WO2018139495A1 - Switch circuit - Google Patents

Switch circuit Download PDF

Info

Publication number
WO2018139495A1
WO2018139495A1 PCT/JP2018/002160 JP2018002160W WO2018139495A1 WO 2018139495 A1 WO2018139495 A1 WO 2018139495A1 JP 2018002160 W JP2018002160 W JP 2018002160W WO 2018139495 A1 WO2018139495 A1 WO 2018139495A1
Authority
WO
WIPO (PCT)
Prior art keywords
fet
switch circuit
fets
input terminal
source
Prior art date
Application number
PCT/JP2018/002160
Other languages
French (fr)
Japanese (ja)
Inventor
勝利 徳田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018139495A1 publication Critical patent/WO2018139495A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/48Networks for connecting several sources or loads, working on the same frequency or frequency band, to a common load or source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors

Definitions

  • the present invention relates to a switch circuit.
  • a field effect transistor is used for a switch circuit mounted on a mobile communication device such as a mobile phone.
  • a switch circuit constituted by such FETs a configuration is known in which the withstand voltage of the switch circuit is improved by connecting a plurality of FETs in multiple stages in order to satisfy the demand for an increase in input power.
  • a voltage divided by the number of stages of FETs connected in multiple stages is applied between the source and drain of each FET, an input allowable voltage according to the number of stages of FETs can be obtained.
  • Patent Document 1 includes a capacitive element between the gate and source of an FET closest to the input terminal and between the gates of adjacent FETs. Thus, a configuration for evenly distributing the source-drain voltage of each FET is disclosed.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a switch circuit that realizes an increase in input power while suppressing an increase in circuit area.
  • a switching circuit includes an input terminal to which a signal is input, an output terminal to which a signal is output, and a plurality of stages connected in multiple stages between the input terminal and the output terminal.
  • a plurality of FETs that are controlled to be turned on and off according to a control voltage supplied to each gate, and the plurality of FETs are located farther from the input terminal than the first FET.
  • a gate length of the first FET is longer than a gate length of the second FET.
  • FIG. 1 is a diagram illustrating a configuration example of a switch circuit 100A according to the first embodiment of the present invention.
  • An apparatus in which the switch circuit 100A is used is not particularly limited, but in the present specification, as an example, a description will be given assuming that the switch circuit 100A is used in a power amplification module mounted on a mobile communication device such as a mobile phone.
  • the switch circuit 100A may be applied to a switch that passes a radio frequency (RF) signal input from an input terminal to an output terminal.
  • RF radio frequency
  • the switch circuit 100A is a band switching switch provided between the power amplifier and the antenna (that is, the signal path after the RF signal is amplified by the power amplifier) in order to increase the input power as described later. And may be applied to antenna switches and the like.
  • the switch circuit 100A includes an input terminal 10, an output terminal 20, N FETs 30 (1) to 30 (N) (N is an integer of 2 or more), and N resistive elements 40 (1 ) To 40 (N).
  • N FETs 30 (1) to 30 (N) N is an integer of 2 or more
  • N resistive elements 40 (1 ) To 40 (N) N
  • the i-th FET (i is an integer not less than 1 and not more than N) counted from the input terminal 10 side is represented as “30 (i)”.
  • an N-channel MOSFET Metal-oxide-semiconductor Field Effect Transistor
  • N FETs 30 (1) to 30 (N) (hereinafter, when these N FETs are not distinguished, they are also simply referred to as “each FET 30”. The same applies to other elements).
  • 10 and the output terminal 20 are connected in multiple stages.
  • the FETs 30 (1) to 30 (N) are connected in series, that is, the drain and source of adjacent FETs are connected, and the gate is connected to one end of each resistance element 40.
  • a control voltage is supplied to the gate of each FET 30 via each resistance element 40.
  • the input signal RFin supplied to the source of the FET 30 (1) is output as the output signal RFout from the drain of the FET 30 (N).
  • the input signal RFin supplied to the source of the FET 30 (1) is output as the output signal RFout from the drain of the FET 30 (N).
  • the power of the signal supplied to the input terminal of the switch circuit is divided by the parasitic capacitance of each FET. Therefore, the source-drain voltage of each FET becomes non-uniform. Specifically, the source-drain voltage of each FET gradually increases from the output terminal 20 to the input terminal 10. Therefore, a voltage exceeding the withstand voltage can be applied between the source and drain of the FET close to the input terminal, particularly when the switch circuit is off. Therefore, the allowable input voltage of the switch circuit is limited by the withstand voltage of the FET close to the input terminal.
  • the gate length of each FET 30 by adjusting the gate length of each FET 30, the input allowable voltage can be increased beyond the limitation.
  • the adjustment of the gate length will be specifically described.
  • FIG. 2 is a graph showing the relationship between the FET gate length and the withstand voltage.
  • the graph shown in FIG. 2 shows the withstand voltage of the single-stage FET when the gate length of the FET is 0.24 ⁇ m, 0.28 ⁇ m, and 0.32 ⁇ m.
  • the vertical axis indicates the withstand voltage (V) between the source and drain of the FET, and the horizontal axis indicates the gate length ( ⁇ m) of the FET.
  • V the withstand voltage
  • ⁇ m gate length of the FET.
  • the withstand voltage of the FET improves as the gate length increases. Therefore, even in a multi-stage connected FET, the withstand voltage of the FET can be improved by adjusting the gate length of the FET according to the source-drain voltage.
  • the gate length of each FET 30 is adjusted to be intentionally nonuniform. Specifically, for example, the gate lengths of several stages of FETs counted from the input terminal 10 side in each FET 30 are adjusted to be longer than the gate lengths of the other FETs. As a result, the withstand voltage of the FET close to the input terminal 10 is improved, so that the FET is suppressed from being broken even when a higher voltage is applied between the source and drain than other FETs. On the other hand, the withstand voltage of the FET far from the input terminal 10 is not improved, but the FET has a low voltage applied between the source and the drain as compared with other FETs, so the possibility of destruction is low. In general, the shorter the gate length of the FET, the lower the resistance value of the on-resistance. Therefore, in the FET far from the input terminal, the insertion length of the switch circuit can be reduced by relatively shortening the gate length.
  • the switch circuit 100A is configured so that, among the FETs 30 connected in multiple stages, the gate length of the FETs close to the input terminal 10 is longer than the gate lengths of the other FETs. It is possible to increase the input allowable voltage. That is, the switch circuit 100A can realize an increase in input power while suppressing an increase in circuit area.
  • the gate length of the FET far from the input terminal 10 (that is, the FET having a relatively low source-drain voltage) is designed to be shorter than the gate length of the other FETs.
  • the resistance value of the on-resistance is lowered and the insertion loss of the switch circuit is reduced as compared with the configuration in which the gate lengths of all the FETs are increased.
  • the specific configuration of the gate length is not particularly limited, but an example will be described below.
  • the FET 30 (1) first FET
  • the FET 30 (2) second FET
  • Attention is paid to the FET 30 (3) (third FET) provided at a position farther from the input terminal 10 than the FET 30 (2).
  • the gate length of the FET 30 (1) is longer than the gate length of the FET 30 (2)
  • the gate length of the FET 30 (2) is longer than the gate length of the FET 30 (3)
  • the lengths may be substantially the same length.
  • the gate length of the i-th FET counted from the input terminal 10 in each FET 30 is L (i)
  • the gate length may be designed so that That is, the gate length may be adjusted so that the FET closer to the input terminal 10 has a longer gate length and the FET farther from the input terminal 10 has a shorter gate length.
  • the withstand voltage is increased in an FET having a relatively high voltage between the source and the drain, and the insertion loss is reduced in an FET having a relatively low voltage between the source and the drain.
  • the gate width of the FET connected in multiple stages may be adjusted in addition to the gate length.
  • the gate width of the FET 30 (1) may be wider than the gate width of the FET 30 (2).
  • the gate width may be adjusted so that the FET closer to the input terminal 10 has a wider gate width and the FET farther from the input terminal 10 has a smaller gate width.
  • the source-drain voltage of each FET 30 can be adjusted to be uniform.
  • the gate width according to the gate length of each FET 30 it is possible to adjust so that a voltage close to the withstand voltage of each FET 30 is applied between the source and drain. Therefore, the input allowable voltage can be further increased as compared with the configuration in which the gate width is uniform.
  • the FETs 30 (1) to 30 (N) are not limited to MOSFETs, and may be FETs such as JFETs (Junction Field Effect Transistors) and MESFETs (Metal-semiconductor Field Effect Transistors).
  • the number of FETs connected in multiple stages is not particularly limited as long as it is two or more. Further, the FETs connected in multiple stages may be configured by connecting individual FETs in series as shown in FIG. 1, or a multi-gate FET may be used. The same applies to the following embodiments.
  • FIG. 3 is a diagram illustrating a configuration example of the switch circuit 100B according to the second embodiment of the present invention.
  • the same elements as those of the switch circuit 100A are denoted by the same reference numerals and description thereof is omitted. Further, description of matters common to the first embodiment is omitted, and only different points will be described. In particular, the same operation effect by the same configuration will not be sequentially described for each embodiment.
  • a capacitive element is provided between the source and drain of each FET 30.
  • the capacitive elements 50 (1) to 50 (N) are connected between the sources and drains of the FETs 30 (1) to 30 (N), respectively.
  • the capacitance value of each capacitive element 50 the voltage applied between the source and drain of each FET 30 can be adjusted.
  • the capacitance value of the capacitive element connected to the FET close to the input terminal 10 of each FET 30 is relatively large, and the capacitance value of the capacitive element connected to the FET far from the input terminal 10 is relatively large. By making it smaller, it is possible to achieve an even distribution of the source-drain voltage of the FET.
  • the source-drain voltage of the FET may not be distributed completely evenly due to the restriction of the size of the capacitive element accompanying the reduction in the circuit scale of the switch circuit.
  • the configuration of the switch circuit 100A that is, by adjusting the length of the gate length of each FET 30, it is possible to improve the withstand voltage of some FETs and compensate for the nonuniformity of the source-drain voltage. it can.
  • the capacitance value of the capacitive element connected to the FET having a high withstand voltage is made relatively large, and the capacitance value of the capacitive element connected to the FET having a low withstand voltage is made relatively small.
  • a voltage close to the withstand voltage can be applied to all FETs. Therefore, the input allowable voltage of the switch circuit can be further increased as compared with the switch circuit 100A.
  • FIG. 4 is a diagram illustrating a configuration example of a switch circuit 100C according to a modification of the second embodiment of the present invention.
  • a capacitive element is provided between the source of the FET 30 (1) closest to the input terminal 10 among the FETs 30 and the drain of each FET 30.
  • each of the capacitive elements 51 (1) to 51 (N) is connected to the source of the FET 30 (1) closest to the input terminal 10 (that is, the electrode on the input terminal side), and the other end is connected to each FET 30 (1).
  • To 30 (N) drains (ie, electrodes on the output terminal side).
  • each capacitive element 51 is connected between a terminal (source of FET 30 (1)) to which a signal having the highest signal level is supplied and the drain of each FET 30, and the drain voltage of each FET 30 is raised.
  • the switch circuit 100C the drain voltage of each FET 30 can be raised by the capacitive element having a capacitance value smaller than that of each capacitive element 50 in the switch circuit 100B, and the source-drain voltage can be evenly distributed.
  • the switch circuit 100C can improve the withstand voltage by adjusting the length of the gate length of each FET 30 similarly to the switch circuit 100A. Further, since the required capacitance values of the capacitive elements 51 (1) to 51 (N) become smaller as the switch circuit 100C is farther from the input terminal 10, an increase in circuit area can be suppressed compared to the switch circuit 100B. .
  • capacitive elements are connected in all FETs 30 (1) to 30 (N). However, some FETs (for example, on the side closer to the input terminal 10 in each FET 30). Capacitance elements may be connected only to some FETs).
  • FIG. 5 is a diagram illustrating a configuration example of a switch circuit 100D according to another modification of the second embodiment of the present invention.
  • the switch circuit 100D differs from the switch circuit 100C in the connection configuration of the capacitive elements.
  • a plurality of FETs have one unit, and one end of each capacitive element 52 is connected to the source of the FET closest to the input terminal 10 in the unit.
  • FETs 30 (1) to 30 (3) form a first unit
  • FETs 30 (5) to FET 30 (7) form a second unit.
  • One end of each of the capacitive elements 52 (1) to 52 (3) is connected to the source of the FET 30 (1) (that is, the FET closest to the input terminal 10 in the first unit), and the other end is connected to each FET 30 (1 ) To 30 (3) drains.
  • each of the capacitive elements 52 (5) to 52 (7) is connected to the source of the FET 30 (5) (that is, the FET closest to the input terminal 10 in the second unit), and the other end is connected to each FET 30. (5) to 30 (7) connected to the drain.
  • the capacitive element 52 (4) corresponding to the FET 30 (4) located between the first and second units has one end connected to the source of the FET 30 (4) and the other end FET 30 (4). Connected to the drain.
  • the switch circuit 100D can improve the withstand voltage by adjusting the gate length of each FET 30 in the same manner as the switch circuit 100A. Further, since the switch circuit 100D does not need to use a very small capacity compared to the switch circuit 100C, the ratio of good products is improved.
  • FIG. 6 is a diagram illustrating a configuration example of the switch circuit 100E according to the third embodiment of the present invention.
  • a resistance element is provided between the source and drain of each FET 30.
