WO2018142614A1 - Glass bottle inspection device - Google Patents

Glass bottle inspection device Download PDF

Info

Publication number
WO2018142614A1
WO2018142614A1 PCT/JP2017/004228 JP2017004228W WO2018142614A1 WO 2018142614 A1 WO2018142614 A1 WO 2018142614A1 JP 2017004228 W JP2017004228 W JP 2017004228W WO 2018142614 A1 WO2018142614 A1 WO 2018142614A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
glass bottle
light receiving
unit
light emitting
Prior art date
Application number
PCT/JP2017/004228
Other languages
French (fr)
Japanese (ja)
Inventor
原田 崇
Original Assignee
東洋ガラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ガラス株式会社 filed Critical 東洋ガラス株式会社
Priority to KR1020197022224A priority Critical patent/KR102287992B1/en
Priority to JP2018565224A priority patent/JP6827060B2/en
Priority to CN202210462656.XA priority patent/CN114813787A/en
Priority to PCT/JP2017/004228 priority patent/WO2018142614A1/en
Priority to CN201780085631.XA priority patent/CN110431405B/en
Publication of WO2018142614A1 publication Critical patent/WO2018142614A1/en
Priority to PH12019501547A priority patent/PH12019501547A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents

Definitions

  • the present invention relates to a glass bottle inspection device that detects a defect of a glass bottle using a light emitting part and a light receiving part.
  • a defect called chatter may occur in the glass bottle manufacturing process at the mouth and neck of the glass bottle.
  • the chatter is a crack like a crack, and includes a vertical chatter extending in a substantially vertical direction (a bottle axial direction) and a horizontal chatter extending in a substantially horizontal direction (a direction orthogonal to the bottle axial direction).
  • the inspection device includes illumination that projects light onto a glass bottle, a camera that captures an image, and an image processing device that processes the image to detect chatter.
  • Patent Document 2 As a glass bottle inspection apparatus including a plurality of projectors and a plurality of light receivers, it has been proposed to instantaneously project a plurality of projectors one by one in sequence (for example, Patent Document 2). By doing this, even if a plurality of projectors are used, the situation where the irradiation light interferes with each other and the detection rate decreases, or even small bubbles shine excessively and the inspection accuracy is reduced is eliminated. .
  • JP 2014-134537 A Japanese Patent Laid-Open No. 11-344451
  • An object of the present invention is to provide a glass bottle inspection device that can prevent interference of light received by a light receiving unit even when a plurality of light emitting units are used. It is another object of the present invention to provide a glass bottle inspection apparatus capable of easily and accurately positioning a light emitting unit and a light receiving unit at predetermined positions of a glass bottle.
  • One aspect of the glass bottle inspection apparatus is: A first light emitting unit that emits visible light toward the mouth of the glass bottle; A second light emitting unit that irradiates infrared light toward the mouth; A first light receiving portion for detecting reflected light or refracted light from the mouth portion; A second light receiving portion for detecting reflected or refracted light of infrared light from the mouth portion; Including The first light emitting unit, the second light emitting unit, the first light receiving unit, and the second light receiving unit are arranged around the glass bottle at a rotation position for rotating the glass bottle provided in the glass bottle conveyance path. It is characterized by that.
  • the glass bottle inspection apparatus even when a plurality of light emitting units are used, it is possible to detect chatter or the like generated at the mouth of the glass bottle while preventing interference of light received by the light receiving unit. it can.
  • the first light emitting unit can be set to irradiate visible light having a wavelength with high transmittance according to the color of the glass bottle to be inspected.
  • the visible light of the first light emitting unit is set to a wavelength having a high transmittance according to the color of the glass bottle, so that the detection accuracy is affected by the color of the glass bottle. Can be prevented.
  • the first light receiving unit includes a band pass filter that transmits visible light of the first light emitting unit and does not transmit infrared light of the second light emitting unit
  • the second light receiving unit may include a band pass filter that transmits the infrared light of the second light emitting unit and does not transmit the visible light of the first light emitting unit.
  • light to be received can be selected and received by a band pass filter.
  • the first light emitting unit is disposed at a position symmetrical to the second light emitting unit with respect to a virtual plane including the central axis of rotation of the glass bottle
  • the first light receiving unit may be disposed at a position symmetrical to the second light receiving unit with respect to the virtual plane.
  • the light-emitting part and the light-receiving part are arranged symmetrically with respect to the plane so that they are reflected or refracted from, for example, differently shaped chatters generated at the same height position in the mouth part. Since light can be detected while preventing disturbance light from other light, detection accuracy of chatter and the like can be improved.
  • the first light receiving unit is one of two or more light receiving units that receive visible light of the first light emitting unit
  • the second light receiving unit may be one of two or more light receiving units that receive infrared light from the second light emitting unit.
  • the glass bottle inspection apparatus it is possible to improve the detection accuracy of a chatter or the like by including a plurality of light receiving units that receive visible light and a plurality of light receiving units that receive infrared light. it can.
  • the rotation position is provided in the middle of the glass bottle conveyance path, The glass bottles conveyed to the rotation position can be sequentially inspected.
  • the glass bottle inspection apparatus According to the glass bottle inspection apparatus according to this application example, it is possible to inspect sequentially and efficiently while the glass bottle is being conveyed.
  • the transport path is formed on a circumference centered on the transport center axis,
  • the first light receiving unit and the second light receiving unit are disposed closer to the transport center axis than the center axis of rotation, and receive reflected light or refracted light from the mouth part upward by a mirror. Can do.
  • a mirror is used on the conveyance center axis side that easily interferes with other components, so that the installation space of the light receiving unit can be saved.
  • the glass bottle inspection apparatus can efficiently perform different inspection items during the transportation of the glass bottle.
  • One aspect of the glass bottle inspection apparatus is: In the inspection device for inspecting the glass bottle by arranging the light emitting part and the light receiving part at the rotation position for rotating the glass bottle provided in the conveyance path of the glass bottle, An attachment part to which the light emitting part and the light receiving part are fixed; A first movement mechanism for moving the attachment portion forward and backward with respect to the rotation position; A second moving mechanism for raising and lowering the attachment portion; A positioning portion attached at a predetermined position of the attachment portion; Including By moving the attachment portion until the positioning portion contacts the side surface and the top surface of the mouth portion of the glass bottle by the first moving mechanism and the second moving mechanism with respect to the glass bottle disposed at the rotation position.
  • the light emitting unit and the light receiving unit can be positioned at predetermined positions.
  • the light emitting unit and the light receiving unit can be easily and accurately positioned at predetermined positions of the glass bottle by the positioning unit even when inspecting glass bottles having different shapes. Can do.
  • the positioning part may include a first positioning surface that contacts the side surface of the mouth portion of the glass bottle and a second positioning surface that contacts the top surface of the mouth portion at the tip of the rod-shaped member.
  • the glass bottle inspection apparatus according to this application example can reliably perform positioning with a simple configuration.
  • the positioning unit may be movable to a position that does not interfere with the glass bottle that is transported through the transport path after the light emitting unit and the light receiving unit are positioned.
  • the glass bottle inspection apparatus of the present invention even when a plurality of light emitting units are used, it is possible to detect chatter or the like generated at the mouth of the glass bottle while preventing interference of light received by the light receiving unit. . Further, according to the glass bottle inspection apparatus of the present invention, the light emitting unit and the light receiving unit can be easily and accurately positioned at predetermined positions of the glass bottle even when glass bottles having different shapes are to be inspected. .
  • FIG. 1 is a plan view of a glass bottle inspection apparatus.
  • FIG. 2 is a plan view of the second unit.
  • FIG. 3 is a side view of the second unit.
  • FIG. 4 is an enlarged perspective view of the mouth portion showing the imaging area of each light receiving portion.
  • FIG. 5 is a plan view of the first unit.
  • FIG. 6 is a side view of a second unit of a modification.
  • FIG. 7 is a side view of the second unit for explaining the positioning method.
  • FIG. 8 is a side view of the second unit for explaining the positioning method.
  • One aspect of the glass bottle inspection apparatus includes a first light emitting unit that irradiates visible light toward the mouth of the glass bottle, and a second light emitting unit that emits infrared light toward the mouth. And a first light receiving unit that detects reflected or refracted light of visible light from the mouth, and a second light receiving unit that detects reflected or refracted light of infrared light from the mouth,
  • the first light emitting unit, the second light emitting unit, the first light receiving unit, and the second light receiving unit are arranged around the glass bottle at a rotation position for rotating the glass bottle provided in the glass bottle conveyance path. It is characterized by that.
  • one aspect of the glass bottle inspection apparatus is an inspection in which the glass bottle is inspected by arranging a light emitting unit and a light receiving unit at a rotation position where the glass bottle provided on the glass bottle conveyance path rotates.
  • the light emitting part and the light receiving part can be positioned at predetermined positions by moving the attachment part until it contacts the top surface.
  • FIGS. 1 is a plan view of the inspection apparatus 10 for the glass bottle 1
  • FIG. 2 is a plan view of the second unit 11b
  • FIG. 3 is a side view of the second unit 11b
  • FIG. FIG. 5 is an enlarged perspective view of the mouth portion 2 showing imaging regions 43 and 50 to 53
  • FIG. 5 is a plan view of the first unit 11a.
  • the inspection device 10 includes a carry-in port 18, a conveyance path 12, a first unit 11 a, a second unit 11 b, and a carry-out port 19.
  • the glass bottle 1 is intermittently carried into the conveyance path 12 from the carry-in port 18 of the inspection apparatus 10.
  • the transport path 12 is provided with eight support tables (not shown), and supports the glass bottles 1 one by one.
  • the glass bottle 1 is intermittently transported along the transport path 12 to each stage while being supported by the support base.
  • the conveyance path 12 is formed on a circumference around the conveyance center axis 15.
  • the glass bottle 1 is conveyed in the clockwise direction in FIG.
  • the rotation position 14 is provided in the middle of the conveyance path 12 of the glass bottle 1, and the glass bottle 1 conveyed to the rotation position 14 can be inspected sequentially.
  • another rotation position 14 provided with the first unit 11a is provided at a position different from the rotation position 14 of the second unit 11b (upstream side in the conveyance direction of the glass bottle 1). At this different rotation position 14, an inspection different from the inspection item at the rotation position 14 of the second unit 11b can be performed.
  • the conveyance path 12 is not limited to the circumference, but may be formed in another shape, for example, a straight line.
  • the glass bottle 1 that has undergone the inspection process of each stage is sent out of the inspection apparatus 10 from the carry-out port 19 and moves to the next line in the case of a non-defective product.
  • the first unit 11a is an inspection unit that detects horizontal vibration
  • the second unit 11b is an inspection unit that detects vertical vibration.
  • Different inspection items for example, different types of defects
  • the chatter is a defect such as a crack generated in the mouth portion 2 when the glass bottle 1 is manufactured.
  • the glass bottle 1 in which the vibration is detected is discarded as a defective product.
  • chatters generated at the mouth portion 2 of the glass bottle 1. There are many kinds of chatters generated at the mouth portion 2 of the glass bottle 1. Among them, the first unit 11 a detects a horizontal chatch extending substantially in the horizontal direction of the glass bottle 1, and the second unit 11 b is an abbreviation of the glass bottle 1. Detects vertical vibration extending in the vertical direction.
  • the mouth 2 has a structure such as a screw for fitting a lid or the like, so there are many undulations in a narrow range, and it is difficult to detect chatter on the other hand.
  • An optical inspection unit is required to detect various types of chatter with high accuracy. Therefore, a plurality of light receiving units are provided according to the occurrence location and shape of chatter.
  • the inspection apparatus 10 includes a control unit 62 electrically connected to the first unit 11a and the second unit 11b.
  • the control unit 62 includes a determination unit 63, a template creation unit 64, a template storage unit 65, and an image processing unit 66.
  • the image processing unit 66 converts data captured by the first unit 11a and the second unit 11b into image data having a predetermined brightness.
  • the template creation unit 64 creates a template based on data of only the non-defective glass bottle 1 imaged by the first unit 11a and the second unit 11b. The created template is stored in the template storage unit 65.
  • the determination unit 63 compares the brightness of the image data converted by the image processing unit 66 and the template stored in the template storage unit 65, and determines that there is a chatter when a preset threshold value is exceeded. To do.
  • the control unit 62 is also electrically connected to a rotation detection unit 68 provided for each rotation position 14, and information on the rotation angle due to the rotation of the glass bottle 1 is input.
  • the second unit 11b will be mainly described. However, the same configuration may be applied to the first unit 11a, or may be applied to another inspection unit (not shown).
  • the 2nd unit 11b is the 1st light emission part 20 which irradiates visible light toward the opening part 2 of the glass bottle 1, and infrared light toward the opening part 2.
  • the second light emitting unit 30 (not shown in FIG. 3) that irradiates the light
  • the first light receiving unit 40 that detects the reflected or refracted light of the visible light from the mouth 2
  • the 2nd light-receiving part 50 (it omits in FIG. 3) which detects refracted light.
  • the first light emitting unit 20, the second light emitting unit 30, the first light receiving unit 40, and the second light receiving unit 50 rotate to rotate the glass bottle 1 provided in the conveyance path 12 of the glass bottle 1.
  • position 14 it is placed around the glass bottle 1.
  • the 1st light emission part 20, the 2nd light emission part 30, the 1st light-receiving part 40, and the 2nd light-receiving part 50 are arrange
  • the mouth portion 2 of the glass bottle 1 By using infrared light and visible light, the mouth portion 2 of the glass bottle 1 while preventing interference of light received by the light receiving portions (40, 50) even if a plurality of light emitting portions (20, 30) are used. It is possible to detect chatter and the like generated in
  • the first light receiving unit 40 is one of two or more light receiving units 40 to 43 that receive the visible light of the first light emitting unit 20.
  • the second light receiving unit 50 is one of two or more light receiving units 50 to 53 that receive the infrared light of the second light emitting unit 30.
  • the plurality of light receiving units 40 to 43 that receive visible light
  • the plurality of light receiving units 50 to 53 that receive infrared light
  • the first light receiving unit 40 will be described as a representative example of the light receiving units 40 to 43 that receive visible light
  • the second light receiving unit 50 will be described as a representative example of the light receiving units 50 to 53 that receive infrared light. To do.
  • the 1st light emission part 20 and the 2nd light emission part 30 are diffused illumination using LED (light emitting diode). A large solid angle can be obtained by using diffuse illumination, and reflected light or refracted light from various kinds of chatters can be easily obtained.
  • the first light emitting unit 20 emits visible light. It is preferable to set the 1st light emission part 20 so that the visible light of the wavelength with the high transmittance
  • the wavelength with high transmittance will be further described.
  • green LED illumination and red LED illumination are prepared as LEDs of the first light emitting unit 20
  • the color of the glass bottle 1 is, for example, green or blue
  • the green wavelength region is more than the red wavelength region. Since the light transmittance of the glass bottle 1 is high, green LED illumination is adopted.
  • red LED illumination is employed because the light transmittance of the glass bottle 1 is higher in the red wavelength region than in the green wavelength region. .
  • the first light receiving unit 40 can sufficiently recognize the light, so that the color of the glass bottle 1 It is possible to detect chatter and the like with high accuracy without being affected by the above.
  • a green LED can be used.
  • the red wavelength is transmitted to the same extent as the green wavelength, a red LED may be used.
  • the visible light of the first light emitting unit 20 light having a wavelength that is higher in transmittance than the glass bottle 1 is selected.
  • the first light emitting unit 20 may be provided with a plurality of color LEDs so that a plurality of colors can be selected and emitted, and when the first light emitting unit 20 is changed to the inspection of the glass bottle 1 having a different color, the first light emitting unit 20 is replaced with a different color LED. Also good.
  • the second light emitting unit 30 emits infrared light. Infrared light is preferable because it is less affected by the color of the glass bottle.
  • first light receiving unit 40 and the second light receiving unit 50 for example, a high-speed area sensor camera can be used.
  • the first light receiving unit 40 and the second light receiving unit 50 may use other known means capable of detecting the luminance of visible light and infrared light.
  • the first light receiving unit 40 includes a band-pass filter 40 a that transmits the visible light of the first light emitting unit 20 and does not transmit the infrared light of the second light emitting unit 30.
  • a band pass filter 40a for example, when the visible light of the first light emitting unit 20 is green, a green band pass filter that selectively transmits the green wavelength band can be employed.
  • the band-pass filter 40a does not transmit (for example, absorbs) infrared light other than green light, so that erroneous detection due to disturbance can be prevented.
  • the second light receiving unit 50 may include a band pass filter 50a that transmits the infrared light of the second light emitting unit 30 and does not transmit the visible light of the first light emitting unit 20.
  • the band pass filter 50 a selectively transmits the infrared light wavelength region of the second light emitting unit 30. By not transmitting (for example, absorbing) visible light other than infrared light by the bandpass filter 50a, erroneous detection due to disturbance can be prevented.
  • the light to be received by the bandpass filters 40a and 50a can be selected and only the light in a predetermined wavelength range can be received by the first light receiving unit 40 and the second light receiving unit 50.
  • the bandpass filters 40a and 50a are optical filters that transmit only a specific wavelength band.
  • a dielectric multilayer filter or a filter glass can be used as the band-pass filters 40a and 50a.
  • FIG. 2 there is a virtual plane 7 (indicated by a one-dot chain line) that passes between the first light receiving unit 40 and the second light receiving unit 50 and includes the central axis 5 of rotation of the glass bottle 1.
  • the virtual surface 7 may be a virtually set surface that passes through the conveyance center axis 15 and the rotation center axis 5.
  • the first light emitting unit 20 is disposed in a plane symmetric with the second light emitting unit 30 with respect to the virtual plane 7, and the first light receiving unit 40 is plane symmetric with the second light receiving unit 50 with respect to the virtual plane 7. It is arranged at the position.
  • the light receiving units 41 to 43 that receive visible light are arranged at positions symmetrical to the light receiving units 51 to 53 that receive infrared light with respect to the virtual plane 7.
  • the first and second light emitting units 20 and 30 and the light receiving units 40 to 43 and 50 to 53 are arranged in plane symmetry so that the shape generated at the same height position with respect to the central axis 5 of the glass bottle 1 in the mouth 2. Since the light reflected or refracted from different chatters or the like can be detected while preventing disturbance light of other light, the detection accuracy of the chatter or the like can be improved.
  • FIG. 3 shows the upper and lower arrangements of the first light emitting unit 20 and the light receiving units 40 to 43 arranged on the upstream side in the transport direction of the virtual plane 7.
  • the second light emitting unit 30 and the light receiving units 50 to 53 are similarly arranged on the downstream side in the transport direction of the virtual plane 7.
  • FIG. 4 shows the imaging areas of the light receiving portions 40 to 43 and 50 to 53 in the mouth portion 2 of the glass bottle 1 by broken lines.
  • the imaging area is the inspection target area.
  • the mouth portion 2 includes a top surface 2b, a side surface 2a of the mouth portion 2 where a screw portion (screw is omitted), and a lower neck portion 3 are formed.
  • the neck portion 3 includes a skirt portion 3a protruding in an annular shape and a portion directly below the skirt portion 3a.
  • the upper region of the mouth part 2 including the top surface 2 b is an imaging region, and the light receiving parts 41 and 51 are inside the side surface 2 a of the mouth part 2.
  • An area including the side surface is an imaging area, and the light receiving parts 42, 52, 43, and 53 are an upper area and a lower area (including immediately below the skirt part 3a) of the skirt part 3a.
  • the imaging areas of the light receiving units 40 to 43 and 50 to 53 have overlapping portions. Since the vertical heights and horizontal positions of the light receiving units 40 to 43 and 50 to 53 are different, the probability of receiving light reflected or refracted from chatter in the overlapping range is increased.
  • the imaging regions of the light receiving units 40 to 43 and 50 to 53 include places where chatter is likely to occur even if the shape of the glass bottle 1 is changed.
  • the first unit 11a for detecting horizontal vibration includes a light emitting unit 200 and a light receiving unit 400 in the same manner as the second unit 11b.
  • the light emitting unit 200 is provided on the side of the transport center axis 15 with respect to the glass bottle 1 at the rotation position 14, and includes a visible light LED with high transmittance that is appropriately selected according to the color of the glass bottle 1. This is because visible light makes it easy for an inspector to visually recognize the light emission state.
  • a plurality of (for example, seven) light receiving units 400 are arranged outside the transport path 12 with the glass bottle 1 interposed therebetween with respect to the light emitting unit 200, and transmit light that refracts at different angles depending on the shape of the chatter and the like through the glass bottle 1. Receive light.
  • Each of the light receiving units 400 includes a bandpass filter, and can selectively and efficiently receive reflected or transmitted light of visible light emitted from the light emitting unit 200.
  • the light receiving unit 400 can prevent disturbance due to light from other inspection machines, for example, by a bandpass filter.
  • FIG. 6 is a side view of a modified second unit 11c.
  • the first and second light emitting units 20, 30 and the light receiving units 41 to 43, 51 to 53 other than the first light receiving unit 40 and the second light receiving unit 50 are the same as the inspection apparatus 10 in FIGS. Arranged similarly.
  • FIG. 6 shows the same state as FIG. 3, but in FIG. 6, the light receiving parts 41 to 43 other than the first light receiving part 40 are omitted.
  • the second light receiving unit 50 is positioned symmetrically with the first light receiving unit 40 with respect to the virtual plane 7 (FIG. 2). Note that the same components as those in FIGS. 1 to 3 are denoted by the same reference numerals, and redundant description is omitted.
  • the transport path 12 is formed on a circumference 16 (FIG. 1) centered on the transport center axis 15, and the first light receiving unit 40 (and the second light receiving unit 50) is more transported than the center axis 5 of the rotation. It is arranged on the 15 side, and the reflected light or refracted light from the mouth portion 2 is reflected upward by the mirror 60 and received.
  • the first light receiving unit 40 (and the second light receiving unit 50) uses a mirror 60 on the side of the transport center axis 15 that easily interferes with other components. Thereby, the installation space of the 1st light-receiving part 40 (and 2nd light-receiving part 50) can be omitted.
  • the visible light of the first light emitting unit 20 is refracted by the top surface 2 b of the mouth 2, reaches the mirror 60 from the inner surface of the mouth 2, and the first light receiving unit 40 reflects the light reflected by the mirror 60. It is receiving light.
  • the first light receiving unit 40 is disposed so as to extend in the vertical direction, for example, so that an installation space in the vicinity of the transport center axis 15 can be omitted.
  • Positioning unit The positioning unit 76 of the inspection apparatus 10 will be described with reference to FIGS. 7 and 8.
  • 7 and 8 are side views of the second unit 11b for explaining the positioning method. 7 and 8, the second light emitting unit 30 and the light receiving units 41 to 43, 50 to 53 other than the first light receiving unit 40 are omitted, but the first light emitting unit 20, the second light emitting unit 30, and Similarly to the first light receiving unit 40, the light receiving units 41 to 43 and 50 to 53 are fixed to the mounting unit 70 at predetermined positions.
  • the first unit 11a has a configuration related to positioning similar to that of the second unit 11b. Note that the same components as those in FIGS. 1 to 3 are denoted by the same reference numerals, and redundant description is omitted.
  • the second unit 11 b receives the light from the first and second light emitting units 20 and 30 at the rotation position 14 provided in the transport path 12.
  • the glass bottle 1 is inspected by receiving light at 50-53.
  • the second unit 11 b includes an attachment portion 70 to which the first light receiving portion 40 and the like are fixed, a first moving mechanism 72 that moves the attachment portion 70 forward and backward with respect to the rotation position 14, and the attachment portion 70.
  • a second moving mechanism 74 that moves up and down, and a positioning portion 76 attached to a predetermined position of the attachment portion 70.
  • the first moving mechanism 72 and the second moving mechanism 74 allow the positioning portion 76 to contact the side surface 2 a and the top surface 2 b of the mouth portion 2 of the glass bottle 1.
  • the first light receiving unit 40 can be positioned at a predetermined position by moving the. In the manufacturing factory of the glass bottle 1, another shape of the glass bottle 1 may be produced by exchanging the mold. Even when the glass bottle 1 having a different shape is to be inspected, the first light receiving unit 40 (the first and second light emitting units 20 and 30 and the other light receiving units 41 to 43 are placed at predetermined positions on the glass bottle 1 by the positioning unit 76. , 50 to 53) can be positioned easily and accurately.
  • the shape of the mouth portion 2 such as a screw mouth and a crown mouth, the diameter, and the height of the glass bottle 1 may be different.
  • the mounting positions and mounting angles of the first and second light emitting units 20 and 30 and the light receiving units 40 to 43 and 50 to 53 can be basically used as they are for any glass bottle 1. This is because the mounting position and the mounting angle that are most suitable for the occurrence location of the chatter and the like are set by the inventors' previous experience and experiments. For example, when the glass bottles 1 having different shapes and having chatter were inspected using the inspection apparatus 10, it was possible to determine that 90% or more of the samples had chatter.
  • the first moving mechanism 72 is disposed on the elevating plate 71 and has two rods 73 (only one on the near side is shown) with a mounting portion 70 fixed to one end, and the other of the rods 73. And a manual ball screw mechanism fixed to the tip of the head.
  • the elevating plate 71 is disposed on the opposite side of the transport path 12 from the transport center axis 15. By rotating the handle of the manual ball screw mechanism, the rod 73 guided by the elevating plate 71 moves forward or backward with respect to the transport center shaft 15 together with the mounting portion 70.
  • the positioning unit 76 moves so as to pass through the central axis 5 of the glass bottle 1 at the rotation position 14. For example, the positioning unit 76 moves along the virtual plane 7 shown in FIG.
  • the second moving mechanism 74 includes a manual ball screw mechanism disposed on the lifting plate 71 and a rod 75 having one tip fixed to the fixing base 13 and the other tip side guided by the lifting plate 71.
  • the lift plate 71 moves up and down with respect to the fixed base 13 by turning the handle of the manual ball screw mechanism. Accordingly, the second moving mechanism 74 moves the first moving mechanism 72 and the mounting portion 70 up and down.
  • the positioning unit 76 When the positioning unit 76 is moved by the second moving mechanism 74, the positioning unit 76 moves up and down in a direction parallel to the central axis 5 of the glass bottle 1 at the rotation position 14.
  • the positioning portion 76 includes a first positioning surface 76a that contacts the side surface 2a of the mouth portion 2 of the glass bottle 1 and a second positioning surface 76b that contacts the top surface 2b of the mouth portion 2 at the tip of the rod-shaped member. . Positioning can be reliably executed with a simple configuration of the positioning portion 76.
  • the first positioning surface 76a is a surface extending in the vertical direction
  • the second positioning surface 76b is a surface extending in the horizontal direction.
  • the positioning unit 76 is a glass bottle 1 that is transported through the transport path 12 after positioning the first light receiving unit 40 (the same applies to the first and second light emitting units 20 and 30 and the other light receiving units 41 to 43 and 50 to 53). It is possible to move to a position where it does not interfere with. Interference with the glass bottle 1 inspected continuously with the positioning portion 76 can be prevented. For example, as shown by an arrow in FIG. 8, the positioning portion 76 may prevent interference with the glass bottle 1 being conveyed by being extracted from above the attachment portion 70.
  • the first moving mechanism 72 and the second moving mechanism 74 used manual ball screw mechanisms, but may use electric ball screw mechanisms or other actuators.
  • the glass bottle 1 conveyed to the rotation position 14 of the first unit 11a and the second unit 11b is rotated around the central axis 5 by a rotation electric motor (not shown) while being vertical and horizontal.
  • a slip inspection is performed.
  • the second unit 11b will be described with reference to FIGS. 1 to 4, but the basic inspection method is the same for the first unit 11a.
  • the second unit 11b includes a plurality of light receiving units 40 to 43 and 50 to 53. The first light receiving unit 40 and the second light receiving unit 50 will be described in order to simplify the description.
  • the first light emitting unit 20 and the second light emitting unit 30 irradiate the mouth 2 of the glass bottle 1 with visible light and infrared light at the rotation position 14 of the second unit 11b.
  • the control unit 62 causes the first light receiving unit 40 and the second light receiving unit 50 to continuously image the mouth portion 2 in synchronization with the rotation angle of rotation by the output signal of the rotation detection unit 68.
  • the images captured by the first light receiving unit 40 and the second light receiving unit 50 are processed by the image processing unit 66. More specifically, in the first light receiving unit 40 and the second light receiving unit 50, light from the first light emitting unit 20 and the second light emitting unit 30 is incident on the mouth part 2 of the glass bottle 1 and is emitted from the mouth part 2. The refracted light is picked up by the first light receiving unit 40 and the second light receiving unit 50, and the picked-up image is converted into brightness of a predetermined gradation (for example, 256 gradations) by the image processing unit 66.
  • a predetermined gradation for example, 256 gradations
  • the image processor 66 When there is a chatter on the mouth 2, the light incident on the mouth 2 is refracted at the crack surface of the chatter, and this refracted light is brightened as an area (high gradation area) by the image processor 66 than other image parts. Be recognized.
  • the imaging regions of the first light receiving unit 40 and the second light receiving unit 50 are regions indicated by broken lines in FIG. 4, but in the imaging region, the portion where the vibration is particularly likely to occur is more than the other portion called the gate.
  • a small number of pixels having a predetermined brightness can be set as the threshold value. This is because the detection accuracy of the predetermined portion is improved by the gate.
  • a plurality of gates may be provided in one imaging region. Examples of the portion where the gate is provided in the mouth portion 2 include a range from 0 mm to 5 mm below the top surface 2b of the side surface 2a, and a range from 0 mm to 5 mm below the skirt portion 3a.
  • the determination unit 63 compares (subtracts) the image converted to a predetermined gradation for each unit pixel and the template, and extracts a detection object whose image is brighter than the template.
  • the determination unit 63 exceeds the threshold value of the predetermined brightness (binarized value) after subtraction set in the inspection region of the first light receiving unit 40 and the extracted detection body 63 has a predetermined area (number of pixels). ) Is exceeded, it is determined that there is a chatter in the mouth 2. Conversely, the determination unit 63 determines that there is no chatter in the mouth 2 when at least one of the threshold values is not exceeded.
  • the glass bottle 1 determined to have chatter is taken out of the line without being transferred from the carry-out port 19 to the next process, and is processed as a defective product.
  • Template A template used in the inspection method will be described.
  • the template creation unit 64 images only a predetermined number (for example, about 20) of non-defective glass bottles 1 in the same manner as in the above-described inspection, and creates a new template for the glass bottle 1 to be inspected. It is created for each of the first light receiving unit 40 and the second light receiving unit 50. In the new template, since only the non-defective glass bottle 1 is targeted, the luminance for each unit pixel is reflected as it is. New templates created in each of the first light receiving unit 40 and the second light receiving unit 50 are stored in the template storage unit 65.
  • the actual inspection is performed for each glass bottle 1 while comparing the template stored in the template storage unit 65 with the newly captured image.
  • the template is updated as the inspection proceeds.
  • the template can be updated each time a predetermined number of inspections are performed. That is, when the number of non-defective glass bottles 1 reaches a predetermined number, updating is performed by reflecting the luminance distribution for the predetermined number in the template.
  • the predetermined number to be reflected in the template can be set to be small (for example, 60) at the beginning of the inspection and to increase (for example, 250) as the inspection proceeds. Further, even when the predetermined number of reflections is less than the predetermined number reflected in the template, the template is updated with the luminance distribution corresponding to the number of non-defective products obtained during the predetermined update time (for example, 20 minutes). This is because when the production is temporarily stopped due to a production trouble, the state of the glass bottle 1 may also change, so that the influence of the changed state of the glass bottle 1 is not greatly reflected in the template.
  • the template increases the number of non-defective glass bottles 1 to be reflected in the template every time it is updated from the start of production (inspection), and weakens the degree of reflection of brightness in the non-defective product distribution to be reflected in the template. Since the state of the mold changes while production is continued, the shape of the glass bottle 1 also slightly changes. For this reason, if the template is changed to a template having only the changed state, or if the changed state is strongly reflected in the template, the non-defective product rejection rate tends to increase.
  • an update method as shown in Table 1 can be adopted.
  • a new template is created based on the luminance distribution obtained by inspecting 20 non-defective glass bottles 1 with the inspection apparatus 10 and performing image processing with the image processing unit 66.
  • the first updated template reflects the luminance distribution of 60 non-defective glass bottles 1 from the start of inspection in the new template. Specifically, only the light distribution of the difference between the luminance distribution for 60 lines and the new template is reflected by adding to the new template.
  • the luminance addition rate (addition rate of the brighter part than the new template) in each unit pixel number is set to 100%, and 128 gradations (of 256 gradations) are set as addition limit values, and the luminance subtraction rate The subtraction limit value was set to 128 gradations (of 256 gradations) with 70% being the subtraction rate of the darker part than the new template.
  • the inspection by the updated inspection apparatus 10 is performed with the updated template. As the number of updates increases, such as the second update and the third update, the addition rate and the subtraction rate become smaller, and the luminance distribution that appears in the number up to the update is gradually reflected in the update template. This is because the influence of the change in the mold state (mold temperature, release agent, etc.) due to continuous production is not strongly reflected in the template.
  • the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects).
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
  • second light receiving part 50a ... band pass filter, 51 to 53 ... light receiving part, 60 Mirror, 62 Control unit, 63 Determination unit, 64 Template creation unit, 65 Template storage unit, 66 Image processing unit, 68 Rotation detection unit, 70 Mounting unit, 71 Lift plate, 72 1 moving mechanism, 73 ... rod, 74 ... second moving mechanism, 5 ... rod, 76 ... positioning portion, 76a ... first positioning surface, 76 b ... second positioning surface, 200 ... light-emitting portion, 400 ... receiving portion

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

A glass bottle inspection device 10 includes a first light-emitting part 20 for radiating visible light toward a mouth section 2 of a glass bottle 1, a second light-emitting part 30 for radiating infrared light toward the mouth section 2, a first light-receiving part 40 for detecting reflected light or refracted light of the visible light from the mouth section 2, and a second light-receiving part 50 for detecting reflected light or refracted light of the infrared light from the mouth section 2. The first light-emitting part 20, the second light-emitting part 30, the first light-receiving part 40, and the second light-receiving part 50 are disposed on the periphery of the glass bottle in a rotation position 14 where the glass bottle 1 is rotated, the rotation position 14 being provided on a conveyance route 12 for the glass bottle 1.

Description

ガラスびんの検査装置Glass bottle inspection equipment
 本発明は、ガラスびんの欠点を発光部と受光部を用いて検出するガラスびんの検査装置に関するものである。 The present invention relates to a glass bottle inspection device that detects a defect of a glass bottle using a light emitting part and a light receiving part.
 ガラスびんの口部や首部にはびりと呼ばれる欠点がガラスびんの製造工程で発生することがある。びりは、ひび割れのようなクラックであり、略鉛直方向(びんの軸方向)に延びる垂直びりと、略水平方向(びんの軸方向に直交する方向)に延びる水平びりと、がある。 A defect called chatter may occur in the glass bottle manufacturing process at the mouth and neck of the glass bottle. The chatter is a crack like a crack, and includes a vertical chatter extending in a substantially vertical direction (a bottle axial direction) and a horizontal chatter extending in a substantially horizontal direction (a direction orthogonal to the bottle axial direction).
 従来、このようなびりを検出するため、ガラスびんの特定部位を撮像し、その画像からびりを検出するガラスびんの検査装置が知られている(例えば、特許文献1)。検査装置は、ガラスびんに投光する照明と、撮像するカメラと、画像を処理してびりを検出する画像処理装置とを備える。 Conventionally, in order to detect such chatter, there is known a glass bottle inspection apparatus that images a specific part of a glass bottle and detects the chatter from the image (for example, Patent Document 1). The inspection device includes illumination that projects light onto a glass bottle, a camera that captures an image, and an image processing device that processes the image to detect chatter.
 びり等のガラスびんの欠点は、常に同じ部分に現れるわけではなく、また、常に同じ形状の凹部であるわけでもない。そのため、欠点の反射光や屈折光に対応するため、複数箇所に受光部が設けられている。 The drawbacks of glass bottles such as chatters do not always appear in the same part, and are not always concave parts of the same shape. Therefore, in order to cope with the reflected light and refracted light of the defect, light receiving portions are provided at a plurality of locations.
 また、複数個の投光器と複数個の受光器を備えるガラスびんの検査装置としては、複数の投光器を順次1個ずつ瞬時的に投光することが提案されている(例えば、特許文献2)。このようにすることで、複数個の投光機を用いても照射光が互いに干渉し合って検出率が落ちたり、小さな気泡まで過剰に光って検査精度が低下するという事態を解消している。 Further, as a glass bottle inspection apparatus including a plurality of projectors and a plurality of light receivers, it has been proposed to instantaneously project a plurality of projectors one by one in sequence (for example, Patent Document 2). By doing this, even if a plurality of projectors are used, the situation where the irradiation light interferes with each other and the detection rate decreases, or even small bubbles shine excessively and the inspection accuracy is reduced is eliminated. .
特開2014-134537号公報JP 2014-134537 A 特開平11-344451号公報Japanese Patent Laid-Open No. 11-344451
 本発明は、複数の発光部を用いても、受光部で受光される光の干渉を防ぐことができるガラスびんの検査装置を提供することを目的とする。また、本発明は、ガラスびんの所定位置に発光部及び受光部を容易かつ正確に位置決めすることができるガラスびんの検査装置を提供することを目的とする。 An object of the present invention is to provide a glass bottle inspection device that can prevent interference of light received by a light receiving unit even when a plurality of light emitting units are used. It is another object of the present invention to provide a glass bottle inspection apparatus capable of easily and accurately positioning a light emitting unit and a light receiving unit at predetermined positions of a glass bottle.
 [適用例1]
 本適用例に係るガラスびんの検査装置の一態様は、
 ガラスびんの口部に向けて可視光を照射する第1発光部と、
 前記口部に向けて赤外光を照射する第2発光部と、
 前記口部からの可視光の反射光または屈折光を検出する第1受光部と、
 前記口部からの赤外光の反射光または屈折光を検出する第2受光部と、
を含み、
 前記第1発光部、前記第2発光部、前記第1受光部及び前記第2受光部は、ガラスびんの搬送経路に設けられたガラスびんを自転させる自転位置において、ガラスびんの周囲に配置されることを特徴とする。
[Application Example 1]
One aspect of the glass bottle inspection apparatus according to this application example is:
A first light emitting unit that emits visible light toward the mouth of the glass bottle;
A second light emitting unit that irradiates infrared light toward the mouth;
A first light receiving portion for detecting reflected light or refracted light from the mouth portion;
A second light receiving portion for detecting reflected or refracted light of infrared light from the mouth portion;
Including
The first light emitting unit, the second light emitting unit, the first light receiving unit, and the second light receiving unit are arranged around the glass bottle at a rotation position for rotating the glass bottle provided in the glass bottle conveyance path. It is characterized by that.
 本適用例に係るガラスびんの検査装置によれば、複数の発光部を用いても、受光部で受光される光の干渉を防ぎながらガラスびんの口部に発生するびり等を検出することができる。 According to the glass bottle inspection apparatus according to this application example, even when a plurality of light emitting units are used, it is possible to detect chatter or the like generated at the mouth of the glass bottle while preventing interference of light received by the light receiving unit. it can.
 [適用例2]
 本適用例に係るガラスびんの検査装置の一態様において、
 前記第1発光部は、検査対象となるガラスびんの色に応じた透過率の高い波長の可視光を照射するように設定することができる。
[Application Example 2]
In one aspect of the glass bottle inspection apparatus according to this application example,
The first light emitting unit can be set to irradiate visible light having a wavelength with high transmittance according to the color of the glass bottle to be inspected.
 本適用例に係るガラスびんの検査装置によれば、第1発光部の可視光をガラスびんの色に応じた透過率の高い波長とすることで、ガラスびんの色によって検出精度に影響が出るのを防ぐことできる。 According to the glass bottle inspection apparatus according to this application example, the visible light of the first light emitting unit is set to a wavelength having a high transmittance according to the color of the glass bottle, so that the detection accuracy is affected by the color of the glass bottle. Can be prevented.
 [適用例3]
 本適用例に係るガラスびんの検査装置の一態様において、
 前記第1受光部は、前記第1発光部の可視光を透過し、前記第2発光部の赤外光を透過しないバンドパスフィルターを備え、
 前記第2受光部は、前記第2発光部の赤外光を透過し、前記第1発光部の可視光を透過しないバンドパスフィルターを備えることができる。
[Application Example 3]
In one aspect of the glass bottle inspection apparatus according to this application example,
The first light receiving unit includes a band pass filter that transmits visible light of the first light emitting unit and does not transmit infrared light of the second light emitting unit,
The second light receiving unit may include a band pass filter that transmits the infrared light of the second light emitting unit and does not transmit the visible light of the first light emitting unit.
 本適用例に係るガラスびんの検査装置によれば、受光させたい光をバンドパスフィルターにより選別して受光することができる。 According to the glass bottle inspection apparatus according to this application example, light to be received can be selected and received by a band pass filter.
 [適用例4]
 本適用例に係るガラスびんの検査装置の一態様において、
 前記第1発光部は、ガラスびんの自転の中心軸を含む仮想面に対して、前記第2発光部と面対称の位置に配置され、
 前記第1受光部は、前記仮想面に対して、前記第2受光部と面対称の位置に配置されることができる。
[Application Example 4]
In one aspect of the glass bottle inspection apparatus according to this application example,
The first light emitting unit is disposed at a position symmetrical to the second light emitting unit with respect to a virtual plane including the central axis of rotation of the glass bottle,
The first light receiving unit may be disposed at a position symmetrical to the second light receiving unit with respect to the virtual plane.
 本適用例に係るガラスびんの検査装置によれば、発光部と受光部が面対称に配置されることで口部における同じ高さ位置に発生する例えば形状の違うびり等からの反射または屈折する光を他の光の外乱光を防ぎつつ、検出できるため、びり等の検出精度を向上させることができる。 According to the glass bottle inspection apparatus according to this application example, the light-emitting part and the light-receiving part are arranged symmetrically with respect to the plane so that they are reflected or refracted from, for example, differently shaped chatters generated at the same height position in the mouth part. Since light can be detected while preventing disturbance light from other light, detection accuracy of chatter and the like can be improved.
 [適用例5]
 本適用例に係るガラスびんの検査装置の一態様において、
 前記第1受光部は、前記第1発光部の可視光を受光する2以上の受光部の1つであり、
 前記第2受光部は、前記第2発光部の赤外光を受光する2以上の受光部の1つであることができる。
[Application Example 5]
In one aspect of the glass bottle inspection apparatus according to this application example,
The first light receiving unit is one of two or more light receiving units that receive visible light of the first light emitting unit,
The second light receiving unit may be one of two or more light receiving units that receive infrared light from the second light emitting unit.
 本適用例に係るガラスびんの検査装置によれば、可視光を受光する複数の受光部と赤外光を受光する複数の受光部とを備えることで、びり等の検出精度を向上させることができる。 According to the glass bottle inspection apparatus according to this application example, it is possible to improve the detection accuracy of a chatter or the like by including a plurality of light receiving units that receive visible light and a plurality of light receiving units that receive infrared light. it can.
 [適用例6]
 本適用例に係るガラスびんの検査装置の一態様において、
 前記自転位置は、ガラスびんの搬送経路の途中に設けられており、
 前記自転位置に搬送されてくるガラスびんを順次検査することができる。
[Application Example 6]
In one aspect of the glass bottle inspection apparatus according to this application example,
The rotation position is provided in the middle of the glass bottle conveyance path,
The glass bottles conveyed to the rotation position can be sequentially inspected.
 本適用例に係るガラスびんの検査装置によれば、ガラスびんの搬送途中で効率的に順次検査を行うことができる。 According to the glass bottle inspection apparatus according to this application example, it is possible to inspect sequentially and efficiently while the glass bottle is being conveyed.
 [適用例7]
 本適用例に係るガラスびんの検査装置の一態様において、
 前記搬送経路は、搬送中心軸を中心とする円周上に形成され、
 前記第1受光部及び前記第2受光部は、前記自転の中心軸よりも前記搬送中心軸側に配置され、前記口部からの反射光または屈折光をミラーで上方へ反射させて受光することができる。
[Application Example 7]
In one aspect of the glass bottle inspection apparatus according to this application example,
The transport path is formed on a circumference centered on the transport center axis,
The first light receiving unit and the second light receiving unit are disposed closer to the transport center axis than the center axis of rotation, and receive reflected light or refracted light from the mouth part upward by a mirror. Can do.
 本適用例に係るガラスびんの検査装置によれば、他の部品と干渉しやすい搬送中心軸側はミラーを用いることで受光部の設置スペースを省くことができる。 According to the glass bottle inspection apparatus according to this application example, a mirror is used on the conveyance center axis side that easily interferes with other components, so that the installation space of the light receiving unit can be saved.
 [適用例8]
 本適用例に係るガラスびんの検査装置の一態様において、
 前記搬送経路には、前記自転位置とは異なる位置に別の自転位置が設けられており、
 前記別の自転位置において、前記自転位置における検査項目とは異なる検査をすることができる。
[Application Example 8]
In one aspect of the glass bottle inspection apparatus according to this application example,
In the conveyance path, another rotation position is provided at a position different from the rotation position,
At the other rotation position, an inspection different from the inspection item at the rotation position can be performed.
 本適用例に係るガラスびんの検査装置によれば、異なる検査項目をガラスびんの搬送途中で効率的に行うことができる。 The glass bottle inspection apparatus according to this application example can efficiently perform different inspection items during the transportation of the glass bottle.
 [適用例9]
 本適用例に係るガラスびんの検査装置の一態様は、
 ガラスびんの搬送経路に設けられたガラスびんを自転させる自転位置に、発光部及び受光部を配置してガラスびんを検査する検査装置において、
 前記発光部及び前記受光部が固定された取付部と、
 前記取付部を前記自転位置に対して進退させる第1移動機構と、
 前記取付部を昇降させる第2移動機構と、
 前記取付部の所定位置に取り付けられた位置決め部と、
を含み、
 前記自転位置に配置したガラスびんに対し、前記第1移動機構及び前記第2移動機構によって、前記位置決め部がガラスびんの口部の側面及び天面に接触するまで前記取付部を移動させることで前記発光部及び前記受光部を所定の位置に位置決め可能であることを特徴とする。
[Application Example 9]
One aspect of the glass bottle inspection apparatus according to this application example is:
In the inspection device for inspecting the glass bottle by arranging the light emitting part and the light receiving part at the rotation position for rotating the glass bottle provided in the conveyance path of the glass bottle,
An attachment part to which the light emitting part and the light receiving part are fixed;
A first movement mechanism for moving the attachment portion forward and backward with respect to the rotation position;
A second moving mechanism for raising and lowering the attachment portion;
A positioning portion attached at a predetermined position of the attachment portion;
Including
By moving the attachment portion until the positioning portion contacts the side surface and the top surface of the mouth portion of the glass bottle by the first moving mechanism and the second moving mechanism with respect to the glass bottle disposed at the rotation position. The light emitting unit and the light receiving unit can be positioned at predetermined positions.
 本適用例に係るガラスびんの検査装置によれば、異なる形状のガラスびんを検査することになっても、位置決め部によってガラスびんの所定位置に発光部及び受光部を容易かつ正確に位置決めすることができる。 According to the glass bottle inspection apparatus according to this application example, the light emitting unit and the light receiving unit can be easily and accurately positioned at predetermined positions of the glass bottle by the positioning unit even when inspecting glass bottles having different shapes. Can do.
 [適用例10]
 本適用例に係るガラスびんの検査装置の一態様において、
 前記位置決め部は、棒状部材の先端に、ガラスびんの口部の側面に接触する第1位置決め面と、口部の天面に接触する第2位置決め面と、を含むことができる。
[Application Example 10]
In one aspect of the glass bottle inspection apparatus according to this application example,
The positioning part may include a first positioning surface that contacts the side surface of the mouth portion of the glass bottle and a second positioning surface that contacts the top surface of the mouth portion at the tip of the rod-shaped member.
 本適用例に係るガラスびんの検査装置によれば、簡易な構成で確実に位置決めを実行できる。 The glass bottle inspection apparatus according to this application example can reliably perform positioning with a simple configuration.
 [適用例11]
 本適用例に係るガラスびんの検査装置の一態様において、
 前記位置決め部は、前記発光部及び前記受光部の位置決め後に、前記搬送経路を搬送されるガラスびんと干渉しない位置へ移動可能であることができる。
[Application Example 11]
In one aspect of the glass bottle inspection apparatus according to this application example,
The positioning unit may be movable to a position that does not interfere with the glass bottle that is transported through the transport path after the light emitting unit and the light receiving unit are positioned.
 本適用例に係るガラスびんの検査装置によれば、位置決め部とガラスびんとの干渉を防止することができる。 According to the glass bottle inspection apparatus according to this application example, interference between the positioning portion and the glass bottle can be prevented.
 本発明に係るガラスびんの検査装置によれば、複数の発光部を用いても、受光部で受光される光の干渉を防ぎながらガラスびんの口部に発生するびり等を検出することができる。また、本発明に係るガラスびんの検査装置によれば、異なる形状のガラスびんを検査することになっても、ガラスびんの所定位置に発光部及び受光部を容易かつ正確に位置決めすることができる。 According to the glass bottle inspection apparatus of the present invention, even when a plurality of light emitting units are used, it is possible to detect chatter or the like generated at the mouth of the glass bottle while preventing interference of light received by the light receiving unit. . Further, according to the glass bottle inspection apparatus of the present invention, the light emitting unit and the light receiving unit can be easily and accurately positioned at predetermined positions of the glass bottle even when glass bottles having different shapes are to be inspected. .
図1は、ガラスびんの検査装置の平面図である。FIG. 1 is a plan view of a glass bottle inspection apparatus. 図2は、第2ユニットの平面図である。FIG. 2 is a plan view of the second unit. 図3は、第2ユニットの側面図である。FIG. 3 is a side view of the second unit. 図4は、各受光部の撮像領域を示す口部の拡大斜視図である。FIG. 4 is an enlarged perspective view of the mouth portion showing the imaging area of each light receiving portion. 図5は、第1ユニットの平面図である。FIG. 5 is a plan view of the first unit. 図6は、変形例の第2ユニットの側面図である。FIG. 6 is a side view of a second unit of a modification. 図7は、位置決め方法を説明する第2ユニットの側面図である。FIG. 7 is a side view of the second unit for explaining the positioning method. 図8は、位置決め方法を説明する第2ユニットの側面図である。FIG. 8 is a side view of the second unit for explaining the positioning method.
 以下、本発明の好適な実施形態について、図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. The embodiments described below do not unduly limit the contents of the present invention described in the claims. In addition, not all of the configurations described below are essential constituent requirements of the present invention.
 本実施形態に係るガラスびんの検査装置の一態様は、ガラスびんの口部に向けて可視光を照射する第1発光部と、前記口部に向けて赤外光を照射する第2発光部と、前記口部からの可視光の反射光または屈折光を検出する第1受光部と、前記口部からの赤外光の反射光または屈折光を検出する第2受光部と、を含み、前記第1発光部、前記第2発光部、前記第1受光部及び前記第2受光部は、ガラスびんの搬送経路に設けられたガラスびんを自転させる自転位置において、ガラスびんの周囲に配置されることを特徴とする。 One aspect of the glass bottle inspection apparatus according to this embodiment includes a first light emitting unit that irradiates visible light toward the mouth of the glass bottle, and a second light emitting unit that emits infrared light toward the mouth. And a first light receiving unit that detects reflected or refracted light of visible light from the mouth, and a second light receiving unit that detects reflected or refracted light of infrared light from the mouth, The first light emitting unit, the second light emitting unit, the first light receiving unit, and the second light receiving unit are arranged around the glass bottle at a rotation position for rotating the glass bottle provided in the glass bottle conveyance path. It is characterized by that.
 また、本実施形態に係るガラスびんの検査装置の一態様は、ガラスびんの搬送経路に設けられたガラスびんを自転させる自転位置に、発光部及び受光部を配置してガラスびんを検査する検査装置において、前記発光部及び前記受光部が固定された取付部と、前記取付部を前記自転位置に対して進退させる第1移動機構と、前記取付部を昇降させる第2移動機構と、前記取付部の所定位置に取り付けられた位置決め部と、を含み、前記自転位置に配置したガラスびんに対し、前記第1移動機構及び前記第2移動機構によって、前記位置決め部がガラスびんの口部の側面及び天面に接触するまで前記取付部を移動させることで前記発光部及び前記受光部を所定の位置に位置決め可能であることを特徴とする。 In addition, one aspect of the glass bottle inspection apparatus according to the present embodiment is an inspection in which the glass bottle is inspected by arranging a light emitting unit and a light receiving unit at a rotation position where the glass bottle provided on the glass bottle conveyance path rotates. In the apparatus, a mounting portion to which the light emitting portion and the light receiving portion are fixed, a first moving mechanism for moving the mounting portion forward and backward with respect to the rotation position, a second moving mechanism for moving the mounting portion up and down, and the mounting A positioning part attached to a predetermined position of the part, and with respect to the glass bottle arranged at the rotation position, the positioning part is a side surface of the mouth part of the glass bottle by the first moving mechanism and the second moving mechanism. And the light emitting part and the light receiving part can be positioned at predetermined positions by moving the attachment part until it contacts the top surface.
 1.ガラスびんの検査装置
 図1~図4を用いて、ガラスびん1の検査装置10について詳細に説明する。図1はガラスびん1の検査装置10の平面図であり、図2は第2ユニット11bの平面図であり、図3は第2ユニット11bの側面図であり、図4は各受光部40~43,50~53の撮像領域を示す口部2の拡大斜視図であり、図5は第1ユニット11aの平面図である。
1. Glass Bottle Inspection Device The glass bottle 1 inspection device 10 will be described in detail with reference to FIGS. 1 is a plan view of the inspection apparatus 10 for the glass bottle 1, FIG. 2 is a plan view of the second unit 11b, FIG. 3 is a side view of the second unit 11b, and FIG. FIG. 5 is an enlarged perspective view of the mouth portion 2 showing imaging regions 43 and 50 to 53, and FIG. 5 is a plan view of the first unit 11a.
 1-1.検査装置の概要
 図1に示すように、検査装置10は、搬入口18と、搬送経路12と、第1ユニット11aと、第2ユニット11bと、搬出口19と、を含む。
1-1. Outline of Inspection Device As shown in FIG. 1, the inspection device 10 includes a carry-in port 18, a conveyance path 12, a first unit 11 a, a second unit 11 b, and a carry-out port 19.
 まず、ガラスびん1は、検査装置10の搬入口18から搬送経路12へ間欠的に搬入される。搬送経路12には図示しない8個の支持台が設けられ、ガラスびん1を1本ずつ支持する。ガラスびん1は、支持台に支持されたまま各ステージへと搬送経路12を間欠的に搬送される。 First, the glass bottle 1 is intermittently carried into the conveyance path 12 from the carry-in port 18 of the inspection apparatus 10. The transport path 12 is provided with eight support tables (not shown), and supports the glass bottles 1 one by one. The glass bottle 1 is intermittently transported along the transport path 12 to each stage while being supported by the support base.
 搬送経路12は、搬送中心軸15を中心とする円周上に形成される。ガラスびん1は、搬送経路12を図1の右回りに搬送される。自転位置14は、ガラスびん1の搬送経路12の途中に設けられており、自転位置14に搬送されてくるガラスびん1を順次検査することができる。搬送経路12の途中に自転位置14を設けることにより、ガラスびん1の搬送途中で効率的に順次検査を行うことができる。搬送経路12には、第2ユニット11bの自転位置14とは異なる位置(ガラスびん1の搬送方向の上流側)に、第1ユニット11aが設けられた別の自転位置14が設けられており、この別の自転位置14において、第2ユニット11bの自転位置14における検査項目とは異なる検査をすることができる。ガラスびん1の搬送途中で異なる検査項目を効率的に行うことができる。第1ユニット11a及び第2ユニット11bの自転位置14に停止したガラスびん1は、支持台の回転によってガラスびん1の中心軸5(図3)の周りを自転する。搬送経路12は円周に限らず、他の形状、例えば直線上に形成されてもよい。 The conveyance path 12 is formed on a circumference around the conveyance center axis 15. The glass bottle 1 is conveyed in the clockwise direction in FIG. The rotation position 14 is provided in the middle of the conveyance path 12 of the glass bottle 1, and the glass bottle 1 conveyed to the rotation position 14 can be inspected sequentially. By providing the rotation position 14 in the middle of the conveyance path 12, it is possible to sequentially inspect the glass bottle 1 in the middle of the conveyance efficiently. In the conveyance path 12, another rotation position 14 provided with the first unit 11a is provided at a position different from the rotation position 14 of the second unit 11b (upstream side in the conveyance direction of the glass bottle 1). At this different rotation position 14, an inspection different from the inspection item at the rotation position 14 of the second unit 11b can be performed. Different inspection items can be efficiently performed during the transportation of the glass bottle 1. The glass bottle 1 stopped at the rotation position 14 of the first unit 11a and the second unit 11b rotates around the central axis 5 (FIG. 3) of the glass bottle 1 by the rotation of the support base. The conveyance path 12 is not limited to the circumference, but may be formed in another shape, for example, a straight line.
 搬送経路12の各ステージには、さらに他の検査ユニット等を設けることができる。各ステージの検査工程を経たガラスびん1は、搬出口19から検査装置10の外へ送り出され、良品の場合は次のラインへと移動する。 Further inspection units or the like can be provided in each stage of the transport path 12. The glass bottle 1 that has undergone the inspection process of each stage is sent out of the inspection apparatus 10 from the carry-out port 19 and moves to the next line in the case of a non-defective product.
 第1ユニット11aは水平びりを検出する検査ユニットであり、第2ユニット11bは垂直びりを検出する検査ユニットである。2つの検査ユニットにより異なる検査項目(例えば異なる種類の欠点)を検査することができる。搬送経路12に設けられる検査ユニットは3つ以上あってもよい。 The first unit 11a is an inspection unit that detects horizontal vibration, and the second unit 11b is an inspection unit that detects vertical vibration. Different inspection items (for example, different types of defects) can be inspected by the two inspection units. There may be three or more inspection units provided in the transport path 12.
 びりは、ガラスびん1の製造に際して、その口部2に生じるひび割れのような欠点である。びりが検出されたガラスびん1は、不良品として廃棄される。ガラスびん1の口部2に生じるびりの種類は多数あるが、その内、第1ユニット11aではガラスびん1の略水平方向に延びる水平びりを検出し、第2ユニット11bではガラスびん1の略鉛直方向に延びる垂直びりを検出する。ここではびりを検出する装置について説明するが、びり以外の欠点、例えば気泡等を検出してもよい。 The chatter is a defect such as a crack generated in the mouth portion 2 when the glass bottle 1 is manufactured. The glass bottle 1 in which the vibration is detected is discarded as a defective product. There are many kinds of chatters generated at the mouth portion 2 of the glass bottle 1. Among them, the first unit 11 a detects a horizontal chatch extending substantially in the horizontal direction of the glass bottle 1, and the second unit 11 b is an abbreviation of the glass bottle 1. Detects vertical vibration extending in the vertical direction. Although an apparatus for detecting chatter will be described here, defects other than chatter, such as bubbles, may be detected.
 口部2には、通常蓋などを嵌めるためのねじ等の構成があるため狭い範囲に多くの起伏があり、びりが発生し易い反面びりを検出するのが難しい。光学系の検査ユニットには、多種類のびりを高精度に検出することが求められる。そのため、びりの発生場所や形状に応じて複数の受光部が設けられる。 The mouth 2 has a structure such as a screw for fitting a lid or the like, so there are many undulations in a narrow range, and it is difficult to detect chatter on the other hand. An optical inspection unit is required to detect various types of chatter with high accuracy. Therefore, a plurality of light receiving units are provided according to the occurrence location and shape of chatter.
 検査装置10は、第1ユニット11a及び第2ユニット11bに電気的に接続された制御部62を含む。制御部62は、判定部63と、テンプレート作成部64と、テンプレート記憶部65と、画像処理部66と、を含む。画像処理部66は、第1ユニット11a及び第2ユニット11bで撮像されたデータを所定の明るさの画像データに変換する。テンプレート作成部64は、第1ユニット11a及び第2ユニット11bで撮像された良品のガラスびん1のみのデータに基づいてテンプレートを作成する。作成されたテンプレートは、テンプレート記憶部65に記憶される。判定部63は、画像処理部66で変換された画像データと、テンプレート記憶部65に記憶されたテンプレートとの明るさを比較して、あらかじめ設定したしきい値を超えた場合にびり有りと判定する。また、制御部62は、自転位置14毎に設けられた回転検出部68にも電気的に接続され、ガラスびん1の自転による回転角度の情報が入力される。 The inspection apparatus 10 includes a control unit 62 electrically connected to the first unit 11a and the second unit 11b. The control unit 62 includes a determination unit 63, a template creation unit 64, a template storage unit 65, and an image processing unit 66. The image processing unit 66 converts data captured by the first unit 11a and the second unit 11b into image data having a predetermined brightness. The template creation unit 64 creates a template based on data of only the non-defective glass bottle 1 imaged by the first unit 11a and the second unit 11b. The created template is stored in the template storage unit 65. The determination unit 63 compares the brightness of the image data converted by the image processing unit 66 and the template stored in the template storage unit 65, and determines that there is a chatter when a preset threshold value is exceeded. To do. The control unit 62 is also electrically connected to a rotation detection unit 68 provided for each rotation position 14, and information on the rotation angle due to the rotation of the glass bottle 1 is input.
 以下の説明では、主に第2ユニット11bについて説明するが、同様の構成を第1ユニット11aに適用してもよく、また、図示しない他の検査ユニットに適用してもよい。 In the following description, the second unit 11b will be mainly described. However, the same configuration may be applied to the first unit 11a, or may be applied to another inspection unit (not shown).
 1-2.第2ユニット
 図2及び図3に示すように、第2ユニット11bは、ガラスびん1の口部2に向けて可視光を照射する第1発光部20と、口部2に向けて赤外光を照射する第2発光部30(図3では省略)と、口部2からの可視光の反射光または屈折光を検出する第1受光部40と、口部2からの赤外光の反射光または屈折光を検出する第2受光部50(図3では省略)と、を含む。
1-2. 2nd unit As shown in FIG.2 and FIG.3, the 2nd unit 11b is the 1st light emission part 20 which irradiates visible light toward the opening part 2 of the glass bottle 1, and infrared light toward the opening part 2. The second light emitting unit 30 (not shown in FIG. 3) that irradiates the light, the first light receiving unit 40 that detects the reflected or refracted light of the visible light from the mouth 2, and the reflected light of the infrared light from the mouth 2. Or the 2nd light-receiving part 50 (it omits in FIG. 3) which detects refracted light.
 図2に示すように、第1発光部20、第2発光部30、第1受光部40及び第2受光部50は、ガラスびん1の搬送経路12に設けられたガラスびん1を自転させる自転位置14において、ガラスびん1の周囲に配置される。第1発光部20、第2発光部30、第1受光部40及び第2受光部50は、びり等の発生場所及び形状に適応するように予め設定された所定の位置に配置される。赤外光と可視光とを用いることにより、複数の発光部(20,30)を用いても、受光部(40,50)で受光される光の干渉を防ぎながらガラスびん1の口部2に発生するびり等を検出することができる。 As shown in FIG. 2, the first light emitting unit 20, the second light emitting unit 30, the first light receiving unit 40, and the second light receiving unit 50 rotate to rotate the glass bottle 1 provided in the conveyance path 12 of the glass bottle 1. At position 14 it is placed around the glass bottle 1. The 1st light emission part 20, the 2nd light emission part 30, the 1st light-receiving part 40, and the 2nd light-receiving part 50 are arrange | positioned in the predetermined position preset so that it may adapt to generation | occurrence | production locations and shapes, such as chatter. By using infrared light and visible light, the mouth portion 2 of the glass bottle 1 while preventing interference of light received by the light receiving portions (40, 50) even if a plurality of light emitting portions (20, 30) are used. It is possible to detect chatter and the like generated in
 第1受光部40は、第1発光部20の可視光を受光する2以上の受光部40~43の1つである。第2受光部50は、第2発光部30の赤外光を受光する2以上の受光部50~53の1つである。このように、可視光を受光する複数の受光部40~43と赤外光を受光する複数の受光部50~53とを備えることで、びり等の検出精度を向上させることができる。以下の説明では、可視光を受光する受光部40~43の代表例として第1受光部40について説明し、赤外光を受光する受光部50~53の代表例として第2受光部50について説明する。 The first light receiving unit 40 is one of two or more light receiving units 40 to 43 that receive the visible light of the first light emitting unit 20. The second light receiving unit 50 is one of two or more light receiving units 50 to 53 that receive the infrared light of the second light emitting unit 30. As described above, by including the plurality of light receiving units 40 to 43 that receive visible light and the plurality of light receiving units 50 to 53 that receive infrared light, it is possible to improve the detection accuracy of chatter and the like. In the following description, the first light receiving unit 40 will be described as a representative example of the light receiving units 40 to 43 that receive visible light, and the second light receiving unit 50 will be described as a representative example of the light receiving units 50 to 53 that receive infrared light. To do.
 第1発光部20及び第2発光部30は、LED(発光ダイオード)を用いた拡散照明である。拡散照明を用いることで大きい立体角を得ることができ、多種多様のびりからの反射光または屈折光が得られやすい。 The 1st light emission part 20 and the 2nd light emission part 30 are diffused illumination using LED (light emitting diode). A large solid angle can be obtained by using diffuse illumination, and reflected light or refracted light from various kinds of chatters can be easily obtained.
 第1発光部20は、可視光を発光する。第1発光部20は、検査対象となるガラスびん1の色に応じた透過率の高い波長の可視光を照射するように設定することが好ましい。ガラスびん1は自身の色によって光の透過率が異なるため、第1受光部40における検出精度に影響がある。そのため、第1発光部20の可視光をガラスびん1の色に応じた透過率の高い波長とすることで、ガラスびん1の色によって検出精度に影響が出るのを防ぐことができる。 The first light emitting unit 20 emits visible light. It is preferable to set the 1st light emission part 20 so that the visible light of the wavelength with the high transmittance | permeability according to the color of the glass bottle 1 used as a test object may be irradiated. Since the glass bottle 1 has different light transmittance depending on its own color, the detection accuracy in the first light receiving unit 40 is affected. Therefore, it is possible to prevent the detection accuracy from being affected by the color of the glass bottle 1 by setting the visible light of the first light emitting unit 20 to a wavelength having a high transmittance according to the color of the glass bottle 1.
 透過率の高い波長についてさらに説明する。第1発光部20のLEDとして緑色LED照明と赤色LED照明とを準備した場合、ガラスびん1の色が例えば緑色系や青色系の場合には赤色の波長領域よりも緑色の波長領域の方がガラスびん1の光の透過率が高いため、緑色LED照明を採用する。また、ガラスびん1の色が例えば茶色系や黒系の場合には、緑色の波長領域よりも赤色の波長領域の方がガラスびん1の光の透過率が高いので、赤色LED照明を採用する。このように、第1発光部20の可視光をガラスびん1の色に応じた波長に設定することにより、第1受光部40において十分に光を認識することができるため、ガラスびん1の色に影響されずにびり等を高い精度で検出することができる。また、例えば、ガラスびん1の色が透明の場合には、緑色LEDを採用することができるが、赤色の波長も緑色の波長と同程度に透過するため、赤色LEDを採用してもよい。このように、第1発光部20の可視光は、ガラスびん1に対して透過率の高い波長の光が選択される。 The wavelength with high transmittance will be further described. When green LED illumination and red LED illumination are prepared as LEDs of the first light emitting unit 20, when the color of the glass bottle 1 is, for example, green or blue, the green wavelength region is more than the red wavelength region. Since the light transmittance of the glass bottle 1 is high, green LED illumination is adopted. Further, when the color of the glass bottle 1 is, for example, brown or black, red LED illumination is employed because the light transmittance of the glass bottle 1 is higher in the red wavelength region than in the green wavelength region. . Thus, by setting the visible light of the first light emitting unit 20 to a wavelength corresponding to the color of the glass bottle 1, the first light receiving unit 40 can sufficiently recognize the light, so that the color of the glass bottle 1 It is possible to detect chatter and the like with high accuracy without being affected by the above. For example, when the color of the glass bottle 1 is transparent, a green LED can be used. However, since the red wavelength is transmitted to the same extent as the green wavelength, a red LED may be used. As described above, as the visible light of the first light emitting unit 20, light having a wavelength that is higher in transmittance than the glass bottle 1 is selected.
 第1発光部20は、複数色を選択して発光できるように複数色のLEDを備えていてもよいし、色の異なるガラスびん1の検査に変更された場合に異なる色のLEDに取り換えてもよい。 The first light emitting unit 20 may be provided with a plurality of color LEDs so that a plurality of colors can be selected and emitted, and when the first light emitting unit 20 is changed to the inspection of the glass bottle 1 having a different color, the first light emitting unit 20 is replaced with a different color LED. Also good.
 第2発光部30は、赤外光を発光する。赤外光は、ガラスびんの色による影響が少ないため好ましい。 The second light emitting unit 30 emits infrared light. Infrared light is preferable because it is less affected by the color of the glass bottle.
 第1受光部40及び第2受光部50は、例えば、高速エリアセンサカメラを用いることができる。第1受光部40及び第2受光部50は、可視光及び赤外光の輝度を検出することができる他の公知の手段を用いてもよい。 For the first light receiving unit 40 and the second light receiving unit 50, for example, a high-speed area sensor camera can be used. The first light receiving unit 40 and the second light receiving unit 50 may use other known means capable of detecting the luminance of visible light and infrared light.
 第1受光部40は、第1発光部20の可視光を透過し、第2発光部30の赤外光を透過しないバンドパスフィルター40aを備える。バンドパスフィルター40aは、例えば第1発光部20の可視光が緑色である場合には、緑色の波長域を選択的に透過させる緑バンドパスフィルターを採用することができる。バンドパスフィルター40aによって緑色以外の特に赤外光を透過しない(例えば吸収する)ことで、外乱による誤検出を防止することができる。 The first light receiving unit 40 includes a band-pass filter 40 a that transmits the visible light of the first light emitting unit 20 and does not transmit the infrared light of the second light emitting unit 30. As the band pass filter 40a, for example, when the visible light of the first light emitting unit 20 is green, a green band pass filter that selectively transmits the green wavelength band can be employed. The band-pass filter 40a does not transmit (for example, absorbs) infrared light other than green light, so that erroneous detection due to disturbance can be prevented.
 第2受光部50は、第2発光部30の赤外光を透過し、第1発光部20の可視光を透過しないバンドパスフィルター50aを備えることができる。バンドパスフィルター50aは、第2発光部30の赤外光の波長域を選択的に透過させる。バンドパスフィルター50aによって赤外光以外の可視光を透過しない(例えば吸収する)ことで、外乱による誤検出を防止することができる。 The second light receiving unit 50 may include a band pass filter 50a that transmits the infrared light of the second light emitting unit 30 and does not transmit the visible light of the first light emitting unit 20. The band pass filter 50 a selectively transmits the infrared light wavelength region of the second light emitting unit 30. By not transmitting (for example, absorbing) visible light other than infrared light by the bandpass filter 50a, erroneous detection due to disturbance can be prevented.
 バンドパスフィルター40a,50aによって受光させたい光を選別して第1受光部40及び第2受光部50に所定の波長域の光だけを受光することができる。バンドパスフィルター40a,50aは、特定の波長帯のみを透過する光学フィルターである。バンドパスフィルター40a,50aとしては、例えば、誘電体多層膜フィルターやフィルタガラス等を用いることができる。 The light to be received by the bandpass filters 40a and 50a can be selected and only the light in a predetermined wavelength range can be received by the first light receiving unit 40 and the second light receiving unit 50. The bandpass filters 40a and 50a are optical filters that transmit only a specific wavelength band. As the band- pass filters 40a and 50a, for example, a dielectric multilayer filter or a filter glass can be used.
 図2において第1受光部40と第2受光部50との間を通り、かつ、ガラスびん1の自転の中心軸5を含む仮想面7(一点鎖線で示す)がある。仮想面7は、搬送中心軸15と自転の中心軸5を通る仮想的に設定された面であってもよい。第1発光部20は、仮想面7に対して、第2発光部30と面対称の位置に配置され、第1受光部40は、仮想面7に対して、第2受光部50と面対称の位置に配置される。可視光を受光する受光部41~43も同様に仮想面7に対して赤外光を受光する受光部51~53と面対称の位置に配置される。第1、第2発光部20,30及び受光部40~43,50~53が面対称に配置されることで口部2におけるガラスびん1の中心軸5に対し同じ高さ位置に発生する形状の違うびり等からの反射または屈折する光を他の光の外乱光を防ぎつつ、検出できるため、びり等の検出精度を向上させることができる。 In FIG. 2, there is a virtual plane 7 (indicated by a one-dot chain line) that passes between the first light receiving unit 40 and the second light receiving unit 50 and includes the central axis 5 of rotation of the glass bottle 1. The virtual surface 7 may be a virtually set surface that passes through the conveyance center axis 15 and the rotation center axis 5. The first light emitting unit 20 is disposed in a plane symmetric with the second light emitting unit 30 with respect to the virtual plane 7, and the first light receiving unit 40 is plane symmetric with the second light receiving unit 50 with respect to the virtual plane 7. It is arranged at the position. Similarly, the light receiving units 41 to 43 that receive visible light are arranged at positions symmetrical to the light receiving units 51 to 53 that receive infrared light with respect to the virtual plane 7. The first and second light emitting units 20 and 30 and the light receiving units 40 to 43 and 50 to 53 are arranged in plane symmetry so that the shape generated at the same height position with respect to the central axis 5 of the glass bottle 1 in the mouth 2. Since the light reflected or refracted from different chatters or the like can be detected while preventing disturbance light of other light, the detection accuracy of the chatter or the like can be improved.
 図3は、仮想面7の搬送方向の上流側に配置された第1発光部20及び受光部40~43の上下の配置を示している。図示は省略するが、仮想面7の搬送方向の下流側も第2発光部30及び受光部50~53が同様の配置となる。 FIG. 3 shows the upper and lower arrangements of the first light emitting unit 20 and the light receiving units 40 to 43 arranged on the upstream side in the transport direction of the virtual plane 7. Although not shown, the second light emitting unit 30 and the light receiving units 50 to 53 are similarly arranged on the downstream side in the transport direction of the virtual plane 7.
 図4は、ガラスびん1の口部2における各受光部40~43,50~53の撮像領域を破線で示している。撮像領域が検査対象領域である。口部2とは、天面2bと、ねじ部(ねじは省略した)が形成される口部2の側面2aと、下方の首部3と、を含む。首部3は、環状に突出するスカート部3aと、スカート部3aの直下の部分を含む。 FIG. 4 shows the imaging areas of the light receiving portions 40 to 43 and 50 to 53 in the mouth portion 2 of the glass bottle 1 by broken lines. The imaging area is the inspection target area. The mouth portion 2 includes a top surface 2b, a side surface 2a of the mouth portion 2 where a screw portion (screw is omitted), and a lower neck portion 3 are formed. The neck portion 3 includes a skirt portion 3a protruding in an annular shape and a portion directly below the skirt portion 3a.
 図4に示すように、第1受光部40及び第2受光部50は天面2bを含む口部2の上部領域が撮像領域であり、受光部41,51は口部2の側面2aの内側面を含む領域が撮像領域であり、受光部42,52,43,53はスカート部3aの上部領域及び下部領域(スカート部3aの直下を含む)が撮像領域である。 As shown in FIG. 4, in the first light receiving unit 40 and the second light receiving unit 50, the upper region of the mouth part 2 including the top surface 2 b is an imaging region, and the light receiving parts 41 and 51 are inside the side surface 2 a of the mouth part 2. An area including the side surface is an imaging area, and the light receiving parts 42, 52, 43, and 53 are an upper area and a lower area (including immediately below the skirt part 3a) of the skirt part 3a.
 各受光部40~43,50~53の撮像領域は重複している部分がある。各受光部40~43,50~53の鉛直方向の高さや水平方向の位置が異なるため、重複した範囲にあるびりから反射または屈折した光を受光する確率が高くなる。各受光部40~43,50~53の撮像領域は、ガラスびん1の形状が替わってもびりが発生し易い場所を含んでいる。 The imaging areas of the light receiving units 40 to 43 and 50 to 53 have overlapping portions. Since the vertical heights and horizontal positions of the light receiving units 40 to 43 and 50 to 53 are different, the probability of receiving light reflected or refracted from chatter in the overlapping range is increased. The imaging regions of the light receiving units 40 to 43 and 50 to 53 include places where chatter is likely to occur even if the shape of the glass bottle 1 is changed.
 図5に示すように、水平びりを検出するための第1ユニット11aは、第2ユニット11bと同様に発光部200と受光部400とを含む。発光部200は、自転位置14のガラスびん1に対して搬送中心軸15側に設けられ、ガラスびん1の色に合わせて適宜選択する透過率の高い可視光のLEDを含む。可視光であれば検査者が発光状態を視認しやすいからである。受光部400は、発光部200に対しガラスびん1を挟んで搬送経路12の外側に複数(例えば7つ)配置され、ガラスびん1を透過してびり等の形状により異なる角度に屈折する光を受光する。受光部400は、それぞれバンドパスフィルターを有し、発光部200から出射された可視光の反射光または透過光を選択的に効率よく受光することができる。受光部400は、バンドパスフィルターにより、例えば他の検査機からの光による外乱を防ぐことができる。 As shown in FIG. 5, the first unit 11a for detecting horizontal vibration includes a light emitting unit 200 and a light receiving unit 400 in the same manner as the second unit 11b. The light emitting unit 200 is provided on the side of the transport center axis 15 with respect to the glass bottle 1 at the rotation position 14, and includes a visible light LED with high transmittance that is appropriately selected according to the color of the glass bottle 1. This is because visible light makes it easy for an inspector to visually recognize the light emission state. A plurality of (for example, seven) light receiving units 400 are arranged outside the transport path 12 with the glass bottle 1 interposed therebetween with respect to the light emitting unit 200, and transmit light that refracts at different angles depending on the shape of the chatter and the like through the glass bottle 1. Receive light. Each of the light receiving units 400 includes a bandpass filter, and can selectively and efficiently receive reflected or transmitted light of visible light emitted from the light emitting unit 200. The light receiving unit 400 can prevent disturbance due to light from other inspection machines, for example, by a bandpass filter.
 2.変形例
 図6を用いて変形例の検査装置10aの第2ユニット11cについて説明する。図6は、変形例の第2ユニット11cの側面図である。第2ユニット11cは、第1受光部40及び第2受光部50以外の第1、第2発光部20,30及び受光部41~43,51~53が図1~図3の検査装置10と同様に配置される。図6は図3と同じ状態を示しているが、図6では第1受光部40以外の受光部41~43を省略して示している。また、第2受光部50は仮想面7(図2)に対して第1受光部40と面対称の位置にある。なお、図1~図3と同じ構成については同じ符号を付して重複する説明を省略する。
2. Modification The second unit 11c of the inspection apparatus 10a according to a modification will be described with reference to FIG. FIG. 6 is a side view of a modified second unit 11c. In the second unit 11c, the first and second light emitting units 20, 30 and the light receiving units 41 to 43, 51 to 53 other than the first light receiving unit 40 and the second light receiving unit 50 are the same as the inspection apparatus 10 in FIGS. Arranged similarly. FIG. 6 shows the same state as FIG. 3, but in FIG. 6, the light receiving parts 41 to 43 other than the first light receiving part 40 are omitted. In addition, the second light receiving unit 50 is positioned symmetrically with the first light receiving unit 40 with respect to the virtual plane 7 (FIG. 2). Note that the same components as those in FIGS. 1 to 3 are denoted by the same reference numerals, and redundant description is omitted.
 搬送経路12は、搬送中心軸15を中心とする円周16(図1)上に形成され、第1受光部40(及び第2受光部50)は、自転の中心軸5よりも搬送中心軸15側に配置され、口部2からの反射光または屈折光をミラー60で上方へ反射させて受光する。 The transport path 12 is formed on a circumference 16 (FIG. 1) centered on the transport center axis 15, and the first light receiving unit 40 (and the second light receiving unit 50) is more transported than the center axis 5 of the rotation. It is arranged on the 15 side, and the reflected light or refracted light from the mouth portion 2 is reflected upward by the mirror 60 and received.
 搬送中心軸15の周囲には配線や配管等が集中しているため、第1受光部40(及び第2受光部50)は他の部品と干渉しやすい搬送中心軸15側にミラー60を用いることで第1受光部40(及び第2受光部50)の設置スペースを省くことができる。 Since wiring, piping, and the like are concentrated around the transport center axis 15, the first light receiving unit 40 (and the second light receiving unit 50) uses a mirror 60 on the side of the transport center axis 15 that easily interferes with other components. Thereby, the installation space of the 1st light-receiving part 40 (and 2nd light-receiving part 50) can be omitted.
 図6では、第1発光部20の可視光が口部2の天面2bで屈折して口部2の内側の面からミラー60に達し、ミラー60で反射した光を第1受光部40が受光している。第1受光部40は例えば鉛直方向に延びるように配置されることで、搬送中心軸15付近における設置スペースを省略できる。 In FIG. 6, the visible light of the first light emitting unit 20 is refracted by the top surface 2 b of the mouth 2, reaches the mirror 60 from the inner surface of the mouth 2, and the first light receiving unit 40 reflects the light reflected by the mirror 60. It is receiving light. The first light receiving unit 40 is disposed so as to extend in the vertical direction, for example, so that an installation space in the vicinity of the transport center axis 15 can be omitted.
 3.位置決め部
 図7及び図8を用いて検査装置10の位置決め部76について説明する。図7及び図8は位置決め方法を説明する第2ユニット11bの側面図である。図7及び図8では、第1受光部40以外の第2発光部30及び受光部41~43,50~53を省略して示しているが、第1発光部20,第2発光部30及び受光部41~43,50~53も第1受光部40と同様に取付部70に所定位置で固定されている。また、第1ユニット11aも第2ユニット11bと同様の位置決めに関する構成を有する。なお、図1~図3と同じ構成については同じ符号を付して重複する説明を省略する。
3. Positioning unit The positioning unit 76 of the inspection apparatus 10 will be described with reference to FIGS. 7 and 8. 7 and 8 are side views of the second unit 11b for explaining the positioning method. 7 and 8, the second light emitting unit 30 and the light receiving units 41 to 43, 50 to 53 other than the first light receiving unit 40 are omitted, but the first light emitting unit 20, the second light emitting unit 30, and Similarly to the first light receiving unit 40, the light receiving units 41 to 43 and 50 to 53 are fixed to the mounting unit 70 at predetermined positions. In addition, the first unit 11a has a configuration related to positioning similar to that of the second unit 11b. Note that the same components as those in FIGS. 1 to 3 are denoted by the same reference numerals, and redundant description is omitted.
 第2ユニット11bは、図1~図3を用いて説明したように、搬送経路12に設けられた自転位置14で、第1、第2発光部20,30の光を受光部40~43,50~53で受光してガラスびん1を検査する。 As described with reference to FIGS. 1 to 3, the second unit 11 b receives the light from the first and second light emitting units 20 and 30 at the rotation position 14 provided in the transport path 12. The glass bottle 1 is inspected by receiving light at 50-53.
 図7に示すように、第2ユニット11bは、第1受光部40等が固定された取付部70と、取付部70を自転位置14に対して進退させる第1移動機構72と、取付部70を昇降させる第2移動機構74と、取付部70の所定位置に取り付けられた位置決め部76と、を含む。 As shown in FIG. 7, the second unit 11 b includes an attachment portion 70 to which the first light receiving portion 40 and the like are fixed, a first moving mechanism 72 that moves the attachment portion 70 forward and backward with respect to the rotation position 14, and the attachment portion 70. A second moving mechanism 74 that moves up and down, and a positioning portion 76 attached to a predetermined position of the attachment portion 70.
 自転位置14に配置したガラスびん1に対し、第1移動機構72及び第2移動機構74によって、位置決め部76がガラスびん1の口部2の側面2a及び天面2bに接触するまで取付部70を移動させることで第1受光部40を所定の位置に位置決め可能である。ガラスびん1の製造工場では、金型を交換することによって別の形状のガラスびん1を生産することがある。異なる形状のガラスびん1を検査することになっても、位置決め部76によってガラスびん1の所定位置に第1受光部40(第1、第2発光部20,30及び他の受光部41~43,50~53も同様)を容易かつ正確に位置決めすることができる。ガラスびん1の異なる形状としては、例えば、ねじ口や王冠口など口部2の形状、口径、ガラスびん1の高さが異なる場合がある。 With respect to the glass bottle 1 arranged at the rotation position 14, the first moving mechanism 72 and the second moving mechanism 74 allow the positioning portion 76 to contact the side surface 2 a and the top surface 2 b of the mouth portion 2 of the glass bottle 1. The first light receiving unit 40 can be positioned at a predetermined position by moving the. In the manufacturing factory of the glass bottle 1, another shape of the glass bottle 1 may be produced by exchanging the mold. Even when the glass bottle 1 having a different shape is to be inspected, the first light receiving unit 40 (the first and second light emitting units 20 and 30 and the other light receiving units 41 to 43 are placed at predetermined positions on the glass bottle 1 by the positioning unit 76. , 50 to 53) can be positioned easily and accurately. As the different shapes of the glass bottle 1, for example, the shape of the mouth portion 2, such as a screw mouth and a crown mouth, the diameter, and the height of the glass bottle 1 may be different.
 第1、第2発光部20,30及び受光部40~43,50~53の取付位置及び取付角度は、基本的にどのようなガラスびん1に対してもそのまま使用できる。発明者等のこれまでの経験及び実験により、びり等の発生場所に最も適した取付位置及び取付角度に設定されているからである。例えば、形状の異なるガラスびん1であってびりを有するサンプルについて検査装置10を用いて検査したところ、90%以上のサンプルについてびり有りと判定することができた。 The mounting positions and mounting angles of the first and second light emitting units 20 and 30 and the light receiving units 40 to 43 and 50 to 53 can be basically used as they are for any glass bottle 1. This is because the mounting position and the mounting angle that are most suitable for the occurrence location of the chatter and the like are set by the inventors' previous experience and experiments. For example, when the glass bottles 1 having different shapes and having chatter were inspected using the inspection apparatus 10, it was possible to determine that 90% or more of the samples had chatter.
 第1移動機構72は、昇降板71上に配置され、一方の先端に取付部70が固定された2本のロッド73(手前側の1本のみを図示している)と、ロッド73の他方の先端に固定された手動ボールねじ機構とを含む。昇降板71は搬送経路12の搬送中心軸15と反対側に配置される。手動ボールねじ機構のハンドルを回すことで昇降板71にガイドされたロッド73が取付部70と共に搬送中心軸15に対して前進または後退する。 The first moving mechanism 72 is disposed on the elevating plate 71 and has two rods 73 (only one on the near side is shown) with a mounting portion 70 fixed to one end, and the other of the rods 73. And a manual ball screw mechanism fixed to the tip of the head. The elevating plate 71 is disposed on the opposite side of the transport path 12 from the transport center axis 15. By rotating the handle of the manual ball screw mechanism, the rod 73 guided by the elevating plate 71 moves forward or backward with respect to the transport center shaft 15 together with the mounting portion 70.
 第1移動機構72によって位置決め部76を移動させると、位置決め部76は自転位置14におけるガラスびん1の中心軸5を通るように移動する。例えば、図2で示した仮想面7に沿って位置決め部76が移動する。 When the positioning unit 76 is moved by the first moving mechanism 72, the positioning unit 76 moves so as to pass through the central axis 5 of the glass bottle 1 at the rotation position 14. For example, the positioning unit 76 moves along the virtual plane 7 shown in FIG.
 第2移動機構74は、昇降板71上に配置された手動ボールねじ機構と、一方の先端が固定台13に固定され、他方の先端側が昇降板71にガイドされたロッド75とを含む。手動ボールねじ機構のハンドルを回すことで固定台13に対し昇降板71が昇降移動する。したがって、第2移動機構74によって第1移動機構72及び取付部70の全体が昇降移動する。 The second moving mechanism 74 includes a manual ball screw mechanism disposed on the lifting plate 71 and a rod 75 having one tip fixed to the fixing base 13 and the other tip side guided by the lifting plate 71. The lift plate 71 moves up and down with respect to the fixed base 13 by turning the handle of the manual ball screw mechanism. Accordingly, the second moving mechanism 74 moves the first moving mechanism 72 and the mounting portion 70 up and down.
 第2移動機構74によって位置決め部76を移動させると、位置決め部76は自転位置14におけるガラスびん1の中心軸5と平行な方向で昇降移動する。 When the positioning unit 76 is moved by the second moving mechanism 74, the positioning unit 76 moves up and down in a direction parallel to the central axis 5 of the glass bottle 1 at the rotation position 14.
 位置決め部76は、棒状部材の先端に、ガラスびん1の口部2の側面2aに接触する第1位置決め面76aと、口部2の天面2bに接触する第2位置決め面76bと、を含む。位置決め部76の簡易な構成で確実に位置決めを実行できる。第1位置決め面76aは鉛直方向に延びる面であり、第2位置決め面76bは水平方向に延びる面である。 The positioning portion 76 includes a first positioning surface 76a that contacts the side surface 2a of the mouth portion 2 of the glass bottle 1 and a second positioning surface 76b that contacts the top surface 2b of the mouth portion 2 at the tip of the rod-shaped member. . Positioning can be reliably executed with a simple configuration of the positioning portion 76. The first positioning surface 76a is a surface extending in the vertical direction, and the second positioning surface 76b is a surface extending in the horizontal direction.
 位置決め部76は、第1受光部40(第1、第2発光部20,30及び他の受光部41~43,50~53も同様)の位置決め後に、搬送経路12を搬送されるガラスびん1と干渉しない位置へ移動可能である。位置決め部76と連続して検査されるガラスびん1との干渉を防止することができる。位置決め部76は、例えば、図8に矢印で示すように、取付部70の上方から抜き出すことで搬送されるガラスびん1との干渉を防止してもよい。 The positioning unit 76 is a glass bottle 1 that is transported through the transport path 12 after positioning the first light receiving unit 40 (the same applies to the first and second light emitting units 20 and 30 and the other light receiving units 41 to 43 and 50 to 53). It is possible to move to a position where it does not interfere with. Interference with the glass bottle 1 inspected continuously with the positioning portion 76 can be prevented. For example, as shown by an arrow in FIG. 8, the positioning portion 76 may prevent interference with the glass bottle 1 being conveyed by being extracted from above the attachment portion 70.
 第1移動機構72及び第2移動機構74は、手動ボールねじ機構を用いたが、電動ボールねじ機構を用いてもよいし、他のアクチュエータを用いてもよい。 The first moving mechanism 72 and the second moving mechanism 74 used manual ball screw mechanisms, but may use electric ball screw mechanisms or other actuators.
 4.検査方法
 図1に示すように、第1ユニット11a及び第2ユニット11bの自転位置14に搬送されたガラスびん1は図示しない自転用電動モータにより中心軸5の周りに自転しながら垂直びり及び水平びり検査が行われる。以下の説明では図1~図4を用いて、第2ユニット11bについて説明するが、基本的な検査方法は第1ユニット11aも同様である。また、上述した通り第2ユニット11bには複数の受光部40~43,50~53が含まれるが、説明を簡略化するために第1受光部40及び第2受光部50について説明する。
4). Inspection Method As shown in FIG. 1, the glass bottle 1 conveyed to the rotation position 14 of the first unit 11a and the second unit 11b is rotated around the central axis 5 by a rotation electric motor (not shown) while being vertical and horizontal. A slip inspection is performed. In the following description, the second unit 11b will be described with reference to FIGS. 1 to 4, but the basic inspection method is the same for the first unit 11a. As described above, the second unit 11b includes a plurality of light receiving units 40 to 43 and 50 to 53. The first light receiving unit 40 and the second light receiving unit 50 will be described in order to simplify the description.
 図2に示すように、第2ユニット11bの自転位置14では第1発光部20及び第2発光部30がガラスびん1の口部2に向けて可視光及び赤外光を照射する。制御部62は、回転検出部68の出力信号により、自転の回転角度に同期して第1受光部40及び第2受光部50で口部2を連続撮像させる。 As shown in FIG. 2, the first light emitting unit 20 and the second light emitting unit 30 irradiate the mouth 2 of the glass bottle 1 with visible light and infrared light at the rotation position 14 of the second unit 11b. The control unit 62 causes the first light receiving unit 40 and the second light receiving unit 50 to continuously image the mouth portion 2 in synchronization with the rotation angle of rotation by the output signal of the rotation detection unit 68.
 第1受光部40及び第2受光部50により撮像された画像は画像処理部66により処理される。より具体的には、第1受光部40及び第2受光部50では、第1発光部20及び第2発光部30からの光がガラスびん1の口部2に入射し、口部2からの屈折光が第1受光部40及び第2受光部50により撮像され、撮像された画像が画像処理部66により所定の階調(例えば256階調)の明るさに変換される。口部2にびりがあった場合、口部2に入射した光はびりの亀裂面で屈折し、この屈折光が画像処理部66で他の画像部分より明るい領域(高い階調の領域)として認識される。 The images captured by the first light receiving unit 40 and the second light receiving unit 50 are processed by the image processing unit 66. More specifically, in the first light receiving unit 40 and the second light receiving unit 50, light from the first light emitting unit 20 and the second light emitting unit 30 is incident on the mouth part 2 of the glass bottle 1 and is emitted from the mouth part 2. The refracted light is picked up by the first light receiving unit 40 and the second light receiving unit 50, and the picked-up image is converted into brightness of a predetermined gradation (for example, 256 gradations) by the image processing unit 66. When there is a chatter on the mouth 2, the light incident on the mouth 2 is refracted at the crack surface of the chatter, and this refracted light is brightened as an area (high gradation area) by the image processor 66 than other image parts. Be recognized.
 第1受光部40及び第2受光部50の撮像領域は、図4に破線で示した領域であるが、その撮像領域の中でも特にびりの発生し易い部分にはゲートと呼ばれる他の部分よりも所定の明るさを有する小さな画素数をしきい値として設定することができる。ゲートによって所定部分の検出精度を向上させるためである。ゲートは1つの撮像領域の中に複数設けられてもよい。口部2におけるゲートを設ける部分としては、例えば、側面2aにおける天面2bから下側に0mm~5mmまでの範囲や、スカート部3aから下側に0mm~5mmの範囲等がある。 The imaging regions of the first light receiving unit 40 and the second light receiving unit 50 are regions indicated by broken lines in FIG. 4, but in the imaging region, the portion where the vibration is particularly likely to occur is more than the other portion called the gate. A small number of pixels having a predetermined brightness can be set as the threshold value. This is because the detection accuracy of the predetermined portion is improved by the gate. A plurality of gates may be provided in one imaging region. Examples of the portion where the gate is provided in the mouth portion 2 include a range from 0 mm to 5 mm below the top surface 2b of the side surface 2a, and a range from 0 mm to 5 mm below the skirt portion 3a.
 次に、判定部63は、単位画素ごとに所定階調に変換された画像とテンプレートとを比較(減算)し、画像がテンプレートよりも明るい検出体を抽出する。判定部63は、抽出された検出体が第1受光部40の検査領域で設定された減算後の所定の明るさ(二値化した値)のしきい値を超えかつ所定の面積(画素数)のしきい値を超えていた場合に、口部2にびりがあると判定する。逆に、判定部63は、当該しきい値の少なくとも一方を超えていない場合に、口部2にびりがないと判定する。 Next, the determination unit 63 compares (subtracts) the image converted to a predetermined gradation for each unit pixel and the template, and extracts a detection object whose image is brighter than the template. The determination unit 63 exceeds the threshold value of the predetermined brightness (binarized value) after subtraction set in the inspection region of the first light receiving unit 40 and the extracted detection body 63 has a predetermined area (number of pixels). ) Is exceeded, it is determined that there is a chatter in the mouth 2. Conversely, the determination unit 63 determines that there is no chatter in the mouth 2 when at least one of the threshold values is not exceeded.
 びりがあると判定されたガラスびん1は、搬出口19から次工程へ搬送されずにラインから取り出され、不良品として処理される。 The glass bottle 1 determined to have chatter is taken out of the line without being transferred from the carry-out port 19 to the next process, and is processed as a defective product.
 5.テンプレート
 上記検査方法に用いるテンプレートについて説明する。
5). Template A template used in the inspection method will be described.
 まず、テンプレート作成部64は、所定本数(例えば20本程度)の良品のガラスびん1のみを上述の検査時と同様に撮像して、検査対象となるガラスびん1のための新たなテンプレートを第1受光部40及び第2受光部50のそれぞれに作成する。新たなテンプレートでは、良品のガラスびん1だけが対象となるため、単位画素ごとの輝度をそのまま反映させる。第1受光部40及び第2受光部50のそれぞれに作成された新たなテンプレートは、テンプレート記憶部65に記憶される。 First, the template creation unit 64 images only a predetermined number (for example, about 20) of non-defective glass bottles 1 in the same manner as in the above-described inspection, and creates a new template for the glass bottle 1 to be inspected. It is created for each of the first light receiving unit 40 and the second light receiving unit 50. In the new template, since only the non-defective glass bottle 1 is targeted, the luminance for each unit pixel is reflected as it is. New templates created in each of the first light receiving unit 40 and the second light receiving unit 50 are stored in the template storage unit 65.
 次に、上記4で説明したように、テンプレート記憶部65に記憶されたテンプレートと新たに撮像された画像とを比較しながらガラスびん1ごとに実際の検査が行われる。 Next, as described in 4 above, the actual inspection is performed for each glass bottle 1 while comparing the template stored in the template storage unit 65 with the newly captured image.
 そして、テンプレートは、検査が進む間に更新される。テンプレートの更新は、所定本数の検査が行われるたびに更新することができる。すなわち、良品のガラスびん1が所定本数になったらその所定本数分の輝度の分布をテンプレートに反映させることで更新を行う。テンプレートに反映させる所定本数は、検査が開始された初期は少なく(例えば60本)、検査が進むにつれて多く(例えば250本)なるように設定できる。また、テンプレートに反映する所定本数に満たない場合でも所定更新時間(例えば20分間)が経過した場合にもその間に得られた良品の本数だけの輝度の分布でテンプレートを更新する。生産トラブルにより生産が一時的に停止した場合にはガラスびん1の状態も変化することがあるから、その変化した状態のガラスびん1の影響をテンプレートに大きく反映させないためである。 And the template is updated as the inspection proceeds. The template can be updated each time a predetermined number of inspections are performed. That is, when the number of non-defective glass bottles 1 reaches a predetermined number, updating is performed by reflecting the luminance distribution for the predetermined number in the template. The predetermined number to be reflected in the template can be set to be small (for example, 60) at the beginning of the inspection and to increase (for example, 250) as the inspection proceeds. Further, even when the predetermined number of reflections is less than the predetermined number reflected in the template, the template is updated with the luminance distribution corresponding to the number of non-defective products obtained during the predetermined update time (for example, 20 minutes). This is because when the production is temporarily stopped due to a production trouble, the state of the glass bottle 1 may also change, so that the influence of the changed state of the glass bottle 1 is not greatly reflected in the template.
 テンプレートは、生産(検査)開始から更新を重ねるたびにテンプレートに反映させる良品のガラスびん1の本数を増やし、かつテンプレートに反映させる良品の分布における輝度の反映度合を弱めていく。生産を継続する間に金型の状態等も変化するため、ガラスびん1の形状等もわずかに変化する。そのため、その変化後の状態だけのテンプレートに変更したり、変化後の状態を強くテンプレートに反映したりしてしまうと、良品排除率が大きくなる傾向がある。テンプレートの具体的な反映の方法としては、例えば、表1に示すような更新方法を採用することができる。 The template increases the number of non-defective glass bottles 1 to be reflected in the template every time it is updated from the start of production (inspection), and weakens the degree of reflection of brightness in the non-defective product distribution to be reflected in the template. Since the state of the mold changes while production is continued, the shape of the glass bottle 1 also slightly changes. For this reason, if the template is changed to a template having only the changed state, or if the changed state is strongly reflected in the template, the non-defective product rejection rate tends to increase. As a specific method of reflecting the template, for example, an update method as shown in Table 1 can be adopted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、新規テンプレートは、良品のガラスびん1を検査装置10で20本検査して、画像処理部66で画像処理した輝度の分布に基づいて作成する。更新1回目のテンプレートは、検査開始から60本分の良品のガラスびん1の輝度の分布を新規テンプレートに反映させる。具体的には、60本分の輝度の分布と新規テンプレートとの差分の光の分布だけを新規テンプレートに加算することで反映させる。その際の各単位画素数における輝度の加算率(新規テンプレートより明るい部分の加算率)は100%として128階調(256階調の内)までを加算限界値と設定し、また輝度の減算率(新規テンプレートより暗い部分の減算率)を70%として128階調(256階調の内)を減算限界値と設定した。更新後の検査装置10による検査は更新後のテンプレートで行う。更新2回目、更新3回目と更新回数が増えると、加算率も減算率も小さくなり、少しずつその更新までの本数分に現れた輝度の分布を更新テンプレートに反映させる。連続生産による金型の状態の変化(型温、離型剤等)による影響をテンプレートに強く反映させないためである。 As shown in Table 1, a new template is created based on the luminance distribution obtained by inspecting 20 non-defective glass bottles 1 with the inspection apparatus 10 and performing image processing with the image processing unit 66. The first updated template reflects the luminance distribution of 60 non-defective glass bottles 1 from the start of inspection in the new template. Specifically, only the light distribution of the difference between the luminance distribution for 60 lines and the new template is reflected by adding to the new template. In this case, the luminance addition rate (addition rate of the brighter part than the new template) in each unit pixel number is set to 100%, and 128 gradations (of 256 gradations) are set as addition limit values, and the luminance subtraction rate The subtraction limit value was set to 128 gradations (of 256 gradations) with 70% being the subtraction rate of the darker part than the new template. The inspection by the updated inspection apparatus 10 is performed with the updated template. As the number of updates increases, such as the second update and the third update, the addition rate and the subtraction rate become smaller, and the luminance distribution that appears in the number up to the update is gradually reflected in the update template. This is because the influence of the change in the mold state (mold temperature, release agent, etc.) due to continuous production is not strongly reflected in the template.
 更新5回目以降は、更新対象となるガラスびん1の本数が250本未満であっても更新間隔(第4回目の更新からの経過時間)の20分を経過した場合にはその時点までの本数を対象にテンプレートを更新する。生産ラインの状態(停止や生産量の低下など)による影響をテンプレートに強く反映させないためである。 From the fifth update onwards, even if the number of glass bottles 1 to be updated is less than 250, if the update interval (elapsed time since the fourth update) has passed 20 minutes, the number up to that point Update the template for. This is because the template does not strongly reflect the effects of the production line status (stopped, decreased production, etc.).
 本発明は、上述した実施形態に限定されるものではなく、さらに種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法、及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。 The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects). In addition, the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. In addition, the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object. In addition, the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
1…ガラスびん、2…口部、2a…側面、2b…天面、3…首部、3a…スカート部、5…中心軸、7…仮想面、10,10a…検査装置、11a…第1ユニット、11b,11c…第2ユニット、12…搬送経路、13…固定台、14…自転位置、15…搬送中心軸、16…円周、18…搬入口、19…搬出口、20…第1発光部、30…第2発光部、40…第1受光部、40a…バンドパスフィルター、41~43…受光部、50…第2受光部、50a…バンドパスフィルター、51~53…受光部、60…ミラー、62…制御部、63…判定部、64…テンプレート作成部、65…テンプレート記憶部、66…画像処理部、68…回転検出部、70…取付部、71…昇降板、72…第1移動機構、73…ロッド、74…第2移動機構、75…ロッド、76…位置決め部、76a…第1位置決め面、76b…第2位置決め面、200…発光部、400…受光部 DESCRIPTION OF SYMBOLS 1 ... Glass bottle, 2 ... Mouth part, 2a ... Side surface, 2b ... Top surface, 3 ... Neck part, 3a ... Skirt part, 5 ... Center axis, 7 ... Virtual surface, 10, 10a ... Inspection apparatus, 11a ... 1st unit 11b, 11c ... 2nd unit, 12 ... transport path, 13 ... fixed base, 14 ... rotation position, 15 ... transport center axis, 16 ... circumference, 18 ... carry-in port, 19 ... carry-out port, 20 ... first light emission , 30 ... second light emitting part, 40 ... first light receiving part, 40a ... band pass filter, 41 to 43 ... light receiving part, 50 ... second light receiving part, 50a ... band pass filter, 51 to 53 ... light receiving part, 60 Mirror, 62 Control unit, 63 Determination unit, 64 Template creation unit, 65 Template storage unit, 66 Image processing unit, 68 Rotation detection unit, 70 Mounting unit, 71 Lift plate, 72 1 moving mechanism, 73 ... rod, 74 ... second moving mechanism, 5 ... rod, 76 ... positioning portion, 76a ... first positioning surface, 76 b ... second positioning surface, 200 ... light-emitting portion, 400 ... receiving portion

Claims (11)

  1.  ガラスびんの口部に向けて可視光を照射する第1発光部と、
     前記口部に向けて赤外光を照射する第2発光部と、
     前記口部からの可視光の反射光または屈折光を検出する第1受光部と、
     前記口部からの赤外光の反射光または屈折光を検出する第2受光部と、
    を含み、
     前記第1発光部、前記第2発光部、前記第1受光部及び前記第2受光部は、ガラスびんを自転させる自転位置において、ガラスびんの周囲に配置されることを特徴とする、ガラスびんの検査装置。
    A first light emitting unit that emits visible light toward the mouth of the glass bottle;
    A second light emitting unit that irradiates infrared light toward the mouth;
    A first light receiving portion for detecting reflected light or refracted light from the mouth portion;
    A second light receiving portion for detecting reflected or refracted light of infrared light from the mouth portion;
    Including
    The glass bottle, wherein the first light emitting unit, the second light emitting unit, the first light receiving unit, and the second light receiving unit are arranged around the glass bottle at a rotation position for rotating the glass bottle. Inspection equipment.
  2.  請求項1において、
     前記第1発光部は、検査対象となるガラスびんの色に応じた透過率の高い波長の可視光を照射するように設定されることを特徴とする、ガラスびんの検査装置。
    In claim 1,
    The said 1st light emission part is set so that the visible light of the wavelength with the high transmittance | permeability according to the color of the glass bottle used as a test object may be irradiated, The glass bottle test | inspection apparatus characterized by the above-mentioned.
  3.  請求項1または2において、
     前記第1受光部は、前記第1発光部の可視光を透過し、前記第2発光部の赤外光を透過しないバンドパスフィルターを備え、
     前記第2受光部は、前記第2発光部の赤外光を透過し、前記第1発光部の可視光を透過しないバンドパスフィルターを備えることを特徴とする、ガラスびんの検査装置。
    In claim 1 or 2,
    The first light receiving unit includes a band pass filter that transmits visible light of the first light emitting unit and does not transmit infrared light of the second light emitting unit,
    The glass bottle inspection apparatus, wherein the second light receiving unit includes a bandpass filter that transmits infrared light of the second light emitting unit and does not transmit visible light of the first light emitting unit.
  4.  請求項1~3のいずれか1項において、
     前記第1発光部は、ガラスびんの自転の中心軸を含む仮想面に対して、前記第2発光部と面対称の位置に配置され、
     前記第1受光部は、前記仮想面に対して、前記第2受光部と面対称の位置に配置されることを特徴とする、ガラスびんの検査装置。
    In any one of claims 1 to 3,
    The first light emitting unit is disposed at a position symmetrical to the second light emitting unit with respect to a virtual plane including the central axis of rotation of the glass bottle,
    The glass bottle inspection apparatus, wherein the first light receiving unit is arranged at a position symmetrical to the second light receiving unit with respect to the virtual plane.
  5.  請求項1~4のいずれか1項において、
     前記第1受光部は、前記第1発光部の可視光を受光する2以上の受光部の1つであり、
     前記第2受光部は、前記第2発光部の赤外光を受光する2以上の受光部の1つであることを特徴とする、ガラスびんの検査装置。
    In any one of claims 1 to 4,
    The first light receiving unit is one of two or more light receiving units that receive visible light of the first light emitting unit,
    The glass bottle inspection apparatus, wherein the second light receiving unit is one of two or more light receiving units that receive infrared light from the second light emitting unit.
  6.  請求項1~5のいずれか1項において、
     前記自転位置は、ガラスびんの搬送経路の途中に設けられており、
     前記自転位置に搬送されてくるガラスびんを順次検査することを特徴とする、ガラスびんの検査装置。
    In any one of claims 1 to 5,
    The rotation position is provided in the middle of the glass bottle conveyance path,
    An inspection apparatus for glass bottles, which sequentially inspects glass bottles conveyed to the rotation position.
  7.  請求項6において、
     前記搬送経路は、搬送中心軸を中心とする円周上に形成され、
     前記第1受光部及び前記第2受光部は、前記自転の中心軸よりも前記搬送中心軸側に配置され、前記口部からの反射光または屈折光をミラーで上方へ反射させて受光することを特徴とする、ガラスびんの検査装置。
    In claim 6,
    The transport path is formed on a circumference centered on the transport center axis,
    The first light receiving unit and the second light receiving unit are disposed closer to the transport center axis than the center axis of rotation, and receive reflected light or refracted light from the mouth part upward by a mirror. Glass bottle inspection device characterized by
  8.  請求項6または7において、
     前記搬送経路には、前記自転位置とは異なる位置に別の自転位置が設けられており、
     前記別の自転位置において、前記自転位置における検査項目とは異なる検査をすることを特徴とする、ガラスびんの検査装置。
    In claim 6 or 7,
    In the conveyance path, another rotation position is provided at a position different from the rotation position,
    An inspection apparatus for glass bottles, wherein an inspection different from the inspection item at the rotation position is performed at the another rotation position.
  9.  ガラスびんの搬送経路に設けられたガラスびんを自転させる自転位置に、発光部及び受光部を配置してガラスびんを検査する検査装置において、
     前記発光部及び前記受光部が固定された取付部と、
     前記取付部を前記自転位置に対して進退させる第1移動機構と、
     前記取付部を昇降させる第2移動機構と、
     前記取付部の所定位置に取り付けられた位置決め部と、
    を含み、
     前記自転位置に配置したガラスびんに対し、前記第1移動機構及び前記第2移動機構によって、前記位置決め部がガラスびんの口部の側面及び天面に接触するまで前記取付部を移動させることで前記発光部及び前記受光部を所定の位置に位置決め可能であることを特徴とする、ガラスびんの検査装置。
    In the inspection device for inspecting the glass bottle by arranging the light emitting part and the light receiving part at the rotation position for rotating the glass bottle provided in the conveyance path of the glass bottle,
    An attachment part to which the light emitting part and the light receiving part are fixed;
    A first movement mechanism for moving the attachment portion forward and backward with respect to the rotation position;
    A second moving mechanism for raising and lowering the attachment portion;
    A positioning portion attached at a predetermined position of the attachment portion;
    Including
    By moving the attachment portion until the positioning portion contacts the side surface and the top surface of the mouth portion of the glass bottle by the first moving mechanism and the second moving mechanism with respect to the glass bottle disposed at the rotation position. The glass bottle inspection apparatus, wherein the light emitting unit and the light receiving unit can be positioned at predetermined positions.
  10.  請求項9において、
     前記位置決め部は、棒状部材の先端に、ガラスびんの口部の側面に接触する第1位置決め面と、口部の天面に接触する第2位置決め面と、を含むことを特徴とする、ガラスびんの検査装置。
    In claim 9,
    The positioning portion includes a first positioning surface that contacts the side surface of the mouth portion of the glass bottle and a second positioning surface that contacts the top surface of the mouth portion at the tip of the rod-shaped member. Bottle inspection device.
  11.  請求項9または10において、
     前記位置決め部は、前記発光部及び前記受光部の位置決め後に、前記搬送経路を搬送されるガラスびんと干渉しない位置へ移動可能であることを特徴とする、ガラスびんの検査装置。
    In claim 9 or 10,
    The glass bottle inspecting apparatus, wherein the positioning unit is movable to a position where the positioning unit does not interfere with the glass bottle transported after the light emitting unit and the light receiving unit are positioned.
PCT/JP2017/004228 2017-02-06 2017-02-06 Glass bottle inspection device WO2018142614A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197022224A KR102287992B1 (en) 2017-02-06 2017-02-06 glass bottle inspection device
JP2018565224A JP6827060B2 (en) 2017-02-06 2017-02-06 Glass bottle inspection device
CN202210462656.XA CN114813787A (en) 2017-02-06 2017-02-06 Glass bottle inspection device
PCT/JP2017/004228 WO2018142614A1 (en) 2017-02-06 2017-02-06 Glass bottle inspection device
CN201780085631.XA CN110431405B (en) 2017-02-06 2017-02-06 Glass bottle inspection device
PH12019501547A PH12019501547A1 (en) 2017-02-06 2019-07-01 Glass bottle inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004228 WO2018142614A1 (en) 2017-02-06 2017-02-06 Glass bottle inspection device

Publications (1)

Publication Number Publication Date
WO2018142614A1 true WO2018142614A1 (en) 2018-08-09

Family

ID=63039457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004228 WO2018142614A1 (en) 2017-02-06 2017-02-06 Glass bottle inspection device

Country Status (5)

Country Link
JP (1) JP6827060B2 (en)
KR (1) KR102287992B1 (en)
CN (2) CN114813787A (en)
PH (1) PH12019501547A1 (en)
WO (1) WO2018142614A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200142042A (en) * 2019-03-20 2020-12-21 도요 가라스 가부시키가이샤 Container inspection device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110811325A (en) * 2019-11-13 2020-02-21 重庆科文净水设备有限公司 Intelligent drinking water system
CN112452801A (en) * 2020-09-28 2021-03-09 江苏孚日玻璃科技有限公司 High-efficiency online detection device for defects of glass bottles and working method thereof
CN113426705A (en) * 2021-08-25 2021-09-24 江苏圣锦硅业新材料有限公司 Glass bottle bottleneck crack check out test set

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603542A (en) * 1983-06-21 1985-01-09 Mitsubishi Electric Corp Bottle inspecting device
JPH11510256A (en) * 1995-08-04 1999-09-07 イメージ プロセッシング システムズ,インク. Bottle thread inspection system and method of operation
JPH11344451A (en) * 1998-03-31 1999-12-14 Nihon Yamamura Glass Co Ltd Apparatus for inspecting check cracks of mouth part of glass bottle
JP2001116700A (en) * 1999-08-11 2001-04-27 Enutekku:Kk Article inspection method and device using light having different wave lengths
JP2001221748A (en) * 1999-12-02 2001-08-17 Owens Brockway Glass Container Inc Detection of crack of container neck
JP2003307498A (en) * 2002-04-16 2003-10-31 Mitsubishi Materials Corp Inspecting apparatus
JP2013210203A (en) * 2012-03-30 2013-10-10 Nihon Yamamura Glass Co Ltd Crack inspection device for glass bottle and crack inspection method using the same
JP2017026605A (en) * 2015-07-17 2017-02-02 エムハート・グラス・ソシエテ・アノニム Multi-wavelength laser check detecting tool

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112941U (en) * 1980-12-29 1982-07-13
JP2759231B2 (en) * 1991-03-22 1998-05-28 山村硝子株式会社 Defect inspection system for glass bottles
CH688663A5 (en) * 1994-10-20 1997-12-31 Elpatronic Ag Method and apparatus for inspecting objects, particularly bottles.
US6067155A (en) * 1997-12-24 2000-05-23 Owens-Brockway Glass Container Inc. Optical inspection of transparent containers using infrared and polarized visible light
US6275287B1 (en) * 1998-04-25 2001-08-14 Nihon Yamamura Glass Co., Ltd. Check detector for glass bottle neck and finish portion
JP2001027615A (en) * 1999-07-15 2001-01-30 Kirin Techno-System Corp Illumination imaging apparatus of pet bottle
CN100458422C (en) * 2002-08-12 2009-02-04 广西师范大学 Glass Bottle and can detecting method and detecting device
AU2002344111A1 (en) * 2002-10-18 2004-05-04 Kirin Techno-System Corporation Glass bottle inspection device
WO2004036198A1 (en) * 2002-10-18 2004-04-29 Kirin Techno-System Corporation Method and device for preparing reference image in glass bottle inspection device
AU2002344113A1 (en) * 2002-10-18 2004-05-04 Kirin Techno-System Corporation Glass bottle mouth part inspection device
CN1474177A (en) * 2003-08-08 2004-02-11 王耀南 Multiple sensor integrated intelligent transparent container detecting device and method
CN101105459A (en) * 2007-05-15 2008-01-16 广州市万世德包装机械有限公司 Empty bottle mouth defect inspection method and device
JP4702441B2 (en) * 2008-12-05 2011-06-15 ソニー株式会社 Imaging apparatus and imaging method
WO2012043618A1 (en) * 2010-10-01 2012-04-05 キリンテクノシステム株式会社 Inspection device and method for glass bottle
DE102011013551A1 (en) * 2010-10-12 2012-04-12 Krones Aktiengesellschaft Apparatus and method for inspecting containers
JP5698608B2 (en) * 2011-06-06 2015-04-08 倉敷紡績株式会社 Bottle can screw inspection system
JP5877657B2 (en) * 2011-06-06 2016-03-08 倉敷紡績株式会社 Method and apparatus for inspecting base of bottle can
KR101257186B1 (en) * 2011-10-14 2013-04-22 (주)도형아이엠 Apparatus for inspecting container
JP6295401B2 (en) 2012-12-14 2018-03-20 キリンテクノシステム株式会社 Glass bottle inspection equipment
CN203076221U (en) * 2012-12-20 2013-07-24 苏州第壹制药有限公司 Automatic detecting and waste eliminating device
JP6199042B2 (en) * 2013-02-18 2017-09-20 株式会社エヌテック Container inspection equipment
KR101517929B1 (en) * 2013-06-28 2015-05-06 (주)가람이앤씨 Robot vision device capable of non-stop inspecting an object
CN103529053B (en) * 2013-09-27 2015-12-02 清华大学 Bottle mouth defect detection method
CN103630429B (en) * 2013-12-04 2016-06-22 公安部天津消防研究所 A kind of sampler with pressure based on near-infrared spectrum analysis and sampling method
CN104990512B (en) * 2015-07-20 2017-08-11 清华大学 Transparent vessel whorl of bottleneck defect detecting system and method
CN105241888B (en) * 2015-09-25 2018-11-02 上海金啤包装检测科技有限公司 A kind of detection method and detection device of bottle mouth defect
CN105954301B (en) * 2016-06-22 2019-08-06 广东省智能制造研究所 A kind of bottleneck quality detection method based on machine vision

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603542A (en) * 1983-06-21 1985-01-09 Mitsubishi Electric Corp Bottle inspecting device
JPH11510256A (en) * 1995-08-04 1999-09-07 イメージ プロセッシング システムズ,インク. Bottle thread inspection system and method of operation
JPH11344451A (en) * 1998-03-31 1999-12-14 Nihon Yamamura Glass Co Ltd Apparatus for inspecting check cracks of mouth part of glass bottle
JP2001116700A (en) * 1999-08-11 2001-04-27 Enutekku:Kk Article inspection method and device using light having different wave lengths
JP2001221748A (en) * 1999-12-02 2001-08-17 Owens Brockway Glass Container Inc Detection of crack of container neck
JP2003307498A (en) * 2002-04-16 2003-10-31 Mitsubishi Materials Corp Inspecting apparatus
JP2013210203A (en) * 2012-03-30 2013-10-10 Nihon Yamamura Glass Co Ltd Crack inspection device for glass bottle and crack inspection method using the same
JP2017026605A (en) * 2015-07-17 2017-02-02 エムハート・グラス・ソシエテ・アノニム Multi-wavelength laser check detecting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200142042A (en) * 2019-03-20 2020-12-21 도요 가라스 가부시키가이샤 Container inspection device
KR102429663B1 (en) * 2019-03-20 2022-08-05 도요 가라스 가부시키가이샤 container inspection device

Also Published As

Publication number Publication date
JPWO2018142614A1 (en) 2019-11-21
PH12019501547A1 (en) 2020-02-24
KR102287992B1 (en) 2021-08-11
CN110431405A (en) 2019-11-08
KR20190104172A (en) 2019-09-06
JP6827060B2 (en) 2021-02-10
CN110431405B (en) 2022-06-14
CN114813787A (en) 2022-07-29

Similar Documents

Publication Publication Date Title
US10613037B2 (en) Inspection apparatus and inspection method
WO2018142614A1 (en) Glass bottle inspection device
US20060000968A1 (en) Glass bottle inspection device
JP4713279B2 (en) Illumination device and visual inspection apparatus equipped with the same
KR101775195B1 (en) Glass bottle inspection method and apparatus
KR20160047360A (en) System and method for defect detection
JP2006226724A (en) Label inspection method and label inspection device
WO2016121681A1 (en) Inspection device
JP3989739B2 (en) Inspection device
JP4986255B1 (en) Container mouth inspection method and apparatus
JP2007294576A (en) Testing apparatus and testing method
JP4886830B2 (en) Burn glass inspection method and apparatus for transparent glass container
JP2021051032A (en) Appearance inspecting apparatus of annular product
JP6913811B2 (en) Glass bottle inspection device
JP5959430B2 (en) Bottle cap appearance inspection device and appearance inspection method
JP2018112456A (en) Article inspection device and article inspection method
JP2013257245A (en) Inspection device for articles
WO2019171756A1 (en) Moulded article imaging method and moulded article imaging device
JP2016014589A (en) Container inspection method and container inspection device
JP2015081838A (en) Inspection apparatus for can with dent or buckling
KR20150091920A (en) apparatus for inspecting glass edge and method for inspecting glass edge using thereof
JP6073261B2 (en) Bottle bottom inspection device
US20200324809A1 (en) Device to check a conformity of a mechanical part of a vehicle
JP7290825B2 (en) Label inspection device
US20240035986A1 (en) Visual inspection apparatus and visual inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565224

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197022224

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895362

Country of ref document: EP

Kind code of ref document: A1