WO2018142445A1 - Control device for synchronous motor - Google Patents

Control device for synchronous motor Download PDF

Info

Publication number
WO2018142445A1
WO2018142445A1 PCT/JP2017/003307 JP2017003307W WO2018142445A1 WO 2018142445 A1 WO2018142445 A1 WO 2018142445A1 JP 2017003307 W JP2017003307 W JP 2017003307W WO 2018142445 A1 WO2018142445 A1 WO 2018142445A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
speed
phase
synchronous motor
voltage
Prior art date
Application number
PCT/JP2017/003307
Other languages
French (fr)
Japanese (ja)
Inventor
文雄 渡邉
雅史 中村
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2018565091A priority Critical patent/JP6681653B2/en
Priority to PCT/JP2017/003307 priority patent/WO2018142445A1/en
Publication of WO2018142445A1 publication Critical patent/WO2018142445A1/en
Priority to US16/528,129 priority patent/US10931213B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/18Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual dc motor
    • H02P1/22Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual dc motor in either direction of rotation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a control device for a synchronous motor, and more particularly to a control device for a synchronous motor using vector control.
  • Synchronous motor control devices that drive and control synchronous motors are widely used, but so-called vector control is used, for example, in applications where the load changes greatly.
  • vector control is used, for example, in applications where the load changes greatly.
  • the power factor of the synchronous motor is controlled to 1. Is done.
  • proposals have been made to calculate the load angle of the synchronous motor by calculating the magnetic flux from the constant of the synchronous motor that changes depending on the load and various currents of the synchronous motor, and to further determine the current reference so that the power factor becomes 1. (For example, refer to Patent Document 1).
  • Patent Document 1 it is possible to operate the synchronous motor with a power factor of 1.
  • the constant of the synchronous motor needs to be used for the calculation, it is necessary to accurately measure the constant.
  • the calculation for changing the constant according to the load becomes complicated.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a synchronous motor control device capable of setting the power factor of the synchronous motor to 1 by a relatively simple method.
  • a control apparatus for a synchronous motor includes an inverter device that drives electric power supplied from an AC power source to a desired output voltage and frequency, and an output current of the inverter device.
  • Current detecting means for detecting the output voltage voltage detecting means for detecting the output voltage of the inverter device, position detecting means for detecting the rotation angle of the synchronous motor, and a drive control unit for controlling the output of the inverter device.
  • the drive control unit controls the speed feedback obtained by differentiating the output of the position detection means to be a predetermined speed reference and outputs a Q-axis current reference, and the current detection means
  • D-axis current control means for controlling the D-axis feedback current to be 0 and outputting a D-axis voltage reference
  • DQ-3 phase conversion means for obtaining a voltage reference for each phase of the three-phase output of the inverter device by DQ-3 phase conversion of the Q axis voltage reference and the D axis voltage reference
  • PWM control of the voltage reference for each phase PWM control means for outputting a gate signal to the switching elements constituting the inverter device, and second phase to obtain
  • the calculated value is used as a reference phase angle of the first three-phase-DQ conversion means, the second three-phase-DQ conversion means, and the DQ-3 phase conversion means, and the speed of the synchronous motor is less than a predetermined threshold value.
  • a value obtained by adding a preset low-speed load angle to the detection angle of the position detection means is set as the previous phase reference phase angle.
  • FIGS. 1 to 3 is a circuit configuration diagram of a synchronous motor control apparatus according to Embodiment 1 of the present invention.
  • the inverter device 2 has a converter section (not shown) at its input section, and the converter section converts the input alternating current into a direct current of a desired voltage and supplies it to an inverter section (not shown).
  • the inverter unit converts the direct current into an alternating voltage and drives the synchronous motor 3.
  • the power device constituting the inverter unit of the inverter device 2 is on / off controlled by a gate signal supplied from the drive control unit 7.
  • the synchronous motor 3 is provided with a resolver 4 as position detecting means, and this output is given to the drive controller 7 as a phase angle QO_RES.
  • a current detector 5 and a voltage detector 6 are provided on the output side of the inverter device 2 and are given to the drive control unit 7 as current feedback IU_F, IV_F, IW_F and voltage feedback VU_F, VV_F, VW_F, respectively.
  • the synchronous motor 3 is usually provided with a field winding, and is configured to be supplied with an excitation current from the drive control unit 7, for example.
  • the phase angle QO_RES obtained by the resolver 4 is converted into speed feedback SP_F by the differentiator 71.
  • the difference between the speed reference SP_R and the speed feedback SP_F given from the outside is calculated by the subtracter 72 and given to the speed controller 73.
  • the speed controller 73 is usually a PI controller. Then, the speed controller 73 adjusts and controls the given difference to be minimum, and outputs the Q-axis current reference IQ_R.
  • the D-axis current reference ID_R is set to 0.
  • the output of the current detector 5 is given to a three-phase-DQ converter 80 and converted into biaxial current feedback ID_F and IQ_F based on the reference phase angle QO.
  • ID_F and IQ_F are DC amounts
  • the reference phase angle QO is corrected by adding a correction angle QO_L, which is an output of an angle correction selector 87 described later, to a phase angle QO_RES detected by the resolver 4 by an adder 88. Phase angle.
  • the difference between the D-axis current reference ID_R set to 0 and the D-axis current feedback ID_F is calculated by the subtractor 74 and is given to the current controller 76.
  • the difference between the Q-axis current reference IQ_R and the Q-axis current feedback IQ_F is calculated by the subtractor 75 and is given to the current controller 77.
  • the current controllers 76 and 77 are usually PI controllers.
  • the current controller 76 and the current controller 77 output the D-axis voltage reference ED_R and the Q-axis voltage reference EQ_R, respectively, by adjusting and controlling so that the given difference is minimized.
  • the D-axis voltage reference ED_R and the Q-axis voltage reference EQ_R are supplied to the DQ-3 phase converter 78, and the DQ-3 phase converter 78 outputs three-phase voltage references EU_R, EV_R, EW_R based on the reference phase angle QO. To do.
  • the three-phase voltage references EU_R, EV_R, and EW_R are given to the PWM controller 79.
  • the PWM controller 79 supplies a PWM-modulated gate signal to each power device of the inverter unit so that the output voltage of each phase of the inverter unit of the inverter device 2 becomes the three-phase voltage reference EU_R, EV_R, EW_R. .
  • the three-phase voltages VU-F, VV-F, and VW-F detected by the voltage detector 6 are given to the three-phase-DQ converter 81, and are converted into two-axis voltage feedbacks ED_F and EQ_F based on the reference phase angle QO. Converted.
  • ED_F and EQ_F are DC amounts
  • the reference phase angle QO is a phase angle corrected as described above.
  • the D-axis voltage feedback ED_F and the Q-axis voltage feedback EQ_F are supplied to the absolute value calculator 82, and the D-axis voltage feedback ED_F is divided by the output of the absolute value calculator 82 by the divider 83.
  • the output of the divider 83 is a value normalized so that the D-axis voltage feedback ED_F becomes a constant value regardless of the speed of the synchronous motor 3.
  • the output of the divider 83 is given to the negative input of the subtractor 85 through the filter 84.
  • 0 is given to the positive side input of the subtracter 85, and the voltage controller 86 which is a PI controller adjusts and controls the D-axis voltage feedback ED_F to be 0, and outputs the correction angle QO_L.