  • the resistance elements 41 (1) to 41 (N) are connected between the sources and drains of the FETs 30 (1) to 30 (N), respectively.
  • the resistance element 41 may be used in combination with any other embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of a switch circuit 100F according to the fourth embodiment of the present invention
  • FIG. 8 is a diagram illustrating a configuration example of a switch circuit 100G according to a modification of the fourth embodiment of the present invention. It is.
  • capacitive elements 53 (1) to 53 (N) are provided between the gate and source of each FET 30, and capacitive elements 54 (1) to 54 (N) are provided between the gate and drain.
  • capacitive elements 55 (1) to 55 (N) are provided between the bulk and the source of each FET 30, and capacitive elements 56 (1) to 56 (N) are provided between the bulk and the drain. Yes.
  • connection position of the elements provided in order to uniformly distribute the voltage between the source and drain of each FET 30 is not limited between the source and drain of each FET, but between the gate and source and between the gate and drain, or It may be between the bulk and the source and between the bulk and the drain.
  • the switch circuits 100F and 100G can improve the withstand voltage by adjusting the length of the gate length of each FET 30 similarly to the switch circuit 100A.
  • the switch circuits 100F and 100G can further increase the allowable input voltage as compared with the switch circuit 100A, similarly to the switch circuit 100B.
  • FIG. 9 is a diagram illustrating a configuration example of a switch circuit 100H according to the fifth embodiment of the present invention
  • FIG. 10 is a diagram illustrating a configuration example of a switch circuit 100I according to a modification of the fifth embodiment of the present invention
  • FIG. 11 is a diagram illustrating a configuration example of a switch circuit 100J according to another modification of the fifth embodiment of the present invention.
  • elements are provided between the gate and the source of the FET 30 (1) (that is, the FET closest to the input terminal 10) and between the gates of the adjacent FETs.
  • a capacitive element 57 (1) (first element) is provided between the gate and the source (that is, the electrode on the input terminal side) of the FET 30 (1), and adjacent FETs.
  • Capacitance elements 57 (2) to 57 (N) (second element) are provided between the gates.
  • the switch circuit 100I is provided with a capacitive element 58 and a resistive element 42 (1) (first element) connected in series between the gate and source of the FET 30 (1), and the gates of the FETs adjacent to each other. Resistance elements 42 (2) to 42 (N) (second element) are provided between the two.
  • the switch circuit 100J is provided with a capacitive element 59 (1) and a resistance element 43 (1) (first element) connected in series between the gate and source of the FET 30 (1), and adjacent FETs.
  • Capacitance elements 59 (2) to 59 (N) and resistance elements 43 (2) to 43 (N) (second element) connected in series with each other are provided between the gates.
  • connection position of the elements provided in order to uniformly distribute the voltage between the source and drain of each FET 30 may be between the gates of the adjacent FETs.
  • the switch circuits 100H to 100J can improve the withstand voltage by adjusting the gate length of each FET 30 in the same manner as the switch circuit 100A.
  • the switch circuits 100H to 100J can further increase the allowable input voltage as compared with the switch circuit 100A, similarly to the switch circuit 100B.
  • FIG. 12 is a diagram showing a configuration example of a switch circuit 100K according to the sixth embodiment of the present invention
  • FIG. 13 is a diagram showing a configuration example of a switch circuit 100L according to a modification of the sixth embodiment of the present invention
  • FIG. 14 is a diagram illustrating a configuration example of a switch circuit 100M according to another modification of the sixth embodiment of the present invention.
  • elements are provided between the bulk sources of the FET 30 (1) (that is, the FET closest to the input terminal 10) and between the bulks of the adjacent FETs.
  • a capacitive element 60 (1) (third element) is provided between the bulk of the FET 30 (1) and the source (that is, the electrode on the input terminal side), and adjacent FETs.
  • Capacitance elements 60 (2) to 60 (N) (fourth element) are provided between the bulks.
  • the switch circuit 100L includes a capacitive element 61 and a resistive element 44 (1) (third element) connected in series between the bulk and the source of the FET 30 (1), and the bulks of the FETs adjacent to each other. Resistance elements 44 (2) to 44 (N) (fourth element) are provided between the two.
  • the switch circuit 100M includes a capacitive element 62 (1) and a resistive element 45 (1) (third element) connected in series between the bulk and the source of the FET 30 (1), and adjacent FETs.
  • Capacitance elements 62 (2) to 62 (N) and resistance elements 45 (2) to 45 (N) (fourth element) connected in series with each other are provided between the bulks.
  • connection position of the elements provided in order to evenly distribute the source-drain voltage of each FET 30 may be between the bulks of the adjacent FETs. Even with such a configuration, the switch circuits 100K to 100M can improve the withstand voltage by adjusting the gate length of each FET 30 in the same manner as the switch circuit 100A. In addition, the switch circuits 100K to 100M can further increase the allowable input voltage as compared with the switch circuit 100A, similarly to the switch circuit 100B.
  • FIG. 15 is a diagram illustrating a configuration example of a switch circuit 100N according to the seventh embodiment of the present invention
  • FIG. 16 is a diagram illustrating a configuration example of a switch circuit 100P according to a modification of the seventh embodiment of the present invention. It is.
  • a bias voltage is supplied to the bulk of each FET 30.
  • diode elements 70 (1) to 70 (N) are provided between the gate and bulk of each FET 30.
  • Each diode element 70 has an anode connected to the bulk of each FET 30 and a cathode connected to the gate of each FET 30.
  • the switch circuit 100P is provided with resistance elements 46 (1) to 46 (N) connected in series to the bulk of each FET 30.
  • a bias voltage Vbias is supplied to the bulk of each FET 30 via each resistance element 46.
  • a bias voltage can be supplied to the bulk of each FET. Even with such a configuration, the switch circuits 100N and 100P can improve the withstand voltage by adjusting the length of the gate length of each FET 30 similarly to the switch circuit 100A. In the switch circuits 100A to 100M, a bias voltage can be supplied to the bulk of each FET 30 similarly to the switch circuits 100N and 100P, and the same effect can be obtained.
  • FIG. 17 is a graph showing an example of a simulation result of the source-drain voltage in the switch circuit and the comparative example according to the first and second embodiments of the present invention.
  • the drain-to-drain voltage is shown in each of the switch circuits in which 12 stages of FETs are connected in multiple stages.
  • reference numerals 1 to 12 are used in order from the FET closest to the input terminal.
  • the gate length of the FET 30 (1) is 0.32 ⁇ m
  • the gate length of the FET 30 (2) is 0.28 ⁇ m
  • the length is 0.24 ⁇ m.
  • the gate length is the same as that of the first embodiment.
  • the capacitive elements 50 (1) to 50 (1) to 50 (1) to 30 (4) are arranged between the sources and drains of the four-stage FETs. 50 (4) is provided.
  • the gate lengths of the FETs 30 (1) to 30 (12) are all 0.24 ⁇ m. In the graph shown in FIG.
  • the vertical axis indicates the source-drain voltage (V) in each FET
  • the horizontal axis indicates the sign of the FETs attached in order from the input terminal.
  • the three horizontal lines in the graph shown in FIG. 17 indicate the withstand voltage according to the gate length of each FET.
  • the maximum input power 40.3 dBm is supplied when the FET 30 (3) reaches the withstand voltage.
  • the second embodiment by adjusting the capacitance value of the capacitive element provided between the source and drain of the FETs 30 (1) to 30 (4), the voltage between the source and drain of each FET is set to a withstand voltage. You can get closer. Therefore, in the second embodiment, the maximum input power (42 dBm) is supplied when all of the FETs 30 (1) to 30 (4) reach the withstand voltage.
  • FIG. 18 is a graph showing an example of simulation results of withstand voltage and on-resistance in the switch circuit and the comparative example according to the first and second embodiments of the present invention.
  • the left side of the vertical axis represents the withstand voltage (V) of the switch circuit
  • the right side of the vertical axis represents the on-resistance ⁇ off-capacitance (fsec) of the switch circuit.
  • the conditions in the graph are the same as the conditions in FIG.
  • the withstand voltage of the first embodiment is improved by about 6V compared to the comparative example. Further, the withstand voltage of the second embodiment is improved by about 7V compared to the first embodiment.
  • the on-resistance ⁇ off-capacitance is deteriorated as compared with the comparative example, particularly in the second embodiment in which the capacitive element is provided. That is, the length of the gate, the presence / absence of addition of a capacitor element, the number of elements to be added, or the like may be adjusted according to the required specifications of the switch circuit.
  • the switch circuits 100A to 100P include a plurality of FETs connected in multiple stages, and an FET closer to the input terminal 10 has a longer gate length than an FET farther from the input terminal 10 than the FET.
  • the withstand voltage of the FET close to the input terminal 10 is improved as compared with the configuration having a uniform gate length, and the input allowable voltage can be increased. Therefore, the switch circuits 100A to 100P can realize an increase in input power while suppressing an increase in circuit area. Further, the resistance value of the on-resistance is lowered and the insertion loss of the switch circuit is reduced as compared with the configuration in which the gate lengths of all the FETs are increased.
  • the configuration of the length of the gate length of the FET is not particularly limited.
  • the gate length may be increased in order from the FET closer to the input terminal 10.
  • each capacitive element 50 is provided between the source and drain of each FET 30. Thereby, equal distribution of the source-drain voltage of each FET 30 can be achieved. Alternatively, a voltage close to the withstand voltage can be applied to all FETs. Therefore, the input allowable voltage of the switch circuit can be further increased as compared with the switch circuit 100A.
  • each capacitive element 51 is provided between the source of the FET 30 (1) closest to the input terminal 10 among the FETs 30 and the drain of each FET 30. Thereby, equal distribution of the source-drain voltage of each FET 30 can be achieved. Alternatively, a voltage close to the withstand voltage can be applied to all FETs. Therefore, the input allowable voltage of the switch circuit can be further increased as compared with the switch circuit 100A. Further, since the required capacitance value of each capacitive element 51 becomes smaller as the switch circuit 100C is farther from the input terminal 10, an increase in circuit area can be suppressed compared to the switch circuit 100B.
  • the capacitive elements 53 and 54 are provided between the gate and the source of each FET 30 and between the gate and the drain. Thereby, equal distribution of the source-drain voltage of each FET 30 can be achieved. Alternatively, a voltage close to the withstand voltage can be applied to all FETs. Therefore, the input allowable voltage of the switch circuit can be further increased as compared with the switch circuit 100A.
  • the capacitive elements 55 and 56 are provided between the bulk and the source of the FET 30 and between the bulk and the drain. Thereby, equal distribution of the source-drain voltage of each FET 30 can be achieved. Alternatively, a voltage close to the withstand voltage can be applied to all FETs. Therefore, the input allowable voltage of the switch circuit can be further increased as compared with the switch circuit 100A.
  • the switch circuits 100H to 100J include a capacitance element, a resistance element, or a series connection between the gate and the source of the FET 30 (1) closest to the input terminal 10 among the FETs 30 and between the gates of the adjacent FETs. Either a connected capacitive element or resistive element is provided. Thereby, equal distribution of the source-drain voltage of each FET 30 can be achieved. Alternatively, a voltage close to the withstand voltage can be applied to all FETs. Therefore, the input allowable voltage of the switch circuit can be further increased as compared with the switch circuit 100A.
  • the switch circuits 100K to 100P include a capacitance element, a resistance element, or a series connection between the bulk sources of the FET 30 (1) closest to the input terminal 10 among the FETs 30 and between the bulks of adjacent FETs. Either a connected capacitive element or resistive element is provided. Thereby, equal distribution of the source-drain voltage of each FET 30 can be achieved. Alternatively, a voltage close to the withstand voltage can be applied to all FETs. Therefore, the input allowable voltage of the switch circuit can be further increased as compared with the switch circuit 100A.
  • a diode element 70 may be provided between the gate and bulk of each FET 30, and a bias voltage may be supplied to the bulk of each FET 30.
  • a bias voltage may be supplied to the bulk of each FET 30 via each resistance element 46.
  • each resistance element 41 is provided between the source and drain of each FET 30. This stabilizes the DC voltage at the source and drain of each FET 30 when the switch circuit is off.
  • the FET closer to the input terminal 10 among the FETs 30 may have a wider gate width than the FET farther from the input terminal 10 than the FET.
  • equal distribution of the source-drain voltage of each FET 30 can be achieved.
  • a voltage close to the withstand voltage can be applied to all FETs. Therefore, the input allowable voltage of the switch circuit can be further increased as compared with the configuration in which the gate width is uniform.
  • each FET 30 in each FET 30, an example in which the electrode on the input terminal side is the source and the electrode on the output terminal side is the drain is shown, but instead of this, the electrode on the input terminal side is The drain and the electrode on the output terminal side may be the source.
  • each embodiment described above is for facilitating the understanding of the present invention, and is not intended to limit the present invention.
  • the present invention can be changed or improved without departing from the gist thereof, and the present invention includes equivalents thereof.
  • those obtained by appropriately modifying the design of each embodiment by those skilled in the art are also included in the scope of the present invention as long as they include the features of the present invention.
  • each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate.
  • each element included in each embodiment can be combined as much as technically possible, and combinations thereof are included in the scope of the present invention as long as they include the features of the present invention.

