromium recovery unit 20 and the electrochemical cell stack 10. In addition, when this temperature difference does not matter so much, the heat exchanger 30b may be omitted.
  • the heat exchangers 30a and 30b are heating the gas G20 using the exhaust gas G21.
  • the gas G20 may be heated using the gas G11 instead of the exhaust gas G21 or together with the exhaust gas G21.
  • one or both of the heat exchangers 30a and 30b may be replaced with a heater to heat the gas G20 with electricity.
  • the external power supply 40 applies a voltage between the electrode 27 and the partition wall 24 (and the outer shell 21) of the chromium recovery unit 20, and makes the absorption layer 26 have a negative potential.
  • the absorption of chromium by the absorption layer 26 can be promoted.
  • the chromium recovery unit 20 absorbs chromium oxide gas or fine powder generated from the piping of the oxygen electrode gas G20 and the surface of the heat exchanger 30a. As a result, deterioration of the characteristics of the electrochemical cell stack 10 can be suppressed and operation can be efficiently performed over a long period.
  • FIG. 6 is a block diagram showing a solid oxide electrochemical system according to the second embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the solid oxide electrochemical system according to the second embodiment includes an electrochemical cell stack 10, a chromium recovery unit 20a, a heat exchanger 30a, a heater 50, and a controller 60.
  • the chromium recovery unit 20 a has a configuration corresponding to the electrochemical cell stack 10. That is, the chromium recovery unit 20a includes a cell unit 11, bus bars 12a and 12b, and end plates 13a and 13b.
  • the cell unit 11 includes a solid oxide electrochemical cell (single cell) 15a, separators 16a and 16b, an insulating sheet 17, and current collectors 18a and 18b.
  • the solid oxide electrochemical cell 15a includes a hydrogen electrode 151a, an electrolyte layer 152a, and an oxygen electrode 153a.
  • Chromium in the oxygen electrode gas G20 is adsorbed and fixed to the oxygen electrode 153a of the chromium recovery unit 20a.
  • the oxygen electrode 153a is an oxide material used for the oxygen electrode 153, such as LSM, LSC, LSCF, LSF, LSMCo, LSMCr, LCM, LSC, LSFN, LNF, LBC, LNC, LSAF, LSCNC, LSFNC, LN, GSC GSM, PCaM, PSM, PBC, SSC, NSC, BSCC, BLFC, BSFC, YLFC, YCCF, or YBC can be used.
  • materials containing Mn, LSM, LSMCo, LSMCr, LCM, GSM, PCaM, and PSM are preferable, and LSM is particularly preferable.
  • LSM is particularly preferable.
  • a used solid oxide electrochemical cell stack may be used for the chromium recovery unit 20a. That is, a solid oxide electrochemical cell stack having a reduced SOFC or SOEC property (due to factors other than chromium poisoning) can be used as the chromium recovery unit 20a.
  • the electrochemical cell stack used as the chromium recovery unit 20a is preferably operated as a fuel cell. Adsorption of chromium in the gas G20 to the oxygen electrode 153a can be promoted by the voltage accompanying the power generation. For this reason, reducing gas (gas G10) is supplied to the hydrogen electrode 151a of the chromium recovery unit 20a. As a result, combined with the supply of the oxidizing gas (gas G20) to the oxygen electrode 153a, the chromium recovery unit 20a generates power.
  • Controller 50 controls overvoltage in power generation reaction of chromium recovery unit 20a. That is, the electric power generated in the chromium recovery unit 20a is appropriately supplied to other places or consumed. By appropriately consuming the electric power generated in the chromium recovery unit 20a, the reaction in the chromium recovery unit 20a (oxygen electrode 153a) and hence the absorption of chromium can be promoted. When the electric power generated in the chromium recovery unit 20a is accumulated in the chromium recovery unit 20a, the fuel cell reaction in the chromium recovery unit 20a is hindered.
  • the heat exchanger 30a heats the gas G20 using the high-temperature exhaust gas G21 discharged from the electrochemical cell stack 10 and supplies it to the chromium recovery unit 20.
  • the chromium recovery unit 20 oxygen electrode 153a
  • the electrochemical cell stack 10 oxygen electrode 153
  • the heater 60 heats the gas G20 discharged from the chromium recovery unit 20a and supplies it to the electrochemical cell stack 10. By using the heater 60, it becomes easier to make an appropriate temperature difference between the chromium recovery unit 20a and the electrochemical cell stack 10. In addition, when this temperature difference does not matter so much, the heater 60 may be omitted. In the present embodiment, the electric power generated by the chromium recovery unit 20a is used for heating the gas G20 by the heater 60, and the system can be efficiently operated.
  • the chromium recovery unit 20a absorbs chromium oxide gas or fine powder generated from the piping of the oxygen electrode gas G20 and the surface of the heat exchanger 30a. As a result, deterioration of the characteristics of the electrochemical cell stack 10 can be suppressed and operation can be efficiently performed over a long period.

Abstract

An electrochemical system according to an embodiment has at least one electrochemical cell, a supply line, a heating part, and a chromium recovery unit. The electrochemical cell has an electrolyte layer of a solid oxide, and an oxygen electrode and a hydrogen electrode which are respectively disposed on both sides of the electrolyte layer. The supply line has at least a portion composed of a metal which includes chromium, and supplies a gas to the oxygen electrode of the at least one electrochemical cell. The heating part is disposed on the supply line and heats the gas. The chromium recovery unit is disposed between the heating part on the supply line and the electrochemical cell, and recovers chromium oxides from the gas.