  • the correction angle QO_L is given to the adder 88 via the B terminal of the angle correction selector 87.
  • the angle correction selector 87 selects the output of the voltage controller 86, the correction angle QO_L is determined so that the D-axis voltage feedback ED_F which is the output of the three-phase-DQ converter 81 is zero.
  • the correction angle QO_L corresponds to a load angle that changes according to the load of the synchronous motor 3 as described later.
  • the angle correction selector 87 is a circuit that selects the signal input output by the switching speed detector 90.
  • the angle correction selector 87 outputs a signal input from the A terminal when the output of the switching speed detector 90 is 0, and outputs a signal input from the B terminal when the output of the switching speed detector 90 is 1. To do.
  • the output of the low-speed load angle setting unit 89 is input to the A terminal of the angle correction selector 87.
  • the speed feedback SP_F is monitored by the switching speed detector 90, and when the speed of the synchronous motor 3 is larger than a predetermined N0, the switching speed detector 90 outputs 1, and the angle correction selector 87 is the voltage as described above.
  • the output of the controller 86 is selected (B terminal is selected for output) to operate the above-described PLL.
  • the switching speed detector 90 outputs 0, and the angle correction selector 87 selects the low speed load angle ⁇ 0 set by the low speed load angle setter 89 (A terminal). Output selection).
  • the horizontal axis is the sensor D axis
  • the vertical axis is the sensor Q axis.
  • the sensor D axis is the magnetic pole direction of the field of the synchronous motor 3.
  • the induced voltage E0 of the synchronous motor 3 by the field magnetic pole is in the direction of the sensor Q axis as shown in the figure.
  • the detection phase angle QO_RES 0 ° is defined.
  • the reference phase angle QO for DQ conversion is shifted by the correction angle QO_L and is based on the orthogonal coordinates of the D axis (PLL) and the Q axis (PLL) shown in the figure. Conversion is performed.
  • the output voltage of the inverter device 2 during the PLL becomes only the Q-axis voltage reference EQ_R.
  • the current controller 76 performs control to set the D-axis current reference ID_R to 0, the output current of the inverter device 2 during the PLL is only the Q-axis current reference IQ_R.
  • the output voltage and output current of the inverter device 2 are in phase, and a power factor of 1 is achieved.
  • the correction angle QO_L indicates the phase difference between the terminal voltage of the synchronous motor 3 and the induced voltage, so the correction angle QO_L corresponds to the load angle of the synchronous motor 3.
  • FIG. 3 shows input / output characteristics of a switching speed detector 90A, which is a modification of the switching speed detector 90 in the first embodiment.
  • the switching speed detector 90A has a so-called hysteresis characteristic. That is, when the speed is less than N0, the switching speed detector 90 outputs 0 and selects the output of the low-speed load angle setting device 89 (output selection of the A terminal), but the speed increases and exceeds N0. However, the output remains 0, and the output is set to 1 only when the speed becomes N1. Similarly, when the speed is N1 or higher, the switching speed detector 90 outputs 1 and selects the output of the voltage controller 86 (output selection of the B terminal).
  • the output remains at 1, and the output is set to 0 only when the speed becomes N0.
  • FIG. 4 is a circuit configuration diagram of a synchronous motor control apparatus according to Embodiment 2 of the present invention.
  • the same parts as those in the circuit configuration diagram of the synchronous motor control device according to the first embodiment of the present invention shown in FIG. 1 are denoted by the same reference numerals and the description thereof will be omitted.
  • the difference between the second embodiment and the first embodiment is that a speed decrease switching detector 91 that exchanges information with the switching speed detector 90 and detects the timing immediately before the output of the switching speed detector 90 changes from 1 to 0 is provided.
  • the load angle hold circuit 92 for holding the value of the correction angle QO_L, which is the output of the voltage controller 86, is provided by the output signal of the speed decrease switching detector 91, and the load is further loaded by the angle correction selector 87A.
  • the output of the corner hold circuit 92 is also selectable.
  • the load angle hold circuit 92 holds the input signal by the output signal of the speed decrease switching detector 91 and outputs it.
  • An input terminal C is added to the angle correction selector 87A.
  • the output of the load angle hold circuit 92 is connected to the input terminal C of the angle correction selector 87A. While the output of the switching speed detector 90 is 0 when the synchronous motor 3 is started, the angle correction selector 87A selects the output of the terminal A, the speed of the synchronous motor 3 increases, and the output of the switching speed detector 90 becomes 1. If it is, the angle correction selector 87A selects the output of the terminal B. When the speed of the synchronous motor decreases and the output of the switching speed detector 90 changes from 1 to 0 ′, the angle correction selector 87A selects the output of the terminal C.
  • the correction angle QO_L that is the load angle at that time is first held, and then the speed decrease switching is performed.
  • the detector 91 changes the output of the switching speed detector 90 from 1 to 0 ′.
  • the angle correction selector 87A selects the correction angle QO_LH held by the load angle hold circuit 92 instead of the low speed load angle ⁇ 0 which is the output of the low speed load angle setter 89.
  • the transient disturbance when the low-speed load angle ⁇ 0 that is the output of the low-speed load angle setting device 89 is not an appropriate value is suppressed, and when the load change is small. It is possible to enter a low speed operation while maintaining a power factor of zero.
  • FIG. 5 is a circuit configuration diagram of a synchronous motor control apparatus according to Embodiment 3 of the present invention.
  • the voltage controller 86A which is a PI controller, is provided with an initial value setting input terminal that enables setting of an initial value of the PI control integration circuit and an enable terminal of the integration circuit, and when a signal from the enable terminal is established, The voltage controller 86A is configured to start PI control using the signal from the initial value setting input terminal as the initial value of the integrating circuit, and the low speed load that is the output of the low speed load angle setting device 89 is applied to the initial value setting input terminal. The angle ⁇ 0 is connected, and the output of the switching speed detector 90 is given to the enable terminal of the voltage controller 86A.
  • the initial value of the output of the voltage controller 86A is equal to the low speed load angle [delta] 0.
  • the output of the switching speed detector 90 changes from 0 to 1.
  • the initial value of the output of the voltage controller 86A is equal to the low speed load angle [delta] 0. Therefore, even if the angle correction selector 87 changes the input signal selection from the A terminal that is the output of the low-speed load angle setting device 89 to the B terminal that is the output of the voltage controller 86A, the output of the angle correction selector 87 is still There will be no discontinuous changes.
  • a speed detector may be used in place of the resolver 4 in FIG. In this case, detection angle information is obtained by integrating speed feedback.
  • the filter 84 in FIG. 1 removes harmonics such as a PWM control carrier, it may be inserted into the input side or the output side of the three-phase-DQ converter.
  • the normal low-speed load angle ⁇ 0 is set to a predetermined value from the load characteristics of the load driven by the synchronous motor 3, and the correction angle QO_LH held by the load angle hold circuit 92 described in the second embodiment is used. May be.
  • the low speed load angle ⁇ 0 may be automatically updated to a new correction angle QO_LH every time the operation of the synchronous motor 3 is repeated.

