WO2018099070A1 - 背光模组、全息显示装置及其全息显示方法 - Google Patents

背光模组、全息显示装置及其全息显示方法 Download PDF

Info

Publication number
WO2018099070A1
WO2018099070A1 PCT/CN2017/091140 CN2017091140W WO2018099070A1 WO 2018099070 A1 WO2018099070 A1 WO 2018099070A1 CN 2017091140 W CN2017091140 W CN 2017091140W WO 2018099070 A1 WO2018099070 A1 WO 2018099070A1
Authority
WO
WIPO (PCT)
Prior art keywords
deflectable
backlight module
sub
optics
holographic display
Prior art date
Application number
PCT/CN2017/091140
Other languages
English (en)
French (fr)
Inventor
张玉欣
石炳川
吴新银
乔勇
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP17835574.9A priority Critical patent/EP3550354A4/en
Priority to US15/750,756 priority patent/US10775607B2/en
Publication of WO2018099070A1 publication Critical patent/WO2018099070A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0096Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the lights guides being of the hollow type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/33Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving directional light or back-light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2286Particular reconstruction light ; Beam properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B2006/0098Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings for scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2223Particular relationship between light source, hologram and observer
    • G03H2001/2226Edge lit holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/34Multiple light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2226/00Electro-optic or electronic components relating to digital holography
    • G03H2226/05Means for tracking the observer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2250/00Laminate comprising a hologram layer
    • G03H2250/38Liquid crystal