Description

電気化学システムおよび電気化学システムのクロム回収方法Electrochemical system and chromium recovery method for electrochemical system
 本発明の実施形態は、電気化学システムおよび電気化学システムのクロム回収方法に関する。 Embodiments of the present invention relate to an electrochemical system and a chromium recovery method of the electrochemical system.
 固体酸化物型電気化学セルは、比較的高温(例えば、600~1000℃)で酸素イオン導伝性を有する固体酸化物を電解質として用い、燃料電池(固体電解質形燃料電池:SOFC)あるいは電解セル(固体酸化物形電解セル:SOEC)として動作する。SOFCは、電解質を介して、還元剤(水素もしくは炭化水素など)と酸化剤(酸素など)を反応させ、その反応エネルギーを電気として取り出す。SOECは、高温の水蒸気を電気分解して水素と酸素とを得る。 A solid oxide type electrochemical cell uses a solid oxide having oxygen ion conductivity at a relatively high temperature (eg, 600 to 1000 ° C.) as an electrolyte, and is a fuel cell (solid electrolyte fuel cell: SOFC) or an electrolytic cell. It operates as (solid oxide electrolytic cell: SOEC). The SOFC reacts a reducing agent (such as hydrogen or hydrocarbon) with an oxidizing agent (such as oxygen) through an electrolyte, and extracts the reaction energy as electricity. SOEC electrolyzes high-temperature water vapor to obtain hydrogen and oxygen.
 電気化学セルを長期的に運用する場合、その特性が経時的に安定であることが好ましい。特性の経時的低下の要因に酸素極のクロム被毒が挙げられる。クロムは、一般にガス配管やセパレータなどの金属構成材料に含まれ、高温下で酸化物となる。このクロムの酸化物が、金属構成材料から離れて酸素極に接触し、その構成材料と反応して、酸素極に析出する。この析出物が、酸素極での反応を阻害する可能性がある。 When the electrochemical cell is operated for a long period, its characteristics are preferably stable over time. One of the causes of the deterioration of characteristics over time is chromium poisoning of the oxygen electrode. Chromium is generally contained in metal constituent materials such as gas pipes and separators, and becomes an oxide at high temperatures. The chromium oxide is separated from the metal constituent material, contacts the oxygen electrode, reacts with the constituent material, and is deposited on the oxygen electrode. This deposit may inhibit the reaction at the oxygen electrode.
特許第5959635号公報Japanese Patent No. 5959635 特許第5266930号公報Japanese Patent No. 5266930 特許第5599956号公報Japanese Patent No. 559995
 本発明が解決しようとする課題は、クロムに起因する特性劣化の軽減を図った電気化学システムおよび電気化学システムのクロム回収方法を提供することである。 The problem to be solved by the present invention is to provide an electrochemical system and a method for recovering chromium of the electrochemical system, in which characteristic deterioration caused by chromium is reduced.
 実施形態に係る電気化学システムは、少なくとも1つの電気化学セルと、供給ラインと、加熱部と、クロム回収ユニットと、を有する。電気化学セルは、固体酸化物の電解質層と、その両側にそれぞれ配置される酸素極と水素極とを有する。供給ラインは、少なくとも一部がクロムを含む金属で構成され、前記少なくとも1つの電気化学セルの酸素極にガスを供給する。加熱部は、前記供給ライン上に配置され、前記ガスを加熱する。クロム回収ユニットは、前記供給ライン上の前記加熱部と前記電気化学セルの間に配置され、前記ガス中のクロム酸化物を回収する。 The electrochemical system according to the embodiment includes at least one electrochemical cell, a supply line, a heating unit, and a chromium recovery unit. The electrochemical cell has a solid oxide electrolyte layer and an oxygen electrode and a hydrogen electrode arranged on both sides thereof. The supply line is made of a metal containing at least part of chromium, and supplies gas to the oxygen electrode of the at least one electrochemical cell. The heating unit is disposed on the supply line and heats the gas. The chromium recovery unit is disposed between the heating unit on the supply line and the electrochemical cell, and recovers chromium oxide in the gas.
 本発明によれば、クロムに起因する特性劣化の軽減を図ることができる。 According to the present invention, it is possible to reduce characteristic deterioration caused by chromium.
図1は、第1の実施形態に係る固体酸化物形電気化学システムを表すブロック図である。FIG. 1 is a block diagram showing a solid oxide electrochemical system according to the first embodiment. 電気化学セルスタック10の構成を表す模式図である。1 is a schematic diagram illustrating a configuration of an electrochemical cell stack 10. FIG. 電気化学セルスタック10のセルユニット11の詳細を表す平面図である。4 is a plan view showing details of a cell unit 11 of the electrochemical cell stack 10. FIG. 電気化学セルスタック10のセルユニット11の詳細を表す分解断面図である。2 is an exploded cross-sectional view showing details of a cell unit 11 of an electrochemical cell stack 10. FIG. クロム回収ユニット20の一例を模式的に表す断面図である。2 is a cross-sectional view schematically illustrating an example of a chromium recovery unit 20. FIG. クロム回収ユニット20aの一例を模式的に表す斜視図である。It is a perspective view showing typically an example of chromium recovery unit 20a. 第2の実施形態に係る固体酸化物形電気化学システムを表すブロック図である。It is a block diagram showing the solid oxide type electrochemical system which concerns on 2nd Embodiment.
(第1の実施形態)
 図1は、第1の実施形態に係る固体酸化物形電気化学システムを表すブロック図である。
 固体酸化物形電気化学システムは、電気化学セルスタック10,クロム回収ユニット20、熱交換器30a、30b,外部電源40を有する。
(First embodiment)
FIG. 1 is a block diagram showing a solid oxide electrochemical system according to the first embodiment.
The solid oxide electrochemical system includes an electrochemical cell stack 10, a chromium recovery unit 20, heat exchangers 30a and 30b, and an external power source 40.
 図2は、電気化学セルスタック10の構成を表す模式図である。図3A,図3Bはそれぞれ、電気化学セルスタック10のセルユニット11の詳細を表す平面図および分解断面図である。なお、図3Aはセルユニット11中、後述のセパレータ16b、絶縁シート17、集電体18bを除外した状態を表している。 FIG. 2 is a schematic diagram showing the configuration of the electrochemical cell stack 10. 3A and 3B are a plan view and an exploded sectional view showing details of the cell unit 11 of the electrochemical cell stack 10, respectively. 3A shows a state in which a separator 16b, an insulating sheet 17, and a current collector 18b described later are excluded from the cell unit 11. FIG.
 固体酸化物形電気化学システムは、水素極ガスG10,酸素極ガスG20を用いて、発電または電気分解を行い、水素極廃ガスG11,酸素極廃ガスG21を排出する。セルユニット11は、これらのガスを通す貫通孔Hを有する。また、電気化学セルスタック10に水素極ガスG10,酸素極ガスG20をそれぞれ供給するために水素極ガス供給ライン,酸素極ガス供給ライン(配管)が用いられる。 The solid oxide electrochemical system performs power generation or electrolysis using the hydrogen electrode gas G10 and the oxygen electrode gas G20, and discharges the hydrogen electrode waste gas G11 and the oxygen electrode waste gas G21. The cell unit 11 has a through hole H through which these gases pass. Further, a hydrogen electrode gas supply line and an oxygen electrode gas supply line (pipe) are used to supply the hydrogen electrode gas G10 and the oxygen electrode gas G20 to the electrochemical cell stack 10, respectively.
 発電時には、水素極ガスG10,酸素極ガスG20に還元性ガス(水素もしくは炭化水素など)と酸化性ガス(酸素など)が用いられる。このとき、水素極廃ガスG11には未反応の還元性ガスおよび発電反応によって生成された水蒸気が含まれる。酸素極廃ガスG21には未反応の酸化性ガスが含まれる。 During power generation, a reducing gas (such as hydrogen or hydrocarbon) and an oxidizing gas (such as oxygen) are used as the hydrogen electrode gas G10 and the oxygen electrode gas G20. At this time, the hydrogen electrode waste gas G11 contains unreacted reducing gas and water vapor generated by the power generation reaction. The oxygen electrode waste gas G21 contains an unreacted oxidizing gas.
 電解時には、水素極ガスG10に水蒸気が用いられる。このとき、酸素極ガスG20を供給する必要は必ずしもないが、必要に応じて種々のガス(例えば、空気、酸素)が酸素極ガスG20として供給される。水素極廃ガスG11には未反応の水蒸気および電解によって生成された水素ガスが含まれる。酸素極廃ガスG21には電解によって生成された酸素ガスが含まれる。 During electrolysis, water vapor is used as the hydrogen electrode gas G10. At this time, it is not always necessary to supply the oxygen electrode gas G20, but various gases (for example, air and oxygen) are supplied as the oxygen electrode gas G20 as necessary. The hydrogen electrode waste gas G11 includes unreacted water vapor and hydrogen gas generated by electrolysis. The oxygen electrode waste gas G21 contains oxygen gas generated by electrolysis.
 電気化学セルスタック10は、通常600~1000℃前後の高温で動作することから、後述のように、水素極ガスG10,酸素極ガスG20は、加熱機構(熱交換器30a、30bなど)によって加熱されてから電気化学セルスタック10に供給される。そのため、高温の水素極ガスG10,酸素極ガスG20の供給ライン(配管)や加熱機構などの部材は、高温での耐酸化性に優れた金属材料(クロムを含む金属、例えば、ステンレス鋼)で形成されるのが通例である。部材の表面に一定厚のクロム酸化物層が形成され、それ以上の酸化(腐食)が防止される。
 なお、判り易さのために、水素極ガスG10の加熱機構は図示を省略している。
Since the electrochemical cell stack 10 normally operates at a high temperature of about 600 to 1000 ° C., as will be described later, the hydrogen electrode gas G10 and the oxygen electrode gas G20 are heated by a heating mechanism ( heat exchangers 30a, 30b, etc.). Then, it is supplied to the electrochemical cell stack 10. Therefore, members such as a supply line (piping) and a heating mechanism for the high-temperature hydrogen electrode gas G10 and the oxygen electrode gas G20 are made of a metal material (metal containing chromium, for example, stainless steel) having excellent oxidation resistance at high temperatures. It is customary to form. A chromium oxide layer having a certain thickness is formed on the surface of the member, and further oxidation (corrosion) is prevented.
In addition, the heating mechanism of the hydrogen electrode gas G10 is not shown for easy understanding.
 電気化学セルスタック10は、セルユニット11,ブスバー12a,12b,エンドプレート13a,13bを有する。複数のセルユニット11が積層され、その上下にブスバー12a,12b,エンドプレート13a,13bが配置されている。 The electrochemical cell stack 10 includes a cell unit 11, bus bars 12a and 12b, and end plates 13a and 13b. A plurality of cell units 11 are stacked, and bus bars 12a and 12b and end plates 13a and 13b are arranged above and below them.
 セルユニット11は、固体酸化物型電気化学セル(単セル)15,セパレータ16a,16b,絶縁シート17,集電体18a,18bを有し、発電、電気分解を行う。 The cell unit 11 includes a solid oxide electrochemical cell (single cell) 15, separators 16a and 16b, an insulating sheet 17, and current collectors 18a and 18b, and performs power generation and electrolysis.
 ブスバー12a,12bは、複数の固体酸化物型電気化学セル15から発電時に電力を取り出し、電解時に電流を供給するための導電性の端子である。
 エンドプレート13a,13bは、複数の固体酸化物型電気化学セル15の上下にブスバー12a,12bを固定する。この結果、電気化学セルスタック10全体での電気的接続およびガスシールが確保される。
The bus bars 12a and 12b are conductive terminals for extracting electric power from the plurality of solid oxide electrochemical cells 15 during power generation and supplying current during electrolysis.
End plates 13 a and 13 b fix bus bars 12 a and 12 b above and below a plurality of solid oxide electrochemical cells 15. As a result, electrical connection and gas sealing in the entire electrochemical cell stack 10 are ensured.
 固体酸化物型電気化学セル15は、SOFCまたはSOECとして機能する単位セルであり、高出力化のために複数が積層されて用いられる。固体酸化物型電気化学セル15は、水素極151,電解質層152,酸素極153を有する。固体酸化物の電解質層152の両側それぞれに酸素極153と水素極151が配置される。
 固体酸化物型電気化学セル15の水素極151,酸素極153にそれぞれ還元ガス、酸化性ガスを供給することで、電気を生成する。あるいは、水素極151に水蒸気を供給して、電気分解する。
The solid oxide electrochemical cell 15 is a unit cell that functions as an SOFC or SOEC, and a plurality of the solid oxide electrochemical cells 15 are used in order to increase the output. The solid oxide electrochemical cell 15 includes a hydrogen electrode 151, an electrolyte layer 152, and an oxygen electrode 153. An oxygen electrode 153 and a hydrogen electrode 151 are disposed on both sides of the solid oxide electrolyte layer 152.
Electricity is generated by supplying a reducing gas and an oxidizing gas to the hydrogen electrode 151 and the oxygen electrode 153 of the solid oxide electrochemical cell 15, respectively. Alternatively, water vapor is supplied to the hydrogen electrode 151 for electrolysis.
 水素極151は、水素極触媒金属の粒子および酸素イオン伝導性酸化物の粒子を含む。水素極触媒金属としては、例えば、ニッケル、銀、または白金などの金属や、酸化ニッケル、または酸化コバルトなどの金属酸化物が挙げられる。酸素イオン伝導性酸化物は、セラミックス、例えば、サマリア安定化セリア(SDC)、またはガドリニア安定化セリア(GDC)などのセリア系酸化物、またはイットリア安定化ジルコニア(YSZ)などのジルコニア系酸化物が挙げられる。酸素イオン伝導性酸化物には、後述の電解質層152の固体酸化物を用いてもよい。 The hydrogen electrode 151 includes particles of a hydrogen electrode catalytic metal and oxygen ion conductive oxide particles. As a hydrogen electrode catalyst metal, metal oxides, such as metals, such as nickel, silver, or platinum, nickel oxide, or cobalt oxide, are mentioned, for example. The oxygen ion conductive oxide is a ceramic, for example, a ceria-based oxide such as samaria-stabilized ceria (SDC) or gadolinia-stabilized ceria (GDC), or a zirconia-based oxide such as yttria-stabilized zirconia (YSZ). Can be mentioned. As the oxygen ion conductive oxide, a solid oxide of the electrolyte layer 152 described later may be used.
 電解質層152は、電子絶縁性と酸素イオン伝導性を有する固体酸化物の層である。この固体酸化物には、例えば、安定化ジルコニア、ペロブスカイト型酸化物、またはセリア(CeO)系電解質固溶体が挙げられる。
 安定化ジルコニアとは、安定化剤をジルコニア中に固溶させたジルコニアである。安定化剤としては、例えば、Y、Sc、Yb、Gd、Nd、CaO、MgOなどが挙げられる。また、ペロブスカイト型酸化物としては、例えば、LaSrGaMg酸化物、LaSrGaMgCo酸化物、およびLaSrGaMgCoFe酸化物などが挙げられる。また、セリア系電解質固溶体としては、CeOを含む材料に、Sm、Gd、Y、またはLaなどを固溶させた固溶体が挙げられる。
The electrolyte layer 152 is a solid oxide layer having electronic insulation and oxygen ion conductivity. Examples of the solid oxide include stabilized zirconia, perovskite oxide, and ceria (CeO 2 ) -based electrolyte solid solution.
Stabilized zirconia is zirconia in which a stabilizer is dissolved in zirconia. As the stabilizer, for example, Y 2 O 3, Sc 2 O 3, Yb 2 O 3, Gd 2 O 3, Nd 2 O 3, CaO, MgO or the like can be mentioned. Examples of the perovskite oxide include LaSrGaMg oxide, LaSrGaMgCo oxide, and LaSrGaMgCoFe oxide. As the ceria-based electrolyte solid solution, a solid solution in which Sm 2 O 3 , Gd 2 O 3 , Y 2 O 3 , La 2 O 3 , or the like is dissolved in a material containing CeO 2 can be given.
 電解質層152は、例えば、600~1000℃の温度範囲内で電子絶縁性と酸素イオン伝導性を有する。この温度範囲内で、酸素イオンは電解質層152を通過できる。 The electrolyte layer 152 has electronic insulation and oxygen ion conductivity within a temperature range of 600 to 1000 ° C., for example. Within this temperature range, oxygen ions can pass through the electrolyte layer 152.
 酸素極153は、酸素を効率よく解離でき、電子伝導性を有する材料で構成される。この材料には、例えば、ランタン・ストロンチウム・マンガン(LaSrMn)系ペロブスカイト型酸化物(LSM)、LaSrCo酸化物(LSC)、LaSrCoFe酸化物(LSCF)、LaSrFe酸化物(LSF)、LaSrMnCo酸化物(LSMCo)、LaSrMnCr酸化物(LSMCr)、LaCoMn酸化物(LCM)、LaSrCu酸化物(LSC)、LaSrFeNi酸化物(LSFN)、LaNiFe酸化物(LNF)、LaBaCo酸化物(LBC)、LaNiCo酸化物(LNC)、LaSrAlFe酸化物(LSAF)、LaSrCoNiCu酸化物(LSCNC)、LaSrFeNiCu酸化物(LSFNC)、LaNi酸化物(LN)、GdSrCo酸化物(GSC)、GdSrMn酸化物(GSM)、PrCaMn酸化物(PCaM)、PrSrMn酸化物(PSM)、PrBaCo酸化物(PBC)、SmSrCo酸化物(SSC)、NdSmCo酸化物(NSC)、BiSrCaCu酸化物(BSCC)、BaLaFeCo酸化物(BLFC)、BaSrFeCo酸化物(BSFC)、YSrFeCo酸化物(YLFC)、YCuCoFe酸化物(YCCF)、またはYBaCu酸化物(YBC)が挙げられる。
 酸素極153は、これらの酸化物の混合体でもよい。例えば、LSM-YSZ、LSCF-SDC、LSCF-GDC、LSCF-YDC、LSCF-LDC、LSCF-CDC、LSM-ScSZ、LSM-SDC、LSM-GDCなどで形成されてもよい。さらに、酸素極153に、例えばPt、Ru、Au、Ag、Pdなどの成分を添加してもよい。
The oxygen electrode 153 is made of a material that can efficiently dissociate oxygen and has electron conductivity. Examples of the material include lanthanum, strontium, manganese (LaSrMn) -based perovskite oxide (LSM), LaSrCo oxide (LSC), LaSrCoFe oxide (LSCF), LaSrFe oxide (LSF), LaSrMnCo oxide (LSMCoCo oxide). ), LaSrMnCr oxide (LSMCr), LaCoMn oxide (LCM), LaSrCu oxide (LSC), LaSrFeNi oxide (LSFN), LaNiFe oxide (LNF), LaBaCo oxide (LBC), LaNiCo oxide (LNC) LaSrAlFe oxide (LSAF), LaSrCoNiCu oxide (LSCNC), LaSrFeNiCu oxide (LSFNC), LaNi oxide (LN), GdSrCo oxide (GSC), GdSrMn oxide (GSM) PrCaMn oxide (PCaM), PrSrMn oxide (PSM), PrBaCo oxide (PBC), SmSrCo oxide (SSC), NdSmCo oxide (NSC), BiSrCaCu oxide (BSCC), BaLaFeCo oxide (BLFC), BaSrFeCo An oxide (BSFC), a YSrFeCo oxide (YLFC), a YCuCoFe oxide (YCCF), or a YBaCu oxide (YBC) can be used.
The oxygen electrode 153 may be a mixture of these oxides. For example, it may be formed of LSM-YSZ, LSCF-SDC, LSCF-GDC, LSCF-YDC, LSCF-LDC, LSCF-CDC, LSM-ScSZ, LSM-SDC, LSM-GDC, or the like. Furthermore, components such as Pt, Ru, Au, Ag, and Pd may be added to the oxygen electrode 153, for example.
