WO2018141179A1 - Systèmes et procédés destinés à l'extension de portée de cellules - Google Patents

Systèmes et procédés destinés à l'extension de portée de cellules Download PDF

Info

Publication number
WO2018141179A1
WO2018141179A1 PCT/CN2017/116332 CN2017116332W WO2018141179A1 WO 2018141179 A1 WO2018141179 A1 WO 2018141179A1 CN 2017116332 W CN2017116332 W CN 2017116332W WO 2018141179 A1 WO2018141179 A1 WO 2018141179A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless device
guard period
indication
round trip
trip time
Prior art date
Application number
PCT/CN2017/116332
Other languages
English (en)
Inventor
Ioannis Xirouchakis
Benny Assouline
Efstathios KATRANARAS
Guillaume Vivier
Olivier Marco
Original Assignee
Jrd Communication (Shenzhen) Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jrd Communication (Shenzhen) Ltd filed Critical Jrd Communication (Shenzhen) Ltd
Priority to CN201780085138.8A priority Critical patent/CN110235457A/zh
Publication of WO2018141179A1 publication Critical patent/WO2018141179A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • UE wireless user equipments
  • CE Coverage Enhancement
  • the indication of round trip time indicates the round trip time as an integer number of subframes.
  • the first guard period is used for TDD or HD-FDD operation, the method comprising: using the first guard period between downlink and uplink subframes.
  • the method comprises: sending a scheduling indication during downlink subframe n to schedule an uplink data transmission; determining an expected uplink subframe to receive the data based on n and the first guard period.
  • the data comprises an indication of a round trip time between the wireless base station and the wireless device.
  • the second indication of round trip time is calculated as:
  • T RTT estimated round trip time
  • G RTT a granularity known to the wireless base station and the wireless device.
  • the method comprises receiving an updated indication of a guard period during a connection with the wireless base station.
  • the indication of the guard period is an integer number of subframes.
  • the integer number of subframes is calculated by:
  • the method comprises: receiving downlink data during a downlink subframe n; and determining an uplink subframe to send a hybrid automatic repeat request acknowledgement, HARQ-ACK, based on n and the guard period.
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • the functionality described here can be implemented in hardware, software executed by a processing apparatus, or by a combination of hardware and software.
  • the processing apparatus can comprise a computer, a processor, a state machine, a logic array or any other suitable processing apparatus.
  • the processing apparatus can be a general-purpose processor which executes software to cause the general-purpose processor to perform the required tasks, or the processing apparatus can be dedicated to perform the required functions.
  • Another aspect of the invention provides machine-readable instructions (software) which, when executed by a processor, perform any of the described methods.
  • the machine-readable instructions may be stored on an electronic memory device, hard disk, optical disk or other machine-readable storage medium.
  • the machine-readable medium can be a non-transitory machine-readable medium.
  • the term “non-transitory machine-readable medium” comprises all machine-readable media except for a transitory, propagating signal.
  • the machine-readable instructions can be downloaded to the storage medium via a network connection.
  • Figure 3 shows an example method of operation in the network of Figure 1
  • Figure 6 shows a table of values used in an example supporting range enhancement
  • Figure 12 shows an example of scheduling in a FDD mode
  • Figures 18 to 21 show timing data for HARQ-ACK operation with Frame structure Type 2;
  • the wireless base station 10 can serve wireless devices, such as UE1, located within the first cell radius 12, and can also serve wireless devices, such as UE2, located within the region 16 between first cell radius 12 and the second cell radius 14.
  • the wireless base station 10 continues to serve wireless devices UE1 located within the first cell radius 12 using communication parameters related to the first cell radius. For example, in a TDD or HD-FDD system, UE1 communicates using a guard period for a cell of radius 12.
  • the wireless base station 10 serve wireless devices UE2 located within the region 16 using communication parameters related to the second cell radius 14. For example, in a TDD or HD-FDD system, UE2 communicates using a longer guard period for a cell of radius 14. This allows legacy devices to be served without changes to their operation. It also makes better use of spectral resources.
  • two UEs are shown in this example it will be understood that the eNB can serve a much larger number of UEs.
  • LTE provides a guard period between the downlink subframe and the uplink subframe to allow for propagation delays.
  • the guard period is provided as part of a special subframe defined in TS 36.211 at section 4.2, Table 2.
  • LTE defines a number of different special subframe configurations (0, 1, 2, ... 8) for different cell sizes.
  • the special subframe is always one subframe in length.
