WO2018141190A1 - 参数发送、资源确定方法及装置、基站和终端 - Google Patents

参数发送、资源确定方法及装置、基站和终端 Download PDF

Info

Publication number
WO2018141190A1
WO2018141190A1 PCT/CN2017/120313 CN2017120313W WO2018141190A1 WO 2018141190 A1 WO2018141190 A1 WO 2018141190A1 CN 2017120313 W CN2017120313 W CN 2017120313W WO 2018141190 A1 WO2018141190 A1 WO 2018141190A1
Authority
WO
WIPO (PCT)
Prior art keywords
prb
channel resource
resource
parameter
terminal
Prior art date
Application number
PCT/CN2017/120313
Other languages
English (en)
French (fr)
Inventor
苟伟
毕峰
郝鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018141190A1 publication Critical patent/WO2018141190A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of communications, for example, to a parameter transmission, a resource determination method and apparatus, a base station, and a terminal.
  • eMBB Enhanced Mobile BroadBand
  • URLLC Ultra-Reliable and Low Latency Communications
  • mMTC Massive Machine Type Communications
  • the physical resource block is still used in the NR system for resource allocation.
  • One PRB frequency domain includes 12 subcarriers, and the number of Orthogonal Frequency Division Multiplexing (OFDM) symbols included in the time domain is undetermined. It is assumed that the number of symbols of the symbols included in the time domain is the same as the number of OFDM symbols included in the scheduling unit (for example, a slot, which can also be regarded as a scheduling unit).
  • OFDM Orthogonal Frequency Division Multiplexing
  • a parameter transmission method, a resource determination method and device, a base station, and a terminal are provided, which can solve the problem of mismatch between candidate resources and transmission bits in the related art.
  • a parameter sending method includes:
  • the first specified parameter is used to indicate a quantity of resources added or decreased on a basis of a predetermined candidate channel resource
  • the second specified parameter being used for Indicates a quantity of resources included in a channel resource required for terminal data transmission
  • the predetermined candidate channel resource includes one or more candidate channel resources pre-configured for the terminal
  • the one or more copies of the candidate channel resources satisfy at least one of the following:
  • the one or more candidate channel resources include a fixed amount of resources
  • the one or more candidate channel resources are one or more candidate channel resources configured for the last data transmission of the terminal.
  • the method when determining at least one of the first specified parameter and the second specified parameter, the method further includes:
  • the method further includes:
  • At least one of the first signaling and the second signaling is physical layer signaling.
  • the granularity of the quantity of resources is at least one of the following:
  • Physical resource block PRB orthogonal frequency division multiplexing OFDM symbols, and subcarriers.
  • the quantity of resources added or decreased on the basis of predetermined candidate channel resources satisfies at least one of the following:
  • the PRB added or decreased on the basis of the predetermined candidate channel resource is continuous with the PRB of the predetermined candidate channel resource;
  • the number of the plurality of PRBs included in the predetermined candidate channel resource is consecutive, the number of the PRB added or decreased on the basis of the predetermined candidate channel resource is consecutive to the number of the PRB of the predetermined candidate channel resource;
  • a PRB added or decreased on the basis of the predetermined candidate channel resource is consecutive to a designated PRB in the predetermined candidate channel resource;
  • the candidate channel resource is used to carry a physical uplink control channel PUCCH, or is used to transmit uplink control information UCI; and the terminal data is data or UCI in a PUCCH channel.
  • a parameter sending method includes:
  • Configuring a first parameter for determining a channel resource allocated for the terminal where the first parameter includes at least one of: a second parameter for determining a starting physical resource block PRB index of the channel resource, and The number of PRBs included in the channel resource;
  • the second parameter is pre-agreed with the terminal
  • the number of PRBs is pre-agreed with the terminal.
  • the second parameter comprises at least one of the following three variables:
  • the maximum index of the PRB in the resource to be allocated the offset of the smallest index of the PRB in the resource to be allocated, and the number of copies of the channel resource to be allocated;
  • the value of the variable not included in the second parameter is pre-agreed with the terminal.
  • the starting physical resource block PRB index of the channel resource is determined by one of the following predetermined rules:
  • the PRB num is used to indicate a starting PRB index of a channel resource numbered num, num is an integer greater than or equal to 0
  • PRB all is used to indicate a maximum index of a PRB in a resource to be allocated
  • PRB offset is used to indicate M is used to indicate the number of copies of the channel resource to be allocated, relative to the offset of the smallest index of the PRB in the resource to be allocated
  • round() is the rounding function and mod is the remainder operation.
  • the method further includes:
  • determining, according to the starting PRB index and the number of the PRB, the PRB included in the channel resource includes:
  • the PRB corresponding to the initial PRB index is used as a starting point, and the N PRBs are determined as the PRBs included in the channel resources in the direction of increasing or decreasing the PRB index, where N is the number of the PRBs.
  • determining, by the direction of increasing or decreasing the PRB index, the N PRBs as the PRBs included in the channel resources includes:
  • the PRB all is used to indicate a maximum index after re-numbering all the PRBs in the partial sub-band.
  • the number of PRBs is configured by at least one of the following signaling:
  • the number of the PRBs is configured in the pre-determined manner
  • the number of the PRBs required for the current data transmission is re-allocated by the physical layer signaling, where the high-level signaling configuration is still adopted after the current data transmission.
  • the number of PRBs is configured by the high-layer signaling.
  • the M is configured by at least one of the following signaling:
  • the method further includes:
  • the M is configured in the predetermined manner
  • the M value required for the current re-allocation is re-configured by the physical layer signaling, where the M of the high-layer signaling configuration is still adopted after the current data transmission.
  • the PRB offset values are configured in order from small to large.
  • the sending the first parameter to the terminal comprises:
  • the first parameter is sent to the terminal by broadcast or by convention.
  • the channel resource is used to carry a physical uplink control channel (PUCCH) or used to transmit uplink control information UCI.
  • PUCCH physical uplink control channel
  • a method for determining resources including:
  • the first specified parameter is used to indicate an amount of resources added or decreased on a basis of a predetermined candidate channel resource
  • the second designated parameter is used to indicate the quantity of resources included in the channel resource required for the terminal data transmission
  • the predetermined candidate channel resource includes one or more candidate channel resources that the base station pre-configures for the terminal;
  • the one or more copies of the candidate channel resources satisfy at least one of the following:
  • the one or more candidate channel resources include a fixed amount of resources
  • the one or more candidate channel resources are one or more candidate channel resources configured for the last data transmission of the terminal.
  • the method further includes: receiving, by using the second signaling, the predetermined candidate channel resource; wherein the predetermined candidate channel resource is one or more pre-configured by the base station from the terminal And selecting one candidate channel resource selected from the candidate channel resources, where the first signaling and the second signaling are different or the same.
  • At least one of the first signaling and the second signaling is physical layer signaling.
  • the granularity of the quantity of resources is at least one of the following:
  • Physical resource block PRB orthogonal frequency division multiplexing OFDM symbols, and subcarriers.
  • the quantity of resources added or decreased on the basis of predetermined candidate channel resources satisfies at least one of the following:
  • the PRB added or decreased on the basis of the predetermined candidate channel resource is continuous with the PRB of the predetermined candidate channel resource;
  • the number of the plurality of PRBs included in the predetermined candidate channel resource is consecutive, the number of the PRB added or decreased on the basis of the predetermined candidate channel resource is consecutive to the number of the PRB of the predetermined candidate channel resource;
  • a PRB added or decreased on the basis of the predetermined candidate channel resource is continuous with a designated PRB in the predetermined candidate channel resource;
  • the candidate channel resource is used to carry a physical uplink control channel PUCCH, or is used to transmit uplink control information UCI; the data is data or UCI in a PUCCH channel.
  • a method for determining resources including:
  • the first parameter includes at least one of: a second parameter for determining a starting physical resource block PRB index of a channel resource allocated for the terminal, and a number of PRBs included in the channel resource;
  • the second parameter is pre-agreed with the terminal; and in a case where the first parameter includes the second parameter The number of the PRBs is pre-agreed with the terminal.
  • the second parameter comprises at least one of the following three variables:
  • the predetermined rule includes at least one of the following:
  • the PRB num is used to indicate a starting PRB index of a channel resource numbered num, num is an integer greater than or equal to 0
  • PRB all is used to indicate a maximum index of a PRB in a resource to be allocated
  • PRB offset is used to indicate M is used to indicate the number of copies of the channel resource to be allocated, relative to the offset of the smallest index of the PRB in the resource to be allocated
  • round() is the rounding function and mod is the remainder operation.
  • the PRB all is used to indicate a maximum index after re-numbering all the PRBs in the partial sub-band.
  • determining, according to the starting PRB index and the number of the PRB, the PRB included in the channel resource includes:
  • the PRB corresponding to the initial PRB index is used as a starting point, and the N PRBs are determined as the PRBs included in the channel resources in the direction of increasing or decreasing the PRB index, where N is the number of the PRBs.
  • determining, by the direction of increasing or decreasing the PRB index, the N PRBs as the PRBs included in the channel resources includes:
  • the number of PRBs is configured by at least one of the following signaling:
  • the number of the PRBs is configured in the pre-determined manner
  • the number of the PRBs required for the current data transmission is re-allocated by the physical layer signaling, where the high-level signaling configuration is still adopted after the current data transmission.
  • the number of PRBs is configured by the high-layer signaling.
  • the M is configured by at least one of the following signaling:
  • the method further includes
  • the M is configured in the predetermined manner
  • the M value required for the current re-allocation is re-configured by the physical layer signaling, where the M of the high-layer signaling configuration is still adopted after the current data transmission.
  • the method further includes:
  • the first parameter is received by broadcast or by convention.
  • the channel resource is used to carry a physical uplink control channel (PUCCH) or used to transmit uplink control information UCI.
  • PUCCH physical uplink control channel
  • a parameter sending device includes:
  • a determining module configured to determine at least one of a first specified parameter and a second specified parameter, wherein the first specified parameter is used to indicate a quantity of resources added or decreased based on a predetermined candidate channel resource, where The second designated parameter is used to indicate the quantity of resources included in the channel resource required for the terminal data transmission, and the predetermined candidate channel resource includes one or more candidate channel resources pre-configured for the terminal;
  • a sending module configured to send, by using the first signaling, at least one of the first specified parameter and the second specified parameter to the terminal.
  • the one or more copies of the candidate channel resources satisfy at least one of the following:
  • the one or more candidate channel resources include a fixed amount of resources
  • the one or more candidate channel resources are one or more candidate channel resources configured for the last data transmission of the terminal.
  • the apparatus further includes: a selecting module, configured to select one candidate channel from the one or more candidate channel resources after configuring one or more candidate channel resources for the terminal. Resources as predetermined candidate channel resources;
  • the sending module is further configured to send the predetermined candidate channel resource to the terminal by using a second signaling, where the first signaling and the second signaling are the same or different.
  • the apparatus further includes: a determining module, configured to: after selecting one candidate channel resource from the configured one or more candidate channel resources as a predetermined candidate channel resource, according to the predetermined The candidate channel resource and the first specified parameter determine a channel resource that receives the terminal data.
  • a determining module configured to: after selecting one candidate channel resource from the configured one or more candidate channel resources as a predetermined candidate channel resource, according to the predetermined The candidate channel resource and the first specified parameter determine a channel resource that receives the terminal data.
  • a parameter sending device includes:
  • a configuration module configured to configure a first parameter for determining a channel resource allocated for the terminal, where the first parameter includes at least one of: a first physical resource block PRB index for determining the channel resource Two parameters, and the number of PRBs included in the channel resource;
  • a sending module configured to send the first parameter to the terminal.
  • the second parameter comprises at least one of the following three variables:
  • the maximum index of the PRB in the resource to be allocated the offset of the smallest index of the PRB in the resource to be allocated, and the number of copies of the channel resource to be allocated.
  • the apparatus further includes: a first determining module, configured to determine a starting physical resource block PRB index of the channel resource by using one of the following predetermined rules:
  • the PRB num is used to indicate a starting PRB index of a channel resource numbered num, num is an integer greater than or equal to 0
  • PRB all is used to indicate a maximum index of a PRB in a resource to be allocated
  • PRB offset is used to indicate M is used to indicate the number of copies of the channel resource to be allocated, relative to the offset of the smallest index of the PRB in the resource to be allocated
  • round() is the rounding function and mod is the remainder operation.
  • the apparatus further includes: a second determining module, configured to: after generating the first parameter for determining a channel resource allocated for the terminal, according to the starting PRB index and the PRB The number determines the PRBs contained in the channel resources.
  • the second determining module is further configured to: in the to-be-allocated resource, use the PRB corresponding to the starting PRB index as a starting point, and determine, in the direction of increasing or decreasing the PRB index, N PRBs as the channel.
  • the second determining module is further configured to determine, according to the number of the channel resource, a manner for determining a PRB included in the channel resource, where the manner includes: increasing according to a PRB index Determining, determining, according to a direction in which the PRB index is reduced; wherein, when the number of the channel resource is an odd number, determining a PRB included in the channel resource according to a direction in which the PRB index increases, when the number of the channel resource is an even number, The PRB included in the channel resource is determined according to the direction in which the PRB index is reduced.
  • a resource determining device includes:
  • a receiving module configured to receive, by using the first signaling, at least one of a first specified parameter and a second specified parameter, where the first specified parameter is used to indicate a resource that is added or decreased based on a predetermined candidate channel resource
  • the quantity, the second specified parameter is used to indicate the quantity of resources included in the channel resource required for the terminal data transmission
  • the predetermined candidate channel resource includes one or more copies of the candidate channel resource pre-configured by the base station for the terminal.
  • a determining module configured to determine a channel resource required for the terminal data transmission according to at least one of the first specified parameter and the second specified parameter.
  • the one or more candidate channel resources are at least one of: the one or more candidate channel resources comprise a fixed number of resources, and the one or more candidate channel resources One or more candidate channel resources configured for the last data transmission of the terminal.
  • the receiving module is further configured to receive the predetermined candidate channel resource by using a second signaling, where the predetermined candidate channel resource is one or more candidate channel resources that are pre-configured by the base station from the terminal. And selecting a candidate channel resource, wherein the first signaling and the second signaling are different or the same.
  • a resource determining device includes:
  • a receiving module configured to receive the first parameter, where the first parameter includes at least one of: a second parameter for determining a starting physical resource block PRB index of a channel resource allocated for the terminal, and the channel resource The number of PRBs included;
  • a first determining module configured to determine a PRB index of the channel resource according to a predetermined rule according to the second parameter
  • a second determining module configured to determine a PRB included in the channel resource according to the starting PRB index and the number of the PRBs.
  • the predetermined rule includes at least one of the following:
  • the PRB num is used to indicate a starting PRB index of a channel resource numbered num, num is an integer greater than or equal to 0
  • PRB all is used to indicate a maximum index of a PRB in a resource to be allocated
  • PRB offset is used to indicate M is used to indicate the number of copies of the channel resource to be allocated, relative to the offset of the smallest index of the PRB in the resource to be allocated
  • round() is the rounding function and mod is the remainder operation.
  • a base station comprising:
  • a processor configured to determine at least one of a first specified parameter and a second specified parameter, wherein the first specified parameter is used to indicate an amount of resources added or decreased based on a predetermined candidate channel resource, where The second designated parameter is used to indicate the quantity of resources included in the channel resource required for the terminal data transmission, the predetermined candidate channel resource includes one or more copies of the candidate channel resource pre-configured for the terminal; and the first signaling Transmitting at least one of the first specified parameter and the second specified parameter to the terminal;
  • a memory coupled to the processor.
  • the one or more copies of the candidate channel resources satisfy at least one of the following:
  • the one or more candidate channel resources include a fixed amount of resources
  • the one or more candidate channel resources are one or more candidate channel resources configured for the last data transmission of the terminal.
  • the processor is configured to select one candidate channel resource from the configured one or more candidate channel resources as a predetermined candidate after configuring one or more candidate channel resources for the terminal. a channel resource; and transmitting, by the second signaling, the predetermined candidate channel resource to the terminal; wherein the first signaling and the second signaling are the same or different.
  • the processor is further configured to: after selecting one candidate channel resource from the configured one or more candidate channel resources as a predetermined candidate channel resource, according to the predetermined candidate channel resource and the The first specified parameter determines a channel resource that receives the terminal data.
  • a base station comprising:
  • a processor configured to configure a first parameter for determining a channel resource allocated for the terminal, where the first parameter includes at least one of: a first physical resource block PRB index for determining the channel resource a second parameter, and a number of PRBs included in the channel resource; and transmitting the first parameter to the terminal;
  • a memory coupled to the processor.
  • the second parameter comprises:
  • the maximum index of the PRB in the resource to be allocated the offset of the smallest index of the PRB in the resource to be allocated, and the number of copies of the channel resource to be allocated.
  • the processor is configured to determine a starting physical resource block PRB index of the channel resource by one of the following predetermined rules:
  • the PRB num is used to indicate a starting PRB index of a channel resource numbered num, num is an integer greater than or equal to 0
  • PRB all is used to indicate a maximum index of a PRB in a resource to be allocated
  • PRB offset is used to indicate M is used to indicate the number of copies of the channel resource to be allocated, relative to the offset of the smallest index of the PRB in the resource to be allocated
  • round() is the rounding function and mod is the remainder operation.
  • the processor is configured to determine a PRB included in the channel resource according to the starting PRB index and the number of PRBs after generating a first parameter for determining a channel resource allocated for the terminal. .
  • the processor is further configured to: in the to-be-allocated resource, use the PRB corresponding to the starting PRB index as a starting point, and determine, in the direction of increasing or decreasing the PRB index, N PRBs as the channel resources. PRB, where N is the number of said PRBs.
  • the processor is further configured to determine, according to the number of the channel resource, a manner for determining a PRB included in the channel resource, where the manner includes: determining according to a direction in which the PRB index is added, and Determining according to the direction in which the PRB index is reduced; wherein, when the number of the channel resource is an odd number, determining the PRB included in the channel resource according to the direction in which the PRB index increases, and when the number of the channel resource is an even number, according to the PRB The direction in which the index is reduced determines the PRBs contained in the channel resources.
  • a terminal comprising:
  • a processor configured to receive, by using the first signaling, at least one of a first specified parameter and a second specified parameter, where the first specified parameter is used to indicate a resource that is increased or decreased based on a predetermined candidate channel resource
  • the quantity, the second specified parameter is used to indicate the quantity of resources included in the channel resource required for the terminal data transmission
  • the predetermined candidate channel resource includes one or more copies of the candidate channel resource pre-configured by the base station for the terminal. And determining, according to at least one of the first specified parameter and the second specified parameter, a channel resource required for the terminal data transmission;
  • a memory coupled to the processor.
  • the one or more candidate channel resources of the predetermined candidate channel resource are at least one of: the one or more candidate channel resources include a fixed amount of resources, and the one or The plurality of candidate channel resources are one or more candidate channel resources configured for the last data transmission of the terminal.
  • the processor is further configured to receive the predetermined candidate channel resource by using a second signaling, where the predetermined candidate channel resource is a base station from one or more candidate channel resources pre-configured for the terminal A candidate channel resource is selected, and the first signaling and the second signaling are different or the same.
  • a terminal comprising:
  • a processor configured to receive the first parameter, where the first parameter includes at least one of: a second parameter for determining a starting physical resource block PRB index of a channel resource allocated for the terminal, and the channel resource a PRB index of the channel resource according to the predetermined rule according to the predetermined parameter; and determining a PRB included in the channel resource according to the starting PRB index and the number of the PRB;
  • a memory coupled to the processor.
  • the predetermined rule includes at least one of the following:
  • the PRB num is used to indicate a starting PRB index of a channel resource numbered num, num is an integer greater than or equal to 0
  • PRB all is used to indicate a maximum index of a PRB in a resource to be allocated
  • PRB offset is used to indicate M is used to indicate the number of copies of the channel resource to be allocated, relative to the offset of the smallest index of the PRB in the resource to be allocated
  • round() is the rounding function and mod is the remainder operation.
  • a computer readable storage medium storing computer executable instructions arranged to perform the above method.
  • a terminal comprising:
  • At least one processor At least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one processor to perform the method described above.
  • a base station comprising:
  • At least one processor At least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one processor to perform the method described above.
  • FIG. 1 is a schematic flow chart of a parameter sending method according to an embodiment
  • FIG. 2 is a schematic flow chart of a parameter sending method according to another embodiment
  • FIG. 3 is a block diagram showing the hardware structure of a mobile terminal according to an embodiment
  • FIG. 4 is a schematic flow chart of a resource determining method according to an embodiment
  • FIG. 5 is a schematic flowchart diagram of a resource determining method according to another embodiment
  • FIG. 6 is a structural block diagram of a parameter transmitting apparatus according to an embodiment
  • FIG. 7 is a structural block diagram of a parameter transmitting apparatus according to another embodiment.
  • FIG. 8 is a structural block diagram of a resource determining apparatus according to an embodiment
  • FIG. 9 is a structural block diagram of a resource determining apparatus according to another embodiment.
  • FIG. 10 is a structural block diagram of a base station according to an embodiment
  • FIG. 11 is a structural block diagram of a base station according to another embodiment.
  • FIG. 12 is a structural block diagram of a terminal according to an embodiment
  • FIG. 13 is a structural block diagram of a terminal according to another embodiment.
  • FIG. 14 is a schematic diagram of a resource allocation situation, according to an embodiment
  • Figure 15 is a schematic diagram of subband resource allocation in accordance with an embodiment.
  • An uplink control channel for example, a physical uplink control channel (PUCCH)
  • a receiving end for example, a user equipment (UE)
  • PUCCH physical uplink control channel
  • UE user equipment
  • FIG. 1 is a schematic flowchart of a parameter sending method according to the embodiment. As shown in FIG. 1, the method includes the following steps.
  • step 102 at least one of a first designated parameter and a second specified parameter is determined, wherein the first specified parameter is used to indicate a quantity of resources added or decreased on a basis of a predetermined candidate channel resource, and the second specified parameter is used for Indicates the number of resources included in the channel resources required for the terminal data transmission, and the predetermined candidate channel resources include one or more candidate channel resources pre-configured for the terminal;
  • step 104 at least one of the first designated parameter and the second specified parameter is sent to the terminal by using the first signaling.
  • the terminal by transmitting at least one of the first designated parameter and the second specified parameter to the terminal, wherein the first specified parameter is used to indicate the amount of resources added or decreased on the basis of the predetermined candidate channel resource
  • the second parameter is used to indicate the number of resources included in the channel resource required for the data transmission of the terminal, so that the terminal can adjust the resource according to at least one of the first specified parameter and the second specified parameter when the transmission bit changes.
  • one or more candidate channel resources of the predetermined candidate channel resource may satisfy at least one of: one or more candidate channel resources include a fixed number of resources, and one or more candidate channel resources are terminals. One or more candidate channel resources configured for the last data transmission.
  • the fixed number of resources may be a default value, or may be preset according to actual conditions, but is not limited thereto.
  • the method may further include: selecting one candidate channel resource from one or more candidate channel resources as a predetermined candidate channel resource; and scheduling by using the second signaling
  • the candidate channel resource is sent to the terminal; wherein the first signaling and the second signaling are the same or different. That is, the predetermined candidate channel resource may be sent to the terminal by using the same signaling or different signaling as at least one of the first designated parameter and the second specified parameter.
  • the method may further include: determining, by the root predetermined candidate channel resource and the first specified parameter, the receiving terminal data. Channel resources.
  • At least one of the foregoing first signaling and the second signaling is physical layer signaling.
  • the physical layer signaling may be downlink control information DCI.
  • the granularity of the quantity of resources may be at least one of: a physical resource block PRB, an orthogonal frequency division multiplexing OFDM symbol, and a subcarrier.
  • the amount of resources added or decreased satisfies at least one of the following:
  • a PRB added or decreased based on a predetermined candidate channel resource is continuous with a PRB of a predetermined candidate channel resource
  • the number of the PRB added or decreased on the basis of the predetermined candidate channel resource is continuous with the number of the PRB of the predetermined candidate channel resource;
  • a PRB added or decreased on a basis of a predetermined candidate channel resource is continuous with a designated PRB in a predetermined candidate channel resource;
  • the number of the PRB added or decreased based on the predetermined candidate channel resource is continuous with the number of the designated PRB in the predetermined candidate channel resource.
  • the candidate channel resource is used to carry a physical uplink control channel PUCCH, or is used to transmit uplink control information UCI, and the terminal data is data or UCI in a PUCCH channel.
  • FIG. 2 is a schematic flowchart of a parameter sending method according to the embodiment. As shown in FIG. 2, the method includes the following steps.
  • a first parameter for determining a channel resource allocated for the terminal is configured, where the first parameter includes at least one of: a second parameter for determining a starting physical resource block PRB index of the channel resource, and a channel The number of PRBs the resource contains.
  • step 204 the first parameter is sent to the terminal.
  • the first parameter that is used to determine the channel resource allocated for the terminal is sent to the terminal, so that the terminal can determine the channel resource allocated to the terminal according to the first parameter, and the dynamic allocation of the resource can be implemented, and the related information can be solved.
  • the problem of mismatch between candidate resources and transmission bits in the technology is a problem of mismatch between candidate resources and transmission bits in the technology.
  • the second parameter is pre-agreed with the terminal; and in the case where the first parameter includes the second parameter, the number of PRBs is pre-agreed with the terminal.
  • the second parameter or the number of PRBs is pre-agreed with the terminal, and the second parameter or the number of PRBs is a fixed value, and the second parameter or the number of PRBs may not be sent to the terminal.
  • the foregoing second parameter includes at least one of the following three variables: a maximum index of the PRB in the resource to be allocated, an offset from a minimum index of the PRB in the resource to be allocated, and an allocation that needs to be allocated.
  • the number of copies of the channel resource wherein, for the three variables, if the variable is not included in the second parameter, the value of the variable not included in the second parameter is pre-agreed with the terminal.
  • the offset of the minimum index relative to the PRB in the resource to be allocated may be equivalent to the offset of the PRB boundary with respect to the resource to be allocated.
  • the starting physical resource block PRB index of the foregoing channel resource may be determined by one of the following predetermined rules:
  • the PRB num is used to indicate the initial PRB index of the channel resource numbered num, num is an integer greater than or equal to 0, the PRB all is used to indicate the maximum index of the PRB in the resource to be allocated, and the PRB offset is used to indicate relative to The offset of the smallest index of the PRB in the resource to be allocated, and M is used to indicate the number of copies of the channel resource to be allocated.
  • round() is the rounding function and mod is the remainder operation.
  • the method may further include: determining, according to the starting PRB index and the number of PRBs, the PRB included in the channel resource, so that the channel resource used by the terminal to transmit data may be conveniently obtained, thereby being better. Receive data transmitted by the terminal.
  • determining the PRB included in the channel resource according to the starting PRB index and the number of PRBs may be expressed as: in the to-be-allocated resource, determining, by using the PRB corresponding to the starting PRB index as a starting point, increasing or decreasing the direction of the PRB index.
  • the PRB is used as a PRB included in the channel resource, where N is the number of PRBs.
  • the PRBs included in the direction in which the PRB index is added or decreased as the channel resources may be represented as follows: determining a manner for determining PRBs included in the channel resources according to the number of the channel resources, where The method includes: determining according to a direction in which the PRB index is added, determining according to a direction in which the PRB index is reduced; wherein, when the number of the channel resource is an odd number, determining a PRB included in the channel resource according to a direction in which the PRB index increases, and a number of the channel resource When the number is even, the PRB included in the channel resource is determined according to the direction in which the PRB index is reduced.
  • the PRB all is used to indicate the maximum index after all the PRBs in the partial subband are renumbered.
  • the number of PRBs may be configured by at least one of the following signaling: pre-agreed, higher layer signaling, and physical layer signaling.
  • the physical layer signaling may be Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the number of PRBs is configured in a predetermined manner; when the base station and the terminal request the PRB change included in the channel resource, the number of PRBs is configured through high layer signaling; After the number of PRBs is configured by the high-level signaling, the number of PRBs required for the data transmission is re-allocated by the physical layer signaling, and the number of PRBs configured by the higher layer signaling is still used after the current data transmission.
  • M may be configured by at least one of the following signaling: pre-agreed, higher layer signaling, and physical layer signaling.
  • M when the base station and the terminal always require a fixed number of channel resources to be allocated, M is configured in a predetermined manner; when the number of copies of the resources required by the base station and the terminal is changed, M is configured by higher layer signaling; After the M is configured through the high-layer signaling, the M value of the current configuration is re-allocated by the physical layer signaling. The M configured by the high-level signaling is still used after the current data transmission.
  • the configuration in the case of configuring multiple copies of channel resources, is performed in descending order of the value of the PRB offset .
  • the PRB offset can be increased to continue the allocation.
  • the foregoing step 204 may be performed by: transmitting the first parameter to the terminal by means of a broadcast or an agreed manner.
  • the channel resource may be used to carry a physical uplink control channel PUCCH or to transmit uplink control information UCI.
  • FIG. 3 is a block diagram of a hardware structure of the mobile terminal provided in this embodiment.
  • mobile terminal 30 may include one or more (only one shown) processor 302 (processor 302 may include a Microcontroller Unit (MCU) or a programmable logic device (Field-Programmable).
  • MCU Microcontroller Unit
  • FPGA Gate Array
  • memory 304 configured to store data
  • transmission device 306 having a communication function.
  • FIG. 3 is merely illustrative, and the mobile terminal 30 may further include more or less components than those shown in FIG. 3, or have a different configuration than that shown in FIG.
  • the memory 304 may be configured as a software program and a module for storing application software, such as program instructions or modules corresponding to the resource determination method in the following embodiments, and the processor 302 executes a plurality of types by executing a software program and a module stored in the memory 304. Functional application and data processing, that is, the above method is implemented.
  • Memory 304 can include high speed random access memory and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 304 may also include memory remotely located relative to processor 302, which may be connected to mobile terminal 30 over a network. Examples of such networks include the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 306 is arranged to receive or transmit data via a network.
  • the network instance described above may include a wireless network provided by a communication provider of the mobile terminal 30.
  • the transmission device 306 includes a Network Interface Controller (NIC) that can be connected to other network devices through the base station to communicate with the Internet.
  • the transmission device 306 can be a radio frequency (RF) module that is used to communicate with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF radio frequency
  • FIG. 4 is a schematic flowchart of a resource determining method according to the embodiment. As shown in FIG. 4, the method includes the following steps.
  • step 402 at least one of the first designated parameter and the second specified parameter is received by using the first signaling, where the first specified parameter is used to indicate the amount of resources added or decreased on the basis of the predetermined candidate channel resource,
  • the second designated parameter is used to indicate the number of resources included in the channel resource required for the terminal data transmission, and the predetermined candidate channel resource includes one or more candidate channel resources that the base station pre-configures for the terminal.
  • step 404 channel resources required for terminal data transmission are determined according to at least one of the first designated parameter and the second specified parameter.
  • the second specified parameter by receiving at least one of the first specified parameter and the second specified parameter, wherein the first specified parameter is used to indicate the amount of resources added or decreased on the basis of the predetermined candidate channel resource, the second specified parameter The number of resources included in the channel resource required for indicating the data transmission of the terminal, so that the terminal can adjust the resource according to at least one of the first specified parameter and the second specified parameter when the transmission bit changes, which can be implemented.
  • the adjusted resource matches the transmission bit. Therefore, the problem of mismatch between candidate resources and transmission bits in the related art can be solved, and dynamic allocation of resources is realized.
  • the one or more candidate channel resources of the predetermined candidate channel resource may be at least one of: one or more candidate channel resources include a fixed number of resources, and one or more candidate channel resources are terminals. One or more candidate channel resources configured for the last data transmission.
  • the foregoing resource determining method may further include: receiving, by using the second signaling, a predetermined candidate channel resource, where the predetermined candidate channel resource is selected by the base station from one or more candidate channel resources pre-configured for the terminal.
  • a candidate channel resource, the first signaling and the second signaling are different or the same.
  • At least one of the foregoing first signaling and the second signaling is physical layer signaling.
  • the physical layer signaling may be downlink control information DCI.
  • the granularity of the quantity of resources may be at least one of the following: a physical resource block PRB, an orthogonal frequency division multiplexing OFDM symbol, and a subcarrier.
  • the amount of resources added or decreased satisfies at least one of the following:
  • a PRB added or decreased on a basis of a predetermined candidate channel resource is continuous with a PRB of a predetermined candidate channel resource;
  • the number of the PRB added or decreased on the basis of the predetermined candidate channel resource is continuous with the number of the PRB of the predetermined candidate channel resource;
  • a PRB added or decreased on a basis of a predetermined candidate channel resource is continuous with a designated PRB in a predetermined candidate channel resource;
  • the number of the PRB added or decreased based on the predetermined candidate channel resource is continuous with the number of the designated PRB in the predetermined candidate channel resource.
  • the candidate channel resource may be used to carry a physical uplink control channel (PUCCH) or used to transmit uplink control information UCI; the data is data in a PUCCH channel or UCI.
  • PUCCH physical uplink control channel
  • UCI uplink control information
  • the execution subject of the multiple steps in the resource determination method may be a terminal such as a mobile terminal or a computer terminal.
  • FIG. 5 is a schematic flowchart of a resource determining method according to the embodiment. As shown in FIG. 5, the method includes the following steps.
  • the first parameter is received, where the first parameter includes at least one of: a second parameter used to determine a starting physical resource block PRB index of a channel resource allocated for the terminal, and a number of PRBs included in the channel resource;
  • the PRB index of the channel resource is determined according to a predetermined rule according to the second parameter.
  • the PRB included in the channel resource is determined according to the starting PRB index and the number of PRBs.
  • the terminal can determine the channel resource allocated to the terminal according to the first parameter, and can implement dynamic allocation of resources, and can solve the candidate in the related art.
  • the second parameter is pre-agreed with the terminal; and in a case where the first parameter includes the second parameter, The number of PRBs is pre-agreed with the terminal.
  • the foregoing second parameter includes at least one of the following three variables: a maximum index of the PRB in the resource to be allocated, an offset from a minimum index of the PRB in the to-be-allocated resource, and an allocation required The number of copies of the channel resource; wherein, for the above three variables, if the variable is not included in the second parameter, the value of the variable not included in the second parameter is pre-agreed with the terminal.
  • the offset of the minimum index relative to the PRB in the resource to be allocated may be equivalent to the offset of the PRB boundary with respect to the resource to be allocated.
  • the predetermined rule includes at least one of the following:
  • the PRB num is used to indicate the initial PRB index of the channel resource numbered num, num is an integer greater than or equal to 0, the PRB all is used to indicate the maximum index of the PRB in the resource to be allocated, and the PRB offset is used to indicate relative to The offset of the smallest index of the PRB in the resource to be allocated, and M is used to indicate the number of copies of the channel resource to be allocated.
  • round() is the rounding function and mod is the remainder operation.
  • the PRB all is used to indicate the maximum index after renumbering all the PRBs in the partial subband.
  • determining the PRB included in the channel resource according to the starting PRB index and the number of PRBs includes: determining, in the to-be-allocated resource, a PRB corresponding to the starting PRB index as a starting point, and determining N directions for increasing or decreasing the PRB index.
  • the PRB is used as a PRB included in a channel resource, where N is the number of PRBs.
  • determining, by the direction in which the PRB index is increased or decreased, the N PRBs as the channel resources, the PRBs may be represented by: determining, according to the number of the channel resources, a manner for determining the PRBs included in the channel resources, where The method includes: determining, according to the direction of increasing the PRB index, determining the direction in which the PRB index is reduced; wherein, when the number of the channel resource is an odd number, determining the PRB included in the channel resource according to the direction in which the PRB index increases, and the number of the channel resource is even The PRB included in the channel resource is determined according to the direction in which the PRB index is reduced.
  • the number of PRBs is configured by at least one of the following signaling: pre-agreed, higher layer signaling, and physical layer signaling.
  • the number of PRBs is configured in a predetermined manner; when the base station and the terminal request the PRB change included in the channel resource, the number of PRBs is configured through high layer signaling; After the number of PRBs is configured through the high-layer signaling, the number of PRBs required for the data transmission is re-allocated by the physical layer signaling, and the number of PRBs configured by the high-level signaling is still used after the current data transmission.
  • M may be configured by at least one of the following signaling: pre-agreed, higher layer signaling, and physical layer signaling.
  • M when the base station and the terminal always require a fixed number of channel resources to be allocated, M is configured in a predetermined manner; when the number of copies of the resources required to be allocated by the base station and the terminal changes, M is configured through high layer signaling. After M is configured through the high layer signaling, the M value required for the current reconfiguration is performed by the physical layer signaling, and the M configured by the high layer signaling is still used after the current data transmission.
  • the above method may further comprise: receiving the first parameter by means of broadcast or appointment.
  • the foregoing channel resource may be used to carry a physical uplink control channel PUCCH or to transmit uplink control information UCI.
  • the execution subject of the plurality of steps in the resource determination method applied to the terminal shown in FIG. 3 may be a terminal such as a computer terminal and a mobile terminal.
  • the method of the foregoing embodiment may be implemented by means of software plus a general hardware platform, or may be implemented by hardware.
  • the above technical solution can be embodied in the form of a software product stored in a storage medium (such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, and
  • a storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, and
  • the plurality of non-transitory storage media such as an optical disc, includes one or more instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the methods described in the various embodiments above.
  • FIG. 6 is a structural block diagram of a parameter transmitting device according to an embodiment. As shown in FIG. 6, the parameter transmitting device includes a determining module 62 and a transmitting module 64.
  • the determining module 62 is configured to determine at least one of the first specified parameter and the second specified parameter, wherein the first specified parameter is used to indicate the amount of resources added or decreased on the basis of the predetermined candidate channel resource, or The specified parameter is used to indicate the number of resources included in the channel resource required for the terminal data transmission; wherein the predetermined candidate channel resource includes one or more candidate channel resources pre-configured for the terminal.
  • the sending module 64 is connected to the determining module 62, and is configured to send at least one of the first designated parameter and the second specified parameter to the terminal by using the first signaling.
  • the above parameter transmitting means by transmitting at least one of the first designated parameter and the second specified parameter to the terminal, wherein the first specified parameter is used to indicate the amount of resources added or decreased on the basis of the predetermined candidate channel resource
  • the second specified parameter is used to indicate the quantity of resources included in the channel resource required for the data transmission of the terminal, so that the terminal can implement at least one of the first specified parameter and the second specified parameter when the transmission bit changes.
  • the one or more candidate channel resources of the predetermined candidate channel resource may be at least one of: one or more candidate channel resources include a fixed number of resources, and one or more candidate channel resources are terminals. One or more candidate channel resources configured for the last data transmission.
  • the fixed number of resources may be a default value or may be preset according to circumstances.
  • the parameter sending device may further include: a selecting module 66.
  • the selecting module 66 is connected to the sending module 64, and is configured to select one candidate channel resource from the configured one or more candidate channel resources as the predetermined candidate channel resource.
  • the sending module 64 may be further configured to send the predetermined candidate channel resource to the terminal by using the second signaling, where the first signaling and the second signaling are the same or different.
  • the above apparatus may further include: a determining module 68.
  • the determining module 68 is connected to the foregoing selecting module 66, and is configured to determine, after selecting one candidate channel resource from the configured one or more candidate channel resources as the predetermined candidate channel resource, according to the predetermined candidate channel resource and the first specified parameter. Receive channel resources of terminal data.
  • At least one of the foregoing first signaling and the second signaling is physical layer signaling, and the physical layer signaling may be downlink control information DCI.
  • the granularity of the quantity of resources may be at least one of the following: a physical resource block PRB, an orthogonal frequency division multiplexing OFDM symbol, and a subcarrier.
  • the increased or decreased number of resources satisfies at least one of the following conditions:
  • a PRB added or decreased on a basis of a predetermined candidate channel resource is continuous with a PRB of a predetermined candidate channel resource;
  • the number of the PRB added or decreased on the basis of the predetermined candidate channel resource is continuous with the number of the PRB of the predetermined candidate channel resource;
  • a PRB added or decreased on a basis of a predetermined candidate channel resource is continuous with a designated PRB in a predetermined candidate channel resource;
  • the number of the PRB added or decreased based on the predetermined candidate channel resource is continuous with the number of the designated PRB in the predetermined candidate channel resource.
  • the candidate channel resource is used to carry a physical uplink control channel (PUCCH) or used to transmit uplink control information (UCI), and the data is data or UCI in a PUCCH channel.
  • PUCCH physical uplink control channel
  • UCI uplink control information
  • the above parameter transmitting means may be located in the base station.
  • the foregoing multiple modules may be implemented by software or hardware.
  • the multiple modules are all located in the same processor; or, the multiple modules are respectively located in different combinations.
  • the processor In the processor.
  • FIG. 7 is a structural block diagram of a parameter sending apparatus according to the present embodiment. As shown in FIG. 7, the parameter sending apparatus includes: a configuration module 72 and a transmitting module 74.
  • the configuration module 72 is configured to configure a first parameter for determining a channel resource allocated for the terminal, where the first parameter includes at least one of the following: a second parameter used to determine a starting physical resource block PRB index of the channel resource, The number of PRBs included in the channel resource.
  • the sending module 74 is connected to the configuration module 72 and configured to send the first parameter to the terminal.
  • the first parameter of the channel resource used for determining the terminal is sent to the terminal by using the foregoing sending device, so that the terminal can determine the channel resource allocated to the terminal according to the first parameter, and can implement dynamic resource allocation, and the related technology can be solved.
  • the second parameter is pre-agreed with the terminal; and in the case where the first parameter includes the second parameter, the number of PRBs is pre-agreed with the terminal.
  • the second parameter or the number of PRBs is pre-agreed with the terminal, and the second parameter or the number of PRBs is a fixed value, and the second parameter or the number of PRBs need not be sent to the terminal.
  • the foregoing second parameter includes at least one of the following three variables: a maximum index of the PRB in the resource to be allocated, and an offset of the minimum index of the PRB in the resource to be allocated, and the channel resource to be allocated.
  • the number of copies wherein, for the three variables, if the variable is not included in the second parameter, the value of the variable not included in the second parameter is pre-agreed with the terminal.
  • the offset of the minimum index relative to the PRB in the resource to be allocated may be equivalent to the offset of the PRB boundary with respect to the resource to be allocated.
  • the above apparatus may further include: a first determining module 76.
  • the first determining module 76 is coupled to the configuration module 72, and is configured to determine a starting physical resource block PRB index of the channel resource by using one of the following predetermined rules:
  • the PRB num is used to indicate the initial PRB index of the channel resource numbered num, num is an integer greater than or equal to 0, the PRB all is used to indicate the maximum index of the PRB in the resource to be allocated, and the PRB offset is used to indicate relative to The offset of the smallest index of the PRB in the resource to be allocated, and M is used to indicate the number of copies of the channel resource to be allocated.
  • round() is the rounding function and mod is the remainder operation.
  • the above apparatus may further include: a second determining module 78.
  • the second determining module 78 is connected to the configuration module 72, and is configured to determine the PRB included in the channel resource according to the starting PRB index and the number of PRBs after configuring the first parameter for determining the channel resource allocated for the terminal.
  • the foregoing second determining module 78 may be further configured to: in the to-be-allocated resource, use the PRB corresponding to the starting PRB index as a starting point, and determine, in the direction of increasing or decreasing the PRB index, N PRBs as channel resources. PRB, where N is the number of PRBs.
  • the foregoing second determining module 78 is further configured to determine, according to the number of the channel resource, a manner for determining a PRB included in the channel resource, where the manner includes: determining according to a direction in which the PRB index is added, according to the PRB index. The direction of the reduction is determined.
  • the PRB included in the channel resource is determined according to the direction in which the PRB index increases.
  • the channel resource is determined according to the direction in which the PRB index decreases. PRB.
  • the PRB included in the direction in which the PRB index is added or decreased as the channel resource may be expressed in the following manner, but is not limited thereto: determining the channel resource according to the number of the channel resource.
  • the PRB mode where the method includes: determining according to the direction in which the PRB index is added, determining according to the direction in which the PRB index is reduced; wherein, when the channel resource number is an odd number, determining the PRB included in the channel resource according to the direction in which the PRB index increases, When the number of channel resources is even, the PRB included in the channel resource is determined according to the direction in which the PRB index is reduced.
  • the PRB all is used to indicate the maximum index after all the PRBs in the partial subband are renumbered.
  • the number of PRBs may be configured by at least one of the following signaling: pre-agreed, higher layer signaling, physical layer signaling. It should be noted that the physical layer signaling may be downlink control information DCI.
  • the number of PRBs is configured in a predetermined manner; when the base station and the terminal request the PRB change included in the channel resource, the number of PRBs is configured through high layer signaling; After the number of PRBs is configured by the high-level signaling, the number of PRBs required for the data transmission is re-allocated by the physical layer signaling, and the number of PRBs configured by the higher layer signaling is still used after the current data transmission.
  • M may be configured by at least one of the following signaling: pre-agreed, higher layer signaling, physical layer signaling.
  • M when the base station and the terminal always require a fixed number of channel resources to be allocated, M is configured in a predetermined manner; when the number of copies of the resources required to be allocated by the base station and the terminal changes, M is configured by higher layer signaling; After the M is configured through the high-layer signaling, the M value of the current configuration is re-allocated by the physical layer signaling. The M configured by the high-level signaling is still used after the current data transmission.
  • the PRB offset values are configured in order from small to large. It should be noted that, when the resource corresponding to the small PRB offset can no longer be allocated to more terminals, the PRB offset can be increased, and the allocation is continued, but is not limited thereto.
  • the sending module 74 is further configured to send the first parameter to the terminal by means of broadcast or appointment.
  • the channel resource may be used to carry a physical uplink control channel PUCCH or to transmit uplink control information UCI.
  • the above means may be located in the base station.
  • the foregoing multiple modules may be implemented by software or hardware.
  • the multiple modules are all located in the same processor; or, the multiple modules are respectively located in different combinations.
  • the processor In the processor.
  • FIG. 8 is a structural block diagram of a resource determining apparatus according to the embodiment. As shown in FIG. 8, the apparatus includes: a receiving module 82 and a determining module 84.
  • the receiving module 82 is configured to receive, by using the first signaling, at least one of a first specified parameter and a second specified parameter, where the first specified parameter is used to indicate an amount of resources that are increased or decreased based on a predetermined candidate channel resource. Or, the second specified parameter is used to indicate the quantity of resources included in the channel resource required for the terminal data transmission; wherein the predetermined candidate channel resource includes one or more candidate channel resources that the base station pre-configures for the terminal.
  • the determining module 84 is connected to the receiving module 82, and is configured to determine a channel resource required for terminal data transmission according to at least one of the first designated parameter and the second specified parameter.
  • the resource determining apparatus by receiving at least one of the first specified parameter and the second specified parameter, wherein the first specified parameter is used to indicate the amount of resources added or decreased on the basis of the predetermined candidate channel resource, and the second The specified parameter is used to indicate the number of resources included in the channel resource required for the data transmission of the terminal, so that the terminal can adjust the resource according to at least one of the first specified parameter and the second specified parameter when the transmission bit changes.
  • the matching between the adjusted resources and the transmission bits can be implemented. Therefore, the problem of mismatch between candidate resources and transmission bits in the related art can be solved, and dynamic allocation of resources is realized.
  • the one or more candidate channel resources of the predetermined candidate channel resource may be at least one of: one or more candidate channel resources include a fixed number of resources, and one or more candidate channel resources are terminals. One or more candidate channel resources configured for the last data transmission.
  • the receiving module 82 may be further configured to receive a predetermined candidate channel resource by using the second signaling, where the predetermined candidate channel resource is selected by the base station from one or more candidate channel resources pre-configured for the terminal.
  • a candidate channel resource, the first signaling and the second signaling are different or the same.
  • At least one of the foregoing first signaling and the second signaling is physical layer signaling.
  • the resource determines that the physical layer signaling may be downlink control information DCI.
  • the granularity of the quantity of resources may be at least one of the following: a physical resource block PRB, an orthogonal frequency division multiplexing OFDM symbol, and a subcarrier.
  • the amount of resources added or decreased satisfies at least one of the following:
  • a PRB added or decreased on a basis of a predetermined candidate channel resource is continuous with a PRB of a predetermined candidate channel resource;
  • the number of the PRB added or decreased on the basis of the predetermined candidate channel resource is continuous with the number of the PRB of the predetermined candidate channel resource;
  • a PRB added or decreased on a basis of a predetermined candidate channel resource is continuous with a designated PRB in a predetermined candidate channel resource;
  • the number of the PRB added or decreased based on the predetermined candidate channel resource is continuous with the number of the designated PRB in the predetermined candidate channel resource.
  • the candidate channel resource may be used to carry a physical uplink control channel (PUCCH) or used to transmit uplink control information UCI; the data is data in a PUCCH channel or UCI.
  • PUCCH physical uplink control channel
  • UCI uplink control information
  • the resource determining device may be located in a terminal, such as a mobile terminal or a computer terminal.
  • the plurality of modules in the resource determining apparatus may be implemented by software or hardware.
  • the multiple modules are all located in the same processor; or, the multiple modules are in any combination.
  • the forms are located in different processors.
  • FIG. 9 is a structural block diagram of a resource determining apparatus according to an embodiment. As shown in FIG. 9, the apparatus includes a receiving module 92, a first determining module 94, and a second determining module 96. .
  • the receiving module 92 is configured to receive the first parameter, where the first parameter comprises at least one of: a second parameter for determining a starting physical resource block PRB index of a channel resource allocated for the terminal, and a number of PRBs included in the channel resource.
  • the first determining module 94 is connected to the receiving module 92, and is configured to determine a PRB index of the channel resource according to a predetermined rule according to the second parameter.
  • the second determining module 96 is connected to the first determining module 94, and is configured to determine a PRB included in the channel resource according to the starting PRB index and the number of PRBs.
  • the resource determining apparatus can implement the dynamic allocation of resources by determining the channel resource allocated to the terminal according to the first parameter by receiving the first parameter for determining the channel resource allocated for the terminal, and the related information can be resolved.
  • the problem of mismatch between candidate resources and transmission bits in the technology can be implemented.
  • the second parameter is pre-agreed with the terminal; and in a case where the first parameter includes the second parameter, The number of PRBs is pre-agreed with the terminal.
  • the foregoing second parameter includes at least one of the following three variables: a maximum index of the PRB in the resource to be allocated, and an offset of the minimum index of the PRB in the to-be-allocated resource, which needs to be allocated.
  • the number of copies of the channel resource wherein, for the above three variables, if the variable is not included in the second parameter, the value of the variable not included in the second parameter is pre-agreed with the terminal.
  • the offset of the minimum index relative to the PRB in the resource to be allocated may be equivalent to the offset of the PRB boundary with respect to the resource to be allocated.
  • the predetermined rule may include at least one of the following:
  • the PRB num is used to indicate the initial PRB index of the channel resource numbered num, num is an integer greater than or equal to 0, the PRB all is used to indicate the maximum index of the PRB in the resource to be allocated, and the PRB offset is used to indicate relative to The offset of the smallest index of the PRB in the resource to be allocated, and M is used to indicate the number of copies of the channel resource to be allocated.
  • round() is the rounding function and mod is the remainder operation.
  • the PRB all is used to indicate the maximum index after renumbering all the PRBs in the partial subband.
  • determining the PRB included in the channel resource according to the starting PRB index and the number of PRBs includes: determining, in the to-be-allocated resource, a PRB corresponding to the starting PRB index as a starting point, and determining N directions for increasing or decreasing the PRB index.
  • the PRB is used as a PRB included in a channel resource, where N is the number of PRBs.
  • determining, by the direction in which the PRB index is increased or decreased, the number of the PRBs included in the channel resources may be: determining, according to the number of the channel resources, a manner for determining the PRB included in the channel resource, where the manner includes Determining according to the direction in which the PRB index is added, determining according to the direction in which the PRB index is reduced; wherein, when the number of the channel resource is an odd number, determining the PRB included in the channel resource according to the direction in which the PRB index increases, when the channel resource number is even
  • the PRB included in the channel resource is determined according to the direction in which the PRB index is reduced.
  • the number of PRBs is configured by at least one of the following signaling: pre-agreed, higher layer signaling, physical layer signaling.
  • the number of PRBs is configured in a predetermined manner; when the base station and the terminal request the PRB change included in the channel resource, the number of PRBs is configured through high layer signaling; After the number of PRBs is configured by the high-level signaling, the number of PRBs required for the data transmission is re-allocated by the physical layer signaling, and the number of PRBs configured by the higher layer signaling is still used after the current data transmission.
  • M may be configured by at least one of the following signaling: pre-agreed, higher layer signaling, physical layer signaling.
  • M when the base station and the terminal always require a fixed number of channel resources to be allocated, M is configured in a predetermined manner; when the number of copies of the resources required to be allocated by the base station and the terminal changes, M is configured through high layer signaling. After M is configured through the high layer signaling, the M value required for the current reconfiguration is performed by the physical layer signaling, and the M configured by the high layer signaling is still used after the current data transmission.
  • the method further includes: receiving the first parameter by means of a broadcast or an appointment.
  • the foregoing channel resource may be used to carry a physical uplink control channel PUCCH or to transmit uplink control information UCI.
  • the above means may be located in a terminal, such as a computer terminal and a mobile terminal.
  • the plurality of modules in the resource determining apparatus may be implemented by software or hardware.
  • the multiple modules are all located in the same processor; or, the multiple modules are in any combination.
  • the forms are located in different processors.
  • FIG. 10 is a structural block diagram of a base station according to the embodiment. As shown in FIG. 10, the processor 1002 and the memory 1004 are included.
  • the processor 1002 is configured to determine at least one of a first specified parameter and a second specified parameter, where the first specified parameter is used to indicate a quantity of resources added or decreased on a basis of a predetermined candidate channel resource, or The specified parameter is used to indicate the number of resources included in the channel resource required for the terminal data transmission; wherein the predetermined candidate channel resource includes one or more candidate channel resources pre-configured for the terminal; and is used to be first through the first signaling At least one of the specified parameter and the second specified parameter is sent to the terminal.
  • the memory 1004 is coupled to the processor 1002.
  • the base station Passing the base station, by transmitting at least one of the first designated parameter and the second specified parameter to the terminal, where the first specified parameter is used to indicate the amount of resources added or decreased based on the predetermined candidate channel resource,
  • the second parameter is used to indicate the number of resources included in the channel resource required for the data transmission of the terminal, so that the terminal can adjust the resource according to at least one of the first specified parameter and the second specified parameter when the transmission bit changes.
  • the one or more candidate channel resources of the predetermined candidate channel resource may be at least one of: one or more candidate channel resources include a fixed number of resources, and one or more candidate channel resources are terminals. One or more candidate channel resources configured for the last data transmission.
  • the fixed amount of resources may be a default value or may be preset.
  • the processor 1002 is configured to select one candidate channel resource from the configured one or more candidate channel resources as a predetermined candidate channel resource; and send the predetermined candidate channel resource to the second signaling by using the second signaling a terminal; wherein the first signaling and the second signaling are the same or different.
  • the processor 1002 may be further configured to: after selecting one candidate channel resource from the configured one or more candidate channel resources as the predetermined candidate channel resource, according to the predetermined candidate channel resource and the first designation.
  • the parameters determine the channel resources of the receiving terminal data.
  • the foregoing first signaling and/or the second signaling is physical layer signaling.
  • the physical layer signaling may be downlink control information DCI, but is not limited thereto.
  • the granularity of the quantity of resources may be at least one of the following: a physical resource block PRB, an orthogonal frequency division multiplexing OFDM symbol, and a subcarrier.
  • the amount of resources added or decreased satisfies at least one of the following:
  • a PRB added or decreased on a basis of a predetermined candidate channel resource is continuous with a PRB of a predetermined candidate channel resource;
  • the number of the PRB added or decreased on the basis of the predetermined candidate channel resource is continuous with the number of the PRB of the predetermined candidate channel resource;
  • a PRB added or decreased on a basis of a predetermined candidate channel resource is continuous with a designated PRB in a predetermined candidate channel resource;
  • the number of the PRB added or decreased based on the predetermined candidate channel resource is continuous with the number of the designated PRB in the predetermined candidate channel resource.
  • the candidate channel resource is used to carry a physical uplink control channel PUCCH, or is used to transmit uplink control information UCI; the data is data or UCI in a PUCCH channel.
  • FIG. 11 is a structural block diagram of a base station according to this embodiment. As shown in FIG. 11, the base station includes a processor 1102 and a memory 1104.
  • the processor 1102 is configured to configure a first parameter for determining a channel resource allocated for the terminal; wherein the first parameter comprises at least one of: a second parameter for determining a starting physical resource block PRB index of the channel resource, the channel The number of PRBs included in the resource; and used to send the first parameter to the terminal.
  • the memory 1104 is coupled to the processor 1102.
  • the above-mentioned base station can implement the dynamic allocation of resources by using the first parameter that is used to determine the channel resource allocated to the terminal, so that the terminal can determine the channel resource allocated to the terminal according to the first parameter, and the same can be solved.
  • a problem of mismatch between candidate resources and transmission bits in the related art can implement the dynamic allocation of resources by using the first parameter that is used to determine the channel resource allocated to the terminal, so that the terminal can determine the channel resource allocated to the terminal according to the first parameter, and the same can be solved.
  • the second parameter is pre-agreed with the terminal; and in the case where the first parameter includes the second parameter, the number of PRBs is pre-agreed with the terminal.
  • the second parameter or the number of PRBs is pre-agreed with the terminal, and the second parameter or the number of PRBs is a fixed value, and the second parameter or the number of PRBs need not be sent to the terminal.
  • the foregoing second parameter includes at least one of the following three variables: a maximum index of the PRB in the resource to be allocated, and an offset of the minimum index of the PRB in the resource to be allocated, and the channel resource to be allocated.
  • the number of copies wherein, for the three variables, if the variable is not included in the second parameter, the value of the variable not included in the second parameter is pre-agreed with the terminal.
  • the offset of the minimum index relative to the PRB in the resource to be allocated may be equivalent to the offset of the PRB boundary with respect to the resource to be allocated, but is not limited thereto.
  • the processor 1102 is configured to determine a starting physical resource block PRB index of a channel resource by one of the following predetermined rules:
  • the PRB num is used to indicate the initial PRB index of the channel resource numbered num, num is an integer greater than or equal to 0, the PRB all is used to indicate the maximum index of the PRB in the resource to be allocated, and the PRB offset is used to indicate relative to The offset of the smallest index of the PRB in the resource to be allocated, and M is used to indicate the number of copies of the channel resource to be allocated.
  • round() is the rounding function and mod is the remainder operation.
  • the processor 1102 is configured to determine a PRB included in the channel resource according to the starting PRB index and the number of PRBs after generating the first parameter for determining the channel resource allocated for the terminal.
  • the processor 1102 may be configured to determine, in the to-be-allocated resource, a PRB corresponding to the starting PRB index as a starting point, and determine, in a direction in which the PRB index is added or decreased, N PRBs as PRBs included in the channel resources. Where N is the number of PRBs.
  • the processor 1102 may be further configured to determine, according to the number of the channel resource, a method for determining a PRB included in the channel resource, where the method includes: determining according to a direction in which the PRB index is added, and decreasing according to the PRB index. The direction is determined.
  • the number of the channel resource is an odd number
  • the PRB included in the channel resource is determined according to the direction in which the PRB index increases.
  • the number of the channel resource is even, the PRB included in the channel resource is determined according to the direction in which the PRB index decreases.
  • the PRB included in the direction in which the PRB index is added or decreased as the channel resource may be expressed in the following manner, but is not limited thereto: determining the channel resource according to the number of the channel resource.
  • the PRB mode where the method includes: determining according to the direction in which the PRB index is added, determining according to the direction in which the PRB index is reduced; wherein, when the channel resource number is an odd number, determining the PRB included in the channel resource according to the direction in which the PRB index increases, When the number of channel resources is even, the PRB included in the channel resource is determined according to the direction in which the PRB index is reduced.
  • the PRB all is used to indicate the maximum index after all the PRBs in the partial subband are renumbered.
  • the number of PRBs may be configured by at least one of the following signaling: pre-agreed, higher layer signaling, physical layer signaling.
  • the physical layer signaling may be downlink control information DCI.
  • the number of PRBs is configured in a predetermined manner; when the base station and the terminal request the PRB change included in the channel resource, the number of PRBs is configured through high layer signaling; After the number of PRBs is configured by the high-level signaling, the number of PRBs required for the data transmission is re-allocated by the physical layer signaling, and the number of PRBs configured by the higher layer signaling is still used after the current data transmission.
  • M may be configured by at least one of the following signaling: pre-agreed, higher layer signaling, physical layer signaling.
  • M when the base station and the terminal always require a fixed number of channel resources to be allocated, M is configured in a predetermined manner; when the number of copies of the resources required to be allocated by the base station and the terminal changes, M is configured by higher layer signaling; After the M is configured through the high-layer signaling, the M value of the current configuration is re-allocated by the physical layer signaling. The M configured by the high-level signaling is still used after the current data transmission.
  • the configuration in the case of multiple channel resource according to the value of the PRB offset ascending order configuration. It should be noted that when the resource corresponding to the small PRB offset can no longer be allocated to more terminals, the PRB offset can be increased and the allocation can be continued.
  • the processor 1102 may be further configured to send the first parameter to the terminal by means of broadcast or appointment.
  • the channel resource may be used to carry a physical uplink control channel PUCCH or to transmit uplink control information UCI.
  • FIG. 12 is a structural block diagram of a terminal according to an embodiment of the present invention.
  • the processor includes a processor 1202 and a memory 1204.
  • the processor 1202 is configured to receive, by using the first signaling, at least one of a first specified parameter and a second specified parameter, where the first specified parameter is used to indicate an amount of resources that are increased or decreased based on a predetermined candidate channel resource.
  • the second specified parameter is used to indicate the quantity of resources included in the channel resource required for the terminal data transmission; wherein, the predetermined candidate channel resource includes one or more candidate channel resources pre-configured by the base station for the terminal; At least one of a specified parameter and a second specified parameter determines a channel resource required for terminal data transmission.
  • the memory 1204 is coupled to the processor 1202 described above.
  • the first specified parameter is used to indicate the amount of resources added or decreased based on the predetermined candidate channel resource, the second specified parameter
  • the number of resources included in the channel resource required for indicating the data transmission of the terminal so that the terminal can adjust the resource according to at least one of the first specified parameter and the second specified parameter when the transmission bit changes, which can be implemented.
  • the adjusted resource matches the transmission bit. Therefore, the problem of mismatch between candidate resources and transmission bits in the related art can be solved, and dynamic allocation of resources is realized.
  • the one or more candidate channel resources of the predetermined candidate channel resource may be at least one of: one or more candidate channel resources include a fixed number of resources, and one or more candidate channel resources are terminals. One or more candidate channel resources configured for the last data transmission.
  • the processor 1202 may be further configured to receive a predetermined candidate channel resource by using the second signaling, where the predetermined candidate channel resource is selected by the base station from one or more candidate channel resources pre-configured for the terminal.
  • a candidate channel resource, the first signaling and the second signaling are different or the same.
  • the first signaling and/or the second signaling is physical layer signaling.
  • the physical layer signaling may be downlink control information DCI, but is not limited thereto.
  • the granularity of the quantity of resources may be at least one of the following: a physical resource block PRB, an orthogonal frequency division multiplexing OFDM symbol, and a subcarrier.
  • the amount of resources added or decreased satisfies at least one of the following:
  • a PRB added or decreased on a basis of a predetermined candidate channel resource is continuous with a PRB of a predetermined candidate channel resource;
  • the number of the PRB added or decreased on the basis of the predetermined candidate channel resource is continuous with the number of the PRB of the predetermined candidate channel resource;
  • a PRB added or decreased on a basis of a predetermined candidate channel resource is continuous with a designated PRB in a predetermined candidate channel resource;
  • the number of the PRB added or decreased based on the predetermined candidate channel resource is continuous with the number of the designated PRB in the predetermined candidate channel resource.
  • the candidate channel resource may be used to carry a physical uplink control channel (PUCCH) or used to transmit uplink control information UCI; the data is data in a PUCCH channel or UCI.
  • PUCCH physical uplink control channel
  • UCI uplink control information
  • FIG. 13 is a structural block diagram of a terminal according to the embodiment.
  • the processor includes a processor 1302 and a memory 1304.
  • the processor 1302 is configured to receive the first parameter, where the first parameter includes at least one of: a second parameter used to determine a starting physical resource block PRB index of a channel resource allocated for the terminal, and a number of PRBs included in the channel resource Setting to determine a PRB index of the channel resource according to a predetermined rule according to the second parameter; and setting to determine a PRB included in the channel resource according to the starting PRB index and the number of PRBs;
  • the memory 1304 is coupled to the processor 1302.
  • the terminal can determine the channel resource allocated to the terminal according to the first parameter by using the first parameter, and the terminal can allocate the channel resource allocated to the terminal according to the first parameter, so that the resource can be dynamically allocated, and the candidate in the related art can be solved.
  • the second parameter is pre-agreed with the terminal; and in a case where the first parameter includes the second parameter, The number of PRBs is pre-agreed with the terminal.
  • the foregoing second parameter includes at least one of the following three variables: a maximum index of the PRB in the resource to be allocated, and an offset of the minimum index of the PRB in the to-be-allocated resource, which needs to be allocated.
  • the number of copies of the channel resource wherein, for the above three variables, if the variable is not included in the second parameter, the value of the variable not included in the second parameter is pre-agreed with the terminal.
  • the offset of the minimum index relative to the PRB in the resource to be allocated may be equivalent to the offset of the PRB boundary with respect to the resource to be allocated.
  • the predetermined rule includes at least one of the following:
  • the PRB num is used to indicate the initial PRB index of the channel resource numbered num, num is an integer greater than or equal to 0, the PRB all is used to indicate the maximum index of the PRB in the resource to be allocated, and the PRB offset is used to indicate relative to The offset of the smallest index of the PRB in the resource to be allocated, and M is used to indicate the number of copies of the channel resource to be allocated.
  • round() is the rounding function and mod is the remainder operation.
  • the PRB all is used to indicate the maximum index after renumbering all the PRBs in the partial subband.
  • the processor 1302 may be further configured to: in the to-be-allocated resource, use the PRB corresponding to the starting PRB index as a starting point, and determine, in the direction of increasing or decreasing the PRB index, the N PRBs as the PRB included in the channel resource. Where N is the number of PRBs.
  • the processor 1302 is further configured to determine, according to the number of the channel resource, a manner for determining a PRB included in the channel resource, where the method includes: determining according to a direction in which the PRB index is added, and decreasing the direction according to the PRB index. Determining; wherein, when the number of the channel resource is an odd number, the PRB included in the channel resource is determined according to the direction in which the PRB index increases, and when the number of the channel resource is even, the PRB included in the channel resource is determined according to the direction in which the PRB index is reduced.
  • the number of PRBs is configured by at least one of the following signaling: pre-agreed, higher layer signaling, physical layer signaling.
  • the number of PRBs is configured in a predetermined manner; when the base station and the terminal request the PRB change included in the channel resource, the number of PRBs is configured through high layer signaling; After the number of PRBs is configured by the high-level signaling, the number of PRBs required for the data transmission is re-allocated by the physical layer signaling, and the number of PRBs configured by the higher layer signaling is still used after the current data transmission.
  • M may be configured by at least one of the following signaling: pre-agreed, higher layer signaling, physical layer signaling.
  • M when the base station and the terminal always require a fixed number of channel resources to be allocated, M is configured in a predetermined manner; when the number of copies of the resources required to be allocated by the base station and the terminal changes, M is configured by higher layer signaling; After M is configured through the high-layer signaling, the required M value is reconfigured through the physical layer signaling, and the M configured by the high-level signaling is still used after the current data transmission.
  • the processor 1302 also receives the first parameter by broadcast or contract.
  • the channel resource may be used to carry a physical uplink control channel PUCCH or to transmit uplink control information UCI.
  • An embodiment provides a storage medium, which in the present embodiment may be arranged to store program code for performing the steps of any of the above embodiments.
  • the foregoing storage medium may include, but is not limited to, a U disk, a ROM, a RAM, a mobile hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes.
  • the processor performs the steps of any of the above embodiments in accordance with stored program code in the storage medium.
  • a method for PRB resource allocation is provided, which may allocate candidate PUCCH resources for the UE, and may also be used for other aspects of PRB resource allocation.
  • An embodiment provides a method of dynamically changing resource allocation, which can be performed by a transmitting end, the method comprising the following steps.
  • step 1 after the base station configures one or more candidate PUCCH resources for the UE by using the high layer signaling, the base station can introduce the parameters to describe the number of resources that are added or decreased based on the previously configured candidate PUCCH resources, and send the same. This parameter is given to the UE.
  • the previously configured candidate PUCCH resource is equivalent to the predetermined candidate channel resource in the foregoing embodiment.
  • step 2 based on step 1, the increasing or decreasing the number of resources, the base station indicates the used PUCCH resource in the allocated candidate PUCCH resource for the UE (corresponding to one or more candidate channels configured from the foregoing embodiment.
  • the parameter is transmitted simultaneously or separately (corresponding to the same or different signaling of the first signaling and the second signaling), indicating the amount of resources that are increased or decreased for the used PUCCH resource.
  • step 3 based on step 2, the used PUCCH resources and the increased number of resources are indicated by physical layer signaling. For example, use DCI.
  • step 4 based on step 1, the increasing or decreasing number of resources, the base station transmitting the parameter indicates increasing or decreasing the number of resources in the candidate PUCCH resource allocated for the UE.
  • step 5 based on step 1, the increased or decreased number of resources, the granularity is calculated by PRB, or calculated by the number of OFDM symbols, or calculated by subcarriers, or simultaneously described by using two or more granularities as described above. .
  • step 6 based on step 1 or step 5, the increase or decrease in the number of resources, the rule of which is increased or decreased is agreed in advance.
  • the rules include one of the following:
  • Each candidate PUCCH resource increase or decrease PRB is continuous with the PRB originally allocated for each candidate PUCCH resource
  • the increase or decrease of the PRB is continuous on the basis of each original candidate PUCCH resource dispersion.
  • An embodiment provides a method for dynamically changing resource allocation, which is performed by a receiving end, and includes:
  • the UE receives one or more candidate PUCCH resources configured by the base station high-level signaling, and then receives the used PUCCH resources indicated by the base station from the candidate PUCCH resources by the physical layer signaling, and the UE receives the previous configuration based on the base station simultaneously or separately.
  • the number of resources increased or decreased based on the candidate PUCCH resources.
  • An embodiment provides a resource allocation using method and apparatus, which can be performed by a sending end, including:
  • the base station allocates resources according to the following rules according to the following parameters.
  • the parameters include:
  • PRB all specifies the maximum index of the total number of PRBs to be allocated (corresponding to PRB all in the above embodiment).
  • PRB offset describing the offset from the boundary of the total PRB (corresponding to the PRB offset in the above embodiment).
  • M describes how many resources need to be allocated (equivalent to M in the above embodiment).
  • PRB num the starting PRB index of each resource allocated (corresponding to PRB num in the above embodiment).
  • Num is the number of each resource.
  • the agreed rules include:
  • NUM PRB NUM PRB is calculated, and Q is calculated according to the rule as a PRB resources contained in each PRB.
  • the PRB all when the resource to be allocated is a partial subband of the entire system bandwidth, the PRB all is the largest index after all the PRBs in the partial subband are renumbered.
  • Each PRB resources comprise estimated based on 1, said Q,, according NUM PRB corresponding PRB index increases or decreases toward the PRB is the number of resources contained in every direction.
  • the base station configures the value of the Q, and sends the value to the UE through the high layer signaling or the physical layer signaling;
  • the Q value is pre-agreed
  • the Q value is configured through higher layer signaling.
  • the high-level signaling is configured with the value of the Q, but the base station can send the physical layer signaling re-allocation Q value to be valid at the time, and then consider that the Q value of the high-level signaling configuration is valid.
  • the Q, the base station and the UE stipulate the directivity of the Q, that is, when each resource number num is an odd number, the Q adds the PRB included in each resource to the direction in which the PRB index increases; when the number num is an even number, Q calculates the PRB contained in each resource in the direction in which the PRB index is reduced.
  • the value of the M is configured by the base station, and is sent to the UE by using high layer signaling or physical layer signaling;
  • the value of M is agreed in advance
  • the M value is configured by using high layer signaling
  • the high-level signaling is configured with the M value, but the base station can send the physical layer signaling re-allocation M value to be valid for the current time, and then consider that the M value of the high-level signaling configuration is valid.
  • the base station when the base station allocates resources for the UE, always preferentially configures the PRBoffset from small to large. For example, when a resource allocation corresponding to a small PRBoffset can no longer be allocated as more UEs, the PRBoffset is added.
  • the base station Based on 1, the base station, the base station broadcasts or appoints one or more of the parameters in the above 1 to the UE, so that the UE knows that those PRBs in the system have been allocated.
  • An embodiment provides a resource allocation using method and apparatus, which can be applied to a receiving end, including:
  • the UE receives the parameters sent by the base station, and obtains the allocated resources according to the usage rules of the parameters.
  • the parameters received by the UE include one or more of the following, and the parameters that are not sent need to be agreed or implied in advance:
  • PRB all which describes the maximum index of the total number of PRBs to be allocated.
  • PRB offset which describes the offset from the boundary of the total PRB.
  • M describe how many resources need to be allocated.
  • PRB num the starting PRB index of each resource allocated.
  • Num is the number of each resource.
  • the agreed rules include:
  • Q PRBs are calculated according to the rules as PRBs included in each resource.
  • An embodiment provides a short uplink control time division multiplexing of different UEs in a transmission unit, and configuring a suitable uplink control symbol position for the UE according to the beam direction of the UE, so that the transmission of the UE and the reception of the base station are simpler.
  • the transmitting end and the receiving end agree or the transmitting end signaling indicates the value of the relevant parameter, and then the allocated resource is estimated according to the agreed rule. And the values, configuration, and usage of related parameters, and resource allocation use cases based on the variant of Equation 1.
  • the UE is dynamically notified that the size of each candidate PUCCH resource is the dynamic size of the applicable PUCCH payload.
  • a new parameter may be additionally introduced, which describes each candidate PUCCH resource or PUCCH resource used by the UE based on the candidate PUCCH resource allocation in the ARI mechanism (from The candidate PUCCH resource) increases the number of PRBs.
  • FIG. 14 is a schematic diagram of a resource allocation situation according to an embodiment.
  • a transmitting end which may be a base station, a small cell base station, a radio remote unit, etc., hereinafter described using a base station as an example
  • a receiving end may be a UE, a terminal, etc., described below with the UE as an example.
  • the protocol or the sender signaling indicates the value of the relevant parameter, and then the allocated resource is estimated according to the agreed rule (but in the form of a PRB, or a cluster, etc., which may be a frequency domain resource)
  • the granularity is described below by taking PRB as an example).
  • PRB all PRB offset
  • M PRB offset
  • Q PRB num
  • PRB all is obtained based on the total number of PRBs.
  • the total number of PRBs is 110, and the index is 0 to 109.
  • the PRB all is 109. All PRBs that can be allocated, such as all PRBs corresponding to the system bandwidth, or the sum of all PRBs corresponding to one or more subbands in the system bandwidth; if multiple subbands are discrete, the sum of the PRBs of the multiple discrete subbands as the total
  • the PRB number, or resource allocation is performed independently for each sub-band, and the PRB corresponding to each sub-band is taken as the total number of PRBs.
  • PRB offset the number of offset PRBs of the smallest index PRB relative to the total PRB. For example, if the total number of PRBs is 110 and the index is 0-109, then the PRB offset is how many PRBs are offset from the PRB whose PRB index is 0. It can also be used as the offset of the starting PRB of the PRB with respect to the PRB index of 0.
  • M is the number of resources allocated.
  • PRB num the starting PRB index of a resource allocated.
  • Num is the number of a resource, from 0 to M-1.
  • Q is the number of PRBs included in each resource, and the PRBs included in each resource are extrapolated according to the direction in which the PRB corresponding to the PRB num increases or decreases toward the index (in different cases, increases or decreases).
  • Equation 1 is an example constructed by the above parameters, and based on the Equation 1, the corresponding resource allocation can be realized.
  • the PRB offset is the starting offset, and the PRB with the PRB index of 0 is less than or equal to The obtained value (this is to avoid overlapping of allocated PUCCH resources, if the overlap is allowed or the value of M is small, the maximum value of PRB offset is 109).
  • the range of PRBoffset can be obtained.
  • Equation 1 Taking rounding down is one of them, and the principle of rounding up or rounding up can also be used.
  • Q PRBs are calculated in the order of rule convention as the PRBs contained in each of the resources.
  • the system bandwidth is 20M, corresponding to a total of 110 PRBs, and the index value ranges from 0 to 109, and four candidate PUCCH resources are allocated to one UE, and each candidate PUCCH resource includes two PRBs, and two are required. PRB is continuous.
  • the base station configures the UE to use the entire system bandwidth, so the total number of PRBs is 110, and the index value ranges from 0 to 109, that is, the PRBall value is 109.
  • the value of the base station configuration Q is 2, and is sent to the UE through high layer signaling or physical layer signaling, or the convention is 2.
  • the Q value may be previously agreed to be 2; when the number of PRBs included in each candidate PUCCH resource required by the base station and the UE changes slowly, then The Q value can be configured through higher layer signaling.
  • the high-level signaling is configured with the value of the Q, but when the value of the Q needs to be adjusted temporarily, the base station can send the physical layer signaling re-allocation Q value to be valid at the time, and then still consider it to be a high-level.
  • the Q value of the signaling configuration is valid. Further, in the preferred embodiment 1, the base station and the UE agree on the directivity of Q, that is, when num is an odd number, the direction in which the Q is added to the PRB index is calculated, and the PRB included in each candidate PUCCH is calculated. When num is an even number, the Q-to-PRB index is used. The reduced direction calculates the PRBs contained in each candidate PUCCH.
  • the directionality of Q can be agreed in advance, and the directionality of Q is different, which will result in different allocation results.
  • the value of the base station configuration M is 4, and is sent to the UE through high layer signaling or physical layer signaling, or the agreement is 4.
  • the M value can be pre-agreed to 4; when the number of candidate PUCCH resources required by the UE changes slowly, the M value can be configured through higher layer signaling.
  • the following manner may also be adopted, for example, the M value is configured in the high layer signaling, but when the adjustment is temporarily needed, the base station can send the physical layer signaling reconfiguration M value to be valid at the time, and then still consider the high layer signaling configuration. The M value is valid.
  • the value of the PRBoffset is set to 2, and is sent to the UE through high layer signaling or physical layer signaling. Less than or equal to The resulting value.
  • the number corresponding to the M candidate PUCCH resources is num, and the corresponding values are 0, 1, 2, and 3.
  • the candidate PUCCH resources may always be allocated from the two ends of the system bandwidth, and the PRB index of each candidate PUCCH resource is directly notified, which has the advantage of small overhead, and the number of PRBs included in each candidate PUCCH resource is adjusted. And location is more flexible.
  • the effective number of bits of the PUCCH is being considered in the NR.
  • the effective bit number of the PUCCH channel bearer varies widely.
  • the effective bit variation range is: the short PUCCH bit is 1 to 64 bits, and the length is long.
  • the PUCCH bit is 1 to 640 bits, and the change in the number of bits is dynamic. If this proposal is adopted by NR, in order to support such a large effective bit variation range, it is difficult to achieve it purely by multiplexing. Therefore, it is necessary to dynamically increase PUCCH resources. How to dynamically increase it?
  • the base station can dynamically change the PUCCH resource size of the UE in each scheduling unit as long as the base station dynamically configures the value of the Q, for example, using the downlink control information DCI of the scheduling data to carry the Q.
  • the parameters using physical layer signaling described in this document can all be used with DCI bearers. For example, if the PUCCH of the UE in the scheduling unit n requires 2 PRBs, then the base station configures the Q value to be 2 in the DCI in the scheduling unit n, and the PUCCH of the UE needs 10 PRBs in the next scheduling unit n, then the base station is in the scheduling unit n+
  • the Q value in the DCI of 1 is 10.
  • the size of each candidate PUCCH resource cannot be dynamically modulated, mainly because the effective number of bits of its PUCCH is basically fixed, so there is no need to adjust the resource size.
  • the PUSCH and the short PUCCH frequency division multiplexing are supported (the short PUCCH is the PUCCH transmitted in several symbols before the end of the scheduling unit or the uplink data, and the typical symbol number is 1 symbol), in order to enable the UE to clear the system.
  • the candidate PUCCH resource allocation method may also be regarded as a PRB resource allocation, which can be used for PRB allocation for other purposes. For example, if a UE needs 2 PRBs, you can implement different PRB allocation patterns by configuring the values of related parameters.
  • the base station is each candidate PUCCH resource obtained by the non-equation 1 method (the number of PRBs per candidate PUCCH resource is one), for example, in the LTE system, the base station notifies each candidate PUCCH resource.
  • the initial PRB index is given to the UE, for example, by high layer signaling or physical layer signaling.
  • consecutive P PRBs are adopted as each PUCCH candidate resource from the starting PRB index.
  • P can be dynamically configured by the base station and sent to the UE, such as a DCI bearer.
  • the base station and the UE stipulate that, on the basis of the PRB of each candidate PUCCH resource that has been allocated, P (PRs) are added in order (in the direction of increasing or decreasing the index) as the PRB of the current candidate PUCCH resource.
  • P can be directly notified or implicitly notified.
  • P describes the additional number of PRBs that need to be added this time.
  • the total required PRB is allocated by using Equation 1, and the obtained PRBCH resource is re-divided into the candidate PUCCH resource.
  • Equation 1 on the basis of Equation 1, if each candidate PUCCH resource includes Q1 PRBs, assuming that the M1 candidate PUCCH resources are configured, the total number of PRBs to be allocated is Q1xM1.
  • the above equation 1 is used to allocate Q1xM1 PRBs.
  • the meaning of some parameters in the corresponding Equation 1 will change. For example, M, Q, and PRBnum will change their meanings (or it can be understood that the PRB is temporarily allocated according to the original meaning, and finally the sub-PUB belongs to the candidate PUCCH resource that needs to be re-divided again).
  • these three parameters can be regarded as three intermediate variable parameters. The rest of the parameters have the same meaning.
  • each resource contains 2 discrete PRBs.
  • the 8 PRBs are re-divided into PRBs of resources of each candidate PUCCH, and sent to the UE, and the UE is agreed to use Equation 1 to calculate the parameter PRBnum.
  • the PRBnum corresponding to the num is even and odd. It can also be only an even or odd number).
  • the four candidate PUCCH resources allocated to the UE at this time are: PRB index is 2,107; PRB index is 15,94; PRB index is 28,81; PRB index is 41,68.
  • Equation 1 on the basis of Equation 1, if each candidate PUCCH resource includes Q1 PRBs, assuming that the M1 candidate PUCCH resources are configured, the total number of PRBs to be allocated is Q1xM1.
  • the above equation 1 is used to allocate Q1xM1 PRBs.
  • the meaning of some parameters in the corresponding Equation 1 will change. For example, M, Q, and PRBnum will change their meanings (or it can be understood that the PRB is temporarily allocated according to the original meaning, and finally the sub-PUB belongs to the candidate PUCCH resource that needs to be re-divided again).
  • these three parameters can be regarded as three intermediate variable parameters. The rest of the parameters have the same meaning.
  • each resource contains 2 discrete PRBs.
  • the 8 PRBs are re-divided into PRBs of resources of each candidate PUCCH, and sent to the UE, and the UE is agreed to use Equation 1 to calculate the parameter PRBnum.
  • each of the candidate PUCCH resources agreed by the base station and the UE includes num (in the middle of the variant)
  • the num in the process, ie 0, 1) is an PRB of even and odd PRBnum (which may also be only an even or an odd number).
  • the Q PRBs in each candidate PUCCH resource are obtained from the PRBnum corresponding candidate PUCCH resources obtained in the above Equation 1.
  • the first of the PRBnum 0
  • the four candidate PUCCH resources allocated to the UE at this time are: the PRB index is 2,107; the PRB index is 3,106; the PRB index is 4,105; and the PRB index is 5,104.
  • FIG. 15 is a schematic diagram of subband resource allocation according to an embodiment.
  • FIG. 15 illustrates a case where a resource allocation by a base station is only a part of a system bandwidth, such as a subband, or a plurality of subbands. For example, a 100M system bandwidth is divided into five 20M subbands that can allocate resources within one or more subbands.
  • the PRBs in the sub-bands may be renumbered and allocated according to the method in the above embodiment.
  • the value of the parameter in the foregoing embodiment is equivalently increased to a constant value, and the constant value is a minimum PRB index value of the subband in which the subband is located.
  • the base station may allocate a corresponding sub-band to the UE, and according to the convention, use the foregoing embodiment to perform resource allocation in the sub-band.
  • the subband allocated by the base station to the UE is a continuous plurality of subbands, it can be regarded as a subband for processing.
  • the PRBs in the multiple subbands are renumbered and then treated as a subband for processing.
  • An embodiment provides a method for indicating a candidate resource (for example, a PUCCH candidate resource), where the method is used for transmitting downlink data in a time slot (or a subframe, etc.), but in which a UE sends uplink data. Or controlled resources.
  • a candidate resource for example, a PUCCH candidate resource
  • the method is used for transmitting downlink data in a time slot (or a subframe, etc.), but in which a UE sends uplink data.
  • controlled resources Generally, there is downlink control information at the beginning of the time slot, and the downlink control information may be used to schedule downlink data in the time slot. The downlink data in the time slot may also be scheduled by downlink control information in a previous time slot. ). If there are multiple candidate resources in the time slot, and the candidate resource in the time slot is to be used by the UE, the base station can transmit the downlink data corresponding to the UE in the time slot.
  • downlink grant information to indicate to the UE the candidate resources used by the UE in the slot.
  • the downlink control information is sent in the time slot, that is, the candidate resource used by the UE in the time slot is indicated in the time slot.
  • the downlink data corresponding to the downlink control information of the candidate resource used by the UE in the time slot is transmitted in the time slot (downlink control information may be sent in a previous time slot).
  • the uplink time slot starts with downlink control information (for uplink data scheduling or downlink data scheduling for time slots), and then an uplink data transmission portion and an uplink control region.
  • the base station can send signaling indicating the candidate resource to the UE in the downlink control information of the time slot, which is the uplink grant information for scheduling the uplink data. That is, the UE receives the uplink grant information in the time slot, and schedules the uplink data, and also obtains the candidate resource information used in the time slot.
  • the downlink control information is not sent in the time slot as the uplink data scheduling. If the used candidate resource is carried by the downlink control information scheduled for the uplink data, the UE may not receive the signaling indicating the candidate resource used in the time slot.
  • the plurality of modules or steps in the above embodiments may be implemented by a general purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • a plurality of modules or steps may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different.
  • the steps shown or described herein are performed sequentially, or they are separately fabricated into a plurality of integrated circuit modules, or a plurality of the modules or steps are fabricated into a single integrated circuit module.
  • the parameter transmission, the resource determination method and device, the base station and the terminal solve the problem that the candidate resource and the transmission bit do not match in the related art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种参数发送方法包括:确定第一指定参数和第二指定参数中至少之一,其中,第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,以及预定候选信道资源包括为所述终端预先配置的一份或多份候选信道资源;以及通过第一信令将第一指定参数和第二指定参数中至少之一发送给终端。还公开了一种参数发送装置、资源确定方法、资源确定装置、基站和终端。

Description

参数发送、资源确定方法及装置、基站和终端 技术领域
本公开涉及通信领域,例如,涉及一种参数发送、资源确定方法及装置、基站和终端。
背景技术
新一代移动通信系统(New Radio,NR)正在被研究,能够确定的NR系统中,将存在3种业务。3种业务包括:增强移动带宽(enhanced Mobile BroadBand,eMBB)、高可靠低时延传输(Ultra-Reliable and Low Latency Communications,URLLC)和海量机器类通信(massive Machine Type Communications,mMTC)。这些业务对于时延、覆盖和可靠性等要求不相同。例如,eMBB要求高的峰值传输速率,对时延的要求不高(低时延没有需求),可靠性中等要求。URLLC要求低时延、高可靠性传输,对于时延要求非常苛刻。mMTC要求大量终端,连接密度大和要求更大的传输覆盖,对时延要求低。
NR系统中仍然使用物理资源块(Physical Resource Block,PRB)进行资源分配。一个PRB频域包括12个子载波,时域包含的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号数未定。假设时域包含的符号的符号数与所在的调度单元(例如时隙(slot),也可以看做是一个调度单元)包含的OFDM符号数相同。
发明内容
提供了一种参数发送、资源确定方法及装置、基站和终端,能够解决相关技术中候选资源与传输比特之间不匹配的问题。
一种参数发送方法,包括:
确定第一指定参数和第二指定参数中至少之一,其中,所述第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,所述第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,以及所述预定候选信道资源包括为所述终端预先配置的一份或多份候选信道资源;以及
通过第一信令将所述第一指定参数和所述第二指定参数中的至少之一发送给所述终端。
一实施例中,所述一份或多份所述候选信道资源满足以下至少之一:
所述一份或多份候选信道资源包含固定的资源数量,以及
所述一份或多份候选信道资源为所述终端上一次数据传输所配置的一份或多份候选信道资源。
一实施例中,在确定第一指定参数和第二指定参数中至少之一时,所述方法还包括:
从所述一份或多份候选信道资源中选择一份候选信道资源作为所述预定候选信道资源;以及
通过第二信令将所述预定候选信道资源发送给所述终端;其中,所述第一信令和所述第二信令相同或不同。
一实施例中,在所述从所述一份或多份候选信道资源中选择一份候选信道资源作为所述预定候选信道资源之后,所述方法还包括:
根据所述预定候选信道资源和所述第一指定参数确定接收所述终端数据的信道资源。
一实施例中,所述第一信令和所述第二信令中的至少之一为物理层信令。
一实施例中,所述资源数量的颗粒度为以下至少之一:
物理资源块PRB、正交频分复用OFDM符号以及子载波。
一实施例中,所述在预定候选信道资源的基础上增加或减少的资源数量满足以下至少之一:
在所述预定候选信道资源包含的多个PRB连续的情况下,在所述预定候选信道资源的基础上增加或减少的PRB与所述预定候选信道资源的PRB连续;
在所述预定候选信道资源所包含的多个PRB的编号连续的情况下,在所述预定候选信道资源的基础上增加或减少的PRB的编号与所述预定候选信道资源的PRB的编号连续;
在所述预定候选信道资源所包含的多个PRB离散的情况下,在所述预定候 选信道资源的基础上增加或减少的PRB与所述预定候选信道资源中的指定PRB连续;以及
在所述预定候选信道资源所包含的多个PRB的编号离散的情况下,在所述预定候选信道资源的基础上增加或减少的PRB的编号与所述预定候选信道资源中的指定PRB的编号连续。
一实施例中,所述候选信道资源用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI;以及所述终端数据为PUCCH信道中的数据或者UCI。
一种参数发送方法,包括:
配置用于确定为终端分配的信道资源的第一参数;其中,所述第一参数包括以下至少之一:用于确定所述信道资源的起始物理资源块PRB索引的第二参数,以及所述信道资源包含的PRB数量;以及
将所述第一参数发送给终端。
一实施例中,在所述第一参数包括所述PRB数量的情况下,所述第二参数为与所述终端预先约定的;以及
在所述第一参数包括所述第二参数的情况下,所述PRB数量为与所述终端预先约定的。
一实施例中,所述第二参数包括以下三个变量中的至少之一:
待分配资源中的PRB的最大索引,相对于所述待分配资源中的PRB的最小索引的偏移量,以及需要分配的信道资源的份数;
其中,对于所述三个变量,如果存在变量未被所述第二参数包括,则未被所述第二参数包括的变量的取值为与所述终端预先约定的。
一实施例中,所述信道资源的起始物理资源块PRB索引通过以下之一预定规则确定:
Figure PCTCN2017120313-appb-000001
Figure PCTCN2017120313-appb-000002
以及
Figure PCTCN2017120313-appb-000003
其中,所述PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于所述待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
Figure PCTCN2017120313-appb-000004
为向下取整函数,
Figure PCTCN2017120313-appb-000005
为向上取整函数,round()为四舍五入函数,mod为求余运算。
一实施例中,在配置用于确定为所述终端分配的信道资源的第一参数之后,所述方法还包括:
根据所述起始PRB索引和所述PRB数量确定所述信道资源包含的PRB。
一实施例中,根据所述起始PRB索引和所述PRB数量确定所述信道资源包含的PRB包括:
在待分配资源中,以所述起始PRB索引对应的PRB作为起点,向PRB索引增加或减少的方向确定N个PRB作为所述信道资源所包含的PRB,其中,N为所述PRB数量。
一实施例中,所述向PRB索引增加或减少的方向确定N个PRB作为所述信道资源所包含的PRB包括:
根据所述信道资源的编号确定用于确定所述信道资源所包含的PRB的方式,其中,所述方式包括:按照PRB索引增加的方向确定,按照PRB索引减少的方向确定;其中,在所述信道资源的编号为奇数时,按照PRB索引增加的方向确定所述信道资源所包含的PRB;以及在所述信道资源的编号为偶数时,按照PRB索引减少的方向确定所述信道资源所包含的PRB。
一实施例中,在所述待分配资源为整个系统带宽的部分子带时,所述PRB all用于表示所述部分子带内所有的PRB重新编号后的最大索引。
一实施例中,所述PRB数量通过以下至少一种信令配置:
预先约定,高层信令以及物理层信令。
一实施例中,在基站和所述终端总是要求信道资源包含固定的PRB时,采用所述预先预定方式配置所述PRB数量;
在所述基站和所述终端要求所述信道资源包含的PRB变化时,通过高层信令配置所述PRB数量;以及
在通过所述高层信令配置所述PRB数量后,通过物理层信令重配本次数据传输需要的所述PRB数量,其中,在本次数据传输之后仍然采用所述高层信令配置的所述PRB数量。
一实施例中,所述M通过以下至少一种信令配置:
预先约定,高层信令以及物理层信令。
一实施例中,所述的方法,还包括:
在基站和所述终端总是要求分配固定份数的信道资源时,采用所述预先预定方式配置所述M;
在所述基站和所述终端要求分配的资源的份数发生变化时,通过高层信令配置所述M;以及
在通过所述高层信令配置所述M后,通过物理层信令重配本次需要的M取值,其中,在本次数据传输之后仍然采用所述高层信令配置的所述M。
一实施例中,在配置多份信道资源的情况下,按照PRB offset的值从小到大的顺序进行配置。
一实施例中,所述发送所述第一参数至终端包括:
通过广播或约定方式发送所述第一参数发送至终端。
一实施例中,所述信道资源用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI。
一种资源确定方法,包括:
通过第一信令接收第一指定参数和第二指定参数中的至少之一;其中,所 述第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,所述第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,以及所述预定候选信道资源包括基站为终端预先配置的一份或多份候选信道资源;
根据所述第一指定参数和所述第二指定参数中的至少之一确定所述终端数据传输需要的信道资源。
一实施例中,所述一份或多份所述候选信道资源满足以下至少之一:
所述一份或多份候选信道资源包含固定的资源数量;以及
所述一份或多份候选信道资源为所述终端上一次数据传输所配置的一份或多份候选信道资源。
一实施例中,所述的方法,还包括:通过第二信令接收所述预定候选信道资源;其中,所述预定候选信道资源为所述基站从为所述终端预先配置的一份或多份候选信道资源中选择的一份候选信道资源,所述第一信令和所述第二信令不同或相同。
一实施例中,所述第一信令和所述第二信令中的至少之一为物理层信令。
一实施例中,所述资源数量的颗粒度为以下至少之一:
物理资源块PRB、正交频分复用OFDM符号以及子载波。
一实施例中,所述在预定候选信道资源的基础上增加或减少的资源数量满足以下至少之一:
在所述预定候选信道资源包含的多个PRB连续的情况下,在所述预定候选信道资源的基础上增加或减少的PRB与所述预定候选信道资源的PRB连续;
在所述预定候选信道资源所包含的多个PRB的编号连续的情况下,在所述预定候选信道资源的基础上增加或减少的PRB的编号与所述预定候选信道资源的PRB的编号连续;
在所述预定候选信道资源所包含的多个PRB离散的情况下,在所述预定候选信道资源的基础上增加或减少的PRB与所述预定候选信道资源中的指定PRB连续;以及
在所述预定候选信道资源所包含的多个PRB的编号离散的情况下,在所述预定候选信道资源的基础上增加或减少的PRB的编号与所述预定候选信道资源中的指定PRB的编号连续。
一实施例中,所述候选信道资源用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI;所述数据为PUCCH信道中的数据或者UCI。
一种资源确定方法,包括:
接收第一参数,其中,所述第一参数包括以下至少之一:用于确定为终端分配的信道资源的起始物理资源块PRB索引的第二参数,以及所述信道资源包含的PRB数量;
根据所述第二参数按照预定规则确定所述信道资源的PRB索引;以及
根据所述起始PRB索引和所述PRB数量确定所述信道资源包含的PRB。
一实施例中,在所述第一参数包括所述PRB数量的情况下,所述第二参数为与所述终端预先约定的;以及在所述第一参数包括所述第二参数的情况下,所述PRB数量为与所述终端预先约定的。
一实施例中,所述第二参数包括以下三个变量的至少之一:
待分配资源中的PRB的最大索引,相对于所述待分配资源中的PRB的最小索引的偏移量,以及需要分配的信道资源的份数;其中,对于所述三个变量,如果存在变量未被所述第二参数包括,则未被所述第二参数包括的变量的取值为与所述终端预先约定的。
一实施例中,所述预定规则包括以下至少之一:
Figure PCTCN2017120313-appb-000006
Figure PCTCN2017120313-appb-000007
以及
Figure PCTCN2017120313-appb-000008
其中,所述PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于所述待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
Figure PCTCN2017120313-appb-000009
为向下取整函数,
Figure PCTCN2017120313-appb-000010
为向上取整函数,round()为四舍五入函数,mod为求余运算。
一实施例中,在所述待分配资源为整个系统带宽的部分子带时,所述PRB all用于表示所述部分子带内所有的PRB重新编号后的最大索引。
一实施例中,根据所述起始PRB索引和所述PRB数量确定所述信道资源包含的PRB包括:
在待分配资源中,以所述起始PRB索引对应的PRB作为起点,向PRB索引增加或减少的方向确定N个PRB作为所述信道资源所包含的PRB,其中,N为所述PRB数量。
一实施例中,所述向PRB索引增加或减少的方向确定N个PRB作为所述信道资源所包含的PRB包括:
根据所述信道资源的编号确定用于确定所述信道资源所包含的PRB的方式,其中,所述方式包括:按照PRB索引增加的方向确定,按照PRB索引减少的方向确定;其中,在所述信道资源的编号为奇数时,按照PRB索引增加的方向确定所述信道资源所包含的PRB,在所述信道资源的编号为偶数时,按照PRB索引减少的方向确定所述信道资源所包含的PRB。
一实施例中,所述PRB数量通过以下至少一种信令配置:
预先约定,高层信令,以及物理层信令。
一实施例中,在基站和所述终端总是要求信道资源包含固定的PRB时,采用所述预先预定方式配置所述PRB数量;
在所述基站和所述终端要求所述信道资源包含的PRB变化时,通过高层信令配置所述PRB数量;以及
在通过所述高层信令配置所述PRB数量后,通过物理层信令重配本次数据传输需要的所述PRB数量,其中,在本次数据传输之后仍然采用所述高层信令配置的所述PRB数量。
一实施例中,所述M通过以下至少一种信令配置:
预先约定,高层信令,以及物理层信令。
一实施例中,所述的方法,还包括,
在基站和所述终端总是要求分配固定份数的信道资源时,采用所述预先预定方式配置所述M;
在所述基站和所述终端要求分配的资源的份数发生变化时,通过高层信令配置所述M;以及
在通过所述高层信令配置所述M后,通过物理层信令重配本次需要的M取值,其中,在本次数据传输之后仍然采用所述高层信令配置的所述M。
一实施例中,所述的方法,还包括:
通过广播或约定方式接收所述第一参数。
一实施例中,所述信道资源用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI。
一种参数发送装置,包括:
确定模块,设置为确定第一指定参数和第二指定参数中至少之一,其中,所述第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,所述第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,以及所述预定候选信道资源包括为所述终端预先配置的一份或多份候选信道资源;以及
发送模块,设置为通过第一信令将所述第一指定参数和所述第二指定参数中的至少之一发送给所述终端。
一实施例中,所述一份或多份所述候选信道资源满足以下至少之一:
所述一份或多份候选信道资源包含固定的资源数量,以及
所述一份或多份候选信道资源为所述终端上一次数据传输所配置的一份或 多份候选信道资源。
一实施例中,所述的装置,还包括:选择模块,设置为在为终端配置了一份或多份候选信道资源后,从所述一份或多份候选信道资源中选择一份候选信道资源作为预定候选信道资源;
所述发送模块还设置为通过第二信令将所述预定候选信道资源发送给所述终端;其中,所述第一信令和所述第二信令相同或不同。
一实施例中,所述的装置,还包括:确定模块,设置为在从配置的所述一份或多份候选信道资源中选择一份候选信道资源作为预定候选信道资源之后,根据所述预定候选信道资源和所述第一指定参数确定接收所述终端数据的信道资源。
一种参数发送装置,包括:
配置模块,设置为配置用于确定为终端分配的信道资源的第一参数;其中,所述第一参数包括以下至少之一:用于确定所述信道资源的起始物理资源块PRB索引的第二参数,以及所述信道资源包含的PRB数量;以及
发送模块,设置为将所述第一参数发送给终端。
一实施例中,所述第二参数包括以下三个变量中的至少之一:
待分配资源中的PRB的最大索引,相对于所述待分配资源中的PRB的最小索引的偏移量,以及需要分配的信道资源的份数。
一实施例中,所述的装置,还包括:第一确定模块,设置为通过以下之一预定规则确定所述信道资源的起始物理资源块PRB索引:
Figure PCTCN2017120313-appb-000011
Figure PCTCN2017120313-appb-000012
以及
Figure PCTCN2017120313-appb-000013
其中,所述PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于所述待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
Figure PCTCN2017120313-appb-000014
为向下取整函数,
Figure PCTCN2017120313-appb-000015
为向上取整函数,round()为四舍五入函数,mod为求余运算。
一实施例中,所述的装置,还包括:第二确定模块,设置为在产生用于确定为所述终端分配的信道资源的第一参数之后,根据所述起始PRB索引和所述PRB数量确定所述信道资源包含的PRB。
一实施例中,所述第二确定模块,还设置为在待分配资源中,以所述起始PRB索引对应的PRB作为起点,向PRB索引增加或减少的方向确定N个PRB作为所述信道资源所包含的PRB,其中,N为所述PRB数量。
一实施例中,所述第二确定模块,还设置为根据所述信道资源的编号确定用于确定所述信道资源所包含的PRB的方式,其中,所述方式包括:按照PRB索引增加的方向确定,按照PRB索引减少的方向确定;其中,在所述信道资源的编号为奇数时,按照PRB索引增加的方向确定所述信道资源所包含的PRB,在所述信道资源的编号为偶数时,按照PRB索引减少的方向确定所述信道资源所包含的PRB。
一种资源确定装置,包括:
接收模块,设置为通过第一信令接收第一指定参数和第二指定参数中至少之一;其中,所述第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,所述第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,以及所述预定候选信道资源包括基站为所述终端预先配置的一份或多份所述候选信道资源;以及
确定模块,设置为根据所述第一指定参数和所述第二指定参数中的至少之一确定所述终端数据传输需要的信道资源。
一实施例中,所述一份或多份所述候选信道资源为以下至少之一:所述一份或多份候选信道资源包含固定的资源数量,以及所述一份或多份候选信道资源为所述终端上一次数据传输所配置的一份或多份候选信道资源。
一实施例中,所述接收模块,还设置为通过第二信令接收所述预定候选信道资源;其中,所述预定候选信道资源为基站从为终端预先配置的一份或多份候选信道资源中选择的一份候选信道资源,所述第一信令和所述第二信令不同或相同。
一种资源确定装置,包括:
接收模块,设置为接收第一参数,其中,所述第一参数包括以下至少之一:用于确定为终端分配的信道资源的起始物理资源块PRB索引的第二参数,以及所述信道资源包含的PRB数量;
第一确定模块,设置为根据所述第二参数按照预定规则确定所述信道资源的PRB索引;以及
第二确定模块,设置为根据所述起始PRB索引和所述PRB数量确定所述信道资源包含的PRB。
一实施例中,所述预定规则包括以下至少之一:
Figure PCTCN2017120313-appb-000016
Figure PCTCN2017120313-appb-000017
以及
Figure PCTCN2017120313-appb-000018
其中,所述PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引, PRB offset用于表示相对于所述待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
Figure PCTCN2017120313-appb-000019
为向下取整函数,
Figure PCTCN2017120313-appb-000020
为向上取整函数,round()为四舍五入函数,mod为求余运算。
一种基站,包括:
处理器,设置为确定第一指定参数和第二指定参数中至少之一,其中,所述第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,所述第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,所述预定候选信道资源包括为所述终端预先配置的一份或多份所述候选信道资源;以及通过第一信令将所述第一指定参数和所述第二指定参数中至少之一发送给所述终端;以及
存储器,与所述处理器耦接。
一实施例中,所述预一份或多份所述候选信道资源满足以下至少之一:
所述一份或多份候选信道资源包含固定的资源数量,以及
所述一份或多份候选信道资源为所述终端上一次数据传输所配置的一份或多份候选信道资源。
一实施例中,所述处理器,设置为在为终端配置了一份或多份候选信道资源后,从配置的所述一份或多份候选信道资源中选择一份候选信道资源作为预定候选信道资源;以及通过第二信令将所述预定候选信道资源发送给所述终端;其中,所述第一信令和所述第二信令相同或不同。
一实施例中,所述处理器还设置为在从配置的所述一份或多份候选信道资源中选择一份候选信道资源作为预定候选信道资源之后,根据所述预定候选信道资源和所述第一指定参数确定接收所述终端数据的信道资源。
一种基站,包括:
处理器,设置为配置用于确定为终端分配的信道资源的第一参数,其中,所述第一参数包括以下至少之一:用于确定所述信道资源的起始物理资源块PRB索引的第二参数,以及所述信道资源包含的PRB数量;以及将所述第一参数发送给终端;以及
存储器,与所述处理器耦接。
一实施例中,所述第二参数包括:
待分配资源中的PRB的最大索引,相对于所述待分配资源中的PRB的最小索引的偏移量,以及需要分配的信道资源的份数。
一实施例中,所述处理器设置为通过以下之一预定规则确定所述信道资源的起始物理资源块PRB索引:
Figure PCTCN2017120313-appb-000021
Figure PCTCN2017120313-appb-000022
以及
Figure PCTCN2017120313-appb-000023
其中,所述PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于所述待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
Figure PCTCN2017120313-appb-000024
为向下取整函数,
Figure PCTCN2017120313-appb-000025
为向上取整函数,round()为四舍五入函数,mod为求余运算。
一实施例中,所述处理器设置为在产生用于确定为所述终端分配的信道资源的第一参数之后,根据所述起始PRB索引和所述PRB数量确定所述信道资源包含的PRB。
一实施例中,所述处理器还设置为在待分配资源中,以所述起始PRB索引对应的PRB作为起点,向PRB索引增加或减少的方向确定N个PRB作为所述信道资源所包含的PRB,其中,N为所述PRB数量。
一实施例中,所述处理器还设置为根据所述信道资源的编号确定用于确定所述信道资源所包含的PRB的方式,其中,所述方式包括:按照PRB索引增加的方向确定,以及按照PRB索引减少的方向确定;其中,在所述信道资源的编 号为奇数时,按照PRB索引增加的方向确定所述信道资源所包含的PRB,在所述信道资源的编号为偶数时,按照PRB索引减少的方向确定所述信道资源所包含的PRB。
一种终端,包括:
处理器,设置为通过第一信令接收第一指定参数和第二指定参数中至少之一,其中,所述第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,所述第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,以及所述预定候选信道资源包括基站为所述终端预先配置的一份或多份所述候选信道资源;以及根据所述第一指定参数和所述第二指定参数中至少之一确定所述终端数据传输需要的信道资源;
存储器,与所述处理器耦接。
一实施例中,所述预定候选信道资源的一份或多份所述候选信道资源为以下至少之一:所述一份或多份候选信道资源包含固定的资源数量,以及所述一份或多份候选信道资源为所述终端上一次数据传输所配置的一份或多份候选信道资源。
一实施例中,所述处理器还设置为通过第二信令接收所述预定候选信道资源;其中,所述预定候选信道资源为基站从为终端预先配置的一份或多份候选信道资源中选择的一份候选信道资源,以及所述第一信令和所述第二信令不同或相同。
一种终端,包括:
处理器,设置为接收第一参数,其中,所述第一参数包括以下至少之一:用于确定为终端分配的信道资源的起始物理资源块PRB索引的第二参数,以及所述信道资源包含的PRB数量;根据所述第二参数按照预定规则确定所述信道资源的PRB索引;以及根据所述起始PRB索引和所述PRB数量确定所述信道资源包含的PRB;
存储器,与所述处理器耦接。
一实施例中,所述预定规则包括以下至少之一:
Figure PCTCN2017120313-appb-000026
Figure PCTCN2017120313-appb-000027
以及
Figure PCTCN2017120313-appb-000028
其中,所述PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于所述待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
Figure PCTCN2017120313-appb-000029
为向下取整函数,
Figure PCTCN2017120313-appb-000030
为向上取整函数,round()为四舍五入函数,mod为求余运算。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述方法。
一种终端,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行上述的方法。
一种基站,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行上述的方法。
附图说明
图1是根据一实施例的参数发送方法的流程示意图;
图2是根据另一实施例的参数发送方法的流程示意图;
图3是根据一实施例的移动终端的硬件结构框图;
图4是根据一实施例的资源确定方法的流程示意图;
图5是根据另一实施例的资源确定方法的流程示意图;
图6是根据一实施例的参数发送装置的结构框图;
图7是根据另一实施例的参数发送装置的结构框图;
图8是根据一实施例的资源确定装置的结构框图;
图9是根据另一实施例的资源确定装置的结构框图;
图10是根据一实施例的基站的结构框图;
图11是根据另一实施例的基站的结构框图;
图12是根据一实施例的终端的结构框图;
图13是根据另一实施例的终端的结构框图;
图14是根据一实施例的资源分配情况的示意图;以及
图15是根据一实施例的子带资源分配示意图。
具体实施方式
一个接收端(例如用户终端(User Equipment,UE))的上行控制信道(例如物理上行控制信道(Physical Uplink Control Channel,PUCCH))可以被配置多份候选资源,相关技术中配置的多份候选资源是固定的,因而在传输比特发生变化时会导致候选资源与传输比特不匹配。
说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
一实施例提供了一种参数发送方法,图1是根据本实施例的参数发送方法的流程示意图,如图1所示,该方法包括以下步骤。
步骤102中,确定第一指定参数和第二指定参数中至少之一,其中,第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,第 二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,以及预定候选信道资源包括为终端预先配置的一份或多份候选信道资源;
步骤104中,通过第一信令将第一指定参数和第二指定参数中至少之一发送给终端。
通过上述步骤,由于通过将第一指定参数和第二指定参数中至少之一发送给终端,其中,第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,使得终端可以实现在传输比特发生变化的时候,可以根据上述第一指定参数和第二指定参数中至少之一来调整资源,能够实现调整后的资源与传输比特的匹配,因此,可以解决相关技术中候选资源与传输比特之间不匹配的问题,实现了资源的动态分配。
一实施例中,上述预定候选信道资源的一份或多份候选信道资源可以满足以下至少之一:一份或多份候选信道资源包含固定的资源数量,一份或多份候选信道资源为终端上一次数据传输所配置的一份或多份候选信道资源。
一实施例中,上述固定的资源数量可以是默认值,也可以是按照实际情况预先设定的,但并不限于此。
在本一个实施例中,在执行上述步骤102时,上述方法还可以包括:从一份或多份候选信道资源中选择一份候选信道资源作为预定候选信道资源;以及通过第二信令将预定候选信道资源发送给终端;其中,第一信令和第二信令相同或不同。即上述预定候选信道资源可以与上述第一指定参数和第二指定参数中至少之一采用相同的信令或者不同的信令发送给终端。
一实施例中,在从一份或多份候选信道资源中选择一份候选信道资源作为预定候选信道资源之后,上述方法还可以包括:根预定候选信道资源和第一指定参数确定接收终端数据的信道资源。
一实施例中,上述第一信令和第二信令中的至少之一为物理层信令。一实施例中,上述物理层信令可以是下行控制信息DCI。
一实施例中,上述资源数量的颗粒度可以为以下至少之一:物理资源块PRB、正交频分复用OFDM符号,以及子载波。
一实施例中,增加或减少的资源数量满足以下至少之一:
在预定候选信道资源所包含的多个PRB连续的情况下,在预定候选信道资 源的基础上增加或减少的PRB与预定候选信道资源的PRB连续;
在预定候选信道资源所包含的多个PRB的编号连续的情况下,在预定候选信道资源的基础上增加或减少的PRB的编号与预定候选信道资源的PRB的编号连续;
在预定候选信道资源所包含的多个PRB离散的情况下,在预定候选信道资源的基础上增加或减少的PRB与预定候选信道资源中的指定PRB连续;以及
在预定候选信道资源所包含的多个PRB的编号离散的情况下,在预定候选信道资源的基础上增加或减少的PRB的编号与预定候选信道资源中的指定PRB的编号连续。
一实施例中,上述候选信道资源用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI,以及上述终端数据为PUCCH信道中的数据或者UCI。
上述实施例中步骤的执行主体可以是基站
一实施例提供了一种参数发送方法,图2是根据本实施例的参数发送方法的流程示意图,如图2所示,该方法包括以下步骤。
步骤202中,配置用于确定为终端分配的信道资源的第一参数;其中,第一参数包括以下至少之一:用于确定信道资源的起始物理资源块PRB索引的第二参数,以及信道资源包含的PRB数量。
步骤204中,将第一参数发送给终端。
通过上述步骤,由于通过将用于确定为终端分配的信道资源的第一参数发送给终端,使得终端可以根据第一参数来确定为终端分配的信道资源,能够实现资源的动态分配,可以解决相关技术中候选资源与传输比特之间不匹配的问题。
一实施例中,在第一参数包括PRB数量的情况下,第二参数为与终端预先约定的;以及在第一参数包括第二参数的情况下,PRB数量为与终端预先约定的。
一实施例中,第二参数或PRB数量为与终端预先约定的,可以表现为,上述第二参数或PRB数量为固定值,可以不再向终端发送上述第二参数或PRB数量。
一实施例中,上述第二参数包括以下三个变量中的至少之一:待分配资源中的PRB的最大索引,相对于待分配资源中的PRB的最小索引的偏移量,以及需要分配的信道资源的份数;其中,对于所述三个变量,如果存在变量未被所述第二参数包括,则未被所述第二参数包括的变量的取值为与所述终端预先约定的。
一实施例中,上述相对于待分配资源中的PRB的最小索引的偏移量可以与相对于待分配资源的PRB边界的偏移量等同。
一实施例中,上述信道资源的起始物理资源块PRB索引可以通过以下之一预定规则确定:
Figure PCTCN2017120313-appb-000032
以及
Figure PCTCN2017120313-appb-000033
其中,PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
Figure PCTCN2017120313-appb-000034
为向下取整函数,
Figure PCTCN2017120313-appb-000035
为向上取整函数,round()为四舍五入函数,mod为求余运算。
在一个实施例中,在上述步骤202之后,上述方法还可以包括:根据起始PRB索引和PRB数量确定信道资源包含的PRB,可以方便获知终端传输数据所使用的信道资源,进而可以更好的接收终端传输的数据。
一实施例中,根据起始PRB索引和PRB数量确定信道资源包含的PRB可以表现为:在待分配资源中,以起始PRB索引对应的PRB作为起点,向PRB索引增加或减少的方向确定N个PRB作为信道资源所包含的PRB,其中,N为PRB数量。
一实施例中,向PRB索引增加或减少的方向确定N个PRB作为信道资源所包含的PRB可以表现为以下方式:根据信道资源的编号确定用于确定信道资源所包含的PRB的方式,其中,方式包括:按照PRB索引增加的方向确定,按照PRB索引减少的方向确定;其中,在信道资源的编号为奇数时,按照PRB索引增加的方向确定信道资源所包含的PRB,以及在信道资源的编号为偶数时,按照PRB索引减少的方向确定信道资源所包含的PRB。
一实施例中,在待分配资源为整个系统带宽的部分子带时,PRB all用于表示部分子带内所有的PRB重新编号后的最大索引。
在一个实施例中,PRB数量可以通过以下至少一种信令配置:预先约定,高层信令,以及物理层信令。一实施例中,该物理层信令可以是下行控制信息(Downlink Control Information,DCI)。
一实施例中,在基站和终端总是要求信道资源包含固定的PRB时,采用预先预定方式配置PRB数量;在基站和终端要求信道资源包含的PRB变化时,通过高层信令配置PRB数量;在通过高层信令配置PRB数量后,通过物理层信令重配本次数据传输需要的PRB数量,其中,在本次数据传输之后仍然采用高层信令配置的PRB数量。
在一个实施例中,M可以通过以下至少一种信令配置:预先约定,高层信令,以及物理层信令。
一个实施例中,在基站和终端总是要求分配固定份数的信道资源时,采用预先预定方式配置M;在基站和终端要求分配的资源的份数发生变化时,通过高层信令配置M;在通过高层信令配置M后,通过物理层信令重配本次需要的M取值,其中,在本次数据传输之后仍然采用高层信令配置的M。
一个实施例中,在配置多份信道资源的情况下,按照PRB offset的值从小到大的顺序进行配置。一实施例中,在小的PRB offset对应的资源不能再分配给更多终端时,可以增加PRB offset,继续进行分配。
在一个实施例中,上述步骤204可以表现为:通过广播或约定方式将第一参数发送给终端。
一个实施例中,上述信道资源可以用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI。
上述实施例中步骤的执行主体可以是基站
上述方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。一实施例中,以上述方法运行在移动终端上为例,图3是本实施例的提供的移动终端的硬件结构框图。如图3所示,移动终端30可以包括一个或多个(图中仅示出一个)处理器302(处理器302可以包括微处理器(Microcontroller Unit,MCU)或可编程逻辑器件(Field-Programmable Gate Array,FPGA)等的处理装置)、设置为存储数据的存储器304、以及具有通信功能的传输装置306。图3所示的结构仅为示意,移动终端30还可包括比图3中所示更多或者更少的组件,或者具有与图3所示不同的配置。
存储器304可设置为存储应用软件的软件程序以及模块,如以下实施例中的资源确定方法对应的程序指令或模块,处理器302通过运行存储在存储器304内的软件程序以及模块,从而执行多种功能应用以及数据处理,即实现上述的方法。存储器304可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器304还可以包括相对于处理器302远程设置的存储器,这些远程存储器可以通过网络连接至移动终端30。上述网络的实例包括互联网、企业内部网、局域网、移动通信网及其组合。
传输装置306设置为经由一个网络接收或者发送数据。上述的网络实例可包括移动终端30的通信供应商提供的无线网络。在一个实例中,传输装置306包括一个网络适配器(Network Interface Controller,NIC),NIC可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置306可以为射频(Radio Frequency,RF)模块,RF模块用于通过无线方式与互联网进行通讯。
在一实施例中提供了一种运行于上述移动终端的资源确定方法,图4是根据本实施例提供的资源确定方法的流程示意图,如图4所示,该方法包括以下步骤。
步骤402中,通过第一信令接收第一指定参数和第二指定参数中至少之一;其中,第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,以及预定候选信道资源包括基站为终端预先配置的一份或多份候选信道资源。
步骤404中,根据第一指定参数和第二指定参数中至少之一确定终端数据传输需要的信道资源。
通过上述步骤,由于通过接收第一指定参数和第二指定参数中至少之一,其中,第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,使得终端可以实现在传输比特发生变化的时候,可以根据上述第一指定参数和第二指定参数中至少之一来调整资源,能够实现调整后的资源与传输比特的匹配,因此,可以解决相关技术中候选资源与传输比特之间不匹配的问题,实现了资源的动态分配。
一实施例中,上述预定候选信道资源的一份或多份候选信道资源可以为以下至少之一:一份或多份候选信道资源包含固定的资源数量,一份或多份候选信道资源为终端上一次数据传输所配置的一份或多份候选信道资源。
在一个实施例中,上述资源确定方法还可以包括:通过第二信令接收预定候选信道资源;其中,预定候选信道资源为基站从为终端预先配置的一份或多份候选信道资源中选择的一份候选信道资源,第一信令和第二信令不同或相同。
一实施例中,上述第一信令和第二信令中的至少之一为物理层信令。一实施例中,上述物理层信令可以是下行控制信息DCI。
一实施例中,上述资源数量的颗粒度可以为以下至少之一:物理资源块PRB、正交频分复用OFDM符号以及子载波。
一实施例中,增加或减少的资源数量满足以下至少之一:
在预定候选信道资源所包含的多个PRB连续的情况下,在预定候选信道资源的基础上增加或减少的PRB与预定候选信道资源的PRB连续;
在预定候选信道资源所包含的多个PRB的编号连续的情况下,在预定候选信道资源的基础上增加或减少的PRB的编号与预定候选信道资源的PRB的编号连续;
在预定候选信道资源所包含的多个PRB离散的情况下,在预定候选信道资源的基础上增加或减少的PRB与预定候选信道资源中的指定PRB连续;以及
在预定候选信道资源所包含的多个PRB的编号离散的情况下,在预定候选信道资源的基础上增加或减少的PRB的编号与预定候选信道资源中的指定PRB的编号连续。
一实施例中,上述候选信道资源可以用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI;所述数据为PUCCH信道中的数据或者UCI。
资源确定方法中多个步骤的执行主体可以是终端,比如移动终端或计算机终端。
一实施例提供了应用于图3所示的终端的资源确定方法,图5是根据本实施例的资源确定方法的流程示意图,如图5所示,该方法包括以下步骤。
步骤502中,接收第一参数,其中,第一参数包括以下至少之一:用于确定为终端分配的信道资源的起始物理资源块PRB索引的第二参数,以及信道资源包含的PRB数量;根据第二参数按照预定规则确定信道资源的PRB索引。
步骤504中,根据起始PRB索引和PRB数量确定信道资源包含的PRB。
通过上述步骤,由于通过接收用于确定为终端分配的信道资源的第一参数,使得终端可以根据第一参数来确定为终端分配的信道资源,能够实现资源的动态分配,可以解决相关技术中候选资源与传输比特之间不匹配的问题。
一实施例中,在上述第一参数包括所述PRB数量的情况下,上述第二参数为与所述终端预先约定的;以及在所述第一参数包括所述第二参数的情况下,所述PRB数量为与所述终端预先约定的。
一实施例中,上述第二参数包括以下三个变量的至少之一:待分配资源中的PRB的最大索引,相对于所述待分配资源中的PRB的最小索引的偏移量,以及需要分配的信道资源的份数;其中,对于上述三个变量,如果存在变量未被所述第二参数包括,则未被所述第二参数包括的变量的取值为与所述终端预先约定的。
一实施例中,上述相对于待分配资源中的PRB的最小索引的偏移量可以与相对于待分配资源的PRB边界的偏移量等同。
一实施例中,预定规则包括以下至少之一:
Figure PCTCN2017120313-appb-000036
Figure PCTCN2017120313-appb-000037
以及
Figure PCTCN2017120313-appb-000038
其中,PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
Figure PCTCN2017120313-appb-000039
为向下取整函数,
Figure PCTCN2017120313-appb-000040
为向上取整函数,round()为四舍五入函数,mod为求余运算。
在一个实施例中,在待分配资源为整个系统带宽的部分子带时,PRB all用于表示部分子带内所有的PRB重新编号后的最大索引。
在一个实施例中,根据起始PRB索引和PRB数量确定信道资源包含的PRB包括:在待分配资源中,以起始PRB索引对应的PRB作为起点,向PRB索引增加或减少的方向确定N个PRB作为信道资源所包含的PRB,其中,N为PRB数量。
在一个实施例中,向PRB索引增加或减少的方向确定N个PRB作为信道资源所包含的PRB可以表现为:根据信道资源的编号确定用于确定信道资源所包含的PRB的方式,其中,方式包括:按照PRB索引增加的方向确定,按照PRB索引减少的方向确定;其中,在信道资源的编号为奇数时,按照PRB索引增加的方向确定信道资源所包含的PRB,在信道资源的编号为偶数时,按照PRB索引减少的方向确定信道资源所包含的PRB。
在一个实施例中,PRB数量通过以下至少一种信令配置:预先约定,高层信令以及物理层信令。
在一个实施例中,在基站和终端总是要求信道资源包含固定的PRB时,采用预先预定方式配置PRB数量;在基站和终端要求信道资源包含的PRB变化时,通过高层信令配置PRB数量;在通过高层信令配置PRB数量后,通过物理层信令重配本次数据传输需要的PRB数量,其中,在本次数据传输之后仍然采用高层信令配置的PRB数量。
在一个实施例中,M可以通过以下至少一种信令配置:预先约定,高层信令,以及物理层信令。
在一个实施例中,在基站和终端总是要求分配固定份数的信道资源时,采 用预先预定方式配置M;在基站和终端要求分配的资源的份数发生变化时,通过高层信令配置M;在通过高层信令配置M后,通过物理层信令重配本次需要的M取值,其中,在本次数据传输之后仍然采用高层信令配置的M。
在一个实施例中,上述方法还可以包括:通过广播或约定方式接收第一参数。
在一个实施例中,上述信道资源可用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI。
上述应用于图3所示的终端的资源确定方法中多个步骤的执行主体可以是终端,比如计算机终端和移动终端。
上述实施例的方法可借助软件加通用硬件平台的方式来实现,也可以通过硬件。上述技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟以及光盘等多种非暂态存储介质)中,包括一个或多个指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行上述多个实施例所述的方法。
一实施例提供了一种参数发送装置,图6是根据一实施例提供的参数发送装置的结构框图,如图6所示,该参数发送装置包括:确定模块62和发送模块64。
确定模块62,设置为确定第一指定参数和第二指定参数中至少之一,其中,第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,或者,第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量;其中,预定候选信道资源包括为终端预先配置的一份或多份候选信道资源。
发送模块64,与上述确定模块62连接,设置为通过第一信令将第一指定参数和第二指定参数中至少之一发送给终端。
通过上述参数发送装置,由于通过将第一指定参数和第二指定参数中至少之一发送给终端,其中,第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,使得终端可以实现在传输比特发生变化的时候,可以根据上述第一指定参数和第二指定参数中至少之一来调整资源,能够实现调整后的资源与传输比特的匹配,因此,可以解决相关技术中候选资源与传输比特之 间不匹配的问题,实现了资源的动态分配。
一实施例中,上述预定候选信道资源的一份或多份候选信道资源可以为以下至少之一:一份或多份候选信道资源包含固定的资源数量,一份或多份候选信道资源为终端上一次数据传输所配置的一份或多份候选信道资源。
一实施例中,上述固定的资源数量可以是默认值,也可以是按照情况预先设定的。
在一个实施例中,上述参数发送装置还可以包括:选择模块66。选择模块66与上述发送模块64连接,设置为从配置的一份或多份候选信道资源中选择一份候选信道资源作为预定候选信道资源。上述发送模块64还可以设置为通过第二信令将预定候选信道资源发送给终端;其中,第一信令和第二信令相同或不同。
在一个实施例中,上述装置还可以包括:确定模块68。确定模块68,与上述选择模块66连接,设置为在从配置的一份或多份候选信道资源中选择一份候选信道资源作为预定候选信道资源之后,根据预定候选信道资源和第一指定参数确定接收终端数据的信道资源。
一实施例中,上述第一信令和第二信令中至少之一为物理层信令,上述物理层信令可以是下行控制信息DCI。
一实施例中,上述资源数量的颗粒度可以为以下至少之一:物理资源块PRB、正交频分复用OFDM符号以及子载波。
一实施例中,增加或减少的资源数量满足以下至少之一条件:
在预定候选信道资源所包含的多个PRB连续的情况下,在预定候选信道资源的基础上增加或减少的PRB与预定候选信道资源的PRB连续;
在预定候选信道资源所包含的多个PRB的编号连续的情况下,在预定候选信道资源的基础上增加或减少的PRB的编号与预定候选信道资源的PRB的编号连续;
在预定候选信道资源所包含的多个PRB离散的情况下,在预定候选信道资源的基础上增加或减少的PRB与预定候选信道资源中的指定PRB连续;以及
在预定候选信道资源所包含的多个PRB的编号离散的情况下,在预定候选信道资源的基础上增加或减少的PRB的编号与预定候选信道资源中的指定PRB的编号连续。
一实施例中,上述候选信道资源用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息(Uplink Control Information,UCI),上述数据为PUCCH信道中的数据或者UCI。
上述参数发送装置可以位于基站中。
一实施例中,上述多个模块是可以通过软件或硬件来实现的,硬件实现方式中,上述多个模块均位于同一处理器中;或者,上述多个模块以任意组合的形式分别位于不同的处理器中。
一实施例提供了一种参数发送装置,图7是根据本实施例提供的参数发送装置的结构框图,如图7所示,该参数发送装置包括:配置模块72和发送模块74。
配置模块72,设置为配置用于确定为终端分配的信道资源的第一参数;其中,第一参数包括以下至少之一:用于确定信道资源的起始物理资源块PRB索引的第二参数,信道资源包含的PRB数量。
发送模块74,与上述配置模块72连接,设置为将第一参数发送给终端。
通过上述发送装置,将用于确定为终端分配的信道资源的第一参数发送给终端,使得终端可以根据第一参数来确定为终端分配的信道资源,能够实现资源的动态分配,可以解决相关技术中候选资源与传输比特之间不匹配的问题。
一实施例中,在第一参数包括PRB数量的情况下,第二参数为与终端预先约定的;在第一参数包括第二参数的情况下,PRB数量为与终端预先约定的。
一实施例中,第二参数或PRB数量为与终端预先约定的,可以表现为,上述第二参数或PRB数量为固定值,不需要再向终端发送上述第二参数或PRB数量。
一实施例中,上述第二参数包括以下三个变量的至少之一:待分配资源中的PRB的最大索引,相对于待分配资源中的PRB的最小索引的偏移量,需要分配的信道资源的份数;其中,对于所述三个变量,如果存在变量未被所述第二参数包括,则未被所述第二参数包括的变量的取值为与所述终端预先约定的。
一实施例中,上述相对于待分配资源中的PRB的最小索引的偏移量可以与相对于待分配资源的PRB边界的偏移量等同。
在一个实施例中,上述装置还可以包括:第一确定模块76。第一确定模块76,与上述配置模块72连接,设置为通过以下之一预定规则确定信道资源的起 始物理资源块PRB索引:
Figure PCTCN2017120313-appb-000041
其中,PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
Figure PCTCN2017120313-appb-000042
为向下取整函数,
Figure PCTCN2017120313-appb-000043
为向上取整函数,round()为四舍五入函数,mod为求余运算。
在一个实施例中,上述装置还可以包括:第二确定模块78。第二确定模块78与上述配置模块72连接,设置为在配置用于确定为终端分配的信道资源的第一参数之后,根据起始PRB索引和PRB数量确定信道资源包含的PRB。
一实施例中,上述第二确定模块78,还可以用于在待分配资源中,以起始PRB索引对应的PRB作为起点,向PRB索引增加或减少的方向确定N个PRB作为信道资源所包含的PRB,其中,N为PRB数量。
一实施例中,上述第二确定模块78,还可以用于根据信道资源的编号确定用于确定信道资源所包含的PRB的方式,其中,方式包括:按照PRB索引增加的方向确定,按照PRB索引减少的方向确定;其中,在信道资源的编号为奇数时,按照PRB索引增加的方向确定信道资源所包含的PRB,在信道资源的编号为偶数时,按照PRB索引减少的方向确定信道资源所包含的PRB。
一实施例中,向PRB索引增加或减少的方向确定N个PRB作为信道资源所包含的PRB可以表现为以下方式,但并不限于此:根据信道资源的编号确定用于确定信道资源所包含的PRB的方式,其中,方式包括:按照PRB索引增加的方向确定,按照PRB索引减少的方向确定;其中,在信道资源的编号为奇数 时,按照PRB索引增加的方向确定信道资源所包含的PRB,在信道资源的编号为偶数时,按照PRB索引减少的方向确定信道资源所包含的PRB。
一实施例中,在待分配资源为整个系统带宽的部分子带时,PRB all用于表示部分子带内所有的PRB重新编号后的最大索引。
在一个实施例中,PRB数量可以通过以下至少一种信令配置:预先约定,高层信令,物理层信令。需要说明的是,该物理层信令可以是下行控制信息DCI。
一实施例中,在基站和终端总是要求信道资源包含固定的PRB时,采用预先预定方式配置PRB数量;在基站和终端要求信道资源包含的PRB变化时,通过高层信令配置PRB数量;在通过高层信令配置PRB数量后,通过物理层信令重配本次数据传输需要的PRB数量,其中,在本次数据传输之后仍然采用高层信令配置的PRB数量。
在一个实施例中,M可以通过以下至少一种信令配置:预先约定,高层信令,物理层信令。
一实施例中,在基站和终端总是要求分配固定份数的信道资源时,采用预先预定方式配置M;在基站和终端要求分配的资源的份数发生变化时,通过高层信令配置M;在通过高层信令配置M后,通过物理层信令重配本次需要的M取值,其中,在本次数据传输之后仍然采用高层信令配置的M。
一实施例中,在配置多份信道资源的情况下,按照PRB offset的值从小到大的顺序进行配置。需要说明的是,在小的PRB offset对应的资源不能再分配给更多终端时,才可以增加PRB offset,继续进行分配,但并不限于此。
在一个实施例中,上述发送模块74还设置为通过广播或约定方式将第一参数发送给终端。
一实施例中,上述信道资源可以用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI。
上述装置可以位于基站中。
一实施例中,上述多个模块是可以通过软件或硬件来实现的,硬件实现方式中,上述多个模块均位于同一处理器中;或者,上述多个模块以任意组合的形式分别位于不同的处理器中。
一实施例提供了一种资源确定装置,图8是根据本实施例提供的资源确定装置的结构框图,如图8所示,该装置包括:接收模块82和确定模块84。
接收模块82,设置为通过第一信令接收第一指定参数和第二指定参数中至少之一;其中,第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,或者,第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量;其中,预定候选信道资源包括基站为终端预先配置的一份或多份候选信道资源。
确定模块84,与上述接收模块82连接,设置为根据第一指定参数和第二指定参数中至少之一确定终端数据传输需要的信道资源。
通过上述资源确定装置,由于通过接收第一指定参数和第二指定参数中至少之一,其中,第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,使得终端可以实现在传输比特发生变化的时候,可以根据上述第一指定参数和第二指定参数中至少之一来调整资源,能够实现调整后的资源与传输比特的匹配,因此,可以解决相关技术中候选资源与传输比特之间不匹配的问题,实现了资源的动态分配。
一实施例中,上述预定候选信道资源的一份或多份候选信道资源可以为以下至少之一:一份或多份候选信道资源包含固定的资源数量,一份或多份候选信道资源为终端上一次数据传输所配置的一份或多份候选信道资源。
在一个实施例中,上述接收模块82,还可以设置为通过第二信令接收预定候选信道资源;其中,预定候选信道资源为基站从为终端预先配置的一份或多份候选信道资源中选择的一份候选信道资源,第一信令和第二信令不同或相同。
一实施例中,上述第一信令和第二信令中至少之一为物理层信令。资源确定,上述物理层信令可以是下行控制信息DCI。
一实施例中,上述资源数量的颗粒度可以为以下至少之一:物理资源块PRB、正交频分复用OFDM符号以及子载波。
一实施例中,增加或减少的资源数量满足以下至少之一:
在预定候选信道资源所包含的多个PRB连续的情况下,在预定候选信道资源的基础上增加或减少的PRB与预定候选信道资源的PRB连续;
在预定候选信道资源所包含的多个PRB的编号连续的情况下,在预定候选信道资源的基础上增加或减少的PRB的编号与预定候选信道资源的PRB的编号连续;
在预定候选信道资源所包含的多个PRB离散的情况下,在预定候选信道资源的基础上增加或减少的PRB与预定候选信道资源中的指定PRB连续;以及
在预定候选信道资源所包含的多个PRB的编号离散的情况下,在预定候选信道资源的基础上增加或减少的PRB的编号与预定候选信道资源中的指定PRB的编号连续。
一实施例中,上述候选信道资源可以用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI;所述数据为PUCCH信道中的数据或者UCI。
上述资源确定装置可以位于终端中,比如移动终端或计算机终端。
一实施例中,上述资源确定装置中的多个模块是可以通过软件或硬件来实现的,硬件实现方式中,上述多个模块均位于同一处理器中;或者,上述多个模块以任意组合的形式分别位于不同的处理器中。
一实施例提供了一种资源确定装置,图9是根据一实施例的资源确定装置的结构框图,如图9所示,该装置包括接收模块92、第一确定模块94和第二确定模块96。
接收模块92设置为接收第一参数,其中,第一参数包括以下至少之一:用于确定为终端分配的信道资源的起始物理资源块PRB索引的第二参数,信道资源包含的PRB数量。
第一确定模块94,与上述接收模块92连接,设置为根据第二参数按照预定规则确定信道资源的PRB索引。
第二确定模块96,与上述第一确定模块94连接,设置为根据起始PRB索引和PRB数量确定信道资源包含的PRB。
通过上述资源确定装置,由于通过接收用于确定为终端分配的信道资源的第一参数,使得终端可以根据第一参数来确定为终端分配的信道资源,能够实现资源的动态分配,同样可以解决相关技术中候选资源与传输比特之间不匹配的问题。
一实施例中,在上述第一参数包括所述PRB数量的情况下,上述第二参数为与所述终端预先约定的;在所述第一参数包括所述第二参数的情况下,所述PRB数量为与所述终端预先约定的。
一实施例中,上述第二参数包括以下三个变量的至少之一:待分配资源中的PRB的最大索引,相对于所述待分配资源中的PRB的最小索引的偏移量,需 要分配的信道资源的份数;其中,对于上述三个变量,如果存在变量未被所述第二参数包括,则未被所述第二参数包括的变量的取值为与所述终端预先约定的。
一实施例中,上述相对于待分配资源中的PRB的最小索引的偏移量可以与相对于待分配资源的PRB边界的偏移量等同。
一实施例中,上述预定规则可以包括以下至少之一:
Figure PCTCN2017120313-appb-000044
Figure PCTCN2017120313-appb-000045
以及
Figure PCTCN2017120313-appb-000046
其中,PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
Figure PCTCN2017120313-appb-000047
为向下取整函数,
Figure PCTCN2017120313-appb-000048
为向上取整函数,round()为四舍五入函数,mod为求余运算。
在一个实施例中,在待分配资源为整个系统带宽的部分子带时,PRB all用于表示部分子带内所有的PRB重新编号后的最大索引。
在一个实施例中,根据起始PRB索引和PRB数量确定信道资源包含的PRB包括:在待分配资源中,以起始PRB索引对应的PRB作为起点,向PRB索引增加或减少的方向确定N个PRB作为信道资源所包含的PRB,其中,N为PRB数量。
一实施例中,向PRB索引增加或减少的方向确定N个PRB作为信道资源所包含的PRB可以表现为:根据信道资源的编号确定用于确定信道资源所包含的PRB的方式,其中,方式包括:按照PRB索引增加的方向确定,按照PRB索引减少的方向确定;其中,在信道资源的编号为奇数时,按照PRB索引增加 的方向确定信道资源所包含的PRB,在信道资源的编号为偶数时,按照PRB索引减少的方向确定信道资源所包含的PRB。
在一个实施例中,PRB数量通过以下至少一种信令配置:预先约定,高层信令,物理层信令。
一实施例中,在基站和终端总是要求信道资源包含固定的PRB时,采用预先预定方式配置PRB数量;在基站和终端要求信道资源包含的PRB变化时,通过高层信令配置PRB数量;在通过高层信令配置PRB数量后,通过物理层信令重配本次数据传输需要的PRB数量,其中,在本次数据传输之后仍然采用高层信令配置的PRB数量。
在一个实施例中,M可以通过以下至少一种信令配置:预先约定,高层信令,物理层信令。
在一个实施例中,在基站和终端总是要求分配固定份数的信道资源时,采用预先预定方式配置M;在基站和终端要求分配的资源的份数发生变化时,通过高层信令配置M;在通过高层信令配置M后,通过物理层信令重配本次需要的M取值,其中,在本次数据传输之后仍然采用高层信令配置的M。
在一个实施例中,还可以包括:通过广播或约定方式接收第一参数。
在一个实施例中,上述信道资源可用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI。
在一个实施例中,上述装置可以位于终端中,比如计算机终端和移动终端等。
一实施例中,上述资源确定装置中的多个模块是可以通过软件或硬件来实现的,硬件实现方式中,上述多个模块均位于同一处理器中;或者,上述多个模块以任意组合的形式分别位于不同的处理器中。
一实施例提供了一种基站,图10是根据本实施例提供的基站的结构框图,如图10所示,包括:处理器1002和存储器1004。
处理器1002,设置为确定第一指定参数和第二指定参数中至少之一,其中,第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,或者,第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量;其中,预定候选信道资源包括为终端预先配置的一份或多份候选信道资源;以及用于通过第一信令将第一指定参数和第二指定参数中至少之一发送给终端。
存储器1004,与处理器1002耦接。
通过上述基站,由于通过将第一指定参数和第二指定参数中至少之一发送给终端,其中,第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,使得终端可以实现在传输比特发生变化的时候,可以根据上述第一指定参数和第二指定参数中至少之一来调整资源,能够实现调整后的资源与传输比特的匹配,因此,可以解决相关技术中候选资源与传输比特之间不匹配的问题,实现了资源的动态分配。
一实施例中,上述预定候选信道资源的一份或多份候选信道资源可以为以下至少之一:一份或多份候选信道资源包含固定的资源数量,一份或多份候选信道资源为终端上一次数据传输所配置的一份或多份候选信道资源。
一实施例中,上述固定的资源数量可以是默认值,也可以是预先设定的。
在一个实施例中,上述处理器1002,设置为从配置的一份或多份候选信道资源中选择一份候选信道资源作为预定候选信道资源;以及通过第二信令将预定候选信道资源发送给终端;其中,第一信令和第二信令相同或不同。
在一个实施例中,上述处理器1002,还可以设置为在从配置的一份或多份候选信道资源中选择一份候选信道资源作为预定候选信道资源之后,根据预定候选信道资源和第一指定参数确定接收终端数据的信道资源。
一实施例中,上述第一信令和/或第二信令为物理层信令,需要说明的是,上述物理层信令可以是下行控制信息DCI,但并不限于此。
一实施例中,上述资源数量的颗粒度可以为以下至少之一:物理资源块PRB、正交频分复用OFDM符号,子载波。
一实施例中,增加或减少的资源数量满足以下至少之一:
在预定候选信道资源所包含的多个PRB连续的情况下,在预定候选信道资源的基础上增加或减少的PRB与预定候选信道资源的PRB连续;
在预定候选信道资源所包含的多个PRB的编号连续的情况下,在预定候选信道资源的基础上增加或减少的PRB的编号与预定候选信道资源的PRB的编号连续;
在预定候选信道资源所包含的多个PRB离散的情况下,在预定候选信道资源的基础上增加或减少的PRB与预定候选信道资源中的指定PRB连续;以及
在预定候选信道资源所包含的多个PRB的编号离散的情况下,在预定候选信道资源的基础上增加或减少的PRB的编号与预定候选信道资源中的指定PRB的编号连续。
一实施例中,上述候选信道资源用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI;上述数据为PUCCH信道中的数据或者UCI。
一实施例提供了一种基站,图11是根据本实施例的基站的结构框图,如图11所示,基站包括:处理器1102和存储器1104。
处理器1102设置为配置用于确定为终端分配的信道资源的第一参数;其中,第一参数包括以下至少之一:用于确定信道资源的起始物理资源块PRB索引的第二参数,信道资源包含的PRB数量;以及用于将第一参数发送给终端。
存储器1104与处理器1102耦接。
通过上述基站,由于通过将用于确定为终端分配的信道资源的第一参数发送给终端,使得终端可以根据第一参数来确定为终端分配的信道资源,能够实现资源的动态分配,同样可以解决相关技术中候选资源与传输比特之间不匹配的问题。
一实施例中,在第一参数包括PRB数量的情况下,第二参数为与终端预先约定的;在第一参数包括第二参数的情况下,PRB数量为与终端预先约定的。
一实施例中,第二参数或PRB数量为与终端预先约定的,可以表现为,上述第二参数或PRB数量为固定值,不需要再向终端发送上述第二参数或PRB数量。
一实施例中,上述第二参数包括以下三个变量的至少之一:待分配资源中的PRB的最大索引,相对于待分配资源中的PRB的最小索引的偏移量,需要分配的信道资源的份数;其中,对于所述三个变量,如果存在变量未被所述第二参数包括,则未被所述第二参数包括的变量的取值为与所述终端预先约定的。
一实施例中,上述相对于待分配资源中的PRB的最小索引的偏移量可以与相对于待分配资源的PRB边界的偏移量等同,但并不限于此。
在一个实施例中,上述处理器1102,设置为通过以下之一预定规则确定信道资源的起始物理资源块PRB索引:
Figure PCTCN2017120313-appb-000049
其中,PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
Figure PCTCN2017120313-appb-000050
为向下取整函数,
Figure PCTCN2017120313-appb-000051
为向上取整函数,round()为四舍五入函数,mod为求余运算。
在一个实施例中,上述处理器1102,设置为在产生用于确定为终端分配的信道资源的第一参数之后,根据起始PRB索引和PRB数量确定信道资源包含的PRB。
一实施例中,上述处理器1102,还可以设置为在待分配资源中,以起始PRB索引对应的PRB作为起点,向PRB索引增加或减少的方向确定N个PRB作为信道资源所包含的PRB,其中,N为PRB数量。
一实施例中,上述处理器1102,还可以设置为根据信道资源的编号确定用于确定信道资源所包含的PRB的方式,其中,方式包括:按照PRB索引增加的方向确定,按照PRB索引减少的方向确定;其中,在信道资源的编号为奇数时,按照PRB索引增加的方向确定信道资源所包含的PRB,在信道资源的编号为偶数时,按照PRB索引减少的方向确定信道资源所包含的PRB。
一实施例中,向PRB索引增加或减少的方向确定N个PRB作为信道资源所包含的PRB可以表现为以下方式,但并不限于此:根据信道资源的编号确定用于确定信道资源所包含的PRB的方式,其中,方式包括:按照PRB索引增加的方向确定,按照PRB索引减少的方向确定;其中,在信道资源的编号为奇数时,按照PRB索引增加的方向确定信道资源所包含的PRB,在信道资源的编号 为偶数时,按照PRB索引减少的方向确定信道资源所包含的PRB。
一实施例中,在待分配资源为整个系统带宽的部分子带时,PRB all用于表示部分子带内所有的PRB重新编号后的最大索引。
在一个实施例中,PRB数量可以通过以下至少一种信令配置:预先约定,高层信令,物理层信令。一实施例中,该物理层信令可以是下行控制信息DCI。
一实施例中,在基站和终端总是要求信道资源包含固定的PRB时,采用预先预定方式配置PRB数量;在基站和终端要求信道资源包含的PRB变化时,通过高层信令配置PRB数量;在通过高层信令配置PRB数量后,通过物理层信令重配本次数据传输需要的PRB数量,其中,在本次数据传输之后仍然采用高层信令配置的PRB数量。
在一个实施例中,M可以通过以下至少一种信令配置:预先约定,高层信令,物理层信令。
一实施例中,在基站和终端总是要求分配固定份数的信道资源时,采用预先预定方式配置M;在基站和终端要求分配的资源的份数发生变化时,通过高层信令配置M;在通过高层信令配置M后,通过物理层信令重配本次需要的M取值,其中,在本次数据传输之后仍然采用高层信令配置的M。
一实施例中,在配置多份信道资源的情况下,按照PRB offset的值从小到大的顺序进行配置。需要说明的是,在小的PRB offset对应的资源不能再分配给更多终端时,才可以增加PRB offset,继续进行分配。
在一个实施例中,上述处理器1102还可以设置为通过广播或约定方式将第一参数发送给终端。
一实施例中,上述信道资源可以用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI。
一实施例提供了一种终端,图12是根据本发明实施例提供的终端的结构框图,如图12所示,包括:处理器1202和存储器1204。
处理器1202,设置为通过第一信令接收第一指定参数和第二指定参数中至少之一;其中,第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,或者,第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量;其中,预定候选信道资源包括基站为终端预先配置的一份或多份候选信道资源;以及用于根据第一指定参数和第二指定参数中至少之一 确定终端数据传输需要的信道资源。
存储器1204与上述处理器1202耦接。
通过上述终端,由于通过接收第一指定参数和第二指定参数中至少之一,其中,第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,使得终端可以实现在传输比特发生变化的时候,可以根据上述第一指定参数和第二指定参数中至少之一来调整资源,能够实现调整后的资源与传输比特的匹配,因此,可以解决相关技术中候选资源与传输比特之间不匹配的问题,实现了资源的动态分配。
一实施例中,上述预定候选信道资源的一份或多份候选信道资源可以为以下至少之一:一份或多份候选信道资源包含固定的资源数量,一份或多份候选信道资源为终端上一次数据传输所配置的一份或多份候选信道资源。
在一个实施例中,上述处理器1202,还可以设置为通过第二信令接收预定候选信道资源;其中,预定候选信道资源为基站从为终端预先配置的一份或多份候选信道资源中选择的一份候选信道资源,第一信令和第二信令不同或相同。
一实施例中,上述第一信令和/或第二信令为物理层信令。需要说明的是,上述物理层信令可以是下行控制信息DCI,但并不限于此。
一实施例中,上述资源数量的颗粒度可以为以下至少之一:物理资源块PRB、正交频分复用OFDM符号,子载波。
一实施例中,增加或减少的资源数量满足以下至少之一:
在预定候选信道资源所包含的多个PRB连续的情况下,在预定候选信道资源的基础上增加或减少的PRB与预定候选信道资源的PRB连续;
在预定候选信道资源所包含的多个PRB的编号连续的情况下,在预定候选信道资源的基础上增加或减少的PRB的编号与预定候选信道资源的PRB的编号连续;
在预定候选信道资源所包含的多个PRB离散的情况下,在预定候选信道资源的基础上增加或减少的PRB与预定候选信道资源中的指定PRB连续;以及
在预定候选信道资源所包含的多个PRB的编号离散的情况下,在预定候选信道资源的基础上增加或减少的PRB的编号与预定候选信道资源中的指定PRB的编号连续。
一实施例中,上述候选信道资源可以用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI;所述数据为PUCCH信道中的数据或者UCI。
一实施例提供了一种终端,图13是根据本实施例提供的终端的结构框图,如图13所示,包括:处理器1302和存储器1304。
处理器1302,设置为接收第一参数,其中,第一参数包括以下至少之一:用于确定为终端分配的信道资源的起始物理资源块PRB索引的第二参数,信道资源包含的PRB数量;设置为根据第二参数按照预定规则确定信道资源的PRB索引;以及设置为根据起始PRB索引和PRB数量确定信道资源包含的PRB;
存储器1304,与上述处理器1302耦接。
通过上述终端,由于通过接收用于确定为终端分配的信道资源的第一参数,使得终端可以根据第一参数来确定为终端分配的信道资源,能够实现资源的动态分配,可以解决相关技术中候选资源与传输比特之间不匹配的问题。
一实施例中,在上述第一参数包括所述PRB数量的情况下,上述第二参数为与所述终端预先约定的;在所述第一参数包括所述第二参数的情况下,所述PRB数量为与所述终端预先约定的。
一实施例中,上述第二参数包括以下三个变量的至少之一:待分配资源中的PRB的最大索引,相对于所述待分配资源中的PRB的最小索引的偏移量,需要分配的信道资源的份数;其中,对于上述三个变量,如果存在变量未被所述第二参数包括,则未被所述第二参数包括的变量的取值为与所述终端预先约定的。
一实施例中,上述相对于待分配资源中的PRB的最小索引的偏移量可以与相对于待分配资源的PRB边界的偏移量等同。
一实施例中,上述预定规则包括以下至少之一:
Figure PCTCN2017120313-appb-000052
Figure PCTCN2017120313-appb-000053
其中,PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
Figure PCTCN2017120313-appb-000054
为向下取整函数,
Figure PCTCN2017120313-appb-000055
为向上取整函数,round()为四舍五入函数,mod为求余运算。
在一个实施例中,在待分配资源为整个系统带宽的部分子带时,PRB all用于表示部分子带内所有的PRB重新编号后的最大索引。
在一个实施例中,上述处理器1302还可以用于在待分配资源中,以起始PRB索引对应的PRB作为起点,向PRB索引增加或减少的方向确定N个PRB作为信道资源所包含的PRB,其中,N为PRB数量。
一实施例中,上述处理器1302还可以用于根据信道资源的编号确定用于确定信道资源所包含的PRB的方式,其中,方式包括:按照PRB索引增加的方向确定,按照PRB索引减少的方向确定;其中,在信道资源的编号为奇数时,按照PRB索引增加的方向确定信道资源所包含的PRB,在信道资源的编号为偶数时,按照PRB索引减少的方向确定信道资源所包含的PRB。
在一个实施例中,PRB数量通过以下至少一种信令配置:预先约定,高层信令,物理层信令。
一实施例中,在基站和终端总是要求信道资源包含固定的PRB时,采用预先预定方式配置PRB数量;在基站和终端要求信道资源包含的PRB变化时,通过高层信令配置PRB数量;在通过高层信令配置PRB数量后,通过物理层信令重配本次数据传输需要的PRB数量,其中,在本次数据传输之后仍然采用高层信令配置的PRB数量。
在一个实施例中,M可以通过以下至少一种信令配置:预先约定,高层信令,物理层信令。
一实施例中,在基站和终端总是要求分配固定份数的信道资源时,采用预先预定方式配置M;在基站和终端要求分配的资源的份数发生变化时,通过高层信令配置M;在通过高层信令配置M后,通过物理层信令重配本次需要的M 取值,其中,在本次数据传输之后仍然采用高层信令配置的M。
在一个实施例中,上述处理器1302还通过广播或约定方式接收第一参数。
一实施例中,上述信道资源可用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI。
一实施例提供了一种存储介质,在本实施例中,上述存储介质可以被设置为存储用于执行上述实施例中任一方法的步骤的程序代码。
在一实施例中,上述存储介质可以包括但不限于:U盘、ROM、RAM、移动硬盘、磁碟或者光盘等多种可以存储程序代码的介质。
一实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例中的任一方法的步骤。
一实施例中,在NR系统中,提供一种PRB资源分配的方法,该方法可以为UE分配候选PUCCH资源,也可以用于其他方面的PRB资源分配。
一实施例提供了一种动态改变资源分配的方法,可由发送端执行,所述方法包括以下步骤。
步骤1中,当基站为UE通过高层信令配置了一份或多份候选PUCCH资源后,基站能通过引入参数来描述基于之前配置的候选PUCCH资源基础上,增加或减少的资源数量,并发送该参数给UE。一实施例中,上述之前配置的候选PUCCH资源相当于上述实施例中的预定候选信道资源。
在步骤2中,基于步骤1,所述增加或减少资源数量,基站在为UE从分配的候选PUCCH资源中指示使用的PUCCH资源(相当于上述实施例中从配置的一份或多份候选信道资源中选择的一份候选信道资源)时,同时或分别发送所述参数(相当于第一信令和第二信令相同或不同),指示为使用的PUCCH资源增加或减少的资源数量。
在步骤3中,基于步骤2,通过物理层信令指示使用的PUCCH资源和增加的资源数量。例如使用DCI。
在步骤4中,基于步骤1,所述增加或减少资源数量,基站发送所述参数指示在为UE分配的候选PUCCH资源增加或减少资源数量。
在步骤5中,基于步骤1,所述增加或减少的资源数量,其颗粒度以PRB计算,或者以OFDM符号数计算,或者以子载波计算,或者采用上述的2个或以上颗粒度同时描述。
在步骤6中,基于步骤1或步骤5,所述增加或减少的资源数量,其增加或减少的规则是事先约定的。所述规则包括下述之一:
每份候选PUCCH资源增加或减少PRB与原来分配每份候选PUCCH资源的PRB保持连续;以及
当每份候选PUCCH资源是离散时,则增加或减少PRB在原来每份候选PUCCH资源离散的基础上各自连续。
一实施例提供了一种动态改变资源分配的方法,由接收端执行,包括:
UE接收基站高层信令配置的一份或多份候选PUCCH资源,再接收基站通过物理层信令从候选PUCCH资源中为UE指示的使用的PUCCH资源,UE同时或分别接收基站发送的基于之前配置的候选PUCCH资源基础上,增加或减少的资源数量。
其他权项为发送端逆过程。
一实施例提供了一种资源分配使用方法和装置,可由发送端执行,包括:
基站根据下面参数按照约定规则进行资源分配。
其中参数包括:
PRB all,描述待分配的总的PRB数量最大索引(相当于上述实施例中的PRB all)。
PRB offset,描述相对于总的PRB的边界的偏移量(相当于上述实施例中的PRB offset)。
M,描述需要分配多少份资源(相当于上述实施例中的M)。
PRB num,分配的每份资源的起始PRB索引(相当于上述实施例中的PRB num)。num为每份资源的编号。
Q,每份资源中总的PRB数量(相当于上述实施例中的信道资源包含的PRB数量)。
其中,约定规则包括:
Figure PCTCN2017120313-appb-000056
PRB num被计算出后,然后按照规则计算Q个PRB作为每份资源包含的PRB。
2.基于1,所述PRB all,当待分配资源为整个系统带宽的部分子带时,PRB all 为所述部分子带内所有的PRB重新编号后的最大索引。
3.基于1,所述Q,为每一份资源包含的PRB数量,根据PRB num对应的PRB向着索引增加或减少的方向推算每份资源包含的PRB。
4.基于1,所述等式中的
Figure PCTCN2017120313-appb-000057
还可以采取向上取整或四舍五入的原则。
5.基于1,所述Q,基站配置Q的取值,并通过高层信令或物理层信令发送给UE;
或者,当基站和UE总是要求每份资源包含固定PRB时,那么Q取值被事先约定;
或者,当基站和UE要求每份资源包含的PRB数量是变化的时,则该Q取值通过高层信令配置。
或者,高层信令配置了Q取值,但是基站能够发送物理层信令重配Q取值为当次有效,之后仍然认为是高层信令配置的Q值有效。
6.基于1,所述Q,基站和UE约定Q的方向性,即当每份资源编号num为奇数时,Q向PRB索引增加的方向计算每份资源包含的PRB;编号num为偶数时,Q向PRB索引减少的方向计算每份资源包含的PRB。
7.基于1,所述M,基站配置M的取值,并通过高层信令或物理层信令发送给UE;
或者,当基站和UE总是要求分配固定份数的资源时,M取值被事先约定;
或者,当基站和UE要求资源的份数变化时,则该M取值通过高层信令配置;
或者,高层信令配置了M取值,但是基站能够发送物理层信令重配M取值为当次有效,之后仍然认为是高层信令配置的M值有效。
8.基于1,所述基站,基站为UE分配资源时,总是优先配置PRBoffset从小到大。例如,当某一小的PRBoffset对应的资源分配不能再分配为更多UE时,才增加PRBoffset。
9.基于1,所述基站,基站广播或约定上述1中参数中的一个或多个给UE,为使得UE获知系统中那些PRB已被分配。
一实施例提供了一种资源分配使用方法和装置,可应用于接收端,包括:
UE接收基站发送的参数,并根据参数的使用规则获得分配的资源。
UE接收的参数包括下述一个或多个,未被发送的参数需要事先约定或暗含:
PRB all,描述待分配的总的PRB数量最大索引。
PRB offset,描述相对于总的PRB的边界的偏移量。
M,描述需要分配多少份资源。
PRB num,分配的每份资源的起始PRB索引。num为每份资源的编号。
Q,每份资源中总的PRB数量。
其中约定规则包括:
Figure PCTCN2017120313-appb-000058
PRB num被计算出后,然后按照规则计算Q个PRB作为每份资源包含的PRB。
一实施例提供了一种在一个传输单元中,不同UE的短上行控制时分复用时,根据UE的波束方向为UE配置合适的上行控制符号位置,使得UE的发送和基站的接收更加简单。
在一实施例中,参考下面的等式1,发送端和接收端约定或发送端信令指示相关参数取值,然后按照约定规则推算分配的资源。以及相关参数的取值、配置和使用方法,以及基于等式1的变形的资源分配用例。UE被动态的通知每份候选PUCCH资源的大小为适用PUCCH负载的动态的大小。
即使使用LTE的ARI机制中的候选PUCCH资源分配方案,也可以额外引入新的参数,该参数描述基于ARI机制中的候选PUCCH资源分配基础上,每份候选PUCCH资源或UE使用的PUCCH资源(来自候选PUCCH资源)增加的PRB数量。
图14是根据一实施例提供的资源分配情况的示意图,参考图14和等式1,发送端(可以是基站、小小区基站、射频拉远单元等,下文以基站为例描述)和接收端(可以是UE、终端等,下文以UE为例进行描述)约定或发送端信令指示相关参数取值,然后按照约定规则推算分配的资源(可是PRB,或簇等形式,可以是频域资源的颗粒度,下面以PRB为例进行描述)。
相关参数包括:PRB all,PRB offset,M,PRB num,Q。
PRB all,根据总的PRB数获得,例如总的PRB数为110,索引为0~109,则 PRB all则为109。可以允许分配的所有PRB,例如系统带宽对应的所有PRB,或者系统带宽中一个或多个子带对应的所有PRB之和;如果多个子带离散,那么多个离散子带的PRB之和作为总的PRB数,或者按照每个子带独立进行资源分配,每个子带对应的PRB作为总的PRB数。
PRB offset,相对于总的PRB的最小索引PRB的偏移PRB数量。例如,总的PRB数为110个,索引为0~109,那么PRB offset就是相对于PRB索引为0的PRB偏移了多少个PRB。也可以作为相对于PRB索引为0的PRB的起始PRB的偏移量。
M,为分配资源的数量。
PRB num,分配的一份资源的起始PRB索引。num为一份资源的编号,从0~M-1。
Q为每一份资源包含的PRB数量,根据PRB num对应的PRB向着索引增加或减少(不同情况下,采用增加或减少)的方向推算每份资源包含的PRB。
下面给出一个例子说明上述参数的使用,等式1是通过上述参数构成的一个例子,基于该等式1,能够实现对应的资源分配。
Figure PCTCN2017120313-appb-000059
等式1中,PRB offset为起始偏移量,相对于PRB索引为0的PRB,小于等于
Figure PCTCN2017120313-appb-000060
的所得值(这是为了避免分配的PUCCH资源重叠,如果允许重叠或者M取值较小时,PRB offset最大取值为109)。当总的PRB数量被确定,需要的份数被确定,就可以获得PRBoffset的范围。
等式1中,
Figure PCTCN2017120313-appb-000061
采取向下取整是其中一种,也可以采用向上取整或四舍五入的原则。
当PRB num被计算出后,然后按照规则约定顺序计算Q个PRB作为每份的资源包含的PRB。
一实施例中,假设系统带宽为20M,对应共有110个PRB,索引值范围为0~109,为一个UE分配4份候选PUCCH资源,每一份候选PUCCH资源包含2个PRB,且要求2个PRB连续。
基站配置UE使用整个系统带宽,所以总的PRB为110个,索引值范围为0~109,即PRBall取值为109。
基站配置Q的取值为2,并通过高层信令或物理层信令发送给UE,或者约定为2。当基站和UE总是要求每份候选PUCCH资源包含2个PRB时,那么Q取值可以被事先约定为2;当基站和UE需要的每份候选PUCCH资源包含的PRB数量变化比较慢时,则该Q取值可以通过高层信令配置。另外,也可以采用下面的方式,例如高层信令配置了Q取值,但是临时需要调整Q取值时,基站能够发送物理层信令重配Q取值为当次有效,之后仍然认为是高层信令配置的Q值有效。进一步的在本优选实施例1中基站和UE约定Q的方向性,即当num为奇数时,Q向PRB索引增加的方向计算每份候选PUCCH包含的PRB,num为偶数时,Q向PRB索引减少的方向计算每份候选PUCCH包含的PRB。Q的方向性可以被事先约定,Q的方向性不同,将产生不同的分配结果。
基站配置M的取值为4,并通过高层信令或物理层信令发送给UE,或者约定为4。当UE总是需要4份候选PUCCH资源时,那么M取值可以被事先约定为4;当UE需要的候选PUCCH资源数量变化比较慢时,则该M取值可以通过高层信令配置。另外,也可以采用下面的方式,例如高层信令配置了M取值,但是临时需要调整时,基站能够发送物理层信令重配M取值为当次有效,之后仍然认为是高层信令配置的M值有效。
基站配置PRBoffset的取值为2,并通过高层信令或物理层信令发送给UE。此时小于等于
Figure PCTCN2017120313-appb-000062
的所得值。
M份候选PUCCH资源对应的编号记为num,对应的取值为0,1,2,3。
然后将上述参数代入等式1,可以得出每份候选PUCCH资源的起始PRB索引:
PRBnum=0=2,PRBnum=2=29,PRBnum=1=107,PRBnum=3=80。
一实施例中,结合基站和UE约定的Q的方向性,可以获得编号为num=0的候选PUCCH资源包含的PRB索引为2,3;编号为num=2的候选PUCCH资源包含的PRB索引为29,30;编号为num=1的候选PUCCH资源包含的PRB索引为79,80;编号为num=3的候选PUCCH资源包含的PRB索引为106,107。
上述实施例中,候选PUCCH资源可以总是从系统带宽的两端开始分配,相对于直接通知每份候选PUCCH资源的PRB索引,具有开销小的优势,调整每 份候选PUCCH资源包含的PRB个数和位置都比较灵活。
相对于LTE系统,NR中正在考虑增加PUCCH的有效比特数范围,例如PUCCH信道承载的有效比特数变化范围很大,例如,有公司提出有效比特变化范围为:短PUCCH比特为1~64bits,长PUCCH比特为1~640bits,且比特数的变化是动态的。如果这一建议被NR采纳,那么为了支持这么大的有效比特变化范围,纯粹靠复用时很难实现的,所以动态的增加PUCCH资源将是必要的,如何动态增加呢?在优选实施例1中的基础上,只要基站动态的通过信令配置Q的取值即可实现每个调度单元内动态改变UE的PUCCH资源大小,例如使用调度数据的下行控制信息DCI来承载Q(本文中所述使用物理层信令的参数,均可以使用DCI承载)。例如调度单元n中UE的PUCCH需要2个PRB,那么基站在调度单元n中的DCI中配置Q值为2,在下一个调度单元n中UE的PUCCH需要10个PRB,则基站在调度单元n+1中的DCI中配置Q值为10。在现有的LTE中,无法动态的调制每份候选PUCCH资源的大小的,主要还是因为它的PUCCH的有效比特数基本是固定的,所以不需要调整资源大小。
NR中,支持PUSCH和短PUCCH频分复用(短PUCCH即为在调度单元的末尾或上行数据之前的几个符号中发送的PUCCH,典型符号数为1个符号),为了使得UE能够清楚系统带宽中哪些PRB被分配给了候选PUCCH,当UE的PUSCH包含在这些PRB时,回避这个被PUCCH占用的符号。一实施例中,基站能够将PRBoffset取值从0逐步增加,例如,先分配PRBoffset=0的取值给UE,如果还继续有UE需要分配时,再继续使用PRBoffset=1,依次类推,只有当前面PRBoffset取值被分配了再使用下一PRBoffset的取值,这样,基站可以将系统中为PUCCH分配资源对应的PRBoffset中的最大值广播给UE,这样UE将根据等式1,以及相关参数,例如Q,M取值(Q,M如果是慢变化的也需要广播通知给UE),UE将获知系统中那些PRB被分配为PUCCH资源。
一实施例中,所述的候选PUCCH资源分配方法,也可以看做是一种PRB资源分配,能被使用为其他目的的PRB分配。例如一个UE需要2个PRB时,可以通过配置相关参数的取值实现不同的PRB分配图样,一些例子如下:
将M=2,num取值为0,1;Q为1;PRBoffset=0;所分配得到PRB索引为:0,109。这样得到离散PRB资源。
将M=2,num取值为0,1;Q为1;PRBoffset=4;所分配得到PRB索引为: 4,105。这样得到离散PRB资源。
将M=1,num取值为0;Q为2;PRBoffset=0;所分配得到PRB索引为:0,1。这样得到连续PRB资源。
将M=1,num取值为0;Q为2;PRBoffset=4;所分配得到PRB索引为:4,5。这样得到连续PRB资源。
一实施例中,可以假设基站是通过非等式1方式获得的每份候选PUCCH资源(每份候选PUCCH资源的PRB数量为1个),例如,LTE系统中,基站通知每份候选PUCCH资源的起始PRB索引给UE,例如通过高层信令或物理层信令通知。为了支持大范围的动态的有效比特数,例如,引入新的信令,描述连续P个PRB被采用为每份PUCCH候选资源,从所述起始PRB索引。P能被基站动态配置并发送给UE,例如DCI承载。基站和UE约定,在已经分配的每份候选PUCCH资源的PRB基础上,顺序(向索引增加或减小方向)再增加P个PRB作为本次候选PUCCH资源的PRB。P能被直接通知或隐含通知,总之P描述本次还需要额外增加的PRB数量。
一实施例中,为了将每份候选PUCCH资源的PRB进行离散,利用等式1分配总的需要的PRB,重新划分所得PRB归属那份候选PUCCH资源。
一实施例中,当采用基于等式1的基础上,假设每份候选PUCCH资源包括Q1个PRB时,假设配置M1份候选PUCCH资源,那么总共需要分配的PRB个数为Q1xM1个。利用上述等式1来分配Q1xM1个PRB。此时对应的等式1中的部分参数含义将发生变化。例如M,Q,PRBnum将发生含义变化(或者可以理解为暂时按照原有含义分配了PRB,最终还是需要再次重新划分所得PRB归属那份候选PUCCH资源)。此时把这三个参数可以看做是3个中间变量参数即可。其余参数含义不变。
以下实施例中,假设仍然需要为UE分配4个候选PUCCH资源,但是每份资源中包含2个离散的PRB。
基站配置参数取值为Q=1,M=Q1xM1=2x4(Q和M的取值,总是假设每份候选PUCCH只有一个PRB,而总需要8份候选PUCCH资源,通过等式1获得8个PRB后,再重新划分所述8个PRB作为每份候选PUCCH的资源的PRB),并发送给UE,同时与UE约定使用等式1进行计算参数PRBnum。这样PRBnum=0=2,PRBnum=2=15,PRBnum=4=28,PRBnum=6=41,PRBnum=1=107, PRBnum=3=94,PRBnum=5=81,PRBnum=7=68。
一实施例中,结合基站和UE约定的每份候选PUCCH资源中Q(最终的Q需求,此时Q为2,而不是中间过程的1)个PRB对应的包括num为偶数和奇数的PRBnum(也可以仅是偶数或奇数)。每份候选PUCCH资源中的Q个PRB是来自上述等式1所得PRBnum对应候选PUCCH资源中获得。例如约定,上述等式1所得的PRBnum=0和PRBnum=1是一份候选PUCCH资源,PRBnum=2和PRBnum=3是一份候选PUCCH资源,PRBnum=4和PRBnum=5是一份候选PUCCH资源,PRBnum=6和PRBnum=7是一份候选PUCCH资源。
此时为UE分配的4份候选PUCCH资源为:PRB索引为2,107;PRB索引为15,94;PRB索引为28,81;PRB索引为41,68。
一实施例中,当采用基于等式1的基础上,假设每份候选PUCCH资源包括Q1个PRB时,假设配置M1份候选PUCCH资源,那么总共需要分配的PRB个数为Q1xM1个。利用上述等式1来分配Q1xM1个PRB。此时对应的等式1中的部分参数含义将发生变化。例如M,Q,PRBnum将发生含义变化(或者可以理解为暂时按照原有含义分配了PRB,最终还是需要再次重新划分所得PRB归属那份候选PUCCH资源)。此时把这3个参数可以看做是3个中间变量参数即可。其余参数含义不变。
一实施例中,假设仍然需要为UE分配4个候选PUCCH资源,但是每份资源中包含2个离散的PRB。
基站配置参数取值为Q=4,M=2(Q和M的取值,总是先假设每份候选PUCCH有4个PRB,而总需要2份候选PUCCH资源,通过等式1获得8个PRB后,再重新划分所述8个PRB作为每份候选PUCCH的资源的PRB),并发送给UE,同时与UE约定使用等式1进行计算参数PRBnum。这样PRBnum=0=2,PRBnum=1=107。此时,PRBnum=0对应的候选PUCCH资源暂时为2,3,4,5。PRBnum=1对应的候选PUCCH资源暂时为104,105,106,107。
一实施例中,结合基站和UE约定的每份候选PUCCH资源中Q(最终的Q需求,此时Q为2,而不是中间过程的4)个PRB对应的包括num(本变例中为中间过程中的num,即0,1)为偶数和奇数的PRBnum(也可以仅是偶数或奇数)中的一个PRB。最终每份候选PUCCH资源中的Q个PRB是来自上述等式1所得PRBnum对应候选PUCCH资源中获得。例如约定(规则可以根据实际需 要定义),上述等式1所得的PRBnum=0中的第1个PRB和PRBnum=1中的倒数第1个PRB为一份候选PUCCH资源,PRBnum=0中的第2个PRB和PRBnum=1中的倒数第2个PRB为一份候选PUCCH资源,PRBnum=0中的第3个PRB和PRBnum=1中的倒数第3个PRB为一份候选PUCCH资源,PRBnum=0中的第4个PRB和PRBnum=1中的倒数第4个PRB为一份候选PUCCH资源。
此时为UE分配的4份候选PUCCH资源为:PRB索引为2,107;PRB索引为3,106;PRB索引为4,105;PRB索引为5,104。
图15是根据一实施例的子带资源分配示意图,参考图15,图15描述当基站分配资源仅仅为系统带宽的一部分,例如子带,或多个子带内进行资源分配的情况。例如,一个100M的系统带宽,被分为5个20M的子带,可以分配一个或多个子带内的资源。
一实施例中,对于仅仅针对一个子带进行分配的情况,可以将子带内的PRB重新编号,按照上述实施例中的方法进行分配。或者将上述实施例中的参数取值等效增加为一个常值,该常值为所在子带的最小PRB索引值。此时,基站可以为UE分配对应的子带,根据约定,在子带内利用上述实施例进行资源分配。
如果基站为UE分配的子带是连续的多个子带,可以看做一个子带进行处理。
如果基站为UE分配的子带是离散的多个子带,那么将多个子带内的PRB重新编号,然后看做一个子带进行处理。
一实施例提供一种指示候选资源(例如PUCCH候选资源)的方法,该方法用于在一个时隙(或子帧等),该时隙用于传输下行数据,但是在其中有UE发送上行数据或控制的资源。一般的,在该时隙的开始有下行控制信息,该下行控制信息可以用于调度该时隙中的下行数据(该时隙中的下行数据也可以是之前一时隙中的下行控制信息调度的)。如果在该时隙中,存在多份候选资源为UE,且需要指示出该时隙中那份候选资源将为UE使用时,则基站能够通过该时隙中传输该UE的下行数据对应下行控制信息(下行授权信息)来为UE指示该时隙中UE使用的候选资源。一实施例中,该下行控制信息在该时隙中发送,即在该时隙中指示该时隙中UE使用的候选资源。一实施例中,承载该时隙中UE使用的候选资源的下行控制信息对应的下行数据是在该时隙中传输的(下行 控制信息可以在之前的一时隙中发送)。
也可以,在一个上行时隙中,该上行时隙的开始有下行控制信息(为上行数据调度或为跨时隙的下行数据调度),之后还有上行数据传输部分和上行控制区域。如果需要UE在该时隙中使用候选资源来承载数据,则基站能够在该时隙的下行控制信息(是指为调度上行数据的上行授权信息)中发送为UE指示候选资源的信令。即UE在该时隙中接收上行授权信息,为上行数据调度,同时也获得了该时隙中使用的候选资源信息。
一实施例中,如果该时隙是一个以下行数据为主的时隙,该时隙中不会发送下行控制信息为上行数据调度。如果通过为上行数据调度的下行控制信息承载所述使用的候选资源时,则UE可能无法在该时隙中接收到指示使用的候选资源的信令。
上述实施例中的多个模块或多个步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上。一实施例中,多个模块或多个步骤可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在一些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成多个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
工业实用性
参数发送、资源确定方法及装置、基站和终端,解决了相关技术中候选资源与传输比特之间不匹配的问题。

Claims (74)

  1. 一种参数发送方法,包括:
    确定第一指定参数和第二指定参数中至少之一,其中,所述第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,所述第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,以及所述预定候选信道资源包括为所述终端预先配置的一份或多份候选信道资源;以及
    通过第一信令将所述第一指定参数和所述第二指定参数中的至少之一发送给所述终端。
  2. 根据权利要求1所述的方法,其中,所述一份或多份所述候选信道资源满足以下至少之一:
    所述一份或多份候选信道资源包含固定的资源数量,以及
    所述一份或多份候选信道资源为所述终端上一次数据传输所配置的一份或多份候选信道资源。
  3. 根据权利要求1所述的方法,在确定第一指定参数和第二指定参数中至少之一时,所述方法还包括:
    从所述一份或多份候选信道资源中选择一份候选信道资源作为所述预定候选信道资源;以及
    通过第二信令将所述预定候选信道资源发送给所述终端;其中,所述第一信令和所述第二信令相同或不同。
  4. 根据权利要求3所述的方法,在所述从所述一份或多份候选信道资源中选择一份候选信道资源作为所述预定候选信道资源之后,所述方法还包括:
    根据所述预定候选信道资源和所述第一指定参数确定接收所述终端数据的信道资源。
  5. 根据权利要求3所述的方法,其中,所述第一信令和所述第二信令中的至少之一为物理层信令。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述资源数量的颗粒度为以下至少之一:
    物理资源块PRB、正交频分复用OFDM符号以及子载波。
  7. 根据权利要求1所述的方法,其中,所述在预定候选信道资源的基础上增加或减少的资源数量满足以下至少之一:
    在所述预定候选信道资源所包含的多个PRB连续的情况下,在所述预定候选信道资源的基础上增加或减少的PRB与所述预定候选信道资源的PRB连续;
    在所述预定候选信道资源所包含的多个PRB的编号连续的情况下,在所述预定候选信道资源的基础上增加或减少的PRB的编号与所述预定候选信道资源的PRB的编号连续;
    在所述预定候选信道资源所包含的多个PRB离散的情况下,在所述预定候选信道资源的基础上增加或减少的PRB与所述预定候选信道资源中的指定PRB连续;以及
    在所述预定候选信道资源所包含的多个PRB的编号离散的情况下,在所述预定候选信道资源的基础上增加或减少的PRB的编号与所述预定候选信道资源中的指定PRB的编号连续。
  8. 根据权利要求1所述的方法,其中,所述候选信道资源用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI;以及所述终端数据为PUCCH信道中的数据或者UCI。
  9. 一种参数发送方法,包括:
    配置用于确定为终端分配的信道资源的第一参数;其中,所述第一参数包括以下至少之一:用于确定所述信道资源的起始物理资源块PRB索引的第二参数,以及所述信道资源包含的PRB数量;以及
    将所述第一参数发送给终端。
  10. 根据权利要求9所述的方法,其中,
    在所述第一参数包括所述PRB数量的情况下,所述第二参数为与所述终端预先约定的;以及
    在所述第一参数包括所述第二参数的情况下,所述PRB数量为与所述终端预先约定的。
  11. 根据权利要求9或10所述的方法,其中,所述第二参数包括以下三个变量中的至少之一:
    待分配资源中的PRB的最大索引,相对于所述待分配资源中的PRB的最小索引的偏移量,以及需要分配的信道资源的份数;
    其中,对于所述三个变量,如果存在变量未被所述第二参数包括,则未被所述第二参数包括的变量的取值为与所述终端预先约定的。
  12. 根据权利要求11所述的方法,其中,所述信道资源的起始物理资源块PRB索引通过以下之一预定规则确定:
    Figure PCTCN2017120313-appb-100001
    Figure PCTCN2017120313-appb-100002
    以及
    Figure PCTCN2017120313-appb-100003
    其中,所述PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于所述待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
    Figure PCTCN2017120313-appb-100004
    为向下取整函数,
    Figure PCTCN2017120313-appb-100005
    为向上取整函数,round()为四舍五入函数,mod为求余运算。
  13. 根据权利要求9所述的方法,在配置用于确定为所述终端分配的信道资源的第一参数之后,所述方法还包括:
    根据所述起始PRB索引和所述PRB数量确定所述信道资源包含的PRB。
  14. 根据权利要求13所述的方法,其中,根据所述起始PRB索引和所述PRB数量确定所述信道资源包含的PRB包括:
    在待分配资源中,以所述起始PRB索引对应的PRB作为起点,向PRB索引增加或减少的方向确定N个PRB作为所述信道资源所包含的PRB,其中,N为所述PRB数量。
  15. 根据权利要求14所述的方法,其中,所述向PRB索引增加或减少的方向确定N个PRB作为所述信道资源所包含的PRB包括:
    根据所述信道资源的编号确定用于确定所述信道资源所包含的PRB的方式,其中,所述方式包括:按照PRB索引增加的方向确定,按照PRB索引减少的方向确定;其中,在所述信道资源的编号为奇数时,按照PRB索引增加的方向确定所述信道资源所包含的PRB;以及在所述信道资源的编号为偶数时,按照PRB索引减少的方向确定所述信道资源所包含的PRB。
  16. 根据权利要求12所述的方法,其中,在所述待分配资源为整个系统带宽的部分子带时,所述PRB all用于表示所述部分子带内所有的PRB重新编号后的最大索引。
  17. 根据权利要求9或16所述的方法,其中,所述PRB数量通过以下至少一种信令配置:
    预先约定,高层信令以及物理层信令。
  18. 根据权利要求17所述的方法,其中,
    在基站和所述终端总是要求信道资源包含固定的PRB时,采用所述预先预定方式配置所述PRB数量;
    在所述基站和所述终端要求所述信道资源包含的PRB变化时,通过高层信令配置所述PRB数量;以及
    在通过所述高层信令配置所述PRB数量后,通过物理层信令重配本次数据传输需要的所述PRB数量,其中,在本次数据传输之后仍然采用所述高层信令配置的所述PRB数量。
  19. 根据权利要求16所述的方法,其中,所述M通过以下至少一种信令配置:
    预先约定,高层信令以及物理层信令。
  20. 根据权利要求19所述的方法,还包括:
    在基站和所述终端总是要求分配固定份数的信道资源时,采用所述预先预定方式配置所述M;
    在所述基站和所述终端要求分配的资源的份数发生变化时,通过高层信令配置所述M;以及
    在通过所述高层信令配置所述M后,通过物理层信令重配本次需要的M取值,其中,在本次数据传输之后仍然采用所述高层信令配置的所述M。
  21. 根据权利要求19所述的方法,其中,在配置多份信道资源的情况下,按照PRB offset的值从小到大的顺序进行配置。
  22. 根据权利要求19所述的方法,其中,所述发送所述第一参数至终端包括:
    通过广播或约定方式发送所述第一参数发送至终端。
  23. 根据权利要求9所述的方法,其中,
    所述信道资源用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI。
  24. 一种资源确定方法,包括:
    通过第一信令接收第一指定参数和第二指定参数中的至少之一;其中,所述第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,所述第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,以及所述预定候选信道资源包括基站为终端预先配置的一份或多份候选信道资源;
    根据所述第一指定参数和所述第二指定参数中的至少之一确定所述终端数据传输需要的信道资源。
  25. 根据权利要求24所述的方法,其中,所述一份或多份所述候选信道资源满足以下至少之一:
    所述一份或多份候选信道资源包含固定的资源数量;以及
    所述一份或多份候选信道资源为所述终端上一次数据传输所配置的一份或 多份候选信道资源。
  26. 根据权利要求24所述的方法,还包括:通过第二信令接收所述预定候选信道资源;其中,所述预定候选信道资源为所述基站从为所述终端预先配置的一份或多份候选信道资源中选择的一份候选信道资源,所述第一信令和所述第二信令不同或相同。
  27. 根据权利要求26所述的方法,其中,所述第一信令和所述第二信令中的至少之一为物理层信令。
  28. 根据权利要求24至27中任一项所述的方法,其中,所述资源数量的颗粒度为以下至少之一:
    物理资源块PRB、正交频分复用OFDM符号以及子载波。
  29. 根据权利要求24所述的方法,其中,所述在预定候选信道资源的基础上增加或减少的资源数量满足以下至少之一:
    在所述预定候选信道资源所包含的多个PRB连续的情况下,在所述预定候选信道资源的基础上增加或减少的PRB与所述预定候选信道资源的PRB连续;
    在所述预定候选信道资源所包含的多个PRB的编号连续的情况下,在所述预定候选信道资源的基础上增加或减少的PRB的编号与所述预定候选信道资源的PRB的编号连续;
    在所述预定候选信道资源所包含的多个PRB离散的情况下,在所述预定候选信道资源的基础上增加或减少的PRB与所述预定候选信道资源中的指定PRB连续;以及
    在所述预定候选信道资源所包含的多个PRB的编号离散的情况下,在所述预定候选信道资源的基础上增加或减少的PRB的编号与所述预定候选信道资源 中的指定PRB的编号连续。
  30. 根据权利要求24所述的方法,其中,所述候选信道资源用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI;所述数据为PUCCH信道中的数据或者UCI。
  31. 一种资源确定方法,包括:
    接收第一参数,其中,所述第一参数包括以下至少之一:用于确定为终端分配的信道资源的起始物理资源块PRB索引的第二参数,以及所述信道资源包含的PRB数量;
    根据所述第二参数按照预定规则确定所述信道资源的PRB索引;以及
    根据所述起始PRB索引和所述PRB数量确定所述信道资源包含的PRB。
  32. 根据权利要求31所述的方法,其中,在所述第一参数包括所述PRB数量的情况下,所述第二参数为与所述终端预先约定的;以及在所述第一参数包括所述第二参数的情况下,所述PRB数量为与所述终端预先约定的。
  33. 根据权利要求31或32所述的方法,其中,所述第二参数包括以下三个变量的至少之一:
    待分配资源中的PRB的最大索引,相对于所述待分配资源中的PRB的最小索引的偏移量,以及需要分配的信道资源的份数;其中,对于所述三个变量,如果存在变量未被所述第二参数包括,则未被所述第二参数包括的变量的取值为与所述终端预先约定的。
  34. 根据权利要求31所述的方法,其中,所述预定规则包括以下至少之一:
    Figure PCTCN2017120313-appb-100006
    Figure PCTCN2017120313-appb-100007
    以及
    Figure PCTCN2017120313-appb-100008
    其中,所述PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于所述待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
    Figure PCTCN2017120313-appb-100009
    为向下取整函数,
    Figure PCTCN2017120313-appb-100010
    为向上取整函数,round()为四舍五入函数,mod为求余运算。
  35. 根据权利要求34所述的方法,其中,在所述待分配资源为整个系统带宽的部分子带时,所述PRB all用于表示所述部分子带内所有的PRB重新编号后的最大索引。
  36. 根据权利要求31所述的方法,其中,根据所述起始PRB索引和所述PRB数量确定所述信道资源包含的PRB包括:
    在待分配资源中,以所述起始PRB索引对应的PRB作为起点,向PRB索引增加或减少的方向确定N个PRB作为所述信道资源所包含的PRB,其中,N为所述PRB数量。
  37. 根据权利要求36所述的方法,其中,所述向PRB索引增加或减少的方向确定N个PRB作为所述信道资源所包含的PRB包括:
    根据所述信道资源的编号确定用于确定所述信道资源所包含的PRB的方式,其中,所述方式包括:按照PRB索引增加的方向确定,按照PRB索引减少的方向确定;其中,在所述信道资源的编号为奇数时,按照PRB索引增加的方向确定所述信道资源所包含的PRB,在所述信道资源的编号为偶数时,按照PRB索引减少的方向确定所述信道资源所包含的PRB。
  38. 根据权利要求31或34所述的方法,其中,所述PRB数量通过以下至少一种信令配置:
    预先约定,高层信令,以及物理层信令。
  39. 根据权利要求38所述的方法,其中,
    在基站和所述终端总是要求信道资源包含固定的PRB时,采用所述预先预定方式配置所述PRB数量;
    在所述基站和所述终端要求所述信道资源包含的PRB变化时,通过高层信令配置所述PRB数量;以及
    在通过所述高层信令配置所述PRB数量后,通过物理层信令重配本次数据传输需要的所述PRB数量,其中,在本次数据传输之后仍然采用所述高层信令配置的所述PRB数量。
  40. 根据权利要求34所述的方法,其中,所述M通过以下至少一种信令配置:
    预先约定,高层信令,以及物理层信令。
  41. 根据权利要求40所述的方法,还包括,
    在基站和所述终端总是要求分配固定份数的信道资源时,采用所述预先预定方式配置所述M;
    在所述基站和所述终端要求分配的资源的份数发生变化时,通过高层信令配置所述M;以及
    在通过所述高层信令配置所述M后,通过物理层信令重配本次需要的M取值,其中,在本次数据传输之后仍然采用所述高层信令配置的所述M。
  42. 根据权利要求31所述的方法,还包括:
    通过广播或约定方式接收所述第一参数。
  43. 根据权利要求31所述的方法,其中,
    所述信道资源用于承载物理上行控制信道PUCCH,或者用于传输上行控制信息UCI。
  44. 一种参数发送装置,包括:
    确定模块,设置为确定第一指定参数和第二指定参数中至少之一,其中,所述第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,所述第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,以及所述预定候选信道资源包括为所述终端预先配置的一份或多份候选信道资源;以及
    发送模块,设置为通过第一信令将所述第一指定参数和所述第二指定参数中的至少之一发送给所述终端。
  45. 根据权利要求44所述的装置,其中,所述一份或多份所述候选信道资源满足以下至少之一:
    所述一份或多份候选信道资源包含固定的资源数量,以及
    所述一份或多份候选信道资源为所述终端上一次数据传输所配置的一份或多份候选信道资源。
  46. 根据权利要求44所述的装置,还包括:选择模块,设置为在为终端配置了一份或多份候选信道资源后,从所述一份或多份候选信道资源中选择一份候选信道资源作为预定候选信道资源;
    所述发送模块还设置为通过第二信令将所述预定候选信道资源发送给所述终端;其中,所述第一信令和所述第二信令相同或不同。
  47. 根据权利要求46所述的装置,还包括:确定模块,设置为在从配置的所述一份或多份候选信道资源中选择一份候选信道资源作为预定候选信道资源之后,根据所述预定候选信道资源和所述第一指定参数确定接收所述终端数据的信道资源。
  48. 一种参数发送装置,包括:
    配置模块,设置为配置用于确定为终端分配的信道资源的第一参数;其中,所述第一参数包括以下至少之一:用于确定所述信道资源的起始物理资源块PRB索引的第二参数,以及所述信道资源包含的PRB数量;以及
    发送模块,设置为将所述第一参数发送给终端。
  49. 根据权利要求48所述的装置,其中,所述第二参数包括以下三个变量中的至少之一:
    待分配资源中的PRB的最大索引,相对于所述待分配资源中的PRB的最小索引的偏移量,以及需要分配的信道资源的份数。
  50. 根据权利要求49所述的装置,还包括:第一确定模块,设置为通过以下之一预定规则确定所述信道资源的起始物理资源块PRB索引:
    Figure PCTCN2017120313-appb-100011
    Figure PCTCN2017120313-appb-100012
    以及
    Figure PCTCN2017120313-appb-100013
    其中,所述PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于所述待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
    Figure PCTCN2017120313-appb-100014
    为向下取整函数,
    Figure PCTCN2017120313-appb-100015
    为向上取整函数,round()为四舍五入函数,mod为求余运算。
  51. 根据权利要求48至50中任一项所述的装置,还包括:第二确定模块,设置为在产生用于确定为所述终端分配的信道资源的第一参数之后,根据所述起始PRB索引和所述PRB数量确定所述信道资源包含的PRB。
  52. 根据权利要求51所述的装置,其中,所述第二确定模块,还设置为在待分配资源中,以所述起始PRB索引对应的PRB作为起点,向PRB索引增加或减少的方向确定N个PRB作为所述信道资源所包含的PRB,其中,N为所述PRB数量。
  53. 根据权利要求52所述的装置,其中,所述第二确定模块,还设置为根据所述信道资源的编号确定用于确定所述信道资源所包含的PRB的方式,其中,所述方式包括:按照PRB索引增加的方向确定,按照PRB索引减少的方向确定;其中,在所述信道资源的编号为奇数时,按照PRB索引增加的方向确定所述信道资源所包含的PRB,在所述信道资源的编号为偶数时,按照PRB索引 减少的方向确定所述信道资源所包含的PRB。
  54. 一种资源确定装置,包括:
    接收模块,设置为通过第一信令接收第一指定参数和第二指定参数中至少之一;其中,所述第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,所述第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,以及所述预定候选信道资源包括基站为所述终端预先配置的一份或多份所述候选信道资源;以及
    确定模块,设置为根据所述第一指定参数和所述第二指定参数中的至少之一确定所述终端数据传输需要的信道资源。
  55. 根据权利要求54所述的装置,其中,所述一份或多份所述候选信道资源为以下至少之一:所述一份或多份候选信道资源包含固定的资源数量,以及所述一份或多份候选信道资源为所述终端上一次数据传输所配置的一份或多份候选信道资源。
  56. 根据权利要求54所述的装置,其中,所述接收模块,还设置为通过第二信令接收所述预定候选信道资源;其中,所述预定候选信道资源为基站从为终端预先配置的一份或多份候选信道资源中选择的一份候选信道资源,所述第一信令和所述第二信令不同或相同。
  57. 一种资源确定装置,包括:
    接收模块,设置为接收第一参数,其中,所述第一参数包括以下至少之一:用于确定为终端分配的信道资源的起始物理资源块PRB索引的第二参数,以及所述信道资源包含的PRB数量;
    第一确定模块,设置为根据所述第二参数按照预定规则确定所述信道资源 的PRB索引;以及
    第二确定模块,设置为根据所述起始PRB索引和所述PRB数量确定所述信道资源包含的PRB。
  58. 根据权利要求57所述的装置,其中,所述预定规则包括以下至少之一:
    Figure PCTCN2017120313-appb-100016
    Figure PCTCN2017120313-appb-100017
    以及
    Figure PCTCN2017120313-appb-100018
    其中,所述PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于所述待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
    Figure PCTCN2017120313-appb-100019
    为向下取整函数,
    Figure PCTCN2017120313-appb-100020
    为向上取整函数,round()为四舍五入函数,mod为求余运算。
  59. 一种基站,包括:
    处理器,设置为确定第一指定参数和第二指定参数中至少之一,其中,所述第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,所述第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,所述预定候选信道资源包括为所述终端预先配置的一份或多份所述候选信 道资源;以及通过第一信令将所述第一指定参数和所述第二指定参数中至少之一发送给所述终端;以及
    存储器,与所述处理器耦接。
  60. 根据权利要求59所述的基站,其中,所述预一份或多份所述候选信道资源满足以下至少之一:
    所述一份或多份候选信道资源包含固定的资源数量,以及
    所述一份或多份候选信道资源为所述终端上一次数据传输所配置的一份或多份候选信道资源。
  61. 根据权利要求59所述的基站,其中,所述处理器,设置为在为终端配置了一份或多份候选信道资源后,从配置的所述一份或多份候选信道资源中选择一份候选信道资源作为预定候选信道资源;以及通过第二信令将所述预定候选信道资源发送给所述终端;其中,所述第一信令和所述第二信令相同或不同。
  62. 根据权利要求61所述的基站,其中,所述处理器还设置为在从配置的所述一份或多份候选信道资源中选择一份候选信道资源作为预定候选信道资源之后,根据所述预定候选信道资源和所述第一指定参数确定接收所述终端数据的信道资源。
  63. 一种基站,包括:
    处理器,设置为配置用于确定为终端分配的信道资源的第一参数,其中,所述第一参数包括以下至少之一:用于确定所述信道资源的起始物理资源块PRB索引的第二参数,以及所述信道资源包含的PRB数量;以及将所述第一参数发送给终端;以及
    存储器,与所述处理器耦接。
  64. 根据权利要求63所述的基站,其中,所述第二参数包括:
    待分配资源中的PRB的最大索引,相对于所述待分配资源中的PRB的最小索引的偏移量,以及需要分配的信道资源的份数。
  65. 根据权利要求63所述的基站,其中,所述处理器设置为通过以下之一预定规则确定所述信道资源的起始物理资源块PRB索引:
    Figure PCTCN2017120313-appb-100021
    Figure PCTCN2017120313-appb-100022
    以及
    Figure PCTCN2017120313-appb-100023
    其中,所述PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于所述待分配资源中的PRB的最小索引的偏移量,M用于表示需要分配的信道资源的份数,
    Figure PCTCN2017120313-appb-100024
    为向下取整函数,
    Figure PCTCN2017120313-appb-100025
    为向上取整函数,round()为四舍五入函数,mod为求余运算。
  66. 根据权利要求63至65中任一项所述的基站,其中,所述处理器设置为在产生用于确定为所述终端分配的信道资源的第一参数之后,根据所述起始PRB索引和所述PRB数量确定所述信道资源包含的PRB。
  67. 根据权利要求66所述的基站,其中,所述处理器还设置为在待分配 资源中,以所述起始PRB索引对应的PRB作为起点,向PRB索引增加或减少的方向确定N个PRB作为所述信道资源所包含的PRB,其中,N为所述PRB数量。
  68. 根据权利要求67所述的基站,其中,所述处理器还设置为根据所述信道资源的编号确定用于确定所述信道资源所包含的PRB的方式,其中,所述方式包括:按照PRB索引增加的方向确定,以及按照PRB索引减少的方向确定;其中,在所述信道资源的编号为奇数时,按照PRB索引增加的方向确定所述信道资源所包含的PRB,在所述信道资源的编号为偶数时,按照PRB索引减少的方向确定所述信道资源所包含的PRB。
  69. 一种终端,包括:
    处理器,设置为通过第一信令接收第一指定参数和第二指定参数中至少之一,其中,所述第一指定参数用于指示在预定候选信道资源的基础上所增加或减少的资源数量,所述第二指定参数用于指示终端数据传输需要的信道资源所包含的资源数量,以及所述预定候选信道资源包括基站为所述终端预先配置的一份或多份所述候选信道资源;以及根据所述第一指定参数和所述第二指定参数中至少之一确定所述终端数据传输需要的信道资源;
    存储器,与所述处理器耦接。
  70. 根据权利要求69所述的终端,其中,所述预定候选信道资源的一份或多份所述候选信道资源为以下至少之一:所述一份或多份候选信道资源包含固定的资源数量,以及所述一份或多份候选信道资源为所述终端上一次数据传输所配置的一份或多份候选信道资源。
  71. 根据权利要求69所述的终端,其中,所述处理器还设置为通过第二 信令接收所述预定候选信道资源;其中,所述预定候选信道资源为基站从为终端预先配置的一份或多份候选信道资源中选择的一份候选信道资源,以及所述第一信令和所述第二信令不同或相同。
  72. 一种终端,包括:
    处理器,设置为接收第一参数,其中,所述第一参数包括以下至少之一:用于确定为终端分配的信道资源的起始物理资源块PRB索引的第二参数,以及所述信道资源包含的PRB数量;根据所述第二参数按照预定规则确定所述信道资源的PRB索引;以及根据所述起始PRB索引和所述PRB数量确定所述信道资源包含的PRB;
    存储器,与所述处理器耦接。
  73. 根据权利要求72所述的终端,其中,所述预定规则包括以下至少之一:
    Figure PCTCN2017120313-appb-100026
    Figure PCTCN2017120313-appb-100027
    以及
    Figure PCTCN2017120313-appb-100028
    其中,所述PRB num用于表示编号为num的信道资源的起始PRB索引,num为大于或者等于0的整数,PRB all用于表示待分配资源中的PRB的最大索引,PRB offset用于表示相对于所述待分配资源中的PRB的最小索引的偏移量,M用 于表示需要分配的信道资源的份数,
    Figure PCTCN2017120313-appb-100029
    为向下取整函数,
    Figure PCTCN2017120313-appb-100030
    为向上取整函数,round()为四舍五入函数,mod为求余运算。
  74. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1-43中任一项的方法。
PCT/CN2017/120313 2017-02-06 2017-12-29 参数发送、资源确定方法及装置、基站和终端 WO2018141190A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710067272.7 2017-02-06
CN201710067272.7A CN108400854B (zh) 2017-02-06 2017-02-06 参数发送、资源确定方法及装置、基站和终端

Publications (1)

Publication Number Publication Date
WO2018141190A1 true WO2018141190A1 (zh) 2018-08-09

Family

ID=63039293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/120313 WO2018141190A1 (zh) 2017-02-06 2017-12-29 参数发送、资源确定方法及装置、基站和终端

Country Status (2)

Country Link
CN (1) CN108400854B (zh)
WO (1) WO2018141190A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004000A1 (en) * 2008-07-09 2010-01-14 Nokia Siemens Networks Oy Reduced resource allocation parameter signalling
CN102076094A (zh) * 2009-11-24 2011-05-25 北京三星通信技术研究有限公司 一种频带扩展系统中phich资源的确定方法和设备
CN106162888A (zh) * 2015-04-10 2016-11-23 夏普株式会社 载波聚合中的pucch资源配置方法及其设备
CN106332286A (zh) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 频谱资源分配方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013961B (zh) * 2009-11-05 2014-04-02 电信科学技术研究院 一种发送上行反馈信息的方法、系统和设备
JP4878651B1 (ja) * 2010-09-17 2012-02-15 シャープ株式会社 移動局装置、通信システム、通信方法および集積回路
JP4969682B2 (ja) * 2010-12-09 2012-07-04 シャープ株式会社 移動局装置、通信システム、通信方法および集積回路
KR102129794B1 (ko) * 2012-04-01 2020-07-03 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치
CN103782561B (zh) * 2012-08-03 2017-10-24 华为技术有限公司 控制信息发送方法、接收方法和装置
CN103716121B (zh) * 2012-09-28 2019-03-08 上海诺基亚贝尔股份有限公司 一种用于确定基于ePDCCH的下行控制信息的方法和设备
CN104159309B (zh) * 2014-08-13 2017-11-03 大唐移动通信设备有限公司 一种资源分配优化方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004000A1 (en) * 2008-07-09 2010-01-14 Nokia Siemens Networks Oy Reduced resource allocation parameter signalling
CN102076094A (zh) * 2009-11-24 2011-05-25 北京三星通信技术研究有限公司 一种频带扩展系统中phich资源的确定方法和设备
CN106162888A (zh) * 2015-04-10 2016-11-23 夏普株式会社 载波聚合中的pucch资源配置方法及其设备
CN106332286A (zh) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 频谱资源分配方法及装置

Also Published As

Publication number Publication date
CN108400854B (zh) 2022-06-21
CN108400854A (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
EP3490319B1 (en) Determination of resource block groups in a user equipment bandwidth part
AU2019248685B2 (en) Method and apparatus for downlink control information communication and interpretation
TWI725282B (zh) 分別配置與參數集相關的資源
TWI669974B (zh) 實體上行共用通道(pusch)上的上行鏈路控制資訊(uci)的資源元素(re)分配方法及通訊裝置
US11039448B2 (en) Resource scheduling method and apparatus
US11632222B2 (en) Telecommunications apparatus and methods
CN108401292B (zh) 控制信息的传输方法、接收方法、装置、基站及终端
RU2728281C1 (ru) Способ, устройство, терминал, устройство доступа к сети и система для передачи данных по восходящей линии связи
CN107615846B (zh) 一种用于资源分配的方法、装置、系统以及基站
JP6132706B2 (ja) 無線通信装置、無線通信システム及び無線通信方法
CN111107629B (zh) 一种5g通信方法及系统
JP2018516016A (ja) データ送信方法および装置
WO2010075673A1 (zh) 资源配置和数据传输的方法、装置及通信系统
WO2018196555A1 (zh) 资源分配指示方法、装置、网络侧设备及用户设备
WO2018141190A1 (zh) 参数发送、资源确定方法及装置、基站和终端
WO2018127006A1 (zh) 下行控制资源位置的指示方法、确定方法、装置、发送端及接收端
EP3403353B1 (en) Method and network node for selecting the size of a control region of a subframe based on data region load
WO2019160468A1 (en) Provision of granting of resources to a wireless device
JP7284303B2 (ja) アップリンク伝送方法、装置、端末装置、アクセスネットワーク装置及びシステム
CN108494537B (zh) 应用于快速调度的上行调度请求资源配置方法和装置
WO2018228455A1 (zh) 参数配置方法、终端设备、网络侧设备和通信系统
CN117858235A (zh) 一种处理公共pucch资源的方法和基站
CN114786271A (zh) 一种资源管理分配方法、装置、设备及存储介质
CN114362905A (zh) 一种多bwp多ue的srs资源分配方法
CN112673671A (zh) 使用增强的信号频谱tx模板改进多用户分组并提高频谱效率

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894716

Country of ref document: EP

Kind code of ref document: A1