 セパレータ16a,16bは、固体酸化物型電気化学セル15を外界から遮断するためのものであり、導電性および耐熱性を有する金属(例えば、ステンレス鋼)から構成される。 The separators 16a and 16b are for blocking the solid oxide electrochemical cell 15 from the outside, and are made of a metal having conductivity and heat resistance (for example, stainless steel).
 セパレータ16aは、凹部161、溝162、貫通孔Hを有する。
 凹部161に、固体酸化物型電気化学セル15を収容される。溝162は、凹部161内に複数配置され、図3Aの上下方向に水素極ガスG10を流す。
 セパレータ16bは、溝163を有する。溝163は、複数配置され、図3Aの左右方向に酸素極ガスG20を流す。
The separator 16 a has a recess 161, a groove 162, and a through hole H.
The solid oxide electrochemical cell 15 is accommodated in the recess 161. A plurality of grooves 162 are arranged in the recess 161, and the hydrogen electrode gas G10 flows in the vertical direction of FIG. 3A.
The separator 16 b has a groove 163. A plurality of grooves 163 are arranged, and the oxygen electrode gas G20 flows in the left-right direction in FIG. 3A.
 図3Aの上下の一対の貫通孔Hから溝162内に水素極ガスG10、水素極排ガスG11が流入、流出する。水素極ガスG10は、これらの貫通孔Hの一方から溝162を通って水素極151に供給される。反応した水素極ガス(水素極排ガス)G11は、溝162を通って他方の貫通孔Hから排出される。 The hydrogen electrode gas G10 and the hydrogen electrode exhaust gas G11 flow into and out of the groove 162 from the pair of upper and lower through holes H in FIG. 3A. The hydrogen electrode gas G <b> 10 is supplied from one of these through holes H to the hydrogen electrode 151 through the groove 162. The reacted hydrogen electrode gas (hydrogen electrode exhaust gas) G11 passes through the groove 162 and is discharged from the other through hole H.
 図3Aの左右の一対の貫通孔Hから溝163内に酸素極ガスG20、酸素極排ガスG21が流入、流出する。酸素極ガスG20は、これらの貫通孔Hの一方から溝163を通って酸素極153に供給される。反応した酸素極ガス(酸素極排ガス)G21は、溝163を通って他方の貫通孔Hから排出される。 The oxygen electrode gas G20 and the oxygen electrode exhaust gas G21 flow into and out of the groove 163 from the pair of left and right through holes H in FIG. 3A. The oxygen electrode gas G <b> 20 is supplied from one of these through holes H to the oxygen electrode 153 through the groove 163. The reacted oxygen electrode gas (oxygen electrode exhaust gas) G21 is discharged from the other through hole H through the groove 163.
 絶縁シート17は、セパレータ16a,16b間を電気的に絶縁する。
 集電体18a,18bは、水素極151,酸素極153をそれぞれ対応するセパレータ16a,16bと電気的に接続する。
The insulating sheet 17 electrically insulates between the separators 16a and 16b.
Current collectors 18a and 18b electrically connect hydrogen electrode 151 and oxygen electrode 153 to corresponding separators 16a and 16b, respectively.
 既述のように、ガス供給ライン(配管)や加熱機構などの部材は、クロムを含む金属で形成され、クロム酸化物層によって高温下での腐食から保護される。
 しかし、この酸化物が部材から離れ、酸素極ガスG20によって移動する可能性がある。すなわち、クロム酸化物の一部が昇華したり(気体状態)、微粉末状に砕けて飛散したりする(固体状態)。このようにして、部材から放出されたクロム酸化物が酸素極153に到達して、反応、析出し、酸素極153での反応を阻害する可能性がある。
As described above, members such as a gas supply line (piping) and a heating mechanism are formed of a metal containing chromium, and are protected from corrosion at high temperatures by the chromium oxide layer.
However, this oxide may leave the member and move by the oxygen electrode gas G20. That is, a part of the chromium oxide is sublimated (in a gaseous state) or broken into a fine powder and scattered (in a solid state). Thus, there is a possibility that the chromium oxide released from the member reaches the oxygen electrode 153, reacts and precipitates, and inhibits the reaction at the oxygen electrode 153.
 図4は、クロム回収ユニット20の一例を模式的に表す断面図である。
 クロム回収ユニット20は、熱交換器30a(加熱部)と電気化学セルスタック10の間に配置され、酸素極ガスG20中のクロム酸化物を回収・固定する。
 クロム回収ユニット20は、外殻21,ガス供給口22,ガス排出口23,隔壁24,絶縁層25,吸収層26,電極27を有する。
FIG. 4 is a cross-sectional view schematically illustrating an example of the chromium recovery unit 20.
The chromium recovery unit 20 is disposed between the heat exchanger 30a (heating unit) and the electrochemical cell stack 10, and recovers and fixes the chromium oxide in the oxygen electrode gas G20.
The chromium recovery unit 20 includes an outer shell 21, a gas supply port 22, a gas discharge port 23, a partition wall 24, an insulating layer 25, an absorption layer 26, and an electrode 27.
 外殻21,隔壁24は、導電性および耐熱性を有する材料(例えば、金属)から構成できる。
 外殻21は、その内部を外界から遮断する。
 ガス供給口22,ガス排出口23は、外殻21内に酸素極ガスG20を供給、排出するためのガスの出入り口である。
 隔壁24は外殻21内を複数の区画に分割し、外殻21内の表面積(吸収層26の面積)を大きくする。隔壁24は所定の面を有する部材に対応する。
 隔壁24は、隣接する区画を接続するための流路241(例えば、貫通孔)を有する。この結果、ガス供給口22から外殻21内に供給された酸化性ガスは、複数の区画を通過し、ガス排出口23から排出される。
The outer shell 21 and the partition wall 24 can be made of a material having conductivity and heat resistance (for example, metal).
The outer shell 21 blocks the inside from the outside.
The gas supply port 22 and the gas discharge port 23 are gas outlets for supplying and discharging the oxygen electrode gas G <b> 20 into the outer shell 21.
The partition wall 24 divides the inside of the outer shell 21 into a plurality of sections to increase the surface area in the outer shell 21 (the area of the absorption layer 26). The partition wall 24 corresponds to a member having a predetermined surface.
The partition wall 24 has a flow path 241 (for example, a through hole) for connecting adjacent partitions. As a result, the oxidizing gas supplied from the gas supply port 22 into the outer shell 21 passes through the plurality of compartments and is discharged from the gas discharge port 23.
 隔壁24の面上に、絶縁層25,吸収層26,電極27が形成されている。なお、外殻21の内部にも絶縁層25,吸収層26,電極27を形成できる。
 絶縁層25は、吸収層26と隔壁24(および外殻21)の間を電気的に絶縁する。後述のように、吸収層26を負電位に保つことで、クロムの吸収を促進できる。
On the surface of the partition wall 24, an insulating layer 25, an absorption layer 26, and an electrode 27 are formed. Note that the insulating layer 25, the absorption layer 26, and the electrode 27 can also be formed inside the outer shell 21.
The insulating layer 25 electrically insulates between the absorption layer 26 and the partition wall 24 (and the outer shell 21). As described later, the absorption of chromium can be promoted by keeping the absorption layer 26 at a negative potential.
 吸収層26は、酸化極ガスG10中のクロム酸化物と反応して、酸化物C1を生成する物質Mの層である。酸化性ガス中のクロムが吸収層26の物質Mと反応し、安定な酸化物C1を生成することで、クロムが吸着、固定される。 The absorption layer 26 is a layer of the substance M that reacts with the chromium oxide in the oxidizing electrode gas G10 to generate the oxide C1. Chromium in the oxidizing gas reacts with the substance M in the absorption layer 26 to generate a stable oxide C1, thereby adsorbing and fixing chromium.
 このとき、酸化物C1の蒸気圧P1は、酸化極ガスG10中のクロム酸化物が酸素極153と反応して形成される化合物C2の蒸気圧P2と同等以下である(P1≦P2)。蒸気圧がこのような関係であれば、ガスG10中のクロム酸化物は、吸収層26に蓄積されてゆく。仮にこのような関係が崩れると、ガスG10中のクロム酸化物は最終的に吸収層26に蓄積されず、電気化学セルスタック10の酸素極153に蓄積されることになる。 At this time, the vapor pressure P1 of the oxide C1 is equal to or lower than the vapor pressure P2 of the compound C2 formed by the reaction of the chromium oxide in the oxidizing electrode gas G10 with the oxygen electrode 153 (P1 ≦ P2). If the vapor pressure is such a relationship, the chromium oxide in the gas G10 is accumulated in the absorption layer 26. If such a relationship is broken, the chromium oxide in the gas G10 is not accumulated in the absorption layer 26 finally, but is accumulated in the oxygen electrode 153 of the electrochemical cell stack 10.
 この蒸気圧の大小関係は、生成される酸化物C1、化合物C2が異なり、同一温度での蒸気圧を比較した結果でも良いし、生成される酸化物C1、化合物C2が同一で、運転時の吸収層26の温度を酸素極153より低くすることで達成してもよい。 The magnitude relationship between the vapor pressures may be the result of comparing the vapor pressure at the same temperature with the generated oxide C1 and the compound C2 being different, or the generated oxide C1 and the compound C2 being the same, You may achieve by making the temperature of the absorption layer 26 lower than the oxygen electrode 153.