  • all UEs within a cell operate with the same special subframe configuration. For example, in the largest supported cell size of 107km, all UEs use a Special Subframe configuration 0, with a guard period of 10 OFDM symbols.
  • the method uses information received from a wireless device.
  • the information indicates distance between the wireless base station and the wireless device. This allows the base station to select a guard period which is suitable for each of the wireless devices. For example, in Figure 1 the eNB can select a normal guard period for UE1 and an extended guard period for UE2.
  • An alternative to signalling a delay/distance value is simply to signal that the UE is located outside the first cell radius (12, Fig. 1) . This can require as little as a single data bit (e.g. a flag set to “1” to indicate the UE is outside the first cell radius) .
  • the UE attempts to transmit a signal on an uplink Physical Random Access Channel (PRACH) , so that the signal arrives at the eNB within a time window on the PRACH.
  • PRACH Physical Random Access Channel
  • the system can use the same maximum length of PRACH window as defined in LTE Release 13. This has an advantage of not requiring additional spectral resources to support UEs outside the configured cell radius.
  • the UE can use an initial value of RTT, calculated using one of the techniques described above, to time the uplink transmission so that it arrives within the PRACH detection window.
  • a UE may need to make a plurality of attempts with different values of RTT.
  • T GP is the length of the guard period in a preamble format for a non-extended cell. If the round trip time is less than T GP , the UE is within the normal range (12, Fig. 1) of the eNB and can operate as normal. If the round trip time is greater than T GP , the UE needs to operate with an additional guard period.
  • the number of guard subframes is sent to the UE.
  • the UE receives the value of The UE begins to use the value of during communication with the base station.
  • the value of can be used during one or more of: a number of guard period subframes between downlink and uplink subframes; determining an uplink subframe to send data; determining an uplink subframe to send an acknowledgement (e.g. HARQ-ACK) .
  • the detection window has a length which not only fits the length of the preamble sequences, but also the maximum RTT that the network has configured.
  • UEs located at the cell edge experience the maximum round trip time and their preamble sequences arrive at the very end of the eNodeB detection window.
  • Each Preamble format corresponds to different GT lengths, and consequently, different cell sizes.
  • the minimum cell size is ⁇ 14 km (Preamble format 0) and the maximum cell size is ⁇ 107 km (Preamble format 3) . More details can be found in Section 5.7 of 3GPP TS 36.211.
  • Table 4.2-2 of 3GPP TS 36.211 can be replaced by Figure 13.
  • the eNodeB is not allowed to schedule an uplink transmission in subframe n for a combination of UL/DL configuration and if this subframe is not indicated as an uplink subframe (U) in Figure 13.
  • TDD frame structure type 2
  • the UE needs to transmit it in subframe n+k, according to Section 8.0 of 3GPP TS 36.211, where k depends on the UL/DL configuration.
  • Figures 14-17 show tables which provide values of k for UL/DL configurations 0-6 and and 3, respectively.
  • (D) indicates DL subframes
  • (S) indicates special subframes
  • (U) indicates UL subframes
  • (SG) indicates special subframes used as GP
  • (ULG) indicate UL subframes used as GP.
  • the UE shall attempt to attach to that cell and send n GP (or an extended range indication) .
  • n GP or an extended range indication
  • Msg3 e.g.
  • Hybrid Automatic Repeat Request is a mechanism by which a UE acknowledges if it correctly received data on the downlink.
  • HARQ Hybrid Automatic Repeat Request
  • the UE needs to transmit the corresponding ACK/NACK value in subframe n, according to Section 7.3 of 3GPP TS 36.213, allowing 4 subframes for DCI reception and HARQ-ACK preparation and transmission.
  • Frame structure type 2 uses HARQ-ACK bundling, i.e. sending one representative ACK value for a bundle of downlink packets if all packets were successful, or sending an NACK if at least one packet of the bundle was unsuccessful.
  • the bundle size for each uplink subframe and the DL packet numbering since its reception are shown in Figure 18.
  • E. g. for TDD UL/DL configuration #1 and for subframe n 2 the bundle is a combination of two packets received 6 and 7 subframes earlier.
  • FIGS. 18-21 show the values for k for 1, 2, 3, respectively, where k is the delay (in subframes) between the reception of a PDSCH packet and its HARQ-ACK transmission. k can point to either a DL or a special subframe. Indices k which belong to the same HARQ-ACK subframe form a HARQ-ACK bundle K : ⁇ k 0 , k 1 , k M-1 , ⁇ , where M is the length of the bundle.
  • ′an′ item refers to one or more of those items.
  • ′comprising′ is used herein to mean including the method blocks or elements identified, but that such blocks or elements do not comprise an exclusive list and a method or apparatus may contain additional blocks or elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

La présente invention concerne un procédé de prise en charge d'une communication à portée étendue entre une station de base sans fil et un premier dispositif sans fil. La station de base sans fil eNB reçoit des informations en provenance du premier dispositif sans fil UE2. Les informations indiquant une distance ou un retard temporel entre la station de base sans fil eNB et le premier dispositif sans fil UE2. La station de base sans fil eNB détermine, en fonction des informations reçues, si le premier dispositif sans fil se trouve au-delà d'une première portée 12. S'il est déterminé que le premier dispositif sans fil se trouve au-delà de la première portée 12, la station de base sans fil eNB détermine une première période de garde à utiliser pour communiquer avec le premier dispositif sans fil UE2. La première période de garde est plus longue qu'une seconde période de garde utilisée pour communiquer avec un dispositif sans fil UE1 à l'intérieur de la première portée 12. La station de base sans fil eNB envoie une indication de la première période de garde au premier dispositif sans fil UE2.
PCT/CN2017/116332 2017-02-03 2017-12-15 Systèmes et procédés destinés à l'extension de portée de cellules WO2018141179A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780085138.8A CN110235457A (zh) 2017-02-03 2017-12-15 小区范围扩展的系统及方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1701814.4A GB2559382B (en) 2017-02-03 2017-02-03 Systems and methods for cell range extension
GB1701814.4 2017-02-03

Publications (1)

Publication Number Publication Date
WO2018141179A1 true WO2018141179A1 (fr) 2018-08-09

Family

ID=58462277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116332 WO2018141179A1 (fr) 2017-02-03 2017-12-15 Systèmes et procédés destinés à l'extension de portée de cellules

Country Status (3)

Country Link
CN (1) CN110235457A (fr)
GB (1) GB2559382B (fr)
WO (1) WO2018141179A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3672334A1 (fr) * 2018-12-18 2020-06-24 Gemalto M2M GmbH Procédé d'estimation d'avance de synchronisation dans une zone à grandes cellules
CN111918405A (zh) * 2019-05-10 2020-11-10 中国移动通信有限公司研究院 一种随机接入方法、终端及网络侧设备
WO2020205930A3 (fr) * 2019-04-04 2020-11-12 Qualcomm Incorporated Distribution de temps de référence à un équipement d'utilisateur avec compensation de retard de propagation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019446091A1 (en) * 2019-05-10 2021-05-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for random access and device
KR20230070248A (ko) * 2020-10-15 2023-05-22 지티이 코포레이션 무선 통신 시스템을 위한 버스트 확산 파라미터를 사용한 리소스 구성

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330316A (zh) * 2007-06-22 2008-12-24 中兴通讯股份有限公司 一种应用在无线通信系统上行链路中的时间同步方法及装置
CN102119577A (zh) * 2008-06-12 2011-07-06 爱立信电话股份有限公司 随机接入模式控制方法和实体
WO2012163193A1 (fr) * 2011-05-31 2012-12-06 华为技术有限公司 Procédé et dispositif de transmission de données
US20140092880A1 (en) * 2011-05-31 2014-04-03 Huawei Technologies Co., Ltd. Methods and devices for transmitting data

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633559B1 (en) * 1999-08-11 2003-10-14 Ericsson Inc. Apparatus and methods for extended base station range using staggered uplink frame structures
EP1213855A1 (fr) * 2000-12-08 2002-06-12 Lucent Technologies Inc. Structure de trame pour des systèmes de télécommunications TDD
US20050157694A1 (en) * 2004-01-21 2005-07-21 Nec Laboratories America, Inc. Time division duplex system and method with improved guard time
EP1746743B1 (fr) * 2005-07-21 2010-01-06 Mitsubishi Electric R&D Centre Europe B.V. Méthode de transmission dans un système TDD avec période de garde de longueur variable
CN101682397B (zh) * 2007-01-15 2013-05-29 艾利森电话股份有限公司 用于在无线接入tdd系统中的增强的性能的方法和设备
CN101394648B (zh) * 2007-09-17 2012-05-23 中兴通讯股份有限公司 一种时分双工系统中终端前导的发送方法
WO2011043711A1 (fr) * 2009-10-09 2011-04-14 Telefonaktiebolaget L M Ericsson (Publ) Extension de portée de cellule
WO2012091645A1 (fr) * 2010-12-30 2012-07-05 Telefonaktiebolaget L M Ericsson (Publ) Procédé et configuration destinés à adapter un temps de garde sur la base d'une avance de temps
US10200974B2 (en) * 2013-01-08 2019-02-05 Intel IP Corporation Methods and arrangements to mitigate collisions in wireless networks
CN103346829B (zh) * 2013-07-01 2016-04-20 北京大学 兼容lte模式卫星通信初始随机接入两步时延测量方法
KR102583779B1 (ko) * 2013-09-10 2023-10-04 마벨 아시아 피티이 엘티디. 옥외 wlan용 확장 보호 구간
US20150085834A1 (en) * 2013-09-26 2015-03-26 Qualcomm Incorporated Time division long term evolution (td-lte) frame structure modification
US20150117270A1 (en) * 2013-10-31 2015-04-30 Electronics And Telecommunications Research Institute Method and apparatus for determining guard period on time division duplex system
GB2538534A (en) * 2015-05-20 2016-11-23 Vodafone Ip Licensing Ltd Time distribution in wireless communication systems
US20180176875A1 (en) * 2015-06-19 2018-06-21 Nokia Solutions And Networks Oy Guard period in a frame

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330316A (zh) * 2007-06-22 2008-12-24 中兴通讯股份有限公司 一种应用在无线通信系统上行链路中的时间同步方法及装置
CN102119577A (zh) * 2008-06-12 2011-07-06 爱立信电话股份有限公司 随机接入模式控制方法和实体
WO2012163193A1 (fr) * 2011-05-31 2012-12-06 华为技术有限公司 Procédé et dispositif de transmission de données
US20140092880A1 (en) * 2011-05-31 2014-04-03 Huawei Technologies Co., Ltd. Methods and devices for transmitting data

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3672334A1 (fr) * 2018-12-18 2020-06-24 Gemalto M2M GmbH Procédé d'estimation d'avance de synchronisation dans une zone à grandes cellules
WO2020126945A1 (fr) * 2018-12-18 2020-06-25 Thales Dis Ais Deutschland Gmbh Procédé d'estimation de l'avance temporelle dans une grande zone cellulaire
WO2020205930A3 (fr) * 2019-04-04 2020-11-12 Qualcomm Incorporated Distribution de temps de référence à un équipement d'utilisateur avec compensation de retard de propagation
CN113661664A (zh) * 2019-04-04 2021-11-16 高通股份有限公司 向用户装备进行的具有传播延迟补偿的参考定时递送
US11184872B2 (en) 2019-04-04 2021-11-23 Qualcomm Incorporated Reference timing delivery to user equipment with propagation delay compensation
US11917570B2 (en) 2019-04-04 2024-02-27 Qualcomm Incorporated Reference timing delivery to user equipment with propagation delay compensation
CN111918405A (zh) * 2019-05-10 2020-11-10 中国移动通信有限公司研究院 一种随机接入方法、终端及网络侧设备

Also Published As

Publication number Publication date
GB201701814D0 (en) 2017-03-22
GB2559382A (en) 2018-08-08
GB2559382B (en) 2021-10-20
CN110235457A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
US11019583B2 (en) Method for network-assisted uplink time advance for extreme range support
WO2018141179A1 (fr) Systèmes et procédés destinés à l'extension de portée de cellules
CN110612769B (zh) 执行随机接入过程的方法及其装置
US9820244B2 (en) Time-advanced random access channel transmission
CN111165063B (zh) 执行随机接入过程的方法及其设备
US9155084B2 (en) Methods and devices for transmitting data
EP2486764B1 (fr) Plage de cellules étendue
EP3297343A2 (fr) Procédé et appareil de gestion d'une avance de la temporisation pour la transmission en liaison montante dans un système de communications sans fil
JP7291166B2 (ja) 無線通信ネットワークのためのノード及び動作方法
US8447343B2 (en) Methods and arrangements in a mobile telecommunication network
EP2704463B1 (fr) Procédé et dispositif de transmission de données
CN112804745A (zh) 无线通信系统中上行链路定时确定的方法和设备
JP2019515530A (ja) アップリンク送信タイミング制御
EP3562252B1 (fr) Procédé de transmission de préambule d'accès aléatoire, et dispositif associé
WO2018173004A1 (fr) Positions de début et de fin multiples pour une transmission de liaison descendante ordonnancée sur un spectre sans licence
EP3573402B1 (fr) Procédé de communication et terminal
EP3711432B1 (fr) Longueur de fenêtre de réponse d'accès aléatoire en nouvelle radio
EP2840844A2 (fr) Alignement de synchronisation de liaison montante
KR20160009918A (ko) 무선통신 시스템의 상향링크 동기화 장치 및 방법
EP3896879A1 (fr) Procédé de communication, dispositif terminal et dispositif de réseau
KR20160119628A (ko) 무선통신 시스템에서 기준 시간 운용 방법 및 장치
CN111919481A (zh) 用于无线通信系统中的上行链路传输的方法、设备和计算机可读介质
CN114071571A (zh) 上行信道间冲突的传输方法、装置及存储介质
CN111432488B (zh) 终端设备、网络设备、上行发送方法和上行接收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895222

Country of ref document: EP

Kind code of ref document: A1