Abstract

In a drive control unit 7 which carries out vector control of a synchronous motor 3, when the speed of the synchronous motor 3 is at or above a prescribed threshold value, a value obtained by adding a correction angle, at which the D-axis voltage feedback output by a three phase-DQ converter 81 is 0, to a detection angle of a position detection means 4 is used as the reference phase angle of the three phase-DQ converters 81 and 80 and a DQ-three phase converter 78, and when the speed of the synchronous motor 3 is less than the prescribed threshold value, a value obtained by adding a preset low-speed load angle to the detection angle of the position detection means 4 is used as the reference phase angle. During vector control, a power factor 1 is achieved by carrying out control such that a D-axis current is 0.

Description

同期電動機の制御装置Control device for synchronous motor
 本発明は、同期電動機の制御装置に関し、特にベクトル制御を使用した同期電動機の制御装置に関する。 The present invention relates to a control device for a synchronous motor, and more particularly to a control device for a synchronous motor using vector control.
 同期電動機を駆動制御する同期電動機の制御装置は広く用いられているが、例えば負荷が大きく変化するような用途においては、所謂ベクトル制御が使用されている。この場合、駆動用のインバータの定められた容量の範囲内で効率良く同期電動機を駆動・制御するためには、より少ない出力電流とする必要があるため、同期電動機の力率を1に制御することが行われる。このため、負荷によって変化する同期電動機の定数及び同期電動機の諸電流から磁束を演算して同期電動機の負荷角を求め、更に力率が1になるような電流基準を求める提案が為されている(例えば特許文献1参照。)。 Synchronous motor control devices that drive and control synchronous motors are widely used, but so-called vector control is used, for example, in applications where the load changes greatly. In this case, in order to drive and control the synchronous motor efficiently within a predetermined capacity range of the inverter for driving, it is necessary to make the output current smaller, so the power factor of the synchronous motor is controlled to 1. Is done. For this reason, proposals have been made to calculate the load angle of the synchronous motor by calculating the magnetic flux from the constant of the synchronous motor that changes depending on the load and various currents of the synchronous motor, and to further determine the current reference so that the power factor becomes 1. (For example, refer to Patent Document 1).
特開2013-31256号公報(第4―7頁、図1)Japanese Unexamined Patent Publication No. 2013-31256 (page 4-7, FIG. 1)
 特許文献1の手法に依れば、同期電動機の力率を1として運転することが可能となるが、演算に同期電動機の定数を用いる必要があるため、定数の測定を正確に行う必要があるばかりでなく、その定数を負荷に応じて変化させる演算が複雑となる。 According to the technique of Patent Document 1, it is possible to operate the synchronous motor with a power factor of 1. However, since the constant of the synchronous motor needs to be used for the calculation, it is necessary to accurately measure the constant. In addition, the calculation for changing the constant according to the load becomes complicated.
 本発明は上記問題点を鑑みて為されたもので、その目的は、比較的簡単な手法で同期電動機の力率を1とすることが可能な同期電動機の制御装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a synchronous motor control device capable of setting the power factor of the synchronous motor to 1 by a relatively simple method.
 上記目的を達成するため、本発明の同期電動機の制御装置は、交流電源から供給される電力を所望の出力電圧及び周波数に変換して同期電動機を駆動するインバータ装置と、前記インバータ装置の出力電流を検出する電流検出手段と、前記インバータ装置の出力電圧を検出する電圧検出手段と、前記同期電動機の回転角度を検出する位置検出手段と、前記インバータ装置の出力を制御する駆動制御部とを具備し、前記駆動制御部は、前記位置検出手段の出力を微分して得られる速度帰還が所定の速度基準となるように制御してQ軸電流基準を出力する速度制御手段と、前記電流検出手段の検出電流を3相-DQ変換してQ軸帰還電流及びD軸帰還電流を得る第1の3相-DQ変換手段と、前記Q軸電流基準と、前記Q軸帰還電流との偏差を0とするように制御してQ軸電圧基準を出力するQ軸電流制御手段と、前記D軸帰還電流が0になるように制御してD軸電圧基準を出力するD軸電流制御手段と、前記Q軸電圧基準と前記D軸電圧基準をDQ-3相変換して前記インバータ装置の3相出力の各相の電圧基準を得るDQ-3相変換手段と、前記各相の電圧基準をPWM制御して前記インバータ装置を構成するスイッチング素子へのゲート信号を出力するPWM制御手段と、前記電圧検出手段の検出電圧を3相-DQ変換してQ軸帰還電圧及びD軸帰還電圧を得る第2の3相-DQ変換手段と、前記D軸帰還電圧が0になるようにPI制御して補正角を出力する電圧制御手段とを有し、前記同期電動機の速度が所定の閾値以上のときは、前記位置検出手段の検出角に前記補正角を加算した値を前記第1の3相-DQ変換手段、前記第2の3相-DQ変換手段及び前記DQ-3相変換手段の基準位相角とし、前記同期電動機の速度が所定の閾値未満のときは、前記位置検出手段の検出角に予め設定した低速時負荷角を加算した値を前期基準位相角とすることを特徴としている。 In order to achieve the above object, a control apparatus for a synchronous motor according to the present invention includes an inverter device that drives electric power supplied from an AC power source to a desired output voltage and frequency, and an output current of the inverter device. Current detecting means for detecting the output voltage, voltage detecting means for detecting the output voltage of the inverter device, position detecting means for detecting the rotation angle of the synchronous motor, and a drive control unit for controlling the output of the inverter device. The drive control unit controls the speed feedback obtained by differentiating the output of the position detection means to be a predetermined speed reference and outputs a Q-axis current reference, and the current detection means The difference between the first three-phase-DQ conversion means for obtaining the Q-axis feedback current and the D-axis feedback current by performing the three-phase-DQ conversion of the detected current, the Q-axis current reference, and the Q-axis feedback current Q-axis current control means for controlling the output to output a Q-axis voltage reference, D-axis current control means for controlling the D-axis feedback current to be 0 and outputting a D-axis voltage reference, DQ-3 phase conversion means for obtaining a voltage reference for each phase of the three-phase output of the inverter device by DQ-3 phase conversion of the Q axis voltage reference and the D axis voltage reference, and PWM control of the voltage reference for each phase PWM control means for outputting a gate signal to the switching elements constituting the inverter device, and second phase to obtain a Q-axis feedback voltage and a D-axis feedback voltage by performing three-phase-DQ conversion on the detection voltage of the voltage detection means Three-phase-DQ conversion means, and voltage control means for outputting a correction angle by PI control so that the D-axis feedback voltage becomes zero, and when the speed of the synchronous motor is equal to or higher than a predetermined threshold value The correction angle is added to the detection angle of the position detection means. The calculated value is used as a reference phase angle of the first three-phase-DQ conversion means, the second three-phase-DQ conversion means, and the DQ-3 phase conversion means, and the speed of the synchronous motor is less than a predetermined threshold value. In this case, a value obtained by adding a preset low-speed load angle to the detection angle of the position detection means is set as the previous phase reference phase angle.
 本発明によれば、比較的簡単な手法で同期電動機の力率を1とすることが可能な同期電動機の制御装置を提供することが可能となる。 According to the present invention, it is possible to provide a control device for a synchronous motor capable of setting the power factor of the synchronous motor to 1 by a relatively simple method.
本発明の実施例1に係る同期電動機の制御装置の回路構成図。The circuit block diagram of the control apparatus of the synchronous motor which concerns on Example 1 of this invention. 本発明の実施例1に係る同期電動機の制御装置の説明図。Explanatory drawing of the control apparatus of the synchronous motor which concerns on Example 1 of this invention. 本発明の実施例1に係る同期電動機の制御装置の変形例を示す図。The figure which shows the modification of the control apparatus of the synchronous motor which concerns on Example 1 of this invention. 本発明の実施例2係る同期電動機の制御装置の回路構成図。The circuit block diagram of the control apparatus of the synchronous motor which concerns on Example 2 of this invention. 本発明の実施例3係る同期電動機の制御装置の回路構成図。The circuit block diagram of the control apparatus of the synchronous motor which concerns on Example 3 of this invention.
 以下、図面を参照して本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.
 以下、本発明の実施例1に係る電力変換装置を、図1乃至図3を参照して説明する。図1は本発明の実施例1に係る同期電動機の制御装置の回路構成図である。 Hereinafter, a power conversion device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3. 1 is a circuit configuration diagram of a synchronous motor control apparatus according to Embodiment 1 of the present invention.
 交流電源1からインバータ装置2に交流が給電される。インバータ装置2はその入力部に図示しないコンバータ部を有しており、コンバータ部は入力された交流を所望の電圧の直流に変換し、図示しないインバータ部に与える。インバータ部は直流を交流電圧に変換して同期電動機3を駆動する。インバータ装置2のインバータ部を構成するパワーデバイスは駆動制御部7から与えられるゲート信号によってオンオフ制御されている。同期電動機3には位置検出手段としてのレゾルバ4が取り付けられており、この出力は位相角QO_RESとして駆動制御部7に与えられる。また、インバータ装置2の出力側には電流検出器5及び電圧検出器6が設けられ、夫々電流帰還IU_F、IV_F、IW_F並びに電圧帰還VU_F、VV_F、VW_Fとして駆動制御部7に与えられる。同期電動機3には通常、界磁巻線が設けられ、例えば駆動制御部7から励磁電流が与えられる構成となっているが、その図示は省略している。 AC is supplied from the AC power source 1 to the inverter device 2. The inverter device 2 has a converter section (not shown) at its input section, and the converter section converts the input alternating current into a direct current of a desired voltage and supplies it to an inverter section (not shown). The inverter unit converts the direct current into an alternating voltage and drives the synchronous motor 3. The power device constituting the inverter unit of the inverter device 2 is on / off controlled by a gate signal supplied from the drive control unit 7. The synchronous motor 3 is provided with a resolver 4 as position detecting means, and this output is given to the drive controller 7 as a phase angle QO_RES. Further, a current detector 5 and a voltage detector 6 are provided on the output side of the inverter device 2 and are given to the drive control unit 7 as current feedback IU_F, IV_F, IW_F and voltage feedback VU_F, VV_F, VW_F, respectively. The synchronous motor 3 is usually provided with a field winding, and is configured to be supplied with an excitation current from the drive control unit 7, for example.
 次に駆動制御部7の内部構成について説明する。 Next, the internal configuration of the drive control unit 7 will be described.
 レゾルバ4によって得られる位相角QO_RESは、微分器71によって速度帰還SP_Fに変換される。外部から与えられる速度基準SP_Rとこの速度帰還SP_Fは減算器72によってその差分が演算され、速度制御器73に与えられる。速度制御器73は通常はPI制御器である。そして速度制御器73は与えられた差分が最小となるように調節制御してQ軸電流基準IQ_Rを出力する。またD軸電流基準ID_Rは0に設定しておく。 The phase angle QO_RES obtained by the resolver 4 is converted into speed feedback SP_F by the differentiator 71. The difference between the speed reference SP_R and the speed feedback SP_F given from the outside is calculated by the subtracter 72 and given to the speed controller 73. The speed controller 73 is usually a PI controller. Then, the speed controller 73 adjusts and controls the given difference to be minimum, and outputs the Q-axis current reference IQ_R. The D-axis current reference ID_R is set to 0.
 電流検出器5の出力は3相-DQ変換器80に与えられ、基準位相角QOに基づいて2軸の電流帰還ID_F及びIQ_Fに変換する。ここでID_F及びIQ_Fは直流量であり、また基準位相角QOはレゾルバ4が検出する位相角QO_RESに後述する角度補正選択器87の出力である補正角QO_Lを加算器88で加算して補正された位相角である。 The output of the current detector 5 is given to a three-phase-DQ converter 80 and converted into biaxial current feedback ID_F and IQ_F based on the reference phase angle QO. Here, ID_F and IQ_F are DC amounts, and the reference phase angle QO is corrected by adding a correction angle QO_L, which is an output of an angle correction selector 87 described later, to a phase angle QO_RES detected by the resolver 4 by an adder 88. Phase angle.
 0に設定されたD軸電流基準ID_Rと、D軸電流帰還ID_Fは減算器74によってその差分が演算され、電流制御器76に与えられる。また、Q軸電流基準IQ_RとQ軸電流帰還IQ_Fは減算器75によってその差分が演算され、電流制御器77に与えられる。電流制御器76、77は通常はPI制御器である。電流制御器76及び電流制御器77は、与えられた差分が最小となるように調節制御して夫々D軸電圧基準ED_R及びQ軸電圧基準EQ_Rを出力する。D軸電圧基準ED_R及びQ軸電圧基準EQ_RはDQ-3相変換器78に与えられ、DQ-3相変換器78は基準位相角QOに基づいて3相の電圧基準EU_R、EV_R、EW_Rを出力する。この3相電圧基準EU_R、EV_R、EW_RはPWM制御器79に与えられる。PWM制御器79はインバータ装置2のインバータ部の各相の出力電圧が3相電圧基準EU_R、EV_R、EW_Rとなるようにインバータ部の各パワーデバイスに対して、PWM変調されたゲート信号を供給する。 The difference between the D-axis current reference ID_R set to 0 and the D-axis current feedback ID_F is calculated by the subtractor 74 and is given to the current controller 76. The difference between the Q-axis current reference IQ_R and the Q-axis current feedback IQ_F is calculated by the subtractor 75 and is given to the current controller 77. The current controllers 76 and 77 are usually PI controllers. The current controller 76 and the current controller 77 output the D-axis voltage reference ED_R and the Q-axis voltage reference EQ_R, respectively, by adjusting and controlling so that the given difference is minimized. The D-axis voltage reference ED_R and the Q-axis voltage reference EQ_R are supplied to the DQ-3 phase converter 78, and the DQ-3 phase converter 78 outputs three-phase voltage references EU_R, EV_R, EW_R based on the reference phase angle QO. To do. The three-phase voltage references EU_R, EV_R, and EW_R are given to the PWM controller 79. The PWM controller 79 supplies a PWM-modulated gate signal to each power device of the inverter unit so that the output voltage of each phase of the inverter unit of the inverter device 2 becomes the three-phase voltage reference EU_R, EV_R, EW_R. .
 電圧検出器6で検出された3相電圧VU-F、VV-F、VW-Fは3相-DQ変換器81に与えられ、基準位相角QOに基づいて2軸の電圧帰還ED_F及びEQ_Fに変換される。ここでED_F及びEQ_Fは直流量であり、また基準位相角QOは上述の通り補正された位相角である。D軸電圧帰還ED_F及びQ軸電圧帰還EQ_Fは絶対値演算器82に与えられ、D軸電圧帰還ED_Fは除算器83によってこの絶対値演算器82の出力で除算される。すなわち除算器83の出力はD軸電圧帰還ED_Fが同期電動機3の速度に依らず一定の値となるように正規化された値となる。そして除算器83の出力はフィルタ84を介して減算器85の負側入力に与えられる。減算器85の正側入力には0が与えられ、PI制御器である電圧制御器86はD軸電圧帰還ED_Fが0になるように調節制御して補正角QO_Lを出力する。この補正角QO_Lは、角度補正選択器87のB端子を介して加算器88に与えられる。従って角度補正選択器87が電圧制御器86の出力を選択しているときは、3相-DQ変換器81の出力であるD軸電圧帰還ED_Fを0とするように補正角QO_Lを決めるようなフェイズロックドループ(PLL)が動作し、QO=QO_RES+QO_Lが成立する。尚、この補正角QO_Lは、後述するように同期電動機3の負荷に応じて変化する負荷角に相当する。角度補正選択器87は切替速度検出器90によって出力する信号入力が選択される回路とする。角度補正選択器87は切替速度検出器90の出力が0の場合はA端子から入力される信号を出力し、切替速度検出器90の出力が1の場合はB端子から入力される信号を出力する。低速時負荷角設定器89の出力は角度補正選択器87のA端子に入力される。 The three-phase voltages VU-F, VV-F, and VW-F detected by the voltage detector 6 are given to the three-phase-DQ converter 81, and are converted into two-axis voltage feedbacks ED_F and EQ_F based on the reference phase angle QO. Converted. Here, ED_F and EQ_F are DC amounts, and the reference phase angle QO is a phase angle corrected as described above. The D-axis voltage feedback ED_F and the Q-axis voltage feedback EQ_F are supplied to the absolute value calculator 82, and the D-axis voltage feedback ED_F is divided by the output of the absolute value calculator 82 by the divider 83. That is, the output of the divider 83 is a value normalized so that the D-axis voltage feedback ED_F becomes a constant value regardless of the speed of the synchronous motor 3. The output of the divider 83 is given to the negative input of the subtractor 85 through the filter 84. 0 is given to the positive side input of the subtracter 85, and the voltage controller 86 which is a PI controller adjusts and controls the D-axis voltage feedback ED_F to be 0, and outputs the correction angle QO_L. The correction angle QO_L is given to the adder 88 via the B terminal of the angle correction selector 87. Therefore, when the angle correction selector 87 selects the output of the voltage controller 86, the correction angle QO_L is determined so that the D-axis voltage feedback ED_F which is the output of the three-phase-DQ converter 81 is zero. The phase-locked loop (PLL) operates and QO = QO_RES + QO_L is established. The correction angle QO_L corresponds to a load angle that changes according to the load of the synchronous motor 3 as described later. The angle correction selector 87 is a circuit that selects the signal input output by the switching speed detector 90. The angle correction selector 87 outputs a signal input from the A terminal when the output of the switching speed detector 90 is 0, and outputs a signal input from the B terminal when the output of the switching speed detector 90 is 1. To do. The output of the low-speed load angle setting unit 89 is input to the A terminal of the angle correction selector 87.
 ところで、同期電動機3の運転速度が低速になると、電圧検出器6の検出電圧に誤差が生じるため、結果として補正角QO_Lに誤差が生じると共に、変動が大きくなって不安定となる。このため、切替速度検出器90によって速度帰還SP_Fを監視し、同期電動機3の速度が所定のN0より大きい場合は切替速度検出器90は1を出力して上述の通り角度補正選択器87は電圧制御器86の出力を選択(B端子を出力選択)して上述のPLLを動作させるようする。そして、速度がN0未満となったときには切替速度検出器90は0を出力して、角度補正選択器87は低速時負荷角設定器89によって設定された低速時負荷角δを選択(A端子を出力選択)するようにする。 By the way, when the operation speed of the synchronous motor 3 becomes low, an error occurs in the detection voltage of the voltage detector 6, and as a result, an error occurs in the correction angle QO_L and the fluctuation becomes large and becomes unstable. For this reason, the speed feedback SP_F is monitored by the switching speed detector 90, and when the speed of the synchronous motor 3 is larger than a predetermined N0, the switching speed detector 90 outputs 1, and the angle correction selector 87 is the voltage as described above. The output of the controller 86 is selected (B terminal is selected for output) to operate the above-described PLL. When the speed becomes less than N0, the switching speed detector 90 outputs 0, and the angle correction selector 87 selects the low speed load angle δ 0 set by the low speed load angle setter 89 (A terminal). Output selection).
 以上の構成における動作を図2に示すベクトル図で以下説明する。図2において横軸はセンサD軸であり、縦軸はセンサQ軸である。センサD軸は同期電動機3の界磁の磁極方向とする。このとき界磁磁極による同期電動機3の誘起電圧E0は、図示するようにセンサQ軸の方向となる。また、例えばレゾルバ4の検出位相がセンサQ軸と一致したとき検出位相角QO_RES=0°と定義する。この状態で上述したようなPLLが動作すると、DQ変換のための基準位相角QOは補正角QO_Lだけシフトして、図示のD軸(PLL時)、Q軸(PLL時)の直交座標に基づいて変換が行われる。そして、D軸電圧帰還ED_Fを0とするPLLの動作によって、PLL時のインバータ装置2の出力電圧はQ軸電圧基準EQ_Rのみとなる。同様に、電流制御器76によってD軸電流基準ID_Rを0とする制御を行っているので、PLL時のインバータ装置2の出力電流はQ軸電流基準IQ_Rのみとなる。従って、インバータ装置2の出力電圧と出力電流は同相となり、力率1が達成される。そして、図に示すように、補正角QO_Lは同期電動機3の端子電圧と誘起電圧の位相差を示しているのでこの補正角QO_Lは同期電動機3の負荷角に相当することになる。 The operation in the above configuration will be described below with reference to the vector diagram shown in FIG. In FIG. 2, the horizontal axis is the sensor D axis, and the vertical axis is the sensor Q axis. The sensor D axis is the magnetic pole direction of the field of the synchronous motor 3. At this time, the induced voltage E0 of the synchronous motor 3 by the field magnetic pole is in the direction of the sensor Q axis as shown in the figure. For example, when the detection phase of the resolver 4 coincides with the sensor Q axis, the detection phase angle QO_RES = 0 ° is defined. When the PLL as described above operates in this state, the reference phase angle QO for DQ conversion is shifted by the correction angle QO_L and is based on the orthogonal coordinates of the D axis (PLL) and the Q axis (PLL) shown in the figure. Conversion is performed. By the operation of the PLL that sets the D-axis voltage feedback ED_F to 0, the output voltage of the inverter device 2 during the PLL becomes only the Q-axis voltage reference EQ_R. Similarly, since the current controller 76 performs control to set the D-axis current reference ID_R to 0, the output current of the inverter device 2 during the PLL is only the Q-axis current reference IQ_R. Therefore, the output voltage and output current of the inverter device 2 are in phase, and a power factor of 1 is achieved. As shown in the figure, the correction angle QO_L indicates the phase difference between the terminal voltage of the synchronous motor 3 and the induced voltage, so the correction angle QO_L corresponds to the load angle of the synchronous motor 3.
 次に実施例1における切替速度検出器90の変形例である切替速度検出器90Aの入出力特性を図3示す。図3に示したように、切替速度検出器90Aには所謂ヒステリシス特性を持たせている。すなわち、速度がN0未満のときは切替速度検出器90は0を出力して低速時負荷角設定器89の出力を選択(A端子を出力選択)するが、速度が上昇してN0を超えてもその出力は0のままとし、速度がN1となったとき始めて出力を1とする。同様に速度がN1以上のときは切替速度検出器90は1を出力して電圧制御器86の出力を選択(B端子を出力選択)するが、速度が下降してN1以下となってもその出力は1のままとし、速度がN0となったとき始めて出力を0とする。このように切替速度検出器90にヒステリシス特性を持たせれば、切替速度付近における無用のチャタリングによって制御が不安定となることを防止することができる。 Next, FIG. 3 shows input / output characteristics of a switching speed detector 90A, which is a modification of the switching speed detector 90 in the first embodiment. As shown in FIG. 3, the switching speed detector 90A has a so-called hysteresis characteristic. That is, when the speed is less than N0, the switching speed detector 90 outputs 0 and selects the output of the low-speed load angle setting device 89 (output selection of the A terminal), but the speed increases and exceeds N0. However, the output remains 0, and the output is set to 1 only when the speed becomes N1. Similarly, when the speed is N1 or higher, the switching speed detector 90 outputs 1 and selects the output of the voltage controller 86 (output selection of the B terminal). The output remains at 1, and the output is set to 0 only when the speed becomes N0. Thus, if the switching speed detector 90 has a hysteresis characteristic, it is possible to prevent the control from becoming unstable due to unnecessary chattering in the vicinity of the switching speed.
 以下、本発明の実施例2に係る同期電動機の制御装置を、図4を参照して説明する。図4は本発明の実施例2に係る同期電動機の制御装置の回路構成図である。 Hereinafter, a control apparatus for a synchronous motor according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 4 is a circuit configuration diagram of a synchronous motor control apparatus according to Embodiment 2 of the present invention.
 この実施例2の各部について、図1の本発明の実施例1に係る同期電動機の制御装置の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が実施例1と異なる点は、切替速度検出器90と情報をやりとりして切替速度検出器90の出力が1から0になる直前のタイミングを検出する速度下降切替検出器91を設けた点、この速度下降切替検出器91の出力信号によって、電圧制御器86の出力である補正角QO_Lの値をホールドする負荷角ホールド回路92を設けた点、更に角度補正選択器87Aによって負荷角ホールド回路92の出力も選択可能な構成とした点である。 The same parts as those in the circuit configuration diagram of the synchronous motor control device according to the first embodiment of the present invention shown in FIG. 1 are denoted by the same reference numerals and the description thereof will be omitted. The difference between the second embodiment and the first embodiment is that a speed decrease switching detector 91 that exchanges information with the switching speed detector 90 and detects the timing immediately before the output of the switching speed detector 90 changes from 1 to 0 is provided. The provided point, the load angle hold circuit 92 for holding the value of the correction angle QO_L, which is the output of the voltage controller 86, is provided by the output signal of the speed decrease switching detector 91, and the load is further loaded by the angle correction selector 87A. The output of the corner hold circuit 92 is also selectable.
 負荷角ホールド回路92は速度下降切替検出器91の出力信号により入力信号をホールドして出力する。角度補正選択器87Aには入力端子Cが追加されている。負荷角ホールド回路92の出力は角度補正選択器87Aの入力端子Cに接続される。同期電動機3の起動時に切替速度検出器90の出力が0の間は、角度補正選択器87Aは端子Aを出力選択し、同期電動機3の速度が上昇し切替速度検出器90の出力が1になった場合は、角度補正選択器87Aは端子Bを出力選択する。そして、同期電動機の速度が低下し、切替速度検出器90の出力が1から0´に変化した場合は角度補正選択器87Aは端子Cを出力選択する。 The load angle hold circuit 92 holds the input signal by the output signal of the speed decrease switching detector 91 and outputs it. An input terminal C is added to the angle correction selector 87A. The output of the load angle hold circuit 92 is connected to the input terminal C of the angle correction selector 87A. While the output of the switching speed detector 90 is 0 when the synchronous motor 3 is started, the angle correction selector 87A selects the output of the terminal A, the speed of the synchronous motor 3 increases, and the output of the switching speed detector 90 becomes 1. If it is, the angle correction selector 87A selects the output of the terminal B. When the speed of the synchronous motor decreases and the output of the switching speed detector 90 changes from 1 to 0 ′, the angle correction selector 87A selects the output of the terminal C.
 このような構成とすることによって、同期電動機3の運転速度が減速してきて切替速度であるN0になったとき、まずその時点の負荷角である補正角QO_Lをホールドし、そのあと、速度下降切替検出器91が切替速度検出器90の出力を1から0´に変更させる。そしてこの切替出力信号0´によって角度補正選択器87Aは低速時負荷角設定器89の出力である低速時負荷角δではなく負荷角ホールド回路92でホールドされた補正角QO_LHを選択する。このように制御することによって、低速時負荷角設定器89の出力である低速時負荷角δが適切な値でなかったときの過渡擾乱を抑制し、また、負荷の変化が少ない場合には力率0を維持したまま低速運転に入ることができる。 With such a configuration, when the operation speed of the synchronous motor 3 is decelerated and becomes the switching speed N0, the correction angle QO_L that is the load angle at that time is first held, and then the speed decrease switching is performed. The detector 91 changes the output of the switching speed detector 90 from 1 to 0 ′. Based on this switching output signal 0 ′, the angle correction selector 87A selects the correction angle QO_LH held by the load angle hold circuit 92 instead of the low speed load angle δ 0 which is the output of the low speed load angle setter 89. By controlling in this way, the transient disturbance when the low-speed load angle δ 0 that is the output of the low-speed load angle setting device 89 is not an appropriate value is suppressed, and when the load change is small. It is possible to enter a low speed operation while maintaining a power factor of zero.
 以下、本発明の実施例3に係る同期電動機の制御装置を、図5を参照して説明する。図5は本発明の実施例3に係る同期電動機の制御装置の回路構成図である。 Hereinafter, a synchronous motor control apparatus according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 5 is a circuit configuration diagram of a synchronous motor control apparatus according to Embodiment 3 of the present invention.
 この実施例3の各部について、図1の本発明の実施例1に係る同期電動機の制御装置の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例3が実施例1と異なる点は、以下である。 The same parts as those in the circuit configuration diagram of the synchronous motor control device according to the first embodiment of the present invention in FIG. 1 are denoted by the same reference numerals in the third embodiment, and the description thereof is omitted. The difference between the third embodiment and the first embodiment is as follows.
 すなわち、PI制御器である電圧制御器86Aに、PI制御の積分回路の初期値を設定可能とする初期値設定入力端子と積分回路のイネーブル端子を設け、イネーブル端子からの信号が成立したとき、初期値設定入力端子からの信号を積分回路の初期値としてPI制御を開始するように電圧制御器86Aを構成し、初期値設定入力端子に低速時負荷角設定器89の出力である低速時負荷角δを接続し、切替速度検出器90の出力を電圧制御器86Aのイネーブル端子に与えるようにした点である。 That is, the voltage controller 86A, which is a PI controller, is provided with an initial value setting input terminal that enables setting of an initial value of the PI control integration circuit and an enable terminal of the integration circuit, and when a signal from the enable terminal is established, The voltage controller 86A is configured to start PI control using the signal from the initial value setting input terminal as the initial value of the integrating circuit, and the low speed load that is the output of the low speed load angle setting device 89 is applied to the initial value setting input terminal. The angle δ 0 is connected, and the output of the switching speed detector 90 is given to the enable terminal of the voltage controller 86A.
 このような構成とすることによって、電圧制御器86Aの出力の初期値は低速時負荷角δと等しくなる。同期電動機3の運転速度が起動時から加速してきて切替速度であるN0またはN1になったとき、切替速度検出器90の出力は0から1に変化する。このとき、電圧制御器86Aの出力の初期値は低速時負荷角δと等しい。よって、角度補正選択器87が入力信号の選択を低速時負荷角設定器89の出力であるA端子から電圧制御器86Aの出力であるB端子に変更しても角度補正選択器87の出力は不連続な変化を起こさないことになる。 With such a configuration, the initial value of the output of the voltage controller 86A is equal to the low speed load angle [delta] 0. When the operation speed of the synchronous motor 3 accelerates from the time of startup and reaches the switching speed N0 or N1, the output of the switching speed detector 90 changes from 0 to 1. At this time, the initial value of the output of the voltage controller 86A is equal to the low speed load angle [delta] 0. Therefore, even if the angle correction selector 87 changes the input signal selection from the A terminal that is the output of the low-speed load angle setting device 89 to the B terminal that is the output of the voltage controller 86A, the output of the angle correction selector 87 is still There will be no discontinuous changes.
 角度補正選択器87が電圧制御器86Aの出力を選択すると、D軸電圧帰還ED_Fを0とするようなPLL動作が開始する。このような実施例3の構成を採用することによって、速度上昇時の切替速度検出器90と角度補正選択器87による負荷角の切替をスムースに行うことが可能となる。 When the angle correction selector 87 selects the output of the voltage controller 86A, a PLL operation for setting the D-axis voltage feedback ED_F to 0 is started. By adopting the configuration of the third embodiment, it is possible to smoothly switch the load angle by the switching speed detector 90 and the angle correction selector 87 when the speed is increased.
 以上本発明の実施例を説明したが、これは例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施例やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiment of the present invention has been described above, this is presented as an example and is not intended to limit the scope of the invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 例えば、図1のレゾルバ4に代えて速度検出器を用いても良い。その場合は速度帰還を積分して検出角情報を得るようにする。 For example, a speed detector may be used in place of the resolver 4 in FIG. In this case, detection angle information is obtained by integrating speed feedback.
 また、図1のフィルタ84はPWM制御のキャリア等の高調波を除去するものであるので、3相-DQ変換器の入力側または出力側に入れるようにしても良い。 Further, since the filter 84 in FIG. 1 removes harmonics such as a PWM control carrier, it may be inserted into the input side or the output side of the three-phase-DQ converter.
 また、通常低速時負荷角δは、同期電動機3が駆動する負荷の負荷特性から所定の値を設定するが、実施例2で述べた負荷角ホールド回路92でホールドされた補正角QO_LHを用いても良い。負荷特性が運転状況によって変化するような場合は、同期電動機3の運転を繰り返す度に低速時負荷角δを新たな補正角QO_LHに自動的に更新するようにしても良い。 Further, the normal low-speed load angle δ 0 is set to a predetermined value from the load characteristics of the load driven by the synchronous motor 3, and the correction angle QO_LH held by the load angle hold circuit 92 described in the second embodiment is used. May be. When the load characteristic changes depending on the driving condition, the low speed load angle δ 0 may be automatically updated to a new correction angle QO_LH every time the operation of the synchronous motor 3 is repeated.
 更に、実施例2と実施例3とを組み合わせて実施することが可能であることは明らかである。 Further, it is obvious that the second embodiment and the third embodiment can be implemented in combination.
1 交流電源
2 インバータ装置
3 同期電動機
4 レゾルバ
5 電流検出器
6 電圧検出器
7 駆動制御部
71 微分器
72 減算器
73 速度制御器
74、75 減算器
76、77 電流制御器
78 DQ/3相変換器
79 PWM制御器
80、81 3相/DQ変換器
82 絶対値演算器
83 除算器
84 フィルタ
85 減算器
86、86A 電圧制御器
87、87A 角度補正選択器
88 加算器
89 低速時負荷角設定器
90、90A 切替速度検出器
91 速度下降切替検出器
92 負荷角ホールド回路
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Inverter apparatus 3 Synchronous motor 4 Resolver 5 Current detector 6 Voltage detector 7 Drive control part 71 Differentiator 72 Subtractor 73 Speed controller 74, 75 Subtractor 76, 77 Current controller 78 DQ / 3 phase conversion 79 PWM controller 80, 81 3-phase / DQ converter 82 Absolute value calculator 83 Divider 84 Filter 85 Subtractor 86, 86A Voltage controller 87, 87A Angle correction selector 88 Adder 89 Load angle setting device at low speed 90, 90A switching speed detector 91 speed drop switching detector 92 load angle hold circuit

Claims (4)

  1.  交流電源から供給される電力を所望の出力電圧及び周波数に変換して同期電動機を駆動するインバータ装置と、
    前記インバータ装置の出力電流を検出する電流検出手段と、
    前記インバータ装置の出力電圧を検出する電圧検出手段と、
    前記同期電動機の回転角度を検出する位置検出手段と、
    前記インバータ装置の出力を制御する駆動制御部と
    を具備し、
    前記駆動制御部は、
    前記位置検出手段の出力を微分して得られる速度帰還が所定の速度基準となるように制御してQ軸電流基準を出力する速度制御手段と、
    前記電流検出手段の検出電流を3相-DQ変換してQ軸帰還電流及びD軸帰還電流を得る第1の3相-DQ変換手段と、
    前記Q軸電流基準と、前記Q軸帰還電流との偏差を0とするように制御してQ軸電圧基準を出力するQ軸電流制御手段と、
    前記D軸帰還電流が0になるように制御してD軸電圧基準を出力するD軸電流制御手段と、
    前記Q軸電圧基準と前記D軸電圧基準をDQ-3相変換して前記インバータ装置の3相出力の各相の電圧基準を得るDQ-3相変換手段と、
    前記各相の電圧基準をPWM制御して前記インバータ装置を構成するスイッチング素子へのゲート信号を出力するPWM制御手段と、
    前記電圧検出手段の検出電圧を3相-DQ変換してQ軸帰還電圧及びD軸帰還電圧を得る第2の3相-DQ変換手段と、
    前記D軸帰還電圧が0になるようにPI制御して補正角を出力する電圧制御手段と
    を有し、
    前記同期電動機の速度が所定の閾値以上のときは、前記位置検出手段の検出角に前記補正角を加算した値を前記第1の3相-DQ変換手段、前記第2の3相-DQ変換手段及び前記DQ-3相変換手段の基準位相角とし、
    前記同期電動機の速度が所定の閾値未満のときは、前記位置検出手段の検出角に予め設定した低速時負荷角を加算した値を前記基準位相角とすることを特徴とする同期電動機の制御装置。
    An inverter device for driving a synchronous motor by converting electric power supplied from an AC power source into a desired output voltage and frequency;
    Current detecting means for detecting an output current of the inverter device;
    Voltage detection means for detecting an output voltage of the inverter device;
    Position detecting means for detecting a rotation angle of the synchronous motor;
    A drive control unit for controlling the output of the inverter device;
    The drive control unit
    Speed control means for controlling the speed feedback obtained by differentiating the output of the position detection means to be a predetermined speed reference and outputting a Q-axis current reference;
    A first three-phase-DQ conversion unit that obtains a Q-axis feedback current and a D-axis feedback current by performing three-phase-DQ conversion on the detection current of the current detection unit;
    Q-axis current control means for controlling the deviation between the Q-axis current reference and the Q-axis feedback current to be 0 and outputting a Q-axis voltage reference;
    D-axis current control means for controlling the D-axis feedback current to be 0 and outputting a D-axis voltage reference;
    DQ-3 phase conversion means for converting the Q axis voltage reference and the D axis voltage reference into DQ-3 phase to obtain a voltage reference for each phase of the three-phase output of the inverter device;
    PWM control means for PWM-controlling the voltage reference of each phase and outputting a gate signal to a switching element constituting the inverter device;
    Second three-phase-DQ conversion means for obtaining a Q-axis feedback voltage and a D-axis feedback voltage by performing three-phase-DQ conversion on the detection voltage of the voltage detection means;
    Voltage control means for outputting a correction angle by performing PI control so that the D-axis feedback voltage becomes zero,
    When the speed of the synchronous motor is equal to or higher than a predetermined threshold, a value obtained by adding the correction angle to the detection angle of the position detection unit is used as the first three-phase-DQ conversion unit and the second three-phase-DQ conversion. And the reference phase angle of the DQ-3 phase conversion means,
    When the speed of the synchronous motor is less than a predetermined threshold, a value obtained by adding a preset low-speed load angle to the detection angle of the position detecting means is used as the reference phase angle. .
  2.  前記所定の閾値にヒステリシス特性を持たせ、
    前記同期電動機の速度が第1の設定速度未満のときは前記位置検出手段の検出角に前記低速時負荷角を加算した値を前記基準位相角とし、前記同期電動機の速度が上昇し前記第1の設定速度より大きい第2の設定速度になったとき始めて前記補正角に前記低速時負荷角を加算した値を前記基準位相角とし、前記同期電動機の速度が第2の設定速度以上のときは前記位置検出手段の検出角に前記補正角を加算した値を前記基準位相角とし、前記同期電動機の速度が下降し前記第1の設定速度未満になったとき始めて前記位置検出手段の検出角に前記低速時負荷角を加算した値を前記基準位相角とすることを特徴とする請求項1に記載の同期電動機の制御装置。
    Giving the predetermined threshold a hysteresis characteristic;
    When the speed of the synchronous motor is less than the first set speed, a value obtained by adding the load angle at low speed to the detection angle of the position detecting means is set as the reference phase angle, and the speed of the synchronous motor increases and the first The value obtained by adding the low-speed load angle to the correction angle for the first time when the second set speed is greater than the set speed is set as the reference phase angle, and when the speed of the synchronous motor is equal to or higher than the second set speed A value obtained by adding the correction angle to the detection angle of the position detection unit is set as the reference phase angle, and the detection angle of the position detection unit is set only when the speed of the synchronous motor decreases and becomes less than the first set speed. 2. The synchronous motor control device according to claim 1, wherein a value obtained by adding the low-speed load angle is set as the reference phase angle.
  3.  前記駆動制御部は、
    前記同期電動機が減速してその速度が前記所定の閾値未満となるとき、
    前記電圧制御手段の出力をホールドし、
    このホールドされた補正角を前記低速時負荷角に代えて使用するようにしたことを特徴とする請求項1または請求項2に記載の同期電動機の制御装置。
    The drive control unit
    When the synchronous motor decelerates and its speed falls below the predetermined threshold,
    Hold the output of the voltage control means,
    The synchronous motor control device according to claim 1 or 2, wherein the held correction angle is used in place of the low-speed load angle.
  4.  前記駆動制御部は、
    前記同期電動機が加速してその速度が前記所定の閾値以上となるとき、
    前記電圧制御器の積分出力の初期値を前記低速時負荷角となるようにした後、
    前記位置検出手段の検出角に前記補正角を加算した値を前記基準位相角とすることを特徴とする請求項1乃至請求項3の何れか1項に記載の同期電動機の制御装置。
    The drive control unit
    When the synchronous motor accelerates and its speed is equal to or higher than the predetermined threshold,
    After making the initial value of the integral output of the voltage controller become the load angle at the low speed,
    4. The synchronous motor control device according to claim 1, wherein a value obtained by adding the correction angle to a detection angle of the position detection unit is used as the reference phase angle. 5.
PCT/JP2017/003307 2017-01-31 2017-01-31 Control device for synchronous motor WO2018142445A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018565091A JP6681653B2 (en) 2017-01-31 2017-01-31 Synchronous motor controller
PCT/JP2017/003307 WO2018142445A1 (en) 2017-01-31 2017-01-31 Control device for synchronous motor
US16/528,129 US10931213B2 (en) 2017-01-31 2019-07-31 Control apparatus for a synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003307 WO2018142445A1 (en) 2017-01-31 2017-01-31 Control device for synchronous motor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/528,129 Continuation US10931213B2 (en) 2017-01-31 2019-07-31 Control apparatus for a synchronous motor

Publications (1)

Publication Number Publication Date
WO2018142445A1 true WO2018142445A1 (en) 2018-08-09

Family

ID=63040431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003307 WO2018142445A1 (en) 2017-01-31 2017-01-31 Control device for synchronous motor

Country Status (3)

Country Link
US (1) US10931213B2 (en)
JP (1) JP6681653B2 (en)
WO (1) WO2018142445A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3540929A1 (en) * 2018-03-16 2019-09-18 Siemens Gamesa Renewable Energy A/S Improved converter network bridge controller
CN111934589B (en) * 2020-08-18 2023-07-04 西南交通大学 Traction motor speed-sensorless control method based on improved q-type phase-locked loop
TWI822105B (en) * 2022-06-13 2023-11-11 茂達電子股份有限公司 Automatic control system for phase angle of motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291241A (en) * 1997-04-21 1998-11-04 Fanuc Ltd Injection molding machine
JP2004266935A (en) * 2003-02-28 2004-09-24 Mitsubishi Electric Corp Control device for synchronous motor and rotational position displacement correcting method for synchronous motor
US20140210387A1 (en) * 2013-01-30 2014-07-31 Infineon Technologies Ag Optimized field oriented control strategies for permanent magnet synchronous motors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144564A (en) * 1991-01-08 1992-09-01 University Of Tennessee Research Corp. Rotor position estimation of a permanent magnet synchronous-machine for high performance drive
US5585709A (en) * 1993-12-22 1996-12-17 Wisconsin Alumni Research Foundation Method and apparatus for transducerless position and velocity estimation in drives for AC machines
US6636012B2 (en) * 2001-09-28 2003-10-21 Rockwell Automation Technologies, Inc. Stator and rotor resistance identifier using high frequency injection
JP2013031256A (en) 2011-07-27 2013-02-07 Toshiba Mitsubishi-Electric Industrial System Corp Driving device of synchronous motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291241A (en) * 1997-04-21 1998-11-04 Fanuc Ltd Injection molding machine
JP2004266935A (en) * 2003-02-28 2004-09-24 Mitsubishi Electric Corp Control device for synchronous motor and rotational position displacement correcting method for synchronous motor
US20140210387A1 (en) * 2013-01-30 2014-07-31 Infineon Technologies Ag Optimized field oriented control strategies for permanent magnet synchronous motors

Also Published As

Publication number Publication date
JP6681653B2 (en) 2020-04-15
JPWO2018142445A1 (en) 2019-06-27
US10931213B2 (en) 2021-02-23
US20190356248A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
JP5664080B2 (en) Motor control device and motor control method
WO2017033508A1 (en) Drive system and inverter device
US9166513B2 (en) Inverter apparatus, method of controlling inverter apparatus, and electric motor drive system
CN107836079B (en) Synchronous motor control device, compressor drive device, air conditioner, and synchronous motor control method
US10931213B2 (en) Control apparatus for a synchronous motor
JP2013017301A (en) Inverter control device and inverter control method
JP2010200430A (en) Drive controller for motors
JP2015165757A (en) Inverter controller and control method
JP2015173540A (en) Drive device for motor
JP2006180567A (en) Controller of permanent magnet synchronous motor
US9231514B2 (en) Motor control apparatus and motor control method
JP2009142112A (en) Motor controller and its control method
WO2015083449A1 (en) Electric motor control device and control method
JP2012223022A (en) Motor drive device
JP2010130844A (en) Driving device for compressor motor and method of controlling inverter
JP6358834B2 (en) Vector control device, inverter incorporating the same, and inverter and motor setting device incorporating the same
JP2017188968A (en) Motor drive device
JP6265043B2 (en) Sensorless drive device for synchronous motor
US11196373B2 (en) Control device and control method for synchronous electric motor
JP5325556B2 (en) Motor control device
JP5018236B2 (en) PWM inverter device
JP2007259607A (en) Motor controller
JP7376765B2 (en) Synchronous motor control device
CN111034022A (en) Power conversion device and control method thereof
JP2018098860A (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565091

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894979

Country of ref document: EP

Kind code of ref document: A1