 物質Mとして、次の(1)、(2)の材料を利用できる。
(1)マンガンを含む金属もしくは金属酸化物
 物質Mには、例えば、マンガン単体、マンガンクロム鋼、フェロマンガンマンガン鉄フェライトなどを用いることができる。
(2)酸素極153に用いられる酸化物材料
 物質Mには、例えば、LSM、LSC、LSCF、LSF、LSMCo、LSMCr、LCM、LSC、LSFN、LNF、LBC、LNC、LSAF、LSCNC、LSFNC、LN、GSC、GSM、PCaM、PSM、PBC、SSC、NSC、BSCC、BLFC、BSFC、YLFC、YCCF、またはYBCを用いることができる。
 この内、Mnを含む材料、LSM、LSMCo、LSMCr、LCM、GSM、PCaM、PSMが好ましく、LSMが特に好ましい。物質Mに含まれるマンガンがCrと反応することで、クロム析出を促進できる。
As the substance M, the following materials (1) and (2) can be used.
(1) Metal or metal oxide containing manganese As the substance M, for example, manganese alone, manganese chromium steel, ferromanganese manganese iron ferrite, or the like can be used.
(2) Oxide Material Used for Oxygen Electrode 153 Substance M includes, for example, LSM, LSC, LSCF, LSF, LSMCo, LSMCr, LCM, LSC, LSFN, LNF, LBC, LNC, LSAF, LSCNC, LSFNC, LN , GSC, GSM, PCaM, PSM, PBC, SSC, NSC, BSCC, BLFC, BSFC, YLFC, YCCF, or YBC can be used.
Among these, materials containing Mn, LSM, LSMCo, LSMCr, LCM, GSM, PCaM, and PSM are preferable, and LSM is particularly preferable. Chromium precipitation can be accelerated | stimulated because manganese contained in the substance M reacts with Cr.
 酸素極153と吸収層26の構成材料は、同一でも、異なってもよい。同一材料の場合、後述のように、クロム回収ユニット20(酸素極153)と電気化学セルスタック10(吸収層26)に温度差(例えば、50~100℃)を付ける必要性が高まる。なお、異種材料の場合でも、一般に、ある程度の温度差(例えば、50~100℃)はあった方が好ましい。 The constituent materials of the oxygen electrode 153 and the absorption layer 26 may be the same or different. In the case of the same material, as will be described later, the necessity of applying a temperature difference (for example, 50 to 100 ° C.) to the chromium recovery unit 20 (oxygen electrode 153) and the electrochemical cell stack 10 (absorption layer 26) increases. Even in the case of different materials, it is generally preferable that there is a certain temperature difference (for example, 50 to 100 ° C.).
 吸収層26を多孔質化し、酸素極ガスG20中のクロム酸化物(蒸気や微粉)との接触確率を高めてもよい。例えば、酸化物材料の粉末を塗布または成型することで、多孔質化した吸収層26を作成できる。 The absorption layer 26 may be made porous to increase the probability of contact with chromium oxide (vapor or fine powder) in the oxygen electrode gas G20. For example, the porous absorption layer 26 can be formed by applying or molding an oxide material powder.
 電極27は、吸収層26上に配置される導体であり、吸収層26に外部電源40からの負電位を印加する。吸収層26を負電位とすることで、クロムの吸収を促進できる。電極27は、吸収層26と酸化性ガスを接触させるために、通気性を有する(例えば、メッシュ状、多孔質状)。 The electrode 27 is a conductor disposed on the absorption layer 26, and applies a negative potential from the external power supply 40 to the absorption layer 26. By making the absorption layer 26 have a negative potential, absorption of chromium can be promoted. The electrode 27 has air permeability (for example, a mesh shape or a porous shape) in order to bring the absorbing layer 26 into contact with the oxidizing gas.
 図5は、クロム回収ユニット20aの他の一例を模式的に表す斜視図である。
 クロム回収ユニット20aは、基体28,絶縁層25,吸収層26,電極27を有する。基体28は、導電性および耐熱性を有する材料(例えば、ステンレス鋼などの金属)から構成され、複数の貫通孔29を有する。この貫通孔29中に絶縁層25,吸収層26,電極27が積層されている。
 クロム回収ユニット20ではガスG20が蛇行して流れたのに対して、クロム回収ユニット20aではガスG20は直線状に流れる。
FIG. 5 is a perspective view schematically showing another example of the chromium recovery unit 20a.
The chromium recovery unit 20 a includes a base 28, an insulating layer 25, an absorption layer 26, and an electrode 27. The base 28 is made of a material having conductivity and heat resistance (for example, a metal such as stainless steel) and has a plurality of through holes 29. An insulating layer 25, an absorption layer 26, and an electrode 27 are stacked in the through hole 29.
In the chromium recovery unit 20, the gas G20 meanders and flows, whereas in the chromium recovery unit 20a, the gas G20 flows linearly.
 ガスG20が貫通孔29内を通過するときに、ガスG20中のクロムが吸収層26に吸収されて、外部に排出される。
 クロム回収ユニット20aでのクロムの吸収メカニズムは、クロム回収ユニット20と同様なので、詳細な説明を省略する。
When the gas G20 passes through the through hole 29, the chromium in the gas G20 is absorbed by the absorption layer 26 and discharged to the outside.
Since the chromium absorption mechanism in the chromium recovery unit 20a is the same as that of the chromium recovery unit 20, detailed description thereof is omitted.
 熱交換器30aは、電気化学セルスタック10から排出される高温の排ガスG21を用いてガスG20を加熱し、クロム回収ユニット20に供給するものであり、供給ライン上に配置され、ガスを加熱する加熱部に対応する。 The heat exchanger 30a heats the gas G20 using the high-temperature exhaust gas G21 discharged from the electrochemical cell stack 10 and supplies the gas G20 to the chromium recovery unit 20, and is disposed on the supply line to heat the gas. Corresponds to the heating part.
 このとき、加熱されたガスG20の温度は、電気化学セルスタック10内の温度よりもある程度低くなるようにする。吸収層26の温度をある程度低くする(例えば、酸素極153の動作温度より低くすることで、クロムの効果的な回収が可能となる。吸収層26の温度をある程度高くしないとクロムとの反応が進まない一方、温度が高すぎると、一旦は反応したクロムが離脱し、クロムの吸収が進まなくなる。 At this time, the temperature of the heated gas G20 is set to be somewhat lower than the temperature in the electrochemical cell stack 10. The temperature of the absorption layer 26 is lowered to some extent (for example, by making it lower than the operating temperature of the oxygen electrode 153, it becomes possible to effectively recover chromium. On the other hand, if the temperature is too high, the chromium that has reacted once detaches and the absorption of chromium does not proceed.
 クロム回収ユニット20(吸収層26)と電気化学セルスタック10(酸素極153)にある程度の温度差を付けることで、クロム回収ユニット20での効率的なクロムの回収と電気化学セルスタック10での効率的な発電(あるいは電解)の両立が容易となる。この温度差は、例えば、50~100℃である。 By providing a certain temperature difference between the chromium recovery unit 20 (absorption layer 26) and the electrochemical cell stack 10 (oxygen electrode 153), efficient recovery of chromium in the chromium recovery unit 20 and in the electrochemical cell stack 10 are achieved. It is easy to achieve both efficient power generation (or electrolysis). This temperature difference is, for example, 50 to 100 ° C.
 このとき、吸収層26(隔壁24の面上、貫通孔29の内面上)の平均的な温度が酸素極153の温度(固体酸化物型電気化学セル15の動作温度)より低ければよい。すなわち、吸収層26の一部の温度が酸素極153の温度と同等あるいは高いことは許容される。 At this time, the average temperature of the absorption layer 26 (on the surface of the partition wall 24 and on the inner surface of the through hole 29) may be lower than the temperature of the oxygen electrode 153 (the operating temperature of the solid oxide electrochemical cell 15). That is, the temperature of a part of the absorption layer 26 is allowed to be equal to or higher than the temperature of the oxygen electrode 153.
 熱交換器30bは、クロム回収ユニット20から排出されるガスG20を加熱し、電気化学セルスタック10に供給する。熱交換器30bは、ガスG20の供給ライン上のクロム回収ユニット20と電気化学セル10の間に配置され、ガスG20を加熱する第2の加熱部として機能する。熱交換器30bを用いることで、クロム回収ユニット20と電気化学セルスタック10に適切な温度差を付けるのがより容易となる。
 なお、この温度差をそれほど問題としない場合には、熱交換器30bを省略してもよい。
The heat exchanger 30 b heats the gas G <b> 20 exhausted from the chromium recovery unit 20 and supplies it to the electrochemical cell stack 10. The heat exchanger 30b is disposed between the chromium recovery unit 20 and the electrochemical cell 10 on the gas G20 supply line, and functions as a second heating unit that heats the gas G20. By using the heat exchanger 30b, it becomes easier to provide an appropriate temperature difference between the chromium recovery unit 20 and the electrochemical cell stack 10.
In addition, when this temperature difference does not matter so much, the heat exchanger 30b may be omitted.
 以上では、熱交換器30a,30bは、排ガスG21を用いて、ガスG20を加熱している。排ガスG21に換えて、あるいは排ガスG21と共に、ガスG11を用いて、ガスG20を加熱してもよい。また、熱交換器30a,30bの一方または双方をヒータに換えて、電気でガスG20を加熱してもよい。 In the above, the heat exchangers 30a and 30b are heating the gas G20 using the exhaust gas G21. The gas G20 may be heated using the gas G11 instead of the exhaust gas G21 or together with the exhaust gas G21. Alternatively, one or both of the heat exchangers 30a and 30b may be replaced with a heater to heat the gas G20 with electricity.
 外部電源40は、クロム回収ユニット20の電極27と隔壁24(および外殻21)の間に電圧を印加し、吸収層26を負電位とする。吸収層26によるクロムの吸収を促進できる。 The external power supply 40 applies a voltage between the electrode 27 and the partition wall 24 (and the outer shell 21) of the chromium recovery unit 20, and makes the absorption layer 26 have a negative potential. The absorption of chromium by the absorption layer 26 can be promoted.
 本実施形態では、酸素極ガスG20の配管や熱交換器30aの表面から発生するクロム酸化物の気体または微粉をクロム回収ユニット20が吸収する。この結果、電気化学セルスタック10の特性低下を抑制し、長期にわたり効率よく運転できる。 In this embodiment, the chromium recovery unit 20 absorbs chromium oxide gas or fine powder generated from the piping of the oxygen electrode gas G20 and the surface of the heat exchanger 30a. As a result, deterioration of the characteristics of the electrochemical cell stack 10 can be suppressed and operation can be efficiently performed over a long period.
(第2の実施形態)
 図6は、第2の実施形態に係る固体酸化物形電気化学システムを表すブロック図である。
 第1の実施形態と同一の構成には、同一の符号を付し、重複する説明は省略する。
 第2の実施形態に係る固体酸化物形電気化学システムは、電気化学セルスタック10,クロム回収ユニット20a、熱交換器30a,加熱器50,制御器60を有する。
(Second Embodiment)
FIG. 6 is a block diagram showing a solid oxide electrochemical system according to the second embodiment.
The same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
The solid oxide electrochemical system according to the second embodiment includes an electrochemical cell stack 10, a chromium recovery unit 20a, a heat exchanger 30a, a heater 50, and a controller 60.
 クロム回収ユニット20aは、電気化学セルスタック10と対応する構成を有する。すなわち、クロム回収ユニット20aは、セルユニット11,ブスバー12a,12b,エンドプレート13a,13bを有する。セルユニット11は、固体酸化物型電気化学セル(単セル)15a,セパレータ16a,16b,絶縁シート17,集電体18a,18bを有する。固体酸化物型電気化学セル15aは、水素極151a,電解質層152a,酸素極153aを有する。 The chromium recovery unit 20 a has a configuration corresponding to the electrochemical cell stack 10. That is, the chromium recovery unit 20a includes a cell unit 11, bus bars 12a and 12b, and end plates 13a and 13b. The cell unit 11 includes a solid oxide electrochemical cell (single cell) 15a, separators 16a and 16b, an insulating sheet 17, and current collectors 18a and 18b. The solid oxide electrochemical cell 15a includes a hydrogen electrode 151a, an electrolyte layer 152a, and an oxygen electrode 153a.
 酸素極ガスG20中のクロムは、クロム回収ユニット20aの酸素極153aに吸着・固定される。
 酸素極153aは、酸素極153に用いられる酸化物材料、例えば、LSM、LSC、LSCF、LSF、LSMCo、LSMCr、LCM、LSC、LSFN、LNF、LBC、LNC、LSAF、LSCNC、LSFNC、LN、GSC、GSM、PCaM、PSM、PBC、SSC、NSC、BSCC、BLFC、BSFC、YLFC、YCCF、またはYBCを用いることができる。
 この内、Mnを含む材料、LSM、LSMCo、LSMCr、LCM、GSM、PCaM、PSMが好ましく、LSMが特に好ましい。マンガンがCrと反応することで、クロムの吸収を促進できる。
Chromium in the oxygen electrode gas G20 is adsorbed and fixed to the oxygen electrode 153a of the chromium recovery unit 20a.
The oxygen electrode 153a is an oxide material used for the oxygen electrode 153, such as LSM, LSC, LSCF, LSF, LSMCo, LSMCr, LCM, LSC, LSFN, LNF, LBC, LNC, LSAF, LSCNC, LSFNC, LN, GSC GSM, PCaM, PSM, PBC, SSC, NSC, BSCC, BLFC, BSFC, YLFC, YCCF, or YBC can be used.
Among these, materials containing Mn, LSM, LSMCo, LSMCr, LCM, GSM, PCaM, and PSM are preferable, and LSM is particularly preferable. When manganese reacts with Cr, absorption of chromium can be promoted.
 クロム回収ユニット20aには、使用済みの固体酸化物型電気化学セルスタックを用いてもよい。すなわち、SOFCまたはSOECでの特性が(クロム被毒以外の要因で)低下した固体酸化物型電気化学セルスタックをクロム回収ユニット20aとして用いることができる。 A used solid oxide electrochemical cell stack may be used for the chromium recovery unit 20a. That is, a solid oxide electrochemical cell stack having a reduced SOFC or SOEC property (due to factors other than chromium poisoning) can be used as the chromium recovery unit 20a.
 ここで、クロム回収ユニット20aとして用いる電気化学セルスタックは、燃料電池として動作させた方が好ましい。発電に伴う電圧によって、ガスG20中のクロムの酸素極153aへの吸着を促進できる。
 このため、クロム回収ユニット20aの水素極151aに、還元性ガス(ガスG10)が供給される。この結果、酸素極153aへの酸化性ガス(ガスG20)の供給と相俟って、クロム回収ユニット20aは発電する。
Here, the electrochemical cell stack used as the chromium recovery unit 20a is preferably operated as a fuel cell. Adsorption of chromium in the gas G20 to the oxygen electrode 153a can be promoted by the voltage accompanying the power generation.
For this reason, reducing gas (gas G10) is supplied to the hydrogen electrode 151a of the chromium recovery unit 20a. As a result, combined with the supply of the oxidizing gas (gas G20) to the oxygen electrode 153a, the chromium recovery unit 20a generates power.
 制御器50は、クロム回収ユニット20aの発電反応における過電圧を制御する。すなわち、クロム回収ユニット20aで発生した電力を適宜に他の箇所に供給したり、消費したりする。クロム回収ユニット20aで発生した電力を適宜に消費することで、クロム回収ユニット20a(酸素極153a)での反応、ひいてはクロムの吸収を促進できる。クロム回収ユニット20aで発生した電力がクロム回収ユニット20a内に蓄積されると、クロム回収ユニット20aでの燃料電池反応が阻害されることになる。 Controller 50 controls overvoltage in power generation reaction of chromium recovery unit 20a. That is, the electric power generated in the chromium recovery unit 20a is appropriately supplied to other places or consumed. By appropriately consuming the electric power generated in the chromium recovery unit 20a, the reaction in the chromium recovery unit 20a (oxygen electrode 153a) and hence the absorption of chromium can be promoted. When the electric power generated in the chromium recovery unit 20a is accumulated in the chromium recovery unit 20a, the fuel cell reaction in the chromium recovery unit 20a is hindered.
 第1の実施形態と同様、熱交換器30aは、電気化学セルスタック10から排出される高温の排ガスG21を用いてガスG20を加熱し、クロム回収ユニット20に供給する。クロム回収ユニット20(酸素極153a)と電気化学セルスタック10(酸素極153)にある程度の温度差を付けることで、クロム回収ユニット20での効率的なクロムの回収と電気化学セルスタック10での効率的な発電(あるいは電解)の両立が容易となる。 As in the first embodiment, the heat exchanger 30a heats the gas G20 using the high-temperature exhaust gas G21 discharged from the electrochemical cell stack 10 and supplies it to the chromium recovery unit 20. By providing a certain temperature difference between the chromium recovery unit 20 (oxygen electrode 153a) and the electrochemical cell stack 10 (oxygen electrode 153), efficient recovery of chromium in the chromium recovery unit 20 and in the electrochemical cell stack 10 are achieved. It is easy to achieve both efficient power generation (or electrolysis).
 加熱器60は、クロム回収ユニット20aから排出されるガスG20を加熱し、電気化学セルスタック10に供給する。加熱器60を用いることで、クロム回収ユニット20aと電気化学セルスタック10に適切な温度差を付けるのがより容易となる。
 なお、この温度差をそれほど問題としない場合には、加熱器60を省略してもよい。
 本実施形態では、クロム回収ユニット20aで発電した電力が加熱器60でのガスG20の加熱に用いられ、システムの効率的な運用が可能となる。
The heater 60 heats the gas G20 discharged from the chromium recovery unit 20a and supplies it to the electrochemical cell stack 10. By using the heater 60, it becomes easier to make an appropriate temperature difference between the chromium recovery unit 20a and the electrochemical cell stack 10.
In addition, when this temperature difference does not matter so much, the heater 60 may be omitted.
In the present embodiment, the electric power generated by the chromium recovery unit 20a is used for heating the gas G20 by the heater 60, and the system can be efficiently operated.
 本実施形態によれば、酸素極ガスG20の配管や熱交換器30aの表面から発生するクロム酸化物の気体または微粉をクロム回収ユニット20aが吸収する。この結果、電気化学セルスタック10の特性低下を抑制し、長期にわたり効率よく運転できる。 According to this embodiment, the chromium recovery unit 20a absorbs chromium oxide gas or fine powder generated from the piping of the oxygen electrode gas G20 and the surface of the heat exchanger 30a. As a result, deterioration of the characteristics of the electrochemical cell stack 10 can be suppressed and operation can be efficiently performed over a long period.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (7)

  1.  固体酸化物の電解質層と、その両側にそれぞれ配置される酸素極と水素極とを有する少なくとも1つの電気化学セルと、
     少なくとも一部がクロムを含む金属で構成され、前記少なくとも1つの電気化学セルの酸素極にガスを供給する供給ラインと、
     前記供給ライン上に配置され、前記ガスを加熱する加熱部と、
     前記供給ライン上の前記加熱部と前記電気化学セルの間に配置され、前記ガス中のクロム酸化物を回収するクロム回収ユニットと、
    を具備する電気化学システム。
    At least one electrochemical cell having a solid oxide electrolyte layer and an oxygen electrode and a hydrogen electrode respectively disposed on both sides thereof;
    A supply line that is at least partially composed of a metal containing chromium and supplies gas to the oxygen electrode of the at least one electrochemical cell;
    A heating unit disposed on the supply line for heating the gas;
    A chromium recovery unit disposed between the heating unit on the supply line and the electrochemical cell, and recovering chromium oxide in the gas;
    An electrochemical system comprising:
  2.  前記クロム回収ユニットが、
       所定の面を有する部材と、
       前記所定の面上に配置され、前記ガス中のクロム酸化物と反応して、前記酸素極とこのクロム酸化物が反応して形成される化合物と比較して、蒸気圧が同等以下の酸化物を形成する材料の層と、を備える
    請求項1記載の電気化学システム。
    The chromium recovery unit is
    A member having a predetermined surface;
    An oxide having a vapor pressure equal to or lower than that of the compound formed on the predetermined surface and reacting with the chromium oxide in the gas to react with the oxygen electrode and the chromium oxide. The electrochemical system of claim 1, comprising:
  3.  前記材料の層上に配置される電極と、
     前記電極に電圧を印加する電源と、
    をさらに具備する請求項2に記載の電気化学システム。
    An electrode disposed on the layer of material;
    A power source for applying a voltage to the electrode;
    The electrochemical system according to claim 2, further comprising:
  4.  前記所定の面の温度が、前記電気化学セルの動作温度よりも低い
    請求項2記載の電気化学システム。
    The electrochemical system according to claim 2, wherein a temperature of the predetermined surface is lower than an operating temperature of the electrochemical cell.
  5.  前記クロム回収ユニットが、
       固体酸化物の第2の電解質層と、その両側にそれぞれ配置される第2の酸素極と第2の水素極とを有する少なくとも1つの第2の電気化学セル、を備え、
       前記第2の酸素極が前記ガス中のクロム酸化物を吸収する、
    請求項1に記載の電気化学システム。
    The chromium recovery unit is
    A second electrolyte layer of solid oxide, and at least one second electrochemical cell having a second oxygen electrode and a second hydrogen electrode respectively disposed on both sides thereof,
    The second oxygen electrode absorbs chromium oxide in the gas;
    The electrochemical system according to claim 1.
  6.  前記第2の電気化学セルが、前記電気化学セルよりも燃料電池または電解セルとしての特性が低下した電気化学セルである、
    請求項5に記載の電気化学システム。
    The second electrochemical cell is an electrochemical cell whose characteristics as a fuel cell or an electrolysis cell are lower than those of the electrochemical cell.
    The electrochemical system according to claim 5.
  7.  固体酸化物の電解質層と、その両側にそれぞれ配置される酸素極と水素極とを有する少なくとも1つの電気化学セルと、
     少なくとも一部がクロムを含む金属で構成され、前記少なくとも1つの電気化学セルの酸素極にガスを供給する供給ラインと、
     前記供給ライン上に配置され、前記ガスを加熱する加熱部と
    を具備する電気化学システムのクロム回収方法において、
     前記供給ライン上の前記加熱部と前記電気化学セルの間で、前記ガス中のクロム酸化物を回収する電気化学システムのクロム回収方法。
    At least one electrochemical cell having a solid oxide electrolyte layer and an oxygen electrode and a hydrogen electrode respectively disposed on both sides thereof;
    A supply line that is at least partially composed of a metal containing chromium and supplies gas to the oxygen electrode of the at least one electrochemical cell;
    In a chromium recovery method for an electrochemical system, which is disposed on the supply line and includes a heating unit that heats the gas.
    The chromium recovery method of the electrochemical system which collect | recovers the chromium oxide in the said gas between the said heating part on the said supply line, and the said electrochemical cell.
PCT/JP2017/004231 2017-02-06 2017-02-06 Electrochemical system and chromium recovery method for electrochemical system WO2018142615A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/004231 WO2018142615A1 (en) 2017-02-06 2017-02-06 Electrochemical system and chromium recovery method for electrochemical system
JP2018565225A JP6833876B2 (en) 2017-02-06 2017-02-06 Electrochemical system and chromium recovery method for electrochemical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004231 WO2018142615A1 (en) 2017-02-06 2017-02-06 Electrochemical system and chromium recovery method for electrochemical system

Publications (1)

Publication Number Publication Date
WO2018142615A1 true WO2018142615A1 (en) 2018-08-09

Family

ID=63040348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004231 WO2018142615A1 (en) 2017-02-06 2017-02-06 Electrochemical system and chromium recovery method for electrochemical system

Country Status (2)

Country Link
JP (1) JP6833876B2 (en)
WO (1) WO2018142615A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003719A (en) * 1998-06-03 2000-01-07 Praxair Technol Inc Process for unifying solid oxide fuel cell and ion transport reactor
JP2008147086A (en) * 2006-12-12 2008-06-26 Sumitomo Precision Prod Co Ltd Fuel cell system
JP2014154210A (en) * 2013-02-04 2014-08-25 Mitsubishi Heavy Ind Ltd Fuel cell module, and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003719A (en) * 1998-06-03 2000-01-07 Praxair Technol Inc Process for unifying solid oxide fuel cell and ion transport reactor
JP2008147086A (en) * 2006-12-12 2008-06-26 Sumitomo Precision Prod Co Ltd Fuel cell system
JP2014154210A (en) * 2013-02-04 2014-08-25 Mitsubishi Heavy Ind Ltd Fuel cell module, and manufacturing method therefor

Also Published As

Publication number Publication date
JP6833876B2 (en) 2021-02-24
JPWO2018142615A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
KR101296431B1 (en) Battery and method for operating a battery
US7132189B2 (en) Fuel cell stack with bypass
JP6910179B2 (en) Manufacturing methods for electrochemical elements, electrochemical modules, electrochemical devices, energy systems, solid oxide fuel cells, and electrochemical elements
US9692062B2 (en) Fuel cell and method for operating the fuel cell
JP2006253090A (en) Solid oxide fuel cell
US9728797B2 (en) Fuel cell and fuel cell stack
JP2022028859A (en) Electrochemical device unit, electrochemical module, electrochemical device, energy system, solid oxide fuel cell unit and solid oxide electrolytic cell unit
CN111919321A (en) Metal support for electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, solid oxide electrolysis cell, and method for producing metal support
CN112106243A (en) Metal support for electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and solid oxide electrolysis cell
US9929452B2 (en) Energy conversion cell having an electrochemical conversion unit
WO2016104361A1 (en) Module and module accommodation device
CN111971835A (en) Metal plate, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method for producing metal plate
JP2018125284A (en) Solid oxide fuel battery cell
WO2018142615A1 (en) Electrochemical system and chromium recovery method for electrochemical system
US7803493B2 (en) Fuel cell system with separating structure bonded to electrolyte
KR102564764B1 (en) Electrochemical devices, energy systems, and solid oxide fuel cells
JP2009054393A (en) Fuel cell and power generation method
JP4849201B2 (en) Solid oxide fuel cell
JP2010238440A (en) Fuel battery module
WO2018146809A1 (en) Electrochemical cell stack
JP2001196083A (en) Solid electrolyte fuel cell
EP3588643A1 (en) Electrochemical reaction unit, electrochemical reaction cell stack, and production method for electrochemical reaction unit
CN111902988A (en) Method for producing metal plate, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and solid oxide electrolysis cell
JP2011124170A (en) Solid oxide fuel cell and gas supply method
JP2010247034A (en) Gas detoxifying apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565225

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894756

Country of ref document: EP

Kind code of ref document: A1