WO2018141152A1 - 全息显示器及其显示方法、显示装置 - Google Patents

全息显示器及其显示方法、显示装置 Download PDF

Info

Publication number
WO2018141152A1
WO2018141152A1 PCT/CN2017/098829 CN2017098829W WO2018141152A1 WO 2018141152 A1 WO2018141152 A1 WO 2018141152A1 CN 2017098829 W CN2017098829 W CN 2017098829W WO 2018141152 A1 WO2018141152 A1 WO 2018141152A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
transflective film
spatial light
light modulator
disposed
Prior art date
Application number
PCT/CN2017/098829
Other languages
English (en)
French (fr)
Inventor
张玉欣
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/751,665 priority Critical patent/US10754296B1/en
Priority to EP17835994.9A priority patent/EP3579057A4/en
Publication of WO2018141152A1 publication Critical patent/WO2018141152A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/10Processes or apparatus for producing holograms using modulated reference beam
    • G03H1/12Spatial modulation, e.g. ghost imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2286Particular reconstruction light ; Beam properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133342Constructional arrangements; Manufacturing methods for double-sided displays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0088Adaptation of holography to specific applications for video-holography, i.e. integrating hologram acquisition, transmission and display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0212Light sources or light beam properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0224Active addressable light modulator, i.e. Spatial Light Modulator [SLM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • G03H2001/221Element having optical power, e.g. field lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2223Particular relationship between light source, hologram and observer
    • G03H2001/2226Edge lit holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2223Particular relationship between light source, hologram and observer
    • G03H2001/2228Particular relationship between light source, hologram and observer adapted for reflection and transmission reconstruction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2236Details of the viewing window
    • G03H2001/2239Enlarging the viewing window
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2236Details of the viewing window
    • G03H2001/2242Multiple viewing windows
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/34Multiple light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/16Optical waveguide, e.g. optical fibre, rod
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/60Multiple SLMs
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2226/00Electro-optic or electronic components relating to digital holography
    • G03H2226/05Means for tracking the observer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2227/00Mechanical components or mechanical aspects not otherwise provided for
    • G03H2227/03Means for moving one component

Definitions

  • the present disclosure relates to a holographic display, a display method thereof, and a display device.
  • Holographic display technology is considered the ultimate solution for 3D display.
  • the backlight of the existing holographic display uses a laser or a light emitting diode (LED) light source and a beam expanding collimating lens to expand and collimate the light source to illuminate the entire spatial light modulator.
  • LED light emitting diode
  • a spatial light modulator comprises a plurality of independent units which are spatially arranged in a one-dimensional or two-dimensional array, each unit being independently capable of receiving control of an optical signal or an electrical signal, and changing its optical properties according to the signal. Thereby modulating the light waves on which the illumination is applied.
  • Such devices can change the amplitude or intensity, phase, polarization, and wavelength of spatially distributed light, or convert incoherent light into coherent light, under the control of time-varying electrical drive signals or other signals.
  • the spatial light modulator is generally divided into a reflective type and a transmissive type according to the readout mode of the readout light; and the optical control and the electrical addressing are different according to the manner of inputting the control signal, and the most common spatial light modulation is currently available.
  • the device is a liquid crystal light valve.
  • the backlight requires a large number of optical components to form a bulky optical system, the overall volume is large and can only be displayed on one side.
  • the present disclosure provides a holographic display, a display method thereof, and a display device for realizing lightening and thinning of a holographic display, and for displaying a single-sided display or a double-sided display during holographic display.
  • a holographic display includes: a light source supporting portion; a light emitting member including at least one light source and disposed on the light source supporting portion; and a first spatial light modulator and a first portion respectively located on the two sides of the light emitting member a second spatial light modulator; a first transflective film located on a side of the first spatial light modulator adjacent to the light emitting member; and a second transflective film located on a side of the second spatial light modulator adjacent to the light emitting member.
  • the first transflective film and the second transflective film are opposed to each other, and the projections on a plane parallel to the display surface of the display at least partially overlap.
  • the projections of the first transflective film and the second transflective film on a plane parallel to the display surface of the display all overlap, and the illuminating members are disposed on the first transflective film and the second semi-transparent film. Between semi-reflective films.
  • the light source support portion is a transparent substrate disposed between the first spatial light modulator and the second spatial light modulator.
  • the light source is disposed on a side of the transparent substrate adjacent to the first transflective film, and/or the light source is disposed on a side of the transparent substrate adjacent to the second transflective film .
  • the light source is disposed at an edge region of the transparent substrate.
  • the transparent substrate is disposed on a side of the first transflective film adjacent to the first transflective film, and/or the side of the transparent substrate is adjacent to the second transflective film.
  • Semi-transflective film is disposed on a side of the first transflective film adjacent to the first transflective film, and/or the side of the transparent substrate is adjacent to the second transflective film.
  • a side of the transparent substrate adjacent to the first transflective film is disposed with a first reflective layer, and/or a side of the transparent substrate adjacent to the second transflective film is provided with a second reflective layer.
  • At least one light source is disposed on a side of the transparent substrate adjacent to the first transflective film, and at least one light source is disposed on a side of the transparent substrate adjacent to the second transflective film.
  • the materials of the first reflective layer and the second reflective layer are the same.
  • the light source support portion is a frame disposed outside the first spatial light modulator and the second spatial light modulator;
  • the light source is located between an orthographic projection area of the first spatial light modulator on the bezel and an orthographic projection area of the second spatial light modulator on the bezel.
  • the method further includes a first lens disposed within a preset distance of the first spatial light modulator from a side of the light source, and/or disposed on a side of the second spatial light modulator away from the light source. a second lens within the distance;
  • the first lens and the second lens are converging lenses.
  • the materials of the first transflective film and the second transflective film are the same.
  • the light source is a rotatable light source.
  • a holographic display further includes: a system controller configured to control rotation of the rotatable light source according to a change in a position of a human eye, a tracking device coupled to the system controller, configured to capture a person The eye position transmits information of the captured human eye position to the system controller.
  • the transparent substrate to the first is equal
  • an embodiment of the present invention further provides a display device including the holographic display described above.
  • the embodiment of the invention further provides a display method of the above holographic display, comprising:
  • the first spatial light modulator and/or the second spatial light modulator are controlled to be turned on.
  • the light source is a rotatable light source
  • the method further includes:
  • the information of the position of the human eye is captured, and the rotation of the rotatable light source is controlled according to the change in the position of the human eye.
  • FIG. 1 is a schematic structural diagram of a holographic display according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a holographic display according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of another holographic display according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of still another holographic display according to Embodiment 1 of the present invention.
  • FIG. 5a and FIG. 5b are schematic structural diagrams of still another holographic display according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural diagram of a holographic display according to Embodiment 2 of the present invention.
  • FIG. 7 is a flowchart of a display method of a holographic display according to an embodiment of the present invention.
  • FIG. 8 is a block diagram of an exemplary system of a holographic display in accordance with an embodiment of the present invention.
  • a specific embodiment of the present invention provides a holographic display 100 including a light source supporting portion 11 , a light emitting member 120 disposed on the light source supporting portion 11 , and first spatial light modulation respectively located on both sides of the light emitting device 120 .
  • the first transflective film 15 on the side of the first spatial light modulator 13 near the illuminating member 120 is located on the side of the second spatial light modulator 14 near the illuminating member 120.
  • the second semi-transflective film 16 includes at least one light source 12.
  • first transflective film 15 and the second transflective film 16 are opposed to each other, and the projections on a plane parallel to the display surface of the display 100 at least partially overlap.
  • the projections of the first transflective film 15 and the second transflective film 16 on a plane parallel to the display surface of the display are all overlapped, and the illuminating member 120 is disposed on the first transflective film. 15 and between the second semi-transflective film 16.
  • the display surface of the display 100 is parallel to the faces of the first spatial light modulator 13 and the second spatial light modulator 14.
  • both the first transflective film 15 and the second transflective film 16 are capable of reflecting part of the light and transmitting part of the light, the light emitted by the light source 12 is irradiated to the first half.
  • part of the light that is irradiated onto the first transflective film 15 is reflected and then irradiated to the second transflective film 16, and the remaining portion of the light is transmitted through the first transflective film 15 to the first spatial light.
  • the modulator 13 after receiving the light, the first spatial light modulator 13 performs phase modulation and amplitude modulation on the light according to data provided by the data source connected to the first spatial light modulator 13
  • the hologram image is displayed; likewise, part of the light that is incident on the second transflective film 16 is reflected and then irradiated to the first transflective film 15 again, and the remaining portion of the light is transmitted through the second transflective film 16.
  • the second spatial light modulator 14 After the second spatial light modulator 14 receives the light, the second spatial light modulator 14 performs phase modulation and amplitude modulation on the light according to the data provided by the data source connected to the second spatial light modulator 14, thereby enabling display.
  • Holographic image is a convection and amplitude modulation on the light according to data provided by the data source connected to the second spatial light modulator 14.
  • the present disclosure does not require a large number of optical components to form a bulky optical system, and can realize the slimness of the holographic display.
  • first spatial light modulator 13 and the second spatial light modulator 14 in the present disclosure may be liquid crystal light valves, and the specific working processes and working principles of the first spatial light modulator 13 and the second spatial light modulator 14 may be As known to the inventors of the present disclosure, no further details are provided herein.
  • the light source 12 in the embodiment of the present invention is a rotatable light source, and the rotation angle of the light source 12 can be controlled by a system controller provided by the holographic display.
  • a system controller provided by the holographic display.
  • Other parts of the system controller in the embodiment of the present invention can be combined with the prior art holographic display.
  • the included system controllers are similar, and the specific control methods of other parts are similar to the prior art, and are not described here.
  • the entire holographic display in embodiments of the invention can be simultaneously controlled by the system controller.
  • the light source in the embodiment of the invention is a collimated light source, and the emitted light is parallel light.
  • the light source of the embodiment of the present invention is a collimated surface light source, which can be implemented by using a common light source + a collimating lens, which is not limited in the embodiment of the present invention.
  • the illuminating angle of the light source 12 in the embodiment of the present invention may be less than 180 degrees, and the angle of the light source may be adjusted according to the direction in which the light is emitted.
  • the light source 12 is rotated by a certain angle and incident on the first spatial light modulation.
  • the light of the device 13 or the second spatial light modulator 14 is rotated by a certain angle, so that the multi-angle viewing of the user can be realized by adjusting the rotation angle of the light source; in addition, the embodiment of the present invention can also adjust the rotation angle of the light source and utilize The visual persistence effect of the human eye enables multi-person viewing.
  • the holographic display in the embodiment of the present invention may further include a tracking device connected to the system controller in the specific embodiment of the present invention for capturing information of the position of the human eye, which will be captured.
  • the information of the position of the human eye is sent to the system controller; the system controller in the embodiment of the present invention is further configured to control the rotation of the rotatable light source according to the change in the position of the human eye.
  • the tracking device in the specific embodiment of the present invention can use the existing device capable of capturing the position information of the human eye.
  • the specific setting position of the tracking device can be set according to actual production needs. The setting of the tracking device can better track the specific position of the human eye in real time, thereby achieving better multi-angle and multi-person viewing.
  • the tracking device may be disposed on the bezel of the display on the viewer-facing side of the holographic display, or at any location of the holographic display capable of capturing the position of the human eye, which is not limited in this disclosure.
  • the materials of the first transflective film 15 and the second transflective film 16 in the specific embodiment of the present invention are the same, exemplarily, the first transflective film 15 and the second transflective film 16Selecting a thin aluminum (Al), of course, in the actual production process, the first transflective film 15 and the second transflective film 16 may also have other partial light transmittance and partial light reflecting characteristics.
  • the material of the first transflective film 15 and the second transflective film 16 may also be selected from different materials, but in the actual production process, the first transflective is considered in consideration of the cost of the material and the like.
  • the materials of the film 15 and the second transflective film 16 may be the same.
  • the light source supporting portion in the specific embodiment of the present invention may be a transparent substrate, or may be a frame disposed outside the first spatial light modulator and the second spatial light modulator.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the light source supporting portion in the embodiment of the present invention is a transparent substrate 21 disposed between the first spatial light modulator 13 and the second spatial light modulator 14.
  • the light source 12 is disposed on a side of the transparent substrate 21 adjacent to the first transflective film 15, and/or the light source 12 is disposed on a side of the transparent substrate 21 adjacent to the second transflective film 16, and FIG. 2 only shows the light source. 12 is disposed on a side of the transparent substrate 21 close to the first transflective film 15.
  • the transparent substrate 21 may select a glass substrate, and the distance between the transparent substrate 21 and the first spatial light modulator 13 is equal to the distance between the transparent substrate 21 and the second spatial light modulator 14.
  • the actual design is transparent.
  • the distance between the substrate 21 to the first spatial light modulator 13 and the distance between the transparent substrate 21 and the second spatial light modulator 14 may also be unequal, and in actual design, in order to be able to place the light source 12 in a larger range.
  • the length of the transparent substrate 21 in the vertical direction is equal to the length of the first spatial light modulator 13 or the second spatial light modulator 14 in the vertical direction.
  • the light source 12 in the embodiment of the present invention is disposed in an edge region of the transparent substrate 21, so that the light emitted from the light source 12 can be irradiated to the first half.
  • the reflective film 15 and the second transflective film 16 are provided.
  • the holographic display of the embodiment of the present invention further includes a first lens 22 disposed within a predetermined distance of the first spatial light modulator 13 away from the light source 12, and/or disposed in the second space.
  • the light modulator 14 is away from the second lens 23 within a predetermined distance from the side of the light source 12; the first lens 22 and the second lens 23 may be a converging lens, and the first lens 22 is used to emit light to the first spatial light modulator 13. Convergence is performed; the second lens 23 is used to converge the light emitted by the second spatial light modulator 14, and the first lens 22 and the second lens 23 are disposed to better inject light into the human eye 20.
  • the light source 12 in the embodiment of the present invention is a rotatable light source.
  • the embodiment of the present invention can capture the position information of the human eye 20 through a tracking device (not shown), and the captured human eye 20
  • the position information is sent to a system controller (not shown), and the system controller controls the rotation of the rotatable light source 12 according to the change of the position information of the human eye 20 to achieve multi-angle and multi-person viewing.
  • the content of the hologram 24 viewed by the user on the left side in FIG. 2 may be the same as or different from the content of the hologram image 24 viewed by the user on the right side.
  • a third transflective film 31 is disposed on a side of the transparent substrate 21 adjacent to the first transflective film 15, and/or the transparent substrate 21 is adjacent to the second transflective portion.
  • a fourth transflective film 32 is disposed on one side of the reflective film 16, and only the case where the third transflective film 31 and the fourth transflective film 32 are simultaneously disposed is shown in the figure. The direction of propagation is the direction shown by the arrow in the figure.
  • the materials of the third transflective film 31 and the fourth transflective film 32 may be the same as those of the first transflective film 15 and the second transflective film 16, of course, in actual production processes.
  • the third transflective film 31 and the fourth transflective film 32 may also select other film layers having the functions of reflecting light and transmitting light, and the embodiment of the present invention is not directed to the third transflective film 31 and The specific material of the fourth transflective film 32 is defined.
  • the first reflective layer 41 is disposed on a side of the transparent substrate 21 adjacent to the first transflective film 15, and/or the side of the transparent substrate 21 adjacent to the second transflective film 16 is disposed.
  • the second reflective layer 42; the first reflective layer 41 and the second reflective layer 42 are both for reflecting light; at least one light source 12 is disposed on a side of the transparent substrate 21 adjacent to the first transflective film 15, and the transparent substrate 21 is adjacent to the second At least one light source 12 is disposed on one side of the transflective film 16, and only the case where the first reflective layer 41 and the second reflective layer 42 are simultaneously disposed is shown in FIG. 3, and the direction of propagation of the light emitted by the light source 12 is as shown in the figure. The direction shown.
  • the materials of the first reflective layer 41 and the second reflective layer 42 are the same.
  • the material of the first reflective layer 41 and the second reflective layer 42 is aluminum (Al).
  • the first reflective layer 41 and the second reflective layer 42 may also select other materials having reflective properties, and the materials of the first reflective layer 41 and the second reflective layer 42 may also be selected from different materials, but in actual production, considering the cost of materials, etc.
  • the materials of the first reflective layer 41 and the second reflective layer 42 may be the same.
  • the specific embodiment of the present invention needs to be on the left and right sides of the transparent substrate 21.
  • At least one light source 12 is provided, and a case where one light source 12 is respectively disposed on the left and right sides of the transparent substrate 21 is shown in FIG.
  • two light sources 12, an upper light source and a lower light source may be disposed on the left side of the transparent substrate 21, and two light sources 12 of the upper light source and the lower light source may be disposed on the right side of the transparent substrate 21.
  • the upper light source on the left and right sides of the transparent substrate 21 in FIG. 5a emits light.
  • the lower light source on the left and right sides of the transparent substrate 21 may be illuminated; the lower light source on the left side of the transparent substrate 21 in FIG. 5b and The upper light source located on the right side of the transparent substrate 21 emits light.
  • the upper light source located on the left side of the transparent substrate 21 and the lower light source located on the right side of the transparent substrate 21 may be illuminated.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the light source supporting portion in the specific embodiment of the present invention is a frame 51 disposed outside the first spatial light modulator 13 and the second spatial light modulator 14; the light source 12 is located at the first spatial light modulator 13
  • the orthographic projection area on the bezel 51 is between the orthographic projection area of the second spatial light modulator 14 on the bezel 51.
  • the distance of the light source 12 to the first spatial light modulator 13 is equal to the distance from the light source 12 to the second spatial light modulator 14.
  • the holographic display of the embodiment of the present invention further includes a first lens 22 disposed within a predetermined distance of the first spatial light modulator 13 away from the light source 12, and/or disposed in the second space.
  • the light modulator 14 is away from the second lens 23 within a predetermined distance on the side of the light source 12; the first lens 22 is used to converge the light emitted by the first spatial light modulator 13; and the second lens 23 is used to align the second spatial light.
  • the light emitted from the modulator 14 is concentrated, and the first lens 22 and the second lens 23 are disposed to better inject light into the human eye.
  • a specific embodiment of the present invention further provides a display device, which includes the above holographic display provided by a specific embodiment of the present invention, and the display device can be a liquid crystal panel, a liquid crystal display, a liquid crystal television, or an organic A display device such as an Organic Light Emitting Diode (OLED) panel, an OLED display, an OLED TV, or an electronic paper.
  • OLED Organic Light Emitting Diode
  • a specific embodiment of the present invention further provides a display method of the above holographic display, comprising:
  • the method further includes: capturing human eye position information, and controlling rotation of the rotatable light source according to changes in human eye position information.
  • a particular embodiment of the invention controls the illumination of the light source by the system controller, controls whether the first spatial light modulator and/or the second spatial light modulator are turned on or off, when the first spatial light modulator or the second spatial light modulator Closed, single-sided display can be realized; when the first spatial light modulator and the second spatial light modulator are turned on, double-sided display can be realized, which can be used for display display in the window.
  • a specific embodiment of the present invention provides a holographic display including a light source support portion, at least one light source disposed on the light source support portion, first spatial light modulators respectively disposed on both sides of the light source, and second spatial light modulation And a first transflective film located on a side of the first spatial light modulator near the light source, and a second transflective film located on a side of the second spatial light modulator near the light source.
  • the first semi-transflective film When the first semi-transflective film is irradiated, part of the light that is irradiated onto the first transflective film is reflected and then irradiated to the second transflective film, and the remaining portion of the light is transmitted to the first spatial light modulator.
  • a spatial light modulator After receiving the light, a spatial light modulator performs phase modulation and amplitude modulation on the light according to data provided by the data source connected to the first spatial light modulator, thereby enabling display of the holographic image; likewise, illuminating the second semi-transparent Part of the light of the semi-reflective film is reflected and then irradiated to the first transflective film again, and the remaining part of the light is transmitted to the second spatial light modulator, and the second spatial light modulator receives the light, according to the second spatial light.
  • the data provided by the data source connected to the modulator performs phase modulation and amplitude modulation of the light, thereby enabling display of the holographic image.
  • the specific embodiment of the present invention does not require a large number of optical components to form a bulky optical system, and can realize the slimness of the holographic display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)

Abstract

一种全息显示器及其显示方法、显示装置。全息显示器(100)包括:光源支撑部(11);发光件(120),包括至少一个光源(12)且设置在光源支撑部(11)上;分别位于发光件(120)两侧的第一空间光调制器(13)和第二空间光调制器(14);第一半透半反射膜(15),位于第一空间光调制器(13)靠近发光件(120)一侧;第二半透半反射膜(16),位于第二空间光调制器(14)靠近发光件(120)一侧。本申请的全息显示器,能够实现轻薄化,既可单面显示,也可双面显示。

Description

全息显示器及其显示方法、显示装置 技术领域
本公开涉及一种全息显示器及其显示方法、显示装置。
背景技术
全息显示技术被认为是实现3D显示的最终方案。现有的全息显示的背光都采用激光或发光二极管(Light Emitting Diode,LED)光源加扩束准直透镜对光源进行扩束准直,以照亮整个空间光调制器。
一般地,空间光调制器含有许多独立单元,它们在空间上排列成一维或二维阵列,每个单元都可以独立地接收光学信号或电学信号的控制,并按此信号改变自身的光学性质,从而对照明在其上的光波进行调制。这类器件可在随时间变化的电驱动信号或其它信号的控制下,改变空间上光分布的振幅或强度、相位、偏振态以及波长,或者把非相干光转化为相干光。空间光调制器一般按照读出光的读出方式不同,分为反射式和透射式;而按照输入控制信号的方式不同又可分为光寻址和电寻址,目前最常见的空间光调制器是液晶光阀。
现有技术由于背光源需要很多光学部件组成庞大的光学系统,整体体积较大,并且只能单面显示。
发明内容
本公开提供了一种全息显示器及其显示方法、显示装置,用以实现全息显示器的轻薄化,以及在全息显示时,既可单面显示,也可双面显示。
一方面,本发明实施例提供的一种全息显示器,包括:光源支撑部;发光件,包括至少一个光源且设置在光源支撑部上;分别位于发光件两侧的第一空间光调制器和第二空间光调制器;第一半透半反射膜,位于第一空间光调制器靠近发光件一侧;以及第二半透半反射膜,位于第二空间光调制器靠近发光件一侧。
例如,第一半透半反射膜和第二半透半反射膜彼此相对,且在平行于显示器的显示面的平面上的投影至少部分交叠。
例如,第一半透半反射膜和第二半透半反射膜在平行于显示器的显示面的平面上的投影全部交叠,且发光件设置在第一半透半反射膜和第二半透半反射膜之间。
例如,所述光源支撑部为透明基板,所述透明基板设置在所述第一空间光调制器和所述第二空间光调制器之间。
例如,所述光源设置在所述透明基板靠近所述第一半透半反射膜的一侧,和/或所述光源设置在所述透明基板靠近所述第二半透半反射膜的一侧。
例如,所述光源设置在所述透明基板的边缘区域。
例如,所述透明基板靠近所述第一半透半反射膜的一侧设置第三半透半反射膜,和/或所述透明基板靠近所述第二半透半反射膜的一侧设置第四半透半反射膜。
例如,所述透明基板靠近所述第一半透半反射膜的一侧设置第一反射层,和/或所述透明基板靠近所述第二半透半反射膜的一侧设置第二反射层;
所述透明基板靠近所述第一半透半反射膜的一侧至少设置一光源,且所述透明基板靠近所述第二半透半反射膜的一侧至少设置一光源。
例如,所述第一反射层和所述第二反射层的材料相同。
例如,所述光源支撑部为设置在所述第一空间光调制器和所述第二空间光调制器外侧的边框;
所述光源位于所述第一空间光调制器在所述边框上的正投影区域与所述第二空间光调制器在所述边框上的正投影区域之间。
例如,还包括设置在所述第一空间光调制器远离所述光源一侧预设距离内的第一透镜,和/或设置在所述第二空间光调制器远离所述光源一侧预设距离内的第二透镜;
所述第一透镜和所述第二透镜为汇聚透镜。
例如,所述第一半透半反射膜和所述第二半透半反射膜的材料相同。
例如,所述光源为可旋转的光源。
例如,根据本发明实施例的全息显示器还包括:系统控制器,构造为根据人眼位置的变化控制所述可旋转的光源的旋转,追踪装置,与所述系统控制器相连,构造为捕获人眼位置,将捕获的人眼位置的信息发送给所述系统控制器。
例如,在垂直于所述显示器的显示面的方向上,所述透明基板到所述第 一空间光调制器和所述第二空间光调制器的距离相等
另一方面,本发明实施例还提供了一种显示装置,该显示装置包括上述的全息显示器。
本发明实施例还提供了一种上述全息显示器的显示方法,包括:
控制光源发光;
控制第一空间光调制器和/或第二空间光调制器开启。
例如,所述光源为可旋转的光源,该方法还包括:
捕获人眼位置的信息,并根据人眼位置的变化控制所述可旋转的光源的旋转。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本发明实施例提供的一种全息显示器的结构示意图;
图2为本发明实施例一提供的一种全息显示器的结构示意图;
图3为本发明实施例一提供的另一全息显示器的结构示意图;
图4为本发明实施例一提供的又一全息显示器的结构示意图;
图5a和图5b为本发明实施例一提供的再一全息显示器的结构示意图;
图6为本发明实施例二提供的一种全息显示器的结构示意图;
图7为本发明实施例提供的一种全息显示器的显示方法流程图;
图8为根据本发明实施例的全息显示器的示例性系统框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开专利保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属 领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。
下面结合附图详细介绍本发明具体实施例提供的全息显示器。
如图1所示,本发明具体实施例提供了一种全息显示器100,包括光源支撑部11、设置在光源支撑部11上的发光件120、分别位于发光件120两侧的第一空间光调制器13和第二空间光调制器14、位于第一空间光调制器13靠近发光件120一侧的第一半透半反射膜15、位于第二空间光调制器14靠近发光件120一侧的第二半透半反射膜16,该发光件120包括至少一光源12。
例如,第一半透半反射膜15和第二半透半反射膜16彼此相对,且在平行于显示器100的显示面的平面上的投影至少部分交叠。
例如,第一半透半反射膜15和第二半透半反射膜16在平行于所述显示器的显示面的平面上的投影全部交叠,且发光件120设置在第一半透半反射膜15和第二半透半反射膜16之间。
例如,显示器100的显示面为平行于第一空间光调制器13、第二空间光调制器14的面。
如图1所示,由于第一半透半反射膜15和第二半透半反射膜16均能够反射部分光线,以及透过部分光线,因此,光源12发出的光照射到第一半透半反射膜15,照射到第一半透半反射膜15的部分光线被反射后照射到第二半透半反射膜16,其余部分光线透过第一半透半反射膜15照射到第一空间光调制器13,第一空间光调制器13接收到光线后,根据第一空间光调制器13连接的数据源提供的数据,进行对光的相位调制和振幅调制,进而能 够显示全息图像;同样地,照射到第二半透半反射膜16的部分光线被反射后再次照射到第一半透半反射膜15,其余部分光线透过第二半透半反射膜16照射到第二空间光调制器14,第二空间光调制器14接收到光线后,根据第二空间光调制器14连接的数据源提供的数据,进行对光的相位调制和振幅调制,进而能够显示全息图像。因此,当本公开中的第一空间光调制器13和第二空间光调制器14均打开时,能够实现双面全息图像的显示;当第一空间光调制器13和第二空间光调制器14任意之一打开时,能够实现单面全息图像的显示。另外,本公开不需要很多光学部件组成庞大的光学系统,能够实现全息显示器的轻薄化。
例如,本公开中的第一空间光调制器13和第二空间光调制器14可以为液晶光阀,第一空间光调制器13和第二空间光调制器14的具体工作过程以及工作原理可以如本公开的发明人所知,这里不再赘述。
例如,本发明实施例中的光源12为可旋转的光源,光源12的旋转角度可以通过全息显示器设置的系统控制器控制,本发明实施例中的系统控制器其他部分可以与现有技术全息显示器包括的系统控制器相似,其他部分的具体控制方法与现有技术类似,这里不再赘述。本发明实施例中的整个全息显示器可以同时由系统控制器控制。
示例性地,本发明实施例中的光源为准直光源,其所发射的光是平行光。例如,本发明实施例的光源为准直面光源,可以采用普通光源+准直透镜的方式来实现,本发明实施例对此不进行限定。
例如,本发明实施例中的光源12的可旋转角度可以小于180度,具体可根据光线的出射方向调整光源的角度,本发明实施例将光源12旋转一定的角度,入射到第一空间光调制器13或第二空间光调制器14的光就旋转一定的角度,因此通过调整光源的旋转角度能够实现用户的多角度观看;另外,本发明具体实施例还可通过调整光源的旋转角度以及利用人眼的视觉暂留效应实现多人观看。
例如,如图8所示,本发明具体实施例中的全息显示器还可以包括追踪装置,追踪装置与本发明具体实施例中的系统控制器相连,用于捕获人眼位置的信息,将捕获的人眼位置的信息发送给系统控制器;本发明具体实施例中的系统控制器还用于根据人眼位置的变化控制可旋转的光源的旋转。本发明具体实施例中的追踪装置可采用现有的能够捕获人眼位置信息的装置,追 踪装置的具体设定位置可根据实际生产需要进行设定。追踪装置的设置能够更好的实时追踪到人眼的具体位置,进而更好的实现多角度及多人观看。
示例性地,追踪装置可以设置在全息显示器的朝向观看者一侧的显示器的边框上,或者设置在全息显示器的能够捕获人眼位置的任何位置处,本公开不对此进行任何限定。
例如,本发明具体实施例中的第一半透半反射膜15和第二半透半反射膜16的材料相同,示例性地,第一半透半反射膜15和第二半透半反射膜16选择厚度较薄的铝(Al),当然,在实际生产过程中,第一半透半反射膜15和第二半透半反射膜16还可以选择其它的具有部分透光性和部分反光特性的材料,并且第一半透半反射膜15和第二半透半反射膜16的材料也可以选择不同的材料,但是实际生产过程中,考虑到材料的成本等因素,第一半透半反射膜15和第二半透半反射膜16的材料可以相同。
例如,本发明具体实施例中的光源支撑部可以为透明基板,也可以为设置在第一空间光调制器和第二空间光调制器外侧的边框。
下面结合附图详细介绍本发明具体实施例提供的全息显示器的具体结构,附图中各部件区域大小、形状不反应各部件的真实比例,目的只是示意说明本发明实施例的内容。
实施例一:
如图2所示,本发明具体实施例中的光源支撑部为透明基板21,透明基板21设置在第一空间光调制器13和第二空间光调制器14之间。光源12设置在透明基板21靠近第一半透半反射膜15的一侧,和/或光源12设置在透明基板21靠近第二半透半反射膜16的一侧,图2仅示出了光源12设置在透明基板21靠近第一半透半反射膜15的一侧。
例如,透明基板21可以选择玻璃基板,透明基板21到第一空间光调制器13之间的距离与透明基板21到第二空间光调制器14之间的距离相等,当然,实际设计时,透明基板21到第一空间光调制器13之间的距离与透明基板21到第二空间光调制器14之间的距离也可以不相等,且在实际设计中,为了能够更大范围的放置光源12,透明基板21在竖直方向上的长度与第一空间光调制器13或第二空间光调制器14在竖直方向上的长度相等。
例如,如图2所示,本发明具体实施例中的光源12设置在透明基板21的边缘区域,这样能够使得光源12发出的光最大限度的照射到第一半透半 反射膜15和第二半透半反射膜16。
例如,如图2所示,本发明具体实施例的全息显示器还包括设置在第一空间光调制器13远离光源12一侧预设距离内的第一透镜22,和/或设置在第二空间光调制器14远离光源12一侧预设距离内的第二透镜23;第一透镜22和第二透镜23可以为汇聚透镜,第一透镜22用于对第一空间光调制器13射出的光线进行汇聚;第二透镜23用于对第二空间光调制器14射出的光线进行汇聚,第一透镜22和第二透镜23的设置能够更好的使光线射入人眼20。
如图2所示,本发明具体实施例中的光源12为可旋转的光源,本发明实施例可以通过追踪装置(图中未示出)捕获人眼20的位置信息,将捕获的人眼20的位置信息发送给系统控制器(图中未示出),系统控制器根据人眼20的位置信息的变化控制可旋转的光源12的旋转,实现多角度及多人观看。用户实际观看时,图2中位于左侧的用户观看到的全息图像24的内容与位于右侧的用户观看到的全息图像24的内容可以相同,也可以不同。
例如,如图3所示,本发明具体实施例透明基板21靠近第一半透半反射膜15的一侧设置第三半透半反射膜31,和/或透明基板21靠近第二半透半反射膜16的一侧设置第四半透半反射膜32,图中仅示出了同时设置第三半透半反射膜31和第四半透半反射膜32的情况,光源12发出的光的传播方向如图中箭头所示的方向。
例如,第三半透半反射膜31和第四半透半反射膜32的材料可以与第一半透半反射膜15和第二半透半反射膜16的材料相同,当然,在实际生产过程中第三半透半反射膜31和第四半透半反射膜32还可以选择其它具有反射光和透射光功能的其它膜层,本发明具体实施例并不对第三半透半反射膜31和第四半透半反射膜32的具体材料做限定。
例如,如图4所示,透明基板21靠近第一半透半反射膜15的一侧设置第一反射层41,和/或透明基板21靠近第二半透半反射膜16的一侧设置第二反射层42;第一反射层41和第二反射层42均用于反射光线;透明基板21靠近第一半透半反射膜15的一侧至少设置一光源12,且透明基板21靠近第二半透半反射膜16的一侧至少设置一光源12,图3中仅示出了同时设置第一反射层41和第二反射层42的情况,光源12发出的光的传播方向如图中箭头所示的方向。
例如,第一反射层41和第二反射层42的材料相同,例如,第一反射层41和第二反射层42的材料为铝(Al),当然,在实际生产过程中,第一反射层41和第二反射层42还可以选择其它具有反光特性的材料,并且第一反射层41和第二反射层42的材料也可以选择不同的材料,但是实际生产过程中,考虑到材料的成本等因素,第一反射层41和第二反射层42的材料可以相同。
如图4所示,当透明基板21的左右两侧分别设置有第一反射层41和第二反射层42时,为了实现双面显示,本发明具体实施例需要在透明基板21的左右两侧分别至少设置一个光源12,图4中示出了在透明基板21的左侧和右侧分别设置一个光源12的情况。
例如,如图5a和图5b所示,可以在透明基板21的左侧设置上光源和下光源两个光源12,在透明基板21的右侧设置上光源和下光源两个光源12。在实际显示时,图5a中位于透明基板21左右两侧的上光源发光,当然,也可以是位于透明基板21左右两侧的下光源发光;图5b中位于透明基板21左侧的下光源和位于透明基板21右侧的上光源发光,当然,也可以是位于透明基板21左侧的上光源和位于透明基板21右侧的下光源发光。
实施例二:
如图6所示,本发明具体实施例中的光源支撑部为设置在第一空间光调制器13和第二空间光调制器14外侧的边框51;光源12位于第一空间光调制器13在边框51上的正投影区域与第二空间光调制器14在边框51上的正投影区域之间。例如,光源12到第一空间光调制器13的距离与光源12到第二空间光调制器14的距离相等。
例如,如图6所示,本发明具体实施例的全息显示器还包括设置在第一空间光调制器13远离光源12一侧预设距离内的第一透镜22,和/或设置在第二空间光调制器14远离光源12一侧预设距离内的第二透镜23;第一透镜22用于对第一空间光调制器13射出的光线进行汇聚;第二透镜23用于对第二空间光调制器14射出的光线进行汇聚,第一透镜22和第二透镜23的设置能够更好的使光线射入人眼。
基于同样的发明构思,本发明具体实施例还提供了一种显示装置,该显示装置包括本发明具体实施例提供的上述的全息显示器,该显示装置可以为液晶面板、液晶显示器、液晶电视、有机发光二极管(Organic Light Emitting Diode,OLED)面板、OLED显示器、OLED电视或电子纸等显示装置。
基于同样的发明构思,如图7所示,本发明具体实施例还提供了一种上述全息显示器的显示方法,包括:
S701、控制光源发光;
S702、控制第一空间光调制器和/或第二空间光调制器开启。
例如,若本发明具体实施例中的光源为可旋转的光源,该方法还包括:捕获人眼位置信息,并根据人眼位置信息的变化控制可旋转的光源的旋转。
例如,本发明具体实施例由系统控制器控制光源的发光、控制第一空间光调制器和/或第二空间光调制器开启或关闭,当第一空间光调制器或第二空间光调制器关闭,能够实现单面显示;当第一空间光调制器和第二空间光调制器开启,能够实现双面显示,可用于橱窗进行展览展示。
综上所述,本发明具体实施例提供一种全息显示器,包括光源支撑部、设置在光源支撑部上的至少一光源、分别位于光源两侧的第一空间光调制器和第二空间光调制器、位于第一空间光调制器靠近光源一侧的第一半透半反射膜、位于第二空间光调制器靠近光源一侧的第二半透半反射膜。根据本发明具体实施例中全息显示器的上述结构构造,由于第一半透半反射膜和第二半透半反射膜均能够反射部分光线,以及透过部分光线,因此若光源发出的光首先照射到第一半透半反射膜,则照射到第一半透半反射膜的部分光线被反射后照射到第二半透半反射膜,其余部分光线透过照射到第一空间光调制器,第一空间光调制器接收到光线后,根据第一空间光调制器连接的数据源提供的数据,进行对光的相位调制和振幅调制,进而能够显示全息图像;同样地,照射到第二半透半反射膜的部分光线被反射后再次照射到第一半透半反射膜,其余部分光线透过照射到第二空间光调制器,第二空间光调制器接收到光线后,根据第二空间光调制器连接的数据源提供的数据,进行对光的相位调制和振幅调制,进而能够显示全息图像。因此,当本发明具体实施例中的第一空间光调制器和第二空间光调制器均打开时,能够实现双面全息图像的显示;当第一空间光调制器或第二空间光调制器任意之一打开时,能够实现单面全息图像的显示。另外,本发明具体实施例不需要很多光学部件组成庞大的光学系统,能够实现全息显示器的轻薄化。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。
本申请要求于2017年2月6日提交的中国专利申请第201710067032.7的优先权,该中国专利申请的全文通过引用的方式结合于此以作为本申请的一部分。

Claims (18)

  1. 一种全息显示器,包括:
    光源支撑部;
    发光件,包括至少一个光源,设置在所述光源支撑部上;
    分别位于所述发光件两侧的第一空间光调制器和第二空间光调制器;
    第一半透半反射膜,位于所述第一空间光调制器靠近所述发光件一侧;以及
    第二半透半反射膜,位于所述第二空间光调制器靠近所述发光件一侧。
  2. 根据权利要求1所述的全息显示器,其中所述第一半透半反射膜和所述第二半透半反射膜彼此相对,且在平行于所述显示器的显示面的平面上的投影至少部分交叠。
  3. 根据权利要求2所述的全息显示器,其中所述第一半透半反射膜和所述第二半透半反射膜在平行于所述显示器的显示面的平面上的投影全部交叠,且所述发光件设置在所述第一半透半反射膜和所述第二半透半反射膜之间。
  4. 根据权利要求1-3中任一项所述的全息显示器,其中所述光源支撑部为透明基板,所述透明基板设置在所述第一空间光调制器和所述第二空间光调制器之间。
  5. 根据权利要求4所述的全息显示器,其中所述光源设置在所述透明基板靠近所述第一半透半反射膜的一侧,和/或所述光源设置在所述透明基板靠近所述第二半透半反射膜的一侧。
  6. 根据权利要求5所述的全息显示器,其中所述光源设置在所述透明基板的边缘区域。
  7. 根据权利要求4所述的全息显示器,其中所述透明基板靠近所述第一半透半反射膜的一侧设置第三半透半反射膜,和/或所述透明基板靠近所述第二半透半反射膜的一侧设置第四半透半反射膜。
  8. 根据权利要求4所述的全息显示器,其中所述透明基板靠近所 述第一半透半反射膜的一侧设置第一反射层,和/或所述透明基板靠近所述第二半透半反射膜的一侧设置第二反射层;以及
    所述透明基板靠近所述第一半透半反射膜的一侧至少设置一光源,且所述透明基板靠近所述第二半透半反射膜的一侧至少设置一光源。
  9. 根据权利要求8所述的全息显示器,其中所述第一反射层和所述第二反射层的材料相同。
  10. 根据权利要求1-3中任一项所述的全息显示器,其中所述光源支撑部为设置在所述第一空间光调制器和所述第二空间光调制器外侧的边框;
    所述光源位于所述第一空间光调制器在所述边框上的正投影区域与所述第二空间光调制器在所述边框上的正投影区域之间。
  11. 根据权利要求1-3中任一项所述的全息显示器,还包括设置在所述第一空间光调制器远离所述光源一侧预设距离内的第一透镜,和/或设置在所述第二空间光调制器远离所述光源一侧预设距离内的第二透镜;
    所述第一透镜和所述第二透镜为汇聚透镜。
  12. 根据权利要求1-3中任一项所述的全息显示器,其中所述第一半透半反射膜和所述第二半透半反射膜的材料相同。
  13. 根据权利要求1-3中任一项所述的全息显示器,其中所述光源为可旋转的光源。
  14. 根据权利要求13所述的全息显示器,还包括:
    系统控制器,构造为根据人眼位置的变化控制所述可旋转的光源的旋转,
    追踪装置,与所述系统控制器相连,构造为捕获人眼位置,将捕获的人眼位置的信息发送给所述系统控制器。
  15. 根据权利要求4所述的全息显示器,其中在垂直于所述显示器的显示面的方向上,所述透明基板到所述第一空间光调制器和所述第二空间光调制器的距离相等。
  16. 一种显示装置,包括权利要求1-15中任一项所述的全息显示器。
  17. 一种如权利要求1所述的全息显示器的显示方法,包括:
    控制所述至少一个光源发光;
    控制第一空间光调制器和/或第二空间光调制器开启。
  18. 根据权利要求17所述的显示方法,其中所述光源为可旋转的光源,该方法还包括:
    捕获人眼位置的信息,并根据人眼位置的变化控制所述可旋转的光源的旋转。
PCT/CN2017/098829 2017-02-06 2017-08-24 全息显示器及其显示方法、显示装置 WO2018141152A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/751,665 US10754296B1 (en) 2017-02-06 2017-08-24 Holographic display and display method thereof and display device
EP17835994.9A EP3579057A4 (en) 2017-02-06 2017-08-24 HOLOGRAPHIC DISPLAY DEVICE AND DISPLAY METHODS FOR IT AND DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710067032.7 2017-02-06
CN201710067032.7A CN108398872B (zh) 2017-02-06 2017-02-06 一种全息显示器及其显示方法、显示装置

Publications (1)

Publication Number Publication Date
WO2018141152A1 true WO2018141152A1 (zh) 2018-08-09

Family

ID=63039311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098829 WO2018141152A1 (zh) 2017-02-06 2017-08-24 全息显示器及其显示方法、显示装置

Country Status (4)

Country Link
US (1) US10754296B1 (zh)
EP (1) EP3579057A4 (zh)
CN (1) CN108398872B (zh)
WO (1) WO2018141152A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11435583B1 (en) * 2018-01-17 2022-09-06 Apple Inc. Electronic device with back-to-back displays

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1672092A (zh) * 2002-07-26 2005-09-21 三星电子株式会社 液晶显示器件
US20080037282A1 (en) * 2006-08-09 2008-02-14 Makoto Kurihara Illuminating device, and display device and portable electronic device having the same
CN101743519A (zh) * 2007-05-16 2010-06-16 视瑞尔技术公司 全息显示装置
CN104021739A (zh) * 2013-03-01 2014-09-03 冠捷投资有限公司 双面液晶显示装置
CN104407440A (zh) * 2014-11-19 2015-03-11 东南大学 具有视线跟踪功能的全息显示装置
CN106094488A (zh) * 2015-05-01 2016-11-09 三星电子株式会社 用于提供增强图像质量的全息显示装置和全息显示方法
CN106200340A (zh) * 2015-06-01 2016-12-07 三星电子株式会社 空间光调制器和包括其的全息显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5191491B2 (ja) * 2006-10-26 2013-05-08 シーリアル テクノロジーズ ソシエテ アノニム 小型ホログラフィック・ディスプレイ装置
KR101833969B1 (ko) * 2011-01-03 2018-04-16 엘지디스플레이 주식회사 양방향 액정표시장치
TWI460508B (zh) * 2012-04-25 2014-11-11 Au Optronics Corp 發光裝置及背光模組
WO2014031117A1 (en) * 2012-08-23 2014-02-27 Empire Technology Development Llc Holographic imaging
KR102384223B1 (ko) * 2015-02-26 2022-04-07 삼성전자주식회사 3차원 영상 표시용 광 변조 신호 형성 방법, 3차원 영상 표시 방법 및 장치
DE102016122922A1 (de) * 2016-11-28 2018-05-30 ANNAX GmbH Doppelseitiger Bildschirm mit gemeinsamem Backlight

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1672092A (zh) * 2002-07-26 2005-09-21 三星电子株式会社 液晶显示器件
US20080037282A1 (en) * 2006-08-09 2008-02-14 Makoto Kurihara Illuminating device, and display device and portable electronic device having the same
CN101743519A (zh) * 2007-05-16 2010-06-16 视瑞尔技术公司 全息显示装置
CN104021739A (zh) * 2013-03-01 2014-09-03 冠捷投资有限公司 双面液晶显示装置
CN104407440A (zh) * 2014-11-19 2015-03-11 东南大学 具有视线跟踪功能的全息显示装置
CN106094488A (zh) * 2015-05-01 2016-11-09 三星电子株式会社 用于提供增强图像质量的全息显示装置和全息显示方法
CN106200340A (zh) * 2015-06-01 2016-12-07 三星电子株式会社 空间光调制器和包括其的全息显示装置

Also Published As

Publication number Publication date
CN108398872B (zh) 2019-08-27
US10754296B1 (en) 2020-08-25
US20200272101A1 (en) 2020-08-27
CN108398872A (zh) 2018-08-14
EP3579057A4 (en) 2020-10-21
EP3579057A1 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
CN108919531B (zh) 基于液晶变焦透镜的ar显示系统
CN106062615B (zh) 回反射显示器及其显示系统
US10523926B2 (en) Backlight unit and holographic display including the same
US20230341683A1 (en) Near eye 3d display with separate phase and amplitude modulators
EP2312374A1 (en) Composite image generation system
WO2018045826A1 (zh) 全息显示装置及使用其进行显示的方法
US11726336B2 (en) Active zonal display illumination using a chopped lightguide
CN106773589B (zh) 一种全息显示装置及其显示方法
US20210263318A1 (en) Optical apparatus and near-eye display apparatus including the same
US11592608B2 (en) Switchable polarization retarder array for active zonal illumination of display
WO2018141152A1 (zh) 全息显示器及其显示方法、显示装置
US10613480B2 (en) Holographic display device including spatial light modulator and light directing unit converging output light of the spatial light modulator, and method for controlling the same
US11556013B2 (en) Short distance illumination of a spatial light modulator using a single reflector
WO2018099070A1 (zh) 背光模组、全息显示装置及其全息显示方法
CN113485016B (zh) 一种显示装置和可穿戴设备
KR102457288B1 (ko) 영상 시스템
TWI608255B (zh) 立體浮空影像顯示裝置
WO2020080498A1 (ja) ヘッドマウントディスプレイ、表示システム及びミラー装置
JP2020064264A (ja) ヘッドマウントディスプレイ及び表示システム
KR20140081401A (ko) 홀로그래픽 디스플레이

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17835994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE