WO2018142555A1 - Image pickup device - Google Patents

Image pickup device Download PDF

Info

Publication number
WO2018142555A1
WO2018142555A1 PCT/JP2017/003881 JP2017003881W WO2018142555A1 WO 2018142555 A1 WO2018142555 A1 WO 2018142555A1 JP 2017003881 W JP2017003881 W JP 2017003881W WO 2018142555 A1 WO2018142555 A1 WO 2018142555A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
image sensor
solid
time
peltier element
Prior art date
Application number
PCT/JP2017/003881
Other languages
French (fr)
Japanese (ja)
Inventor
中村 和彦
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to PCT/JP2017/003881 priority Critical patent/WO2018142555A1/en
Priority to JP2018565180A priority patent/JP6730464B2/en
Publication of WO2018142555A1 publication Critical patent/WO2018142555A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

The purpose of the present invention is to correct dark current irregularity, so-called fixed pattern noise, in an image pickup element, the dark current fluctuating due to the temperature of the image pickup element, and to perform such correction immediately after startup and in a short amount of time. An image pickup device (30) includes: a temperature sensor (20); peripheral-temperature sensor (20a); a motor fan (74); a heat-dissipating fin (73); a Peltier element (71) which is between an image pickup element (70) and the heat-dissipating fin (73); a Peltier driving circuit (72) for driving the Peltier element (71); a light blocking means for, for example, an electric filter disk wheel or aperture of the lens (71); and a white-flaw and absolute black-flaw detection and interpolation unit (38) that reads and stores a fixed pattern signal for which an OB pixel model-value was subtracted from an effective pixel image-pickup signal at the time of image pickup, and that subtracts the stored fixed pattern signal from the image signal for which the OB pixel model-value was subtracted from the effective pixel image pickup signal at the time of image pickup.

Description

撮像装置Imaging device
 本発明は、テレビジョンカメラなどの撮像装置に係わり、特に撮像素子の固定パターン補正機能を備える撮像装置に関する。 The present invention relates to an imaging apparatus such as a television camera, and more particularly to an imaging apparatus having a fixed pattern correction function of an imaging element.
 撮像装置からの映像信号(「撮像信号」とも言う)に含まれるノイズには、時間変動するランダムノイズと、時間変動しない固定パターンノイズ(FPN:Fixed Pattern Noise)がある。FPNは、その規則性に基づいて、信号処理により除去又は抑圧することが可能である。 Noise included in a video signal from an imaging device (also referred to as “imaging signal”) includes random noise that varies with time and fixed pattern noise (FPN) that does not vary with time. The FPN can be removed or suppressed by signal processing based on its regularity.
 撮像素子において、一般に、6℃温度上昇で暗電流は2倍程度となっていて、撮像素子温度の指数関数に比例して変動する。しかし、高画素や高感度や高速読出しに特化するために、暗電流が温度に非線形に応じて変化するCMOS撮像素子もある(例えば、特許文献1参照)。更に、暗電流が温度に非線形に応じて画面内で不均一に変化するCMOS撮像素子もある。そのため、高温時のCMOS撮像素子の遮光時の映像信号からFPNを補正値として記憶しておき、CMOS撮像素子の温度に応じてFPNを算出して補正することが困難な場合がある。 In general, in an image pickup device, the dark current becomes about twice as the temperature rises by 6 ° C., and fluctuates in proportion to an exponential function of the image pickup device temperature. However, in order to specialize in high pixels, high sensitivity, and high-speed readout, there is also a CMOS image sensor in which dark current changes with temperature in a nonlinear manner (see, for example, Patent Document 1). In addition, there is a CMOS image sensor in which dark current varies nonuniformly in a screen according to nonlinearity with temperature. For this reason, it may be difficult to store the FPN as a correction value from the video signal when the CMOS image sensor is shielded at a high temperature, and calculate and correct the FPN according to the temperature of the CMOS image sensor.
 そのため、30分程度電源を通電してヒートランしておき、撮像装置のFPN補正部において、遮光時の映像信号からFPNを抽出して補正値として記憶しておき、実際の映像信号から補正値を差し引いて、FPNが除去された補正映像信号を出力するようにしている。更に、映像信号から、暗時FPNと明時FPNの両方を除去する技術もある(例えば、特許文献2参照)。言い換えると、従来のUHDTV8K(有効画素数7680Hx4320V)カメラでは、30分のヒートラン後に有効画素撮像信号からOB画素典型値を差し引いた固定パターン信号を読出して記憶し、撮像時の有効画素撮像信号からOB画素典型値を差し引いた映像信号から差し引いていた。 For this reason, the power supply is energized for about 30 minutes and heat-run, and the FPN correction unit of the image pickup apparatus extracts the FPN from the video signal at the time of shading and stores it as a correction value, and the correction value is obtained from the actual video signal. The corrected video signal from which the FPN has been removed is output by subtraction. Furthermore, there is a technique for removing both dark FPN and bright FPN from a video signal (see, for example, Patent Document 2). In other words, in the conventional UHDTV8K (effective pixel number 7680H × 4320V) camera, after a heat run of 30 minutes, a fixed pattern signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal is read and stored, and the OB is acquired from the effective pixel imaging signal at the time of imaging. It was subtracted from the video signal from which the pixel typical value was subtracted.
 また、アバランシェ増倍光電変換膜を有する撮像管を用いた制作用カメラでは、ペルチェ素子を正負両方向に通電駆動する駆動回路を有し、アバランシェ増倍光電変換膜の動作が不安定になる超低温でも撮影可能に制御する技術がある(例えば、特許文献3参照)。更に、アバランシェ増倍させるとアバランシェ増倍光電変換膜の画面内に飽和信号電流が流れるキズが徐々に成長するような高温で起動すると、アバランシェ増倍せず単なる光電変換動作させる動作電圧にして低感度撮影状態にして、ペルチェ冷却が有効になり安定にアバランシェ増倍できる温度まで、アバランシェ増倍光電変換膜が冷却される起動約3秒後に高感度撮影可能だった。 In addition, a production camera using an image pickup tube having an avalanche multiplication photoelectric conversion film has a drive circuit for energizing and driving the Peltier element in both positive and negative directions, even at ultra-low temperatures where the operation of the avalanche multiplication photoelectric conversion film becomes unstable. There is a technique for performing control so that photographing is possible (see, for example, Patent Document 3). Furthermore, when the avalanche multiplication is performed at a high temperature at which a flaw that causes a saturation signal current to gradually grow in the screen of the avalanche multiplication photoelectric conversion film, the operation voltage is reduced to a simple photoelectric conversion operation without avalanche multiplication. High sensitivity photography was possible about 3 seconds after the start of the avalanche multiplication photoelectric conversion film cooling down to the temperature at which the Peltier cooling became effective and the avalanche multiplication could be stably performed in the sensitivity photography state.
特開2009-100380号公報JP 2009-100300 A 特開2015-100099号公報Japanese Patent Laying-Open No. 2015-100099 特開平5-316407号公報JP-A-5-316407
 ところで、上述のアバランシェ増倍光電変換膜を有する撮像管を用いた放送用カメラは、撮像管の電子銃のヒータのみ通電するプリヒートまたはスタンバイと称される状態で待機してあれば、アバランシェ増倍光電変換膜が徐々に壊れることを承知で、ペルチェ冷却が有効になる前の起動直後からアバランシェ増倍による高感度撮影可能だった。
 このように、放送用カメラでは、起動直後からの撮影可能が要求されることが多くあり、対策の技術が求められていた。
By the way, if the broadcasting camera using the imaging tube having the avalanche multiplication photoelectric conversion film described above is in a state called preheating or standby in which only the heater of the electron gun of the imaging tube is energized, the avalanche multiplication is performed. Knowing that the photoelectric conversion film was gradually broken, high-sensitivity photography by avalanche multiplication was possible immediately after startup before Peltier cooling became effective.
As described above, in many cases, broadcasting cameras are required to be able to shoot immediately after activation, and a countermeasure technique has been demanded.
 本発明は、このような状況に鑑みなされたもので、上記課題を解決することを目的とする。 The present invention has been made in view of such a situation, and aims to solve the above problems.
 本発明は、撮像装置は、固体撮像素子と、前記固体撮像素子の温度を検出する固体撮像素子温度検出手段と、筐体外の周囲温度を検出する筐体外周温度検出手段と、前記固体撮像素子に取り付けられたペルチェ素子と、筐体内外の空気の流出入を促す通風ファンと、
 前記ペルチェ素子に取り付けられた放熱フィンと、前記ペルチェ素子を駆動するペルチェ素子駆動回路と、前記固体撮像素子への光を遮光する遮光手段と、有効画素撮像信号からOB画素典型値を差し引いた固定パターン信号を読出して記憶し、撮像時の有効画素撮像信号からOB画素典型値を差し引いた映像信号から前記記憶した固定パターン信号を差し引くOB補正処理を行う画像処理手段と、前記撮像素子の温度を制御する制御部と、を有し、前記制御部は、起動時は前記遮光手段の遮光を開始し、前記通風ファンを停止して、前記ペルチェ素子駆動回路を、前記周囲温度と前記撮像素子の温度との差分に応じた第1の時間でパルス駆動を実行し、つづいて、前記第1の時間より長い第2の時間において前記ペルチェ素子に電流を流さない状態に制御し、前記第2の時間の状態に制御されることによって、前記周囲温度と前記固体撮像素子の温度の温度差が所定の温度範囲内となったら、前記制御部は、前記通風ファンを前記固体撮像素子の温度に対応した通常の駆動に制御するとともに、前記ペルチェ素子駆動回路を前記固体撮像素子の温度に対応した通常の駆動に制御し、前記画像処理部は、前記OB補正処理を実行する。
 本発明の別の撮像装置は、固体撮像素子と、前記固体撮像素子の温度を検出する固体撮像素子温度検出手段と、筐体外の周囲温度を検出する筐体外周温度検出手段と、前記固体撮像素子に取り付けられたペルチェ素子と、筐体内外の空気の流出入を促す通風ファンと、前記ペルチェ素子に取り付けられた放熱フィンと、前記ペルチェ素子を駆動するペルチェ素子駆動回路と、前記固体撮像素子への光を遮光する遮光手段と、有効画素撮像信号からOB画素典型値を差し引いた固定パターン信号を読出して記憶し、撮像時の有効画素撮像信号からOB画素典型値を差し引いた映像信号から前記記憶した固定パターン信号を差し引くOB補正処理を行う画像処理手段と、前記撮像素子の温度を制御する制御部と、を有し、前記制御部は、起動時は前記遮光手段の遮光を開始し、前記通風ファンを停止して、前記ペルチェ素子駆動回路を、前記周囲温度と前記撮像素子の温度との差分に応じた第1の時間で、前記ペルチェ素子が冷却するようにパルス駆動を実行し、つづいて、前記第1の時間より長い第2の時間において前記ペルチェ素子に電流を流さない状態に制御し、前記第2の時間の状態に制御されることによって、前記周囲温度と前記固体撮像素子の温度の温度差が所定の温度範囲内となったら、前記制御部は、前記通風ファンを前記固体撮像素子の温度に対応した通常の駆動に制御するとともに、前記ペルチェ素子駆動回路を前記固体撮像素子の温度に対応した通常の駆動に制御し、前記画像処理部は、前記OB補正処理を実行し、前記第1の時間は、0.001秒~0.1秒の範囲であって、前記第2の時間は、1秒~3秒の範囲である。
 本発明のさらに別の撮像装置は、前記固体撮像素子の温度を検出する固体撮像素子温度検出手段と、筐体外の周囲温度を検出する筐体外周温度検出手段と、前記固体撮像素子に取り付けられたペルチェ素子と、筐体内外の空気の流出入を促す通風ファンと、前記ペルチェ素子に取り付けられた放熱フィンと、前記ペルチェ素子を駆動するペルチェ素子駆動回路と、前記固体撮像素子への光を遮光する遮光手段と、有効画素撮像信号からOB画素典型値を差し引いた固定パターン信号を読出して記憶し、撮像時の有効画素撮像信号からOB画素典型値を差し引いた映像信号から前記記憶した固定パターン信号を差し引くOB補正処理を行う画像処理手段と、前記撮像素子の温度を制御する制御部と、を有し、前記制御部は、起動時は前記遮光手段の遮光を開始し、前記通風ファンを停止して、前記ペルチェ素子駆動回路を正負にパルス駆動して、前記ペルチェ素子駆動回路の正負電源電圧の電圧比の逆比の時間比で正負にパルス駆動して前記ペルチェ素子の両面で温度差がないように前記固体撮像素子と前記放熱フィンとを加熱し、前記周囲温度と前記固体撮像素子の温度の温度差が所定の温度範囲内となったら、前記通風ファンを前記固体撮像素子の温度に対応した通常の運転に制御するとともに、前記ペルチェ素子駆動回路を前記固体撮像素子の温度に対応した通常の駆動に制御し、前記画像処理部は、前記OB補正処理を実行する。
According to the present invention, an imaging apparatus includes a solid-state imaging device, a solid-state imaging device temperature detection unit that detects a temperature of the solid-state imaging device, a casing outer peripheral temperature detection unit that detects an ambient temperature outside the casing, and the solid-state imaging device. A Peltier element attached to the fan, a ventilation fan that encourages the flow of air in and out of the housing,
A heat dissipation fin attached to the Peltier element, a Peltier element driving circuit for driving the Peltier element, a light shielding means for blocking light to the solid-state imaging element, and a fixed value obtained by subtracting the OB pixel typical value from the effective pixel imaging signal Image processing means for reading and storing a pattern signal, performing OB correction processing for subtracting the stored fixed pattern signal from a video signal obtained by subtracting an OB pixel typical value from an effective pixel imaging signal at the time of imaging, and a temperature of the imaging device A control unit for controlling, the control unit starts light shielding of the light shielding means at the time of startup, stops the ventilation fan, the Peltier element drive circuit, the ambient temperature and the imaging device Pulse driving is executed at a first time corresponding to the difference from the temperature, and then a current is passed through the Peltier element at a second time longer than the first time. If the temperature difference between the ambient temperature and the temperature of the solid-state imaging device falls within a predetermined temperature range by controlling the state to the second time state, the control unit The fan is controlled to a normal drive corresponding to the temperature of the solid-state image sensor, and the Peltier device drive circuit is controlled to a normal drive corresponding to the temperature of the solid-state image sensor, and the image processing unit performs the OB correction Execute the process.
Another imaging device of the present invention includes a solid-state imaging device, a solid-state imaging device temperature detecting unit that detects a temperature of the solid-state imaging device, a casing outer periphery temperature detecting unit that detects an ambient temperature outside the casing, and the solid-state imaging A Peltier element attached to the element, a ventilation fan for urging air in and out of the housing, a heat dissipating fin attached to the Peltier element, a Peltier element driving circuit for driving the Peltier element, and the solid-state imaging element A light-shielding means that shields light from the light source, a fixed pattern signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal, and storing it, and the video signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal at the time of imaging. An image processing unit that performs an OB correction process for subtracting the stored fixed pattern signal; and a control unit that controls the temperature of the imaging device. The light shielding means starts light shielding, the ventilation fan is stopped, and the Peltier element driving circuit is cooled in the first time according to the difference between the ambient temperature and the temperature of the imaging element. Pulse driving is performed, and then, in a second time longer than the first time, control is performed so that no current flows through the Peltier element, and control is performed in the second time state. When the temperature difference between the ambient temperature and the temperature of the solid-state image sensor is within a predetermined temperature range, the control unit controls the ventilation fan to a normal drive corresponding to the temperature of the solid-state image sensor, The Peltier device driving circuit is controlled to a normal driving corresponding to the temperature of the solid-state imaging device, the image processing unit executes the OB correction processing, and the first time is 0.001 second to 0.00. 1 second A range, wherein the second time is in the range of 1 second to 3 seconds.
Still another image pickup apparatus according to the present invention is attached to the solid-state image pickup device, a solid-state image pickup device temperature detection means for detecting the temperature of the solid-state image pickup device, a casing outer periphery temperature detection means for detecting an ambient temperature outside the case, and the solid-state image pickup device. A Peltier element, a ventilation fan for energizing air in and out of the housing, a heat dissipating fin attached to the Peltier element, a Peltier element driving circuit for driving the Peltier element, and light to the solid-state imaging element A light shielding means for shielding light, and a fixed pattern signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal is read and stored, and the stored fixed pattern is obtained from the video signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal at the time of imaging. An image processing unit that performs OB correction processing for subtracting a signal, and a control unit that controls the temperature of the imaging element, and the control unit is configured to block the light-shielding hand when activated. The ventilation fan is stopped, the Peltier element drive circuit is pulsed positively and negatively, and the pulse drive is performed positively and negatively at a time ratio that is the inverse of the voltage ratio of the positive and negative power supply voltage of the Peltier element drive circuit. Then, the solid-state imaging device and the heat radiation fin are heated so that there is no temperature difference between both surfaces of the Peltier device, and when the temperature difference between the ambient temperature and the temperature of the solid-state imaging device is within a predetermined temperature range, The ventilation fan is controlled to a normal operation corresponding to the temperature of the solid-state image sensor, and the Peltier element drive circuit is controlled to a normal drive corresponding to the temperature of the solid-state image sensor, and the image processing unit is OB correction processing is executed.
 本発明によると、固体撮像素子の温度に対し非線形に画面内で不均一に変動する撮像素子の暗電流むらのいわゆる固定パターン雑音の変化を、起動後すぐに(例えば、約1秒から約3秒)、固定パターン雑音成分を検出して撮影時に固定パターン雑音成分を減算して補正することにより、固定パターン雑音成分のない高品位な撮影までの時間(従来では、起動後30分程度とされていた時間)を、大幅に短縮することができる。 According to the present invention, a change in so-called fixed pattern noise, such as non-uniformity in dark current of an image sensor that varies non-linearly in a screen in a non-linear manner with respect to the temperature of the solid-state image sensor, is detected immediately after activation (for example, from about 1 second to about 3 Seconds), the fixed pattern noise component is detected and corrected by subtracting the fixed pattern noise component at the time of shooting to obtain a high-quality shooting without fixed pattern noise component (previously, about 30 minutes after startup) Time) can be greatly reduced.
本発明の実施形態に係る、撮像装置の全体構成を示すブロック図である。1 is a block diagram illustrating an overall configuration of an imaging apparatus according to an embodiment of the present invention. 本発明の実施形態に係る、白キズ検出補間部の構成を示すブロック図である。It is a block diagram which shows the structure of the white flaw detection interpolation part based on embodiment of this invention. 本発明の実施形態に係る、完全黒キズ検出補間部の構成を示すブロック図である。It is a block diagram which shows the structure of the complete black flaw detection interpolation part based on embodiment of this invention. 本発明の実施形態に係る、遮光時のOB補正前の完全黒キズの周囲8画素の中央値で補間する場合の模式図である。It is a schematic diagram in the case of interpolating with the median value of 8 pixels around a complete black defect before OB correction at the time of light shielding according to the embodiment of the present invention. 本発明の実施形態に係る、遮光時のOB補正前の完全黒キズの周囲8画素の中央値で補間する場合の模式図である。It is a schematic diagram in the case of interpolating with the median value of 8 pixels around a complete black defect before OB correction at the time of light shielding according to the embodiment of the present invention. 本発明の実施形態に係る、遮光時のOB補正前の撮像信号での白キズの周囲8画素の中央値でする場合の補間の模式図である。It is a schematic diagram of the interpolation in the case of using the median value of 8 pixels around the white defect in the imaging signal before OB correction at the time of light shielding according to the embodiment of the present invention. 本発明の実施形態に係る、遮光時のOB補正前の撮像信号での白キズの周囲8画素の中央値で補間する場合の模式図である。It is a schematic diagram in the case of interpolating with a median value of 8 pixels around a white defect in an imaging signal before OB correction at the time of light shielding according to an embodiment of the present invention. 本発明の実施形態に係る、白キズ周囲画素補間部の構成を示すブロック図である。It is a block diagram which shows the structure of the white defect surrounding pixel interpolation part based on embodiment of this invention. 本発明の実施形態に係る、黒キズ周囲画素補間部の構成を示すブロック図である。It is a block diagram which shows the structure of the black crack surrounding pixel interpolation part based on embodiment of this invention. 本発明の実施形態に係る、暗電流算出OB補正部の構成を示すブロック図である。It is a block diagram which shows the structure of the dark current calculation OB correction | amendment part based on embodiment of this invention. 本発明の実施形態に係る、FPN補正部の構成を示すブロック図である。It is a block diagram which shows the structure of the FPN correction | amendment part based on embodiment of this invention. 本発明の実施形態の実施例1に係る、ペルチェ素子駆動回路のブロック図である。It is a block diagram of the Peltier device drive circuit concerning Example 1 of an embodiment of the present invention. 本発明の実施形態の実施例1に係る、ペルチェ駆動回路を用いたペルチェ素子71の駆動例を示す図である。It is a figure which shows the example of a drive of the Peltier device 71 using the Peltier drive circuit based on Example 1 of embodiment of this invention. 本発明の実施形態の実施例1に係る、ペルチェ駆動回路を用いたペルチェ素子の別の駆動例を示す図である。It is a figure which shows another example of a drive of the Peltier device using the Peltier drive circuit based on Example 1 of embodiment of this invention. 本発明の実施形態の実施例1に係る、起動時のパルス駆動による撮像素子加熱による短時間FPN変化低減後のFPN検出のフローチャートである。It is a flowchart of the FPN detection after a short time FPN change reduction by the image sensor heating by the pulse drive at the time of starting based on Example 1 of the embodiment of the present invention. 本発明の実施形態の実施例1に係る、撮像時のFPN補正のフローチャートである。It is a flowchart of the FPN correction | amendment at the time of imaging based on Example 1 of embodiment of this invention. 本発明の実施形態の実施例2に係る、ペルチェ駆動回路のブロック図である。It is a block diagram of the Peltier drive circuit based on Example 2 of the embodiment of the present invention. 本発明の実施形態の実施例2に係る、ペルチェ駆動回路を用いたペルチェ素子The Peltier device using the Peltier drive circuit according to Example 2 of the embodiment of the present invention
 次に、本発明を実施するための形態(以下、単に「実施形態」という)を、図面を参照して具体的に説明する。本実施形態では、撮像素子(固体撮像素子)の温度で変動する撮像素子の暗電流むらのいわゆる固定パターン雑音を、起動後すぐに短時間で安定化させて検出し、温度に対し非線形に画面内で不均一に変化する固定パターン雑音を有する撮像素子を、起動後30分程度で内部温度上昇が飽和に近づき変化が小さくなってから固定パターン雑音を検出してから撮影して固定パターン雑音を補正するのではなく、起動後すぐに固定パターン雑音の変化を飽和に近づけて検出して撮影して固定パターン雑音を補正する。 Next, modes for carrying out the present invention (hereinafter simply referred to as “embodiments”) will be specifically described with reference to the drawings. In this embodiment, the so-called fixed pattern noise, which is dark current unevenness of the image sensor that fluctuates with the temperature of the image sensor (solid-state image sensor), is detected in a short time immediately after startup, and is displayed nonlinearly with respect to the temperature. An image sensor having a fixed pattern noise that varies non-uniformly within 30 minutes after the start-up, when the internal temperature rise approaches saturation and the change becomes small, the fixed pattern noise is detected and photographed. Instead of correcting, the fixed pattern noise is corrected by detecting a change in the fixed pattern noise close to saturation immediately after the startup.
 図1は本実施形態の撮像装置30の全体構成を示すブロック図であり、例えば、テレビジョンカメラである。図1の撮像装置30は、主にガンマ後マトリクスの映像信号処理の機能に着目して示している。撮像装置30は、雑音低減、ゲイン補正およびアナログ-デジタル変換のAFE(アナログ・フロント・エンド)を集積したCMOS撮像素子(固体撮像素子)を備え、映像信号処理では、遮光画素の映像信号の代表値を有効画素映像信号から減算するOB補正を行う。 FIG. 1 is a block diagram showing the overall configuration of the imaging apparatus 30 of the present embodiment, for example, a television camera. The image pickup apparatus 30 in FIG. 1 mainly shows the function of video signal processing of a post-gamma matrix. The image pickup apparatus 30 includes a CMOS image pickup device (solid-state image pickup device) in which AFE (analog front end) for noise reduction, gain correction, and analog-digital conversion is integrated. OB correction is performed to subtract the value from the effective pixel video signal.
 より具体的には、撮像装置30は、オンチップカラーフィルタ付CMOS撮像素子(以下、「撮像素子70」と称する)と、白キズ完全黒キズ検出補間機能付映像信号処理部35と、パラレル-シリアル変換部37と、CPU(Central Processing Unit)39を備える。 More specifically, the image pickup apparatus 30 includes a CMOS image pickup device with an on-chip color filter (hereinafter referred to as “image pickup device 70”), a video signal processing unit 35 with a white flaw complete black flaw detection interpolation function, a parallel- A serial conversion unit 37 and a CPU (Central Processing Unit) 39 are provided.
 更に、撮像装置30は、ペルチェ素子71、ペルチェ駆動回路72、放熱フィン73、モーターファン74、モーターファン駆動回路75、温度センサー20、及び周囲温度センサー20aを備え、撮像素子70の冷却機能を実現する。モーターファン74はモーターファン駆動回路75により駆動が制御され、筐体内外への空気の流出入を促すよう動作する。また、撮像装置30には、レンズ31及びビューファインダ40が取り付けられる。 Further, the imaging device 30 includes a Peltier element 71, a Peltier drive circuit 72, a heat radiation fin 73, a motor fan 74, a motor fan drive circuit 75, a temperature sensor 20, and an ambient temperature sensor 20a, and realizes a cooling function of the image sensor 70. To do. The motor fan 74 is controlled to be driven by a motor fan drive circuit 75 and operates to encourage air to flow in and out of the housing. A lens 31 and a viewfinder 40 are attached to the imaging device 30.
 撮像素子70は、R/G/Bの信号を出力するが、ここでは、ベイヤー配列のカラーフィルタを備え、Gの信号としてG1及びG2の信号を出力する。すなわち、R/G1/G2/Bの信号が出力される。なお、G1及びG2の信号を区別しない場合は、「G1」及び「G2」を「G」として表記・説明する。 The image sensor 70 outputs an R / G / B signal, but here includes a Bayer color filter and outputs G1 and G2 signals as G signals. That is, an R / G1 / G2 / B signal is output. When the signals G1 and G2 are not distinguished, “G1” and “G2” are described and described as “G”.
 白キズ完全黒キズ検出補間機能付映像信号処理部35は、白キズ完全黒キズ検出補間部38と、ガンマ色輪郭補正53と、MATRIX部36とを備える。白キズ完全黒キズ検出補間部38は、白キズ検出補間部50と、完全黒キズ検出補間部51と、暗電流算出OB補正部52と、撮像素子制御部54とを備える。 The video signal processing unit with white flaw complete black flaw detection interpolation function 35 includes a white flaw complete black flaw detection interpolation unit, a gamma color outline correction 53, and a MATRIX unit. The white defect complete black defect detection interpolation unit 38 includes a white defect detection interpolation unit 50, a complete black defect detection interpolation unit 51, a dark current calculation OB correction unit 52, and an image sensor control unit 54.
 各構成の機能について、信号の流れとともに具体的に説明する。
 被写体からの入射光はレンズ部31で結像され、結像された入射光は撮像装置30の撮像素子70で光電変換される。撮像素子70で光電変換されたR/G1/G2/Bの信号に対して、撮像素子70内で雑音低減、ゲイン補正およびアナログ-デジタル変換が行われ、変換された信号は、白キズ完全黒キズ検出補正機能付映像信号処理部の35に送られる。白キズ完全黒キズ検出補間機能付映像信号処理部35は、色補正、輪郭補正、ガンマ補正、ニー補正等の各種映像信号処理を行う。
The function of each component will be specifically described together with the signal flow.
Incident light from the subject is imaged by the lens unit 31, and the imaged incident light is photoelectrically converted by the imaging element 70 of the imaging device 30. The R / G1 / G2 / B signal photoelectrically converted by the image sensor 70 is subjected to noise reduction, gain correction and analog-digital conversion in the image sensor 70, and the converted signal is completely black with white flaws. It is sent to the video signal processing unit 35 with a flaw detection correction function. The video signal processing unit with white flaw / black flaw detection / interpolation function 35 performs various video signal processing such as color correction, contour correction, gamma correction, and knee correction.
 撮像素子70の近傍には、温度センサー20が設けられており、撮像素子70の温度を検出する。周囲温度センサー20aは、筐体外周温度検出手段であって、撮像装置30の筐体外側付近の温度を検出する。なお、周囲温度センサー20aは、撮像装置30に外付けされて有線又は無線接続によって計測結果を撮像装置30に通知してもよい。 The temperature sensor 20 is provided in the vicinity of the image sensor 70 and detects the temperature of the image sensor 70. The ambient temperature sensor 20 a is a casing outer periphery temperature detection unit, and detects a temperature near the outside of the casing of the imaging device 30. The ambient temperature sensor 20a may be externally attached to the imaging device 30 and notify the imaging device 30 of a measurement result by wired or wireless connection.
 CPU39は、撮像素子70の温度に基づき、ペルチェ素子71及びモーターファン74を駆動し、撮像素子70を冷却又は加熱する。具体的には、CPU39は、ペルチェ駆動回路72へ指示を出しペルチェ素子71を駆動する。また、CPU39は、モーターファン駆動回路75へ指示を出しモーターファン74を駆動し、放熱フィン73の温度を所望の温度、例えば周囲温度に近づけるように制御する。 The CPU 39 drives the Peltier element 71 and the motor fan 74 based on the temperature of the image sensor 70 to cool or heat the image sensor 70. Specifically, the CPU 39 instructs the Peltier drive circuit 72 to drive the Peltier element 71. In addition, the CPU 39 instructs the motor fan drive circuit 75 to drive the motor fan 74 and controls the temperature of the radiating fins 73 to approach a desired temperature, for example, the ambient temperature.
 撮像素子制御部54は、CPU39の指示に従い、撮像素子70の蓄積や読出しを制御する。レンズ部31は、CPU39の指示に従い遮光または標準撮像を光学絞りまたは可変光学減衰(以下、「絞り」という)で制御する。 The image sensor control unit 54 controls accumulation and reading of the image sensor 70 in accordance with instructions from the CPU 39. The lens unit 31 controls light shielding or standard imaging with an optical aperture or variable optical attenuation (hereinafter referred to as “aperture”) in accordance with an instruction from the CPU 39.
 撮像装置30の起動時は、レンズ31の絞りを閉めて遮光し、モーターファン74を停止してペルチェ駆動回路72をパルス駆動し、周囲温度と撮像素子70の温度の温度差が、撮像素子70と放熱フィン73との飽和(具体的には、熱抵抗と熱容量の飽和)の温度差に近づけるように制御する。 When the image pickup apparatus 30 is activated, the aperture of the lens 31 is closed to block light, the motor fan 74 is stopped and the Peltier drive circuit 72 is pulse-driven, and the temperature difference between the ambient temperature and the temperature of the image pickup element 70 is the image pickup element 70. And the heat radiation fin 73 are controlled to approach a temperature difference of saturation (specifically, thermal resistance and heat capacity saturation).
 その飽和の温度差に近づいたら、ペルチェ素子71の駆動とモーターファン74の駆動を、撮像素子70の温度に対応した通常の運転に移行させる。その後、64回(約1秒間)だけ有効画素撮像信号からOB画素典型値を差し引いた固定パターン信号を読出して記憶し、撮像時の有効画素撮像信号からOB画素典型値を映像信号から差し引いて、さらに固定パターン信号を減算する。詳細は実施例1及び実施例2で後述する。 When the saturation temperature difference is approached, the drive of the Peltier element 71 and the drive of the motor fan 74 are shifted to a normal operation corresponding to the temperature of the image sensor 70. Thereafter, a fixed pattern signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal 64 times (about 1 second) is read and stored, and the OB pixel typical value is subtracted from the video signal from the effective pixel imaging signal at the time of imaging, Further, the fixed pattern signal is subtracted. Details will be described later in Example 1 and Example 2.
 白キズ完全黒キズ検出補間機能付映像信号処理部35は、各種映像信号処理等を施したのち、MATRIX部36を用いて次式の変換式により、BT.709の映像信号の出力のR/G/Bから輝度信号(Y)と色差信号(Pb/Pr)に変換する。
  Y=0.2126R+0.7152G+0.0722B
  Pb=0.5389(B-Y)
  Pr=0.6350(R-Y)
そしてパラレル-シリアル変換部37でシリアル映像信号に変換され、外部に出力される。
The video signal processing unit with white flaw complete black flaw detection interpolation function performs various video signal processing and the like, and then uses the MATRIX unit 36 to convert the BT. The R / G / B output of the video signal 709 is converted into a luminance signal (Y) and a color difference signal (Pb / Pr).
Y = 0.2126R + 0.7152G + 0.0722B
Pb = 0.5389 (BY)
Pr = 0.6350 (RY)
Then, it is converted into a serial video signal by the parallel-serial converter 37 and output to the outside.
 また、BT.709の原色点より広色域のITU/BT.2020での映像信号の出力
  Y=0.2627R+0.6780G+0.0593B
  Pb=0.5315(B-Y)
  Pr=0.6782(R-Y)
の映像信号出力もある。
 さらに、赤緑青の原色の映像信号の出力も、図次しないが、赤緑1緑2青の原色の映像信号の出力もある。
BT. ITU / BT.709, which has a wider color gamut than 709 primary color points. Video signal output at 2020 Y = 0.2627R + 0.6780G + 0.0593B
Pb = 0.5315 (BY)
Pr = 0.67882 (RY)
There is also a video signal output.
Further, the output of red, green and blue primary color video signals is not shown, but there is also the output of red, green, green and blue primary color video signals.
 CPU39は、撮像装置30の各部を制御する。また、ビューファインダ40またはモニタディスプレイ(図示せず)の画像表示部は、撮像装置30の設定用メニューや暗電流が異常に多い撮像画素(以下、「白キズ」という。)と正常画素と感度が異常に低く暗電流が漏れ電流程度しかない撮像画素(以下、「完全黒キズ」という。)との自動補間操作や任意の画素の手動での周囲画素での補間操作を表示する。 The CPU 39 controls each unit of the imaging device 30. Further, the image display unit of the viewfinder 40 or the monitor display (not shown) has a setting menu of the imaging device 30, an imaging pixel (hereinafter referred to as “white scratch”), a normal pixel, and a sensitivity with an abnormally large dark current. Displays an automatic interpolation operation with an imaging pixel (hereinafter referred to as a “complete black flaw”) that has an abnormally low dark current and a leakage current level, or an arbitrary pixel manual interpolation operation with surrounding pixels.
 ビューファインダ40またはモニタディスプレイでは、被写体の映像にメニュー画面を重畳し、ユーザーはメニュー画面を見ながら白キズと完全黒キズとの自動検出補間操作や任意の画素の手動での周囲画素での補間操作を表示する。 In the viewfinder 40 or monitor display, the menu screen is superimposed on the subject image, and the user can automatically detect white scratches and complete black scratches while looking at the menu screen, or manually interpolate any pixel at surrounding pixels. Display operations.
 以下、キズ検出と補間処理に関し基本的な構成及び動作を、上述した図1と、図2~図10及び図07を用いて説明する。 Hereinafter, the basic configuration and operation regarding the flaw detection and the interpolation processing will be described with reference to FIG. 1, FIG. 2 to FIG. 10, and FIG.
 図2は、白キズ検出補間部50の構成を示すブロック図である。図3は、完全黒キズ検出補間部51の構成を示すブロック図である。図2で示す白キズ検出補間部50は、暗電流が異常に多い撮像画素(いわゆる「白キズ」)検出と補間を行う。図3の完全黒キズ検出補間部51は、感度が異常に低く暗電流が漏れ電流程度しかない撮像画素(いわゆる「完全黒キズ」)検出を行う。 FIG. 2 is a block diagram showing the configuration of the white flaw detection interpolation unit 50. FIG. 3 is a block diagram showing the configuration of the complete black defect detection interpolation unit 51. As shown in FIG. The white defect detection interpolation unit 50 shown in FIG. 2 detects and interpolates an imaging pixel (so-called “white defect”) with an abnormally large dark current. The complete black flaw detection interpolating unit 51 in FIG. 3 detects an image pickup pixel (so-called “complete black flaw”) whose sensitivity is abnormally low and the dark current is only about the leakage current.
 具体的には、白キズ検出補間部50は、撮像素子70からR/G/Bの信号を取得し白キズ検出補間処理を行い、Rの白キズ補間信号R(1)/Gの白キズ補間信号G(1)/Bの白キズ補間信号B(1)を完全黒キズ検出補間部51へ出力する。 Specifically, the white flaw detection interpolation unit 50 acquires an R / G / B signal from the image sensor 70, performs white flaw detection interpolation processing, and performs a white flaw interpolation signal R (1) / G white flaw. The white defect interpolation signal B (1) of the interpolation signal G (1) / B is output to the complete black defect detection interpolation unit 51.
 完全黒キズ検出補間部51は、白キズ検出補間部50からRの白キズ補間信号R(1)/Gの白キズ補間信号G(1)/Bの白キズ補間信号B(1)を取得し完全黒キズ検出補間処理を行い、Rの完全黒キズ補間信号R(2)/Gの完全黒キズ補間信号G(2)/Bの完全黒キズ補間信号B(2)を暗電流算出OB補正部52へ出力する。 The complete black defect detection interpolation unit 51 obtains the white defect interpolation signal R (1) / G white defect interpolation signal G (1) / B white defect interpolation signal B (1) from the white defect detection interpolation unit 50. Then, complete black defect detection interpolation processing is performed, and the complete black defect interpolation signal R (2) / G complete black defect interpolation signal G (2) / B complete black defect interpolation signal B (2) is calculated as a dark current OB. Output to the correction unit 52.
 このとき、完全黒キズ検出補間部51は、完全黒キズ検出の長時間蓄積での完全黒キズ基準レベルを減算し、完全黒キズの映像信号タイミング(アドレス)を判定し、標準撮像時に、標準撮像時の完全黒キズ補間レベル判定はしないで、完全黒キズの映像信号タイミング(アドレス)で完全黒キズの周囲画素での補間を行う。 At this time, the complete black defect detection interpolation unit 51 subtracts the complete black defect reference level in the long-time accumulation of complete black defect detection, determines the video signal timing (address) of the complete black defect, Interpolation is performed at surrounding pixels of the complete black defect at the video signal timing (address) of the complete black defect without determining the complete black defect interpolation level at the time of imaging.
 図2に示すように、白キズ検出補間部50は、白キズ判定部15と、白キズ周囲画素補間部16と、3つの減算器(減算器(1)12a、減算器(2)13a、減算器(3)14a)とを備える。 As shown in FIG. 2, the white defect detection interpolation unit 50 includes a white defect determination unit 15, a white defect surrounding pixel interpolation unit 16, three subtractors (subtracter (1) 12a, subtracter (2) 13a, Subtractor (3) 14a).
 白キズ判定部15は、白キズの映像信号タイミング(アドレス)判定と標準撮像時の白キズ補間判定を行い、R/G/Bの信号に対応した白キズの映像信号タイミング(アドレス)Twr、Twg、Twbを白キズ周囲画素補間部16へ出力する。なお、各白キズの映像信号タイミング(アドレス)Twr、Twg、Twbを区別しない場合は、白キズの映像信号タイミング(アドレス)Twと称して説明する。白キズ周囲画素補間部16は、白キズの周囲画素での補間を行う。 The white scratch determination unit 15 performs white scratch video signal timing (address) determination and white scratch interpolation determination during standard imaging, and white scratch video signal timing (address) Twr corresponding to the R / G / B signal. Twg and Twb are output to the white defect surrounding pixel interpolating unit 16. In addition, when not distinguishing the video signal timing (address) Twr, Twg, and Twb of each white defect, it will be described as the video signal timing (address) Tw of the white defect. The white defect surrounding pixel interpolating unit 16 performs interpolation at the surrounding pixels of the white defect.
 図3に示すように、完全黒キズ検出補間部51は、黒キズ判定部17と、黒キズ周囲画素補間部18と、3つの減算器(減算器(1)12b、減算器(2)13b、減算器(3)14b)とを備える。 As shown in FIG. 3, the complete black defect detection interpolation unit 51 includes a black defect determination unit 17, a black defect surrounding pixel interpolation unit 18, and three subtractors (subtracter (1) 12b, subtracter (2) 13b. And a subtractor (3) 14b).
 黒キズ判定部17は、黒キズの映像信号タイミング(アドレス)判定を行い、R/G/Bの信号に対応した黒キズの映像信号タイミング(アドレス)Tbr、Tbg、Tbbを黒キズ周囲画素補間部18へ出力する。なお、各黒キズの映像信号タイミング(アドレス)Tbr、Tbg、Tbbを区別しない場合は、黒キズの映像信号タイミング(アドレス)Tbと称して説明する。黒キズ周囲画素補間部18は黒キズの周囲画素での補間を行う。 The black scratch determination unit 17 performs black scratch video signal timing (address) determination, and black scratch video signal timing (address) Tbr, Tbg, Tbb corresponding to the R / G / B signal is interpolated around the black scratch. To the unit 18. In addition, when not distinguishing the video signal timing (address) Tbr, Tbg, and Tbb of each black scratch, it is referred to as the video signal timing (address) Tb of the black scratch. The black scratch surrounding pixel interpolating unit 18 performs interpolation at the black scratch surrounding pixels.
 図1、図2、図3に示すように、CPU39は、レンズ31に絞りを閉じて撮像素子70を遮光する指示をする。次に、CPU39は、撮像素子制御部54へおよそ1秒の中時間蓄積を指示する。撮像素子制御54はその指示にもとづき、白キズ検出用中時間間欠パルスを発生させ、撮像素子70に供給する。そして、白キズ検出補間部50の減算器(1)12a、減算器(2)13a、減算器(3)14aが、遮光中時間蓄積したR、G、Bの撮像信号と白キズ検出の中時間蓄積での白キズ基準レベル(SR1、SG1、SB1)との差分を白キズ判定部15へ出力する。白キズ基準レベル(SR1、SG1、SB1)は、CPU39から出力される。白キズ判定部15は、その差分から白キズの映像信号タイミング(アドレス)判定を行う。 As shown in FIGS. 1, 2, and 3, the CPU 39 instructs the lens 31 to close the aperture and shield the image sensor 70. Next, the CPU 39 instructs the image sensor control unit 54 to store approximately 1 second in the middle time. Based on the instruction, the image sensor control 54 generates a white flaw detection intermediate time intermittent pulse and supplies it to the image sensor 70. Then, the subtractor (1) 12a, subtracter (2) 13a, and subtracter (3) 14a of the white flaw detection interpolating unit 50 are used to detect R, G, and B image signals accumulated during the light-shielding time and white flaw detection. The difference from the white scratch reference level (SR1, SG1, SB1) in the time accumulation is output to the white scratch determination unit 15. The white scratch reference level (SR1, SG1, SB1) is output from the CPU 39. The white flaw determination unit 15 performs white flaw video signal timing (address) determination from the difference.
 次にCPU39は、撮像素子制御部54へ正常画素の暗電流に反比例させて長時間(1秒から163894秒)蓄積を指示する。撮像素子制御54は、その指示にもとづき、完全黒キズ検出用長時間間欠パルスを発生させ、撮像素子70に供給する。そして、完全黒キズ検出補間部51の減算器(1)12b、減算器(2)13b、減算器(3)14bが、遮光長時間蓄積したR,G,Bの撮像信号を白キズの映像信号タイミング(アドレス)に基づき16で白キズの周囲画素での補間を行ったR,G,Bの補間信号(R(1)、G(1)、B(1))と完全黒キズ検出の長時間蓄積での完全黒キズ基準レベル(SR2、SG2、SB2)との差分を黒キズ判定部17へ出力する。黒キズ判定部17は、その差分から完全黒キズの映像信号タイミング(アドレス)判定を行う。 Next, the CPU 39 instructs the image sensor control unit 54 to store for a long time (from 1 second to 163894 seconds) in inverse proportion to the dark current of the normal pixels. The image sensor control 54 generates a complete black flaw detection long-term intermittent pulse based on the instruction and supplies it to the image sensor 70. Then, the subtractor (1) 12b, subtracter (2) 13b, and subtracter (3) 14b of the complete black defect detection interpolation unit 51 uses the white, flawed, R, G, and B image signals accumulated for a long period of time as shading. R, G, B interpolation signals (R (1), G (1), B (1)) interpolated at surrounding pixels of white scratches at 16 based on signal timing (address) and complete black scratch detection The difference from the complete black scratch reference level (SR2, SG2, SB2) in the long-time accumulation is output to the black scratch determination unit 17. The black scratch determination unit 17 determines the video signal timing (address) of the complete black scratch from the difference.
 標準撮像時に、CPU39は、レンズ31に絞りを開かせ、撮像素子制御部54へ標準撮像を指示する。その指示にもとづいて、撮像素子制御54は標準撮像パルスを発生させ撮像素子70に供給する。白キズ検出補間部50の減算器(1)12a、減算器(2)13a、減算器(3)14aが、標準撮像したR、G、Bの撮像信号と標準撮像時の白キズ補間レベル(SR1‘、SG1’、SB1‘)との差分を白キズ判定部15へ出力する。白キズ判定部15は、その差分から白キズの映像信号タイミング(アドレス)判定を行う。白キズ周囲画素補間部16は白キズ補間レベル以下の撮像信号で白キズの映像信号タイミング(アドレス)で白キズの周囲画素での補間を行う。白キズ周囲画素補間部16が白キズの周囲画素での補間を行ったR,G,Bの補間信号(R(1)、G(1)、B(1))は完全黒キズ検出補間部51へ出力される。完全黒キズ検出補間部51の黒キズ周囲画素補間部18は、完全黒キズの映像信号タイミング(アドレス)に基づき、完全黒キズを周囲画素の中央値で補間を行う。黒キズ判定部17は、標準撮像時の完全黒キズ補間レベル判定は行わない。 At the time of standard imaging, the CPU 39 causes the lens 31 to open the aperture and instructs the image sensor control unit 54 to perform standard imaging. Based on the instruction, the image sensor control 54 generates a standard imaging pulse and supplies it to the image sensor 70. The subtractor (1) 12a, subtracter (2) 13a, and subtracter (3) 14a of the white flaw detection interpolation unit 50 perform standard imaging R, G, B imaging signals and white flaw interpolation level ( SR1 ′, SG1 ′, and SB1 ′) are output to the white scratch determination unit 15. The white flaw determination unit 15 performs white flaw video signal timing (address) determination from the difference. The white defect surrounding pixel interpolating unit 16 performs interpolation on the surrounding pixels of the white defect at the image signal timing (address) of the white defect with the imaging signal equal to or lower than the white defect interpolation level. R, G, B interpolation signals (R (1), G (1), B (1)) interpolated by surrounding pixels of white flaws by white flaw surrounding pixel interpolation unit 16 are complete black flaw detection interpolating units. 51 is output. The black defect surrounding pixel interpolation unit 18 of the complete black defect detection interpolation unit 51 interpolates the complete black defect with the median value of the surrounding pixels based on the video signal timing (address) of the complete black defect. The black scratch determination unit 17 does not perform complete black scratch interpolation level determination during standard imaging.
 また、図2において、判定レベルに関して、白キズ検出の中時間蓄積での白キズ基準レベル(SR1、SG1、SB1)又は標準撮像時の白キズ補間レベル(SR1‘、SG1’、SB1‘)を入れ替えて、白キズの映像信号タイミング(アドレス)判定と標準撮像時の白キズ補間判定とを同一手段(白キズ判定部15)で行うことが可能であり、回路の小型化と低価格化が実現できる。 Further, in FIG. 2, with respect to the determination level, the white scratch reference level (SR1, SG1, SB1) during white scratch detection medium time accumulation or the white scratch interpolation level (SR1 ′, SG1 ′, SB1 ′) during standard imaging is shown. The white scratch video signal timing (address) determination and the white scratch interpolation determination at the time of standard imaging can be performed by the same means (white scratch determination unit 15), and the circuit can be downsized and the price can be reduced. realizable.
 図4Aは、遮光時のOB補正前の完全黒キズの周囲8画素の中央値で補間する場合の模式図であり、標準撮像信号での完全黒キズの周囲正常画素での補間を示している。図示のように、中央の完全黒キズ撮像信号「0」が、周囲の周囲正常画素撮像信号「32」、「48」、「56」、「64」、「80」、「96」、「102」、「128」の中央値「64」または「80」で補間される。 FIG. 4A is a schematic diagram in the case of interpolating with the median value of 8 pixels around a complete black defect before OB correction at the time of light shielding, and shows interpolation at normal pixels around the complete black defect with a standard imaging signal. . As shown in the figure, the complete black scratch imaging signal “0” at the center becomes the surrounding normal pixel imaging signals “32”, “48”, “56”, “64”, “80”, “96”, “102”. ”And“ 128 ”are interpolated by the median“ 64 ”or“ 80 ”.
 図4Bは、遮光時のOB補正前の完全黒キズの周囲8画素の中央値で補間する場合の模式図であり、標準撮像信号での完全黒キズの周囲黒キズを含む正常画素での補間を示している。図示のように、中央の完全黒キズ撮像信号「0」が、周囲(図のマトリックス右下)の完全黒キズ撮像信号「0」を除く周囲の周囲正常画素撮像信号「32」、「48」、「56」、「64」、「80」、「102」、「128」の中央値「64」で補間される。 FIG. 4B is a schematic diagram in the case of interpolating with the median value of 8 pixels around the complete black defect before OB correction at the time of light shielding, and interpolation at normal pixels including the surrounding black defect of the complete black defect in the standard imaging signal. Is shown. As shown in the figure, the surrounding complete normal pixel imaging signal “32”, “48” except for the complete black scratch imaging signal “0” in the center (lower right of the matrix in the figure) is the central perfect black scratch imaging signal “0”. , “56”, “64”, “80”, “102”, “128” are interpolated by the median “64”.
 図4Cは、遮光時のOB補正前の撮像信号での白キズの周囲8画素の中央値で補間する場合の模式図であり、標準撮像信号での白キズの周囲正常画素での補間の例を示している。図示のように、中央の白キズ撮像信号「1024」が、周囲の周囲正常画素撮像信号「32」、「48」、「56」、「64」、「80」、「96」、「102」、「128」の中央値「64」または「80」で補間される。 FIG. 4C is a schematic diagram in the case of interpolating with the median value of 8 pixels around the white defect in the image signal before OB correction at the time of light shielding, and an example of interpolation at normal pixels around the white defect in the standard image signal Is shown. As shown in the figure, the center white scratch imaging signal “1024” is converted into the surrounding normal pixel imaging signals “32”, “48”, “56”, “64”, “80”, “96”, “102”. , “128” is interpolated with the median “64” or “80”.
 図4Dは、遮光時のOB補正前の撮像信号での白キズの周囲8画素の中央値で補間する場合の模式図であり、標準撮像信号での白キズの周囲白キズを含む正常画素での補間の例を示している。図示のように、中央の白キズ撮像信号「1024」が、周囲の周囲正常画素撮像信号「32」、「48」、「56」、「80」、「96」、「102」、「128」の中央値「80」で補間される。完全黒キズ補間は白キズ補間後に行われる。 FIG. 4D is a schematic diagram in the case of interpolating with a median value of 8 pixels around white flaws in the image signal before OB correction at the time of light shielding, and is a normal pixel including white flaws around white flaws in the standard image pickup signal. An example of interpolation is shown. As shown in the figure, the white scratch imaging signal “1024” at the center becomes the surrounding normal pixel imaging signals “32”, “48”, “56”, “80”, “96”, “102”, “128”. Is interpolated with a median of “80”. Complete black scratch interpolation is performed after white scratch interpolation.
 図5は白キズ周囲画素補間部16の構成を示すブロック図である。図6は黒キズ周囲画素補間部18の構成を示すブロック図である。白キズ周囲画素補間部16及び黒キズ周囲画素補間部18は、同様の構成を有しており、それぞれ周囲8画素の中央値を算出し補間する。 FIG. 5 is a block diagram showing the configuration of the white flaw surrounding pixel interpolation unit 16. FIG. 6 is a block diagram showing the configuration of the black defect surrounding pixel interpolation unit 18. The white defect surrounding pixel interpolation unit 16 and the black defect surrounding pixel interpolation unit 18 have the same configuration, and each calculates and interpolates the median value of the surrounding eight pixels.
 図5に示すように、白キズ周囲画素補間部16は、周辺画素信号選択部9aと、周囲画素中央値検出部19aと、遅延器8aと、出力切替器29aとを備える。周辺画素信号選択部9aは、ラインメモリ(1)5aと、ラインメモリ(2)6aと、入力切替器7aとを備える。周囲画素中央値検出部19aは、8つの比較器(比較器(1)21a~比較器(8)28a)を備え、周囲画素中央値を出力切替器29aに出力する。ラインメモリ(1)5a及びラインメモリ(2)6aは、0H番地の撮像信号から1H番地、2H番地の撮像信号を生成する。 As shown in FIG. 5, the white defect surrounding pixel interpolation unit 16 includes a surrounding pixel signal selection unit 9a, a surrounding pixel median value detection unit 19a, a delay unit 8a, and an output switch 29a. The peripheral pixel signal selection unit 9a includes a line memory (1) 5a, a line memory (2) 6a, and an input switch 7a. The surrounding pixel median value detection unit 19a includes eight comparators (comparator (1) 21a to comparator (8) 28a) and outputs the surrounding pixel median value to the output switch 29a. The line memory (1) 5a and the line memory (2) 6a generate imaging signals at addresses 1H and 2H from the imaging signal at address 0H.
 入力切替器7aは、0H番地、1H番地、2H番地の撮像信号を選択して撮像信号の周囲画素信号を生成する。ラインメモリ(1)5a及びラインメモリ(2)6aの替わりに、図示しないフレームメモリが用いられてもよい。遅延器8aは、周囲画素中央値検出部19aの遅延分撮像信号を遅延させる。 The input switch 7a selects the image signals at addresses 0H, 1H, and 2H, and generates surrounding pixel signals of the image signals. A frame memory (not shown) may be used in place of the line memory (1) 5a and the line memory (2) 6a. The delay unit 8a delays the imaging signal by the delay of the surrounding pixel median value detection unit 19a.
 そして、周囲画素中央値検出部19aは、撮像信号の周囲画素信号を、比較器(1)21a~比較器(8)28aで例えば降順に並び換えて、中央値に対応する比較器(4)24aから撮像信号の周囲画素中央値を出力切替器29aへ検出する。更に、図02で示した、白キズ判定部15からの白キズのレベル以下判定時の白キズの映像信号タイミング(アドレス)Twに応じて白キズ周囲画素補間部16の出力切替器29で、撮像信号を撮像信号の周囲画素中央値に補間する。 Then, the surrounding pixel median value detection unit 19a rearranges the surrounding pixel signals of the imaging signal by the comparator (1) 21a to the comparator (8) 28a, for example, in descending order, and the comparator (4) corresponding to the median value. The median value of the surrounding pixels of the imaging signal is detected from 24a to the output switch 29a. Further, in the output selector 29 of the white scratch surrounding pixel interpolating unit 16 according to the video signal timing (address) Tw of the white scratch at the time of the determination below the white scratch level from the white scratch determining unit 15 shown in FIG. The imaging signal is interpolated to the median value of surrounding pixels of the imaging signal.
 また、図6に示すように、キズ周囲画素補間部18は、周辺画素信号選択部9bと、周囲画素中央値検出部19bと、遅延器8bと、出力切替器29bとを備える。周辺画素信号選択部9bは、ラインメモリ(1)5bと、ラインメモリ(2)6bと、入力切替器7bとを備える。周囲画素中央値検出部19bは、8つの比較器(比較器(1)21b~比較器(8)28b)を備え、周囲画素中央値を出力する。ラインメモリ(1)5b及びラインメモリ(2)6bは、0H番地の白キズ補間信号から1H番地、2H番地の白キズ補間信号を生成する。 Also, as shown in FIG. 6, the flaw surrounding pixel interpolation unit 18 includes a surrounding pixel signal selection unit 9b, a surrounding pixel median value detection unit 19b, a delay unit 8b, and an output switch 29b. The peripheral pixel signal selection unit 9b includes a line memory (1) 5b, a line memory (2) 6b, and an input switch 7b. The surrounding pixel median value detection unit 19b includes eight comparators (comparator (1) 21b to comparator (8) 28b), and outputs the surrounding pixel median value. Line memory (1) 5b and line memory (2) 6b generate white scratch interpolation signals at addresses 1H and 2H from the white scratch interpolation signal at address 0H.
 入力切替器7bは、0H番地、1H番地、2H番地の白キズ補間信号を選択して白キズ補間信号の周囲画素信号を生成する。遅延器8bは、周囲画素中央値検出部19bの白キズ補間信号を遅延させる。 The input switch 7b selects the white scratch interpolation signal at addresses 0H, 1H, and 2H and generates a surrounding pixel signal of the white scratch interpolation signal. The delay unit 8b delays the white defect interpolation signal of the surrounding pixel median value detection unit 19b.
 そして、周囲画素中央値検出部19bは、白キズ補間信号の周囲画素信号を、比較器(1)21b~比較器(8)28bで例えば降順に並び換え、中央値に対応する比較器(4)24bから白キズ補間信号の周囲画素中央値を出力切替器29bへ検出する。更に、図3の黒キズ判定部17からの完全黒キズの映像信号タイミング(アドレス)Tbに応じて黒キズ周囲画素補間部18の出力切替器29bで、白キズ補間信号を白キズ補間信号の周囲画素中央値に補間する。 Then, the surrounding pixel median value detection unit 19b rearranges the surrounding pixel signals of the white defect interpolation signal by the comparator (1) 21b to the comparator (8) 28b, for example, in descending order, and the comparator (4 ) The surrounding pixel median value of the white scratch interpolation signal is detected from 24b to the output switch 29b. Further, in accordance with the video signal timing (address) Tb of the complete black scratch from the black scratch determination unit 17 of FIG. 3, the output switch 29b of the black scratch surrounding pixel interpolation unit 18 converts the white scratch interpolation signal into the white scratch interpolation signal. Interpolates to the surrounding pixel median.
 なお、図5の白キズ周囲画素補間部16や図6の黒キズ周囲画素補間部18において、周囲画素に複数の白キズが存在していたとしても、白キズ補間後に完全黒キズ補間するので、完全黒キズ補間は、白キズの影響を受けない。また、完全黒キズ補間は白キズ補間後に行うので、白キズ周囲画素補間部16と黒キズ周囲画素補間部18との機能が同じ回路で入力信号と制御信号とを切り替えることで実現されてもよい。 In the white defect surrounding pixel interpolation unit 16 in FIG. 5 and the black defect surrounding pixel interpolation unit 18 in FIG. 6, even if there are a plurality of white defects in the surrounding pixels, complete black defect interpolation is performed after white defect interpolation. Full black scratch interpolation is not affected by white scratches. Further, since complete black defect interpolation is performed after white defect interpolation, the functions of the white defect surrounding pixel interpolation unit 16 and the black defect surrounding pixel interpolation unit 18 may be realized by switching the input signal and the control signal in the same circuit. Good.
 図7は、暗電流算出OB補正部52の構成を示すブロック図であって、OB画素信号の最小値からN番目からN+M番目の画素値を代表値として検出し、その代表値の加算平均値を出力する。ここでは、一実施例として、最小値から4番目~7番目(すなわち、N=3、M=4)の画素値の加算平均を出力する構成について例示する。 FIG. 7 is a block diagram showing the configuration of the dark current calculation OB correction unit 52, which detects the Nth to N + Mth pixel values from the minimum value of the OB pixel signal as a representative value, and adds the average value of the representative values. Is output. Here, as an example, a configuration for outputting the addition average of the fourth to seventh pixel values (that is, N = 3, M = 4) from the minimum value is illustrated.
 暗電流算出OB補正52は、代表値平均検出部48と、遅延器55と、減算器4とを備える。代表値平均検出部48は、代表値検出部47と、1/4除算部46と、加算器(1)43、加算器(2)44及び加算器(3)45とを備える。 The dark current calculation OB correction 52 includes a representative value average detection unit 48, a delay unit 55, and a subtracter 4. The representative value average detection unit 48 includes a representative value detection unit 47, a ¼ division unit 46, an adder (1) 43, an adder (2) 44, and an adder (3) 45.
 代表値検出部47は、完全黒キズ検出補間部51からOG画素信号を取得し、加算器(1)43、加算器(2)44及び加算器(3)45で、最小値から4番目~7番目の画素値を加算し1/4除算部46へ出力する。 The representative value detection unit 47 obtains the OG pixel signal from the complete black defect detection interpolation unit 51, and the adder (1) 43, the adder (2) 44, and the adder (3) 45 are the fourth to fourth values from the minimum value. The seventh pixel value is added and output to the ¼ division unit 46.
 具体的には、代表値検出部47は、図示のように、比較器(1)21c~比較器(8)28cを備え、例えば、OG画素値が降順に並び変え、最小値が比較器(8)28aに最大値(すなわち、最小値から8番目の画素値)が比較器(1)21cに設定される。ここでは、比較器(2)22cから7番目の画素値が、比較器(3)23cから6番目の画素値が、加算器(1)43へ出力される。また、比較器(4)24cから5番目の画素値が、比較器(5)25cから4番目の画素値が加算器(2)44に出力される。そして、加算器(1)43で加算された画素値と加算器(2)44で加算された画素値が加算器(3)45で更に加算され、1/4除算部46へ出力される。 Specifically, as shown in the figure, the representative value detection unit 47 includes comparators (1) 21c to (8) 28c. For example, the OG pixel values are rearranged in descending order, and the minimum value is the comparator ( 8) The maximum value (that is, the eighth pixel value from the minimum value) is set in the comparator (1) 21c in 28a. Here, the seventh pixel value from the comparator (2) 22c and the sixth pixel value from the comparator (3) 23c are output to the adder (1) 43. The fifth pixel value is output from the comparator (4) 24c, and the fourth pixel value is output from the comparator (5) 25c to the adder (2) 44. Then, the pixel value added by the adder (1) 43 and the pixel value added by the adder (2) 44 are further added by the adder (3) 45 and output to the ¼ division unit 46.
 1/4除算部46は、最小値から4番目~7番目(すなわち、N=3、M=4)の画素値の加算値を加算器(3)45から取得し、2bitシフトによって1/4化する。この様な処理によって、代表値平均検出部48は、白キズと完全黒キズを除外したOB画素信号を加算平均する。 The ¼ division unit 46 obtains an addition value of the fourth to seventh pixel values (that is, N = 3, M = 4) from the minimum value from the adder (3) 45, and ¼ by the 2-bit shift. Turn into. By such processing, the representative value average detection unit 48 adds and averages the OB pixel signals excluding the white defect and the complete black defect.
 なお、遅延器55で遅延された撮像有効画素信号は、減算器4で代表値平均検出部48から出力される加算平均で補正し、OB補正撮像画素信号として出力される。なお、V-OB補正(垂直OB補正)において、遅延器55は必須ではないが、撮像有効画素信号を遅延器55で遅延させ、有効画素後のV-OBで補正したほうが安定する。なお、V-OB補正は、縦筋補正やHShading補正も兼ねる。 Note that the imaging effective pixel signal delayed by the delay unit 55 is corrected by the addition average output from the representative value average detection unit 48 by the subtractor 4 and output as an OB corrected imaging pixel signal. In the V-OB correction (vertical OB correction), the delay unit 55 is not essential, but it is more stable that the imaging effective pixel signal is delayed by the delay unit 55 and corrected by the V-OB after the effective pixel. Note that the V-OB correction also serves as vertical stripe correction and HShading correction.
 一般に、撮像装置30の適用が想定されるテレビカメラでは、撮像素子は、2K、4K、8Kと高画素になるに従い、有効画素に比較してOB画素が少なくなる。そのため、OB画素の白キズと完全黒キズの影響を受けやすくなる。しかし、本実施形態では、OB画素の白キズと完全黒キズの影響を受けないで、例えば、撮像素子70の温度(以下「撮像素子温度」ともいう。)が6℃上昇すると約2倍に増加するOB画素信号の正常画素の暗電流を検出することができる。その結果、検出した(撮像素子温度6℃上昇でおよそ2倍となる)正常画素の暗電流に蓄積時間を逆比例させることができる。 Generally, in a television camera to which the imaging device 30 is assumed to be applied, the number of OB pixels decreases as compared to effective pixels as the imaging element becomes a high pixel such as 2K, 4K, and 8K. Therefore, the OB pixel is easily affected by white scratches and complete black scratches. However, in this embodiment, without being affected by the white defect and the complete black defect of the OB pixel, for example, when the temperature of the image sensor 70 (hereinafter also referred to as “image sensor temperature”) rises by 6 ° C., it is approximately doubled. It is possible to detect the dark current of the normal pixel of the increasing OB pixel signal. As a result, the accumulation time can be made inversely proportional to the dark current of the detected normal pixel (approximately doubled when the temperature of the image sensor increases by 6 ° C.).
 また、検出したOB画素信号の正常画素の暗電流の信号を撮像有効画素信号から減算すれば、OB画素の白キズと完全黒キズの影響を受けないで、映像信号処理で安定にOB補正をすることができ、映像信号の黒が安定し、テレビカメラのワイドダイナミックレンジ化が容易になる。 Also, if the dark current signal of the normal pixel of the detected OB pixel signal is subtracted from the imaging effective pixel signal, the OB correction is stably performed in the video signal processing without being affected by the white defect and the complete black defect of the OB pixel. As a result, the black color of the video signal becomes stable, and the wide dynamic range of the TV camera becomes easy.
 撮像素子温度が6℃上昇すると約2倍に増加するOB画素信号の代表値を検出することにより、温度センサーを別途設けなくても、撮像素子の温度を検出することができる。検出した(撮像素子温度に6℃でおよそ2倍となる)正常画素の暗電流に蓄積時間を逆比例させることにより、正常画素の暗電流が少ない低温時の正常画素の暗電流と、感度が異常に低く漏れ電流相当の暗電流しかない異常低感度画素(以下、「完全黒キズ」という)の暗電流と確実に識別し、完全黒キズを確実に検出することができる。白キズ検出と異なり、完全黒キズの信号検出は困難なので、低温度における検出時の長時間蓄積が許容される。 By detecting the representative value of the OB pixel signal that increases approximately twice when the image sensor temperature rises by 6 ° C., the temperature of the image sensor can be detected without providing a separate temperature sensor. By making the accumulation time inversely proportional to the detected dark current of the normal pixel (which is approximately doubled at 6 ° C. at the image sensor temperature), the dark current of the normal pixel at low temperatures and the sensitivity are low. It is possible to reliably discriminate from the dark current of the abnormally low sensitivity pixel (hereinafter referred to as “complete black flaw”) that is abnormally low and has only a dark current corresponding to the leakage current, so that the complete black flaw can be reliably detected. Unlike white flaw detection, since it is difficult to detect a complete black flaw signal, accumulation for a long time during detection at a low temperature is allowed.
 図8は、図1に示した撮像装置30に適用されるFPN補正部80の構成を示すブロック図である。第1の撮像装置は、遮光時に入力された映像データの1フレーム加算平均値を算出し、これに基づいて、1フレーム加算平均を減算することで突発的な直流変動を補正し、良好なFPN補正値を算出できるようにしている。 FIG. 8 is a block diagram showing a configuration of the FPN correction unit 80 applied to the imaging device 30 shown in FIG. The first imaging device calculates a one-frame addition average value of the video data input at the time of light shielding, and corrects sudden DC fluctuations by subtracting the one-frame addition average based on the calculated one-frame addition average value. The correction value can be calculated.
 具体的には、図示のように、FPN補正部80は、黒レベル減算器81と、メモリコントローラ82と、フレームメモリ83と、1フレーム加算平均演算部84と、加算器87と、ラインバッファ(1)88と、ラインバッファ(2)89と、除算器85と、減算器(1)86と、減算器(2)90とを備えている。FPN補正部80は、例えばFPGAとDDRメモリで実現されてもよいし、メモリ大容量のFPGAで実現されてもよい。 Specifically, as illustrated, the FPN correction unit 80 includes a black level subtractor 81, a memory controller 82, a frame memory 83, a one-frame addition average calculation unit 84, an adder 87, a line buffer ( 1) 88, a line buffer (2) 89, a divider 85, a subtracter (1) 86, and a subtracter (2) 90. The FPN correction unit 80 may be realized by, for example, an FPGA and a DDR memory, or may be realized by an FPGA having a large memory capacity.
 黒レベル減算器81は、FPN補正の補正値の基になる累積補正値を算出する補正値算出処理において、遮光時の映像信号から黒基準レベルを減算する。これにより、FPNレベルの基準をデジタル値ゼロとするものである。 The black level subtracter 81 subtracts the black reference level from the video signal at the time of shading in the correction value calculation process for calculating the cumulative correction value that is the basis of the correction value of the FPN correction. As a result, the FPN level reference is set to a digital value of zero.
 メモリコントローラ82は、フレームメモリ83に対するデータの入出力を制御する。
 フレームメモリ83は、映像データを記憶するものであり、黒レベル減算器81から入力された遮光時の1フレーム分の映像データを記憶するエリアと、1フレーム分の累積補正値を記憶するエリアとを備えている。なお、入力データ用のメモリと累積補正値用のメモリの2つを備えるようにしてもよい。
The memory controller 82 controls data input / output with respect to the frame memory 83.
The frame memory 83 stores video data, and stores an area for storing video data for one frame at the time of shading input from the black level subtractor 81, and an area for storing a cumulative correction value for one frame. It has. Two memories, that is, a memory for input data and a memory for cumulative correction values may be provided.
 1フレーム加算平均演算部84は、黒レベル減算器81から出力された遮光時の1フレーム分の映像データについて、全画素の加算平均演算を行って、1フレーム加算平均値を算出する。具体的には、1フレーム加算平均演算部84は、入力された画素のデータを累積加算し、1フレーム分加算した後、総画素数で除して当該フレームの1フレーム加算平均値とする。 The 1-frame addition average calculation unit 84 calculates the 1-frame addition average value by performing the addition average calculation of all pixels on the video data for one frame at the time of shading output from the black level subtractor 81. Specifically, the one-frame addition average calculation unit 84 cumulatively adds the input pixel data, adds one frame, and then divides by the total number of pixels to obtain the one-frame addition average value of the frame.
 加算器87は、フレームメモリ83から読み出された累積補正値を画素毎に加算する。
 ラインバッファ(1)88は、加算器87からの出力を行毎に保持し、行単位でメモリコントローラ82に出力する。ラインバッファ(2)89は、メモリコントローラ82からの行毎の出力を保持し、加算器87に画素毎に出力するとともに、除算器85へ出力する。
The adder 87 adds the accumulated correction value read from the frame memory 83 for each pixel.
The line buffer (1) 88 holds the output from the adder 87 for each row and outputs it to the memory controller 82 in units of rows. The line buffer (2) 89 holds the output for each row from the memory controller 82, outputs it to the adder 87 for each pixel, and outputs it to the divider 85.
 除算器85は、フレームメモリ83から読み出された累積補正値を画素毎に所定の加算回数(k回とする)で除算して、遮光時の映像データの平均レベルを算出し、画素毎のFPN補正値として減算器(1)86に出力する。 The divider 85 divides the cumulative correction value read from the frame memory 83 by a predetermined number of additions (k times) for each pixel, calculates the average level of the video data at the time of light shielding, and The FPN correction value is output to the subtracter (1) 86.
 減算器(1)86は、補正値算出処理が終了後、撮影時に入力された映像データから、除算器85からのFPN補正値を画素毎に減算して、補正された映像データ(補正映像データ)を出力する。 A subtracter (1) 86 subtracts the FPN correction value from the divider 85 for each pixel from the video data input at the time of shooting after the correction value calculation processing is completed, and corrects the video data (corrected video data). ) Is output.
 上述の構成による実施例1、実施例2を以下に説明する。
 <実施例1>
 上述のように、一般に、撮像素子では、6℃温度上昇で、暗電流は2倍程度となっている。放熱に工夫しているカメラでは、一般に、内部温度上昇がおおよそ30分で変化が少なくなり、更に、おおよそ2時間で飽和し12℃程度となっている。そのため、周囲温度が一定であっても、内部温度上昇12℃で、起動時に比べ、内部温度上昇の飽和時には4倍となる。しかし、高画素や高感度や高速読出しに特化するために、暗電流が温度に非線形に応じて画面内で不均一に変化するCMOS撮像素子もある。
Examples 1 and 2 having the above-described configuration will be described below.
<Example 1>
As described above, in general, in an image sensor, the dark current is about twice as much as the temperature rises by 6 ° C. In a camera that is devised for heat dissipation, in general, the increase in the internal temperature decreases in about 30 minutes, and further, it is saturated in about 2 hours and is about 12 ° C. For this reason, even when the ambient temperature is constant, the internal temperature rise is 12 ° C., which is four times as high as the internal temperature rise when saturated, compared to the startup. However, in order to specialize in high pixels, high sensitivity, and high-speed readout, there are also CMOS image sensors in which dark current changes nonuniformly in the screen according to nonlinearity with temperature.
 以下、実施例1について、上述の図1の撮像装置30及び、図9、図10、図11、図12、図13を参照して説明する。 Hereinafter, Example 1 will be described with reference to the imaging device 30 of FIG. 1 described above and FIGS. 9, 10, 11, 12, and 13. FIG.
 図1で示した撮像装置30は、起動時はモーターファン74を停止してペルチェ駆動回路72をパルス駆動する。周囲温度と撮像素子70の温度(撮像素子温度)の温度差が、撮像素子70と放熱フィン73との熱抵抗及び熱容量の飽和の温度差に近づいたら、ペルチェ素子71の駆動とモーターファン74の駆動とを撮像素子温度に対応した通常の運転にする。そして、64回(約1秒間)だけ有効画素撮像信号からOB画素典型値を差し引いた固定パターン信号を読出して記憶し、撮像時の有効画素撮像信号からOB画素典型値を映像信号から差し引いて、さらに固定パターン信号を減算する。 1 is stopped, the motor fan 74 is stopped and the Peltier driving circuit 72 is pulse-driven at the time of activation. When the temperature difference between the ambient temperature and the temperature of the image sensor 70 (image sensor temperature) approaches the temperature difference between the thermal resistance and the heat capacity of the image sensor 70 and the heat radiating fins 73, the driving of the Peltier element 71 and the motor fan 74 Drive is set to a normal operation corresponding to the image sensor temperature. Then, a fixed pattern signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal is read and stored only 64 times (about 1 second), and the OB pixel typical value is subtracted from the video signal from the effective pixel imaging signal at the time of imaging. Further, the fixed pattern signal is subtracted.
 ここで、図9は、実施例1のペルチェ素子駆動回路72のブロック図である。このペルチェ駆動回路72は、正(撮像素子冷却でフィン加熱)方向のペルチェ素子駆動を実現する回路例である。 Here, FIG. 9 is a block diagram of the Peltier element driving circuit 72 of the first embodiment. The Peltier driving circuit 72 is a circuit example that realizes Peltier element driving in the positive direction (fin heating by imaging element cooling).
 ペルチェ駆動回路72は、演算増幅器IC1と、トランジスタQ1とを備える。演算増幅器IC1は、例えば、入/出力ともにRail-to-Railのオペアンプである。トランジスタQ1はPNPタイプである。トランジスタQ1のコレクタ端子がペルチェ素子71の一端に接続される。トランジスタQ1はPchMOSFETでも良い。 The Peltier drive circuit 72 includes an operational amplifier IC1 and a transistor Q1. The operational amplifier IC1 is, for example, a Rail-to-Rail operational amplifier for both input and output. Transistor Q1 is a PNP type. The collector terminal of the transistor Q1 is connected to one end of the Peltier element 71. The transistor Q1 may be a Pch MOSFET.
 正の電源電圧Vccは、演算増幅器IC1の正電源端子及びトランジスタQ1のエミッタ端子に接続される。CPU39のD/A出力(Vin)は、抵抗R2を介して演算増幅器IC1の反転入力端子に接続される。なお、抵抗R2と演算増幅器IC1の反転入力端子の間の経路は、抵抗R3を介して接地されている。 The positive power supply voltage Vcc is connected to the positive power supply terminal of the operational amplifier IC1 and the emitter terminal of the transistor Q1. The D / A output (Vin) of the CPU 39 is connected to the inverting input terminal of the operational amplifier IC1 through the resistor R2. The path between the resistor R2 and the inverting input terminal of the operational amplifier IC1 is grounded through the resistor R3.
 演算増幅器IC1の非反転入力端子は、ペルチェ素子71の他端に接続され、ペルチェ素子71からの帰還信号が入力される。この帰還信号の経路は抵抗R1を介して接地されている。演算増幅器IC1の出力は、トランジスタQ1のベース端子に接続される。 The non-inverting input terminal of the operational amplifier IC1 is connected to the other end of the Peltier element 71, and a feedback signal from the Peltier element 71 is input. The path of the feedback signal is grounded through the resistor R1. The output of the operational amplifier IC1 is connected to the base terminal of the transistor Q1.
 ここで、CPU39のD/A出力(Vin)と抵抗R1からの帰還電圧Vrとの関係は、抵抗R2、抵抗R3を用いて、次式で表される。
  Vr=Vin×R3/(R2+R3)
 例えば、正の電源電圧Vcc=+12V、抵抗R1=0.1Ω、抵抗R2=47kΩ、抵抗R3=1kΩ、Vin=5Vの場合を想定すると、帰還電圧Vrは次式のように、約0.12Vとなる。
  Vr=5×1.2/48.2≒0.12V
 ここで、ペルチェ素子71の両端電圧は約12Vでペルチェ素子の電流は約1.2Aとなる。Vinが0Vの場合にVr=Vin×R3/(R2+R3)=0Vとなり、ペルチェ素子71の両端電圧は0Vでペルチェ素子の電流は0Aとなる。
Here, the relationship between the D / A output (Vin) of the CPU 39 and the feedback voltage Vr from the resistor R1 is expressed by the following equation using the resistors R2 and R3.
Vr = Vin × R3 / (R2 + R3)
For example, assuming that the positive power supply voltage Vcc = + 12V, the resistance R1 = 0.1Ω, the resistance R2 = 47 kΩ, the resistance R3 = 1 kΩ, and Vin = 5V, the feedback voltage Vr is about 0.12V as shown in the following equation. It becomes.
Vr = 5 × 1.2 / 48.2≈0.12V
Here, the voltage across the Peltier element 71 is about 12V, and the current of the Peltier element is about 1.2A. When Vin is 0V, Vr = Vin × R3 / (R2 + R3) = 0V, the voltage across the Peltier element 71 is 0V, and the current of the Peltier element is 0A.
 図10は、図9のペルチェ駆動回路72を用いたペルチェ素子71の駆動例を示す図である。正(撮像素子冷却でフィン加熱)方向のパルス駆動による撮像素子加熱の2回パルスの例であり、(a:上段)ペルチェ素子71の両端電圧とペルチェ素子71の電流の推移と、(b:下段)ペルチェ素子71両端温度(撮像素子温度TSとフィン温度Tfin)の推移を示している。ここでは周囲温度Taを基準とした相対温度で示している。 FIG. 10 is a diagram showing a driving example of the Peltier element 71 using the Peltier driving circuit 72 of FIG. It is an example of a two-time pulse of imaging element heating by pulse driving in a positive (final heating by imaging element cooling) direction. (A: upper stage) Transition of voltage between both ends of Peltier element 71 and current of Peltier element 71, (b: (Lower) The transition of the temperatures at both ends of the Peltier element 71 (imaging element temperature TS and fin temperature Tfin) is shown. Here, the relative temperature based on the ambient temperature Ta is shown.
 図10において、撮像素子冷却でフィン加熱の期間は、1回目は0.15秒と比較的短くなっている。これに対し、非駆動の0.85秒はペルチェ素子71の熱抵抗と撮像素子70の熱容量との積の熱時定数(通常1秒以下)と同等以上に長くなっている。非駆動の0.85秒の間に、フィン加熱の熱がペルチェ素子71の熱伝導により、撮像素子70に届き、全体としては、撮像素子70を加熱する。 In FIG. 10, the fin heating period is relatively short at 0.15 seconds for the first time when the image sensor is cooled. On the other hand, 0.85 seconds of non-drive is longer than or equal to the thermal time constant (usually 1 second or less) of the product of the thermal resistance of the Peltier device 71 and the heat capacity of the imaging device 70. During 0.85 seconds of non-drive, the heat of the fin heating reaches the image sensor 70 by heat conduction of the Peltier element 71, and the image sensor 70 is heated as a whole.
 撮像素子温度Tsの上昇が撮像時のペルチェ弱冷却時の熱飽和相当にまだ近づけきらなかったら、正(撮像素子冷却でフィン加熱)方向の期間は、2回目は0.02秒となっている。一方、非駆動は0.98秒になっており、この非駆動の0.98秒の間に、フィン加熱の熱がペルチェ素子71の熱伝導により、撮像素子70に届き、全体としては、撮像素子70を加熱する。遮光動作が完了し、撮像素子温度の温度上昇が撮像時のペルチェ弱冷却時の熱飽和相当に近づいたらつまり所定の温度範囲内となったら、FPN検出期間として、撮像時のペルチェ弱冷却にして、遮光状態でおよそ1秒蓄積してOB画素の暗電流の典型値を減算して固定パターン信号を計算し記憶する。 If the rise of the image sensor temperature Ts is not yet close to the thermal saturation equivalent to the Peltier weak cooling at the time of imaging, the period of the positive (fin heating by image sensor cooling) direction is 0.02 seconds for the second time. . On the other hand, the non-drive time is 0.98 seconds, and during the non-drive time of 0.98 seconds, the heat of the fin heating reaches the image pickup device 70 by the heat conduction of the Peltier device 71, and as a whole, the image pickup is performed. The element 70 is heated. When the light-shielding operation is completed and the temperature rise of the imaging device approaches the equivalent of thermal saturation during Peltier weak cooling during imaging, that is, within a predetermined temperature range, the PPN detection period is set to Peltier weak cooling during imaging. Then, the fixed pattern signal is calculated and stored by accumulating for about 1 second in the light-shielded state and subtracting the typical value of the dark current of the OB pixel.
 図11は、図9のペルチェ駆動回路72を用いたペルチェ素子71の別の駆動例を示す図である。正(撮像素子冷却でフィン加熱)方向のパルス駆動による撮像素子加熱の1回パルスの例であり、(a)ペルチェ素子の両端電圧とペルチェ素子の電流の推移と、(b)ペルチェ両端(撮像素子温度TSとフィン温度Tfin)温度の推移を示している。ここでは周囲温度Taを基準とした相対温度で示している。 FIG. 11 is a diagram showing another driving example of the Peltier element 71 using the Peltier driving circuit 72 of FIG. It is an example of a one-time pulse of imaging element heating by pulse driving in the positive direction (fin heating by imaging element cooling), (a) transition of the voltage across the Peltier element and current of the Peltier element, and (b) both ends of the Peltier element (imaging) The element temperature TS and the fin temperature Tfin) show the transition of temperature. Here, the relative temperature based on the ambient temperature Ta is shown.
 図11において、撮像素子冷却でフィン加熱の期間は1回のみで、0.17秒と比較的短い。これに対し、非駆動の0.83秒はペルチェ素子71の熱抵抗と撮像素子70の熱容量との積の熱時定数(通常1秒以下)と同等以上に長くなっている。この非駆動の0.83秒の間に、フィン加熱の熱がペルチェ素子71の熱伝導により、撮像素子70に届き、全体としては、撮像素子70を加熱する。遮光動作が完了し、撮像素子温度の温度上昇が撮像時のペルチェ弱冷却時の熱飽和相当に近づいたらつまり所定の温度範囲内となったら、FPN検出期間として、撮像時のペルチェ弱冷却にして、遮光状態でおよそ1秒蓄積してOB画素の暗電流の典型値を減算して固定パターン信号を計算し記憶する。 In FIG. 11, the fin heating period is only once by cooling the image sensor and is relatively short, 0.17 seconds. On the other hand, 0.83 seconds of non-drive is longer than or equal to the thermal time constant (usually 1 second or less) of the product of the thermal resistance of the Peltier element 71 and the heat capacity of the image sensor 70. During this non-driven 0.83 seconds, the heat of the fin heating reaches the image sensor 70 by the heat conduction of the Peltier element 71, and the image sensor 70 is heated as a whole. When the light-shielding operation is completed and the temperature rise of the imaging device approaches the equivalent of thermal saturation during Peltier weak cooling during imaging, that is, within a predetermined temperature range, the PPN detection period is set to Peltier weak cooling during imaging. Then, the fixed pattern signal is calculated and stored by accumulating for about 1 second in the light-shielded state and subtracting the typical value of the dark current of the OB pixel.
 遮光にはレンズ31の絞りを閉じても良いし、フィルタディスクホイールを電動にした遮光フイルタを選択しても良い。ただし、ペルチェ素子71をパルス駆動することにより撮像素子70を加熱し温度を内部温度上昇の飽和に近づける前に遮光が完了する必要がある。図10と図11では、遮光動作は約1秒以下と一般的な速度で良い。 For light shielding, the aperture of the lens 31 may be closed, or a light shielding filter with an electric filter disc wheel may be selected. However, the light shielding needs to be completed before the imaging element 70 is heated by driving the pulse of the Peltier element 71 to bring the temperature close to saturation of the internal temperature rise. 10 and 11, the light shielding operation may be performed at a general speed of about 1 second or less.
 図12は、起動時のパルス駆動による撮像素子加熱による短時間FPN変化低減後のFPN検出のフローチャートである。起動後に、モーターファン74が停止し(S1)、周囲温度Taと撮像素子温度Tsの測定がされ(S2)、温度上昇が冷却の飽和相当以上かどうかが判断される(S3)。 FIG. 12 is a flowchart of FPN detection after a short time FPN change reduction by image sensor heating by pulse drive at the time of activation. After startup, the motor fan 74 is stopped (S1), the ambient temperature Ta and the image sensor temperature Ts are measured (S2), and it is determined whether the temperature rise is equal to or higher than the saturation of cooling (S3).
 温度上昇が冷却の飽和相当未満であれば(S3のN)、ペルチェ素子71を飽和との差分に応じてパルス駆動させる処理が実行され(S4)、S2の処理に戻る。温度上昇が冷却の飽和相当以上であれば(S3のY)、周囲温度Taと撮像素子温度Tsとの差分に応じてペルチェ素子71を冷却(正)の直流駆動がなされる(S5)。更に、周囲温度Taと撮像素子温度Tsとの差分に応じてモーターファン74が駆動される(S6)。簡易には、単にモーターファン74を駆動させてもよい。つづいて、遮光が行われ(S7)、FPNメモリがクリアされる(S8)。 If the temperature rise is less than the cooling saturation (N in S3), a process of driving the Peltier element 71 in accordance with the difference from the saturation is executed (S4), and the process returns to S2. If the temperature rise is equal to or higher than the saturation of cooling (Y in S3), DC driving for cooling (positive) the Peltier element 71 is performed according to the difference between the ambient temperature Ta and the imaging element temperature Ts (S5). Further, the motor fan 74 is driven according to the difference between the ambient temperature Ta and the image sensor temperature Ts (S6). For simplicity, the motor fan 74 may be simply driven. Subsequently, light shielding is performed (S7), and the FPN memory is cleared (S8).
 FPNメモリのクリアにつづき、全画素暗電流検出処理(S9)、OB画素典型暗電流算出処理(S10)が行われ、有効画素暗電流からOB画素典型暗電流を減算しFPN成分が算出され(S11)、算出されたFPN成分がFPNメモリに加算される(S12)。上記処理(S9~12)が256回目に達していなければ(S13のN)、全画素暗電流検出処理(S9)に戻る。256回目であれば(S103のY)、遮光が中止となり(S14)、当該フローは終了となる。 Following clearing of the FPN memory, an all-pixel dark current detection process (S9) and an OB pixel typical dark current calculation process (S10) are performed, and the OB pixel typical dark current is subtracted from the effective pixel dark current to calculate an FPN component ( S11), the calculated FPN component is added to the FPN memory (S12). If the above process (S9-12) has not reached the 256th time (N in S13), the process returns to the all-pixel dark current detection process (S9). If it is the 256th time (Y in S103), the light shielding is stopped (S14), and the flow ends.
 図13は、撮像時のFPN補正のフローチャートである。撮像開始後に、周囲温度Taと撮像素子温度Tsとが測定され(S101)、周囲温度Taと撮像素子温度Tsとの差分に応じてペルチェ素子71を正(撮像素子冷却でフィン加熱)方向の直流駆動がなされる(S102)。更に、周囲温度Taと撮像素子温度Tsとの差分に応じてファン駆動が行われる(S103)。ここでも、簡易には、単にモーターファン74を駆動させてもよい。 FIG. 13 is a flowchart of FPN correction during imaging. After the start of imaging, the ambient temperature Ta and the image sensor temperature Ts are measured (S101), and the direct current in the direction of the Peltier element 71 is positive (fin heating by image sensor cooling) according to the difference between the ambient temperature Ta and the image sensor temperature Ts. Driving is performed (S102). Further, fan driving is performed according to the difference between the ambient temperature Ta and the image sensor temperature Ts (S103). Here, simply, the motor fan 74 may be simply driven.
 標準撮像がなされ(S104)、FPNメモリ信号を減算する処理が行われ(S105)、キズの周囲画素補間処理(S106)が行われる。撮影継続の場合(S107のN)、S101の処理に戻る。撮影終了の場合(S107のY)、当該フローは終了となる。 Standard imaging is performed (S104), processing for subtracting the FPN memory signal is performed (S105), and scratch surrounding pixel interpolation processing (S106) is performed. If the shooting is to be continued (N in S107), the process returns to S101. In the case of shooting end (Y in S107), the flow ends.
 実施例1では、起動時にペルチェ素子71を撮像素子70の冷却方向で放熱フィンの加熱方向に約0.2秒パルス駆動と約1秒から約2秒放置することにより撮像素子70を加熱し、撮像素子温度を内部温度上昇の飽和に近づけて、撮像素子温度に対し非線形に画面内で不均一に変動する撮像素子70の暗電流むらのいわゆる固定パターン雑音の変化を内部温度上昇の飽和に近づけて、ペルチェ素子71をパルス駆動した以降の撮影時の変化を少なくして、固定パターン雑音成分を約1秒で検出し、撮影時に固定パターン雑音成分を減算して補正する。 In the first embodiment, the Peltier device 71 is heated for about 0.2 seconds in the cooling direction of the image pickup device 70 in the cooling direction of the image pickup device 70 and is left for about 2 seconds for about 1 second in the cooling direction of the image pickup device 70. The image sensor temperature is brought close to the saturation of the internal temperature rise, and the so-called fixed pattern noise change of the dark current unevenness of the image pickup element 70 that varies non-linearly in the screen non-linearly with respect to the image sensor temperature is brought close to the saturation of the internal temperature rise. Thus, the change at the time of shooting after the Peltier element 71 is pulse-driven is reduced, the fixed pattern noise component is detected in about 1 second, and the fixed pattern noise component is subtracted and corrected at the time of shooting.
 つまり、本発明は起動後30分程度で変化が少なくなってから固定パターン雑音を補正してから撮影するのではなく、起動後約2秒から3秒といった短時間で固定パターン雑音成分を減算して、固定パターン雑音成分のない高品位な撮影をすることが可能となる。 In other words, in the present invention, the fixed pattern noise component is subtracted in a short time, such as about 2 to 3 seconds after the start-up, instead of shooting after correcting the fixed pattern noise after the change is reduced about 30 minutes after the start-up. Therefore, it is possible to perform high-quality shooting without a fixed pattern noise component.
 以上の実施例1の特徴を纏めると次の通りである。すなわち、実施例1の撮像装置30は、温度センサー20(固体撮像素子温度検出手段)と周囲温度センサー20a(筐体外周温度検出手段)と、モーターファン74(通風ファン)と、放熱フィン73と、撮像素子70(固体撮像素子)と放熱フィン73の間のペルチェ素子71と、ペルチェ素子71を正(冷却)に駆動するペルチェ駆動回路72と、レンズ71の絞り又は電動フィルタディスクホイール等の遮光手段と、有効画素撮像信号からOB画素典型値を差し引いた固定パターン信号を読出して記憶し、撮像時の有効画素撮像信号からOB画素典型値を差し引いた映像信号から差し引く白キズ完全黒キズ検出補間部38(画像処理手段)と、を有する。 The characteristics of the first embodiment are summarized as follows. That is, the image pickup apparatus 30 according to the first embodiment includes a temperature sensor 20 (solid-state image pickup device temperature detection unit), an ambient temperature sensor 20a (housing peripheral temperature detection unit), a motor fan 74 (ventilation fan), and a heat radiation fin 73. , A Peltier element 71 between the image sensor 70 (solid-state image sensor) and the radiation fin 73, a Peltier drive circuit 72 that drives the Peltier element 71 positively (cooling), and a light block such as a diaphragm of the lens 71 or an electric filter disk wheel. And a fixed pattern signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal and stored, and white defect perfect black defect detection interpolation to be subtracted from the video signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal at the time of imaging Unit 38 (image processing means).
 そして、撮像装置30は、起動時は該遮光手段の遮光を開始し、モーターファン74を停止してペルチェ素子駆動回路72を周囲温度と撮像素子温度との差分に応じた時間(0.001秒から0.1秒程度)に駆動させることで、ペルチェ素子71の正方向のパルス駆動を実行して、つづいて、パルス駆動より十分長い時間(おおよそ1秒から3秒程度)ペルチェ素子71に電流を流さない状態にして(すなわち、ペルチェ素子71の両面で温度差がないように撮像素子70と放熱フィン73とを加熱し)、周囲温度と撮像素子70の温度の温度差が撮像素子70と放熱フィン73との飽和(熱抵抗と熱容量の飽和)の温度差に近づいたらつまり所定の温度範囲内となったら、モーターファン74を撮像素子の温度に対応した通常の駆動にして、ペルチェ駆動回路72も撮像素子温度に対応した通常の駆動にして、有効画素撮像信号からOB画素典型値を差し引いた固定パターン信号を読出して記憶し、撮像時の有効画素撮像信号からOB画素典型値を差し引いた映像信号から差し引く。 Then, the imaging device 30 starts shielding the light shielding means at the time of activation, stops the motor fan 74, and causes the Peltier element driving circuit 72 to operate for a time (0.001 second) according to the difference between the ambient temperature and the imaging element temperature. To drive the Peltier element 71 in the positive direction, and then to the Peltier element 71 for a time sufficiently longer than the pulse drive (approximately 1 to 3 seconds). (That is, the imaging element 70 and the heat radiation fin 73 are heated so that there is no temperature difference between both surfaces of the Peltier element 71), and the temperature difference between the ambient temperature and the temperature of the imaging element 70 is the same as that of the imaging element 70. When the temperature difference of saturation (thermal resistance and heat capacity saturation) with the radiating fin 73 approaches, that is, within a predetermined temperature range, the motor fan 74 is set to a normal drive corresponding to the temperature of the image sensor, The Peltier driving circuit 72 also performs normal driving corresponding to the image sensor temperature, reads and stores a fixed pattern signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal, and stores the OB pixel typical value from the effective pixel imaging signal at the time of imaging. Is subtracted from the video signal.
 <実施例2>
 以下、実施例2について、上述の図1の撮像装置30及び、図14、図15、図12、図13を用いて説明する。
<Example 2>
Hereinafter, Example 2 will be described with reference to the above-described imaging device 30 in FIG. 1 and FIGS. 14, 15, 12, and 13. FIG.
 図1で示した撮像装置30は、実施例1と同様に、起動時はモーターファン74を停止してペルチェ駆動回路72をパルス駆動する。周囲温度と撮像素子70の温度(撮像素子温度)の温度差が、撮像素子70と放熱フィン73との熱抵抗及び熱容量の飽和の温度差に近づいたらつまり所定の温度範囲内となったら、ペルチェ素子71の駆動とモーターファン74の駆動とを撮像素子の温度に対応した通常の駆動にする。そして、64回(約1秒間)だけ有効画素撮像信号からOB画素典型値を差し引いた固定パターン信号を読出して記憶し、撮像時の有効画素撮像信号からOB画素典型値を映像信号から差し引いて、固定パターン信号を減算する。 1, the image pickup apparatus 30 shown in FIG. 1 stops the motor fan 74 and drives the Peltier drive circuit 72 in a pulse manner at the time of activation, as in the first embodiment. If the temperature difference between the ambient temperature and the temperature of the image sensor 70 (image sensor temperature) approaches the temperature difference between the thermal resistance and the heat capacity of the image sensor 70 and the heat radiation fin 73, that is, within a predetermined temperature range, the Peltier The driving of the element 71 and the driving of the motor fan 74 are set to normal driving corresponding to the temperature of the imaging element. Then, a fixed pattern signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal is read and stored only 64 times (about 1 second), and the OB pixel typical value is subtracted from the video signal from the effective pixel imaging signal at the time of imaging. Subtract fixed pattern signal.
 ここで、図14は、実施例2のペルチェ駆動回路72のブロック図である。このペルチェ駆動回路72は、正(撮像素子冷却でフィン加熱)負(撮像素子加熱でフィン冷却)両方向のペルチェ素子駆動を実現する回路例である。 Here, FIG. 14 is a block diagram of the Peltier drive circuit 72 of the second embodiment. This Peltier drive circuit 72 is a circuit example that realizes Peltier element driving in both positive (fin heating by imaging element cooling) and negative (fin cooling by imaging element heating) directions.
 このペルチェ駆動回路72は、図9で示した実施例1の回路構成に、トランジスタQ2を追加及び抵抗R4を追加した構成である。トランジスタQ2はNPNタイプである。トランジスタQ2のコレクタ端子は、トランジスタQ1のコレクタ端子と接続され、共通にペルチェ素子71の一端に接続される。トランジスタQ2のベース端子は、トランジスタQ1のベース端子と接続され、共通に演算増幅器IC1の出力に接続される。トランジスタQ2のエミッタ端子は、負の電源電圧Veeに接続される。ここで、負の電源電圧Veeは-5Vである。また、負の電源電圧Veeと演算増幅器IC1の反転入力端子との間には、抵抗R4が設けられる。抵抗R4は、ここでは100kΩである。トランジスタQ1はPchMOSFETでトランジスタQ2はPchMOSFETでも良い。 The Peltier drive circuit 72 has a configuration in which a transistor Q2 and a resistor R4 are added to the circuit configuration of the first embodiment shown in FIG. Transistor Q2 is of the NPN type. The collector terminal of the transistor Q2 is connected to the collector terminal of the transistor Q1, and is commonly connected to one end of the Peltier element 71. The base terminal of the transistor Q2 is connected to the base terminal of the transistor Q1, and is commonly connected to the output of the operational amplifier IC1. The emitter terminal of the transistor Q2 is connected to the negative power supply voltage Vee. Here, the negative power supply voltage Vee is −5V. A resistor R4 is provided between the negative power supply voltage Vee and the inverting input terminal of the operational amplifier IC1. Resistor R4 is 100 kΩ here. The transistor Q1 may be a Pch MOSFET and the transistor Q2 may be a Pch MOSFET.
 ここで、CPU39のD/A出力Vinと抵抗R1からの帰還電圧Vrの関係は、抵抗R2、抵抗R3、抵抗R4を用いて、次式で表される。
  Vr=(Vin/R2+Vee/R4)×R2・R3/(R2+R3)
 例えば、正の電源電圧Vcc=+12V、負の電源電圧Vee=-5V、抵抗R1=0.1Ω、抵抗R2=47kΩ、抵抗R3=1500Ω、抵抗R4=100K、Vin=5Vの場合を想定すると、帰還電圧Vr≒0.12Vになる。このとき、ペルチェ素子71の両端電圧は約12Vでペルチェ素子71の電流は約1.2Aとなる。Vin=0Vの場合では、帰還電圧Vr≒-0.05Vとなり、ペルチェ素子71の両端電圧は約-5Vでペルチェ素子71の電流は約-0.5Aとなる。
Here, the relationship between the D / A output Vin of the CPU 39 and the feedback voltage Vr from the resistor R1 is expressed by the following equation using the resistors R2, R3, and R4.
Vr = (Vin / R2 + Vee / R4) × R2 / R3 / (R2 + R3)
For example, assuming a case where the positive power supply voltage Vcc = + 12V, the negative power supply voltage Vee = −5V, the resistance R1 = 0.1Ω, the resistance R2 = 47 kΩ, the resistance R3 = 1500Ω, the resistance R4 = 100K, and Vin = 5V. The feedback voltage Vr≈0.12V. At this time, the voltage across the Peltier element 71 is about 12 V, and the current of the Peltier element 71 is about 1.2 A. In the case of Vin = 0V, the feedback voltage Vr≈−0.05V, the voltage across the Peltier element 71 is about −5V, and the current of the Peltier element 71 is about −0.5A.
 図15は、図14のペルチェ駆動回路72を用いたペルチェ素子71の駆動例を示す図である。正(撮像素子冷却でフィン加熱)負(撮像素子加熱でフィン冷却)両方向のペルチェ素子駆動のパルス駆動の時間と電圧と電流とを模式的に示している。ここでは、(a:上段)ペルチェ素子71の両端電圧とペルチェ素子の電流で、(b)ペルチェ素子71両端温度(撮像素子温度Tsとフィン温度Tfin)の推移を示している。正方向(撮像素子冷却でフィン加熱)と負方向(撮像素子加熱でフィン冷却)とをペルチェ素子駆動回路72の正負電源電圧の電圧比の逆比の時間比で正負にパルス駆動し、約0.102秒と短時間に撮像素子とフィンとを加熱する。ここでは、正方向の駆動に対応するHレベル(12V、1.2A)が約1m秒、負方向の駆動に対応するLレベル(-5V、-0.5A)が約2.4m秒のパルスの組み合わせを30回、すなわち0.102秒間動作する。別の動作例では、Hレベル(12V1.2A)が約10m秒、Lレベル(-5V、-0.5A)が約24m秒のパルスの組み合わせを5回、合計(10+24)m秒×5=170m秒(0.17秒)となる。このように、実施例2の遮光動作は前者の例では約0.1秒以下と高速である必要がある。 FIG. 15 is a diagram showing a driving example of the Peltier element 71 using the Peltier driving circuit 72 of FIG. The pulse drive time, voltage, and current of Peltier device driving in both directions of positive (fin heating by imaging device cooling) and negative (fin cooling by imaging device heating) are schematically shown. Here, (a: upper stage) shows the transition of Peltier element 71 temperature (imaging element temperature Ts and fin temperature Tfin) by the voltage across Peltier element 71 and the current of Peltier element (b). The positive direction (fin heating by imaging element cooling) and the negative direction (fin cooling by imaging element heating) are pulse-driven positively and negatively at a time ratio that is the inverse of the voltage ratio of the positive / negative power supply voltage of the Peltier element driving circuit 72, and about 0 .The imaging element and the fin are heated in a short time of 102 seconds. Here, the H level (12V, 1.2A) corresponding to the positive driving is about 1 msec, and the L level (−5V, −0.5A) corresponding to the negative driving is about 2.4 msec. The combination is operated 30 times, that is, 0.102 seconds. In another example of operation, five combinations of pulses with an H level (12V1.2A) of about 10 msec and an L level (−5V, −0.5A) of about 24 msec for a total of (10 + 24) msec × 5 = 170 milliseconds (0.17 seconds). As described above, the light shielding operation of the second embodiment needs to be as fast as about 0.1 second or less in the former example.
 遮光動作が完了し、撮像素子温度の温度上昇が撮像時のペルチェ弱冷却時の熱飽和相当に近づいたら、撮像時のペルチェ弱冷却にして、FPN検出期間として遮光状態でおよそ1秒蓄積してOB画素の暗電流の典型値を減算して固定パターン信号を計算し記憶する。 When the light-shielding operation is completed and the temperature rise of the image sensor approaches that equivalent to thermal saturation during Peltier weak cooling during imaging, Peltier weak cooling during imaging is performed and the FPN detection period is accumulated for about 1 second in a light-shielded state. A fixed pattern signal is calculated and stored by subtracting the typical value of the dark current of the OB pixel.
 なお、起動時のパルス駆動による撮像素子加熱による短時間FPN変化低減後のFPN検出処理は、実施例1の図12のフローチャートと同様である。また、撮像時のFPN補正処理は、実施例1の図13のフローチャートと同様である。ここでは、説明を省略する。 It should be noted that the FPN detection process after a short time FPN change reduction by image sensor heating by pulse driving at the time of activation is the same as the flowchart of FIG. Further, the FPN correction process at the time of imaging is the same as the flowchart of FIG. 13 of the first embodiment. Here, the description is omitted.
 本実施例2は、起動時にペルチェ素子71を正方向(撮像素子70の冷却方向で放熱フィン73の加熱方向)に約1ミリ秒のパルス駆動と負方向(撮像素子70の加熱方向で放熱フィンの冷却方向に約2.4ミリ秒駆動するパターンを繰り返し、約0.1秒撮像素子70と放熱フィン73を加熱し撮像素子温度を内部温度上昇の飽和に近づけて、撮像素子70の温度に対し非線形に画面内で不均一に変動する撮像素子70の暗電流むらのいわゆる固定パターン雑音の変化を内部温度上昇の飽和に近づけて、ペルチェ素子71をパルス駆動した以降の撮影時の変化を少なくして、固定パターン雑音成分を約1秒で検出し、撮影時に固定パターン雑音成分を減算して補正する。 In the second embodiment, the Peltier element 71 is driven in the positive direction (the cooling direction of the image pickup element 70 in the heating direction of the heat radiation fin 73) in the positive direction and the negative direction (the heat dissipation fin in the heating direction of the image pickup element 70). The pattern of driving for about 2.4 milliseconds in the cooling direction is repeated, and the imaging element 70 and the radiation fins 73 are heated for about 0.1 second to bring the imaging element temperature close to saturation of the internal temperature rise, and to the temperature of the imaging element 70 On the other hand, the change in the so-called fixed pattern noise of the dark current unevenness of the image pickup element 70 that varies non-linearly and non-uniformly in the screen is brought close to the saturation of the internal temperature rise, and the change at the time of photographing after the Peltier element 71 is pulse-driven is reduced. Then, the fixed pattern noise component is detected in about 1 second, and the fixed pattern noise component is subtracted and corrected at the time of photographing.
 つまり、本発明は起動後30分程度で変化が少なくなってから固定パターン雑音を補正してから撮影するのではなく、起動後約1秒とすぐに固定パターン雑音成分を減算して、固定パターン雑音成分のない高品位な撮影をすることが可能となる。 That is, the present invention does not take a picture after correcting the fixed pattern noise after the change is reduced in about 30 minutes after starting, but subtracts the fixed pattern noise component as soon as about one second after starting to fix the fixed pattern. It is possible to perform high-quality shooting without noise components.
 以上のように、実施例2の撮像装置30は、温度センサー20(固体撮像素子温度検出手段)と周囲温度センサー20a(筐体外周温度検出手段)と、モーターファン74(通風ファン)と、放熱フィン73と、撮像素子70(固体撮像素子)と放熱フィン73の間のペルチェ素子71と、ペルチェ素子71を正負両方向(冷却方向及び加熱方向)に駆動するペルチェ駆動回路72と、レンズ71の絞り又は電動フィルタディスクホイール等の遮光手段と、有効画素撮像信号からOB画素典型値を差し引いた固定パターン信号を読出して記憶し、撮像時の有効画素撮像信号からOB画素典型値を差し引いた映像信号から前記記憶した固定パターン信号を差し引く白キズ完全黒キズ検出補間部38(画像処理手段)と、を有する。 As described above, the imaging device 30 according to the second embodiment includes the temperature sensor 20 (solid-state imaging device temperature detection unit), the ambient temperature sensor 20a (housing peripheral temperature detection unit), the motor fan 74 (ventilation fan), and the heat dissipation. A fin 73, a Peltier element 71 between the image sensor 70 (solid-state image sensor) and the radiation fin 73, a Peltier drive circuit 72 that drives the Peltier element 71 in both positive and negative directions (cooling direction and heating direction), and an aperture of the lens 71 Alternatively, a shading means such as an electric filter disk wheel and a fixed pattern signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal are read and stored, and the image signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal at the time of imaging. A white flaw complete black flaw detection interpolation unit 38 (image processing means) for subtracting the stored fixed pattern signal.
 そして、起動時は遮光手段の遮光を開始し、放熱フィン73を停止してペルチェ駆動回路72を正負両方向にパルス駆動して、ペルチェ駆動回路72の正負電源電圧の電圧比の逆比の時間比で正負にパルス駆動し、ペルチェ素子71の両面で温度差がないようにペルチェ素子71と放熱フィン73とを加熱する。 Then, at the time of activation, the light shielding means starts to shield the light, the radiating fin 73 is stopped, the Peltier drive circuit 72 is pulse-driven in both positive and negative directions, and the time ratio of the inverse ratio of the positive / negative power supply voltage of the Peltier drive circuit 72 The Peltier element 71 and the radiating fin 73 are heated so that there is no temperature difference between both sides of the Peltier element 71.
 更に、周囲温度と撮像素子温度の温度差が、撮像素子70と放熱フィン73との飽和(熱抵抗と熱容量との飽和)の温度差に近づいたら、放熱フィン73を撮像素子温度に対応した通常の運転にして、ペルチェ駆動回路72も撮像素子温度に対応した通常の駆動にし、有効画素撮像信号からOB画素典型値を差し引いた固定パターン信号を読出して記憶し、撮像時の有効画素撮像信号からOB画素典型値を差し引いた映像信号から前記記憶した固定パターン信号を差し引く。 Further, when the temperature difference between the ambient temperature and the image sensor temperature approaches the temperature difference between the image sensor 70 and the heat radiating fin 73 (saturation between thermal resistance and heat capacity), the heat radiating fin 73 corresponds to the image sensor temperature. In this operation, the Peltier drive circuit 72 is also driven normally corresponding to the image sensor temperature, and a fixed pattern signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal is read out and stored, and the effective pixel imaging signal at the time of imaging is read out. The stored fixed pattern signal is subtracted from the video signal obtained by subtracting the OB pixel typical value.
 本発明を実施形態(実施例1及び実施例2を含む)をもとに説明した。これらの特徴を纏めると次の通りである。撮像装置30は、温度センサー20(固体撮像素子温度検出手段)と、周囲温度センサー20a(筐体外周温度検出手段)と、モーターファン74(通風ファン)と、放熱フィン73と、撮像素子70(固体撮像素子)と放熱フィン73の間のペルチェ素子71と、ペルチェ素子71を駆動するペルチェ駆動回路72と、レンズ71の絞り又は電動フィルタディスクホイール等の遮光手段と、有効画素撮像信号からOB画素典型値を差し引いた固定パターン信号を読出して記憶し、撮像時の有効画素撮像信号からOB画素典型値を差し引いた映像信号から前記記憶した固定パターン信号を差し引く白キズ完全黒キズ検出補間部38(画像処理手段)と、を有する。 The present invention has been described based on embodiments (including Example 1 and Example 2). These characteristics are summarized as follows. The imaging device 30 includes a temperature sensor 20 (solid-state imaging device temperature detection means), an ambient temperature sensor 20a (housing outer periphery temperature detection means), a motor fan 74 (ventilation fan), a heat radiation fin 73, and an imaging device 70 ( A Peltier element 71 between the solid-state imaging element) and the radiation fins 73, a Peltier drive circuit 72 for driving the Peltier element 71, a light shielding means such as a diaphragm of the lens 71 or an electric filter disk wheel, and an OB pixel from the effective pixel imaging signal. The fixed pattern signal obtained by subtracting the typical value is read and stored, and the white defect complete black defect detection interpolation unit 38 (subtracting the stored fixed pattern signal from the image signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal at the time of imaging. Image processing means).
 そして、起動時は遮光手段の遮光を開始し、モーターファン74を停止してペルチェ駆動回路72を周囲温度と撮像素子温度との差分に応じた時間、すなわち、ペルチェ駆動回路72が正(冷却)方向のみ駆動なら0.01秒から0.2秒程度にてペルチェ素子71の正(冷却)のパルス駆動を実行して、続いてパルス駆動より十分長い時間(おおよそ1秒から3秒程度)ペルチェ素子71に電流を流さない状態にする。 Then, at the time of activation, the light shielding means starts shielding, the motor fan 74 is stopped, and the Peltier driving circuit 72 is set to a time corresponding to the difference between the ambient temperature and the image sensor temperature, that is, the Peltier driving circuit 72 is positive (cooling). If driving only in the direction, a positive (cooling) pulse drive of the Peltier element 71 is executed in about 0.01 to 0.2 seconds, and then a time sufficiently longer than the pulse drive (about 1 to 3 seconds) A state in which no current flows through the element 71 is set.
 このとき、ペルチェ駆動回路72が正(+12V)負(-5V)両方向駆動なら、正(冷却)方向におおよそ0.1m秒から30m秒ペルチェ素子71を冷却(正)方向のパルス駆動を実行して、負(加熱)方向におおよそ0.2m秒から70m秒ペルチェ素子71を負(加熱)方向のパルス駆動を実行して、ペルチェ素子71の両面で温度差がないように撮像素子70と放熱フィン73とを加熱する。 At this time, if the Peltier drive circuit 72 is driven in both positive (+ 12V) and negative (−5V) directions, pulse driving in the cooling (positive) direction is performed on the Peltier element 71 in the positive (cooling) direction from about 0.1 ms to 30 ms. Then, the pulse driving of the Peltier element 71 in the negative (heating) direction is performed in the negative (heating) direction for approximately 0.2 msec to 70 msec, so that there is no temperature difference between the two surfaces of the Peltier element 71 and heat dissipation. The fins 73 are heated.
 更に、周囲温度と撮像素子温度の温度差が撮像素子70と放熱フィン73との飽和(熱抵抗と熱容量の飽和)の温度差に近づいたらつまり所定の温度範囲内となったら、モーターファン74を撮像素子の温度に対応した通常の駆動にして、ペルチェ駆動回路72も撮像素子温度に対応した通常の駆動にして、有効画素撮像信号からOB画素典型値を差し引いた固定パターン信号を読出して記憶し、撮像時の有効画素撮像信号からOB画素典型値を差し引いた映像信号から差し引く。 Furthermore, when the temperature difference between the ambient temperature and the image sensor temperature approaches the temperature difference of saturation (saturation of thermal resistance and heat capacity) between the image sensor 70 and the radiation fin 73, that is, when the temperature difference falls within a predetermined temperature range, the motor fan 74 is turned on. With normal driving corresponding to the temperature of the image sensor, the Peltier drive circuit 72 also performs normal driving corresponding to the image sensor temperature, and reads and stores a fixed pattern signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal. Then, it is subtracted from the video signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal at the time of imaging.
 つまり、本実施形態によると、ペルチェ素子71をパルス駆動することにより撮像素子70を加熱し温度を内部温度上昇の飽和に近づけて、撮像素子70の温度に対し非線形に画面内で不均一に変動する撮像素子の暗電流むらのいわゆる固定パターン雑音の変化を内部温度上昇の飽和に近づけて、ペルチェ素子71をパルス駆動した以降の撮影時の変化を少なくして固定パターン雑音成分を約1秒~3秒程度で検出し、撮影時に固定パターン雑音成分を減算して補正することができる。すなわち、撮像装置30では、起動後約1秒~3秒で高画質に撮影可能とし、8KカメラをENG(Electronic News Gathering)対応にすることができる。また、ハイダイナミックレンジ(HDR)対応の2K、4K、8Kカメラに多用されつつあるCMOS撮像素子の温度に対し非線形に画面内で不均一に変動する暗電流むらのいわゆる固定パターン雑音の変化を許容して、HDR対応の2K、4K、8Kカメラのコスト低減を実現できる。 That is, according to this embodiment, the image pickup element 70 is heated by pulsing the Peltier element 71 to bring the temperature close to saturation of the internal temperature rise, and non-linearly fluctuates non-linearly in the screen with respect to the temperature of the image pickup element 70. The change in the so-called fixed pattern noise of the dark current unevenness of the image pickup device to be brought close to the saturation of the internal temperature rise, and the change at the time of shooting after the Peltier device 71 is pulse-driven is reduced to reduce the fixed pattern noise component from about 1 second. It can be detected in about 3 seconds and corrected by subtracting a fixed pattern noise component during shooting. In other words, the imaging device 30 can shoot with high image quality in about 1 to 3 seconds after activation, and can make the 8K camera compatible with ENG (Electronic News News Gathering). In addition, changes in the so-called fixed pattern noise of non-uniform dark current that varies non-linearly in the screen non-linearly with respect to the temperature of CMOS image sensors that are frequently used in high dynamic range (HDR) compatible 2K, 4K, and 8K cameras are allowed. Thus, the cost reduction of HDR compatible 2K, 4K, and 8K cameras can be realized.
 以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素の組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。例えば、撮像装置30として、オンチップカラーフィルタの撮像素子を用いたカラーカメラで説明したが、R/G/Bの3撮像素子を用いたカラーカメラであってもよいし、R/G1/G2/Bの4撮像素子を用いたカラーカメラでもよい。また、オンチップカラーフィルタのない撮像素子を用いたモノクロカメラでも、映像信号処理でOB補正をしていれば、本発明の処理を適用することができる。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to combinations of these components, and such modifications are also within the scope of the present invention. For example, although the color camera using the image sensor of the on-chip color filter has been described as the image pickup device 30, it may be a color camera using three R / G / B image sensors, or R / G1 / G2. A color camera using four image sensors of / B may be used. Even in a monochrome camera using an image sensor without an on-chip color filter, the processing of the present invention can be applied if OB correction is performed by video signal processing.
4:減算器
5a、5b: ラインメモリ(1)
6a、6b: ラインメモリ(2)
7a、7b: 映像信号切替器
8a、8b、55: 遅延器
9a、9b: 周囲画素信号選択部
12a~14a、12b~14b: 減算器(1)~減算器(3)
15: 白キズ判定部
16: 白キズ周囲画素補間部
17: 黒キズ判定部
18: 黒キズ周囲画素補間部
19a、19b: 周囲画素中央値検出部、
20: 温度センサー
20a: 周囲温度センサー
21a~28a、21b~28b、21c~28c: 比較器(1)~比較器(8)
29a、29b: 映像信号切替器
30: 撮像装置
31: レンズ
35: 白キズ完全黒キズ検出補間機能付映像信号処理部
36: MATRIX部
37: パラレル-シリアル変換部(P/S)
38: 白キズ完全黒キズ検出補間部
39: CPU(制御部)
40: ビューファインダ
43~45: 加算器(1)~加算器(3)
46: 1/4除算部
47: 代表値検出部
48: 代表値平均検出部
50: 白キズ検出補間部
51: 完全黒キズ検出補間部
52: 暗電流算出OB補正部
53: ガンマ色輪郭補正部
54: 撮像素子制御部
70: 撮像素子
71: ペルチェ素子
72: ペルチェ駆動回路(P駆動回路)
73: 放熱フィン
74: モーターファン
75: モーターファン駆動回路(F駆動回路)
80: FPN補正部
81: 黒レベル減算部
82: メモリコントローラ
83: フレームメモリ
84: 1フレーム加算平均部
85: 除算器
86、90: 減算器
88: ラインバッファ(1)
89: ラインバッファ(2)
IC1: 演算増幅器(Op-Amp)
Q1、Q2: トランジスタ
R1~R4: 抵抗
4: Subtractors 5a, 5b: Line memory (1)
6a, 6b: Line memory (2)
7a, 7b: Video signal switching units 8a, 8b, 55: Delay units 9a, 9b: Ambient pixel signal selection units 12a-14a, 12b-14b: Subtracter (1) to subtracter (3)
15: White scratch determination unit 16: White scratch surrounding pixel interpolation unit 17: Black scratch determination unit 18: Black scratch surrounding pixel interpolation unit 19a, 19b: Surrounding pixel median value detection unit,
20: Temperature sensor 20a: Ambient temperature sensors 21a to 28a, 21b to 28b, 21c to 28c: Comparator (1) to Comparator (8)
29a, 29b: Video signal switch 30: Image pickup device 31: Lens 35: Video signal processing unit with white flaw complete black flaw detection interpolation function 36: MATRIX unit 37: Parallel-serial conversion unit (P / S)
38: White scratch complete black scratch detection interpolation unit 39: CPU (control unit)
40: Viewfinders 43 to 45: Adder (1) to Adder (3)
46: 1/4 division unit 47: representative value detection unit 48: representative value average detection unit 50: white defect detection interpolation unit 51: complete black defect detection interpolation unit 52: dark current calculation OB correction unit 53: gamma color contour correction unit 54: Image sensor control unit 70: Image sensor 71: Peltier element 72: Peltier drive circuit (P drive circuit)
73: Radiation fin 74: Motor fan 75: Motor fan drive circuit (F drive circuit)
80: FPN correction unit 81: Black level subtraction unit 82: Memory controller 83: Frame memory 84: One frame addition averaging unit 85: Divider 86, 90: Subtractor 88: Line buffer (1)
89: Line buffer (2)
IC1: Operational amplifier (Op-Amp)
Q1, Q2: Transistors R1 to R4: Resistance

Claims (3)

  1.  固体撮像素子と、
     前記固体撮像素子の温度を検出する固体撮像素子温度検出手段と、
     筐体外の周囲温度を検出する筐体外周温度検出手段と、
     前記固体撮像素子に取り付けられたペルチェ素子と、
     筐体内外の空気の流出入を促す通風ファンと、
     前記ペルチェ素子に取り付けられた放熱フィンと、
     前記ペルチェ素子を駆動するペルチェ素子駆動回路と、
     前記固体撮像素子への光を遮光する遮光手段と、
     有効画素撮像信号からOB画素典型値を差し引いた固定パターン信号を読出して記憶し、撮像時の有効画素撮像信号からOB画素典型値を差し引いた映像信号から前記記憶した固定パターン信号を差し引くOB補正処理を行う画像処理手段と、
     前記撮像素子の温度を制御する制御部と、
    を有し、
     前記制御部は、
     起動時は前記遮光手段の遮光を開始し、前記通風ファンを停止して、前記ペルチェ素子駆動回路を、前記周囲温度と前記撮像素子の温度との差分に応じた第1の時間でパルス駆動を実行し、つづいて、前記第1の時間より長い第2の時間において前記ペルチェ素子に電流を流さない状態に制御し、
     前記第2の時間の状態に制御されることによって、前記周囲温度と前記固体撮像素子の温度の温度差が所定の温度範囲内となったら、
    前記制御部は、前記通風ファンを前記固体撮像素子の温度に対応した通常の駆動に制御するとともに、前記ペルチェ素子駆動回路を前記固体撮像素子の温度に対応した通常の駆動に制御し、前記画像処理部は、前記OB補正処理を実行することを特徴とする撮像装置。
    A solid-state image sensor;
    Solid-state image sensor temperature detecting means for detecting the temperature of the solid-state image sensor;
    A casing outer periphery temperature detecting means for detecting an ambient temperature outside the casing;
    A Peltier element attached to the solid-state image sensor;
    A ventilation fan that encourages the flow of air in and out of the housing,
    A radiation fin attached to the Peltier element;
    A Peltier element driving circuit for driving the Peltier element;
    Light shielding means for shielding light to the solid-state imaging device;
    An OB correction process for reading out and storing a fixed pattern signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal, and subtracting the stored fixed pattern signal from the video signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal at the time of imaging. Image processing means for performing
    A control unit for controlling the temperature of the image sensor;
    Have
    The controller is
    At the time of start-up, the light shielding means starts shielding, the ventilation fan is stopped, and the Peltier element driving circuit is pulse-driven at a first time corresponding to the difference between the ambient temperature and the temperature of the imaging element. Executing, and subsequently, controlling a state in which no current flows in the Peltier element in a second time longer than the first time,
    When the temperature difference between the ambient temperature and the temperature of the solid-state imaging device is within a predetermined temperature range by being controlled to the state of the second time,
    The control unit controls the ventilation fan to a normal drive corresponding to the temperature of the solid-state image sensor, and controls the Peltier element drive circuit to a normal drive corresponding to the temperature of the solid-state image sensor. The processing unit executes the OB correction process.
  2.  固体撮像素子と、
     前記固体撮像素子の温度を検出する固体撮像素子温度検出手段と、
     筐体外の周囲温度を検出する筐体外周温度検出手段と、
     前記固体撮像素子に取り付けられたペルチェ素子と、
     筐体内外の空気の流出入を促す通風ファンと、
     前記ペルチェ素子に取り付けられた放熱フィンと、
     前記ペルチェ素子を駆動するペルチェ素子駆動回路と、
     前記固体撮像素子への光を遮光する遮光手段と、
     有効画素撮像信号からOB画素典型値を差し引いた固定パターン信号を読出して記憶し、撮像時の有効画素撮像信号からOB画素典型値を差し引いた映像信号から前記記憶した固定パターン信号を差し引くOB補正処理を行う画像処理手段と、
     前記撮像素子の温度を制御する制御部と、
    を有し、
     前記制御部は、
     起動時は前記遮光手段の遮光を開始し、前記通風ファンを停止して、前記ペルチェ素子駆動回路を、前記周囲温度と前記撮像素子の温度との差分に応じた第1の時間で、前記ペルチェ素子が冷却するようにパルス駆動を実行し、つづいて、前記第1の時間より長い第2の時間において前記ペルチェ素子に電流を流さない状態に制御し、
     前記第2の時間の状態に制御されることによって、前記周囲温度と前記固体撮像素子の温度の温度差が所定の温度範囲内となったら、前記制御部は、前記通風ファンを前記固体撮像素子の温度に対応した通常の駆動に制御するとともに、前記ペルチェ素子駆動回路を前記固体撮像素子の温度に対応した通常の駆動に制御し、前記画像処理部は、前記OB補正処理を実行し、
     前記第1の時間は、0.001秒~0.1秒の範囲であって、
     前記第2の時間は、1秒~3秒の範囲である
     ことを特徴とする撮像装置。
    A solid-state image sensor;
    Solid-state image sensor temperature detecting means for detecting the temperature of the solid-state image sensor;
    A casing outer periphery temperature detecting means for detecting an ambient temperature outside the casing;
    A Peltier element attached to the solid-state image sensor;
    A ventilation fan that encourages the flow of air in and out of the housing,
    A radiation fin attached to the Peltier element;
    A Peltier element driving circuit for driving the Peltier element;
    Light shielding means for shielding light to the solid-state imaging device;
    An OB correction process for reading out and storing a fixed pattern signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal, and subtracting the stored fixed pattern signal from the video signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal at the time of imaging. Image processing means for performing
    A control unit for controlling the temperature of the image sensor;
    Have
    The controller is
    At the time of start-up, the light shielding means starts to shield the light, the ventilation fan is stopped, and the Peltier element driving circuit is operated at the first time according to the difference between the ambient temperature and the temperature of the imaging element. Performing pulse driving so that the element cools, and then controlling the Peltier element not to flow current in a second time longer than the first time;
    When the temperature difference between the ambient temperature and the temperature of the solid-state imaging device is within a predetermined temperature range by being controlled to the state of the second time, the control unit moves the ventilation fan to the solid-state imaging device. And controlling the Peltier device driving circuit to normal driving corresponding to the temperature of the solid-state imaging device, the image processing unit executes the OB correction processing,
    The first time ranges from 0.001 seconds to 0.1 seconds,
    The image pickup apparatus, wherein the second time is in the range of 1 second to 3 seconds.
  3.  前記固体撮像素子の温度を検出する固体撮像素子温度検出手段と、
     筐体外の周囲温度を検出する筐体外周温度検出手段と、
     前記固体撮像素子に取り付けられたペルチェ素子と、
     筐体内外の空気の流出入を促す通風ファンと、
     前記ペルチェ素子に取り付けられた放熱フィンと、
     前記ペルチェ素子を駆動するペルチェ素子駆動回路と、
     前記固体撮像素子への光を遮光する遮光手段と、
     有効画素撮像信号からOB画素典型値を差し引いた固定パターン信号を読出して記憶し、撮像時の有効画素撮像信号からOB画素典型値を差し引いた映像信号から前記記憶した固定パターン信号を差し引くOB補正処理を行う画像処理手段と、
     前記撮像素子の温度を制御する制御部と、
    を有し、
     前記制御部は、
     起動時は前記遮光手段の遮光を開始し、前記通風ファンを停止して、前記ペルチェ素子駆動回路を正負にパルス駆動して、前記ペルチェ素子駆動回路の正負電源電圧の電圧比の逆比の時間比で正負にパルス駆動して前記ペルチェ素子の両面で温度差がないように前記固体撮像素子と前記放熱フィンとを加熱し、
     前記周囲温度と前記固体撮像素子の温度の温度差が前記固体撮像素子と前記放熱フィンとの飽和の温度差に近づいたら、前記通風ファンを前記固体撮像素子の温度に対応した通常の駆動に制御するとともに、前記ペルチェ素子駆動回路を前記固体撮像素子の温度に対応した通常の駆動に制御し、前記画像処理部は、前記OB補正処理を実行することを特徴とする撮像装置。
    Solid-state image sensor temperature detecting means for detecting the temperature of the solid-state image sensor;
    A casing outer periphery temperature detecting means for detecting an ambient temperature outside the casing;
    A Peltier element attached to the solid-state image sensor;
    A ventilation fan that encourages the flow of air in and out of the housing,
    A radiation fin attached to the Peltier element;
    A Peltier element driving circuit for driving the Peltier element;
    Light shielding means for shielding light to the solid-state imaging device;
    An OB correction process for reading out and storing a fixed pattern signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal, and subtracting the stored fixed pattern signal from the video signal obtained by subtracting the OB pixel typical value from the effective pixel imaging signal at the time of imaging. Image processing means for performing
    A control unit for controlling the temperature of the image sensor;
    Have
    The controller is
    At the time of start-up, the light shielding means starts shielding, the ventilation fan is stopped, the Peltier element driving circuit is pulsed positively and negatively, and the time of the inverse ratio of the positive / negative power supply voltage ratio of the Peltier element driving circuit Heating the solid-state imaging device and the radiation fin so that there is no temperature difference between both sides of the Peltier device by pulse driving in positive and negative ratios,
    When the temperature difference between the ambient temperature and the temperature of the solid-state image sensor approaches the saturation temperature difference between the solid-state image sensor and the heat radiating fin, the ventilation fan is controlled to a normal drive corresponding to the temperature of the solid-state image sensor. In addition, the Peltier device driving circuit is controlled to a normal driving corresponding to the temperature of the solid-state imaging device, and the image processing unit executes the OB correction processing.
PCT/JP2017/003881 2017-02-03 2017-02-03 Image pickup device WO2018142555A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/003881 WO2018142555A1 (en) 2017-02-03 2017-02-03 Image pickup device
JP2018565180A JP6730464B2 (en) 2017-02-03 2017-02-03 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003881 WO2018142555A1 (en) 2017-02-03 2017-02-03 Image pickup device

Publications (1)

Publication Number Publication Date
WO2018142555A1 true WO2018142555A1 (en) 2018-08-09

Family

ID=63040371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003881 WO2018142555A1 (en) 2017-02-03 2017-02-03 Image pickup device

Country Status (2)

Country Link
JP (1) JP6730464B2 (en)
WO (1) WO2018142555A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111866309A (en) * 2019-04-24 2020-10-30 杭州海康威视数字技术股份有限公司 Network camera equipment
CN115046083A (en) * 2022-05-24 2022-09-13 云南电网有限责任公司玉溪供电局 Personnel flow monitoring system based on internet of things technology
US11936966B2 (en) 2021-01-27 2024-03-19 Panasonic Intellectual Property Management Co., Ltd. Imaging device with cooling mechanism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185375A (en) * 2006-01-13 2007-07-26 Hitachi Medical Corp X-ray imaging diagnostic equipment
JP2013162192A (en) * 2012-02-02 2013-08-19 Canon Inc Imaging apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185375A (en) * 2006-01-13 2007-07-26 Hitachi Medical Corp X-ray imaging diagnostic equipment
JP2013162192A (en) * 2012-02-02 2013-08-19 Canon Inc Imaging apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111866309A (en) * 2019-04-24 2020-10-30 杭州海康威视数字技术股份有限公司 Network camera equipment
CN111866309B (en) * 2019-04-24 2022-02-15 杭州海康威视数字技术股份有限公司 Network camera equipment
US11936966B2 (en) 2021-01-27 2024-03-19 Panasonic Intellectual Property Management Co., Ltd. Imaging device with cooling mechanism
CN115046083A (en) * 2022-05-24 2022-09-13 云南电网有限责任公司玉溪供电局 Personnel flow monitoring system based on internet of things technology

Also Published As

Publication number Publication date
JPWO2018142555A1 (en) 2019-11-14
JP6730464B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
US7952621B2 (en) Imaging apparatus having temperature sensor within image sensor wherin apparatus outputs an image whose quality does not degrade if temperature increases within image sensor
JP6730464B2 (en) Imaging device
JP2015082732A (en) Solid state image sensor
JP6991809B2 (en) Imaging device
US10841550B2 (en) Imaging apparatus and method of calculating white balance gain
JP2006033036A (en) Imaging apparatus
JPH11112884A (en) Method for correcting dark current of video camera device and video camera device using the method
JP2013150144A (en) Imaging method and imaging apparatus
JP4136776B2 (en) Correction apparatus, imaging apparatus, correction method, computer-readable storage medium, and program
JP2016100686A (en) Imaging device and imaging method
JP2014230121A (en) Imaging apparatus and pixel defect detection method
JP2010118780A (en) System and method for detecting pixel defect of imaging device
JP2018182366A (en) Imaging device and detecting correcting method of dark current fluctuation and imaging device adjusting method
JP2014146969A (en) Digital camera
JP2012029194A (en) Electronic camera and exposure control program
JP2009260871A (en) Imaging apparatus
JP2009206906A (en) Electronic camera
JP6730436B2 (en) Imaging device and method of adjusting imaging device
JP2013162192A (en) Imaging apparatus
TWI677243B (en) Image-capturing system with image calibration
CN109963065B (en) Camera system with image correction function
JP5404217B2 (en) Imaging apparatus and control method thereof
JP5263764B2 (en) Electronic camera
JP2008034902A (en) Electronic camera
JP5784669B2 (en) Imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895286

Country of ref document: EP

Kind code of ref document: A1