Landscapes

  • Electronic Switches (AREA)

Abstract

Provided is a switch circuit with which an increase in input electric power can be achieved while capping an increase in circuit area. The switch circuit is provided with: an input terminal to which a signal is input; an output terminal from which a signal is output; and a plurality of FETs in a multistage connection between the input terminal and the output terminal, the plurality of FETs being on/off-controlled in accordance with a control voltage supplied to the gate of each FET. The plurality of FETs include a first FET and a second FET provided at a position farther from the input terminal than is the first FET, wherein the first FET has a gate length longer than a gate length of the second FET.

Description

スイッチ回路Switch circuit
 本発明は、スイッチ回路に関する。 The present invention relates to a switch circuit.
 携帯電話等の移動体通信機に搭載されるスイッチ回路には、例えば電界効果トランジスタ(FET:Field Effect Transistor)が用いられる。このようなFETにより構成されるスイッチ回路において、入力電力の増大の要求を満たすため、複数のFETを多段接続することにより、スイッチ回路の耐電圧を向上させる構成が知られている。当該構成においては、多段接続されたFETの段数によって分圧された電圧が各FETのソース・ドレイン間にかかるため、FETの段数に応じた入力許容電圧を得ることができる。 For example, a field effect transistor (FET) is used for a switch circuit mounted on a mobile communication device such as a mobile phone. In a switch circuit constituted by such FETs, a configuration is known in which the withstand voltage of the switch circuit is improved by connecting a plurality of FETs in multiple stages in order to satisfy the demand for an increase in input power. In this configuration, since a voltage divided by the number of stages of FETs connected in multiple stages is applied between the source and drain of each FET, an input allowable voltage according to the number of stages of FETs can be obtained.
 スイッチ回路の入力端子に供給される信号の電力は、各FETの寄生容量によって分圧されるため、各FETのソース・ドレイン間にかかる電圧が入力端子から出力端子にかけて徐々に小さくなる現象が生じる。このようなソース・ドレイン間電圧の不均一を回避するため、例えば特許文献1には、入力端子に最も近いFETのゲート・ソース間と、互いに隣接するFETのゲート同士の間に容量素子を備えることにより、各FETのソース・ドレイン間電圧の均等な分配を図る構成が開示されている。 Since the power of the signal supplied to the input terminal of the switch circuit is divided by the parasitic capacitance of each FET, a phenomenon occurs in which the voltage applied between the source and drain of each FET gradually decreases from the input terminal to the output terminal. . In order to avoid such a non-uniform source-drain voltage, for example, Patent Document 1 includes a capacitive element between the gate and source of an FET closest to the input terminal and between the gates of adjacent FETs. Thus, a configuration for evenly distributing the source-drain voltage of each FET is disclosed.
米国特許出願公開第2014/0009214号明細書US Patent Application Publication No. 2014/0009214
 さて、近年の移動体通信機の性能の向上に伴い、スイッチ回路における回路規模の削減及び入力電力の増大の要求はますます厳しくなっている。この点、特許文献1に開示されるスイッチ回路では、各FETのソース・ドレイン間電圧が均等に分配されても、各FETの耐電圧を超える入力電力が印加されるとFETが破壊し得る。一方、FETの段数を増やすと、スイッチ回路の耐電圧は向上するが、回路面積が増大するという問題がある。 Now, with the recent improvement in performance of mobile communication devices, the demand for reduction in circuit scale and increase in input power in switch circuits has become increasingly severe. In this regard, in the switch circuit disclosed in Patent Document 1, even when the source-drain voltage of each FET is evenly distributed, the FET can be destroyed if input power exceeding the withstand voltage of each FET is applied. On the other hand, when the number of FETs is increased, the withstand voltage of the switch circuit is improved, but there is a problem that the circuit area is increased.
 本発明は、かかる事情に鑑みてなされたものであり、回路面積の増大を抑制しつつ入力電力の増大を実現するスイッチ回路を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a switch circuit that realizes an increase in input power while suppressing an increase in circuit area.
 かかる目的を達成するため、本発明の一側面に係るスイッチ回路は、信号が入力される入力端子と、信号が出力される出力端子と、入力端子及び出力端子の間において多段接続された複数のFETであって、各々のゲートに供給される制御電圧に応じてオン及びオフが制御される複数のFETと、を備え、複数のFETは、第1FETと、第1FETより入力端子から遠い位置に設けられた第2FETと、を含み、第1FETのゲート長は、第2FETのゲート長より長い。 In order to achieve such an object, a switching circuit according to one aspect of the present invention includes an input terminal to which a signal is input, an output terminal to which a signal is output, and a plurality of stages connected in multiple stages between the input terminal and the output terminal. A plurality of FETs that are controlled to be turned on and off according to a control voltage supplied to each gate, and the plurality of FETs are located farther from the input terminal than the first FET. A gate length of the first FET is longer than a gate length of the second FET.
 本発明によれば、回路面積の増大を抑制しつつ入力電力の増大を実現するスイッチ回路を提供することができる。 According to the present invention, it is possible to provide a switch circuit that realizes an increase in input power while suppressing an increase in circuit area.
本発明の第1実施形態に係るスイッチ回路100Aの構成例を示す図である。It is a figure which shows the structural example of 100 A of switch circuits which concern on 1st Embodiment of this invention. FETのゲート長と耐電圧との関係を示すグラフである。It is a graph which shows the relationship between the gate length of FET, and withstand voltage. 本発明の第2実施形態に係るスイッチ回路100Bの構成例を示す図である。It is a figure which shows the structural example of the switch circuit 100B which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態の変形例に係るスイッチ回路100Cの構成例を示す図である。It is a figure showing an example of composition of switch circuit 100C concerning a modification of a 2nd embodiment of the present invention. 本発明の第2実施形態の他の変形例に係るスイッチ回路100Dの構成例を示す図である。It is a figure which shows the structural example of switch circuit 100D which concerns on the other modification of 2nd Embodiment of this invention. 本発明の第3実施形態に係るスイッチ回路100Eの構成例を示す図である。It is a figure which shows the structural example of the switch circuit 100E which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係るスイッチ回路100Fの構成例を示す図である。It is a figure which shows the structural example of the switch circuit 100F which concerns on 4th Embodiment of this invention. 本発明の第4実施形態の変形例に係るスイッチ回路100Gの構成例を示す図である。It is a figure which shows the structural example of the switch circuit 100G which concerns on the modification of 4th Embodiment of this invention. 本発明の第5実施形態に係るスイッチ回路100Hの構成例を示す図である。It is a figure which shows the structural example of the switch circuit 100H which concerns on 5th Embodiment of this invention. 本発明の第5実施形態の変形例に係るスイッチ回路100Iの構成例を示す図である。It is a figure which shows the structural example of the switch circuit 100I which concerns on the modification of 5th Embodiment of this invention. 本発明の第5実施形態の他の変形例に係るスイッチ回路100Jの構成例を示す図である。It is a figure which shows the structural example of the switch circuit 100J which concerns on the other modification of 5th Embodiment of this invention. 本発明の第6実施形態に係るスイッチ回路100Kの構成例を示す図である。It is a figure which shows the structural example of the switch circuit 100K which concerns on 6th Embodiment of this invention. 本発明の第6実施形態の変形例に係るスイッチ回路100Lの構成例を示す図である。It is a figure which shows the structural example of the switch circuit 100L which concerns on the modification of 6th Embodiment of this invention. 本発明の第6実施形態の他の変形例に係るスイッチ回路100Mの構成例を示す図である。It is a figure which shows the structural example of the switch circuit 100M which concerns on the other modification of 6th Embodiment of this invention. 本発明の第7実施形態に係るスイッチ回路100Nの構成例を示す図である。It is a figure which shows the structural example of the switch circuit 100N which concerns on 7th Embodiment of this invention. 本発明の第7実施形態の変形例に係るスイッチ回路100Pの構成例を示す図である。It is a figure which shows the structural example of the switch circuit 100P which concerns on the modification of 7th Embodiment of this invention. 本発明の第1及び第2実施形態に係るスイッチ回路及び比較例におけるソース・ドレイン間電圧のシミュレーション結果の一例を示すグラフである。It is a graph which shows an example of the simulation result of the source-drain voltage in the switch circuit which concerns on 1st and 2nd embodiment of this invention, and a comparative example. 本発明の第1及び第2実施形態に係るスイッチ回路及び比較例における耐電圧及びオン抵抗のシミュレーション結果の一例を示すグラフである。It is a graph which shows an example of the simulation result of withstand voltage and on-resistance in the switch circuit concerning the 1st and 2nd embodiments of the present invention, and a comparative example.
 以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する。なお、同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted.
 図1は、本発明の第1実施形態に係るスイッチ回路100Aの構成例を示す図である。スイッチ回路100Aが用いられる装置は特に限定されないが、本明細書においては一例として、携帯電話等の移動体通信機に搭載される電力増幅モジュールにおいて用いられる場合を想定して説明する。具体的には、例えば、スイッチ回路100Aは、入力端子から入力される無線周波数(RF:Radio Frequency)信号を出力端子に通すスイッチに適用されてもよい。特に、スイッチ回路100Aは、後述の通り入力電力の増大を実現するため、電力増幅器からアンテナまで(すなわち、RF信号が電力増幅器により増幅された後の信号経路)の間に設けられたバンド切り替えスイッチやアンテナスイッチ等に適用されてもよい。 FIG. 1 is a diagram illustrating a configuration example of a switch circuit 100A according to the first embodiment of the present invention. An apparatus in which the switch circuit 100A is used is not particularly limited, but in the present specification, as an example, a description will be given assuming that the switch circuit 100A is used in a power amplification module mounted on a mobile communication device such as a mobile phone. Specifically, for example, the switch circuit 100A may be applied to a switch that passes a radio frequency (RF) signal input from an input terminal to an output terminal. In particular, the switch circuit 100A is a band switching switch provided between the power amplifier and the antenna (that is, the signal path after the RF signal is amplified by the power amplifier) in order to increase the input power as described later. And may be applied to antenna switches and the like.
 図1に示されるように、スイッチ回路100Aは、入力端子10、出力端子20、N個のFET30(1)~30(N)(Nは2以上の整数)及びN個の抵抗素子40(1)~40(N)を備える。なお、ここでは入力端子10側から数えてi番目(iは1以上N以下の整数)のFETを「30(i)」と表している。他の素子においても同様である。また、本明細書においてはFETの一例としてNチャネルMOSFET(Metal-oxide-semiconductor Field Effect Transistor)を用いて説明する。なお、PチャネルMOSFETを用いた構成においても同様の効果を得ることができるが、NチャネルMOSFETを用いた構成と同様であるため詳細な説明は省略する。 As shown in FIG. 1, the switch circuit 100A includes an input terminal 10, an output terminal 20, N FETs 30 (1) to 30 (N) (N is an integer of 2 or more), and N resistive elements 40 (1 ) To 40 (N). Here, the i-th FET (i is an integer not less than 1 and not more than N) counted from the input terminal 10 side is represented as “30 (i)”. The same applies to other elements. In the present specification, an N-channel MOSFET (Metal-oxide-semiconductor Field Effect Transistor) will be described as an example of the FET. Although the same effect can be obtained with a configuration using a P-channel MOSFET, the detailed description is omitted because it is the same as the configuration using an N-channel MOSFET.
 N個のFET30(1)~30(N)(以下、これらのN個のFETを区別しない場合には、単に「各FET30」とも呼ぶ。他の素子においても同様である。)は、入力端子10と出力端子20との間において多段接続されている。具体的には、FET30(1)~30(N)はそれぞれ直列接続され、すなわち隣接するFETのドレインとソースが接続され、ゲートが各抵抗素子40の一端に接続されている。各FET30のゲートには、各抵抗素子40を経由して制御電圧が供給される。当該制御電圧により、多段接続された全てのFETがオンとなると、入力端子10と出力端子20との間が導通される。この場合、FET30(1)のソースに供給された入力信号RFinが、FET30(N)のドレインから出力信号RFoutとして出力される。一方、少なくとも1段のFETがオフとなると、入力端子10と出力端子20との間は導通されず、出力信号は出力されない。 N FETs 30 (1) to 30 (N) (hereinafter, when these N FETs are not distinguished, they are also simply referred to as “each FET 30”. The same applies to other elements). 10 and the output terminal 20 are connected in multiple stages. Specifically, the FETs 30 (1) to 30 (N) are connected in series, that is, the drain and source of adjacent FETs are connected, and the gate is connected to one end of each resistance element 40. A control voltage is supplied to the gate of each FET 30 via each resistance element 40. When all the FETs connected in multiple stages are turned on by the control voltage, the input terminal 10 and the output terminal 20 are electrically connected. In this case, the input signal RFin supplied to the source of the FET 30 (1) is output as the output signal RFout from the drain of the FET 30 (N). On the other hand, when at least one stage of the FET is turned off, conduction between the input terminal 10 and the output terminal 20 is not established, and an output signal is not output.
 ここで、仮に多段接続された各FET30のゲート長、ゲート幅、閾値等の諸条件が全て同一であった場合、スイッチ回路の入力端子に供給される信号の電力は各FETの寄生容量によって分圧されるため、各FETのソース・ドレイン間電圧が不均一となる。具体的には、各FETのソース・ドレイン間電圧は、出力端子20から入力端子10にかけて徐々に大きくなる。そのため、特にスイッチ回路のオフ時において入力端子に近いFETのソース・ドレイン間に耐電圧を超える電圧がかかり得る。従って、スイッチ回路の入力許容電圧は、入力端子に近いFETの耐電圧によって制限される。この点、本実施形態においては、各FET30のゲート長を調整することにより、当該制限を超えて入力許容電圧を上昇させることができる。以下に、ゲート長の調整について具体的に説明する。 Here, if various conditions such as the gate length, gate width, threshold value, etc. of the FETs 30 connected in multiple stages are all the same, the power of the signal supplied to the input terminal of the switch circuit is divided by the parasitic capacitance of each FET. Therefore, the source-drain voltage of each FET becomes non-uniform. Specifically, the source-drain voltage of each FET gradually increases from the output terminal 20 to the input terminal 10. Therefore, a voltage exceeding the withstand voltage can be applied between the source and drain of the FET close to the input terminal, particularly when the switch circuit is off. Therefore, the allowable input voltage of the switch circuit is limited by the withstand voltage of the FET close to the input terminal. In this regard, in the present embodiment, by adjusting the gate length of each FET 30, the input allowable voltage can be increased beyond the limitation. Hereinafter, the adjustment of the gate length will be specifically described.
 図2は、FETのゲート長と耐電圧との関係を示すグラフである。図2に示されるグラフは、FETのゲート長を0.24μm、0.28μm、0.32μmとしたときの1段のFETの耐電圧を示している。なお、縦軸はFETのソース・ドレイン間の耐電圧(V)を示し、横軸はFETのゲート長(μm)を示す。図2に示されるように、FETの耐電圧はゲート長が長いほど向上する。従って、多段接続されたFETにおいても、ソース・ドレイン間電圧に応じてFETのゲート長をそれぞれ調整することにより、FETの耐電圧を向上させることができる。 FIG. 2 is a graph showing the relationship between the FET gate length and the withstand voltage. The graph shown in FIG. 2 shows the withstand voltage of the single-stage FET when the gate length of the FET is 0.24 μm, 0.28 μm, and 0.32 μm. The vertical axis indicates the withstand voltage (V) between the source and drain of the FET, and the horizontal axis indicates the gate length (μm) of the FET. As shown in FIG. 2, the withstand voltage of the FET improves as the gate length increases. Therefore, even in a multi-stage connected FET, the withstand voltage of the FET can be improved by adjusting the gate length of the FET according to the source-drain voltage.
 すなわち、図1に示されるスイッチ回路100Aにおいては、各FET30のゲート長が意図的に不均一となるように調整される。具体的には、例えば、各FET30のうち入力端子10側から数えて数段のFETのゲート長が、その他のFETのゲート長より長くなるように調整される。これにより、入力端子10に近いFETの耐電圧が向上するため、当該FETは他のFETに比べて高い電圧がソース・ドレイン間にかかっても、破壊が抑制される。一方、入力端子10から遠いFETの耐電圧は向上しないが、当該FETは他のFETに比べてソース・ドレイン間にかかる電圧が低いため、破壊の可能性が低い。また、一般的にFETのゲート長は短いほどオン抵抗の抵抗値が低いため、入力端子から遠いFETにおいてはゲート長を比較的短くすることにより、スイッチ回路の挿入損失を低減させることができる。 That is, in the switch circuit 100A shown in FIG. 1, the gate length of each FET 30 is adjusted to be intentionally nonuniform. Specifically, for example, the gate lengths of several stages of FETs counted from the input terminal 10 side in each FET 30 are adjusted to be longer than the gate lengths of the other FETs. As a result, the withstand voltage of the FET close to the input terminal 10 is improved, so that the FET is suppressed from being broken even when a higher voltage is applied between the source and drain than other FETs. On the other hand, the withstand voltage of the FET far from the input terminal 10 is not improved, but the FET has a low voltage applied between the source and the drain as compared with other FETs, so the possibility of destruction is low. In general, the shorter the gate length of the FET, the lower the resistance value of the on-resistance. Therefore, in the FET far from the input terminal, the insertion length of the switch circuit can be reduced by relatively shortening the gate length.
 上述の構成により、スイッチ回路100Aは、多段接続された各FET30のうち、入力端子10に近いFETのゲート長を他のFETのゲート長より長くすることにより、ゲート長が均一な構成に比べて入力許容電圧を上昇させることが可能となる。すなわち、スイッチ回路100Aは、回路面積の増大を抑制しつつ、入力電力の増大を実現することができる。 With the above-described configuration, the switch circuit 100A is configured so that, among the FETs 30 connected in multiple stages, the gate length of the FETs close to the input terminal 10 is longer than the gate lengths of the other FETs. It is possible to increase the input allowable voltage. That is, the switch circuit 100A can realize an increase in input power while suppressing an increase in circuit area.
 また、スイッチ回路100Aにおいては、入力端子10から遠いFET(すなわち、ソース・ドレイン間電圧が比較的低いFET)のゲート長は他のFETのゲート長より短くなるように設計される。これにより、全てのFETのゲート長を長くする構成に比べて、オン抵抗の抵抗値が低下し、スイッチ回路の挿入損失が低減される。 In the switch circuit 100A, the gate length of the FET far from the input terminal 10 (that is, the FET having a relatively low source-drain voltage) is designed to be shorter than the gate length of the other FETs. As a result, the resistance value of the on-resistance is lowered and the insertion loss of the switch circuit is reduced as compared with the configuration in which the gate lengths of all the FETs are increased.
 なお、ゲート長の長さの具体的な構成については特に限定されないが、以下に例を述べる。例えば、各FET30のうち入力端子10に最も近い位置に設けられたFET30(1)(第1FET)と、FET30(1)より入力端子10から遠い位置に設けられたFET30(2)(第2FET)と、FET30(2)より入力端子10から遠い位置に設けられたFET30(3)(第3FET)に着目する。この時、FET30(1)のゲート長がFET30(2)のゲート長より長く、FET30(2)のゲート長がFET30(3)のゲート長より長く、FET30(3)~30(N)のゲート長が略同一の長さであってもよい。 The specific configuration of the gate length is not particularly limited, but an example will be described below. For example, the FET 30 (1) (first FET) provided at a position closest to the input terminal 10 among the FETs 30 and the FET 30 (2) (second FET) provided at a position farther from the input terminal 10 than the FET 30 (1). Attention is paid to the FET 30 (3) (third FET) provided at a position farther from the input terminal 10 than the FET 30 (2). At this time, the gate length of the FET 30 (1) is longer than the gate length of the FET 30 (2), the gate length of the FET 30 (2) is longer than the gate length of the FET 30 (3), and the gates of the FETs 30 (3) to 30 (N). The lengths may be substantially the same length.
 あるいは、各FET30のうち入力端子10から数えてi番目のFETのゲート長をL(i)とすると、L(1)>L(2)≧…≧L(N-1)≧L(N)が成立するようにゲート長が設計されてもよい。すなわち、入力端子10に近いFETほどゲート長が長く、入力端子10から遠いFETほどゲート長が短くなるように調整されてもよい。これにより、ソース・ドレイン間にかかる電圧が比較的高いFETにおいては耐電圧が上がり、ソース・ドレイン間にかかる電圧が比較的低いFETにおいては挿入損失が低減される。 Alternatively, if the gate length of the i-th FET counted from the input terminal 10 in each FET 30 is L (i), L (1)> L (2) ≧... ≧ L (N−1) ≧ L (N) The gate length may be designed so that That is, the gate length may be adjusted so that the FET closer to the input terminal 10 has a longer gate length and the FET farther from the input terminal 10 has a shorter gate length. As a result, the withstand voltage is increased in an FET having a relatively high voltage between the source and the drain, and the insertion loss is reduced in an FET having a relatively low voltage between the source and the drain.
 さらに、多段接続されたFETは、ゲート長に加えてゲート幅が調整されてもよい。具体的には、例えば、FET30(1)のゲート幅がFET30(2)のゲート幅より広くてもよい。又は、入力端子10に近いFETほどゲート幅が広く、入力端子10から遠いFETほどゲート幅が狭くなるように調整されてもよい。これにより、例えば、各FET30のソース・ドレイン間電圧が均一となるように調整することができる。又は、各FET30のゲート長に応じてゲート幅を調整することにより、各FET30の耐電圧に近い電圧がソース・ドレイン間にかかるように調整することができる。従って、ゲート幅が均一である構成に比べて、さらに入力許容電圧を上げることができる。 Furthermore, the gate width of the FET connected in multiple stages may be adjusted in addition to the gate length. Specifically, for example, the gate width of the FET 30 (1) may be wider than the gate width of the FET 30 (2). Alternatively, the gate width may be adjusted so that the FET closer to the input terminal 10 has a wider gate width and the FET farther from the input terminal 10 has a smaller gate width. Thereby, for example, the source-drain voltage of each FET 30 can be adjusted to be uniform. Alternatively, by adjusting the gate width according to the gate length of each FET 30, it is possible to adjust so that a voltage close to the withstand voltage of each FET 30 is applied between the source and drain. Therefore, the input allowable voltage can be further increased as compared with the configuration in which the gate width is uniform.
 なお、FET30(1)~30(N)は、MOSFETに限られず、例えばJFET(Junction Field Effect Transistor)や、MESFET(Metal-semiconductor Field Effect Transistor)等のFETであってもよい。また、多段接続されるFETの数は2段以上であれば特に限定されない。また、多段接続されたFETは、図1に示されるように個別のFETが直列接続されて構成されてもよく、又はマルチゲートFETが利用されてもよい。以下の実施形態においても同様である。 Note that the FETs 30 (1) to 30 (N) are not limited to MOSFETs, and may be FETs such as JFETs (Junction Field Effect Transistors) and MESFETs (Metal-semiconductor Field Effect Transistors). The number of FETs connected in multiple stages is not particularly limited as long as it is two or more. Further, the FETs connected in multiple stages may be configured by connecting individual FETs in series as shown in FIG. 1, or a multi-gate FET may be used. The same applies to the following embodiments.
 図3は、本発明の第2実施形態に係るスイッチ回路100Bの構成例を示す図である。なお、第2実施形態以降では、スイッチ回路100Aと同一の要素には同一の符号を付して説明を省略する。また、第1実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。スイッチ回路100Bは、各FET30のソース・ドレイン間に容量素子が設けられている。 FIG. 3 is a diagram illustrating a configuration example of the switch circuit 100B according to the second embodiment of the present invention. In the second and subsequent embodiments, the same elements as those of the switch circuit 100A are denoted by the same reference numerals and description thereof is omitted. Further, description of matters common to the first embodiment is omitted, and only different points will be described. In particular, the same operation effect by the same configuration will not be sequentially described for each embodiment. In the switch circuit 100 </ b> B, a capacitive element is provided between the source and drain of each FET 30.
 容量素子50(1)~50(N)は、それぞれ、FET30(1)~30(N)のソース・ドレイン間に接続されている。各容量素子50の容量値を調整することにより、各FET30のソース・ドレイン間にかかる電圧を調整することができる。具体的には、例えば、各FET30のうち入力端子10に近いFETに接続された容量素子の容量値を比較的大きくし、入力端子10から遠いFETに接続された容量素子の容量値を比較的小さくすることにより、FETのソース・ドレイン間電圧の均等な分配を図ることができる。ここで、当該構成においては、例えばスイッチ回路の回路規模の削減に伴う容量素子の大きさの制約により、FETのソース・ドレイン間電圧が完全には均等に分配されないことがある。この場合、スイッチ回路100Aの構成を適用し、すなわち各FET30のゲート長の長さを調整することにより、一部のFETの耐電圧を向上させてソース・ドレイン間電圧の不均一を補うことができる。 The capacitive elements 50 (1) to 50 (N) are connected between the sources and drains of the FETs 30 (1) to 30 (N), respectively. By adjusting the capacitance value of each capacitive element 50, the voltage applied between the source and drain of each FET 30 can be adjusted. Specifically, for example, the capacitance value of the capacitive element connected to the FET close to the input terminal 10 of each FET 30 is relatively large, and the capacitance value of the capacitive element connected to the FET far from the input terminal 10 is relatively large. By making it smaller, it is possible to achieve an even distribution of the source-drain voltage of the FET. In this configuration, for example, the source-drain voltage of the FET may not be distributed completely evenly due to the restriction of the size of the capacitive element accompanying the reduction in the circuit scale of the switch circuit. In this case, by applying the configuration of the switch circuit 100A, that is, by adjusting the length of the gate length of each FET 30, it is possible to improve the withstand voltage of some FETs and compensate for the nonuniformity of the source-drain voltage. it can.
 あるいは、各FET30の耐電圧に応じて、耐電圧の高いFETに接続された容量素子の容量値を比較的大きくし、耐電圧の低いFETに接続された容量素子の容量値を比較的小さくすることにより、全てのFETに耐電圧に近い電圧をかけることができる。従って、スイッチ回路100Aに比べてスイッチ回路の入力許容電圧をさらに上昇させることができる。 Alternatively, in accordance with the withstand voltage of each FET 30, the capacitance value of the capacitive element connected to the FET having a high withstand voltage is made relatively large, and the capacitance value of the capacitive element connected to the FET having a low withstand voltage is made relatively small. Thus, a voltage close to the withstand voltage can be applied to all FETs. Therefore, the input allowable voltage of the switch circuit can be further increased as compared with the switch circuit 100A.
 図4は、本発明の第2実施形態の変形例に係るスイッチ回路100Cの構成例を示す図である。スイッチ回路100Cは、各FET30のうち入力端子10に最も近いFET30(1)のソースと、各FET30のドレインとの間に容量素子が設けられている。 FIG. 4 is a diagram illustrating a configuration example of a switch circuit 100C according to a modification of the second embodiment of the present invention. In the switching circuit 100 </ b> C, a capacitive element is provided between the source of the FET 30 (1) closest to the input terminal 10 among the FETs 30 and the drain of each FET 30.
 容量素子51(1)~51(N)は、一端が、入力端子10に最も近いFET30(1)のソース(すなわち、入力端子側の電極)に接続され、他端が、各FET30(1)~30(N)のドレイン(すなわち、出力端子側の電極)にそれぞれ接続される。これにより、最も信号レベルの大きい信号が供給される端子(FET30(1)のソース)と、各FET30のドレインとの間に各容量素子51が接続され、各FET30のドレイン電圧が引き上げられる。ここで、各FET30は入力端子10から遠いほどドレイン電圧の引き上げ量は小さくなるため、必要な容量値は小さくなる。従って、スイッチ回路100Cにおいては、スイッチ回路100Bにおける各容量素子50より容量値が小さい容量素子によって各FET30のドレイン電圧を引き上げ、ソース・ドレイン間電圧の均等な分配を図ることができる。 One end of each of the capacitive elements 51 (1) to 51 (N) is connected to the source of the FET 30 (1) closest to the input terminal 10 (that is, the electrode on the input terminal side), and the other end is connected to each FET 30 (1). To 30 (N) drains (ie, electrodes on the output terminal side). Thereby, each capacitive element 51 is connected between a terminal (source of FET 30 (1)) to which a signal having the highest signal level is supplied and the drain of each FET 30, and the drain voltage of each FET 30 is raised. Here, since each FET 30 is farther away from the input terminal 10, the amount of increase in the drain voltage becomes smaller, so the necessary capacitance value becomes smaller. Therefore, in the switch circuit 100C, the drain voltage of each FET 30 can be raised by the capacitive element having a capacitance value smaller than that of each capacitive element 50 in the switch circuit 100B, and the source-drain voltage can be evenly distributed.
 このような構成によっても、スイッチ回路100Cはスイッチ回路100Aと同様に、各FET30のゲート長の長さを調整することにより耐電圧を向上させることができる。また、スイッチ回路100Cは、入力端子10から遠いほど容量素子51(1)~51(N)の必要な容量値が小さくなるため、スイッチ回路100Bに比べて回路面積の増大を抑制することができる。 Even with such a configuration, the switch circuit 100C can improve the withstand voltage by adjusting the length of the gate length of each FET 30 similarly to the switch circuit 100A. Further, since the required capacitance values of the capacitive elements 51 (1) to 51 (N) become smaller as the switch circuit 100C is farther from the input terminal 10, an increase in circuit area can be suppressed compared to the switch circuit 100B. .
 なお、図4に示される例においては、全てのFET30(1)~30(N)において容量素子が接続されているが、一部のFET(例えば、各FET30のうち入力端子10に近い側の一部のFET)のみに容量素子が接続されていてもよい。 In the example shown in FIG. 4, capacitive elements are connected in all FETs 30 (1) to 30 (N). However, some FETs (for example, on the side closer to the input terminal 10 in each FET 30). Capacitance elements may be connected only to some FETs).
 図5は、本発明の第2実施形態の他の変形例に係るスイッチ回路100Dの構成例を示す図である。スイッチ回路100Dは、スイッチ回路100Cに比べて、容量素子の接続の構成が異なる。なお、図5においてはN=7の場合が一例として示されているが、FETの数はこれに限られない。 FIG. 5 is a diagram illustrating a configuration example of a switch circuit 100D according to another modification of the second embodiment of the present invention. The switch circuit 100D differs from the switch circuit 100C in the connection configuration of the capacitive elements. In FIG. 5, the case of N = 7 is shown as an example, but the number of FETs is not limited to this.
 スイッチ回路100Dにおいては、複数のFETが一つの単位を有し、各容量素子52の一端は当該単位内で最も入力端子10に近いFETのソースに接続される。具体的には、図5に示される例においては、FET30(1)~30(3)が一つ目の単位を成し、FET30(5)~FET30(7)が二つ目の単位を成す。容量素子52(1)~52(3)は、一端がFET30(1)(すなわち、一つ目の単位内で最も入力端子10に近いFET)のソースに接続され、他端は各FET30(1)~30(3)のドレインに接続される。一方、容量素子52(5)~52(7)は、一端がFET30(5)(すなわち、二つ目の単位内で最も入力端子10に近いFET)のソースに接続され、他端は各FET30(5)~30(7)のドレインに接続される。また、一つ目と二つ目の単位の間に位置するFET30(4)に対応する容量素子52(4)は、一端がFET30(4)のソースに接続され、他端がFET30(4)のドレインに接続される。 In the switch circuit 100D, a plurality of FETs have one unit, and one end of each capacitive element 52 is connected to the source of the FET closest to the input terminal 10 in the unit. Specifically, in the example shown in FIG. 5, FETs 30 (1) to 30 (3) form a first unit, and FETs 30 (5) to FET 30 (7) form a second unit. . One end of each of the capacitive elements 52 (1) to 52 (3) is connected to the source of the FET 30 (1) (that is, the FET closest to the input terminal 10 in the first unit), and the other end is connected to each FET 30 (1 ) To 30 (3) drains. On the other hand, one end of each of the capacitive elements 52 (5) to 52 (7) is connected to the source of the FET 30 (5) (that is, the FET closest to the input terminal 10 in the second unit), and the other end is connected to each FET 30. (5) to 30 (7) connected to the drain. Further, the capacitive element 52 (4) corresponding to the FET 30 (4) located between the first and second units has one end connected to the source of the FET 30 (4) and the other end FET 30 (4). Connected to the drain.
 上述の構成においては、図4に示されるスイッチ回路100Cの構成に比べて、入力端子から遠いFETに接続された容量素子の容量値が極端に小さくなることが回避される。従って、制御が比較的困難な微小容量を用いる必要がなくなる。 In the above configuration, it is possible to avoid that the capacitance value of the capacitive element connected to the FET far from the input terminal becomes extremely small as compared with the configuration of the switch circuit 100C shown in FIG. Therefore, it is not necessary to use a minute capacity that is relatively difficult to control.
 このような構成によっても、スイッチ回路100Dはスイッチ回路100Aと同様に、各FET30のゲート長の長さを調整することにより耐電圧を向上させることができる。また、スイッチ回路100Dは、スイッチ回路100Cに比べて微小容量を用いる必要がないため、良品が製造される比率が向上する。 Even with such a configuration, the switch circuit 100D can improve the withstand voltage by adjusting the gate length of each FET 30 in the same manner as the switch circuit 100A. Further, since the switch circuit 100D does not need to use a very small capacity compared to the switch circuit 100C, the ratio of good products is improved.
 図6は、本発明の第3実施形態に係るスイッチ回路100Eの構成例を示す図である。スイッチ回路100Eは、各FET30のソース・ドレイン間に抵抗素子が設けられている。 FIG. 6 is a diagram illustrating a configuration example of the switch circuit 100E according to the third embodiment of the present invention. In the switch circuit 100E, a resistance element is provided between the source and drain of each FET 30.
 抵抗素子41(1)~41(N)は、それぞれ、FET30(1)~30(N)のソース・ドレイン間に接続されている。このように、各FET30のソース・ドレイン間に各抵抗素子41が接続されることにより、スイッチ回路のオフ時における各FET30のソースやドレインの直流電圧が安定する。このような構成によっても、スイッチ回路100Eはスイッチ回路100Aと同様に、各FET30のゲート長の長さを調整することにより耐電圧を向上させることができる。なお、当該抵抗素子41は、他のいずれの実施形態と組み合わせて用いられてもよい。 The resistance elements 41 (1) to 41 (N) are connected between the sources and drains of the FETs 30 (1) to 30 (N), respectively. Thus, by connecting each resistance element 41 between the source and drain of each FET 30, the DC voltage of the source and drain of each FET 30 when the switch circuit is OFF is stabilized. Even with such a configuration, the switch circuit 100E can improve the withstand voltage by adjusting the length of the gate length of each FET 30 in the same manner as the switch circuit 100A. The resistance element 41 may be used in combination with any other embodiment.
 図7は、本発明の第4実施形態に係るスイッチ回路100Fの構成例を示す図であり、図8は、本発明の第4実施形態の変形例に係るスイッチ回路100Gの構成例を示す図である。スイッチ回路100Fは、各FET30のゲート・ソース間に容量素子53(1)~53(N)が設けられ、ゲート・ドレイン間に容量素子54(1)~54(N)が設けられている。また、スイッチ回路100Gは、各FET30のバルク・ソース間に容量素子55(1)~55(N)が設けられ、バルク・ドレイン間に容量素子56(1)~56(N)が設けられている。このように、各FET30のソース・ドレイン間電圧の均等な分配を図るために設けられる素子の接続位置は、各FETのソース・ドレイン間に限られず、ゲート・ソース間及びゲート・ドレイン間、又はバルク・ソース間及びバルク・ドレイン間であってもよい。このような構成によっても、スイッチ回路100F,100Gはスイッチ回路100Aと同様に、各FET30のゲート長の長さを調整することにより耐電圧を向上させることができる。また、スイッチ回路100F,100Gはスイッチ回路100Bと同様に、スイッチ回路100Aに比べて入力許容電圧をさらに上昇させることができる。 FIG. 7 is a diagram illustrating a configuration example of a switch circuit 100F according to the fourth embodiment of the present invention, and FIG. 8 is a diagram illustrating a configuration example of a switch circuit 100G according to a modification of the fourth embodiment of the present invention. It is. In the switch circuit 100F, capacitive elements 53 (1) to 53 (N) are provided between the gate and source of each FET 30, and capacitive elements 54 (1) to 54 (N) are provided between the gate and drain. In the switching circuit 100G, capacitive elements 55 (1) to 55 (N) are provided between the bulk and the source of each FET 30, and capacitive elements 56 (1) to 56 (N) are provided between the bulk and the drain. Yes. As described above, the connection position of the elements provided in order to uniformly distribute the voltage between the source and drain of each FET 30 is not limited between the source and drain of each FET, but between the gate and source and between the gate and drain, or It may be between the bulk and the source and between the bulk and the drain. Even with such a configuration, the switch circuits 100F and 100G can improve the withstand voltage by adjusting the length of the gate length of each FET 30 similarly to the switch circuit 100A. In addition, the switch circuits 100F and 100G can further increase the allowable input voltage as compared with the switch circuit 100A, similarly to the switch circuit 100B.
 図9は、本発明の第5実施形態に係るスイッチ回路100Hの構成例を示す図であり、図10は、本発明の第5実施形態の変形例に係るスイッチ回路100Iの構成例を示す図であり、図11は、本発明の第5実施形態の他の変形例に係るスイッチ回路100Jの構成例を示す図である。スイッチ回路100H~100Jは、FET30(1)(すなわち、入力端子10に最も近いFET)のゲート・ソース間と、互いに隣接するFETのゲート同士の間に素子が設けられている。 FIG. 9 is a diagram illustrating a configuration example of a switch circuit 100H according to the fifth embodiment of the present invention, and FIG. 10 is a diagram illustrating a configuration example of a switch circuit 100I according to a modification of the fifth embodiment of the present invention. FIG. 11 is a diagram illustrating a configuration example of a switch circuit 100J according to another modification of the fifth embodiment of the present invention. In the switch circuits 100H to 100J, elements are provided between the gate and the source of the FET 30 (1) (that is, the FET closest to the input terminal 10) and between the gates of the adjacent FETs.
 具体的には、スイッチ回路100Hは、FET30(1)のゲートとソース(すなわち、入力端子側の電極)との間に容量素子57(1)(第1素子)が設けられ、互いに隣接するFETのゲート同士の間に容量素子57(2)~57(N)(第2素子)が設けられている。また、スイッチ回路100Iは、FET30(1)のゲートとソースとの間に互いに直列接続された容量素子58及び抵抗素子42(1)(第1素子)が設けられ、互いに隣接するFETのゲート同士の間に抵抗素子42(2)~42(N)(第2素子)が設けられている。また、スイッチ回路100Jは、FET30(1)のゲートとソースとの間に互いに直列接続された容量素子59(1)及び抵抗素子43(1)(第1素子)が設けられ、互いに隣接するFETのゲート同士の間に互いに直列接続された容量素子59(2)~59(N)及び抵抗素子43(2)~43(N)(第2素子)が設けられている。 Specifically, in the switch circuit 100H, a capacitive element 57 (1) (first element) is provided between the gate and the source (that is, the electrode on the input terminal side) of the FET 30 (1), and adjacent FETs. Capacitance elements 57 (2) to 57 (N) (second element) are provided between the gates. Further, the switch circuit 100I is provided with a capacitive element 58 and a resistive element 42 (1) (first element) connected in series between the gate and source of the FET 30 (1), and the gates of the FETs adjacent to each other. Resistance elements 42 (2) to 42 (N) (second element) are provided between the two. Further, the switch circuit 100J is provided with a capacitive element 59 (1) and a resistance element 43 (1) (first element) connected in series between the gate and source of the FET 30 (1), and adjacent FETs. Capacitance elements 59 (2) to 59 (N) and resistance elements 43 (2) to 43 (N) (second element) connected in series with each other are provided between the gates.
 このように、各FET30のソース・ドレイン間電圧の均等な分配を図るために設けられる素子の接続位置は、互いに隣接するFETのゲート同士の間であってもよい。このような構成によっても、スイッチ回路100H~100Jはスイッチ回路100Aと同様に、各FET30のゲート長の長さを調整することにより耐電圧を向上させることができる。また、スイッチ回路100H~100Jはスイッチ回路100Bと同様に、スイッチ回路100Aに比べて入力許容電圧をさらに上昇させることができる。 As described above, the connection position of the elements provided in order to uniformly distribute the voltage between the source and drain of each FET 30 may be between the gates of the adjacent FETs. Even with such a configuration, the switch circuits 100H to 100J can improve the withstand voltage by adjusting the gate length of each FET 30 in the same manner as the switch circuit 100A. In addition, the switch circuits 100H to 100J can further increase the allowable input voltage as compared with the switch circuit 100A, similarly to the switch circuit 100B.
 図12は、本発明の第6実施形態に係るスイッチ回路100Kの構成例を示す図であり、図13は、本発明の第6実施形態の変形例に係るスイッチ回路100Lの構成例を示す図であり、図14は、本発明の第6実施形態の他の変形例に係るスイッチ回路100Mの構成例を示す図である。スイッチ回路100K~100Mは、FET30(1)(すなわち、入力端子10に最も近いFET)のバルク・ソース間と、互いに隣接するFETのバルク同士の間に素子が設けられている。 FIG. 12 is a diagram showing a configuration example of a switch circuit 100K according to the sixth embodiment of the present invention, and FIG. 13 is a diagram showing a configuration example of a switch circuit 100L according to a modification of the sixth embodiment of the present invention. FIG. 14 is a diagram illustrating a configuration example of a switch circuit 100M according to another modification of the sixth embodiment of the present invention. In the switch circuits 100K to 100M, elements are provided between the bulk sources of the FET 30 (1) (that is, the FET closest to the input terminal 10) and between the bulks of the adjacent FETs.
 具体的には、スイッチ回路100Kは、FET30(1)のバルクとソース(すなわち、入力端子側の電極)との間に容量素子60(1)(第3素子)が設けられ、互いに隣接するFETのバルク同士の間に容量素子60(2)~60(N)(第4素子)が設けられている。また、スイッチ回路100Lは、FET30(1)のバルクとソースとの間に互いに直列接続された容量素子61及び抵抗素子44(1)(第3素子)が設けられ、互いに隣接するFETのバルク同士の間に抵抗素子44(2)~44(N)(第4素子)が設けられている。また、スイッチ回路100Mは、FET30(1)のバルクとソースとの間に互いに直列接続された容量素子62(1)及び抵抗素子45(1)(第3素子)が設けられ、互いに隣接するFETのバルク同士の間に互いに直列接続された容量素子62(2)~62(N)及び抵抗素子45(2)~45(N)(第4素子)が設けられている。 Specifically, in the switch circuit 100K, a capacitive element 60 (1) (third element) is provided between the bulk of the FET 30 (1) and the source (that is, the electrode on the input terminal side), and adjacent FETs. Capacitance elements 60 (2) to 60 (N) (fourth element) are provided between the bulks. In addition, the switch circuit 100L includes a capacitive element 61 and a resistive element 44 (1) (third element) connected in series between the bulk and the source of the FET 30 (1), and the bulks of the FETs adjacent to each other. Resistance elements 44 (2) to 44 (N) (fourth element) are provided between the two. Further, the switch circuit 100M includes a capacitive element 62 (1) and a resistive element 45 (1) (third element) connected in series between the bulk and the source of the FET 30 (1), and adjacent FETs. Capacitance elements 62 (2) to 62 (N) and resistance elements 45 (2) to 45 (N) (fourth element) connected in series with each other are provided between the bulks.
 このように、各FET30のソース・ドレイン間電圧の均等な分配を図るために設けられる素子の接続位置は、互いに隣接するFETのバルク同士の間であってもよい。このような構成によっても、スイッチ回路100K~100Mはスイッチ回路100Aと同様に、各FET30のゲート長の長さを調整することにより耐電圧を向上させることができる。また、スイッチ回路100K~100Mはスイッチ回路100Bと同様に、スイッチ回路100Aに比べて入力許容電圧をさらに上昇させることができる。 As described above, the connection position of the elements provided in order to evenly distribute the source-drain voltage of each FET 30 may be between the bulks of the adjacent FETs. Even with such a configuration, the switch circuits 100K to 100M can improve the withstand voltage by adjusting the gate length of each FET 30 in the same manner as the switch circuit 100A. In addition, the switch circuits 100K to 100M can further increase the allowable input voltage as compared with the switch circuit 100A, similarly to the switch circuit 100B.
 図15は、本発明の第7実施形態に係るスイッチ回路100Nの構成例を示す図であり、図16は、本発明の第7実施形態の変形例に係るスイッチ回路100Pの構成例を示す図である。スイッチ回路100N,100Pにおいては、各FET30のバルクにバイアス電圧が供給される。 FIG. 15 is a diagram illustrating a configuration example of a switch circuit 100N according to the seventh embodiment of the present invention, and FIG. 16 is a diagram illustrating a configuration example of a switch circuit 100P according to a modification of the seventh embodiment of the present invention. It is. In the switch circuits 100N and 100P, a bias voltage is supplied to the bulk of each FET 30.
 具体的には、スイッチ回路100Nは、各FET30のゲート・バルク間にダイオード素子70(1)~70(N)が設けられている。各ダイオード素子70は、アノードが各FET30のバルクに接続され、カソードが各FET30のゲートに接続されている。また、スイッチ回路100Pは、各FET30のバルクに直列接続された抵抗素子46(1)~46(N)が設けられている。各FET30のバルクには、各抵抗素子46を経由してバイアス電圧Vbiasが供給される。 Specifically, in the switch circuit 100N, diode elements 70 (1) to 70 (N) are provided between the gate and bulk of each FET 30. Each diode element 70 has an anode connected to the bulk of each FET 30 and a cathode connected to the gate of each FET 30. The switch circuit 100P is provided with resistance elements 46 (1) to 46 (N) connected in series to the bulk of each FET 30. A bias voltage Vbias is supplied to the bulk of each FET 30 via each resistance element 46.
 上述の構成により、スイッチ回路100N,100Pにおいては、各FETのバルクにバイアス電圧を供給することができる。このような構成によっても、スイッチ回路100N,100Pはスイッチ回路100Aと同様に、各FET30のゲート長の長さを調整することにより耐電圧を向上させることができる。なお、スイッチ回路100A~100Mにおいても、スイッチ回路100N,100Pと同様に各FET30のバルクにバイアス電圧を供給することができ、同様の効果を得ることができる。 With the above configuration, in the switch circuits 100N and 100P, a bias voltage can be supplied to the bulk of each FET. Even with such a configuration, the switch circuits 100N and 100P can improve the withstand voltage by adjusting the length of the gate length of each FET 30 similarly to the switch circuit 100A. In the switch circuits 100A to 100M, a bias voltage can be supplied to the bulk of each FET 30 similarly to the switch circuits 100N and 100P, and the same effect can be obtained.
 図17は、本発明の第1及び第2実施形態に係るスイッチ回路及び比較例におけるソース・ドレイン間電圧のシミュレーション結果の一例を示すグラフである。当該シミュレーションは、いずれも12段のFETが多段接続されたスイッチ回路において、入力信号の電力を上昇させていずれかのFETのソース・ドレイン間電圧が耐電圧に到達した時の各FETのソース・ドレイン間電圧を示している。なお、説明の便宜上、入力端子に近いFETから順に1~12の符号を用いる。また、第1実施形態は、スイッチ回路100Aの一例として、FET30(1)のゲート長を0.32μm、FET30(2)のゲート長を0.28μm、FET30(3)~30(12)のゲート長を0.24μmとした構成である。第2実施形態は、第1実施形態と同様のゲート長とし、スイッチ回路100Bの一例としてFET30(1)~30(4)の4段のFETのソース・ドレイン間に容量素子50(1)~50(4)が設けられた構成である。比較例は、FET30(1)~30(12)のゲート長をいずれも0.24μmとした構成である。また、図17に示されるグラフにおいて、縦軸は各FETにおけるソース・ドレイン間電圧(V)を示し、横軸は入力端子から順に付されたFETの符号を示す。また、図17に示されるグラフにおける3本の水平線は、各FETのゲート長に応じた耐電圧を示している。 FIG. 17 is a graph showing an example of a simulation result of the source-drain voltage in the switch circuit and the comparative example according to the first and second embodiments of the present invention. In the simulation, in each of the switch circuits in which 12 stages of FETs are connected in multiple stages, when the power of the input signal is increased and the source-drain voltage of any FET reaches the withstand voltage, The drain-to-drain voltage is shown. For convenience of explanation, reference numerals 1 to 12 are used in order from the FET closest to the input terminal. In the first embodiment, as an example of the switch circuit 100A, the gate length of the FET 30 (1) is 0.32 μm, the gate length of the FET 30 (2) is 0.28 μm, and the gates of the FETs 30 (3) to 30 (12). The length is 0.24 μm. In the second embodiment, the gate length is the same as that of the first embodiment. As an example of the switch circuit 100B, the capacitive elements 50 (1) to 50 (1) to 50 (1) to 30 (4) are arranged between the sources and drains of the four-stage FETs. 50 (4) is provided. In the comparative example, the gate lengths of the FETs 30 (1) to 30 (12) are all 0.24 μm. In the graph shown in FIG. 17, the vertical axis indicates the source-drain voltage (V) in each FET, and the horizontal axis indicates the sign of the FETs attached in order from the input terminal. Moreover, the three horizontal lines in the graph shown in FIG. 17 indicate the withstand voltage according to the gate length of each FET.
 図17に示されるように、比較例においては、入力端子に近いFETほどソース・ドレイン間に高い電圧がかかるため、FET30(1)が耐電圧に到達するときに最大入力電力(38.5dBm)が供給される。一方、第1実施形態においては、FET30(1)及びFET30(2)の耐電圧が向上するため、FET30(3)が耐電圧に到達するときに最大入力電力(40.3dBm)が供給される。さらに、第2実施形態においては、FET30(1)~30(4)のソース・ドレイン間に設けられた容量素子の容量値を調整することにより、各FETのソース・ドレイン間電圧を耐電圧に近付けることができる。従って、第2実施形態においては、FET30(1)~30(4)の全てが耐電圧に到達するときに最大入力電力(42dBm)が供給される。 As shown in FIG. 17, in the comparative example, the higher the voltage between the source and the drain is applied to the FET closer to the input terminal, the maximum input power (38.5 dBm) when the FET 30 (1) reaches the withstand voltage. Is supplied. On the other hand, in the first embodiment, since the withstand voltage of the FET 30 (1) and the FET 30 (2) is improved, the maximum input power (40.3 dBm) is supplied when the FET 30 (3) reaches the withstand voltage. . Further, in the second embodiment, by adjusting the capacitance value of the capacitive element provided between the source and drain of the FETs 30 (1) to 30 (4), the voltage between the source and drain of each FET is set to a withstand voltage. You can get closer. Therefore, in the second embodiment, the maximum input power (42 dBm) is supplied when all of the FETs 30 (1) to 30 (4) reach the withstand voltage.
 図18は、本発明の第1及び第2実施形態に係るスイッチ回路及び比較例における耐電圧及びオン抵抗のシミュレーション結果の一例を示すグラフである。図18に示されるグラフにおいて、縦軸左側はスイッチ回路の耐電圧(V)を示し、縦軸右側はスイッチ回路のオン抵抗×オフ容量(fsec)を示す。当該グラフにおける条件については、図17における条件と同様であるため詳細な説明は省略する。 FIG. 18 is a graph showing an example of simulation results of withstand voltage and on-resistance in the switch circuit and the comparative example according to the first and second embodiments of the present invention. In the graph shown in FIG. 18, the left side of the vertical axis represents the withstand voltage (V) of the switch circuit, and the right side of the vertical axis represents the on-resistance × off-capacitance (fsec) of the switch circuit. The conditions in the graph are the same as the conditions in FIG.
 図18に示されるように、第1実施形態は比較例に比べて耐電圧が6V程度向上している。また、第2実施形態は第1実施形態に比べて耐電圧が7V程度向上している。一方、オン抵抗×オフ容量においては、特に容量素子が設けられた第2実施形態において比較例に比べて劣化していることが分かる。すなわち、スイッチ回路の要求仕様に応じて、ゲート長の長さ、容量素子等の付加の有無、又は付加する素子の個数等の調整を行ってもよい。 As shown in FIG. 18, the withstand voltage of the first embodiment is improved by about 6V compared to the comparative example. Further, the withstand voltage of the second embodiment is improved by about 7V compared to the first embodiment. On the other hand, it can be seen that the on-resistance × off-capacitance is deteriorated as compared with the comparative example, particularly in the second embodiment in which the capacitive element is provided. That is, the length of the gate, the presence / absence of addition of a capacitor element, the number of elements to be added, or the like may be adjusted according to the required specifications of the switch circuit.
 以上、本発明の例示的な実施形態について説明した。スイッチ回路100A~100Pは、多段接続された複数のFETを備え、入力端子10から近いFETは、当該FETより入力端子10から遠いFETに比べてゲート長が長い。これにより、ゲート長が均一な構成に比べて、入力端子10に近いFETの耐電圧が向上し、入力許容電圧を上昇させることが可能となる。従って、スイッチ回路100A~100Pは、回路面積の増大を抑制しつつ、入力電力の増大を実現することができる。また、全てのFETのゲート長を長くする構成に比べて、オン抵抗の抵抗値が低下し、スイッチ回路の挿入損失が低減される。 The exemplary embodiments of the present invention have been described above. The switch circuits 100A to 100P include a plurality of FETs connected in multiple stages, and an FET closer to the input terminal 10 has a longer gate length than an FET farther from the input terminal 10 than the FET. As a result, the withstand voltage of the FET close to the input terminal 10 is improved as compared with the configuration having a uniform gate length, and the input allowable voltage can be increased. Therefore, the switch circuits 100A to 100P can realize an increase in input power while suppressing an increase in circuit area. Further, the resistance value of the on-resistance is lowered and the insertion loss of the switch circuit is reduced as compared with the configuration in which the gate lengths of all the FETs are increased.
 また、FETのゲート長の長さの構成は特に限定されないが、例えば入力端子10に近いFETから順にゲート長が長くてもよい。 Further, the configuration of the length of the gate length of the FET is not particularly limited. For example, the gate length may be increased in order from the FET closer to the input terminal 10.
 また、スイッチ回路100Bは、各FET30のソース・ドレイン間に各容量素子50が設けられている。これにより、各FET30のソース・ドレイン間電圧の均等な分配を図ることができる。あるいは、全てのFETに耐電圧に近い電圧をかけることができる。従って、スイッチ回路100Aに比べてスイッチ回路の入力許容電圧をさらに上昇させることができる。 In the switch circuit 100B, each capacitive element 50 is provided between the source and drain of each FET 30. Thereby, equal distribution of the source-drain voltage of each FET 30 can be achieved. Alternatively, a voltage close to the withstand voltage can be applied to all FETs. Therefore, the input allowable voltage of the switch circuit can be further increased as compared with the switch circuit 100A.
 また、スイッチ回路100Cは、各FET30のうち入力端子10に最も近いFET30(1)のソースと、各FET30のドレインとの間に各容量素子51が設けられている。これにより、各FET30のソース・ドレイン間電圧の均等な分配を図ることができる。あるいは、全てのFETに耐電圧に近い電圧をかけることができる。従って、スイッチ回路100Aに比べてスイッチ回路の入力許容電圧をさらに上昇させることができる。また、スイッチ回路100Cは、入力端子10から遠いほど各容量素子51の必要な容量値が小さくなるため、スイッチ回路100Bに比べて回路面積の増大を抑制することができる。 In the switching circuit 100C, each capacitive element 51 is provided between the source of the FET 30 (1) closest to the input terminal 10 among the FETs 30 and the drain of each FET 30. Thereby, equal distribution of the source-drain voltage of each FET 30 can be achieved. Alternatively, a voltage close to the withstand voltage can be applied to all FETs. Therefore, the input allowable voltage of the switch circuit can be further increased as compared with the switch circuit 100A. Further, since the required capacitance value of each capacitive element 51 becomes smaller as the switch circuit 100C is farther from the input terminal 10, an increase in circuit area can be suppressed compared to the switch circuit 100B.
 また、スイッチ回路100Fは、各FET30のゲート・ソース間及びゲート・ドレイン間に各容量素子53,54が設けられている。これにより、各FET30のソース・ドレイン間電圧の均等な分配を図ることができる。あるいは、全てのFETに耐電圧に近い電圧をかけることができる。従って、スイッチ回路100Aに比べてスイッチ回路の入力許容電圧をさらに上昇させることができる。 In the switch circuit 100F, the capacitive elements 53 and 54 are provided between the gate and the source of each FET 30 and between the gate and the drain. Thereby, equal distribution of the source-drain voltage of each FET 30 can be achieved. Alternatively, a voltage close to the withstand voltage can be applied to all FETs. Therefore, the input allowable voltage of the switch circuit can be further increased as compared with the switch circuit 100A.
 また、スイッチ回路100Gは、各FET30のバルク・ソース間及びバルク・ドレイン間に各容量素子55,56が設けられている。これにより、各FET30のソース・ドレイン間電圧の均等な分配を図ることができる。あるいは、全てのFETに耐電圧に近い電圧をかけることができる。従って、スイッチ回路100Aに比べてスイッチ回路の入力許容電圧をさらに上昇させることができる。 In the switch circuit 100G, the capacitive elements 55 and 56 are provided between the bulk and the source of the FET 30 and between the bulk and the drain. Thereby, equal distribution of the source-drain voltage of each FET 30 can be achieved. Alternatively, a voltage close to the withstand voltage can be applied to all FETs. Therefore, the input allowable voltage of the switch circuit can be further increased as compared with the switch circuit 100A.
 また、スイッチ回路100H~100Jは、各FET30のうち入力端子10に最も近いFET30(1)のゲート・ソース間と、互いに隣接するFETのゲート同士の間に、容量素子、抵抗素子、又は互いに直列接続された容量素子及び抵抗素子、のいずれかが設けられている。これにより、各FET30のソース・ドレイン間電圧の均等な分配を図ることができる。あるいは、全てのFETに耐電圧に近い電圧をかけることができる。従って、スイッチ回路100Aに比べてスイッチ回路の入力許容電圧をさらに上昇させることができる。 In addition, the switch circuits 100H to 100J include a capacitance element, a resistance element, or a series connection between the gate and the source of the FET 30 (1) closest to the input terminal 10 among the FETs 30 and between the gates of the adjacent FETs. Either a connected capacitive element or resistive element is provided. Thereby, equal distribution of the source-drain voltage of each FET 30 can be achieved. Alternatively, a voltage close to the withstand voltage can be applied to all FETs. Therefore, the input allowable voltage of the switch circuit can be further increased as compared with the switch circuit 100A.
 また、スイッチ回路100K~100Pは、各FET30のうち入力端子10に最も近いFET30(1)のバルク・ソース間と、互いに隣接するFETのバルク同士の間に、容量素子、抵抗素子、又は互いに直列接続された容量素子及び抵抗素子、のいずれかが設けられている。これにより、各FET30のソース・ドレイン間電圧の均等な分配を図ることができる。あるいは、全てのFETに耐電圧に近い電圧をかけることができる。従って、スイッチ回路100Aに比べてスイッチ回路の入力許容電圧をさらに上昇させることができる。 Further, the switch circuits 100K to 100P include a capacitance element, a resistance element, or a series connection between the bulk sources of the FET 30 (1) closest to the input terminal 10 among the FETs 30 and between the bulks of adjacent FETs. Either a connected capacitive element or resistive element is provided. Thereby, equal distribution of the source-drain voltage of each FET 30 can be achieved. Alternatively, a voltage close to the withstand voltage can be applied to all FETs. Therefore, the input allowable voltage of the switch circuit can be further increased as compared with the switch circuit 100A.
 また、スイッチ回路100Nに示されるように、各FET30のゲート・バルク間にダイオード素子70が設けられ、各FET30のバルクにバイアス電圧が供給されてもよい。又は、スイッチ回路100Pに示されるように、各FET30のバルクに各抵抗素子46を経由してバイアス電圧が供給されてもよい。 Further, as shown in the switch circuit 100N, a diode element 70 may be provided between the gate and bulk of each FET 30, and a bias voltage may be supplied to the bulk of each FET 30. Alternatively, as shown in the switch circuit 100P, a bias voltage may be supplied to the bulk of each FET 30 via each resistance element 46.
 また、スイッチ回路100Eは、各FET30のソース・ドレイン間に各抵抗素子41が設けられている。これにより、スイッチ回路のオフ時における各FET30のソースやドレインの直流電圧が安定する。 In the switch circuit 100E, each resistance element 41 is provided between the source and drain of each FET 30. This stabilizes the DC voltage at the source and drain of each FET 30 when the switch circuit is off.
 また、スイッチ回路100A~100Pにおいて、各FET30のうち入力端子10から近いFETは、当該FETより入力端子10から遠いFETに比べてゲート幅が広くてもよい。これにより、各FET30のソース・ドレイン間電圧の均等な分配を図ることができる。あるいは、全てのFETに耐電圧に近い電圧をかけることができる。従って、ゲート幅が均一である構成に比べてスイッチ回路の入力許容電圧をさらに上昇させることができる。 Further, in the switch circuits 100A to 100P, the FET closer to the input terminal 10 among the FETs 30 may have a wider gate width than the FET farther from the input terminal 10 than the FET. Thereby, equal distribution of the source-drain voltage of each FET 30 can be achieved. Alternatively, a voltage close to the withstand voltage can be applied to all FETs. Therefore, the input allowable voltage of the switch circuit can be further increased as compared with the configuration in which the gate width is uniform.
 なお、上述の各実施形態では、各FET30において、入力端子側の電極がソースであり、出力端子側の電極がドレインである例が示されているが、これに替えて入力端子側の電極がドレインであり、出力端子側の電極がソースであってもよい。 In each of the above-described embodiments, in each FET 30, an example in which the electrode on the input terminal side is the source and the electrode on the output terminal side is the drain is shown, but instead of this, the electrode on the input terminal side is The drain and the electrode on the output terminal side may be the source.
 以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更又は改良され得るととともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。 Each embodiment described above is for facilitating the understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed or improved without departing from the gist thereof, and the present invention includes equivalents thereof. In other words, those obtained by appropriately modifying the design of each embodiment by those skilled in the art are also included in the scope of the present invention as long as they include the features of the present invention. For example, each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate. In addition, each element included in each embodiment can be combined as much as technically possible, and combinations thereof are included in the scope of the present invention as long as they include the features of the present invention.
 10…入力端子、20…出力端子、30…FET、40~46…抵抗素子、50~62…容量素子、70…ダイオード素子、100A~100P…スイッチ回路
 
DESCRIPTION OF SYMBOLS 10 ... Input terminal, 20 ... Output terminal, 30 ... FET, 40-46 ... Resistance element, 50-62 ... Capacitance element, 70 ... Diode element, 100A-100P ... Switch circuit

Claims (15)

  1.  信号が入力される入力端子と、
     前記信号が出力される出力端子と、
     前記入力端子及び前記出力端子の間において多段接続された複数のFETであって、各々のゲートに供給される制御電圧に応じてオン及びオフが制御される複数のFETと、
     を備え、
     前記複数のFETは、第1FETと、前記第1FETより前記入力端子から遠い位置に設けられた第2FETと、を含み、
     前記第1FETのゲート長は、前記第2FETのゲート長より長い、
     スイッチ回路。
    An input terminal to which a signal is input;
    An output terminal from which the signal is output;
    A plurality of FETs connected in multiple stages between the input terminal and the output terminal, the plurality of FETs being controlled to be turned on and off according to a control voltage supplied to each gate;
    With
    The plurality of FETs includes a first FET and a second FET provided at a position farther from the input terminal than the first FET,
    The gate length of the first FET is longer than the gate length of the second FET,
    Switch circuit.
  2.  前記複数のFETは、前記第2FETより前記入力端子から遠い位置に設けられた第3FETをさらに含み、
     前記第2FETのゲート長は、前記第3FETのゲート長より長い、
     請求項1に記載のスイッチ回路。
    The plurality of FETs further includes a third FET provided at a position farther from the input terminal than the second FET,
    The gate length of the second FET is longer than the gate length of the third FET.
    The switch circuit according to claim 1.
  3.  前記複数のFETは、直列接続されたN個(Nは2以上の整数)のFETを含み、
     前記入力端子から数えてi番目(iは1以上N以下の整数)のFETのゲート長をL(i)とすると、
     L(1)>L(2)≧…≧L(N-1)≧L(N)
     が成立する、
     請求項1又は2に記載のスイッチ回路。
    The plurality of FETs includes N (N is an integer of 2 or more) FETs connected in series,
    When the gate length of the i-th FET (i is an integer from 1 to N) counted from the input terminal is L (i),
    L (1)> L (2) ≧ ... ≧ L (N−1) ≧ L (N)
    Is established,
    The switch circuit according to claim 1 or 2.
  4.  前記スイッチ回路は、
     前記複数のFETの各々のソース・ドレイン間に容量素子が設けられた、
     請求項1から3のいずれか一項に記載のスイッチ回路。
    The switch circuit is
    A capacitive element is provided between the source and drain of each of the plurality of FETs.
    The switch circuit according to any one of claims 1 to 3.
  5.  前記スイッチ回路は、
     前記複数のFETのうち前記入力端子に最も近いFETのソースまたはドレインのうち前記入力端子側の電極と、前記複数のFETの各々のソースまたはドレインのうち前記出力端子側の電極との間に容量素子がそれぞれ設けられた、
     請求項1から3のいずれか一項に記載のスイッチ回路。
    The switch circuit is
    Among the plurality of FETs, a capacitance between the electrode on the input terminal side of the source or drain of the FET closest to the input terminal and the electrode on the output terminal side among the sources or drains of the plurality of FETs Each element was provided,
    The switch circuit according to any one of claims 1 to 3.
  6.  前記スイッチ回路は、
     前記複数のFETの各々のゲート・ソース間及びゲート・ドレイン間に容量素子が設けられた、
     請求項1から3のいずれか一項に記載のスイッチ回路。
    The switch circuit is
    Capacitance elements are provided between the gate and source of each of the plurality of FETs and between the gate and drain.
    The switch circuit according to any one of claims 1 to 3.
  7.  前記スイッチ回路は、
     前記複数のFETの各々のバルク・ソース間及びバルク・ドレイン間に容量素子が設けられた、
     請求項1から3のいずれか一項に記載のスイッチ回路。
    The switch circuit is
    Capacitance elements are provided between the bulk and the source and between the bulk and the drain of each of the plurality of FETs.
    The switch circuit according to any one of claims 1 to 3.
  8.  前記スイッチ回路は、
     前記複数のFETのうち、前記入力端子に最も近いFETのゲートと、当該FETのソースまたはドレインのうち前記入力端子側の電極との間に第1素子が設けられ、
     前記複数のFETのうち、互いに隣接するFETのゲート同士の間に第2素子が設けられた、
     請求項1から3のいずれか一項に記載のスイッチ回路。
    The switch circuit is
    Among the plurality of FETs, a first element is provided between the gate of the FET closest to the input terminal and the electrode on the input terminal side of the source or drain of the FET,
    Among the plurality of FETs, a second element is provided between the gates of adjacent FETs.
    The switch circuit according to any one of claims 1 to 3.
  9.  前記第1及び第2素子のそれぞれは、容量素子、抵抗素子、又は互いに直列接続された容量素子及び抵抗素子、のいずれかである、
     請求項8に記載のスイッチ回路。
    Each of the first and second elements is either a capacitive element, a resistive element, or a capacitive element and a resistive element connected in series with each other.
    The switch circuit according to claim 8.
  10.  前記スイッチ回路は、
     前記複数のFETのうち、前記入力端子に最も近いFETのバルクと、当該FETのソース又はドレインのうち前記入力端子側の電極との間に第3素子が設けられ、
     前記複数のFETのうち、互いに隣接するFETのバルク同士の間に第4素子が設けられた、
     請求項1から3のいずれか一項に記載のスイッチ回路。
    The switch circuit is
    A third element is provided between the bulk of the FET closest to the input terminal of the plurality of FETs and the electrode on the input terminal side of the source or drain of the FET,
    Of the plurality of FETs, a fourth element is provided between the bulks of the adjacent FETs.
    The switch circuit according to any one of claims 1 to 3.
  11.  前記第3及び第4素子のそれぞれは、容量素子、抵抗素子、又は互いに直列接続された容量素子及び抵抗素子、のいずれかである、
     請求項10に記載のスイッチ回路。
    Each of the third and fourth elements is either a capacitive element, a resistive element, or a capacitive element and a resistive element connected in series with each other.
    The switch circuit according to claim 10.
  12.  前記スイッチ回路は、
     前記複数のFETの各々のゲート・バルク間にダイオード素子が設けられ、
     前記ダイオード素子のアノードが前記バルクに接続され、前記ダイオード素子のカソードが前記ゲートに接続された、
     請求項1から11のいずれか一項に記載のスイッチ回路。
    The switch circuit is
    A diode element is provided between the gate and bulk of each of the plurality of FETs,
    The anode of the diode element is connected to the bulk, and the cathode of the diode element is connected to the gate;
    The switch circuit according to any one of claims 1 to 11.
  13.  前記スイッチ回路は、
     前記複数のFETの各々のバルクに抵抗素子が直列接続され、
     前記バルクに前記抵抗素子を経由してバイアス電圧が供給される、
     請求項1から11のいずれか一項に記載のスイッチ回路。
    The switch circuit is
    A resistive element is connected in series to the bulk of each of the plurality of FETs,
    A bias voltage is supplied to the bulk via the resistance element.
    The switch circuit according to any one of claims 1 to 11.
  14.  前記スイッチ回路は、
     前記複数のFETの各々のソース・ドレイン間に抵抗素子が設けられた、
     請求項1から13のいずれか一項に記載のスイッチ回路。
    The switch circuit is
    A resistance element is provided between the source and drain of each of the plurality of FETs.
    The switch circuit according to any one of claims 1 to 13.
  15.  前記第1FETのゲート幅は、前記第2FETのゲート幅より広い、
     請求項1から14のいずれか一項に記載のスイッチ回路。
    The gate width of the first FET is wider than the gate width of the second FET,
    The switch circuit according to any one of claims 1 to 14.
PCT/JP2018/002160 2017-01-30 2018-01-24 Switch circuit WO2018139495A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017014360 2017-01-30
JP2017-014360 2017-01-30

Publications (1)

Publication Number Publication Date
WO2018139495A1 true WO2018139495A1 (en) 2018-08-02

Family

ID=62978412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002160 WO2018139495A1 (en) 2017-01-30 2018-01-24 Switch circuit

Country Status (1)

Country Link
WO (1) WO2018139495A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171901A1 (en) * 2020-02-25 2021-09-02 ソニーセミコンダクタソリューションズ株式会社 Switch circuit and communication device
JP7193447B2 (en) 2017-03-22 2022-12-20 ソニーセミコンダクタソリューションズ株式会社 Semiconductor equipment and modules

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249466A (en) * 2010-05-25 2011-12-08 Renesas Electronics Corp Semiconductor device
US20140312958A1 (en) * 2008-02-28 2014-10-23 Peregrine Semiconductor Corporation Devices and Methods for Improving Voltage Handling and/or Bi-Directionality of Stacks of Elements When Connected Between Terminals
JP2015115884A (en) * 2013-12-13 2015-06-22 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2015523810A (en) * 2012-07-07 2015-08-13 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Circuits, devices, methods and combinations for silicon-on-insulator based high frequency switches
JP2016171498A (en) * 2015-03-13 2016-09-23 株式会社東芝 Semiconductor switch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140312958A1 (en) * 2008-02-28 2014-10-23 Peregrine Semiconductor Corporation Devices and Methods for Improving Voltage Handling and/or Bi-Directionality of Stacks of Elements When Connected Between Terminals
JP2011249466A (en) * 2010-05-25 2011-12-08 Renesas Electronics Corp Semiconductor device
JP2015523810A (en) * 2012-07-07 2015-08-13 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Circuits, devices, methods and combinations for silicon-on-insulator based high frequency switches
JP2015115884A (en) * 2013-12-13 2015-06-22 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2016171498A (en) * 2015-03-13 2016-09-23 株式会社東芝 Semiconductor switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7193447B2 (en) 2017-03-22 2022-12-20 ソニーセミコンダクタソリューションズ株式会社 Semiconductor equipment and modules
WO2021171901A1 (en) * 2020-02-25 2021-09-02 ソニーセミコンダクタソリューションズ株式会社 Switch circuit and communication device

Similar Documents

Publication Publication Date Title
US8288895B2 (en) High-power tunable capacitor
US9276526B2 (en) Amplifier with variable feedback impedance
US20060261912A1 (en) Radio frequency switching circuit and semiconductor device including the same
CN110324012B (en) Amplifying circuit
US11990874B2 (en) Device stack with novel gate capacitor topology
US8179205B2 (en) Linearization systems and methods for variable attenuators
US9722546B2 (en) Bias circuit for low quiescent current amplifier
US11201594B2 (en) Cascode amplifier circuit
US10651825B2 (en) Resistor-based attenuator systems
CN107306118B (en) Power amplifying module
US10361669B2 (en) Output circuit
EP1796202A1 (en) High power, high frequency switch circuits using strings of power transistors
WO2018139495A1 (en) Switch circuit
JP5011312B2 (en) Method and system for high power switching
KR20020067531A (en) Bootstrapped dual-gate class e amplifier circuit
US10447208B2 (en) Amplifier having a switchable current bias circuit
US20210203322A1 (en) Optimized gate and/or body bias network of a rf switch fet
US8373508B2 (en) Power amplifier
JP4802062B2 (en) Semiconductor amplifier
KR102188703B1 (en) The tunable impedance circuit using Graphene FET
US11290062B2 (en) Amplifier circuit
KR101891619B1 (en) Linearizing Bias Circuit for GaN MMIC Amplifier
US10826490B2 (en) Switch circuit
WO2021186694A1 (en) Semiconductor device
KR20230061225A (en) Multistage low noise amplifier based on high electron mobility transister with current sharing circuit and method for design the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP