WO2018139578A1 - 伝動用vベルトおよびその製造方法 - Google Patents

伝動用vベルトおよびその製造方法 Download PDF

Info

Publication number
WO2018139578A1
WO2018139578A1 PCT/JP2018/002458 JP2018002458W WO2018139578A1 WO 2018139578 A1 WO2018139578 A1 WO 2018139578A1 JP 2018002458 W JP2018002458 W JP 2018002458W WO 2018139578 A1 WO2018139578 A1 WO 2018139578A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber layer
belt
layer
reinforcing
transmission
Prior art date
Application number
PCT/JP2018/002458
Other languages
English (en)
French (fr)
Inventor
浩平 ▲濱▼本
西村 年弘
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018004453A external-priority patent/JP6654653B2/ja
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to EP18744973.1A priority Critical patent/EP3575631B1/en
Priority to CN201880007489.1A priority patent/CN110214240B/zh
Priority to US16/479,834 priority patent/US11624421B2/en
Publication of WO2018139578A1 publication Critical patent/WO2018139578A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D29/00Producing belts or bands
    • B29D29/10Driving belts having wedge-shaped cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/02Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • F16G5/08V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/04Rope bands
    • D07B5/045Belts comprising additional filaments for laterally interconnected load bearing members

Definitions

  • the present invention relates to a transmission V-belt having a V-shaped cross section perpendicular to the belt circumferential direction and having friction transmission surfaces on both sides in the belt width direction, and a method for manufacturing the same.
  • the transmission V-belt includes a low-edge V-belt whose friction transmission surface is rubber, and a wrapped V-belt whose friction transmission surface is covered with a cover cloth. Depending on the application, it is properly used depending on the difference (coefficient of friction, etc.). These power transmission V-belts are used in a wide range of fields such as automobiles, agricultural machinery, and industrial machinery.
  • transmission V-belts used in automobiles are required to have improved flexibility so as to cope with the downsizing of pulleys, and to improve side pressure resistance so that power can be transmitted with a high load.
  • the agricultural machinery has been enlarged to accommodate large-scale agriculture.
  • the belt mechanism of a large agricultural machine is continuously operated for a long time with high load and high tension.
  • the belt mechanism of a large agricultural machine has many multi-axis layouts. For this reason, transmission V-belts used for large-scale agricultural machines are required to have improved side pressure resistance and to have good flexibility that can be applied to multi-axis layouts.
  • the transmission V-belt is required to have both high side pressure resistance and high flexibility.
  • Insufficient lateral pressure resistance causes the belt to fall into the pulley and cause buckling deformation called dishing, resulting in heat generation of the belt and separation between belt components, resulting in a reduction in belt life.
  • the flexibility is lowered, heat generated by the bending when the belt is wound around or separated from the pulley is increased, and the constituent members of the belt such as rubber are thermally deteriorated, leading to a reduction in belt life.
  • Patent Document 1 short fibers oriented in the belt width direction are embedded in a dispersed manner in the compressed rubber layer of the belt.
  • Patent Document 2 a transverse cord is embedded in the compressed rubber layer.
  • the horizontal blind cord is a cord in which aramid fibers or the like are arranged along the belt width direction and connected with fine yarns.
  • the reinforcement layer which consists of fiber reinforced resin is embed
  • the transmission V-belts as in Patent Documents 1 to 3 have problems such as a decrease in flexibility, insufficient side pressure resistance, and an increase in belt temperature.
  • the orientation of the short fibers is likely to be disturbed, and it is difficult to sufficiently enhance the orientation in the belt width direction. If the orientation in the belt width direction is low, sufficient lateral pressure resistance cannot be ensured. If the amount of short fibers can be increased, the amount of short fibers oriented in the belt width direction can be secured even if the orientation is disturbed, but the amount of short fibers is limited from the viewpoint of workability. Further, when the orientation of the short fibers is disturbed, the flexibility of the belt is lowered by the short fibers oriented in the belt circumferential direction. When the flexibility is lowered, heat generation due to the bending is likely to occur, so the belt temperature during running increases, and the life of the belt is shortened due to thermal deterioration of the rubber.
  • the horizontal cord disclosed in Patent Document 2 uses a twisted cord in which fibers are twisted as a cord arranged along the belt width direction. If there is a twist, stretchability is imparted, and thus the lateral pressure resistance tends to be reduced. In addition, the filaments that are spiraled by twisting are not strictly oriented in the belt width direction, and thus the side pressure resistance is not sufficiently improved. Further, the twisted cord tends to generate heat due to friction between fibers when the belt is bent. As a result, the belt temperature during running increases, and the belt life may be shortened due to thermal deterioration of the rubber. Moreover, since a twisted cord is used, the thickness of the reinforcing layer is increased, and the flexibility may be lowered.
  • Patent Document 3 does not describe whether the fiber constituting the fiber reinforced resin has a twist. Therefore, in Patent Document 3, it is unclear whether heat generation due to friction between fibers of the fiber reinforced resin is difficult to occur. Moreover, in patent document 3, nothing is prescribed
  • An object of the present invention is to provide a transmission V-belt that can improve the lateral pressure resistance while suppressing the heat generation of the belt and a decrease in flexibility, and a method for manufacturing the same.
  • the transmission V-belt according to the first aspect of the present invention is a transmission V-belt having a V-shaped cross section perpendicular to the belt circumferential direction and having friction transmission surfaces on both sides in the belt width direction.
  • the reinforcing layer has a structure in which the reinforcing fiber filaments are untwisted and bonded in a sheet shape while being oriented in the belt width direction, and the thickness of the reinforcing layer is 0.05. ⁇ 0.5mm , Drive V-belt.
  • a large number of reinforcing fiber filaments are embedded in the rubber layer as a reinforcing layer in a state where the reinforcing fiber filaments are expanded in a sheet shape while being oriented in the belt width direction. Therefore, the side pressure resistance of the transmission V-belt can be improved as compared with a case where no reinforcing layer is provided or short fibers oriented in the belt width direction are embedded in the rubber layer in a dispersed manner. Furthermore, since a large number of reinforcing fiber filaments constituting the reinforcing layer are spread and joined in a sheet shape, disorder of the orientation of the reinforcing fiber filaments can be prevented. Thereby, the side pressure resistance can be improved more reliably.
  • the reinforcing layer does not contain any fiber that intersects the belt width direction, or contains only 30% or less of the weight per unit area of the reinforcing fiber filament. Therefore, it is possible to ensure substantially the same flexibility as when no reinforcing layer is provided. That is, it is possible to suppress a decrease in the flexibility of the transmission V-belt.
  • the reinforcing fiber filament is embedded in a non-twisted state, whereby the thickness of the reinforcing layer can be reduced while ensuring high lateral pressure resistance. Thereby, the fall of a flexibility can be suppressed more.
  • “non-twisted” means that the number of twists is 1/10 cm or less.
  • the reinforcing fiber filament is embedded in a non-twisted state, heat generation due to friction between the fibers hardly occurs during bending. Further, by suppressing the lowering of the flexibility, it is possible to suppress the heat generation of the belt due to the bending when the belt is wound around or separated from the pulley. Therefore, an increase in belt temperature during traveling can be suppressed. By suppressing the increase in belt temperature, the transmission V-belt can be extended.
  • the thickness of the reinforcing layer is 0.05 to 0.5 mm. If the thickness of the reinforcing layer exceeds 0.5 mm, the flexibility may be reduced, and heat generation of the belt due to the bending may increase.
  • the thickness of the reinforcing layer by reducing the thickness of the reinforcing layer to 0.5 mm or less, it is possible to reliably suppress a decrease in flexibility and heat generation of the belt. Further, if the thickness of the reinforcing layer is less than 0.05 mm, sufficient lateral pressure resistance may not be ensured. In the present invention, since the effect of improving the side pressure resistance by the untwisted reinforcing fiber filament is high, sufficient side pressure resistance can be ensured even if the reinforcing layer is as thin as 0.05 to 0.5 mm. In the present invention, the “thickness of the reinforcing layer” refers to the thickness of each reinforcing layer even when there are a plurality of reinforcing layers.
  • the reinforcing fiber filaments are spread and bonded in a sheet shape and do not come apart, handling of the reinforcing layer is easy during belt manufacture. Specifically, it is possible to easily perform an operation of winding a sheet serving as a reinforcing layer on unvulcanized rubber and an operation of applying an adhesive treatment such as an RFL process or a rubber paste process to the reinforcing layer.
  • the tensile elastic modulus of the reinforcing fiber filament is 200 to 600 GPa in the first aspect.
  • the tensile elastic modulus of the reinforcing fiber filament is less than 200 GPa, sufficient lateral pressure resistance may not be ensured.
  • the tensile elastic modulus of the reinforcing fiber filament is 200 GPa or more, sufficient lateral pressure resistance can be ensured while reducing the thickness of the reinforcing layer and suppressing a decrease in flexibility.
  • the tensile elastic modulus of the reinforcing fiber filament exceeds 600 GPa, it becomes difficult for the reinforcing fiber filament to follow the deformation of the belt, it becomes easy to peel between the reinforcing layer and the rubber composition, and the belt life is shortened.
  • peeling between the reinforcing layer and the rubber composition can be suppressed, and the belt can have a longer life.
  • the thermal conductivity of the reinforcing fiber filament is 5.0 W / (m ⁇ K) or more.
  • the reinforcing fiber filament is a carbon fiber.
  • the reinforcing fiber filament is a carbon fiber
  • the tensile elastic modulus of the reinforcing fiber filament can be within the range of the second invention. Therefore, the same effect as the second invention can be obtained.
  • the reinforcing fiber filament is a carbon fiber
  • the thermal conductivity of the reinforcing fiber filament can be within the numerical range of the third invention. Therefore, the same effect as the third invention can be obtained.
  • one reinforcing layer is embedded on each side of the core wire in the rubber layer.
  • the side pressure resistance can be further improved by the presence of the reinforcing layers on both sides of the core wire. Therefore, even if the transmission V-belt is used under a high load condition, the life can be extended.
  • the rubber layer is different from an adhesive rubber layer in which at least a part of the core wire is embedded, and the adhesive rubber layer.
  • a compressed rubber layer made of a rubber composition and provided on the inner peripheral side of the adhesive rubber layer, and a stretched rubber made of a rubber composition different from the adhesive rubber layer and provided on the outer peripheral side of the adhesive rubber layer
  • the reinforcing layer is embedded between at least one of the adhesive rubber layer and the compressed rubber layer and between the adhesive rubber layer and the stretched rubber layer.
  • the reinforcing layer is in contact with the adhesive rubber layer in which the core wire is embedded. That is, the reinforcing layer is embedded at a position close to the core wire.
  • the transmission V-belt is required to have higher lateral pressure resistance as it is closer to the core wire in the belt thickness direction. Therefore, by embedding the reinforcing layer at a position close to the core wire, sufficient lateral pressure resistance can be ensured by the thinner reinforcing layer. Since the thickness of the reinforcing layer is thin, a decrease in flexibility can be further suppressed.
  • the reinforcing layer is embedded in the compressed rubber layer (or the stretched rubber layer)
  • the belt is manufactured as compared with the case where the reinforcing layer is embedded in the compressed rubber layer or the stretched rubber layer. Can reduce the man-hours required.
  • the rubber layer is different from the adhesive rubber layer in which at least a part of the core wire is embedded, and the adhesive rubber layer A compressed rubber layer made of a rubber composition and provided on the inner peripheral side of the adhesive rubber layer, and a stretched rubber made of a rubber composition different from the adhesive rubber layer and provided on the outer peripheral side of the adhesive rubber layer
  • the reinforcing layer is embedded in at least one of the compressed rubber layer and the stretched rubber layer.
  • the transmission V-belt according to an eighth aspect is any one of the first to fifth aspects, wherein the rubber layer is composed of a compressed rubber layer and a rubber composition different from the compressed rubber layer, and the compressed rubber layer
  • the stretched rubber layer provided on the belt outer peripheral side, and the core wire is embedded between the compressed rubber layer and the stretched rubber layer, in the compressed rubber layer, or in the stretched rubber layer.
  • the reinforcing layer is embedded in at least one of the compressed rubber layer, the stretched rubber layer, and the compressed rubber layer and the stretched rubber layer.
  • the transmission V-belt of the ninth aspect is any one of the sixth to eighth aspects, wherein the core wire is not embedded in the compressed rubber layer, and the compressed rubber layer includes short fibers.
  • the amount of the short fibers in the compressed rubber layer is 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • the blending amount of the short fibers blended in the compressed rubber layer exceeds 10 parts by mass with respect to 100 parts by mass of the rubber component, the flexibility decreases and the adhesiveness between the compressed rubber layer and the adjacent layer decreases. Therefore, cracks are likely to occur in the rubber.
  • the blending amount of the short fibers blended in the compressed rubber layer is 10 parts by mass or less with respect to 100 parts by mass of the rubber component, so that a decrease in flexibility and adhesiveness can be minimized. Generation of cracks can be suppressed. Therefore, the life of the transmission V-belt can be further extended.
  • blended with a compression rubber layer is less than 0.1 mass part with respect to 100 mass parts of rubber components, side pressure resistance may be insufficient and a belt life may become short.
  • the amount of the short fiber blended in the compressed rubber layer is as small as 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component. Even if it is, sufficient lateral pressure resistance can be secured.
  • a transmission V-belt according to a tenth aspect is the transmission V-belt according to any one of the sixth to ninth aspects, wherein the reinforcing layer is embedded in or in contact with the compressed rubber layer.
  • the layer includes chloroprene rubber and the reinforcing layer is in contact with the adhesive rubber layer, the adhesive rubber layer includes chloroprene rubber.
  • the compression rubber layer (and the adhesive rubber layer) includes chloroprene rubber having a good balance of physical properties such as heat resistance, wear resistance, and weather resistance, thereby improving the durability of the transmission V-belt. .
  • chloroprene rubber having a good balance of physical properties such as heat resistance, wear resistance, and weather resistance, thereby improving the durability of the transmission V-belt.
  • the adhesive force between the reinforcing layer and the compressed rubber layer (and the adhesive force between the reinforcing layer and the adhesive rubber layer) can be improved and peeling between them can be suppressed, the transmission V-belt Longer life can be achieved.
  • chloroprene rubber is relatively inexpensive, it is excellent in economic efficiency.
  • the transmission V-belt according to an eleventh aspect is the transmission V-belt according to any one of the first to tenth aspects, wherein the reinforcing layer is composed of one or a plurality of laminated unidirectional fiber sheets,
  • the sheet has a structure in which the reinforcing fiber filaments are bonded to each other by a thermosetting resin.
  • the adhesiveness between the reinforcing fiber filament and the rubber composition is improved by the thermosetting resin, so that the life of the transmission V-belt can be extended.
  • the transmission V-belt according to a twelfth aspect is the transmission V-belt according to any one of the first to tenth aspects, wherein the reinforcing layer comprises one or a plurality of laminated unidirectional fiber sheets, and the unidirectional fiber
  • the sheet has a structure in which the reinforcing fiber filaments are bonded to each other by an auxiliary yarn that intersects the belt width direction and has a weight per unit area of 30% or less of the reinforcing fiber filaments.
  • the flexibility of the belt may be lowered depending on the type and thickness of the resin.
  • the reinforcing fiber filaments are bound by the auxiliary yarn, it is easy to suppress a decrease in flexibility.
  • the unidirectional fiber sheet is torn when a strong force is applied to the unidirectional fiber sheet in the belt circumferential direction during adhesion processing or molding. Hateful.
  • auxiliary yarn means, for example, that a unidirectional fiber sheet is woven by a fiber bundle made of a plurality of reinforcing fiber filaments and auxiliary yarns. Including cases.
  • the basis weight amount of the unidirectional fiber sheet including the thermosetting resin or the auxiliary yarn is 50 to 400 g / m 2 .
  • the basis weight of the unidirectional fiber sheet is less than 50 g / m 2 , the number of unidirectional fiber sheets constituting the reinforcing layer necessary to ensure sufficient lateral pressure resistance increases, and the number of man-hours required for belt manufacture Will increase.
  • the basis weight of the unidirectional fiber sheet is 50 g / m 2 or more, sufficient lateral pressure resistance can be ensured by the reinforcing layer composed of one or a small number of unidirectional fiber sheets.
  • the basis weight of the unidirectional fiber sheet exceeds 400 g / m 2 , even if the reinforcing layer is composed of one unidirectional fiber sheet, the reinforcing layer becomes too thick and bent. May decrease.
  • the fabric weight of a unidirectional fiber sheet is 400 g / m ⁇ 2 > or less, the fall of a flexibility can be suppressed.
  • a method for manufacturing a transmission V-belt according to a fourteenth aspect of the present invention is a method for manufacturing the transmission V-belt according to the first aspect, wherein the reinforcing fiber filaments are bonded to each other or laminated. After laminating a plurality of the unidirectional fiber sheets thus formed as one reinforcing layer on a first unvulcanized rubber layer that forms a part of the rubber layer, another portion of the rubber layer is formed thereon. A laminating step of laminating a second unvulcanized rubber layer to form a rubber layer, and a vulcanizing step of vulcanizing the first unvulcanized rubber layer and the second unvulcanized rubber layer to form the rubber layer. Including.
  • the conventional method of manufacturing a conventional transmission V-belt can be used as it is, and the manufacturing process can be prevented from becoming complicated. Furthermore, it is possible to embed a reinforcing layer at an arbitrary position from the belt inner surface side to the outer surface side, and it is possible to reinforce a place where the side pressure resistance is particularly desired to be enhanced.
  • the unidirectional fiber sheet is manufactured by at least one of RFL treatment, rubber paste treatment, and resin impregnation treatment before the lamination step. Adhesive components are adhered to the surface.
  • the adhesive force between the reinforcing fiber filament and the rubber composition is increased, peeling between the reinforcing layer and the rubber layer can be prevented, and the power transmission V-belt can have a longer life.
  • the reinforcing fiber filaments are more firmly bonded to each other by the adhesive component, it is possible to more reliably prevent the disorder of the orientation of the reinforcing fiber filaments.
  • the cross section perpendicular to the belt circumferential direction being V-shaped means that two side surfaces are arranged on two straight lines forming a V shape in the cross section perpendicular to the belt circumferential direction.
  • the cross section perpendicular to the belt circumferential direction of the transmission V-belt of the present invention may be rectangular, hexagonal or otherwise as long as it is V-shaped.
  • 1 to 10 means 1 or more and 10 or less. This definition also applies to numerical values other than 1 and 10.
  • FIG. 1 is a cross-sectional view of a transmission V-belt according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional perspective view of the belt main body of the transmission V-belt.
  • FIG. 3 is a cross-sectional view of the reinforcing layer.
  • FIG. 4 is a perspective view for explaining the manufacturing procedure of the transmission V-belt.
  • FIG. 5 is a cross-sectional view of the V-belt for transmission in the middle of manufacturing.
  • (A) and (b) of Drawing 6 is a top view of a unidirectional fiber sheet of a modification.
  • FIG. 7 is a cross-sectional perspective view of a transmission V-belt according to a modified example.
  • FIG. 1 is a cross-sectional view of a transmission V-belt according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional perspective view of the belt main body of the transmission V-belt.
  • FIG. 3 is a cross-sectional
  • FIG. 8A is a cross-sectional view in the process of manufacturing the transmission V-belt of the modified example
  • FIG. 8B is a cross-sectional view of the transmission V-belt.
  • FIG. 9A is a cross-sectional view in the middle of manufacturing the transmission V-belt of the modified example
  • FIG. 9B is a cross-sectional view of the transmission V-belt.
  • FIG. 10A is a cross-sectional view in the process of manufacturing the transmission V-belt of the modified example
  • FIG. 10B is a cross-sectional view of the transmission V-belt.
  • FIG. 11A is a cross-sectional view in the middle of manufacturing a transmission V-belt of a modified example
  • FIG. 11B is a cross-sectional view of the transmission V-belt.
  • FIG. 12 is a cross-sectional perspective view of a transmission V-belt of a modified example.
  • FIG. 13 is a diagram illustrating a side pressure resistance test.
  • FIG. 14 is a diagram for explaining the flexibility test.
  • the transmission V-belt 1 according to the embodiment of the present invention will be described.
  • the belt circumferential direction (belt longitudinal direction), the belt width direction, the belt thickness direction, the belt outer circumferential side, and the belt inner circumferential side are directions shown in FIG.
  • the transmission V-belt 1 has a V-shaped cross section perpendicular to the belt circumferential direction.
  • the belt inner peripheral side is the narrow side, and the belt outer peripheral side is the wide side.
  • the transmission V-belt 1 is annular and is used by being wound around at least two pulleys 100 (drive pulley and driven pulley) having a V-shaped groove 101 (hereinafter referred to as V-groove 101).
  • the transmission V-belt 1 has friction transmission surfaces 1a and 1b on both sides in the belt width direction.
  • the friction transmission surfaces 1 a and 1 b are in contact with the V groove 101 of the pulley 100. Power is transmitted between the transmission V-belt 1 and the pulley 100 by the frictional force due to this contact.
  • the transmission V-belt 1 is a wrapped V-belt, and has a belt body 2 and a cover cloth 3 that covers the entire circumference of the belt body 2.
  • the cover cloth 3 is a woven cloth woven with warps and wefts made of synthetic fibers such as polyester, polyamide, aramid, and vinylon, and natural fibers such as cotton.
  • the belt main body 2 includes a rubber layer 4, a core wire 5 embedded in the rubber layer 4, and two reinforcing layers 6 embedded in the rubber layer 4.
  • the two reinforcing layers 6 are embedded on both sides of the core wire 5 in the rubber layer 4.
  • the rubber layer 4 includes an adhesive rubber layer 7 in which a core wire 5 is embedded, a compression rubber layer 8, and an extension rubber layer 9.
  • the compression rubber layer 8 is provided on the belt inner peripheral side of the adhesive rubber layer 7.
  • the compressed rubber layer 8 is compressed in the belt circumferential direction when the transmission V-belt 1 is wound around the pulley 100 and traveled.
  • the stretch rubber layer 9 is provided on the belt outer peripheral side of the adhesive rubber layer 7.
  • the stretch rubber layer 9 is stretched in the belt circumferential direction when the transmission V-belt 1 is wound around the pulley 100 and traveled.
  • the thickness of the compressed rubber layer 8 is larger than the thickness of the stretched rubber layer 9.
  • the two reinforcing layers 6 are provided between the adhesive rubber layer 7 and the compressed rubber layer 8 and between the adhesive rubber layer 7 and the stretched rubber layer 9, respectively. That is, the two reinforcing layers 6 are embedded at positions close to the core wire 5 of the rubber layer 4.
  • the adhesive rubber layer 7, the compressed rubber layer 8, and the stretch rubber layer 9 are composed of a rubber composition.
  • the rubber composition constituting the adhesive rubber layer 7 is different from the rubber composition constituting the compressed rubber layer 8 and the rubber composition constituting the stretched rubber layer 9.
  • the rubber composition constituting the adhesive rubber layer 7 has higher adhesion to the core wire 5 and the reinforcing layer 6 than the rubber composition constituting the compressed rubber layer 8 and the rubber composition constituting the stretched rubber layer 9.
  • the rubber composition constituting the stretched rubber layer 9 and the rubber composition constituting the compressed rubber layer 8 may be the same or different.
  • vulcanizable or crosslinkable rubber is used as the rubber component of the rubber composition.
  • diene rubber natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, hydrogenated nitrile rubber, etc.
  • ethylene- ⁇ -olefin elastomer chlorosulfonated polyethylene rubber Alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, silicone rubber, urethane rubber, fluororubber, and the like.
  • These rubber components can be used alone or in combination of two or more.
  • the compressed rubber layer 8 and the adhesive rubber layer 7 preferably contain chloroprene rubber.
  • the rubber composition may include a vulcanizing agent or a crosslinking agent, a co-crosslinking agent, a vulcanization aid, a vulcanization accelerator, a vulcanization retarder, a metal oxide (zinc oxide, magnesium oxide, calcium oxide, Barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide, etc.), reinforcing agent (carbon black, silicon oxide such as hydrous silica), short fiber, filler (clay, calcium carbonate, talc, mica, etc.), softening Agents (paraffin oil, oils such as naphthenic oil), processing agents or processing aids (stearic acid, metal stearate, wax, paraffin, etc.), anti-aging agents (antioxidants, thermal anti-aging agents, bending) Anti-cracking agent, anti-ozone degradation agent, etc.), colorant, tackifier, plasticizer, coupling agent (silane coupling agent, etc.), stabilizer (ultraviolet absorber, heat stabilizer, etc.), flame retardant
  • the rubber composition constituting the compressed rubber layer 8 may contain short fibers.
  • the amount of short fibers in the compressed rubber layer 8 is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber composition constituting the stretched rubber layer 9 may contain short fibers.
  • the rubber composition constituting the adhesive rubber layer 7 does not contain short fibers.
  • the core wire 5 extends in the belt circumferential direction and is buried with a certain interval in the belt width direction.
  • the core wire 5 is made of a twisted cord (multi-twisted, single-twisted, rung-twisted, etc.) using a multifilament yarn.
  • the material of the core wire 5 is, for example, a synthetic fiber such as an aramid fiber or an inorganic fiber such as a carbon fiber.
  • the core 5 may be subjected to an adhesion treatment with an RFL solution or the like for the purpose of enhancing the adhesion with the adhesive rubber layer 7.
  • the reinforcing layer 6 is composed of a single unidirectional fiber sheet 10.
  • the reinforcing layer 6 may be composed of a plurality of unidirectional fiber sheets 10 stacked in the belt thickness direction.
  • the unidirectional fiber sheet 10 has a large number of reinforcing fiber filaments 11 extending in a sheet shape while being oriented in the belt width direction.
  • the density in the belt circumferential direction of the fiber reinforcing filaments 11 in the unidirectional fiber sheet 10 may be about 1 ⁇ 10 9 to 1 ⁇ 10 11 pieces / 5 cm.
  • Each reinforcing fiber filament 11 has the same length as the belt width.
  • the reinforcing fiber filament 11 is arranged in a non-twisted state.
  • the reinforcing fiber filaments 11 are bonded together by a thermosetting resin 12.
  • the thermosetting resin 12 is impregnated in the reinforcing fiber filament 11.
  • an epoxy resin for example, an epoxy resin, a phenol resin, a melamine resin, a urea resin, a polyurethane resin, or the like can be used, and among them, an epoxy resin is preferable.
  • the reinforcing layer 6 does not include fibers that intersect in the belt width direction.
  • the reinforcing layer 6 has a thickness of 0.05 to 0.5 mm. 1 and 2 show the thickness of the reinforcing layer 6 in an exaggerated manner.
  • the thickness of the reinforcing layer 6 includes the thickness of the thermosetting resin 12 that covers the periphery of the reinforcing fiber filament 11.
  • the basis weight of the unidirectional fiber sheet 10 including the thermosetting resin 12 is preferably 50 to 400 g / m 2 .
  • the thickness of the reinforcing fiber filament 11 is not particularly limited, but is, for example, about 0.1 to 50 ⁇ m, and preferably about 5 to 25 ⁇ m. If the fiber diameter is too thin, handling becomes difficult, and if it is too thick, the flexibility of the belt may be lowered.
  • the tensile elastic modulus (Young's modulus) of the reinforcing fiber filament 11 is preferably 200 to 600 GPa.
  • the thermal conductivity of the reinforcing fiber filament 11 is preferably 5.0 W / (m ⁇ K) or more.
  • the upper limit of the thermal conductivity of the reinforcing fiber filament 11 is not particularly limited, but may be about 20 W / (m ⁇ K).
  • the type of fiber of the reinforcing fiber filament 11 is not particularly limited, and examples thereof include carbon fiber, glass fiber, aramid fiber, polyamide fiber, and polyester fiber. Of these, carbon fibers are particularly preferred because of their high tensile modulus and thermal conductivity.
  • the type of fiber of the reinforcing fiber filament 11 constituting the unidirectional fiber sheet 10 may be one type or plural types. Specific examples of the unidirectional fiber sheet 10 include “Toray Capri Preg” manufactured by Toray Industries, Inc. and “Pyrofil” manufactured by Mitsubishi Rayon Co., Ltd., for example.
  • the configuration of the two reinforcing layers 6 may be the same or different.
  • the adhesion component may adhere to the reinforcement layer 6 by the adhesion process for improving adhesiveness with the surrounding rubber layer 4 (adhesive rubber layer 7). Even without performing the adhesion treatment, the thermosetting resin 12 covering the surface of the reinforcing fiber filament 11 can ensure the adhesion to the rubber layer 4, but in order to further improve the adhesion, the adhesion treatment may be performed. preferable.
  • the bonding process include an RFL process and a rubber paste process (soaking process). In the RFL treatment, the unidirectional fiber sheet 10 or the unidirectional fiber sheet 10 before forming the unidirectional fiber sheet 10 is dipped in the RFL solution and then heat-treated, so that the unidirectional fiber sheet 10 or the unidirectional fiber sheet is treated.
  • the RFL liquid is a mixture of resorcin and formalin condensate in latex. Styrene / butadiene / vinylpyridine terpolymer, hydrogenated nitrile rubber, chlorosulfonated polyethylene, epichlorohydrin, etc. are used as latex. It is done.
  • an unvulcanized rubber composition dissolved in a solvent to form a rubber paste is applied to the surface of the unidirectional fiber sheet 10, and then the solvent is evaporated to remove the unidirectional fiber sheet 10.
  • This is a treatment for forming a film (adhesive component) of the unvulcanized rubber composition on the surface.
  • the rubber paste treatment may be performed after the adhesion treatment using the RFL liquid.
  • an unvulcanized rubber sheet 118 constituting the compressed rubber layer 8 is wound around a cylindrical molding drum M. Further, the unidirectional fiber sheet 10 is wound so that the direction of the reinforcing fiber filament 11 is substantially parallel to the central axis direction of the forming drum M.
  • the width of the unidirectional fiber sheet 10 to be wound (the length in the direction of the central axis of the forming drum M) is substantially the same as the width of the unvulcanized rubber sheet 118.
  • the reinforcing fiber filament 11 of the unidirectional fiber sheet 10 is impregnated with a semi-cured thermosetting resin 12.
  • the unidirectional fiber sheet 10 may be subjected to adhesion treatment such as RFL treatment or rubber paste treatment.
  • adhesion treatment such as RFL treatment or rubber paste treatment.
  • the reinforcing layer 6 is constituted by a plurality of unidirectional fiber sheets 10
  • either of the following two methods may be adopted.
  • the first method is a method in which a plurality of unidirectional fiber sheets 10 having the same width as the rubber sheet 118 and substantially the same length as the belt circumference are wound one by one.
  • the second method is a method of winding a plurality of long unidirectional fiber sheets 10 having the same width as the rubber sheet 118 and a plurality of times the circumference of the belt.
  • an unvulcanized rubber sheet 117A constituting a part of the adhesive rubber layer 7 is wound. Thereafter, one core wire 5 is wound in a spiral shape. Alternatively, a plurality of core wires 5 are wound at predetermined intervals.
  • the unidirectional fiber sheet 10 is wound as before.
  • an unvulcanized rubber sheet 119 constituting the stretched rubber layer 9 is wound to form an unvulcanized belt sleeve.
  • the thermosetting resin 12 impregnated in the reinforcing fiber filament 11 is completely cured.
  • the unvulcanized belt sleeve is cut into a predetermined width and cut so as to have a V-shaped cross section, and processed into an unvulcanized belt body 2.
  • the belt body 2 is covered with the cover cloth 3 that has been subjected to the friction treatment to form an unvulcanized belt.
  • the unvulcanized belt is fitted into a molding die and heated and pressed to vulcanize (or crosslink).
  • the transmission V-belt 1 is formed.
  • the friction treatment uses a calender roll, and the unvulcanized rubber composition and the cover cloth 3 are simultaneously passed between rolls rotating at different surface speeds, so that the unvulcanized rubber is covered between the fibers of the cover cloth 3. This is a process of rubbing the rubber composition.
  • the components are wound around the forming drum M in order from the components on the inner peripheral side of the transmission V-belt 1, but are wound around the molding die in order from the components on the outer peripheral side of the transmission V-belt 1. Also good.
  • the following effects can be obtained.
  • a large number of reinforcing fiber filaments 11 are embedded in the rubber layer 4 as the reinforcing layer 6 in a state where the reinforcing fiber filaments 11 are spread in a sheet shape while being oriented in the belt width direction. Therefore, the lateral pressure resistance of the transmission V-belt 1 can be improved as compared with the case where the reinforcing layer 6 is not provided or the short fibers oriented in the belt width direction are embedded in the rubber layer 4 in a dispersed manner.
  • the many reinforcing fiber filaments 11 constituting the reinforcing layer 6 are spread and joined in a sheet shape, disorder of the orientation of the reinforcing fiber filaments 11 can be prevented. Thereby, the side pressure resistance can be improved more reliably. The life of the transmission V-belt 1 can be extended by improving the lateral pressure resistance.
  • the reinforcing layer 6 does not contain any fiber that intersects the belt width direction. Therefore, substantially the same flexibility as when the reinforcing layer 6 is not provided can be secured. That is, it is possible to suppress a decrease in flexibility of the transmission V-belt 1.
  • the reinforcing fiber filament 11 is embedded in a non-twisted state, the thickness of the reinforcing layer 6 can be reduced while ensuring high lateral pressure resistance. Thereby, the fall of a flexibility can be suppressed more.
  • the reinforcing fiber filament 11 is embedded in a non-twisted state, heat generation due to friction between fibers hardly occurs during bending.
  • the transmission V-belt 1 can have a longer life.
  • the thickness of the reinforcing layer 6 is 0.05 to 0.5 mm, preferably 0.05 to 0.3 mm, more preferably 0.05 to 0.2 mm (especially 0.08 to 0.15 mm).
  • the thickness of the reinforcing layer 6 exceeds 0.5 mm, the flexibility is lowered, and the belt heat generation due to the bending may increase.
  • the thickness of the reinforcing layer 6 is less than 0.05 mm, sufficient lateral pressure resistance may not be ensured. In this embodiment, since the effect of improving the lateral pressure resistance by the untwisted reinforcing fiber filament 11 is high, sufficient lateral pressure resistance is ensured even when the reinforcing layer 6 is as thin as 0.05 to 0.5 mm. it can.
  • the reinforcing fiber filaments 11 are spread and joined in a sheet shape and do not come apart, the handling of the reinforcing layer 6 is easy during belt manufacture.
  • the work of winding the unidirectional fiber sheet 10 for forming the reinforcing layer 6 on the unvulcanized rubber, or the adhesion of the reinforcing layer 6 (unidirectional fiber sheet 10) such as RFL treatment or rubber paste treatment. It is possible to easily perform the process of performing the processing.
  • the tensile elastic modulus of the reinforcing fiber filament 11 is less than 200 GPa, sufficient lateral pressure resistance may not be ensured.
  • the tensile elastic modulus of the reinforcing fiber filament 11 is preferably 200 GPa or more. As a result, sufficient lateral pressure resistance can be secured while reducing the thickness of the reinforcing layer 6 and suppressing a decrease in flexibility. If the tensile elastic modulus of the reinforcing fiber filament 11 exceeds 600 GPa, it becomes difficult for the reinforcing fiber filament 11 to follow the deformation of the belt, it becomes easy to peel between the reinforcing layer 6 and the rubber composition, and the belt life is shortened. Become.
  • the tensile elastic modulus of the reinforcing fiber filament 11 is preferably 600 GPa or less. Thereby, peeling between the reinforcing layer 6 and the rubber composition can be suppressed, and the life of the belt can be extended.
  • the thermal conductivity of the reinforcing fiber filament 11 is preferably 5.0 W / (m ⁇ K) or more.
  • the reinforcing fiber filament 11 is preferably a carbon fiber.
  • the tensile elastic modulus of the reinforcing fiber filament 11 can be 200 to 600 GPa.
  • the thermal conductivity of the reinforcing fiber filament 11 can be set to 5.0 W / (m ⁇ K) or more.
  • the presence of the reinforcing layers 6 on both sides (belt outer peripheral side and belt inner peripheral side) of the core wire 5 can further improve the lateral pressure resistance. Therefore, even if the transmission V-belt 1 is used under a high load condition, the life can be extended.
  • the reinforcing layer 6 is in contact with the adhesive rubber layer 7 in which the core wire 5 is embedded. That is, the reinforcing layer 6 is embedded at a position close to the core wire 5.
  • the transmission V-belt 1 is closer to the core wire 5 in the belt thickness direction, higher lateral pressure resistance is required. Therefore, by embedding the reinforcing layer 6 at a position close to the core wire 5, sufficient lateral pressure resistance can be ensured by the thinner reinforcing layer 6. Since the thickness of the reinforcing layer 6 is thin, a decrease in flexibility can be further suppressed.
  • the reinforcing layer 6 When the reinforcing layer 6 is embedded in the compressed rubber layer 8 (or the stretched rubber layer 9), the reinforcing layer is interposed between the two rubber sheets forming the compressed rubber layer 8 (or the stretched rubber layer 9) at the time of manufacture. 6 must be arranged. In the present embodiment, since the reinforcing layer 6 is embedded between the compressed rubber layer 8 and the adhesive rubber layer 7 and between the stretched rubber layer 9 and the adhesive rubber layer 7, the reinforcing layer 6 is compressed rubber layer. Compared to the case where the belt 8 or the stretched rubber layer 9 is embedded, the number of man-hours for manufacturing the belt can be reduced.
  • the blending amount of the short fibers blended in the compressed rubber layer 8 exceeds 10 parts by mass with respect to 100 parts by mass of the rubber component, the flexibility is lowered and the adhesiveness between the compressed rubber layer 8 and the adjacent layer is reduced. Since it falls, it becomes easy to produce a crack in rubber.
  • the blending amount of the short fibers blended in the compressed rubber layer 8 is preferably 10 parts by mass or less with respect to 100 parts by mass of the rubber component. Thereby, the fall of a flexibility and adhesiveness can be suppressed to the minimum, and generation
  • blended with the compression rubber layer 8 is less than 0.1 mass part with respect to 100 mass parts of rubber components, side pressure resistance may be insufficient and a belt life may become short.
  • the blending amount of the short fibers blended in the compressed rubber layer 8 is preferably 0.1 to 10 parts by weight, particularly preferably 0.1 to 5 parts by weight or less with respect to 100 parts by weight of the rubber component. Since the effect of improving the side pressure resistance by the reinforcing layer 6 is high, the amount of the short fibers blended in the compressed rubber layer 8 is as small as 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component. However, sufficient lateral pressure resistance can be secured.
  • the compressed rubber layer 8 and the adhesive rubber layer 7 preferably contain chloroprene rubber.
  • the compression rubber layer 8 and the adhesive rubber layer 7 contain chloroprene rubber having a good balance of physical properties such as heat resistance, wear resistance, and weather resistance, the durability of the transmission V-belt 1 can be improved. Further, since the adhesive force between the reinforcing layer 6 and the compressed rubber layer 8 and the adhesive force between the reinforcing layer 6 and the adhesive rubber layer 7 are improved, and peeling between them can be suppressed, The life of the V belt 1 can be further extended. Furthermore, since chloroprene rubber is relatively inexpensive, it is excellent in economic efficiency.
  • the reinforcing layer 6 is composed of one or a plurality of laminated unidirectional fiber sheets 10.
  • the unidirectional fiber sheet 10 has a structure in which reinforcing fiber filaments 11 are bonded to each other by a thermosetting resin. Therefore, since the adhesiveness between the reinforcing fiber filament 11 and the rubber composition is improved by the thermosetting resin, the power transmission V-belt 1 can have a longer life.
  • the side pressure resistance can be improved as the number of the unidirectional fiber sheets 10 constituting the reinforcing layer 6 increases.
  • the fall of a flexibility can be suppressed, so that there are few number of the unidirectional fiber sheets 10 which comprise the reinforcement layer 6.
  • the basis weight of the unidirectional fiber sheet 10 is less than 50 g / m 2 , the number of unidirectional fiber sheets constituting the reinforcing layer 6 necessary to ensure sufficient lateral pressure resistance increases, which is useful for belt production. Such man-hours increase.
  • the basis weight of the unidirectional fiber sheet 10 is preferably 50 g / m 2 or more. Thereby, sufficient lateral pressure resistance can be secured by the reinforcing layer 6 constituted by one or a small number of unidirectional fiber sheets 10.
  • the basis weight of the unidirectional fiber sheet 10 exceeds 400 g / m 2 , the reinforcing layer 6 is thick even if the reinforcing layer 6 is composed of one unidirectional fiber sheet 10. In some cases, the flexibility may decrease.
  • the basis weight of the unidirectional fiber sheet 10 is preferably 400 g / m 2 or less, more preferably 200 g / m 2 or less (particularly 100 g / m 2 or less). Thereby, the fall of a flexibility can be suppressed.
  • the method for manufacturing the transmission V-belt 1 includes a rubber layer 4 having one reinforcing fiber 6 as a single reinforcing layer 6 or a single laminated fiber sheet 10 having a structure in which reinforcing fiber filaments 11 are joined together.
  • the conventional method of manufacturing a conventional transmission V-belt can be used as it is, and the manufacturing process can be prevented from becoming complicated. Furthermore, it becomes possible to embed the reinforcing layer 6 at an arbitrary position from the belt inner surface side to the outer surface side, and it is possible to reinforce a place where the side pressure resistance is particularly enhanced.
  • the adhesive component Prior to the lamination step, it is preferable to adhere the adhesive component to the unidirectional fiber sheet 10 by RFL treatment or rubber paste treatment. According to this method, since the adhesive force between the reinforcing fiber filament 11 and the rubber composition is increased, peeling between the reinforcing layer 6 and the rubber layer 4 can be prevented, and the transmission V-belt 1 can have a longer life. In addition, since the reinforcing fiber filaments 11 are more firmly bonded to each other by the adhesive component, it is possible to more reliably prevent the disorder of the orientation of the reinforcing fiber filaments 11.
  • the unidirectional fiber sheet 10 of the said embodiment is the structure by which reinforcement fiber filaments 11 were couple
  • the unidirectional fiber sheet of the present invention may have a configuration in which reinforcing fiber filaments are bonded to each other by means other than a thermosetting resin.
  • the reinforcing fiber filaments along the belt width direction are bonded to each other by an auxiliary thread that intersects the belt width direction and has a weight per unit area of 30% or less of the reinforcing fiber filament.
  • an auxiliary thread that intersects the belt width direction and has a weight per unit area of 30% or less of the reinforcing fiber filament.
  • a fiber bundle 213 composed of a plurality of reinforcing fiber filaments and an auxiliary yarn 214 intersect each other in a plain weave like a unidirectional fiber sheet 210 shown in FIG. Good.
  • a unidirectional fiber sheet 310 woven with a fiber bundle 313 composed of a plurality of reinforcing fiber filaments and auxiliary yarns 314 may be used.
  • the auxiliary yarns may be along the belt circumferential direction as in the auxiliary yarns 214 and 314 shown in FIGS. 6A and 6B, and are inclined with respect to the belt circumferential direction and the belt width direction. Also good.
  • the fineness of the auxiliary yarn is preferably smaller than the fineness of the fiber bundle of the reinforcing fiber filament.
  • the type of fiber of the auxiliary yarn is not particularly limited, and may be the same as or different from the type of fiber of the reinforcing fiber filament.
  • the auxiliary yarn may be a twisted yarn or a non-twisted yarn.
  • the weight per unit area of the auxiliary yarn included in the reinforcing layer is 30% or less of the weight per unit area of the reinforcing fiber filament included in the reinforcing layer.
  • the weight per unit area of the auxiliary yarn is preferably 20% or less of the weight per unit area of the reinforcing fiber filament, and more preferably 10% or less.
  • the lower limit of the weight per unit area of the auxiliary yarn is not particularly limited, but may be about 0.1% of the weight per unit area of the reinforcing fiber filament.
  • the unidirectional fiber sheet is torn when a strong force is applied to the unidirectional fiber sheet in the belt circumferential direction during adhesion processing or molding. Hateful.
  • the thickness of the reinforcing layer When the reinforcing fiber filaments are bonded together by means other than thermosetting resin, the thickness of the reinforcing layer, the basis weight of the unidirectional fiber sheet, and the properties of the reinforcing fiber filament (thickness, tensile elastic modulus, thermal conductivity)
  • the preferred range and specific examples of the material of the reinforcing fiber filament are the same as in the above embodiment.
  • the basis weight of the unidirectional fiber sheet in which the reinforcing fiber filaments are bonded by means other than the thermosetting resin is a basis weight including means (for example, auxiliary yarn) for bonding the reinforcing fiber filaments.
  • the unidirectional fiber sheet in which the reinforcing fiber filaments are bonded to each other by means other than the thermosetting resin there is, for example, “Fibra sheet” manufactured by Fivex Corporation.
  • the unidirectional fiber sheet in which the reinforcing fiber filaments are bonded together by means other than the thermosetting resin may form a reinforcing layer with only one sheet, or a plurality of laminated layers constitute the reinforcing layer. Also good.
  • the unidirectional fiber sheet (reinforcing layer) is preferably subjected to an adhesive treatment such as RFL treatment, rubber paste treatment, resin impregnation treatment, or the like.
  • the resin impregnation treatment is a treatment in which the unidirectional fiber sheet is impregnated with a resin solution such as an isocyanate solution or an epoxy solution. After the resin impregnation treatment, an RFL treatment or a rubber paste treatment may be performed. By performing the adhesion treatment, the adhesion with the rubber layer can be enhanced.
  • the number of reinforcing layers provided on the transmission V-belt of the present invention may be one or three or more.
  • the number of reinforcing layers provided on the transmission V-belt of the present invention may be one or three or more.
  • one reinforcing layer it may be embedded on either the inner belt side or the outer belt side of the core.
  • two or more reinforcing layers may be embedded on the inner peripheral side of the belt from the core wire.
  • two or more reinforcing layers may be embedded on the outer peripheral side of the belt from the core wire.
  • the reinforcing layer 6 is embedded between the compressed rubber layer 8 and the adhesive rubber layer 7.
  • the reinforcing layer 406 may be embedded in the compressed rubber layer 408.
  • the reinforcing layer 406 is constituted by three laminated unidirectional fiber sheets 10.
  • the reinforcing layer 6 is embedded between the stretch rubber layer 9 and the adhesive rubber layer 7.
  • the reinforcement layer may be embedded in the stretch rubber layer.
  • the reinforcing layer is preferably embedded in the vicinity of the core wire, but the reinforcing layer may be embedded away from the core wire. For example, as shown in FIG.
  • a reinforcing layer 406 may be embedded in the center of the compressed rubber layer 408 in the belt thickness direction. Further, for example, a reinforcing layer may be embedded on the inner peripheral side of the belt from the substantially center of the compressed rubber layer in the belt thickness direction.
  • the reinforcing layer is embedded in the center of the belt in the thickness direction of the compressed rubber layer or closer to the inner circumference of the belt than the center, the amount of rubber that is compressed during buckling deformation increases, and the elastic repulsion increases and buckling occurs. Deformation can be suppressed.
  • the core wire 5 may be embedded between the adhesive rubber layer 507 and the stretch rubber layer 509 as in the transmission V-belt 501 shown in FIG.
  • the reinforcing layer 6 is embedded between the compressed rubber layer 8 and the adhesive rubber layer 507.
  • the reinforcing layer 6 may be embedded anywhere except between the adhesive rubber layer 507 and the stretched rubber layer 509.
  • FIG. 8A shows a state in which the constituent elements of the belt main body are wound around the forming drum M in the manufacturing process of the transmission V-belt 501.
  • the core wire 5 is disposed between an unvulcanized rubber sheet 519 that forms the stretched rubber layer 509 and an unvulcanized rubber sheet 517 that forms the adhesive rubber layer 507.
  • a core wire may be embed
  • the reinforcing layer may be embedded anywhere except between the adhesive rubber layer and the compressed rubber layer.
  • the rubber layer may not have an adhesive rubber layer.
  • the rubber layer may be composed only of a compressed rubber layer and an extended rubber layer made of a rubber composition different from the compressed rubber layer.
  • the core wire is not embedded in the adhesive rubber layer.
  • the core wire 5 may be embedded between the compression rubber layer 608 and the stretch rubber layer 609.
  • two reinforcing layers 6 are embedded in the compressed rubber layer 608 and the stretched rubber layer 609, respectively.
  • FIG. 9A shows a state in which the constituent elements of the belt main body are wound around the forming drum M in the manufacturing process of the transmission V-belt 601.
  • One of the two reinforcing layers 6 is disposed between two unvulcanized rubber sheets 618A and 618B that form the compressed rubber layer 608.
  • the other reinforcing layer 6 is disposed between two unvulcanized rubber sheets 619A and 619B forming the stretched rubber layer 609.
  • the core wire 5 may be embedded in the compression rubber layer 708 like a transmission V-belt 701 shown in FIG.
  • FIG. 10B two reinforcing layers 6 are embedded between the compressed rubber layer 708 and the compressed rubber layer 708 and the stretched rubber layer 9, respectively.
  • the reinforcing layer may be embedded in the stretch rubber layer 9 or in the compressed rubber layer 708.
  • the compressed rubber layer 708 is formed by three unvulcanized rubber sheets 718A, 718B, 718C.
  • the core wire may be embedded in the stretched rubber layer.
  • the reinforcing layer may be embedded in the stretched rubber layer, may be embedded in the compressed rubber layer, or may be embedded between the compressed rubber layer and the stretched rubber layer.
  • the transmission V belt shown in FIG. 11B is an example.
  • the belt body of the transmission V-belt 801 includes an unvulcanized rubber sheet 818 that forms the compressed rubber layer 8, the reinforcing layer 6, the core wire 5, and the stretched rubber.
  • the unvulcanized rubber sheet 819 forming the layer 809 is wound around the molding drum M in order.
  • the transmission V-belt of the present invention may be a low-edge V-belt whose friction transmission surface is not covered with a cover cloth.
  • the cover cloth may not be provided at all, and the cover cloth may be provided only on at least one of the outer peripheral surface and the inner peripheral surface.
  • the transmission V-belt of the present invention may be a cog belt having a plurality of cogs arranged in the belt circumferential direction on at least one of the belt inner circumferential surface and the belt outer circumferential surface.
  • FIG. 12 shows an example.
  • the belt main body 902 of the cog belt (transmission V-belt) 901 in FIG. 12 has a cog 902a only on the inner peripheral surface.
  • the reinforcing layer 906 is embedded in the compressed rubber layer 908.
  • the reinforcing layer may be embedded along the core wire without following the unevenness of the cog.
  • the reinforcing layer 906 may be arranged along the unevenness of the cog 902a.
  • Cog molding is performed by fitting an unvulcanized belt sleeve or unvulcanized belt body to a molding matrix (mold or rubber mold) in which irregularities are formed, in the same manner as a general cog belt. be able to.
  • Table 1 shows the configurations of the transmission V-belts of Examples 1 to 7 and Comparative Examples 1 to 4.
  • the transmission V-belts of Examples 1 to 6 and Comparative Examples 1 to 4 were wrapped V-belts having a belt type B defined in JIS K6323 (2008), a nominal number of 60, and a circumference of 1524 mm.
  • the transmission V-belt of Example 7 was a low-edge V-belt having a belt type defined by JISK6323 (2008), type B, nominal number 60, and circumference of 1524 mm. That is, the friction transmission surface of the transmission V-belt of Example 7 is not covered with the cover cloth.
  • upper core means a state where the reinforcing layer is embedded between the adhesive rubber layer and the stretch rubber layer.
  • Below the core wire means a state in which the reinforcing layer is embedded between the adhesive rubber layer and the compressed rubber layer.
  • In the compressed rubber means a state in which the reinforcing layer is embedded in the compressed rubber layer.
  • Each reinforcing layer of Examples 1 to 3, 5 to 7 was composed of one unidirectional fiber sheet.
  • unidirectional fiber sheets of Examples 1 to 3, 5 to 7, unidirectional carbon fiber sheets in which carbon fiber filaments oriented in one direction were bonded with a thermosetting resin were used.
  • the basis weight of the unidirectional fiber sheet of Example 3 was twice (100 g / m 2 ) the basis weight of the unidirectional fiber sheets of Examples 1, 2, and 5-7.
  • the reinforcing layer of Example 4 was composed of two laminated unidirectional fiber sheets.
  • the unidirectional fiber sheet of Example 4 was the same as the unidirectional fiber sheets of Examples 1, 2, 5-7.
  • the thicknesses of the reinforcing layers in Examples 1, 2, and 5 to 7 were 0.1 mm, and the thicknesses of the reinforcing layers in Examples 3 and 4 were 0.2 mm.
  • the unidirectional fiber sheets of Examples 1 to 7 were subjected to RFL treatment.
  • the braided cord of Comparative Example 2 has a configuration in which twisted cords (1670 dtex / 1 ⁇ 2) of aramid fibers oriented in one direction are connected by cotton thin yarn (count 20S / 1).
  • the density of the aramid fiber twist cord was 50/5 cm, and the density of the fine yarn was 4/5 cm.
  • the thickness of the reinforcing layer of Comparative Example 2 (the thickness of the tinted cord) was 0.7 mm.
  • the interdigital cord of Comparative Example 3 has a configuration in which twisted cords (1100 dtex / 1 ⁇ 2) of PET fibers oriented in one direction are connected by cotton thin yarn (count 20S / 1).
  • the density of the twisted cord was 50 / 5cm, and the density of the fine yarn was 4 / 5cm.
  • the thickness of the reinforcing layer of Comparative Example 3 was 0.6 mm.
  • the cord was subjected to RFL treatment.
  • the interlaced cords were arranged so that the twisted cords were oriented in the belt width direction.
  • the configurations of the stretched rubber layer and the compressed rubber layer in Examples 1 to 7 and Comparative Examples 1 to 3 were all the same.
  • the stretched rubber layer and the compressed rubber layer of Comparative Example 4 were configured to include more short fibers than the stretched rubber layer and the compressed rubber layer of Example 1 and the like.
  • the structures of the adhesive rubber layers and the core wires in Examples 1 to 7 and Comparative Examples 1 to 4 were all the same.
  • the cover fabrics of Examples 1 to 6 and Comparative Examples 1 to 4 were woven fabrics plain woven with a mixed yarn of cotton and polyethylene terephthalate (PET) fibers.
  • the compositions of rubber composition A and rubber composition B in Table 1 are as shown in Table 2.
  • the upper jig 51 is lowered at a speed of 5 mm / min, and the moving distance from the initial position of the upper jig 51 is 1.4 mm.
  • the compressive force at the time of was measured. It can be determined that the higher the measured compression force, the higher the lateral pressure resistance. Table 3 shows the measurement results.
  • Example 3 using a unidirectional carbon fiber sheet having a basis weight of 100 g / m 2 and a basis weight of 50 g / example were laminating two unidirectional carbon fiber sheets in m 2 4 has a high lateral pressure resistance than example 1 was used without laminating the unidirectional carbon fiber sheet having a basis weight 50 g / m 2, The running life has been improved.
  • Example 5 and 6 in which the reinforcing layer was embedded in the compressed rubber layer, lateral pressure resistance and running life were similar to those in Example 1 in which the reinforcing layer was embedded on both sides of the core wire.
  • Example 1 Comparative Examples 2 and 3 in which the brazing cord was embedded as a reinforcing layer, the side pressure resistance was improved as compared with Comparative Example 1, but the flexibility was lower than that of Comparative Example 1 and Examples 1 to 5.
  • the decrease in the flexibility of Comparative Examples 2 and 3 is considered to be caused by the fact that the thickness of the reinforcing layer exceeds 0.5 mm and the fine yarns are arranged so as to intersect the belt width direction.
  • Comparative Example 4 containing a large amount of short fibers, although the lateral pressure resistance is improved as compared with Comparative Example 1, the short fibers are low in orientation compared to the unidirectional carbon fiber sheet, and the flexibility is low. The running life did not improve much.
  • Comparative Example 1 Comparing the running life, Comparative Example 1 was the shortest, and Examples 1 to 7 were longer than Comparative Examples 1 to 4.
  • Comparative Example 1 In Comparative Example 1 in which no reinforcing layer was provided, delamination occurred between the core wire and the rubber composition. This is considered to be because the belt was deformed by the side pressure from the pulley because the side pressure resistance is low by not providing the reinforcing layer.
  • Comparative Examples 2 and 3 in which a reinforcing layer composed of twisted cords was embedded, and in Comparative Example 4 in which a large amount of short fibers were blended, rubber cracks occurred.
  • Comparative Examples 2 to 4 since the belt temperature increased as described above, it is considered that the deterioration of the rubber due to heat was promoted, leading to a rubber crack.
  • Example 1 and 3 to 7 in which the reinforcing layers were provided in two or more places, the running life was longer than that in Example 2 in which the reinforcing layers were provided only in one place. This is considered to be because the side pressure resistance of Examples 1 and 3 to 7 was higher than that of Example 2. In Examples 1 to 7, damage due to delamination did not occur. In Examples 1 to 7, it is considered that the adhesion between the rubber composition and the reinforcing layer was good because the adhesive component was adhered to the reinforcing layer by the RFL treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)

Abstract

ベルト周方向に直交する断面がV字状で、ベルト幅方向の両側に摩擦伝動面を有する伝動用Vベルトであって、ゴム組成物からなるゴム層と、前記ゴム層にベルト周方向に沿って埋設された心線と、前記ゴム層に埋設された少なくとも1つの補強層と、を備え、前記補強層は、ベルト幅と同じ長さを有する多数の補強繊維フィラメントを含み、ベルト幅方向に交差する繊維を含まないか、または、含む場合、ベルト幅方向に交差する繊維の単位面積当たりの重量が前記補強繊維フィラメントの30%以下であり、前記補強層は、前記補強繊維フィラメントが、無撚の状態で、ベルト幅方向に配向しつつシート状に広げられて結合された構造を有し、前記補強層の厚みが、0.05mm~0.5mmである、伝動用Vベルトを提供する。

Description

伝動用Vベルトおよびその製造方法
 本発明は、ベルト周方向に直交する断面がV字状で、ベルト幅方向の両側に摩擦伝動面を有する伝動用Vベルトおよびその製造方法に関する。
 伝動用Vベルトには、摩擦伝動面がゴムであるローエッジ(Raw-Edge)Vベルトと、摩擦伝動面がカバー布で覆われたラップド(Wrapped)Vベルトとがあり、摩擦伝動面の表面性状(摩擦係数など)の違いから用途に応じて使い分けられている。これらの伝動用Vベルトは、自動車、農業機械、及び産業機械等の幅広い分野で使用されている。
 近年、自動車のエンジンは、小型で高出力であることが求められている。そのため、自動車に用いられる伝動用Vベルトは、プーリの小型化に対応できるよう、屈曲性の向上が求められると共に、高負荷で動力を伝達できるよう、耐側圧性の向上が求められている。
 また、農業機械は、大規模農業に対応して大型化されている。大型農業機械のベルト機構は、高負荷および高張力で、長時間連続稼動される。また、大型農業機械のベルト機構は、多軸レイアウトが多い。そのため、大型農業機械に使用される伝動用Vベルトは、耐側圧性の向上が求められると共に、多軸レイアウトにも適用できるような良好な屈曲性が求められる。
 このように、伝動用Vベルトは、耐側圧性と屈曲性を高度に両立することが求められている。耐側圧性が不足すると、ベルトがプーリへ落ち込んでディッシングと呼ばれる座屈変形を起こし、ベルトの発熱やベルトの構成部材間の剥離が発生し、ベルト寿命が低下する。また、屈曲性が低下すると、ベルトがプーリに巻きかかったり離れたりする際の屈曲による発熱が大きくなり、ゴムをはじめとするベルトの構成部材が熱劣化し、ベルト寿命の低下を招く。
 そこで、屈曲性を良好に保ったまま耐側圧性を向上する手段として種々の方法が提案されている。例えば、特許文献1では、ベルトの圧縮ゴム層にベルト幅方向に配向する短繊維を分散的に埋設している。また、特許文献2では、圧縮ゴム層に横すだれコードを埋設している。この横すだれコードは、アラミド繊維等のコードをそれぞれベルト幅方向に沿うように並べて、細糸で連結させたものである。また、特許文献3では、圧縮ゴム層に繊維強化樹脂からなる補強層を埋設している。この補強層は、ベルト幅方向に配向したカーボン繊維を含む。
日本国特公平5-63656号公報 日本国特公昭59-7859号公報 日本国特開2010-196889号公報
 しかしながら、特許文献1~3のような伝動用Vベルトでは、屈曲性の低下、耐側圧性の不足、ベルト温度の上昇などの問題点があった。
 特許文献1のように短繊維を配合する方法では、短繊維の配向が乱れやすく、ベルト幅方向の配向性を十分に高めることが難しい。ベルト幅方向の配向性が低いと、十分な耐側圧性を確保できない。短繊維の配合量を増量できれば配向に乱れがあっても、ベルト幅方向に配向する短繊維の量を確保できるが、加工性の点から短繊維の配合量には制限がある。また、短繊維の配向が乱れると、ベルト周方向に配向する短繊維によってベルトの屈曲性が低下してしまう。屈曲性が低下すると、屈曲による発熱が生じやすくなるため、走行中のベルト温度が上昇し、ゴムの熱劣化によりベルト寿命が短くなる。
 また、特許文献2に開示の横すだれコードは、ベルト幅方向に沿って配置されるコードとして、繊維を撚った撚りコードを使用している。撚りがあると伸縮性を付与することになるため、耐側圧性が低下しやすい。また、撚りにより螺旋状となったフィラメントは、厳密にはベルト幅方向に配向しないため、耐側圧性の向上が十分ではない。また、撚りコードは、ベルトの屈曲時に繊維同士の摩擦による発熱が生じやすい。それにより、走行中のベルト温度が上昇し、ゴムの熱劣化によりベルト寿命が短くなることがある。また、撚りコードを用いるため、補強層の厚みが厚くなり、屈曲性が低下することがある。
 また、特許文献3のように圧縮ゴム層に繊維強化樹脂からなる補強層を埋設する方法では、短繊維を配合する場合と比べてベルト幅方向への配向性を向上でき、耐側圧性を向上できる。しかしながら、特許文献3には、繊維強化樹脂を構成する繊維に撚りがあるかどうか記載されていない。よって、特許文献3では、繊維強化樹脂の繊維同士の摩擦による発熱が生じにくいかどうか不明である。また、特許文献3では、補強層の厚みについて何ら規定されていない。
 本発明の目的は、ベルトの発熱と屈曲性の低下を抑制しつつ、耐側圧性を向上させることができる伝動用Vベルトとその製造方法を提供することである。
 本発明の第1の態様の伝動用Vベルトは、ベルト周方向に直交する断面がV字状で、ベルト幅方向の両側に摩擦伝動面を有する伝動用Vベルトであって、ゴム組成物からなるゴム層と、前記ゴム層にベルト周方向に沿って埋設された心線と、前記ゴム層に埋設された少なくとも1つの補強層と、を備え、前記補強層は、ベルト幅と同じ長さを有する多数の補強繊維フィラメントを含み、ベルト幅方向に交差する繊維を含まないか、または、含む場合、ベルト幅方向に交差する繊維の単位面積当たりの重量が前記補強繊維フィラメントの30%以下であり、前記補強層は、前記補強繊維フィラメントが、無撚の状態で、ベルト幅方向に配向しつつシート状に広げられて結合された構造を有し、前記補強層の厚みが、0.05~0.5mmである、伝動用Vベルト。
 この構成によると、多数の補強繊維フィラメントが、ベルト幅方向に配向しつつシート状に広げられた状態で、補強層としてゴム層に埋設される。そのため、補強層を設けない場合や、ゴム層にベルト幅方向に配向する短繊維を分散的に埋設した場合に比べて、伝動用Vベルトの耐側圧性を向上できる。さらに、補強層を構成する多数の補強繊維フィラメントは、シート状に広げられて結合されているため、補強繊維フィラメントの配向の乱れを防止できる。それにより、耐側圧性をより確実に向上させることができる。耐側圧性を向上したことで伝動用Vベルトを長寿命化できる。
 また、補強層は、ベルト幅方向に交差する繊維を、全く含まないか、補強繊維フィラメントの単位面積当たりの重量の30%以下しか含まない。そのため、補強層を設けない場合とほぼ同じ屈曲性を確保できる。つまり、伝動用Vベルトの屈曲性の低下を抑えることができる。また、補強繊維フィラメントが無撚の状態で埋設されることにより、高い耐側圧性を確保しつつ、補強層の厚みを薄くすることができる。それにより、屈曲性の低下をより抑えることができる。なお、本発明において、「無撚」とは、撚り数が1回/10cm以下であることを意味する。
 また、補強繊維フィラメントが無撚の状態で埋設されるため、屈曲時に繊維同士の摩擦による発熱が生じにくい。また、屈曲性の低下を抑えたことで、ベルトがプーリに巻きかかったり離れたりする際の屈曲によるベルトの発熱を抑制できる。そのため、走行中のベルト温度の上昇を抑制できる。ベルト温度の上昇を抑制したことで伝動用Vベルトをより長寿命化できる。
 また、補強層の厚みは、0.05~0.5mmである。補強層の厚みが0.5mmを超えると、屈曲性が低下し、屈曲によるベルトの発熱が大きくなる場合がある。本発明では、補強層の厚みを0.5mm以下とすることで、屈曲性の低下とベルトの発熱を確実に抑制できる。また、補強層の厚みが0.05mm未満であると、十分な耐側圧性を確保できない場合がある。本発明では、無撚の補強繊維フィラメントによる耐側圧性を向上させる効果が高いため、補強層が0.05~0.5mmという薄さであっても、十分な耐側圧性を確保できる。なお、本発明において、「補強層の厚み」とは、補強層が複数ある場合であっても、各補強層の厚みのことを指す。
 また、補強繊維フィラメントはシート状に広げられて結合されており、ばらけることがないため、ベルト製造時に、補強層の取り扱いが容易である。具体的には、未加硫ゴムの上に補強層となるシートを巻き付ける作業や、補強層にRFL処理やゴム糊処理等の接着処理を施す作業を容易に行うことができる。
 第2の態様の伝動用Vベルトは、第1の態様において、前記補強繊維フィラメントの引張弾性率が200~600GPaである。
 補強繊維フィラメントの引張弾性率が200GPa未満であると、十分な耐側圧性を確保できない場合がある。本発明では、補強繊維フィラメントの引張弾性率が200GPa以上であることにより、補強層の厚みを薄くして屈曲性の低下を抑制しつつ、十分な耐側圧性を確保できる。
 また、補強繊維フィラメントの引張弾性率が600GPaを超えると、ベルトの変形に補強繊維フィラメントが追従しづらくなり、補強層とゴム組成物との間で剥離しやすくなり、ベルト寿命が短くなる。本発明では、補強繊維フィラメントの引張弾性率が600GPa以下であることにより、補強層とゴム組成物との間での剥離を抑制でき、ベルトをより長寿命化できる。
 第3の態様の伝動用Vベルトは、第1または第2の態様において、前記補強繊維フィラメントの熱伝導率が5.0W/(m・K)以上である。
 この構成によると、屈曲や摩擦によりベルトに発生した熱を、熱伝導率が高い補強繊維フィラメントを通して空中やプーリに効率よく拡散することができる。それにより、ベルト温度の上昇を抑制でき、伝動用Vベルトをより長寿命化できる。
 第4の態様の伝動用Vベルトは、第1~第3の態様のいずれかにおいて、前記補強繊維フィラメントが炭素繊維である。
 この構成によると、補強繊維フィラメントが炭素繊維であるため、補強繊維フィラメントの引張弾性率を、第2の発明の範囲内とすることができる。そのため、第2の発明と同様の効果が得られる。また、補強繊維フィラメントが炭素繊維であるため、補強繊維フィラメントの熱伝導率を、第3の発明の数値範囲とすることができる。そのため、第3の発明と同様の効果が得られる。
 第5の態様の伝動用Vベルトは、第1~第4の態様のいずれかにおいて、前記ゴム層における前記心線の両側にそれぞれ、前記補強層が1つずつ埋設されている。
 この構成によると、心線の両側に補強層が存在することにより、耐側圧性をより向上させることができる。よって、伝動用Vベルトを高負荷条件で使用しても、長寿命化できる。
 第6の態様の伝動用Vベルトは、第1~第5の態様のいずれかにおいて、前記ゴム層は、前記心線の少なくとも一部が埋設される接着ゴム層と、前記接着ゴム層と異なるゴム組成物で構成され、前記接着ゴム層のベルト内周側に設けられる圧縮ゴム層と、前記接着ゴム層と異なるゴム組成物で構成され、前記接着ゴム層のベルト外周側に設けられる伸張ゴム層とを有し、前記補強層は、前記接着ゴム層と前記圧縮ゴム層との間、および、前記接着ゴム層と前記伸張ゴム層との間の少なくとも一方に埋設されている。
 この構成によると、補強層は、心線が埋設される接着ゴム層に接している。つまり、補強層は心線に近い位置に埋設される。伝動用Vベルトは、ベルト厚み方向に関して心線に近いほど、より高い耐側圧性が求められる。そのため、補強層を心線に近い位置に埋設することで、より薄い補強層によって、十分な耐側圧性を確保できる。補強層の厚みが薄いことで、屈曲性の低下をより抑えられる。
 また、補強層が圧縮ゴム層(または伸張ゴム層)に埋設される場合、製造時に、圧縮ゴム層(または伸張ゴム層)を形成する2枚のゴムシートの間に補強層を配置する必要がある。本発明では、補強層は、圧縮ゴム層または伸張ゴム層と、接着ゴム層との間に埋設されるため、補強層が圧縮ゴム層または伸張ゴム層に埋設される場合に比べて、ベルト製造にかかる工数を少なくできる。
 第7の態様の伝動用Vベルトは、第1~第5の態様のいずれかにおいて、前記ゴム層は、前記心線の少なくとも一部が埋設される接着ゴム層と、前記接着ゴム層と異なるゴム組成物で構成され、前記接着ゴム層のベルト内周側に設けられる圧縮ゴム層と、前記接着ゴム層と異なるゴム組成物で構成され、前記接着ゴム層のベルト外周側に設けられる伸張ゴム層とを有し、前記補強層は、前記圧縮ゴム層、および、前記伸張ゴム層の少なくとも一方に埋設されている。
 この構成によると、ディッシングによる座屈変形が小さくなり、ベルトの発熱や構成部材間の剥離の発生を抑えることができる。よって、伝動用Vベルトをより長寿命化できる。
 第8の態様の伝動用Vベルトは、第1~第5の態様のいずれかにおいて、前記ゴム層は、圧縮ゴム層と、前記圧縮ゴム層と異なるゴム組成物で構成され、前記圧縮ゴム層のベルト外周側に設けられる前記伸張ゴム層とを有し、前記心線は、前記圧縮ゴム層と前記伸張ゴム層との間、前記圧縮ゴム層、または、前記伸張ゴム層に埋設されており、前記補強層は、前記圧縮ゴム層、前記伸張ゴム層、および、前記圧縮ゴム層と前記伸張ゴム層との間の少なくともいずれかに埋設されている。
 この構成によると、接着ゴム層を設けなくて済むため、ベルト製造にかかる工数を少なくできる。
 第9の態様の伝動用Vベルトは、第6~第8の態様のいずれかにおいて、前記圧縮ゴム層に前記心線が埋設されておらず、前記圧縮ゴム層は短繊維を含んでおり、前記圧縮ゴム層の前記短繊維の配合量がゴム成分100質量部に対して0.1~10質量部である。
 圧縮ゴム層に配合される短繊維の配合量がゴム成分100質量部に対して10質量部を超えると、屈曲性が低下すると共に、圧縮ゴム層とその隣りの層との接着性が低下するため、ゴムに亀裂が生じやすくなる。本発明では、圧縮ゴム層に配合される短繊維の配合量がゴム成分100質量部に対して10質量部以下であることにより、屈曲性および接着性の低下を最小限に抑えることができ、亀裂の発生を抑制することができる。よって、伝動用Vベルトをより長寿命化できる。
 また、圧縮ゴム層に配合される短繊維の配合量がゴム成分100質量部に対して0.1質量部未満であると、耐側圧性が不足してベルト寿命が短くなる場合がある。本発明では、補強層による耐側圧性を向上させる効果が高いため、圧縮ゴム層に配合される短繊維の配合量がゴム成分100質量部に対して0.1~10質量部と少ない量であっても、十分な耐側圧性を確保できる。
 第10の態様の伝動用Vベルトは、第6~第9の態様のいずれかにおいて、前記補強層が、前記圧縮ゴム層に埋設されるか、前記圧縮ゴム層に接しており、前記圧縮ゴム層がクロロプレンゴムを含み、前記補強層が前記接着ゴム層に接する場合に、前記接着ゴム層がクロロプレンゴムを含む。
 この構成によると、圧縮ゴム層(および接着ゴム層)が、耐熱性、耐摩耗性、耐候性などの諸物性のバランスのよいクロロプレンゴムを含むことで、伝動用Vベルトの耐久性を向上できる。また、補強層と圧縮ゴム層との間の接着力(および、補強層と接着ゴム層との間の接着力)が向上し、これらの間での剥離を抑制できるため、伝動用Vベルトをより長寿命化できる。さらに、クロロプレンゴムは比較的安価であるので、経済性にも優れる。
 第11の態様の伝動用Vベルトは、第1~第10の態様のいずれかにおいて、前記補強層が、1枚または積層された複数枚の一方向性繊維シートからなり、前記一方向性繊維シートは、熱硬化性樹脂によって前記補強繊維フィラメント同士が結合された構造である。
 この構成によると、熱硬化性樹脂によって補強繊維フィラメントとゴム組成物との接着性が向上するため、伝動用Vベルトをより長寿命化できる。
 第12の態様の伝動用Vベルトは、第1~第10の態様のいずれかにおいて、前記補強層が、1枚または積層された複数枚の一方向性繊維シートからなり、前記一方向性繊維シートは、ベルト幅方向に交差し且つ単位面積当たりの重量が前記補強繊維フィラメントの30%以下の補助糸によって、前記補強繊維フィラメント同士が結合された構造である。
 補強繊維フィラメントを樹脂で結合した場合、樹脂の種類や厚みによってはベルトの屈曲性が低下する場合がある。本態様では、補強繊維フィラメントを補助糸で結合するため、屈曲性の低下を抑えやすい。また、補強繊維フィラメントを樹脂で結合させた場合に比べて、接着処理や成形などの際に一方向性繊維シートにベルト周長方向に強い力が加わったときに一方向性繊維シートが引き裂かれにくい。
 なお、本発明において、「補助糸によって補強繊維フィラメント同士が結合される」とは、例えば、一方向性繊維シートが、複数の補強繊維フィラメントからなる繊維束と、補助糸とによって織られている場合を含む。
 第13の態様の伝動用Vベルトは、第11または第12の態様において、前記一方向性繊維シートの前記熱硬化性樹脂または前記補助糸を含む目付量が50~400g/m2である。
 一方向性繊維シートの目付量が50g/m2未満であると、十分な耐側圧性を確保するために必要な補強層を構成する一方向繊維シートの枚数が多くなり、ベルト製造にかかる工数が増大してしまう。本発明では、一方向性繊維シートの目付量が50g/m2以上であるため、1枚または少ない枚数の一方向性繊維シートで構成される補強層によって、十分な耐側圧性を確保できる。
 また、一方向性繊維シートの目付量が400g/m2を超えると、補強層が1枚の一方向性繊維シートで構成される場合であっても、補強層の厚みが厚くなりすぎて屈曲性が低下する場合がある。本発明では、一方向性繊維シートの目付量が400g/m2以下であるため、屈曲性の低下を抑制できる。
 本発明の第14の態様の伝動用Vベルトの製造方法は、第1の態様の伝動用Vベルトを製造する方法であって、前記補強繊維フィラメント同士が結合された構造を有する1枚または積層された複数枚の一方向性繊維シートを、1つの前記補強層として、前記ゴム層の一部を形成する第1未加硫ゴム層に積層した後、その上から前記ゴム層の他の部分を形成する第2未加硫ゴム層を積層する積層工程と、前記第1未加硫ゴム層および前記第2未加硫ゴム層を加硫して前記ゴム層を形成する加硫工程とを含む。
 この方法によると、従来の慣用的な伝動用Vベルトの製造方法をそのまま使うことができ、製造工程が複雑化することを避けることができる。さらに、ベルト内面側から外面側にかけての任意の位置に補強層を埋設することが可能となり、耐側圧性を特に高めたい場所をピンポイントに補強することができる。
 第15の態様の伝動用Vベルトの製造方法は、第14の態様において、前記積層工程の前に、RFL処理、ゴム糊処理および樹脂含浸処理の少なくとも1つの処理により、前記一方向性繊維シートに接着成分を付着させる。
 この方法によると、補強繊維フィラメントとゴム組成物との接着力が高まるため、補強層とゴム層との間での剥離を防止でき、伝動用Vベルトをより長寿命化できる。
 また、接着成分によって補強繊維フィラメント同士がより強固に結合されるため、補強繊維フィラメントの配向の乱れをより確実に防止できる。
 なお、本発明において、ベルト周方向に直交する断面がV字状であるとは、ベルト周方向に直交する断面において、V字をなす2直線上に2つの側面が配置されていることをいう。本発明の伝動用Vベルトのベルト周方向に直交する断面は、V字状でさえあれば、四角形状であっても六角形状であってもそれ以外であってもよい。また、本明細書において、1~10は、1以上10以下を意味する。この定義は、1と10以外の数値にも適用される。
図1は、本発明の実施形態に係る伝動用Vベルトの断面図である。 図2は、伝動用Vベルトのベルト本体の断面斜視図である。 図3は、補強層の断面図である。 図4は、伝動用Vベルトの製造手順を説明する斜視図である。 図5は、伝動用Vベルトの製造途中の断面図である。 図6の(a)および(b)は、変更例の一方向性繊維シートの平面図である。 図7は、変更例の伝動用Vベルトの断面斜視図である。 図8の(a)は変更例の伝動用Vベルトの製造途中の断面図であって、図8の(b)はその伝動用Vベルトの断面図である。 図9の(a)は変更例の伝動用Vベルトの製造途中の断面図であって、図9の(b)はその伝動用Vベルトの断面図である。 図10の(a)は変更例の伝動用Vベルトの製造途中の断面図であって、図10の(b)はその伝動用Vベルトの断面図である。 図11の(a)は変更例の伝動用Vベルトの製造途中の断面図であって、図11の(b)はその伝動用Vベルトの断面図である。 図12は、変更例の伝動用Vベルトの断面斜視図である。 図13は、耐側圧性試験を説明する図である。 図14は、屈曲性試験を説明する図である。
 次に、本発明の実施の形態の伝動用Vベルト1について説明する。以下の説明において、ベルト周方向(ベルト長手方向)、ベルト幅方向、ベルト厚み方向、ベルト外周側、ベルト内周側とは、図1に示す方向のことである。図1に示すように、伝動用Vベルト1は、ベルト周方向に直交する断面の形状がV字状である。ベルト内周側は、幅狭側であり、ベルト外周側は、幅広側である。伝動用Vベルト1は、環状であって、V字状の溝101(以下、V溝101という)を有する少なくとも2つのプーリ100(駆動プーリと従動プーリ)に巻き掛けられて使用される。伝動用Vベルト1は、ベルト幅方向の両側に摩擦伝動面1a、1bを有する。摩擦伝動面1a、1bは、プーリ100のV溝101と接触する。この接触による摩擦力によって、伝動用Vベルト1とプーリ100との間で動力が伝達される。
 伝動用Vベルト1は、ラップドVベルトであって、ベルト本体2と、ベルト本体2の全周を覆うカバー布3とを有する。カバー布3は、例えばポリエステル、ポリアミド、アラミド、ビニロン等の合成繊維や、綿等の天然繊維からなる経糸と緯糸で織られた織布である。
 図2に示すように、ベルト本体2は、ゴム層4と、ゴム層4に埋設された心線5と、ゴム層4に埋設された2つの補強層6とを有する。2つの補強層6は、ゴム層4における心線5の両側にそれぞれ埋設されている。ゴム層4は、心線5が埋設された接着ゴム層7と、圧縮ゴム層8と、伸張ゴム層9とを有する。圧縮ゴム層8は、接着ゴム層7のベルト内周側に設けられる。圧縮ゴム層8は、伝動用Vベルト1をプーリ100に巻き掛けて走行させた際に、ベルト周方向に圧縮される。伸張ゴム層9は、接着ゴム層7のベルト外周側に設けられる。伸張ゴム層9は、伝動用Vベルト1をプーリ100に巻き掛けて走行させた際にベルト周方向に伸張される。圧縮ゴム層8の厚みは、伸張ゴム層9の厚みよりも大きい。2つの補強層6は、接着ゴム層7と圧縮ゴム層8との間、および、接着ゴム層7と伸張ゴム層9との間に、それぞれ設けられる。つまり、2つの補強層6は、それぞれ、ゴム層4の心線5に近い位置に埋設されている。
 接着ゴム層7、圧縮ゴム層8、伸張ゴム層9は、ゴム組成物で構成される。接着ゴム層7を構成するゴム組成物は、圧縮ゴム層8を構成するゴム組成物、および、伸張ゴム層9を構成するゴム組成物と異なる。接着ゴム層7を構成するゴム組成物は、圧縮ゴム層8を構成するゴム組成物および伸張ゴム層9を構成するゴム組成物に比べて、心線5および補強層6に対する接着性が高い。伸張ゴム層9を構成するゴム組成物と、圧縮ゴム層8を構成するゴム組成物は、同じであっても異なっていてもよい。
 ゴム組成物のゴム成分としては、加硫又は架橋可能なゴムが用いられる。具体的には、例えば、ジエン系ゴム(天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、水素化ニトリルゴム等)、エチレン-α-オレフィンエラストマー、クロロスルフォン化ポリエチレンゴム、アルキル化クロロスルフォン化ポリエチレンゴム、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴム等が挙げられる。これらのゴム成分は、単独でまたは2種以上を組み合わせて使用することができる。圧縮ゴム層8と接着ゴム層7は、クロロプレンゴムを含むことが好ましい。
 ゴム組成物には、必要に応じて、加硫剤又は架橋剤、共架橋剤、加硫助剤、加硫促進剤、加硫遅延剤、金属酸化物(酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウム等)、増強剤(カーボンブラック、含水シリカ等の酸化ケイ素等)、短繊維、充填剤(クレー、炭酸カルシウム、タルク、マイカ等)、軟化剤(パラフィンオイル、ナフテン系オイル等のオイル類等)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィン等)、老化防止剤(酸化防止剤、熱老化防止剤、屈曲亀裂防止剤、オゾン劣化防止剤等)、着色剤、粘着付与剤、可塑剤、カップリング剤(シランカップリング剤等)、安定剤(紫外線吸収剤、熱安定剤等)、難燃剤、帯電防止剤等を配合してよい。なお、金属酸化物は架橋剤として配合してもよい。
 圧縮ゴム層8を構成するゴム組成物は、短繊維を含んでいてもよい。圧縮ゴム層8の短繊維の配合量は、ゴム成分100質量部に対して0.1~10質量部であることが好ましい。伸張ゴム層9を構成するゴム組成物は、短繊維を含んでいてもよい。接着ゴム層7を構成するゴム組成物は、短繊維を含まない。
 心線5は、ベルト周方向に延びており、ベルト幅方向に一定の間隔を開けて埋設されている。心線5は、マルチフィラメント糸を使用した撚りコード(諸撚り、片撚り、ラング撚り等)からなる。心線5の材質は、例えば、アラミド繊維等の合成繊維、または、炭素繊維等の無機繊維である。心線5は、接着ゴム層7との接着性を高める目的で、RFL液等による接着処理が施されていてもよい。
 補強層6は、1枚の一方向性繊維シート10からなる。なお、補強層6は、ベルト厚み方向に積層された複数枚の一方向性繊維シート10で構成されてもよい。図3に示すように、一方向性繊維シート10は、ベルト幅方向に配向しつつシート状に広がっている多数の補強繊維フィラメント11を有する。例えば、一方向性繊維シート10中の繊維補強フィラメント11のベルト周方向の密度は、1×109~1×1011本/5cm程度であってもよい。各補強繊維フィラメント11は、ベルト幅と同じ長さを有する。補強繊維フィラメント11は、無撚の状態で配置されている。
 補強繊維フィラメント11同士は熱硬化性樹脂12によって結合されている。熱硬化性樹脂12は補強繊維フィラメント11に含浸されている。熱硬化性樹脂12としては、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ポリウレタン樹脂などを用いることができるが、なかでもエポキシ樹脂が好ましい。補強層6は、ベルト幅方向に交差する繊維を含まない。
 補強層6の厚みは、0.05~0.5mmである。図1および図2は、補強層6の厚みを誇張して表示している。なお、補強層6の厚みには、補強繊維フィラメント11の周囲を覆う熱硬化性樹脂12の厚みも含まれる。また、一方向性繊維シート10の熱硬化性樹脂12を含む目付量は、50~400g/m2が好ましい。補強繊維フィラメント11の太さは、特に限定されないが、例えば、0.1~50μm程度であり、5~25μm程度が好ましい。繊維径が細すぎると扱いが困難となり、太すぎるとベルトの屈曲性を低下させる虞がある。補強繊維フィラメント11の引張弾性率(ヤング率)は、200~600GPaが好ましい。補強繊維フィラメント11の熱伝導率は、5.0W/(m・K)以上が好ましい。補強繊維フィラメント11の熱伝導率の上限は特に限定されないが、20W/(m・K)程度であってもよい。
 補強繊維フィラメント11の繊維の種類は特に限定されず、例えば、炭素繊維、ガラス繊維、アラミド繊維、ポリアミド繊維、ポリエステル繊維などが挙げられる。これらのうち、引張弾性率と熱伝導率が高いことから、炭素繊維が特に好ましい。一方向性繊維シート10を構成する補強繊維フィラメント11の繊維の種類は、1種類であっても、複数種類であってもよい。一方向性繊維シート10の具体例としては、例えば、東レ(株)製の「トレカプリプレグ」や、三菱レイヨン(株)製の「パイロフィル」がある。2つの補強層6の構成は、同じであっても異なっていてもよい。
 補強層6は、周囲のゴム層4(接着ゴム層7)との接着性を高めるための接着処理により接着成分(図示せず)が付着していてもよい。接着処理を行わなくても、補強繊維フィラメント11の表面を覆う熱硬化性樹脂12によって、ゴム層4との接着性を確保できるが、より接着性を高めるためには、接着処理を行うことが好ましい。接着処理としては、RFL処理や、ゴム糊処理(ソーキング処理)がある。RFL処理は、一方向性繊維シート10または一方向性繊維シート10を形成する前の補強繊維フィラメント11を、RFL液に浸漬後、熱処理して、一方向性繊維シート10または一方向性繊維シート10を形成する前の補強繊維フィラメント11に接着成分を付着させる処理である。RFL液は、レゾルシンとホルマリンとの初期縮合物をラテックスに混合したものであり、ラテックスとしてはスチレン・ブタジエン・ビニルピリジン三元共重合体、水素化ニトリルゴム、クロロスルフォン化ポリエチレン、エピクロルヒドリンなどが用いられる。ゴム糊処理は、未加硫のゴム組成物を溶剤に溶かしてゴム糊状にしたものを、一方向性繊維シート10の表面に塗布した後、溶剤を蒸発させて一方向性繊維シート10の表面に未加硫ゴム組成物の膜(接着成分)を形成する処理である。ゴム糊処理は、RFL液を用いた接着処理の後に行ってもよい。
 次に、伝動用Vベルト1の製造手順について図4および図5を用いて説明する。
 まず、図4に示すように、円柱状の成形ドラムMに、圧縮ゴム層8を構成する未加硫ゴムシート118を巻き付ける。その上に、一方向性繊維シート10を、補強繊維フィラメント11の向きが、成形ドラムMの中心軸線方向とほぼ平行になるように巻き付ける。巻き付けられる一方向性繊維シート10の幅(成形ドラムMの中心軸線方向の長さ)は、未加硫ゴムシート118の幅とほぼ同じである。一方向性繊維シート10の補強繊維フィラメント11には、半硬化の熱硬化性樹脂12が含浸されている。一方向性繊維シート10には、RFL処理またはゴム糊処理等などの接着処理が施されていてもよい。なお、補強層6を複数枚の一方向性繊維シート10で構成する場合には、以下の2つの方法のどちらを採用してもよい。1つ目の方法は、ゴムシート118と同じ幅で、且つ、ベルト周長とほぼ同じ長さの複数枚の一方向性繊維シート10を1枚ずつ巻き付ける方法である。2つ目の方法は、ゴムシート118と同じ幅で、且つ、ベルト周長の複数倍の長さの長尺の一方向性繊維シート10を複数周巻き付ける方法である。
 続いて、接着ゴム層7の一部を構成する未加硫ゴムシート117A(図5参照)を巻き付ける。その後、1本の心線5を螺旋状に巻き付ける。もしくは、複数本の心線5を所定の間隔を空けて巻き付ける。次に、接着ゴム層7の残りの部分を構成する未加硫ゴムシート117B(図5参照)を巻き付けてから、先ほどと同様に一方向性繊維シート10を巻き付ける。その後、伸張ゴム層9を構成する未加硫ゴムシート119(図5参照)を巻き付けて未加硫ベルトスリーブを形成する。加硫時に、補強繊維フィラメント11に含浸された熱硬化性樹脂12が完全に硬化する。
 次に、未加硫ベルトスリーブを所定幅に切断すると共に、断面がV字状になるように切断して、未加硫状態のベルト本体2に加工する。その後、フリクション処理が施されたカバー布3でベルト本体2を覆い未加硫ベルトを形成する。そして、未加硫ベルトを成形金型に嵌合して加熱加圧して加硫(または架橋)する。以上により、伝動用Vベルト1が形成される。フリクション処理は、カレンダーロールを用い、互いに異なる表面速度で回転するロール間に未加硫のゴム組成物とカバー布3とを同時に通過させることで、カバー布3の繊維間にまで未加硫のゴム組成物を擦り込む処理である。
 なお、上記の製造手順では、伝動用Vベルト1の内周側の構成要素から順に成形ドラムMに巻き付けているが、伝動用Vベルト1の外周側の構成要素から順に成形金型に巻き付けてもよい。
 本実施形態の伝動用Vベルト1によると以下の効果が得られる。
 本実施形態の伝動用Vベルト1では、多数の補強繊維フィラメント11が、ベルト幅方向に配向しつつシート状に広げられた状態で、補強層6としてゴム層4に埋設されている。そのため、補強層6を設けない場合や、ゴム層4にベルト幅方向に配向する短繊維を分散的に埋設した場合に比べて、伝動用Vベルト1の耐側圧性を向上できる。さらに、補強層6を構成する多数の補強繊維フィラメント11は、シート状に広げられて結合されているため、補強繊維フィラメント11の配向の乱れを防止できる。それにより、耐側圧性をより確実に向上させることができる。耐側圧性を向上したことで伝動用Vベルト1を長寿命化できる。
 また、補強層6は、ベルト幅方向に交差する繊維を全く含まない。そのため、補強層6を設けない場合とほぼ同じ屈曲性を確保できる。つまり、伝動用Vベルト1の屈曲性の低下を抑えることができる。また、補強繊維フィラメント11が無撚の状態で埋設されることにより、高い耐側圧性を確保しつつ、補強層6の厚みを薄くすることができる。それにより、屈曲性の低下をより抑えることができる。
 また、補強繊維フィラメント11が無撚の状態で埋設されるため、屈曲時に繊維同士の摩擦による発熱が生じにくい。また、屈曲性の低下を抑えたことで、ベルトがプーリに巻きかかったり離れたりする際の屈曲によるベルトの発熱を抑制できる。そのため、走行中のベルト温度の上昇を抑制できる。ベルト温度の上昇を抑制したことで伝動用Vベルト1をより長寿命化できる。
 補強層6の厚みは0.05~0.5mmであり、好ましくは0.05~0.3mm、より好ましくは0.05~0.2mm(特に0.08~0.15mm)である。補強層6の厚みが0.5mmを超えると、屈曲性が低下し、屈曲によるベルトの発熱が大きくなる場合がある。補強層6の厚みを0.5mm以下とすることで、屈曲性の低下とベルトの発熱を確実に抑制できる。また、補強層6の厚みが0.05mm未満であると、十分な耐側圧性を確保できない場合がある。本実施形態では、無撚の補強繊維フィラメント11による耐側圧性を向上させる効果が高いため、補強層6が0.05~0.5mmという薄さであっても、十分な耐側圧性を確保できる。
 また、補強繊維フィラメント11はシート状に広げられて結合されており、ばらけることがないため、ベルト製造時に、補強層6の取り扱いが容易である。具体的には、未加硫ゴムの上に補強層6を形成する一方向性繊維シート10を巻き付ける作業や、補強層6(一方向性繊維シート10)にRFL処理やゴム糊処理等の接着処理を施す作業を容易に行うことができる。
 補強繊維フィラメント11の引張弾性率が200GPa未満であると、十分な耐側圧性を確保できない場合がある。補強繊維フィラメント11の引張弾性率は200GPa以上が好ましい。それにより、補強層6の厚みを薄くして屈曲性の低下を抑制しつつ、十分な耐側圧性を確保できる。
 また、補強繊維フィラメント11の引張弾性率が600GPaを超えると、ベルトの変形に補強繊維フィラメント11が追従しづらくなり、補強層6とゴム組成物との間で剥離しやすくなり、ベルト寿命が短くなる。補強繊維フィラメント11の引張弾性率は600GPa以下が好ましい。それにより、補強層6とゴム組成物との間での剥離を抑制でき、ベルトをより長寿命化できる。
 補強繊維フィラメント11の熱伝導率は、5.0W/(m・K)以上が好ましい。それにより、屈曲や摩擦によりベルトに発生した熱を、熱伝導率が高い補強繊維フィラメント11を通して空中やプーリに効率よく拡散することができる。そのため、ベルト温度の上昇を抑制でき、伝動用Vベルト1をより長寿命化できる。
 補強繊維フィラメント11は炭素繊維であることが好ましい。それにより、補強繊維フィラメント11の引張弾性率が200~600GPaにできる。また、補強繊維フィラメント11の熱伝導率を5.0W/(m・K)以上にできる。
 また、本実施形態では、心線5の両側(ベルト外周側とベルト内周側)に補強層6が存在することにより、耐側圧性をより向上させることができる。よって、伝動用Vベルト1を高負荷条件で使用しても、長寿命化できる。
 また、本実施形態では、補強層6は、心線5が埋設される接着ゴム層7に接している。つまり、補強層6は心線5に近い位置に埋設される。伝動用Vベルト1は、ベルト厚み方向に関して心線5に近いほど、より高い耐側圧性が求められる。そのため、補強層6を心線5に近い位置に埋設することで、より薄い補強層6によって、十分な耐側圧性を確保できる。補強層6の厚みが薄いことで、屈曲性の低下をより抑えられる。
 また、補強層6が圧縮ゴム層8(または伸張ゴム層9)に埋設される場合、製造時に、圧縮ゴム層8(または伸張ゴム層9)を形成する2枚のゴムシートの間に補強層6を配置する必要がある。本実施形態では、補強層6は、圧縮ゴム層8と接着ゴム層7との間、および、伸張ゴム層9と接着ゴム層7との間に埋設されるため、補強層6が圧縮ゴム層8または伸張ゴム層9に埋設される場合に比べて、ベルト製造にかかる工数を少なくできる。
 圧縮ゴム層8に配合される短繊維の配合量がゴム成分100質量部に対して10質量部を超えると、屈曲性が低下すると共に、圧縮ゴム層8とその隣りの層との接着性が低下するため、ゴムに亀裂が生じやすくなる。圧縮ゴム層8に配合される短繊維の配合量はゴム成分100質量部に対して10質量部以下が好ましい。それにより、屈曲性および接着性の低下を最小限に抑えることができ、亀裂の発生を抑制することができる。よって、伝動用Vベルト1をより長寿命化できる。
 また、圧縮ゴム層8に配合される短繊維の配合量がゴム成分100質量部に対して0.1質量部未満であると、耐側圧性が不足してベルト寿命が短くなる場合がある。圧縮ゴム層8に配合される短繊維の配合量はゴム成分100質量部に対して0.1~10質量部が好ましく、0.1~5質量部以下が特に好ましい。補強層6による耐側圧性を向上させる効果が高いため、圧縮ゴム層8に配合される短繊維の配合量がゴム成分100質量部に対して0.1~10質量部と少ない量であっても、十分な耐側圧性を確保できる。
 圧縮ゴム層8および接着ゴム層7はクロロプレンゴムを含むことが好ましい。圧縮ゴム層8および接着ゴム層7が、耐熱性、耐摩耗性、耐候性などの諸物性のバランスのよいクロロプレンゴムを含むことで、伝動用Vベルト1の耐久性を向上できる。また、補強層6と圧縮ゴム層8との間の接着力、および、補強層6と接着ゴム層7との間の接着力が向上し、これらの間での剥離を抑制できるため、伝動用Vベルト1をより長寿命化できる。さらに、クロロプレンゴムは比較的安価であるので、経済性にも優れる。
 補強層6は、1枚または積層された複数枚の一方向性繊維シート10からなる。一方向性繊維シート10は、熱硬化性樹脂によって補強繊維フィラメント11同士が結合された構造である。そのため、熱硬化性樹脂によって補強繊維フィラメント11とゴム組成物との接着性が向上するため、伝動用Vベルト1をより長寿命化できる。
 一方向性繊維シート10の構成が同じ場合、補強層6を構成する一方向性繊維シート10の枚数が多いほど、耐側圧性を向上できる。また、一方向性繊維シート10の構成が同じ場合、補強層6を構成する一方向性繊維シート10の枚数が少ないほど、屈曲性の低下を抑えることができる。
 一方向性繊維シート10の目付量が50g/m2未満であると、十分な耐側圧性を確保するために必要な補強層6を構成する一方向繊維シートの枚数が多くなり、ベルト製造にかかる工数が増大してしまう。一方向性繊維シート10の目付量は50g/m2以上が好ましい。それにより、1枚または少ない枚数の一方向性繊維シート10で構成される補強層6によって、十分な耐側圧性を確保できる。
 また、一方向性繊維シート10の目付量が400g/m2を超えると、補強層6が1枚の一方向性繊維シート10で構成される場合であっても、補強層6の厚みが厚くなりすぎて屈曲性が低下する場合がある。一方向性繊維シート10の目付量は400g/m2以下が好ましく、200g/m2以下(特に100g/m2以下)がより好ましい。それにより、屈曲性の低下を抑制できる。
 伝動用Vベルト1の製造方法は、補強繊維フィラメント11同士が結合された構造を有する1枚または積層された複数枚の一方向性繊維シート10を、1つの補強層6として、ゴム層4の一部を構成する未加硫ゴムシート118に積層した後、その上からゴム層4の他の部分を形成する未加硫ゴムシート117A、117B、119を積層する積層工程と、未加硫ゴムシート118、117A、117B,119を加硫してゴム層4を形成する加硫工程とを含む。
 この方法によると、従来の慣用的な伝動用Vベルトの製造方法をそのまま使うことができ、製造工程が複雑化することを避けることができる。さらに、ベルト内面側から外面側にかけての任意の位置に補強層6を埋設することが可能となり、耐側圧性を特に高めたい場所をピンポイントに補強することができる。
 積層工程の前、RFL処理またはゴム糊処理により、一方向性繊維シート10に接着成分を付着させることが好ましい。
 この方法によると、補強繊維フィラメント11とゴム組成物との接着力が高まるため、補強層6とゴム層4との間での剥離を防止でき、伝動用Vベルト1をより長寿命化できる。
 また、接着成分によって補強繊維フィラメント11同士がより強固に結合されるため、補強繊維フィラメント11の配向の乱れをより確実に防止できる。
 以上、本発明の好適な実施の形態について説明したが、本発明は上述の実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。以下、本発明の変更例について説明する。上述の実施形態およびこれらの変更例は適宜組み合わせて実施することができる。
 <変更例1>
 上記実施形態の一方向性繊維シート10は、補強繊維フィラメント11同士が熱硬化性樹脂によって結合された構成である。しかし、本発明の一方向性繊維シートは、補強繊維フィラメント同士が熱硬化性樹脂以外の手段で結合された構成であってもよい。
 例えば、一方向性繊維シートは、ベルト幅方向に交差し、且つ、単位面積当たりの重量が補強繊維フィラメントの30%以下の補助糸によって、ベルト幅方向に沿った補強繊維フィラメント同士が結合されていてもよい。具体的には、例えば図6(a)に示す一方向性繊維シート210のように、複数本の補強繊維フィラメントからなる繊維束213と、補助糸214とが、平織り状に交差されていてもよい。また、例えば図6(b)に示すように複数本の補強繊維フィラメントからなる繊維束313と補助糸314とで織られた一方向性繊維シート310であってもよい。
 補助糸は、図6(a)および図6(b)に示す補助糸214、314のように、ベルト周方向に沿っていてもよく、ベルト周方向とベルト幅方向に対して傾斜していてもよい。補助糸の繊度は、補強繊維フィラメントの繊維束の繊度よりも小さいことが好ましい。補助糸の繊維の種類は、特に限定されず、補強繊維フィラメントの繊維の種類と同じであっても異なっていてもよい。補助糸は、撚糸でも無撚糸であってもよい。
 補強層に含まれる補助糸の単位面積当たりの重量は、補強層に含まれる補強繊維フィラメントの単位面積当たりの重量の30%以下である。そのため、上記実施形態と同様に、屈曲性の低下を抑制できる。屈曲性の低下を抑える観点からは、補助糸の単位面積当たりの重量は、補強繊維フィラメントの単位面積当たりの重量の20%以下が好ましく、10%以下がより好ましい。補助糸の単位面積当たりの重量の下限は特に限定されないが、補強繊維フィラメントの単位面積当たりの重量の0.1%程度であってもよい。
 上記実施形態のように、補強繊維フィラメントを樹脂で結合した場合、樹脂の種類や厚みによってはベルトの屈曲性が低下する場合がある。補強繊維フィラメントを補助糸で結合した場合には、屈曲性の低下を抑えやすい。また、補強繊維フィラメントを樹脂で結合させた場合に比べて、接着処理や成形などの際に一方向性繊維シートにベルト周長方向に強い力が加わったときに一方向性繊維シートが引き裂かれにくい。
 補強繊維フィラメント同士が熱硬化性樹脂以外の手段で結合されている場合、補強層の厚み、一方向性繊維シートの目付量、補強繊維フィラメントの特性(太さ、引張弾性率、熱伝導率)の好適範囲や、補強繊維フィラメントの材質の具体例は、上記実施形態と同様である。なお、補強繊維フィラメント同士が熱硬化性樹脂以外の手段で結合されている一方向性繊維シートの目付量とは、補強繊維フィラメント同士を結合する手段(例えば補助糸)を含む目付量とする。補強繊維フィラメント同士が熱硬化性樹脂以外の手段で結合されている一方向性繊維シートの具体例としては、例えば、ファイベックス(株)製の「フィブラシート」がある。補強繊維フィラメント同士が熱硬化性樹脂以外の手段で結合されている一方向性繊維シートは、1枚だけで補強層を構成してもよく、複数枚積層された状態で補強層を構成してもよい。
 補助糸によって補強繊維フィラメント同士が結合されている場合、一方向性繊維シート(補強層)には、RFL処理、ゴム糊処理、樹脂含浸処理等の接着処理が施されていることが好ましい。樹脂含浸処理は、一方向性繊維シートを、例えばイソシアネート溶液やエポキシ溶液等の樹脂溶液に含浸させる処理である。樹脂含浸処理の後、RFL処理またはゴム糊処理を行ってもよい。接着処理を施すことで、ゴム層との接着性を高めることができる。
 <変更例2>
 上記実施形態では、補強層6が2つ設けられているが、本発明の伝動用Vベルトに設ける補強層の数は、1つであっても、3つ以上であってもよい。補強層が1つの場合、心線よりベルト内周側とベルト外周側のどちらに埋設してもよい。補強層が複数の場合、心線よりベルト内周側に2つ以上の補強層を埋設してもよい。また、補強層が複数の場合、心線よりベルト外周側に2つ以上の補強層を埋設してもよい。
 <変更例3>
 上記実施形態では、圧縮ゴム層8と接着ゴム層7との間に補強層6が埋設されているが、例えば図7に示すように、圧縮ゴム層408に補強層406が埋設されてもよい。この補強層406は、積層された3枚の一方向性繊維シート10で構成されている。また、上記実施形態では、伸張ゴム層9と接着ゴム層7との間に補強層6が埋設されているが、伸張ゴム層に補強層が埋設されてもよい。耐側圧性を向上させるという点では、補強層は心線の近傍に埋設されることが好ましいが、補強層は心線から離れて埋設されてもよい。例えば図7に示すように、圧縮ゴム層408のベルト厚み方向のほぼ中央に、補強層406が埋設されてもよい。また、例えば、圧縮ゴム層のベルト厚み方向のほぼ中央よりベルト内周側に、補強層が埋設されてもよい。補強層を圧縮ゴム層または伸張ゴム層に埋設することで、ディッシングによる座屈変形が小さくなり、ベルトの発熱や構成部材間の剥離の発生を抑えることができる。よって、伝動用Vベルトをより長寿命化できる。補強層を圧縮ゴム層のベルト厚み方向の中央または中央よりもベルト内周側に埋設した場合には、座屈変形時に圧縮されるゴムの量が増えて、弾性反発力が大きくなり、座屈変形を抑えることができる。
 <変更例4>
 本発明において、ゴム層が、接着ゴム層と圧縮ゴム層と伸張ゴム層で構成される場合、心線は一部だけが接着ゴム層に埋設されてもよい。
 例えば図8(b)に示す伝動用Vベルト501のように、心線5は、接着ゴム層507と伸張ゴム層509との間に埋設されてもよい。図8(b)では、補強層6は、圧縮ゴム層8と接着ゴム層507との間に埋設されている。なお、補強層6は、接着ゴム層507と伸張ゴム層509との間以外であればどこに埋設されてもよい。図8(a)は、伝動用Vベルト501の製造工程で、成形ドラムMにベルト本体の構成要素を巻き付けた状態を示す。心線5は、伸張ゴム層509を形成する未加硫ゴムシート519と、接着ゴム層507を形成する未加硫ゴムシート517との間に配置される。
 また、図示は省略するが、心線は、接着ゴム層と圧縮ゴム層との間に埋設されてもよい。この場合、補強層は、接着ゴム層と圧縮ゴム層との間以外であればどこに埋設されてもよい。
 <変更例5>
 本発明において、ゴム層は、接着ゴム層を有さなくてもよい。ゴム層は、圧縮ゴム層、および、圧縮ゴム層と異なるゴム組成物で構成された伸張ゴム層のみで構成されてもよい。この変更例では、心線は、接着ゴム層に埋設されない。
 例えば図9(b)に示す伝動用Vベルト601のように、心線5は、圧縮ゴム層608と伸張ゴム層609との間に埋設されてもよい。図9(b)では、2つの補強層6がそれぞれ、圧縮ゴム層608と伸張ゴム層609に埋設されている。図9(a)は、伝動用Vベルト601の製造工程で、成形ドラムMにベルト本体の構成要素を巻き付けた状態を示す。2つの補強層6の一方は、圧縮ゴム層608を形成する2つの未加硫ゴムシート618A、618Bの間に配置される。他方の補強層6は、伸張ゴム層609を形成する2つの未加硫ゴムシート619A、619Bの間に配置される。
 また、例えば図10(b)に示す伝動用Vベルト701のように、心線5は、圧縮ゴム層708に埋設されてもよい。図10(b)では、2つの補強層6がそれぞれ、圧縮ゴム層708と、圧縮ゴム層708と伸張ゴム層9との間に埋設されている。なお、補強層は、伸張ゴム層9に埋設されてもよく、圧縮ゴム層708に埋設されてもよい。図10(a)は、伝動用Vベルト701の製造工程で、成形ドラムMにベルト本体の構成要素を巻き付けた状態を示す。圧縮ゴム層708は、3つの未加硫ゴムシート718A、718B、718Cによって形成される。
 また、図示は省略するが、心線は、伸張ゴム層に埋設されてもよい。この場合、補強層は、伸張ゴム層に埋設されてもよく、圧縮ゴム層に埋設されてもよく、圧縮ゴム層と伸張ゴム層との間に埋設されてもよい。
 接着ゴム層を設けない場合、ベルト製造にかかる工数を少なくできる。
 <変更例6>
 接着ゴム層を設けず、且つ、補強層を心線の近傍に埋設する場合、製造工程で、補強層に、RFL処理、樹脂含浸処理、ゴム糊処理などの接着処理を施していれば、補強層と心線との間にゴムシートを介在させなくてもよい。図11(b)に示す伝動用Vベルトは、その一例である。図11(a)及び図11(b)に示すように、伝動用Vベルト801のベルト本体は、圧縮ゴム層8を形成する未加硫ゴムシート818と補強層6と心線5と伸張ゴム層809を形成する未加硫ゴムシート819とを、順に成形ドラムMに巻き付けることで形成される。
 <変更例7>
 本発明の伝動用Vベルトは、摩擦伝動面がカバー布で覆われていないローエッジVベルトであってもよい。カバー布は全く設けられていなくてもよく、外周面および内周面の少なくとも一方だけにカバー布が設けられていてもよい。
 <変更例8>
 本発明の伝動用Vベルトは、ベルト内周面およびベルト外周面の少なくとも一方に、ベルト周方向に配列された複数のコグを有するコグベルトであってもよい。図12は、その一例を示す。図12のコグベルト(伝動用Vベルト)901のベルト本体902は、内周面にのみコグ902aを有する。図12では、補強層906は、圧縮ゴム層908に埋設されている。コグベルトにおいて補強層が心線の近傍に埋設される場合、補強層は、コグの凹凸に沿うことなく、心線に沿って埋設されていてよい。一方、コグベルトにおいて補強層がコグに近い位置に埋設される場合、例えば図12に示すように、補強層906は、コグ902aの凹凸に沿って配置されていてよい。コグの成形は、一般的なコグベルトと同様に、未加硫のベルトスリーブまたは未加硫のベルト本体を、凹凸が形成された成形母型(金型またはゴム型)に嵌合することで行うことができる。
 本発明の実施例と比較例の伝動用Vベルトについて、本発明の効果を実証するための試験を行った。実施例1~7および比較例1~4の伝動用Vベルトの構成を表1に示す。実施例1~6および比較例1~4の伝動用Vベルトは、JISK6323(2008)に規定されるベルト種類がB形、呼び番号が60、周長が1524mmのラップドVベルトとした。実施例7の伝動用Vベルトは、JISK6323(2008)に規定されるベルト種類がB形、呼び番号が60、周長が1524mmのローエッジVベルトとした。つまり、実施例7の伝動用Vベルトの摩擦伝動面はカバー布で覆われていない。
Figure JPOXMLDOC01-appb-T000001
 表1中の補強層の埋設位置のうち、「心線の上側」とは、補強層が、接着ゴム層と伸張ゴム層との間に埋設されている状態をいう。「心線の下側」とは、補強層が、接着ゴム層と圧縮ゴム層との間に埋設されている状態をいう。「圧縮ゴム中」とは、補強層が圧縮ゴム層に埋設されている状態をいう。
 実施例1~3、5~7の各補強層は、1枚の一方向性繊維シートで構成した。実施例1~3、5~7の一方向性繊維シートは、一方向に配向する炭素繊維フィラメントを熱硬化性樹脂で結合させた一方向性炭素繊維シートを用いた。実施例3の一方向性繊維シートの目付量は、実施例1、2、5~7の一方向性繊維シートの目付量の2倍(100g/m2)とした。実施例4の補強層は、積層された2枚の一方向性繊維シートで構成した。実施例4の一方向性繊維シートは、実施例1、2、5~7の一方向性繊維シートと同じものを用いた。実施例1、2、5~7の補強層の厚みは、0.1mmであり、実施例3、4の補強層の厚みは、0.2mmであった。実施例1~7の一方向性繊維シートには、RFL処理を施した。
 比較例1、4の伝動用Vベルトは、補強層を埋設しなかった。比較例2、3の伝動用Vベルトは、補強層として、1枚のすだれコードを用いた。比較例2のすだれコードは、一方向に配向するアラミド繊維の撚りコード(1670dtex/1×2)が、綿の細糸(番手20S/1)で連結された構成とした。アラミド繊維の撚りコードの密度は50本/5cmで、細糸の密度は、4本/5cmとした。比較例2の補強層の厚み(すだれコードの厚み)は、0.7mmであった。比較例3のすだれコードは、一方向に配向するPET繊維の撚りコード(1100dtex/1×2)が、綿の細糸(番手20S/1)で連結された構成とした。比較例2、3とも、撚りコードの密度は50本/5cmで、細糸の密度は、4本/5cmとした。比較例3の補強層の厚み(すだれコードの厚み)は、0.6mmであった。比較例2、3とも、すだれコードにRFL処理を施した。比較例2、3とも、撚りコードがベルト幅方向に配向するようにすだれコードを配置した。
 表1に示すように、実施例1~7および比較例1~3の伸張ゴム層および圧縮ゴム層の構成は全て同じとした。比較例4の伸張ゴム層および圧縮ゴム層は、実施例1等の伸張ゴム層および圧縮ゴム層よりも短繊維を多く含む構成とした。実施例1~7および比較例1~4の接着ゴム層および心線の構成は全て同じとした。心線は、繊度1100dtexのアラミド繊維のフィラメントを下撚り(S撚り)し、これを4本引き揃えて上撚り(Z撚り)した総繊度4400dtexのアラミドコードを用いた。実施例1~6および比較例1~4のカバー布は、綿とポリエチレンテレフタレート(PET)繊維との混撚り糸で平織りされた織布を用いた。表1中のゴム組成物Aおよびゴム組成物Bの組成は、表2に示す通りである。
Figure JPOXMLDOC01-appb-T000002
 表2の各成分の詳細は以下の通りである。
 ・クロロプレンゴム:デンカ(株)製「PM-40」
 ・ポリアミド短繊維:旭化成(株)製「66ナイロン」
 ・カーボンブラック:東海カーボン(株)製「シースト3」
 ・シリカ:東ソー・シリカ(株)製「Nipsil VN3」
 ・ナフテン系オイル:出光興産(株)製「NS-900」
 ・レゾルシン・ホルムアルデヒド縮合物:レゾルシノール20%未満、ホルマリン0.1%未満
 ・老化防止剤:精工化学(株)製「ノンフレックスOD3」
 ・加硫促進剤DM:ジ-2-ベンゾチアゾリルジスルフィド
 ・加硫促進剤TMTD:テトラメチルチウラムジスルフィド
 [耐側圧性試験]
 実施例1~7および比較例1~4の伝動用Vベルトを用いて、耐側圧性試験を行った。まず、伝動用Vベルトを切断して、ベルト周方向長さが70mmの耐側圧性評価用試料Sを作製した。そして、図13に示すように、この耐側圧性評価用試料Sの摩擦伝動面が2つの金属製の治具51、52に接するように、治具51、52で試料Sを上下方向に挟み込んだ。試料Sが2つの治具で押圧されずに挟み込まれた状態での上側の治具51の位置を初期位置とする。オートグラフ((株)島津製作所製「AGS-J10kN」)を用いて上側の治具51を5mm/分の速度で下降させて、上側の治具51の初期位置からの移動距離が1.4mmの時の圧縮力を測定した。測定された圧縮力が高い程、耐側圧性が高いと判断できる。測定結果を表3に示す。
 [屈曲性試験]
 実施例1~7および比較例1~4の伝動用Vベルトを用いて、屈曲性試験を行った。図14に示すように、伝動用VベルトBを、180mmの間隔を空けて上下に配した2枚の金属板61、62の間に配置した。この時点での上側の金属板61の位置を初期位置とする。オートグラフ((株)島津製作所製「AGS-J10kN」)を用いて上側の金属板61を50mm/分の速度で下降させて、上側の金属板61の初期位置からの移動距離が100mmの時の圧縮力を測定した。測定された圧縮力が低い程、屈曲性が良好であると判断できる。測定結果を表3に示す。
 [耐久走行試験]
 実施例1~7および比較例1~4の伝動用Vベルトを用いて、耐久走行試験を行い、ベルト温度とベルト寿命を評価した。耐久走行試験は、直径129mmの駆動プーリと、同じく直径129mmの従動プーリとからなる2軸走行試験機を用いて行なった。この2つのプーリに伝動用Vベルトを掛架し、従動プーリの軸荷重を120kgfで一定とし、駆動プーリの回転数を1800rpmとし、従動プーリに8kWの負荷を付与し、25℃の雰囲気下にて破損するまでベルトを走行させた。走行中のベルト温度を24時間毎に測定した。測定したベルト温度のうち最高温度と、走行寿命時間と、破損形態を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す通り、一方向性繊維シートを補強層として埋設した実施例1~7は、補強層を設けない比較例1と比べて耐側圧性が向上するとともに、比較例1と同程度の良好な屈曲性を維持していた。耐側圧性を向上できたことで、ゴム組成物中の短繊維の量はゴム成分100質量部に対して5質量部と少ない量でも十分な耐側圧性を確保することができた。実施例1と実施例2を比較すると、心線の両側に補強層を設けた実施例1は、心線の片側にのみ補強層を設けた実施例2に比べて、屈曲性を大きく低下させることなく、耐側圧性が向上していた。一方向性炭素繊維シートを心線の両側に埋設した実施例1、3、4のうち、目付量100g/m2の一方向性炭素繊維シートを用いた実施例3、および、目付量50g/m2の一方向性炭素繊維シート2枚を積層した実施例4は、目付量50g/m2の一方向性炭素繊維シートを積層せずに用いた実施例1よりも耐側圧性が高く、走行寿命が向上した。補強層が圧縮ゴム層に埋設された実施例5、6は、補強層が心線の両側に埋設された実施例1と同程度の耐側圧性と走行寿命を示した。また、実施例1と実施例7との比較から、ローエッジVベルトも、ラップドVベルトと同様の効果が得られることが確認できた。すだれコードを補強層として埋設した比較例2、3では、耐側圧性は比較例1と比べて向上したものの、屈曲性は比較例1および実施例1~5よりも低かった。比較例2、3の屈曲性の低下は、補強層の厚みが0.5mmを超えることと、細糸がベルト幅方向に交差して配置されることが要因と考えられる。短繊維を多量に配合した比較例4は、耐側圧性は比較例1と比べて向上したものの、短繊維は一方向性炭素繊維シートと比較すると配向性が低いためか、屈曲性は低く、走行寿命はあまり向上しなかった。
 ベルト温度について比較すると、実施例1~7および比較例1ではベルト温度が低く保たれていたが、比較例2~4ではベルト温度が高かった。これは、比較例2、3では、補強層が撚りコードにより構成されているため、屈曲時に撚りコードが摩擦熱を多く発生し、ベルト温度の上昇につながったものと考えられる。さらに、比較例2、3では、補強層の厚みが厚いことで屈曲性が低下して、屈曲による発熱が生じやすくなったことも、ベルト温度の上昇につながったものと考えられる。また、比較例4では、多量の短繊維を配合したことで屈曲性が低下し、屈曲による発熱が生じやすくなるため、ベルト温度の上昇につながったものと考えられる。一方、実施例1~7では、無撚の補強繊維フィラメントで構成された厚みの薄い補強層を埋設したことで、発熱を抑制できたものと考えられる。さらに、実施例1~7では、熱伝導性の高い炭素繊維を用いたことで、発生した熱を発散する効果もあったと考えられる。
 走行寿命について比較すると、比較例1が最も短く、実施例1~7は比較例1~4よりも長かった。補強層を設けない比較例1では、心線とゴム組成物の間で層間剥離が生じた。これは、補強層を設けないことで耐側圧性が低いため、プーリからの側圧によってベルトが変形したことが理由と考えられる。
 また、撚りコードで構成される補強層を埋設した比較例2、3、および、多量の短繊維を配合した比較例4では、ゴム亀裂が生じた。比較例2~4では、上述したようにベルト温度が上昇したため、熱によるゴムの劣化が促進されてゴム亀裂につながったと考えられる。
 2箇所以上に補強層を設けた実施例1、3~7は、1箇所にのみ補強層を設けた実施例2に比べて、走行寿命が長かった。これは、実施例1、3~7が、実施例2よりも耐側圧性が向上したことが理由と考えられる。
 また、実施例1~7では、層間剥離による破損は起こらなかった。実施例1~7では、RFL処理により補強層に接着成分を付着させたことにより、ゴム組成物と補強層との接着性が良好であったためと考えられる。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2017年1月26日出願の日本特許出願2017-011806、および2018年1月15日出願の日本特許出願2018-004453に基づくものであり、その内容はここに参照として取り込まれる。
 1、501、601、701、801、901 伝動用Vベルト
 1a、1b 摩擦伝動面
 4 ゴム層
 5 心線
 6、406、906 補強層
 7、507 接着ゴム層
 8、408、608、708、908 圧縮ゴム層
 9、509、609、809 伸張ゴム層
 10、210、310 一方向性繊維シート
 11 補強繊維フィラメント
 12 熱可塑性樹脂
 214、314 補助糸

Claims (15)

  1.  ベルト周方向に直交する断面がV字状で、ベルト幅方向の両側に摩擦伝動面を有する伝動用Vベルトであって、
     ゴム組成物からなるゴム層と、
     前記ゴム層にベルト周方向に沿って埋設された心線と、
     前記ゴム層に埋設された少なくとも1つの補強層と、を備え、
     前記補強層は、ベルト幅と同じ長さを有する多数の補強繊維フィラメントを含み、ベルト幅方向に交差する繊維を含まないか、または、含む場合、ベルト幅方向に交差する繊維の単位面積当たりの重量が前記補強繊維フィラメントの30%以下であり、
     前記補強層は、前記補強繊維フィラメントが、無撚の状態で、ベルト幅方向に配向しつつシート状に広げられて結合された構造を有し、
     前記補強層の厚みが、0.05mm~0.5mmである、伝動用Vベルト。
  2.  請求項1に記載の伝動用Vベルトにおいて、
     前記補強繊維フィラメントの引張弾性率が200~600GPaである。
  3.  請求項1または2に記載の伝動用Vベルトにおいて、
     前記補強繊維フィラメントの熱伝導率が5.0W/(m・K)以上である。
  4.  請求項1~3のいずれか1項に記載の伝動用Vベルトにおいて、
     前記補強繊維フィラメントが炭素繊維である。
  5.  請求項1~4のいずれか1項に記載の伝動用Vベルトにおいて、
     前記ゴム層における前記心線の両側にそれぞれ、前記補強層が1つずつ埋設されている。
  6.  請求項1~5のいずれか1項に記載の伝動用Vベルトにおいて、
     前記ゴム層は、
     前記心線の少なくとも一部が埋設される接着ゴム層と、
     前記接着ゴム層と異なるゴム組成物で構成され、前記接着ゴム層のベルト内周側に設けられる圧縮ゴム層と、
     前記接着ゴム層と異なるゴム組成物で構成され、前記接着ゴム層のベルト外周側に設けられる伸張ゴム層とを有し、
     前記補強層は、前記接着ゴム層と前記圧縮ゴム層との間、および、前記接着ゴム層と前記伸張ゴム層との間の少なくとも一方に埋設されている。
  7.  請求項1~5のいずれか1項に記載の伝動用Vベルトにおいて、
     前記ゴム層は、
     前記心線の少なくとも一部が埋設される接着ゴム層と、
     前記接着ゴム層と異なるゴム組成物で構成され、前記接着ゴム層のベルト内周側に設けられる圧縮ゴム層と、
     前記接着ゴム層と異なるゴム組成物で構成され、前記接着ゴム層のベルト外周側に設けられる伸張ゴム層とを有し、
     前記補強層は、前記圧縮ゴム層、および、前記伸張ゴム層の少なくとも一方に埋設されている。
  8.  請求項1~5のいずれか1項に記載の伝動用Vベルトにおいて、
     前記ゴム層は、
     圧縮ゴム層と、
     前記圧縮ゴム層と異なるゴム組成物で構成され、前記圧縮ゴム層のベルト外周側に設けられる伸張ゴム層とを有し、
     前記心線は、前記圧縮ゴム層と前記伸張ゴム層との間、前記圧縮ゴム層、または、前記伸張ゴム層に埋設されており、
     前記補強層は、前記圧縮ゴム層、前記伸張ゴム層、および、前記圧縮ゴム層と前記伸張ゴム層との間の少なくともいずれかに埋設されている。
  9.  請求項6~8のいずれか1項に記載の伝動用Vベルトにおいて、
     前記圧縮ゴム層に前記心線が埋設されておらず、前記圧縮ゴム層は短繊維を含んでおり、前記圧縮ゴム層の前記短繊維の配合量がゴム成分100質量部に対して0.1~10質量部である。
  10.  請求項6~9のいずれか1項に記載の伝動用Vベルトにおいて、
     前記補強層が、前記圧縮ゴム層に埋設されるか、前記圧縮ゴム層に接しており、
     前記圧縮ゴム層がクロロプレンゴムを含み、
     前記補強層が前記接着ゴム層に接する場合に、前記接着ゴム層がクロロプレンゴムを含む。
  11.  請求項1~10のいずれか1項に記載の伝動用Vベルトにおいて、
     前記補強層が、1枚または積層された複数枚の一方向性繊維シートからなり、
     前記一方向性繊維シートは、熱硬化性樹脂によって前記補強繊維フィラメント同士が結合された構造である。
  12.  請求項1~10のいずれか1項に記載の伝動用Vベルトにおいて、
     前記補強層が、1枚または積層された複数枚の一方向性繊維シートからなり、
     前記一方向性繊維シートは、ベルト幅方向に交差し且つ単位面積当たりの重量が前記補強繊維フィラメントの30%以下の補助糸によって、前記補強繊維フィラメント同士が結合された構造である。
  13.  請求項11または12に記載の伝動用Vベルトにおいて、
     前記一方向性繊維シートの前記熱硬化性樹脂または前記補助糸を含む目付量が50~400g/m2である。
  14.  請求項1に記載の伝動用Vベルトを製造する方法であって、
     前記補強繊維フィラメント同士が結合された構造を有する1枚または積層された複数枚の一方向性繊維シートを、1つの前記補強層として、前記ゴム層の一部を形成する第1未加硫ゴム層に積層した後、その上から前記ゴム層の他の部分を形成する第2未加硫ゴム層を積層する積層工程と、
     前記第1未加硫ゴム層および前記第2未加硫ゴム層を加硫して前記ゴム層を形成する加硫工程とを含む、伝動用Vベルトの製造方法。
  15.  請求項14に記載の伝動用Vベルトの製造方法において、
     前記積層工程の前に、RFL処理、ゴム糊処理および樹脂含浸処理の少なくとも1つの処理により、前記一方向性繊維シートに接着成分を付着させる。
PCT/JP2018/002458 2017-01-26 2018-01-26 伝動用vベルトおよびその製造方法 WO2018139578A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18744973.1A EP3575631B1 (en) 2017-01-26 2018-01-26 Transmission v-belt and manufacturing method therefor
CN201880007489.1A CN110214240B (zh) 2017-01-26 2018-01-26 传动用v带及其制造方法
US16/479,834 US11624421B2 (en) 2017-01-26 2018-01-26 Transmission V-belt and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-011806 2017-01-26
JP2017011806 2017-01-26
JP2018-004453 2018-01-15
JP2018004453A JP6654653B2 (ja) 2017-01-26 2018-01-15 伝動用vベルトおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2018139578A1 true WO2018139578A1 (ja) 2018-08-02

Family

ID=62979508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002458 WO2018139578A1 (ja) 2017-01-26 2018-01-26 伝動用vベルトおよびその製造方法

Country Status (1)

Country Link
WO (1) WO2018139578A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113124104A (zh) * 2020-01-15 2021-07-16 霓达株式会社 传动带

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597859B2 (ja) 1981-09-04 1984-02-21 バンドー化学株式会社 コグつきvベルト
JPH04219545A (ja) * 1990-12-18 1992-08-10 Bando Chem Ind Ltd 伝動用vベルト
JPH0563656B2 (ja) 1985-06-18 1993-09-13 Bando Chemical Ind
JP2010196889A (ja) 2009-02-27 2010-09-09 Mitsuboshi Belting Ltd 動力伝動用ベルト
WO2015159795A1 (ja) * 2014-04-17 2015-10-22 旭化成せんい株式会社 ゴム補強用短繊維、該短繊維含有ゴム組成物及び動力伝動ベルト
JP2017011806A (ja) 2015-06-18 2017-01-12 日産自動車株式会社 モータ制御装置
JP2018004453A (ja) 2016-07-01 2018-01-11 三菱重工業株式会社 加工孔の位置測定装置及び加工孔の位置測定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597859B2 (ja) 1981-09-04 1984-02-21 バンドー化学株式会社 コグつきvベルト
JPH0563656B2 (ja) 1985-06-18 1993-09-13 Bando Chemical Ind
JPH04219545A (ja) * 1990-12-18 1992-08-10 Bando Chem Ind Ltd 伝動用vベルト
JP2010196889A (ja) 2009-02-27 2010-09-09 Mitsuboshi Belting Ltd 動力伝動用ベルト
WO2015159795A1 (ja) * 2014-04-17 2015-10-22 旭化成せんい株式会社 ゴム補強用短繊維、該短繊維含有ゴム組成物及び動力伝動ベルト
JP2017011806A (ja) 2015-06-18 2017-01-12 日産自動車株式会社 モータ制御装置
JP2018004453A (ja) 2016-07-01 2018-01-11 三菱重工業株式会社 加工孔の位置測定装置及び加工孔の位置測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113124104A (zh) * 2020-01-15 2021-07-16 霓达株式会社 传动带

Similar Documents

Publication Publication Date Title
JP6654653B2 (ja) 伝動用vベルトおよびその製造方法
JP6612827B2 (ja) 諸撚りコード及びその製造方法並びに伝動ベルト及びその使用方法
TWI669456B (zh) V肋型皮帶及其製造方法
JP6334595B2 (ja) ラップドvベルト及びラップドvベルトの製造方法
JP6650545B1 (ja) 摩擦伝動ベルト用心線および摩擦伝動ベルトならびにそれらの製造方法
JP6483745B2 (ja) 摩擦伝動ベルト
JP6951214B2 (ja) 摩擦伝動ベルト
JP6748152B2 (ja) Vリブドベルト
EP3604855B1 (en) Method for producing a friction transmission belt
WO2016175265A1 (ja) ラップドvベルト及びラップドvベルトの製造方法
WO2018074471A1 (ja) 諸撚りコード及びその製造方法並びに伝動ベルト及びその使用方法
WO2018139578A1 (ja) 伝動用vベルトおよびその製造方法
JP6676725B2 (ja) 摩擦伝動ベルト、そのためのコード並びにそれらの製造方法
KR102478923B1 (ko) 랩드 v 벨트
JP6616793B2 (ja) 摩擦伝動ベルト
JP6747881B2 (ja) ラップドvベルト及びその製造方法
JP6902443B2 (ja) 摩擦伝動ベルト
JP7085699B1 (ja) 歯付ベルト
JP2019019980A (ja) ラップドvベルト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018744973

Country of ref document: EP

Effective date: 20190826