Definitions

  • Embodiments of the present disclosure relate to a backlight module, a holographic display device, and a holographic display method thereof.
  • 3D display technology has become a hot topic of research.
  • the three-dimensional display technology can present more realistic and more stereoscopic images, thereby improving the accuracy and efficiency of information acquisition, processing, transmission and human-computer interaction.
  • the three-dimensional display technology can be mainly divided into: stereoscopic three-dimensional display technology, self-view three-dimensional display, spatial three-dimensional display technology, and holographic three-dimensional display.
  • the holographic display technology uses the interference principle of light to record the specific light wave emitted by the object in the form of interference fringes, and then uses the diffraction principle of light to restore the object light wave under certain conditions, thereby presenting a three-dimensional holographic image.
  • At least one embodiment of the present disclosure provides a backlight module, a holographic display device, and a holographic display method thereof.
  • the backlight module includes oppositely disposed translucent layers and reflective layers, a light source, and deflectable optics.
  • a light source is used to emit a beam of light
  • deflectable optics are used to reflect the beam emitted by the source and cause the reflected beam to be incident at an angle between the translucent layer and the reflective layer and deflected to change the angle.
  • the backlight module can provide a light and thin backlight module, and the light beam emitted from the light source is reflected and transmitted multiple times in the translucent layer and the reflective layer to expand the beam to illuminate a large range without setting A number of optical components, which in turn reduce the size of the backlight module.
  • the backlight module can change the direction of the light beam incident between the translucent layer and the reflective layer by providing deflectable optics, thereby changing the light exit direction of the backlight module, thereby increasing the holography using the backlight module.
  • the observable range of the display device can change the direction of the light beam incident between the translucent layer and the reflective layer by providing deflectable optics, thereby changing the light exit direction of the backlight module, thereby increasing the holography using the backlight module.
  • At least one embodiment of the present disclosure provides a backlight module including a translucent layer, a reflective layer disposed at a distance from the translucent layer, a light source configured to emit a light beam, and a deflectable optical device, The direction of propagation of the light beam emitted by the light source is deflected and incident between the translucent layer and the reflective layer in one direction and deflected to change the direction.
  • the translucent layer is configured to reflect a portion of the light beam that is directed toward the translucent layer and transmit the remaining portion of the light beam.
  • the translucent layer is disposed in parallel with the reflective layer such that a portion of the light beam incident between the translucent layer and the reflective layer is The translucent layer and the reflective layer are reflected multiple times.
  • the translucent layer includes a first region and a second region disposed around a periphery of the first region, and the reflective layer is on the translucent layer.
  • the orthographic projection completely overlaps the first region, and the deflectable optics are disposed at a position facing the second region.
  • an end of the reflective layer is provided with an opening configured to cause a light beam deflected by the deflectable optical device to enter the translucent layer and Between the reflective layers.
  • the deflectable optical device includes: a first sub-deflectable optical device and a second sub-deflectable optical device, and the light source is configured to respectively emit a light incident direction a first beam of a first sub-deflectable optic and a second beam of light directed toward the second sub-deflectable optic, the first sub-deflectable optic being configured to direct a direction of propagation of the first beam Deflecting and injecting between the translucent layer and the reflective layer in a first direction and deflectable to change the first direction, the second sub-deflectable optics being configured to be the second The direction of propagation of the beam is deflected and incident between the translucent layer and the reflective layer in a second direction and deflectable to change the second direction.
  • the first sub-deflectable optical device and the second sub-deflectable optical device are respectively disposed at opposite ends of the translucent layer. s position.
  • the light source includes: a first sub-light source configured to emit the first light beam; and a second sub-light source configured to emit the second light beam .
  • the method further includes: a collimating lens disposed between the light source and the deflectable optical device and configured to align a light beam emitted by the light source straight.
  • the light source is configured to emit a coherent Light.
  • the light source is disposed on a side of the reflective layer away from the translucent layer.
  • the deflectable optical device includes: a rotating shaft; and an optical device disposed on the rotating shaft, the optical device being configured to follow the rotating shaft Rotate and deflect.
  • the optical device includes a mirror or a deflecting lens.
  • At least one embodiment of the present disclosure provides a holographic display device including: a backlight module; and a spatial light modulator, the backlight module including the backlight module according to any one of the above, the spatial light modulator Provided on a side of the translucent layer away from the reflective layer.
  • the spatial light modulator is a liquid crystal spatial light modulator.
  • the method further includes: a camera configured to capture a position of a human eye of the user; and a controller communicatively coupled to the camera and the deflectable optical device, respectively It is configured to control the deflection of the deflectable optics according to the position of the human eye.
  • the method further includes: a lens disposed on a side of the spatial light modulator away from the backlight module.
  • At least one embodiment of the present disclosure provides a holographic display method of a holographic display device, the holographic display device including a backlight module, a spatial light modulator, a camera, and a controller, the backlight module including the above a backlight module, the spatial light modulator is disposed on a side of the translucent layer away from the reflective layer, the holographic display method includes: the camera acquires a position of a human eye of a current user; and the controller is configured according to The human eye position controls deflection of the deflectable optics to adjust an observable range of the holographic display device.
  • the deflectable optical device includes: a first sub-deflectable optical device and a second sub-deflectable optical device, and the light source is configured to respectively emit a light-emitting device a first beam of a first sub-deflectable optic and a second beam of light directed toward the second sub-deflectable optic, the first sub-deflectable optic being configured to direct a direction of propagation of the first beam Deflecting and injecting between the translucent layer and the reflective layer in the first direction and deflecting to change the first direction, the second sub-deflectable optics being configured to The direction of propagation of the second beam is deflected and incident between the translucent layer and the reflective layer in a second direction, and Deflectable to change the second direction, the holographic display method comprising: the controller controlling the light source to emit the first light beam or the second light beam according to the human eye position; and the controller is The human eye position controls the first sub-deflectable optics or the second
  • 1A is a schematic view of a holographic display device
  • FIG. 1B is a schematic structural diagram of a backlight module according to an embodiment of the present disclosure.
  • FIG. 2 is a positional relationship diagram of a translucent layer and a deflectable optical device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of another backlight module according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another backlight module according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another backlight module according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another backlight module according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram showing a positional relationship between a translucent layer and a deflectable optical device according to an embodiment of the present disclosure
  • FIG. 8 is a positional relationship diagram of a translucent layer and a deflectable optical device according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a holographic display device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another holographic display device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another holographic display device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another holographic display device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a holographic display device according to an embodiment of the present disclosure.
  • FIG. 14 is a flowchart of a holographic display method according to an embodiment of the present disclosure.
  • the backlight module of the holographic display device generally includes a laser light source 30 as a light source, and the backlight module of the holographic display device further includes a brightness adjuster 40, a beam expander 50, an angle diffuser 60, and a pinhole filter. 70 and lens 80, thereby expanding and collimating the laser light source to illuminate the spatial light modulator 90 on the light exit side of the backlight module for holographic display.
  • conventional beam expanding collimation devices include a plurality of optical components to form a bulky optical system for beam expanding and collimating the laser source. Therefore, such a backlight module has a large volume, which is disadvantageous for the slimness of the holographic display device.
  • the traditional holographic display technology can form a large wavefront observation area, but in the wavefront observation area, except for the two windows that enter the pupil, the remaining areas cannot be observed, which is a waste of information. .
  • the holographic display technology can greatly reduce the amount of data of the operation by calculating only the hologram information contributing to the two-eye window area, that is, only reconstructing the portion of the wavefront observation area directly observed by the observer.
  • the adoption of the window technology brings about a problem of small viewing angle, and the observer can only observe in the diffraction level observation window, and the observation range is limited.
  • Embodiments of the present disclosure provide a backlight module, a holographic display device, and a holographic display method.
  • the backlight module includes a translucent layer and a reflective layer, a light source, and deflectable optics disposed at relatively spaced intervals.
  • a light source is used to emit a beam of light
  • deflectable optics are used to deflect the direction of propagation of the beam from the source and into the translucent layer and the reflective layer in one direction, and the deflectable optics can be deflected to change the direction.
  • the backlight module can provide a light and thin backlight module, and the light beam emitted from the light source is reflected and transmitted multiple times in the translucent layer and the reflective layer to expand the beam to illuminate a large range, for example,
  • the entire spatial light modulator disposed on the light-emitting side of the backlight module does not need to be provided with many optical components, thereby reducing the volume of the backlight module.
  • the backlight module is provided with deflectable light
  • the device is adapted to change the direction of the light beam incident between the translucent layer and the reflective layer, thereby changing the light exiting direction of the backlight module, thereby increasing the observable range of the holographic display device using the backlight module.
  • FIG. 1B shows a schematic structural view of a backlight module.
  • the backlight module includes a translucent layer 110 , a reflective layer 120 , a light source 130 , and a deflectable optical device 140 .
  • the translucent layer 110 and the reflective layer 120 are relatively spaced apart; the light source 130 can emit a light beam; the deflectable optics 140 is used to deflect the direction of propagation of the light beam emitted by the light source 130 and to enter the translucent layer 110 and the reflective layer 120 at an angle. Between, and, the deflectable optics 140 itself can be deflected so that the angles described above can be varied.
  • the deflectable optical device 140 is disposed in the propagation direction of the light beam emitted by the light source 130, and deflects the propagation direction of the light beam emitted from the light source 130 and causes the light beam emitted from the light source 130 to enter the translucent layer 110 and the reflective layer 120. Moreover, the deflectable optics 140 can change the direction of the beam incident between the translucent layer 110 and the reflective layer 120 by its own deflection. It should be noted that the above bias refers to changing the propagation direction of the light beam.
  • the light beam emitted from the light source 130 is incident into the translucent layer 110 and the reflective layer 120 in one direction by the deflectable optical device 140, and is incident into the translucent layer.
  • the light beam between the layer 110 and the reflective layer 120 may be transmitted and reflected multiple times between the translucent layer 110 and the reflective layer 120, and the transmitted portion is emitted from the side of the translucent layer 110 away from the reflective layer 120.
  • the light beam emitted by the light source 130 can be expanded and formed into a larger surface light source.
  • the backlight module can expand the beam emitted by the light source 130 without providing a plurality of optical components, thereby reducing the volume of the backlight module, thereby providing a thin and light backlight module.
  • the backlight module can be used for a two-dimensional display device or a holographic display device.
  • the deflectable optical device 140 can change the direction of the light beam incident between the translucent layer 110 and the reflective layer 120 by deflecting itself, thereby changing the light outgoing direction of the backlight module.
  • the observable range of the holographic display device using the backlight module can be increased.
  • the translucent layer 110 and the reflective layer 120 are disposed at a relatively interval, and the medium may not be disposed between the translucent layer 110 and the reflective layer 120, and the medium may be disposed.
  • the embodiment of the present disclosure does not Make a restriction.
  • the difference in refractive index between the reflective layer and the dielectric layer can be utilized to achieve total reflection, thereby achieving reflection of the light beam directed toward the reflective layer, which is not limited herein.
  • the light source can emit coherent light, thereby making the backlight module suitable for diffraction reproduction of a holographic display device.
  • the light source can emit parallel light or collimated light, whereby the backlight module can collimate the light beam emitted by the light source without providing a collimating device.
  • the embodiments of the present disclosure include, but are not limited to, as shown in FIG. 1B , the backlight module may also include a collimating device 150 disposed between the light source 130 and the deflectable optics 140 , such as a collimating lens, to The light beam emitted by the light source 130 is collimated.
  • the translucent layer 110 may reflect a part of the light beam that is incident on the translucent layer 110 and transmit the remaining portion of the light beam.
  • the light beam reflected by the translucent layer 110 can be directed toward the reflective layer 120, and reflected by the reflective layer 120 to the translucent layer 110 again; the light beam transmitted by the translucent layer 110 can be separated from the reflective layer by the translucent layer 110.
  • One side of the 120 is emitted to emit light as the backlight module. After multiple transmissions, reflections, and transmissions, the beam incident between the translucent layer 110 and the reflective layer 120 can ultimately exit the translucent layer 110 and form a larger surface source.
  • the translucent layer 110 is disposed in parallel with the reflective layer 120, thereby being incident on the portion between the translucent layer 110 and the reflective layer 120.
  • the light beam is reflected multiple times between the translucent layer 110 and the reflective layer 120.
  • the translucent layer 110 is disposed in parallel with the reflective layer 120, so that the light beam reflected by the reflective layer 120 is again incident on the translucent layer 110 in the same direction, thereby ensuring multiple transmissions of translucency.
  • the directions of the beams of layer 110 are uniform.
  • the translucent layer 110 may include a first region 111 and a second region 112 disposed around the periphery of the first region 111, and the reflective layer 120 is half
  • the orthographic projection on the transparent layer 110 completely overlaps the first region 111, and the deflectable optics 140 can be disposed at a position opposite the second region 112.
  • the deflectable optics 140 can inject a beam of light from the source from the location corresponding to the second region 112 between the reflective layer 120 and the translucent layer 110.
  • the deflectable optics 140 can direct the light beam emitted by the light source to the first region 111 of the translucent layer 110 or to the second region of the translucent layer 110 as long as the reflective layer is incident.
  • the light beam between 120 and the translucent layer 110 may be transmitted, reflected, and transmitted multiple times between the reflective layer 120 and the translucent layer 110.
  • the examples are not limited herein.
  • one end of the reflective layer 120 may be provided with an opening 121, and the opening 121 may be used to inject a light beam deflected by the deflectable optical device 140 into the translucent layer. Between 110 and reflective layer 120.
  • the light source 130 may be disposed on a side of the reflective layer 120 away from the translucent layer 110.
  • the deflectable optical device 140 includes a rotating shaft 1401 and an optical device 1402 sleeved on the rotating shaft 1401.
  • the optical device 1402 can be deflected as the rotation shaft 1401 rotates.
  • the rotating shaft 1401 can be disposed parallel to an edge of the translucent layer 110, whereby the optical device 1402 can be deflected about the axis parallel to the edge of the translucent layer 110 with the rotating shaft 1401. .
  • optical device 1402 can be a mirror.
  • optical device 1402 is a planar reflective mirror.
  • embodiments of the present disclosure include, but are not limited to, the optical device 1402 may also be other mirrors such as curved mirrors.
  • the optical device can be a deflecting lens.
  • the optical device 1402 is a triangular prism.
  • the backlight module further includes a housing 160 having a receiving space, a translucent layer 110, and a reflective layer. 120.
  • the light source 130, the deflectable optics 140, and the collimating device 150 are disposed in the receiving space.
  • At least one embodiment of the present disclosure provides a backlight module, as shown in FIGS. 5 and 6, in which the deflectable optical device 140 includes a first sub-deflectable optical device. 141 and second sub-deflectable optics 142.
  • Light source 130 can emit a first beam 171 that is directed toward first sub-deflectable optics 141 and a second beam 172 that is directed toward second sub-deflectable optics 142, respectively.
  • the first sub-deflectable optical device 141 can deflect the propagation direction of the first light beam 171 and enter the translucent layer 110 and the reflective layer 120 in a first direction, and can be deflected to change the first direction.
  • FIG. 5 the deflectable optical device 140 includes a first sub-deflectable optical device. 141 and second sub-deflectable optics 142.
  • Light source 130 can emit a first beam 171 that is directed toward first sub-deflectable optics 141 and a second beam 172 that is directed toward second sub-deflectable optics 142,
  • the second sub-deflectable optical device 142 can deflect the propagation direction of the second light beam 172 and enter the translucent layer 110 and the reflective layer 120 in the second direction, and can be deflected to change the second. direction. Thereby, more possibilities can be provided for the light-emitting direction of the backlight module by providing the first sub-deflectable optics and the second sub-deflectable optics.
  • the first sub-deflectable optics 141 and the second sub-deflectable optics 142 can be disposed at positions opposite the opposite ends of the translucent layer 110, respectively.
  • the first direction is perpendicular to the direction perpendicular to the translucent layer 110 and perpendicular to the direction of the translucent layer 110.
  • the angle is a, and the first direction can be changed by deflecting the first sub-deflectable optics 141 such that the value of a varies between 0 and 90 degrees; that is, the first direction is the lower left direction in FIG. Variety.
  • FIG. 5 the first sub-deflectable optics 141 and the second sub-deflectable optics 142 can be disposed at positions opposite the opposite ends of the translucent layer 110, respectively.
  • the first direction is perpendicular to the direction perpendicular to the translucent layer 110 and perpendicular to the direction of the translucent layer 110.
  • the angle is a
  • the first direction can be changed by deflecting the first sub-deflectable optics 141 such that the
  • the angle between the second direction and the direction perpendicular to the translucent layer 110 is b with respect to the direction perpendicular to the translucent layer 110, and the second direction can be made by deflecting the first sub-deflectable optics 141. Change so that the value of b varies between 0 and 90 degrees; that is, the second direction is the upper left direction of Figure 6 and can vary.
  • the light-emitting direction of the backlight module can be changed from the lower left direction in FIG. 5 to the upper left direction in FIG. 6 or from the backlight mode.
  • the light exiting direction of the group is changed from the upper left direction in FIG. 6 to the lower left direction in FIG.
  • Figure 7 shows a schematic plan view of the positional relationship of a translucent layer and deflectable optics.
  • the translucent layer 110 may include a first region 111 and a second region 112 disposed at a periphery of the first region 111, and an orthographic projection of the reflective layer 120 on the translucent layer 110 completely overlaps the first region 111,
  • the second region 112 can include an upper second region 1121 and a right second region 1122.
  • the first sub-deflectable optics 141 can be disposed at a position opposite the upper second region 1121, and the second sub-deflectable optics 142 can be disposed at a position directly opposite the right second region 1122, thereby allowing the first sub-set to be set
  • the deflectable optics 141 and the second sub-deflectable optics 142 can change the light exiting direction of the backlight module from the direction perpendicular to the paper surface in FIG. 7 to the left direction from the direction perpendicular to the paper surface in FIG.
  • the deflection, or downward deflection from the direction perpendicular to the plane of the paper in Fig. 7, is deflected to the left from the direction perpendicular to the plane of the drawing in Fig. 7.
  • the first sub-deflectable optical device and the second sub-deflectable optical device can also work simultaneously, so that the backlight module can provide two light-emitting directions.
  • the light source 130 may include a first sub-light source 131 and a second sub-light source 132 for respectively emitting the first beam 171 and the second beam 172.
  • the first sub-light source and the second sub-light source include but are not limited to a specific light source.
  • the first sub-light source and the second sub-light source may respectively include a plurality of light sources, for example, red, green, and blue respectively.
  • the light source is operated in a time-sharing manner to provide color illumination for the backlight module.
  • the holographic display device includes a backlight module 100 and a spatial light modulator 200.
  • the backlight module 100 can adopt the backlight module of any one of the first embodiment and the second embodiment.
  • the spatial light modulator 200 is disposed on a side of the translucent layer 110 away from the reflective layer 120.
  • the light emitted by the backlight module 100 can be spatially modulated.
  • the controller 200 modulates and displays a holographic image on the side of the spatial light modulator 200 remote from the translucent layer 110.
  • the holographic display device adopts the backlight module of any of the first embodiment and the second embodiment. Therefore, the holographic display device provided by the embodiment is thinner and thinner than the conventional holographic display device; and The deflectable optics adjust the light exit direction of the backlight module to adjust the observable range of the holographic display device.
  • the holographic display device since the holographic display device has a small observable range, when the human eye is watching the holographic image generated by the holographic display device, if the position of the user changes, the human eye may be caused to leave or deviate from the hologram display.
  • the observable range of the device results in the user not seeing the holographic image produced by the holographic display device, resulting in a poor user experience.
  • the holographic display device provided in this embodiment can adjust the light-emitting direction of the backlight module by adjusting the deflectable optical device, thereby changing the observable range of the holographic display device to avoid the human eye leaving if the position of the user changes.
  • the deflectable optics 140 for example, the second sub-deflectable optics 142 can be adjusted to cause the backlight module 100 to emit light.
  • the upward direction of Fig. 10 is deflected such that the observable range of the holographic display device is moved upward in Fig. 10 such that the human eye of the user is always in the observable range of the holographic display device.
  • the upward direction in FIG. 10 may be the direction of the holographic display device with respect to the ground direction, or may be the downward, leftward, and rightward direction of the holographic display device with respect to the bottom surface, and the embodiment of the present disclosure is here. No restrictions.
  • deflectable optics 140 includes first sub-deflectable optics 141 and second sub-deflectable optics 142.
  • the light output direction of the backlight module 100 can be deflected in the downward direction of FIG. 11 by adjusting the first sub-deflectable optical device 141, thereby making the hologram
  • the observable range of the display device is moved in a downward direction in FIG. 11 such that the user's human eye is always in the observable range of the holographic display device.
  • the downward direction in FIG. 11 may be opposite to the upward direction in FIG.
  • the first sub-deflectable optical device and the second sub-deflectable optical device may be respectively disposed on the translucent layer.
  • the position where the end portion is facing; of course, the downward direction in FIG. 11 above may also be perpendicular or intersecting with the upward direction in FIG. 10 to provide more adjustment directions of the observable range of the holographic display device, the embodiment of the present disclosure There are no restrictions here.
  • the holographic display device may further include a lens disposed on a side of the spatial light modulator 200 away from the backlight module 100. Converging the light output of the holographic display device to improve the quality of the holographic image.
  • the holographic display device may further include a camera 400 and a controller 500.
  • the camera 400 is communicatively coupled to the controller 500
  • the controller 500 is coupled to the deflectable optics 140
  • the camera 400 can capture or capture the position of the human eye of the user
  • the controller 500 can control the deflectable optics 140 based on the position of the human eye acquired by the camera 400.
  • the deflection is such that when the user moves, it is ensured that the human eye is always in the observable range of the holographic display device.
  • the specific adjustment method refer to the related description above.
  • a spatial light modulator can employ a liquid crystal spatial light modulator.
  • At least one embodiment of the present disclosure provides a holographic display method of a holographic display device, which includes a backlight module, a spatial light modulator, a camera, and a controller, and the backlight module can be any one or two of the embodiments.
  • the backlight module of the item, the spatial light modulator is disposed on a side of the translucent layer away from the reflective layer.
  • the holographic display method comprises the following steps S401-S402.
  • Step S401 The camera acquires the position of the human eye of the current user.
  • Step S402 The controller controls the deflection of the deflectable optical device according to the position of the human eye to adjust the observable range of the holographic display device.
  • the deflectable optical device includes: a first sub-deflectable optical device and a second sub-deflectable optical device, and the light source is configured to respectively emit the first sub-deflectable a first beam of optics and a second beam directed toward the second sub-deflectable optic, the first sub-deflectable optics being configured to deflect a direction of propagation of the first beam and to enter the translucent layer in a first direction Between the reflective layer and being deflectable to change the first direction, the second sub-deflectable optic is configured to deflect the direction of propagation of the second beam and to enter between the translucent layer and the reflective layer in a second direction, And deflecting to change the second direction, the holographic display method comprises: the controller controls the light source to emit the first light beam or the second light beam according to the position of the human eye, that is, the controller can select the light source to emit the first light beam according to the position of the human eye.
  • the controller controls the first sub-deflectable optics or the second sub-deflectable optics according to the position of the human eye to adjust the considerable size of the holographic display device Range.
  • the second sub-deflectable optics 142 can be selected to deflect the light-emitting direction of the backlight module 100 in the upward direction.
  • the control light source emits a first light beam, thereby moving the observable range of the holographic display device upward in the direction of FIG. 10, so that the user's human eye is always in the holographic display device. The scope of observation. After the user's human eye moves in the downward direction in FIG.
  • the first sub-deflectable optical device 141 can be selected to deflect the light-emitting direction of the backlight module 100 in the downward direction in FIG. 11, and at this time, controllable The light source emits a second light beam without emitting the first light beam to deflect the light exiting direction of the backlight module 100 in a downward direction in FIG. 11 , thereby moving the observable range of the holographic display device downward in FIG. 11 to The human eye of the user is always in the observable range of the holographic display device. It should be noted that the upward direction in FIG.
  • the holographic display device 10 may be the direction of the holographic display device with respect to the ground direction, or may be the downward, leftward, and rightward direction of the holographic display device with respect to the bottom surface, and the embodiment of the present disclosure is here. No restrictions.
  • the downward direction in FIG. 11 may be opposite to the upward direction in FIG. 10, and the first sub-deflectable optical device and the second sub-deflectable optical device may be respectively disposed at opposite ends of the translucent layer.
  • the position of the first embodiment in the above-mentioned FIG. 11 may be perpendicular or intersected with the upward direction in FIG. 10 to provide more adjustment directions of the observable range of the holographic display device, which is not limited herein.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Holo Graphy (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种背光模组、全息显示装置及其全息显示方法。背光模组(100)包括相对设置的半透明层(110)和反射层(120)、光源(130)以及可偏转光学器件(140)。光源(130)用于发出光束,可偏转光学器件(140)用于对光源(130)发出的光束进行反射并使反射的光束以一角度射入半透明层(110)和反射层(120)之间,并可偏转以改变角度。背光模组可提供一种轻薄的背光模组,并且可改变背光模组的出光方向。

Description

背光模组、全息显示装置及其全息显示方法
本申请要求于2016年12月02日递交的中国专利申请第201611094802.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种背光模组、全息显示装置及其全息显示方法。
背景技术
随着显示技术的不断发展,三维显示技术也日渐成为研究的热点。相对于传统的二维显示技术,三维显示技术可呈现出更加真实、更加立体的画面,从而可提高人们对信息获取、处理、传递以及人机交互的准确度和效率。
目前,三维显示技术主要可以分为:体视三维显示技术、自体视三维显示、空间三维显示技术以及全息三维显示等。而全息显示技术是利用光的干涉原理将物体发出的特定光波以干涉条纹的形式记录下来,再利用光的衍射原理在一定条件下将物光波还原,从而呈现三维的全息图像。
发明内容
本公开至少一个实施例提供一种背光模组、全息显示装置及其全息显示方法。该背光模组包括相对设置的半透明层和反射层、光源以及可偏转光学器件。光源用于发出光束,可偏转光学器件用于对光源发出的光束进行反射并使反射的光束以一角度射入半透明层和反射层之间,并可偏转以改变该角度。该背光模组可提供一种轻薄的背光模组,通过将光源发出的光束在半透明层和反射层进行多次反射、透射,从而将光束进行扩束以照射一个较大的范围,无需设置很多光学部件,进而可减小背光模组的体积。另外,该背光模组通过设置可偏转光学器件来改变射入半透明层和反射层之间的光束的方向,从而可改变该背光模组的出光方向,进而可增加采用该背光模组的全息显示装置的可观察范围。
本公开至少一个实施例提供一种背光模组,其包括半透明层;反射层,与所述半透明层相对间隔设置;光源,被配置为发出光束;以及可偏转光学器件, 被配置为将所述光源发出的光束的传播方向进行偏向并以一方向射入所述半透明层与所述反射层之间,并可偏转以改变所述方向。
例如,在本公开一实施例提供的背光模组中,所述半透明层被配置为反射一部分射向所述半透明层的光束并将其余部分的光束透射。
例如,在本公开一实施例提供的背光模组中,所述半透明层与所述反射层平行设置,以使得被射入所述半透明层与所述反射层之间的部分光束在所述半透明层与所述反射层之间被多次反射。
例如,在本公开一实施例提供的背光模组中,所述半透明层包括第一区域和设置在所述第一区域周边的第二区域,所述反射层在所述半透明层上的正投影与所述第一区域完全重叠,所述可偏转光学器件设置在所述第二区域正对的位置。
例如,在本公开一实施例提供的背光模组中,所述反射层的端部设置有开口,所述开口被配置为使所述可偏转光学器件偏向的光束射入所述半透明层与所述反射层之间。
例如,在本公开一实施例提供的背光模组中,所述可偏转光学器件包括:第一子可偏转光学器件以及第二子可偏转光学器件,所述光源被配置为分别发出射向所述第一子可偏转光学器件的第一光束和射向所述第二子可偏转光学器件的第二光束,所述第一子可偏转光学器件被配置为将所述第一光束的传播方向进行偏转并以第一方向射入所述半透明层与所述反射层之间,并可偏转以改变所述第一方向,所述第二子可偏转光学器件被配置为将所述第二光束的传播方向进行偏转并以第二方向射入所述半透明层与所述反射层之间,并可偏转以改变所述第二方向。
例如,在本公开一实施例提供的背光模组中,所述第一子可偏转光学器件与所述第二子可偏转光学器件分别设置在所述半透明层两相对的端部所正对的位置。
例如,在本公开一实施例提供的背光模组中,所述光源包括:第一子光源,被配置为发出所述第一光束;以及第二子光源,被配置为发出所述第二光束。
例如,在本公开一实施例提供的背光模组中,其还包括:准直透镜,设置在所述光源与所述可偏转光学器件之间且被配置为将所述光源发出的光束进行准直。
例如,在本公开一实施例提供的背光模组中,所述光源被配置为发出相干 光。
例如,在本公开一实施例提供的背光模组中,所述光源设置在所述反射层远离所述半透明层的一侧。
例如,在本公开一实施例提供的背光模组中,所述可偏转光学器件包括:转轴;以及光学器件,套设在所述转轴上,所述光学器件被配置为随着所述转轴的转动而偏转。
例如,在本公开一实施例提供的背光模组中,所述光学器件包括反射镜或偏向透镜。
本公开至少一个实施例提供一种全息显示装置,其包括:背光模组;以及空间光调制器,所述背光模组包括根据上述任一项所述的背光模组,所述空间光调制器设置在所述半透明层远离所述反射层的一侧。
例如,在本公开一实施例提供的全息显示装置中,所述空间光调制器为液晶空间光调制器。
例如,在本公开一实施例提供的全息显示装置中,其还包括:摄像头,被配置为捕捉用户的人眼位置;以及控制器,与所述摄像头和所述可偏转光学器件分别通信相连并被配置为根据所述人眼位置控制所述可偏转光学器件偏转。
例如,在本公开一实施例提供的全息显示装置中,其还包括:透镜,所述透镜设置在所述空间光调制器远离所述背光模组的一侧。
本公开至少一个实施例提供一种全息显示装置的全息显示方法,所述全息显示装置包括背光模组、空间光调制器、摄像头以及控制器,所述背光模组包括上述任一项所述的背光模组,所述空间光调制器设置在所述半透明层远离所述反射层的一侧,所述全息显示方法包括:所述摄像头获取当前用户的人眼位置;以及所述控制器根据所述人眼位置控制所述可偏转光学器件偏转以调整所述全息显示装置的可观察范围。
例如,在本公开一实施例提供的全息显示方法中,所述可偏转光学器件包括:第一子可偏转光学器件和第二子可偏转光学器件,所述光源被配置为分别发出射向所述第一子可偏转光学器件的第一光束和射向所述第二子可偏转光学器件的第二光束,所述第一子可偏转光学器件被配置为将所述第一光束的传播方向进行偏转并以所述第一方向射入所述半透明层与所述反射层之间,并可偏转以改变所述第一方向,所述第二子可偏转光学器件被配置为将所述第二光束的传播方向进行偏转并以第二方向射入所述半透明层与所述反射层之间,并 可偏转以改变所述第二方向,所述全息显示方法包括:所述控制器根据所述人眼位置控制所述光源发出所述第一光束或所述第二光束;以及所述控制器根据所述人眼位置控制所述第一子可偏转光学器件或所述第二子可偏转光学器件以调整所述全息显示装置的可观察范围。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为一种全息显示装置的示意图;
图1B为本公开一实施例提供的一种背光模组的结构示意图;
图2为本公开一实施例提供的一种半透明层与可偏转光学器件的位置关系图;
图3为本公开一实施例提供的另一种背光模组的结构示意图;
图4为本公开一实施例提供的另一种背光模组的结构示意图;
图5为本公开一实施例提供的另一种背光模组的结构示意图;
图6为本公开一实施例提供的另一种背光模组的结构示意图;
图7为本公开一实施例提供的一种半透明层与可偏转光学器件的位置关系图;
图8为本公开一实施例提供的一种半透明层与可偏转光学器件的位置关系图;
图9为本公开一实施例提供的一种全息显示装置的结构示意图;
图10为本公开一实施例提供的另一种全息显示装置的结构示意图;
图11为本公开一实施例提供的另一种全息显示装置的结构示意图;
图12为本公开一实施例提供的另一种全息显示装置的结构示意图;
图13为本公开一实施例提供的一种全息显示装置的示意图;以及
图14为本公开一实施例提供的一种全息显示方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所 描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
图1A为一种全息显示装置的示意图。如图1A所示,全息显示装置的背光模组通常包括激光光源30作为光源,并且全息显示装置的背光模组还包括亮度调节器40、扩束器50、角度扩散器60、针孔滤波器70以及透镜80,从而对激光光源进行扩束准直,从而照亮位于背光模组出光侧的空间光调制器90以进行全息显示。然而,通常的扩束准直装置包括多个光学部件以组成庞大的光学系统以对激光光源进行扩束准直。因此,这样的背光模组的体积较大,不利于全息显示装置的轻薄化。
传统的全息显示技术可形成较大的波阵面观察区域,但是在波阵面观察区域中,除了进入瞳孔的两个视窗之外的区域,其余区域均不能被观测到,属于被浪费的信息。基于此,全息显示技术可通过仅计算对两眼视窗区域有贡献的全息图信息,即只重建观察者直接看到的那部分波前观察区域,来大大减小运算的数据量。但是采用视窗技术随之带来的是观察视角小的问题,观察者只能在衍射级观察窗口进行观察,观察范围受限。
本公开实施例提供一种背光模组、全息显示装置以及全息显示方法。该背光模组包括相对间隔设置的半透明层和反射层、光源以及可偏转光学器件。光源用于发出光束,可偏转光学器件用于对光源发出的光束的传播方向进行偏向并以一方向射入半透明层和反射层之间,并且该可偏转光学器件能够偏转以改变该方向。该背光模组可提供一种轻薄的背光模组,通过将光源发出的光束在半透明层和反射层进行多次反射、透射,从而将光束进行扩束以照射一个较大的范围,例如,设置在该背光模组出光侧的整个空间光调制器,无需设置很多光学部件,进而可减小背光模组的体积。另外,该背光模组通过设置可偏转光 学器件来改变射入半透明层和反射层之间的光束的方向,从而可改变该背光模组的出光方向,进而可增加采用该背光模组的全息显示装置的可观察范围。
下面结合附图对本公开实施例提供的背光模组、全息显示装置和全息显示方法进行说明。
本公开的至少一个实施例提供一种背光模组。图1B示出了一种背光模组的结构示意图,如图1B所示,该背光模组包括半透明层110、反射层120、光源130以及可偏转光学器件140。半透明层110和反射层120相对间隔设置;光源130可发出光束;可偏转光学器件140用于对光源130发出的光束的传播方向进行偏向并以一角度射入半透明层110与反射层120之间,并且,可偏转光学器件140自身可偏转,从而可改变上述的角度。也就是说,可偏转光学器件140设置在光源130发出的光束的传播方向上,并将光源130发出的光束的传播方向偏向并使得光源130发出的光束射入半透明层110和反射层120之间;并且,可偏转光学器件140可通过自身的偏转从而改变射入半透明层110和反射层120之间光束的方向。需要说明的是,上述的偏向指的是将光束的传播方向改变。
在本实施例提供的背光模组中,如图1B所示,通过可偏转光学器件140将光源130发出的光束以一方向射入半透明层110和反射层120之间,被射入半透明层110和反射层120之间的光束可在半透明层110和反射层120之间进行多次透射、反射,透射的部分从半透明层110远离反射层120的一侧射出。并且,在半透明层110和反射层120之间不断透射、反射的过程中,光源130发出的光束可被扩束并形成较大的面光源。由此,该背光模组无需设置很多光学部件就可以对光源130发出的光束进行扩束,可减少背光模组的体积,从而可提供一种轻薄的背光模组。该背光模组可用于二维显示装置也可用于全息显示装置。当该背光模组应用于全息显示装置时,由于可偏转光学器件140可通过自身的偏转从而改变射入半透明层110和反射层120之间光束的方向,从而改变该背光模组的出光方向,进而可增加采用该背光模组的全息显示装置的可观察范围。需要说明的是,为了使光束能够顺利地在半透明层110和反射层120之间进行多次反射和透射,射入半透明层110与反射层120之间的光束的传播方向不能垂直于半透明层110和反射层120。
例如,如图1B所示,半透明层110和反射层120相对间隔设置,半透明层110和反射层120之间可不设置介质,也可设置介质,本公开实施例在此不 作限制。当半透明层和反射层之间设置介质时,可利用反射层和介质层的折射率差异来实现全反射,从而实现对射向反射层的光束的反射,本公开实施例在此不作限制。
例如,光源可发出相干光,从而可使该背光模组适用于全息显示装置的衍射再现。另外,光源可发出平行光或准直光,由此,该背光模组可不用设置准直器件对光源发出的光束进行准直。当然,本公开实施例包括但不限于此,如图1B所示,该背光模组也可包括设置在光源130与可偏转光学器件140之间的准直器件150,例如准直透镜,以对光源130发出的光束进行准直。
例如,在本实施例一示例提供的背光模组中,如图1B所示,半透明层110可反射一部分射向半透明层110的光束并将其余部分的光束透射。由此,被半透明层110反射的光束可射向反射层120,经过反射层120的反射作用再次射向半透明层110;被半透明层110透射的光束可从半透明层110远离反射层120的一侧射出以作为该背光模组的出光。经过多次透射、反射、透射之后,射入半透明层110和反射层120之间的光束可最终射出半透明层110并形成较大的面光源。
例如,在本实施例一示例提供的背光模组中,如图1B所示,半透明层110与反射层120平行设置,由此,被射入半透明层110与反射层120之间的部分光束在半透明层110与反射层120之间被多次反射。另外,如图1B所示,半透明层110与反射层120平行设置还可使得被反射层120反射之后的光束以同样的方向再次射向半透明层110,从而可保证多次透射出半透明层110的光束的方向一致。由此,当射入半透明层110和反射层120之间的光束为准直光时,从半透明层110或该背光模组出射的光也同样为准直光。
例如,在本实施例一示例提供的背光模组中,如图2所示,半透明层110可包括第一区域111和设置在第一区域111周边的第二区域112,反射层120在半透明层110上的正投影与第一区域111完全重叠,可偏转光学器件140可设置在第二区域112正对的位置。由此,由于在第二区域112没有反射层120的遮挡,可偏转光学器件140可将光源发出的光束从第二区域112所对应的位置射入反射层120和半透明层110之间。需要说明的是,在本示例中,可偏转光学器件140可将光源发出的光束射向半透明层110的第一区域111也可射向半透明层110的第二区域,只要射入反射层120和半透明层110之间的光束可在反射层120和半透明层110之间进行多次透射、反射、透射即可,本公开实 施例在此不作限制。
例如,在本实施例一示例提供的背光模组中,如图3所示,反射层120的一端部可设置开口121,开口121可用于将可偏转光学器件140偏向的光束射入半透明层110和反射层120之间。
例如,在本实施例一示例提供的背光模组中,如图1B或3所示,光源130可设置在反射层120远离半透明层110的一侧。
例如,在本实施例一示例提供的背光模组中,如图1B或3所示,可偏转光学器件140包括:转轴1401和套设在转轴1401上的光学器件1402。光学器件1402可随着转轴1401的转动而偏转。例如,如图1B或3所示,转轴1401可平行于半透明层110的一边缘设置,由此,光学器件1402可随着该转轴1401绕平行于半透明层110的一边缘的轴线进行偏转。
例如,光学器件可为反射镜。如图3所示,光学器件1402为平面反射镜子。当然本公开实施例包括但不限于此,光学器件1402还可为曲面反射镜等其他反射镜。
例如,光学器件可为偏向透镜。如图4所示,光学器件1402为三棱镜。
例如,在本实施例一示例提供的背光模组中,如图1B、3或4所示,该背光模组还包括壳体160,壳体160具有一容纳空间,半透明层110、反射层120、光源130、可偏转光学器件140以及准直器件150设置在该容纳空间中。
在上述实施例的基础上,本公开的至少一个实施例提供一种背光模组,如图5和6所示,在该背光模组中,可偏转光学器件140包括第一子可偏转光学器件141以及第二子可偏转光学器件142。光源130可分别发出射向第一子可偏转光学器件141的第一光束171和射向第二子可偏转光学器件142的第二光束172。如图5所示,第一子可偏转光学器件141可将第一光束171的传播方向进行偏转并以第一方向射入半透明层110与反射层120之间,并可偏转以改变第一方向。如图6所示,第二子可偏转光学器件142可将第二光束172的传播方向进行偏转并以第二方向射入半透明层110与反射层120之间,并可偏转以改变第二方向。由此,可通过设置第一子可偏转光学器件以及第二子可偏转光学器件可为该背光模组的出光方向提供更多可能性。
例如,如图5和6所示,第一子可偏转光学器件141与第二子可偏转光学器件142可分别设置在半透明层110两相对的端部所正对的位置。如图5所示,相对于垂直于半透明层110的方向,第一方向与垂直于半透明层110的方向的 夹角为a,通过偏转第一子可偏转光学器件141可使第一方向改变,使得a的值在0到90度之间变化;也就是说,第一方向为图5中左下方向并可变化。如图6所示,相对于垂直于半透明层110的方向,第二方向与垂直于半透明层110的方向的夹角为b,通过偏转第一子可偏转光学器件141可使第二方向改变,使得b的值在0到90度之间变化;也就是说,第二方向为图6中左上方向并可变化。由此,通过设置第一子可偏转光学器件以及第二子可偏转光学器件可将该背光模组的出光方向从图5中的左下方向改变为图6中的左上方向或者从将该背光模组的出光方向从图6中的左上方向改变为图5中的左下方向。当然,第一子可偏转光学器件与第二子可偏转光学器件也可不分别设置在半透明层两相对的端部所正对的位置,本公开实施例在此不作限制。例如,图7示出了一种半透明层和可偏转光学器件位置关系的平面示意图。如图7所示,半透明层110可包括第一区域111和设置在第一区域111周边的第二区域112,反射层120在半透明层110上的正投影与第一区域111完全重叠,第二区域112可包括上第二区域1121和右第二区域1122。第一子可偏转光学器件141可设置在上第二区域1121正对的位置,而第二子可偏转光学器件142可设置在右第二区域1122正对的位置,从而可通过设置第一子可偏转光学器件141以及第二子可偏转光学器件142可将该背光模组的出光方向从图7中垂直于纸面的方向向左偏转改变为从图7中垂直于纸面的方向向下偏转,或者,从图7中垂直于纸面的方向向下偏转改变为从图7中垂直于纸面的方向向左偏转。需要说明的是,上述的第一子可偏转光学器件与第二子可偏转光学器件也可同时工作,从而可为背光模组提供两种出光方向。
例如,在本实施例一示例提供的背光模组中,如图8所示,光源130可包括第一子光源131和第二子光源132,分别用于发出第一光束171和第二光束172。需要说明的是,第一子光源和第二子光源包括但不限于具体的光源,例如,第一子光源和第二子光源可分别包括多个光源,例如分别发出红色、绿色和蓝色的光源,并分时工作,从而可为该背光模组提供彩色的出光。
本公开的至少一个实施例提供一种全息显示装置。如图9所示,该全息显示装置包括背光模组100以及空间光调制器200。背光模组100可采用实施例一和实施例二中任一的背光模组,空间光调制器200设置在半透明层110远离反射层120的一侧。
在本实施例提供的全息显示装置中,背光模组100发出的光可经空间光调 制器200调制并在空间光调制器200远离半透明层110的一侧显示全息图像。由于,该全息显示装置采用了实施例一和实施例二中任一的背光模组,因此,相对于通常的全息显示装置,本实施例提供的全息显示装置更加轻薄;并且,由于可通过偏转可偏转光学器件来调节背光模组的出光方向,从而可调节该全息显示装置的可观察范围。
例如,如图9所示,由于全息显示装置可观察范围较小,当人眼在观看全息显示装置产生的全息图像时,若用户的位置发生改变,可能会导致人眼离开或者偏离该全息显示装置的可观察范围,导致用户看不清全息显示装置产生的全息图像,从而造成较差的用户体验。而本实施例提供的全息显示装置可通过调节可偏转光学器件来调节背光模组的出光方向,从而将全息显示装置的可观察范围改变,以避免因若用户的位置发生改变而导致人眼离开或者偏离可观察范围的情况,保证用户的人眼始终处于该全息显示装置的可观察范围。例如,如图10所示,当用户的人眼向图10中向上的方向移动后,可调节可偏转光学器件140,例如,第二子可偏转光学器件142来使背光模组100的出光方向图10中向上的方向偏转,从而使该全息显示装置的可观察范围向图10中向上的方向移动,以使得用户的人眼始终处于该全息显示装置的可观察范围。需要说明的是,上述图10中向上的方向可为全息显示装置相对于地面向上的方向,也可为全息显示装置相对于底面向下、向左、向右的方向,本公开实施例在此不作限制。
例如,如图11所示,可偏转光学器件140包括第一子可偏转光学器件141与第二子可偏转光学器件142。当用户的人眼向图11中向下的方向移动后,可通过调节第一子可偏转光学器件141来使背光模组100的出光方向向图11中向下的方向偏转,从而使该全息显示装置的可观察范围向图11中向下的方向移动,以使得用户的人眼始终处于该全息显示装置的可观察范围。需要说明的是,上述图11中向下的方向可与图10中向上的方向相对,此时,第一子可偏转光学器件与第二子可偏转光学器件可分别设置在半透明层两相对的端部所正对的位置;当然,上述图11中向下的方向也可与图10中向上的方向垂直或相交以提供更多的全息显示装置可观察范围的调整方向,本公开实施例在此不作限制。
例如,在本实施例一示例提供的全息显示装置中,如图12所示,该全息显示装置还可包括设置在空间光调制器200远离背光模组100的一侧的透镜, 以对全息显示装置的出光进行会聚,从而提高全息图像的质量。
例如,在本实施例一示例提供的全息显示装置中,如图13所示,该全息显示装置还可包括摄像头400以及控制器500。摄像头400与控制器500通信相连,控制器500与可偏转光学器件140相连,摄像头400可获取或者捕捉用户的人眼位置,控制器500可根据摄像头400获取的人眼位置控制可偏转光学器件140偏转,从而在用户进行移动时,保证其人眼始终处于全息显示装置的可观察范围,具体调节方式可参见上述的相关描述。
例如,空间光调制器可采用液晶空间光调制器。
本公开的至少一个实施例提供一种全息显示装置的全息显示方法,该全息显示装置包括背光模组、空间光调制器、摄像头以及控制器,背光模组可为实施例一或二中任一项的背光模组,空间光调制器设置在半透明层远离反射层的一侧,如图14所示,该全息显示方法包括以下步骤S401-S402。
步骤S401:摄像头获取当前用户的人眼位置。
步骤S402:控制器根据人眼位置控制可偏转光学器件偏转以调整全息显示装置的可观察范围。
由此,在用户进行移动时,可保证其人眼始终处于全息显示装置的可观察范围,具体调节方式可参见上述的相关描述。
例如,在本实施例一示例提供的全息显示方法中,可偏转光学器件包括:第一子可偏转光学器件和第二子可偏转光学器件,光源被配置为分别发出射向第一子可偏转光学器件的第一光束和射向第二子可偏转光学器件的第二光束,第一子可偏转光学器件被配置为将第一光束的传播方向进行偏转并以第一方向射入半透明层与反射层之间,并可偏转以改变第一方向,第二子可偏转光学器件被配置为将第二光束的传播方向进行偏转并以第二方向射入半透明层与反射层之间,并可偏转以改变第二方向,该全息显示方法包括:控制器根据人眼位置控制光源发出第一光束或第二光束,也就是说,控制器可根据人眼位置选择使用光源发出第一光束还是第二光束;以及控制器根据人眼位置控制第一子可偏转光学器件或第二子可偏转光学器件以调整全息显示装置的可观察范围。例如,参见图10和图11,当用户的人眼向图10中向上的方向移动后,可选择第二子可偏转光学器件142来使背光模组100的出光方向图10中向上的方向偏转,此时控制光源发出第一光束,从而使该全息显示装置的可观察范围向图10中向上的方向移动,以使得用户的人眼始终处于该全息显示装置的可 观察范围。当用户的人眼向图11中向下的方向移动后,可选择第一子可偏转光学器件141来是背光模组100的出光方向向图11中向下的方向偏转,此时,可控制光源不发出第一光束而发出第二光束来使背光模组100的出光方向图11中向下的方向偏转,从而使该全息显示装置的可观察范围向图11中向下的方向移动,以使得用户的人眼始终处于该全息显示装置的可观察范围。需要说明的是,上述图10中向上的方向可为全息显示装置相对于地面向上的方向,也可为全息显示装置相对于底面向下、向左、向右的方向,本公开实施例在此不作限制。上述图11中向下的方向可与图10中向上的方向相对,此时,第一子可偏转光学器件与第二子可偏转光学器件可分别设置在半透明层两相对的端部所正对的位置;当然,上述图11中向下的方向也可与图10中向上的方向垂直或相交以提供更多的全息显示装置可观察范围的调整方向,本公开实施例在此不作限制。
有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或微结构的厚度和尺寸被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
(3)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种背光模组,包括:
    半透明层;
    反射层,与所述半透明层相对间隔设置;
    光源,被配置为发出光束;以及
    可偏转光学器件,被配置为将所述光源发出的光束的传播方向进行偏向并以一方向射入所述半透明层与所述反射层之间并可偏转以改变所述方向。
  2. 根据权利要求1所述的背光模组,其中,所述半透明层被配置为反射一部分射向所述半透明层的光束并将其余部分的光束透射。
  3. 根据权利要求1或2所述的背光模组,其中,所述半透明层与所述反射层平行设置,以使得被射入所述半透明层与所述反射层之间的部分光束在所述半透明层与所述反射层之间被多次反射。
  4. 根据权利要求1-3中任一项所述的背光模组,其中,所述半透明层包括第一区域和设置在所述第一区域周边的第二区域,所述反射层在所述半透明层上的正投影与所述第一区域完全重叠,所述可偏转光学器件设置在所述第二区域正对的位置。
  5. 根据权利要求1-4中任一项所述的背光模组,其中,所述反射层的端部设置有开口,所述开口被配置为使所述可偏转光学器件偏向的光束射入所述半透明层与所述反射层之间。
  6. 根据权利要求1-5中任一项所述的背光模组,其中,所述可偏转光学器件包括:
    第一子可偏转光学器件,以及
    第二子可偏转光学器件,
    其中,所述光源被配置为分别发出射向所述第一子可偏转光学器件的第一光束和射向所述第二子可偏转光学器件的第二光束,所述第一子可偏转光学器件被配置为将所述第一光束的传播方向进行偏转并以第一方向射入所述半透明层与所述反射层之间,并可偏转以改变所述第一方向,所述第二子可偏转光学器件被配置为将所述第二光束的传播方向进行偏转并以第二方向射入所述半透明层与所述反射层之间,并可偏转以改变所述第二方向。
  7. 根据权利要求6所述的背光模组,其中,所述第一子可偏转光学器件 与所述第二子可偏转光学器件分别设置在所述半透明层两相对的端部所正对的位置。
  8. 根据权利要求6所述的背光模组,其中,所述光源包括:
    第一子光源,被配置为发出所述第一光束;以及
    第二子光源,被配置为发出所述第二光束。
  9. 根据权利要求1-5中任一项所述的背光模组,还包括:
    准直透镜,设置在所述光源与所述可偏转光学器件之间且被配置为将所述光源发出的光束进行准直。
  10. 根据权利要求1-5中任一项所述的背光模组,其中,所述光源被配置为发出相干光。
  11. 根据权利要求1-5中任一项所述的背光模组,其中,所述光源设置在所述反射层远离所述半透明层的一侧。
  12. 根据权利要求1-5中任一项所述的背光模组,其中,所述可偏转光学器件包括:
    转轴;以及
    光学器件,套设在所述转轴上,
    其中,所述光学器件被配置为随着所述转轴的转动而偏转。
  13. 根据权利要求7所述的背光模组,其中,所述光学器件包括反射镜或偏向透镜。
  14. 一种全息显示装置,包括:
    背光模组;以及
    空间光调制器,
    其中,所述背光模组包括根据权利要求1-13中任一项所述的背光模组,所述空间光调制器设置在所述半透明层远离所述反射层的一侧。
  15. 根据权利要求14所述的全息显示装置,其中,所述空间光调制器为液晶空间光调制器。
  16. 根据权利要求14或15中任一项所述的全息显示装置,还包括:
    摄像头,被配置为捕捉用户的人眼位置;以及
    控制器,与所述摄像头和所述可偏转光学器件分别通信相连并被配置为根据所述人眼位置控制所述可偏转光学器件偏转。
  17. 根据权利要求14或15中任一项所述的全息显示装置,还包括:
    透镜,所述透镜设置在所述空间光调制器远离所述背光模组的一侧。
  18. 一种全息显示装置的全息显示方法,其中,所述全息显示装置包括背光模组、空间光调制器、摄像头以及控制器,所述背光模组包括根据权利要求1所述的背光模组,所述空间光调制器设置在所述半透明层远离所述反射层的一侧,所述全息显示方法包括:
    所述摄像头获取当前用户的人眼位置;以及
    所述控制器根据所述人眼位置控制所述可偏转光学器件偏转以调整所述全息显示装置的可观察范围。
  19. 根据权利要求18所述的全息显示方法,其中,所述可偏转光学器件包括:第一子可偏转光学器件和第二子可偏转光学器件,所述光源被配置为分别发出射向所述第一子可偏转光学器件的第一光束和射向所述第二子可偏转光学器件的第二光束,所述第一子可偏转光学器件被配置为将所述第一光束的传播方向进行偏向并以所述第一方向射入所述半透明层与所述反射层之间,并可偏转以改变所述第一方向,所述第二子可偏转光学器件被配置为将所述第二光束的传播方向进行偏向并以第二方向射入所述半透明层与所述反射层之间,并可偏转以改变所述第二方向,所述全息显示方法包括:
    所述控制器根据所述人眼位置控制所述光源发出所述第一光束或所述第二光束;以及
    所述控制器根据所述人眼位置控制所述第一子可偏转光学器件或所述第二子可偏转光学器件以调整所述全息显示装置的可观察范围。
PCT/CN2017/091140 2016-12-02 2017-06-30 背光模组、全息显示装置及其全息显示方法 WO2018099070A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17835574.9A EP3550354A4 (en) 2016-12-02 2017-06-30 BACKLIGHTING MODULE, HOLOGRAPHIC DISPLAY DEVICE AND HOLOGRAPHIC DISPLAY METHOD FOR IT
US15/750,756 US10775607B2 (en) 2016-12-02 2017-06-30 Backlight module, holographic display device and holographic display method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611094802.9A CN108152946A (zh) 2016-12-02 2016-12-02 背光模组、全息显示装置及其全息显示方法
CN201611094802.9 2016-12-02

Publications (1)

Publication Number Publication Date
WO2018099070A1 true WO2018099070A1 (zh) 2018-06-07

Family

ID=62241170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091140 WO2018099070A1 (zh) 2016-12-02 2017-06-30 背光模组、全息显示装置及其全息显示方法

Country Status (4)

Country Link
US (1) US10775607B2 (zh)
EP (1) EP3550354A4 (zh)
CN (1) CN108152946A (zh)
WO (1) WO2018099070A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557662A (zh) * 2018-12-12 2019-04-02 无锡和晶科技股份有限公司 一种远距离导光以及光斑的方向和大小可控的显示方法
CN112130336A (zh) * 2020-09-27 2020-12-25 欧菲微电子技术有限公司 光学组件、3d感测组件以及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102011986A (zh) * 2005-11-15 2011-04-13 松下电器产业株式会社 面状照明装置和使用其的液晶显示装置
CN102242889A (zh) * 2010-05-12 2011-11-16 北京京东方光电科技有限公司 背光模组和液晶显示器
CN102955256A (zh) * 2012-10-15 2013-03-06 上海交通大学 基于体积全息原理的大面积相干光背光模组
US20160091648A1 (en) * 2014-09-30 2016-03-31 Bayer Materialscience Ag Thin film type controlled viewing window back light unit and thin flat type controlled viewing window display using the same
US20160147003A1 (en) * 2014-11-20 2016-05-26 Samsung Electronics Co., Ltd. Backlight unit for holographic display apparatus and holographic display apparatus including the same
CN105938271A (zh) * 2016-05-24 2016-09-14 江苏生辉光电科技有限公司 一种投射型全息光栅背光结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101766272B1 (ko) * 2010-11-01 2017-08-08 삼성전자주식회사 시준화된 지향성의 백라이트 유닛을 사용하는 홀로그래픽 영상 디스플레이 장치 및 방법
KR102262215B1 (ko) * 2014-09-01 2021-06-08 삼성전자주식회사 백라이트 유닛 및 이를 포함한 홀로그래픽 디스플레이

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102011986A (zh) * 2005-11-15 2011-04-13 松下电器产业株式会社 面状照明装置和使用其的液晶显示装置
CN102242889A (zh) * 2010-05-12 2011-11-16 北京京东方光电科技有限公司 背光模组和液晶显示器
CN102955256A (zh) * 2012-10-15 2013-03-06 上海交通大学 基于体积全息原理的大面积相干光背光模组
US20160091648A1 (en) * 2014-09-30 2016-03-31 Bayer Materialscience Ag Thin film type controlled viewing window back light unit and thin flat type controlled viewing window display using the same
US20160147003A1 (en) * 2014-11-20 2016-05-26 Samsung Electronics Co., Ltd. Backlight unit for holographic display apparatus and holographic display apparatus including the same
CN105938271A (zh) * 2016-05-24 2016-09-14 江苏生辉光电科技有限公司 一种投射型全息光栅背光结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550354A4 *

Also Published As

Publication number Publication date
US10775607B2 (en) 2020-09-15
CN108152946A (zh) 2018-06-12
EP3550354A4 (en) 2020-10-28
US20200088991A1 (en) 2020-03-19
EP3550354A1 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
US10241344B1 (en) Advanced retroreflecting aerial displays
US10473947B2 (en) Directional flat illuminators
US9964768B2 (en) Head mounted display using spatial light modulator to generate a holographic image
TWI588535B (zh) 可調式焦距平面光學系統
US8582206B2 (en) Laser-scanning virtual image display
WO2019179136A1 (zh) 显示装置及显示方法
US11536959B2 (en) Image display apparatus
KR20190126124A (ko) 분할된 동공들을 위한 공간 광 변조기 조명을 갖는 디스플레이 시스템
US11874470B2 (en) Display apparatus having wide viewing window
JP2017513067A (ja) ホログラフィック光学素子を使用する裸眼立体視3d表示装置
CN110286496B (zh) 一种基于前置方向性光源的立体显示装置
CN103488036A (zh) 全息立体投影屏及其投影方法
JP2012008301A (ja) 体積走査型3次元映像表示装置
CN113655615A (zh) 大出瞳光学显示装置、近眼显示装置及图像投射方法
US11556013B2 (en) Short distance illumination of a spatial light modulator using a single reflector
JP2022514069A (ja) シフト可能な収束面を有するマルチビューディスプレイ、システム、及び方法
WO2018099070A1 (zh) 背光模组、全息显示装置及其全息显示方法
JP6121097B2 (ja) 情報提示装置
JP2021532400A (ja) ボリュームディスプレイシステムおよび3次元画像を表示する方法
WO2021111954A1 (ja) 画像表示装置
KR20170024062A (ko) 입체 디스플레이
KR20230065769A (ko) 확장된 시야창을 제공하는 디스플레이 장치
KR101690700B1 (ko) 무안경 방식의 3차원 디지털 홀로그래픽 디스플레이장치
KR20070004573A (ko) 헤드 장착 디스플레이들용 광학 장치들
AU2015258258A1 (en) Directional flat illuminators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17835574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE