WO2018139410A1 - 光ネットワーク制御装置及びその制御方法 - Google Patents

光ネットワーク制御装置及びその制御方法 Download PDF

Info

Publication number
WO2018139410A1
WO2018139410A1 PCT/JP2018/001828 JP2018001828W WO2018139410A1 WO 2018139410 A1 WO2018139410 A1 WO 2018139410A1 JP 2018001828 W JP2018001828 W JP 2018001828W WO 2018139410 A1 WO2018139410 A1 WO 2018139410A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
transmission
control device
network control
client signal
Prior art date
Application number
PCT/JP2018/001828
Other languages
English (en)
French (fr)
Inventor
智之 樋野
田島 章雄
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2018139410A1 publication Critical patent/WO2018139410A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems

Definitions

  • the present invention relates to an optical network control device and a control method thereof, and more particularly, to an optical network control device and a control method thereof used in an optical transmission system that transmits traffic using a plurality of optical carriers.
  • Patent Document 1 proposes an elastic optical network that uses wavelength resources in an optical fiber more flexibly as a new concept of an optical network.
  • transmission with minimum wavelength resources is possible by varying the modulation method of the optical signal.
  • the granularity of wavelength resources is improved by introducing the concept of a fine frequency slot, for example 12.5 GHz. Thereby, when using the same modulation system, the frequency bandwidth to be used can be varied with high granularity by shaping the spectrum shape of the optical carrier.
  • Patent Document 2 describes a technique for switching an optical communication path without reducing optical frequency utilization efficiency.
  • Patent Document 3 describes a technique related to mapping of a client signal across a plurality of line side interface units.
  • Patent Document 4 describes a technique related to the efficiency of optical network accommodation design.
  • Patent Document 5 describes a technique for generating one or a plurality of MAC frames based on one or a plurality of MAC layer PDUs.
  • client signals are composed of services with various transmission speeds.
  • data transmission to a counter apparatus using a plurality of optical carriers becomes mainstream due to the limitation of transmission capacity with a single optical carrier.
  • transmission of a plurality of services by a plurality of optical carriers will become mainstream.
  • the transmission granularity of the client signal and the transmission granularity of the signal on the line interface side for long distance transmission are generally different. Therefore, when mapping client signals to a plurality of optical carriers on the line side using general round robin, the MAC frame signal for each service multiplexed in the client signal is divided into different optical carriers. There is. Since the MAC frame signal transmitted on a different optical carrier needs to be reconfigured by the optical transmission device on the receiving side, there arises a problem that a transmission delay occurs.
  • the amount of transmission delay depends on the division method, but if it is divided by MLD (Multi-Lane Distribution) in the state of an OTU (Optical Transport Unit) frame, a delay of up to ms (millisecond) level is assumed.
  • MLD Multi-Lane Distribution
  • OTU Optical Transport Unit
  • An object of this invention is to provide the technique for reducing the transmission delay in an optical network.
  • the optical network control device of the present invention holds information for setting a route and a transmission method when a client signal multiplexed with a plurality of services is transmitted between a plurality of optical transmission devices using a plurality of optical carriers. And a path between the plurality of optical transmission devices based on the database information and traffic request, and the client is provided on the condition that the same service frame included in the client signal is not divided on the path.
  • a control unit that extracts a transmission method capable of mapping a signal to the plurality of optical carriers; and a transmission unit configured to transmit the client signal based on the transmission method extracted by the control unit. Transmission method determination for generating control information and outputting the control information to the plurality of optical transmission devices And, equipped with a.
  • the control method of the optical network control device of the present invention is for setting a route and a transmission method when transmitting a client signal multiplexed with a plurality of services between a plurality of optical transmission devices using a plurality of optical carriers. Holding the information, extracting a route between the plurality of optical transmission devices based on the information and the traffic request, and the client signal under a condition that the frame of the same service included in the client signal is not divided in the route
  • the present invention makes it possible to reduce transmission delay of an optical network.
  • FIG. 2 is a diagram illustrating an example of a block diagram of an optical network control apparatus 101.
  • FIG. It is a figure explaining the example of the mapping to the optical carrier of a client signal. It is a figure explaining the relationship between the number of optical carriers and reception performance. It is a figure explaining the example of a mode that a client signal is mapped to an optical carrier. It is an example of the flowchart of the determination procedure of a transmission system. It is a figure explaining the example of the mapping to the optical carrier of the client signal in 2nd Embodiment and 3rd Embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of an optical transmission system 1 according to the first embodiment.
  • the optical transmission system 1 includes an optical network control device 101 and a plurality of optical transmission devices 102.
  • the optical transmission apparatuses 102 exist inside the optical network 10 as schematically shown in the center of FIG. 1 and are connected to each other by at least one path.
  • the transmission path between the optical transmission apparatuses 102 is an optical fiber.
  • the optical transmission apparatus 102 includes an optical transmission apparatus control unit 103, a client interface 104, a demultiplexing unit 105, and a line interface 106.
  • the optical transmission device control unit 103 manages and controls the client interface 104, the demultiplexing unit 105, and the line interface 106 included in the optical transmission device 102 based on the control information received from the optical network control device 101. Specifically, as described later, the optical transmission device control unit 103 maps the client signal to the optical carrier so that the client signal is transmitted between the opposed optical transmission devices 102 according to the control information.
  • the client interface 104 is an interface with a communication apparatus connected to the optical transmission apparatus 102.
  • the communication device is, for example, a server or transmission device that includes an Ethernet (registered trademark) interface connected to the optical transmission device 102.
  • the line interface 106 is an optical interface of the optical transmission apparatus 102 on the optical network 10 side.
  • the line interface 106 is, for example, an optical transceiver that can transmit and receive wavelength multiplexed signals.
  • the optical transmission device control unit 103 instructs the line interface 106 about a physical optical interface, an optical frequency, a modulation method, a baud rate, and the like to be used with the opposite optical transmission device 102.
  • the demultiplexing unit 105 performs a multiplexing process and a demultiplexing process on signals input to and output from the optical transmission apparatus 102 via the client interface 104 or the line interface 106.
  • the optical transmission device 102 inputs and outputs a plurality of client signals via the client interface 104 with a communication device connected to the optical transmission device 102.
  • the client signal is accommodated in the Ethernet communication standard.
  • the client signal has various transmission speeds such as 10 Gbps (Gigabit per second), 25 Gbps ⁇ n (n is a positive integer), 40 Gbps, 100 Gbps, etc., and each of the transmission speeds in an Ethernet MAC (Media Access Control) frame. Be contained.
  • the client signal may be a signal in which a plurality of client signals are multiplexed in a time division manner when input from another device to the client interface 104. In that case, the multiplexing / demultiplexing unit 105 performs multiplexing processing and separation processing as necessary.
  • the optical network control device 101 controls the entire optical network 10.
  • the optical network control apparatus 101 performs communication path allocation between the optical transmission apparatuses 102, frequency allocation in the optical fiber constituting each path, operation control of the optical transmission apparatus 102, and the like according to the contents. Includes functionality.
  • the traffic request is an instruction for requesting a setting for transmitting new traffic, and is input to the optical network control apparatus 101 by the administrator of the optical transmission system 1 as necessary.
  • the optical transmission apparatus 102 that has detected the occurrence of new traffic may generate a traffic request and notify the optical network control apparatus 101.
  • FIG. 2 is a block diagram illustrating an example of the optical network control apparatus 101.
  • the optical network control apparatus 101 includes a database 201, a control unit 205, and a transmission method determination unit 209.
  • the database 201 includes a path / optical frequency information storage unit 202, a client signal information storage unit 203, and an optical node information storage unit 204.
  • the control unit 205 includes a route search unit 206, a transmission determination unit 207, and a mapping determination unit 208.
  • the path / optical frequency information storage unit 202 has information about the paths between the optical transmission apparatuses 102 included in the optical network 10 and the optical frequencies that can be used for each path.
  • the client signal information storage unit 203 has information regarding a client-side signal connected to each of the optical transmission apparatuses 102. Information regarding the signal on the client side may be included in the traffic request, or may be collected from the optical transmission apparatus 102 in advance by the optical network control apparatus 101 and stored in the database 201.
  • the optical network control apparatus 101 may record information extracted from the traffic request in the database 201.
  • the optical node information storage unit 204 has information unique to each of the optical transmission apparatuses 102.
  • the optical node information storage unit 204 has information indicating whether each of the optical transmission apparatuses 102 can be used.
  • the traffic request is a request for setting a path between different optical transmission apparatuses 102 and is input from the outside of the optical network control apparatus 101.
  • the traffic request includes information on the optical transmission apparatus 102 at the transmission / reception point and the distance between them, the transmission speed requested by the traffic, and the client signal.
  • the control unit 205 When receiving the traffic request, the control unit 205 obtains a transmission method that can be mapped without dividing the client signal from a plurality of transmission methods that satisfy the transmission reachability based on the content of the traffic request. At this time, the control unit 205 refers to the path / optical frequency information storage unit 202, the client signal information storage unit 203, and the optical node information storage unit 204.
  • the route search unit 206 calculates the communication route of the requested traffic based on the content of the traffic request.
  • the route search unit 206 extracts one route from a plurality of routes that can transmit traffic from the transmission source to the transmission destination, and outputs information on the route to the transmission determination unit 207.
  • the route search unit 206 extracts a route with the shortest transmission distance and outputs information on the route to the transmission determination unit 207.
  • the route search unit 206 may output information on the route extracted based on other criteria to the transmission determination unit 207.
  • the transmission determination unit 207 calculates a plurality of transmission methods capable of transmitting the requested traffic on the route calculated by the route search unit 206. For example, the transmission determination unit 207 obtains a plurality of transmission schemes based on parameters such as the number of optical carriers, the modulation scheme of the optical carriers, and the amount of narrowing of the optical carrier band.
  • the mapping determination unit 208 selects a transmission method that can be mapped to the optical carrier without dividing the MAC frame for each service included in the requested traffic from the plurality of transmission methods obtained by the transmission determination unit 207.
  • the transmission method determination unit 209 receives information on the transmission method selected by the mapping determination unit 208 and its route, and generates a control signal based on the information. Then, the transmission method determination unit 209 transmits a control signal to each of the optical transmission devices 102 so that the optical transmission device 102 on the route processes the traffic using the selected transmission method.
  • FIG. 3 is a diagram for explaining an example of mapping of a client signal to an optical carrier in the present embodiment.
  • the traffic transmission source optical transmission apparatus 102 (hereinafter referred to as “transmission source apparatus”) accommodates three 100 Gbps Ethernet signals as a client signal 301 and a total of 300 Gbps signals. Then, the transmission source apparatus transmits the accommodated 300 Gbps signal to the transmission destination optical transmission apparatus 102 (hereinafter referred to as “transmission destination apparatus”) that can output the same client signal as the transmission source apparatus.
  • two transmission methods can be selected when the usable optical frequency band is 100 GHz.
  • One is a method (303 in FIG. 3) in which the modulation method is QPSK (Quadrature Phase shift Keying), the bandwidth of an optical carrier having a transmission rate of 100 Gbps is narrowed to 33 GHz, and transmission is performed with three optical carriers.
  • the other is a transmission method (302 in FIG. 3) in which the modulation method is 8QAM (Quadrature Amplitude Modulation) and two optical carriers having a bandwidth of 50 GHz are transmitted at a transmission rate of 150 Gbps.
  • FIG. 4 is a diagram for explaining an example of the relationship between the number of optical carriers and the reception performance in this embodiment.
  • the communication speed is 150 Gbps (302 in FIG. 3)
  • the modulation method is 8QAM.
  • the reception performance (optical signal band noise ratio, OSNR, Optical ⁇ Signal to Noise Ratio in this figure) needs to be 17 dB or more.
  • the number of optical carriers is 3 since the communication speed is 100 Gbps and the modulation method is QPSK, the reception performance may be 13 dB or more.
  • FIG. 5 is a diagram showing an example of how the client signal 301 is mapped to the optical carrier.
  • “100GE” indicates an Ethernet signal of 100 Gbps.
  • the left side of FIG. 5 shows the case of the transmission method 303 of FIG. 3, and the right side of FIG. 5 shows the case of the transmission method 302 of FIG. In this embodiment, the transmission method 303 is adopted. The reason will be described below.
  • a transmission scheme 302 that is, an 8QAM modulation scheme and an optical carrier having a bandwidth of 50 GHz at a transmission rate of 150 Gbps and 8QAM modulated and transmitted in two.
  • the MAC frame of one 100 Gbps service needs to be equally divided into 50 Gbps in the demultiplexing unit 105 and mapped to each of the two optical carriers. .
  • the transmission scheme 303 since the MAC frame of 100 Gbps is accommodated in each of the three optical carriers, there is no need to divide the MAC frame of the 100 Gbps service. Then, the bandwidth of an optical carrier having a transmission rate of 100 Gbps is narrowed down to 33 GHz using QPSK modulation, and traffic is transmitted using three optical carriers. As a result, the MAC frame of the client signal 301 can be mapped to the optical carrier without being divided.
  • FIG. 6 is an example of a flowchart of a transmission method determination procedure in the optical network control apparatus 101.
  • the optical network control apparatus 101 receives the traffic request (S1000).
  • the route search unit 206 searches the traffic route based on the traffic request, and extracts one route candidate (S1001). Then, the transmission determining unit 207 extracts a plurality of transmission method candidates for the extracted path (S1002).
  • the parameters of the transmission method are, for example, the number of optical carriers to be used, the modulation method of the optical carrier, the modulation multilevel of the optical carrier, the transmission speed of the optical carrier, the baud rate of the optical carrier, the frequency of the optical carrier, and the bandwidth thereof. . Some or all of these parameters may be included in the parameters of the transmission method. Further, the parameters of the transmission method are not limited to these.
  • step S1003 If a plurality of transmission method candidates are extracted in step S1002 (S1003: YES), the process proceeds to step S1004. If a plurality of transmission method candidates are not obtained in step S1002 (S1003: NO), the process proceeds to step S1006.
  • the mapping determination unit 208 determines whether there is a transmission method candidate that can be mapped without dividing the MAC frame of the same service included in the client signal (S1004). If there is a transmission method candidate that can be mapped (S1004: YES), the transmission method determination unit 209 generates a control signal based on the candidate and transmits the control signal to the optical transmission apparatus 102 on the extracted path. To do.
  • the transmission method determination unit 209 may select one transmission method that satisfies a predetermined condition from them. (S1005). This example will be described in the second and third embodiments.
  • step S1003 If a plurality of transmission method candidates cannot be obtained in step S1002 (S1003: NO), if another route exists, the process returns to step S1001 (S1006: YES), and the newly extracted other route is used. You may perform the procedure after step S1002 again.
  • step S1006 when there is no other route in step S1006 and there is no transmission method candidate that can be mapped in step S1004, the processing of the traffic request is terminated. However, in any case, the processing from S1001 may be executed again under different conditions.
  • the optical network control device of the first embodiment can map a client signal to an optical carrier so as not to divide the MAC frame of the same service included in the client signal. As a result, it is not necessary to reconfigure the divided client signals for each service in the transmission destination device, and traffic transmission delay can be reduced.
  • the optical network control apparatus 101 may include a CPU (central processing unit) and a non-temporary fixed recording medium.
  • the CPU may realize the function of the optical network control apparatus 101 by executing a program recorded on the recording medium.
  • the CPU and the recording medium may be included in the control unit 205.
  • any of a plurality of transmission methods can be mapped without dividing the MAC frame. That is, a case will be described where there are a plurality of transmission schemes that can be mapped without dividing the client signal in step S1004 of FIG.
  • a transmission method with a smaller number of line interfaces used for transmission between the optical transmission apparatuses 102 is selected.
  • FIG. 7 will be described with a specific example.
  • FIG. 7 is a diagram for explaining an example of mapping of a client signal to an optical carrier in the second embodiment and the third embodiment.
  • the transmission source apparatus accommodates two 100 Gbps Ethernet signals and four 25 Gbps Ethernet signals (25GE) as a client signal 501, for a total of 300 Gbps, and transmits them to the transmission destination apparatus.
  • the transmission source device and the transmission destination device are different optical transmission devices 102.
  • two transmission methods can be selected when the optical frequency band to be used is 100 GHz.
  • One transmission method is a method (503 in FIG.
  • the other transmission method is a transmission method (502 in FIG. 7) that transmits two optical carriers having a bandwidth of 50 GHz at a transmission rate of 150 Gbps modulated by 8QAM.
  • FIG. 8 is a diagram for explaining an example of how client signals are mapped to optical carriers in the second embodiment and the third embodiment.
  • “100 GE” and “25 GE” indicate Ethernet signals of 100 Gbps and 25 Gbps, respectively.
  • the left side of FIG. 8 shows the mapping of the transmission method 503 in FIG. 7, and the right side of FIG. 8 shows the mapping of the transmission method 502 in FIG.
  • the granularity of the transmission rate of the MAC frame of the client signal is fine, and the minimum transmission rate is 25 Gbps. Therefore, both of the transmission methods 502 and 503 can be mapped to the optical carrier without dividing the MAC frame.
  • the mapping determination unit 208 of the optical network control apparatus 101 outputs information on the transmission methods 502 and 503 to the transmission method determination unit 209. Then, the transmission method determination unit 209 selects the 150-Gbps two-carrier transmission method 502 that uses a smaller number of optical interfaces, and notifies the optical transmission device 102 of the control information generated based on the transmission method 502 and its route. To do.
  • the effect of improving the line accommodation efficiency of the line interface 106 can be obtained.
  • FIG. 1 A third embodiment of the present invention will be described.
  • the configuration of the optical transmission system 1 according to the present embodiment is the same as that of the first embodiment.
  • the procedure for selecting the transmission method so as not to divide the MAC frame is basically the same as that in the first embodiment.
  • the third embodiment as in the second embodiment, it is assumed that a plurality of transmission methods to be selected when selecting a transmission method can be mapped without dividing a MAC frame.
  • a transmission method with a small required optical frequency band is selected.
  • the transmission source apparatus in this embodiment accommodates two 100 Gbps Ethernet signals and four 25 Gbps Ethernet signals as a client signal 501 in a total of 300 Gbps and transmits them to the transmission destination apparatus.
  • the transmission source device and the transmission destination device are different optical transmission devices 102 included in the optical network 10.
  • One transmission scheme is a scheme (503 in FIGS. 7 and 8) in which the bandwidth of an optical carrier having a transmission rate of 100 Gbps by QPSK modulation is narrowed to 33 GHz and transmitted by three optical carriers.
  • the other transmission method is a transmission method (502 in FIGS. 7 and 8) in which transmission is performed with two optical carriers having a bandwidth of 50 GHz at a transmission rate of 150 Gbps with a modulation method of 8QAM.
  • the bandwidth per optical carrier can be narrowed to 37.5 GHz and transmission is possible. . Therefore, when comparing the optical frequency bandwidths to be used, the required bandwidth is 100 GHz (33 GHz ⁇ 3) in the former transmission method, but the required bandwidth may be 75 GHz in the latter transmission method.
  • both the transmission methods 502 and 503 can be mapped to an optical carrier without dividing the MAC frame.
  • the mapping determination unit 208 of the optical network control apparatus 101 outputs information on the transmission methods 502 and 503 to the transmission method determination unit 209.
  • the transmission method determination unit 209 selects a 150-Gbps two-carrier transmission method 502 having a narrower required optical frequency band, and generates control information based on the transmission method 502 and its route.
  • the third embodiment has an effect of improving the frequency utilization efficiency of the optical transmission line in addition to the effect of the first embodiment by selecting a transmission method having a narrower required optical frequency band.
  • This embodiment is characterized by a transmission method calculation method.
  • the transmission method selection procedure described in the first to third embodiments calculates a plurality of applicable transmission methods in a communication path that can ensure transmission reachability. That is, a plurality of transmission schemes are calculated with variable parameters such as the number of optical carriers, the modulation scheme, and the optical band constriction amount under technical conditions related to transmission reachability, and selected from the plurality of transmission schemes.
  • the fourth embodiment not only technical conditions related to transmission reachability, but also the quality information of dynamically changing networks such as the influence of band narrowing and crosstalk from adjacent signals is monitored.
  • the transmission method is calculated in consideration of the influence.
  • the quality of the optical signal transmitted by the transmission source device may be received from the transmission destination device, and a transmission method that employs a more preferable modulation method based on the reception status may be used as a candidate.
  • a transmission method that employs a more preferable modulation method based on the reception status may be used as a candidate.
  • the configuration of the optical transmission system 1 according to this embodiment is the same as that of the first to fourth embodiments.
  • the procedure for mapping the transmission method may be a procedure for minimizing the number of optical interfaces as described in the second embodiment, or a procedure for minimizing the optical frequency to be used as described in the third embodiment. .
  • FIG. 9 is a diagram illustrating an example of the configuration and wavelength arrangement of the optical transmission system 1 according to the fifth embodiment.
  • the wavelengths of a plurality of optical carriers to be mapped without dividing the MAC frame are set so that the wavelength fragmentation in the link where the used wavelengths are congested is reduced. Is set.
  • the control unit 205 searches the path / optical frequency information storage unit 202 and the optical node information storage unit 204 to grasp the congestion state of the wavelength of the link to be used. Then, based on the wavelength occupancy status of the link, the frequency of the optical carrier is allocated so that the separation of wavelength slots is reduced.
  • the fifth embodiment further exhibits the effect that the frequency use efficiency of the optical transmission line can be improved by reducing the frequency fragmentation.
  • the optical network control apparatus 101 described in the first embodiment can also be described as follows. That is, the optical network control apparatus 101 includes a database 201, a control unit 205, and a transmission method determination unit 209.
  • the database 201 holds information for setting a route and a transmission method when a client signal multiplexed with a plurality of services is transmitted between a plurality of optical transmission apparatuses using a plurality of optical carriers.
  • the control unit 205 extracts paths between the plurality of optical transmission devices based on the information in the database 201 and the traffic request. Then, in the extracted path, a transmission method capable of mapping the client signal to a plurality of optical carriers is extracted under the condition that the frame of the same service included in the client signal is not divided.
  • the transmission method determination unit 209 generates control information based on the transmission method extracted by the control unit 205.
  • the control information is information set in the optical transmission apparatus 102 for transmitting the client signal.
  • the transmission method determination unit 209 outputs the generated control information to the optical transmission device 102.
  • the optical network control apparatus 101 can map the client signal to the optical carrier so as not to divide the same service frame. As a result, it is not necessary to reconfigure the divided client signals for each service in the transmission destination device, and traffic transmission delay can be reduced.
  • An optical network control device comprising:
  • Appendix 2 The optical network control device according to appendix 1, wherein the client signal is configured by multiplexing a plurality of MAC (Media Access Control) frames in a time division manner.
  • MAC Media Access Control
  • the transmission method determination unit selects one transmission method and outputs the selected transmission method to the plurality of optical transmission devices as the control information.
  • the optical network control device according to any one of appendices 1 to 3.
  • Appendix 7 The optical network control device according to any one of appendices 4 to 6, wherein the plurality of transmission schemes include a modulation scheme of the optical carrier in which at least one of modulation multilevel and baud rate is different.
  • Appendix 8 The optical network control device according to any one of appendices 4 to 7, wherein the transmission method is set based on an optical frequency bandwidth of the narrowed optical carrier.
  • Appendix 9 The optical network according to any one of appendices 1 to 8, wherein the transmission system performs the arrangement of the optical carriers so as to reduce fragmentation of an optical frequency arrangement between the plurality of optical transmission apparatuses. Control device.
  • (Appendix 12) Holds information for setting a route and a transmission method when a client signal multiplexed with a plurality of services is transmitted between a plurality of optical transmission apparatuses using a plurality of optical carriers, Based on the information and traffic request, extract a path between the plurality of optical transmission devices, Extracting a transmission method capable of mapping the client signal to the plurality of optical carriers on the condition that the same service frame included in the client signal is not divided in the path; Generating control information set in the plurality of optical transmission devices to transmit the client signal based on the extracted transmission method; Outputting the control information to the plurality of optical transmission devices; An optical network control device control method.
  • Appendix 13 The method of controlling an optical network control device according to appendix 12, wherein the client signal is configured by multiplexing a plurality of MAC (Media Access Control) frames in a time division manner.
  • MAC Media Access Control
  • Appendix 14 14. The optical network control device control method according to appendix 13, wherein the client signal is configured by multiplexing the MAC frames having different transmission rates.
  • Appendix 19 The control method of the optical network control device according to any one of appendices 15 to 18, wherein the transmission method is set based on an optical frequency bandwidth of the confined optical carrier.
  • Appendix 20 The optical network according to any one of appendices 15 to 19, wherein the transmission scheme performs the arrangement of the optical carriers so as to reduce fragmentation of an optical frequency arrangement between the plurality of optical transmission apparatuses. Control method of the control device.
  • Appendix 21 21. The method of controlling an optical network control device according to any one of appendices 12 to 20, wherein the transmission method is further extracted based on quality information on the route.
  • Appendix 22 The method of controlling an optical network control device according to any one of appendices 12 to 21, wherein the route is a route having a shortest distance between the plurality of optical transmission devices.
  • optical transmission devices Two optical transmission devices;
  • the optical network control device according to any one of appendices 1 to 11, and With
  • the optical network control device generates control information for setting a path and a transmission method between the optical transmission devices based on a traffic request for transmitting a client signal between the optical transmission devices;
  • the operations of the plurality of optical transmission devices are set based on the control information.
  • Optical transmission system Two optical transmission devices;
  • Optical transmission system 10 Optical network 101 Optical network control apparatus 102 Optical transmission apparatus 103 Optical transmission apparatus control part 104 Client interface 105 Demultiplexing part 106 Line interface 201 Database 202 Optical frequency information storage part 203 Client signal information storage part 204 Optical node information Storage unit 205 Control unit 206 Route search unit 207 Transmission determination unit 208 Mapping determination unit 209 Transmission method determination unit 301, 501 Client signal 302, 303, 502, 503 Transmission method

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

光ネットワークにおける伝送遅延を低減するために、光ネットワーク制御装置は、複数のサービスが多重されたクライアント信号を複数の光キャリアを用いて複数の光伝送装置間を伝送する際の経路及び伝送方式の設定を行うための情報を保持するデータベースと、データベースの情報及びトラフィック要求に基づいて、複数の光伝送装置間の経路を抽出し、経路においてクライアント信号に含まれる同一のサービスのフレームが分割されない条件でクライアント信号を複数の光キャリアにマッピング可能な伝送方式を抽出する制御部と、制御部において抽出された伝送方式に基づいてクライアント信号を伝送するために複数の光伝送装置に設定される制御情報を生成し、制御情報を複数の光伝送装置へ出力する伝送方式決定部と、を備える。

Description

光ネットワーク制御装置及びその制御方法
 本発明は光ネットワーク制御装置及びその制御方法に関し、特に、複数の光キャリアを用いてトラフィックを伝送する光伝送システムで用いられる光ネットワーク制御装置及びその制御方法に関する。
 ビデオストリーミングサービスに代表される情報容量の大きなアプリケーションのサービスが急速に増えていることで、ネットワーク内の通信トラフィック容量が急拡大している。さらに、大容量のコンテンツを処理する高機能移動端末の急速な普及により、時間や場所に対して通信トラフィックの変動量が増大している。
 このような環境変化を背景に、特許文献1には、光ネットワークの新しい概念として、より柔軟に光ファイバ内の波長資源を活用するエラスティック光ネットワークが提唱されている。エラスティック技術の一形態では、光信号の変調方式を可変させることで、最小限の波長資源での伝送を可能とする。エラスティック技術の他の形態では、例えば12.5GHzという粒度の細かい周波数スロットの概念の導入により、波長資源の粒度が向上する。これにより、同じ変調方式を使用する場合、光キャリアのスペクトル形状をシェーピングすることにより、使用する周波数帯域幅を高い粒度で可変できる。
 本発明に関連して、特許文献2は、光周波数利用効率を低下させずに光通信路を切り替えるための技術を記載している。特許文献3は、複数のライン側インターフェース部に跨がったクライアント信号のマッピングに関する技術を記載している。特許文献4は、光ネットワークの収容設計の効率化に関する技術を記載している。特許文献5は、1個又は複数のMAC層PDUに基づいて1つ又は複数のMACフレームを生成するための技術を記載している。
国際公開第2011/030897号 国際公開第2015/098026号 特開2016-103761号公報 特開2008-022523号公報 特表2007-509531号公報
 通信サービスの多様化に伴い、クライアント信号は多種多様な伝送速度を有するサービスで構成される。一方、光伝送装置間を接続する長距離伝送用のラインインターフェース側では、単一の光キャリアでの伝送容量の限界により、複数の光キャリアによる対向装置までのデータ伝送が主流となる。つまり、今後の光ネットワークでは、複数のサービスを複数の光キャリアで伝送することが主流となる。しかし、クライアント信号の伝送粒度と長距離伝送用のラインインターフェース側の信号の伝送粒度とは一般的には異なっている。このため、クライアント信号をライン側の複数の光キャリアにマッピングする際に一般的なラウンドロビンで割り当てると、クライアント信号内に多重されているサービス毎のMACフレーム信号が異なる光キャリアに分割される場合がある。異なる光キャリアで伝送されたMACフレーム信号は受信側の光伝送装置で再構成する必要があるため、伝送遅延が発生するという課題が生じる。
 伝送遅延の量は分割手法に依存するが、仮にOTU(Optical Transport Unit)フレームの状態でMLD(Multi Lane Distribution)で分割した場合は、最大でms(ミリ秒)レベルの遅延が想定される。
 (発明の目的)
 本発明は、光ネットワークにおける伝送遅延を低減するための技術を提供することを目的とする。
 本発明の光ネットワーク制御装置は、複数のサービスが多重されたクライアント信号を複数の光キャリアを用いて複数の光伝送装置間を伝送する際の経路及び伝送方式の設定を行うための情報を保持するデータベースと、前記データベースの情報及びトラフィック要求に基づいて、前記複数の光伝送装置間の経路を抽出し、前記経路において前記クライアント信号に含まれる同一の前記サービスのフレームが分割されない条件で前記クライアント信号を前記複数の光キャリアにマッピング可能な伝送方式を抽出する制御部と、前記制御部において抽出された前記伝送方式に基づいて前記クライアント信号を伝送するために前記複数の光伝送装置に設定される制御情報を生成し、前記制御情報を前記複数の光伝送装置へ出力する伝送方式決定部と、を備える。
 本発明の光ネットワーク制御装置の制御方法は、複数のサービスが多重されたクライアント信号を複数の光キャリアを用いて複数の光伝送装置間を伝送する際の経路及び伝送方式の設定を行うための情報を保持し、前記情報及びトラフィック要求に基づいて、前記複数の光伝送装置間の経路を抽出し、前記経路において前記クライアント信号に含まれる同一の前記サービスのフレームが分割されない条件で前記クライアント信号を前記複数の光キャリアにマッピング可能な伝送方式を抽出し、抽出された前記伝送方式に基づいて前記クライアント信号を伝送するために前記複数の光伝送装置に設定される制御情報を生成し、前記制御情報を前記複数の光伝送装置へ出力する、
ことを特徴とする。
 本発明は、光ネットワークの伝送遅延の低減を可能とする。
第1の実施形態の光伝送システム1の構成例を示す図である。 光ネットワーク制御装置101のブロック図の例を示す図である。 クライアント信号の光キャリアへのマッピングの例を説明する図である。 光キャリア数と受信性能との関係を説明する図である。 クライアント信号を光キャリアへマッピングする様子の例を説明する図である。 伝送方式の決定手順のフローチャートの例である。 第2の実施形態及び第3の実施形態におけるクライアント信号の光キャリアへのマッピングの例を説明する図である。 第2の実施形態及び第3の実施形態においてクライアント信号を光キャリアへマッピングする様子の例を説明する図である。 第5の実施形態における光伝送システム1の構成及び波長配置の例を示す図である。
 本発明の実施形態を以下に詳述する。なお、各図に付した参照符号は説明のために例として付されたものであり、なんらの限定を意図しない。また、各図の矢印の向きも説明のために例として付されたものであり、ブロック間の信号の向きを限定しない。
 (第1の実施形態)
 本発明の第1の実施形態について説明する。図1は、第1の実施形態の光伝送システム1の構成例を示す図である。光伝送システム1は、光ネットワーク制御装置101と、複数の光伝送装置102とを含む。光伝送装置102は、図1の中央に模式的に示されるように光ネットワーク10の内部に存在し、少なくとも1個の経路により互いに接続される。光伝送装置102間の伝送路は光ファイバである。
 光伝送装置102は、光伝送装置制御部103、クライアントインターフェース104、多重分離部105、ラインインターフェース106、を含む。光伝送装置制御部103は、光ネットワーク制御装置101から受信した制御情報に基づいて、光伝送装置102が備えるクライアントインターフェース104、多重分離部105、ラインインターフェース106を管理及び制御する。具体的には、後述するように、光伝送装置制御部103は、制御情報に応じて、対向する光伝送装置102の間でクライアント信号が伝送されるようにクライアント信号を光キャリアにマッピングする。
 クライアントインターフェース104は、光伝送装置102と接続される通信装置とのインターフェースである。通信装置は、例えば、光伝送装置102に接続されたイーサネット(登録商標)インターフェースを備えるサーバや伝送装置である。ラインインターフェース106は、光伝送装置102の、光ネットワーク10側の光インターフェースである。
 ラインインターフェース106は、例えば、波長多重信号を送受信可能な光トランシーバである。光伝送装置制御部103は、ラインインターフェース106に対して、対向する光伝送装置102との間で使用する物理的な光インターフェース、光周波数、変調方式、ボーレートなどを指示する。
 多重分離部105は、クライアントインターフェース104又はラインインターフェース106を介して光伝送装置102に入出力される信号の多重処理及び分離処理を行う。
 光伝送装置102は、光伝送装置102に接続された通信装置との間で、クライアントインターフェース104を介して複数のクライアント信号を入出力する。クライアント信号はイーサネットの通信規格で収容される。クライアント信号は、10Gbps(Gigabit per second)、25Gbps×n(nは正の整数)、40Gbps、100Gbpsなどの多種の伝送速度を有し、それぞれ伝送速度毎にイーサネットのMAC(Media Access Control)フレームに収容される。クライアント信号は、他の装置からクライアントインターフェース104へ入力される時点で、複数のクライアント信号が時分割で多重された信号であってもよい。その場合、必要に応じて多重分離部105で多重処理や分離処理が行われる。
 光ネットワーク制御装置101は、光ネットワーク10の全体を制御する。光ネットワーク制御装置101は、トラフィック要求を受信すると、その内容に応じて光伝送装置102間の通信経路割り当て、各経路を構成する光ファイバにおける周波数割り当て、光伝送装置102の運用制御、などを行う機能を含む。トラフィック要求は、新たなトラフィックを伝送するための設定を要求する指示であり、例えば、光伝送システム1の管理者が必要に応じて光ネットワーク制御装置101に入力する。あるいは、新たなトラフィックの発生を検出した光伝送装置102がトラフィック要求を生成して光ネットワーク制御装置101に通知してもよい。
 図2は、光ネットワーク制御装置101のブロック図の例を示す図である。光ネットワーク制御装置101は、データベース201、制御部205、伝送方式決定部209を含む。
 データベース201は、経路/光周波数情報格納部202、クライアント信号情報格納部203、光ノード情報格納部204を含む。制御部205は経路探索部206、伝送判定部207、マッピング判定部208を含む。
 経路/光周波数情報格納部202は、光ネットワーク10に含まれる光伝送装置102間の経路及び経路毎に使用可能な光周波数の情報を持つ。クライアント信号情報格納部203は、光伝送装置102のそれぞれに接続されたクライアント側の信号に関する情報を持つ。クライアント側の信号に関する情報は、トラフィック要求に含まれていてもよいし、あらかじめ光ネットワーク制御装置101が光伝送装置102から収集してデータベース201に格納してもよい。光ネットワーク制御装置101は、トラフィック要求から抽出された情報をデータベース201に記録させてもよい。
 光ノード情報格納部204は、光伝送装置102のそれぞれに固有の情報を持つ。例えば、光ノード情報格納部204は、光伝送装置102のそれぞれが使用可能であるかどうかの情報を持つ。
 トラフィック要求は、異なる光伝送装置102の間にパスを設定する要求であり、光ネットワーク制御装置101の外部から入力される。トラフィック要求には、送受信地点の光伝送装置102及びそれらの間の距離、トラフィックが要求する伝送速度及びクライアント信号の情報が含まれる。
 制御部205は、トラフィック要求を受信すると、その内容に基づいて、伝送到達性を満たす複数の伝送方式の中からクライアント信号を分割しないでマッピング可能な伝送方式を求める。この際、制御部205は、経路/光周波数情報格納部202、クライアント信号情報格納部203及び光ノード情報格納部204を参照する。
 経路探索部206は、トラフィック要求の内容に基づいて、要求されたトラフィックの通信経路を算出する。経路探索部206は、トラフィックを送信元から送信先まで伝送可能な複数の経路の中から1つの経路を抽出して、その経路の情報を伝送判定部207に出力する。経路探索部206は、例えば、伝送距離が最短となる経路を抽出してその経路の情報を伝送判定部207に出力する。経路探索部206は、他の基準に基づいて抽出した経路の情報を伝送判定部207に出力してもよい。
 伝送判定部207は、経路探索部206が算出した経路において、要求されたトラフィックを伝送可能な複数の伝送方式を算出する。例えば、伝送判定部207は、光キャリア数、光キャリアの変調方式、光キャリアの帯域の狭窄量などのパラメータに基づいて、複数の伝送方式を求める。
 マッピング判定部208は、伝送判定部207が求めた複数の伝送方式の中から、要求されたトラフィックに含まれるサービス毎のMACフレームを分割することなく光キャリアにマッピングできる伝送方式を選択する。
 伝送方式決定部209は、マッピング判定部208で選択された伝送方式及びその経路の情報を受信し、それらに基づく制御信号を生成する。そして、伝送方式決定部209は、経路上の光伝送装置102が選択された伝送方式でトラフィックを処理するように、光伝送装置102のそれぞれへ制御信号を送信する。
 図3は、本実施形態における、クライアント信号の光キャリアへのマッピングの例を説明する図である。トラフィックの送信元の光伝送装置102(以下、「送信元装置」という。)は、クライアント信号301として100Gbpsのイーサネット信号を3本、合計300Gbpsの信号を収容する。そして、送信元装置は、送信元装置と同一のクライアント信号を出力可能な、送信先の光伝送装置102(以下、「送信先装置」という。)へ、収容された300Gbpsの信号を送信する。
 伝送速度が300Gbpsのクライアント信号301を送信先装置まで伝送するにあたっては、使用可能な光周波数帯域を100GHzとすると、2つの伝送方式を選択できる。1つは、変調方式をQPSK(Quadrature Phase shift Keying)とし、100Gbpsの伝送速度を有する光キャリアの帯域を33GHzまで狭窄し、3本の光キャリアで伝送する方式(図3の303)である。もう一つは変調方式を8QAM(Quadrature Amplitude Modulation)とし、150Gbpsの伝送速度で50GHzの帯域幅を有する光キャリアを2本用いて伝送する伝送方式(図3の302)である。
 図4は、本実施形態における光キャリア数と受信性能との関係の例を説明する図である。図3において2個の光キャリアを用いる場合には、通信速度は150Gbps(図3の302)であり変調方式は8QAMである。この場合には、受信性能(本図では光信号帯雑音比、OSNR、Optical Signal to Noise Ratio)は17dB以上必要である。一方、光キャリア数が3個である場合には、通信速度は100Gbpsであり変調方式はQPSKであるため、受信性能は13dB以上あればよい。
 図5は、クライアント信号301を光キャリアにマッピングする様子の例を示す図である。「100GE」は100Gbpsのイーサネット信号を示す。図5の左側が図3の伝送方式303の場合を示し、図5の右側が図3の伝送方式302の場合を示す。本実施形態では、伝送方式303が採用される。その理由を以下に説明する。
 伝送方式302、つまり8QAMの変調方式で150Gbpsの伝送速度で50GHzの帯域幅を有する光キャリアを8QAM変調して2本で伝送する場合を考える。この場合、3つのMACフレームに収容された100Gbpsのサービスのうち、1つの100GbpsのサービスのMACフレームを多重分離部105において50Gbpsに等分して2個の光キャリアのそれぞれにマッピングする必要がある。その結果、伝送方式302では、受信側でMACフレームの再構成が必要になり伝送遅延が余分に発生する。
 一方、伝送方式303では、3本の光キャリアにそれぞれ100GbpsのMACフレームを収容するため、100GbpsのサービスのMACフレームを分割する必要がない。そして、QPSK変調を用いて100Gbpsの伝送速度を有する光キャリアの帯域を33GHzまで狭窄し、3個の光キャリアでトラフィックを伝送する。これによりクライアント信号301のMACフレームを分割せずに光キャリアにマッピング可能である。
 図6は、光ネットワーク制御装置101における伝送方式の決定手順のフローチャートの例である。光ネットワーク制御装置101は、トラフィック要求を受信する(S1000)。
 経路探索部206は、トラフィック要求に基づいてトラフィックの経路を探索し、経路の候補を1つ抽出する(S1001)。そして、伝送判定部207は、抽出された経路に対して、複数の伝送方式の候補を抽出する(S1002)。伝送方式のパラメータは、例えば、使用する光キャリアの数、光キャリアの変調方式、光キャリアの変調多値度、光キャリアの伝送速度、光キャリアのボーレート、光キャリアの周波数及びその帯域幅である。伝送方式のパラメータには、これらの一部又は全部が含まれてもよい。また、伝送方式のパラメータはこれらには限定されない。
 ステップS1002において複数の伝送方式の候補が抽出された場合(S1003:YES)は、ステップS1004に進む。ステップS1002において複数の伝送方式の候補が得られなかった場合(S1003:NO)は、ステップS1006に進む。
 マッピング判定部208は、クライアント信号に含まれる、同一のサービスのMACフレームを分割せずにマッピング可能な伝送方式の候補の有無を判断する(S1004)。マッピング可能な伝送方式の候補が存在する場合は(S1004:YES)、伝送方式決定部209は当該候補に基づく制御信号を生成して、抽出された経路上の光伝送装置102に制御信号を送信する。
 なお、伝送方式決定部209は、クライアント信号を分割せずにマッピング可能な伝送方式の候補が複数ある場合には、それらの中から、所定の条件を満たす1つの伝送方式を選択してもよい(S1005)。この例については第2及び第3の実施形態で説明する。
 また、ステップS1002において複数の伝送方式の候補が得られなかった場合(S1003:NO)は、他の経路が存在する場合はステップS1001に戻り(S1006:YES)、新たに抽出した他の経路でステップS1002以降の手順を再び実行してもよい。
 図6では、ステップS1006において他の経路が存在しない場合、及び、ステップS1004においてマッピング可能な伝送方式の候補が存在しなかった場合は、トラフィック要求の処理を終了するとした。しかし、いずれの場合も、異なる条件でS1001からの処理を再度実行してもよい。
 以上説明したように、第1の実施形態の光ネットワーク制御装置は、クライアント信号に含まれる同一サービスのMACフレームを分割しないようにクライアント信号を光キャリアにマッピングすることができる。その結果、分割されたクライアント信号を送信先装置でサービス毎に再構成する必要がなく、トラフィックの伝送遅延を低減することができる。
 なお、光ネットワーク制御装置101は、CPU(central processing unit)及び一時的でない固定された記録媒体を備えてもよい。CPUは記録媒体に記録されたプログラムを実行することによって光ネットワーク制御装置101の機能を実現させてもよい。光ネットワーク制御装置101において、CPU及び記録媒体は、制御部205に含まれていてもよい。
 (第2の実施形態)
 本発明に係る第2の実施形態について説明する。本実施形態に係る光伝送システム1の構成は、第1の実施形態と同様である。また、MACフレームを分割しないように伝送方式を選択する手順も基本的に第1の実施形態と同様である。以降の実施形態の説明では、既出の要素には同一の参照符号を付して重複する説明は省略する。
 第2の実施形態では、複数の伝送方式が、いずれもMACフレームを分割せずにマッピングできる場合を想定する。つまり、図6のステップS1004において、クライアント信号を分割せずにマッピング可能な伝送方式が複数ある場合について説明する。そして、本実施形態では、光伝送装置102間の伝送で使用されるラインインターフェース数がより少ない伝送方式が選択される。
 図7に具体例を挙げて説明する。図7は、第2の実施形態及び第3の実施形態におけるクライアント信号の光キャリアへのマッピングの例を説明する図である。本実施形態では、送信元装置はクライアント信号501として100Gbpsのイーサネット信号を2本、25Gbpsのイーサネット信号(25GE)を4本、合計300Gbpsを収容し、送信先装置へ送信する。送信元装置及び送信先装置は、互いに異なる光伝送装置102である。伝送速度が300Gbpsのクライアント信号501を送信先装置まで伝送する場合には、使用する光周波数帯域を100GHzとすると2つの伝送方式を選択できる。一方の伝送方式は、QPSK変調された100Gbpsの伝送速度を有する光キャリアを33GHzまで帯域狭窄して3本で伝送する方式(図7の503)である。他方の伝送方式は8QAM変調された150Gbpsの伝送速度で50GHzの帯域幅を有する光キャリアを2本で伝送する伝送方式(図7の502)である。
 図8は、第2の実施形態及び第3の実施形態においてクライアント信号を光キャリアへマッピングする様子の例を説明する図である。「100GE」及び「25GE」は、それぞれ、100Gbps及び25Gbpsのイーサネット信号を示す。図8の左側は図7の伝送方式503、図8の右側は図7の伝送方式502のマッピングの様子を示す。本実施形態では、クライアント信号のMACフレームの伝送速度の粒度が細かく、最小伝送速度が25Gbpsである。このため、伝送方式502及び503はいずれもMACフレームを分割せずに光キャリアにマッピング可能である。
 すなわち、100Gbpsの3本の光キャリア(伝送方式503)を用いる場合は25Gbps×4のクライアント信号を多重分離部105で多重処理して1本の100Gbpsの伝送速度を有する3本の光キャリアにマッピングできる。一方、150Gbpsの2本の光キャリアを用いる場合(伝送方式502)は、1本の100Gbpsと2本の25Gbpsの合計150Gbpsを多重処理して、2本の光キャリアにマッピングする。その結果、伝送方式502においても、MACフレームを分割せずに光キャリアへのマッピングが可能である。
 第2の実施形態では、光ネットワーク制御装置101のマッピング判定部208は、伝送方式502及び503の情報を伝送方式決定部209へ出力する。そして、伝送方式決定部209は、使用する光インターフェース数がより少ない150Gbpsの2キャリアの伝送方式502を選択して、伝送方式502及びその経路に基づいて生成した制御情報を光伝送装置102へ通知する。使用する光インターフェース数を少なくすることで、第1の実施形態の効果に加えて、ラインインターフェース106の回線収容効率が向上するという効果が得られる。
 (第3の実施形態)
 本発明の第3の実施形態について説明する。本実施形態に係る光伝送システム1の構成は、第1の実施形態と同様である。また、MACフレームを分割しないように伝送方式を選択する手順も基本的に第1の実施形態と同様である。
 第3の実施形態では、第2の実施形態と同様に、伝送方式の選択の際に選択対象となる複数の伝送方式が、いずれもMACフレームを分割せずにマッピングできる場合を想定する。そして、本発明に係る第3の実施形態では、必要な光周波数帯域が小さい伝送方式が選択される。
 図7及び図8を再び参照して説明する。本実施形態における送信元装置はクライアント信号501として100Gbpsのイーサネット信号を2本、25Gbpsのイーサネット信号を4本、合計300Gbpsを収容し、送信先装置へ送信するものとする。送信元装置及び送信先装置は、光ネットワーク10に含まれる互いに異なる光伝送装置102である。伝送速度が300Gbpsのクライアント信号501を送信先装置まで伝送するにあたっては、2つの伝送方式を選択できる。一方の伝送方式は、QPSK変調で100Gbpsの伝送速度を有する光キャリアの帯域を33GHzまで狭窄して3本の光キャリアで伝送する方式(図7及び図8の503)である。他方の伝送方式は8QAMの変調方式で150Gbpsの伝送速度で50GHzの帯域幅を有する2本の光キャリアで伝送する伝送方式(図7及び図8の502)である。
 本発明に係る第3の実施形態では、送信元装置から送信先装置までの距離が短いため、伝送方式502では1本の光キャリアあたりの帯域幅を37.5GHzまで狭窄して伝送可能である。よって使用する光周波数帯域幅を比べると、前者の伝送方式では必要な帯域が100GHz(33GHz×3)となるが、後者の伝送方式では必要な帯域は75GHzでよい。
 第3の実施形態においても、伝送方式502及び503はいずれもMACフレームを分割せずに光キャリアにマッピング可能である。このため、光ネットワーク制御装置101のマッピング判定部208は、伝送方式502及び503の情報を伝送方式決定部209へ出力する。そして、第3の実施形態においては、伝送方式決定部209は、必要な光周波数帯域がより狭い150Gbpsの2キャリアの伝送方式502を選択し、伝送方式502及びその経路に基づいて生成した制御情報を光伝送装置102へ通知する。第3の実施形態は、必要な光周波数帯域がより狭い伝送方式を選択することで、第1の実施形態の効果に加えて、光伝送路の周波数利用効率が向上するという効果を奏する。
 (第4の実施形態)
 本発明に係る第4の実施形態について説明する。本実施形態に係る光伝送システム1の構成は、第1の実施形態と同様である。また、MACフレームを分割しないように伝送方式を選択する手順も第1の実施形態と同様である。
 本実施形態は伝送方式の算出方法に特徴がある。第1から第3の実施形態で説明した伝送方式の選択手順は、伝送到達性が確保できる通信経路において、適用可能な複数の伝送方式を算出する。つまり、伝送到達性に関する技術的条件の下で、光キャリア数、変調方式、光帯域狭窄量などの可変パラメータで複数の伝送方式を算出し、これら複数の伝送方式の中から選択していた。
 これに対して、第4の実施形態では、伝送到達性に関する技術的条件だけでなく、帯域狭窄の影響、隣接信号からのクロストークなどのダイナミックに変化するネットワークの品質情報をモニタして、その影響を考慮して、伝送方式の算出を行う。
 例えば、送信元装置が送信した光信号の品質を送信先装置から受信し、受信状況に基づいてより好ましい変調方式を採用した伝送方式を候補としてもよい。これにより、伝送到達性のみに基づいて一律に複数の伝送方式の候補を算出する場合と比較して、より好ましい伝送方式の選択肢を得ることができる。
 (第5の実施形態)
 本発明の第5の実施形態について説明する。本実施形態に係る光伝送システム1の構成も、第1から第4の実施形態と同様である。伝送方式をマッピングする手順は、第2の実施形態で記載したように光インターフェース数を最小化する手順でもよく、第3の実施形態で記載したように使用する光周波数を最小化する手順でもよい。
 図9は、第5の実施形態における光伝送システム1の構成及び波長配置の例を示す図である。図9に示すように、第5の実施形態では、MACフレームを分割せずにマッピングする複数の光キャリアの波長を、使用される波長が混雑したリンクにおける波長フラグメンテーションが低減されるように波長が設定される。制御部205は経路/光周波数情報格納部202及び光ノード情報格納部204を検索して、使用しようとするリンクの波長の混雑状態を把握する。そして、当該リンクの波長占有状況から、波長スロットの個片化が低減されるように光キャリアの周波数を割り当てる。第5の実施形態は、周波数フラグメンテーションの低減により、光伝送路の周波数利用効率を向上させることができるという効果をさらに奏する。
 (第6の実施形態)
 第1の実施形態で説明した光ネットワーク制御装置101は、以下のようにも記載できる。すなわち、光ネットワーク制御装置101は、データベース201、制御部205、伝送方式決定部209を備える。
 データベース201は、複数のサービスが多重されたクライアント信号を複数の光キャリアを用いて複数の光伝送装置間を伝送する際の経路及び伝送方式の設定を行うための情報を保持する。制御部205は、以下に説明するように、データベース201の情報及びトラフィック要求に基づいて、当該複数の光伝送装置間の経路を抽出する。そして、抽出された経路において、クライアント信号に含まれる同一のサービスのフレームが分割されない条件でクライアント信号を複数の光キャリアにマッピング可能な伝送方式を抽出する。伝送方式決定部209は、制御部205において抽出された伝送方式に基づいて制御情報を生成する。制御情報は、クライアント信号を伝送するために光伝送装置102に設定される情報である。伝送方式決定部209は、生成した制御情報を光伝送装置102へ出力する。
 光ネットワーク制御装置101は、同一サービスのフレームを分割しないようにクライアント信号を光キャリアにマッピングすることができる。その結果、分割されたクライアント信号を送信先装置でサービス毎に再構成する必要がなく、トラフィックの伝送遅延を低減することができる。
 なお、上記の実施形態の一部又は全部は以下の付記のようにも記載されうるが、以下には限定されない。
 (付記1)
 複数のサービスが多重されたクライアント信号を複数の光キャリアを用いて複数の光伝送装置間を伝送する際の経路及び伝送方式の設定を行うための情報を保持するデータベースと、
 前記データベースの情報及びトラフィック要求に基づいて、前記複数の光伝送装置間の経路を抽出し、前記経路において前記クライアント信号に含まれる同一の前記サービスのフレームが分割されない条件で前記クライアント信号を前記複数の光キャリアにマッピング可能な伝送方式を抽出する制御部と、
 前記制御部において抽出された前記伝送方式に基づいて前記クライアント信号を伝送するために前記複数の光伝送装置に設定される制御情報を生成し、前記制御情報を前記複数の光伝送装置へ出力する伝送方式決定部と、
を備える光ネットワーク制御装置。
 (付記2)
 前記クライアント信号は、複数のMAC(Media Access Control)フレームが時分割で多重されて構成されている、付記1に記載された光ネットワーク制御装置。
 (付記3)
 前記クライアント信号は、異なる伝送速度を有する前記MACフレームが多重されて構成される、付記2に記載された光ネットワーク制御装置。
 (付記4)
 前記制御部が複数の前記伝送方式を抽出した場合に、前記伝送方式決定部は、1つの伝送方式を選択し、選択された前記伝送方式を前記制御情報として前記複数の光伝送装置へ出力する、付記1乃至3のいずれか1項に記載された光ネットワーク制御装置。
 (付記5)
 前記伝送方式は、光キャリア数が最小となるように選択される、付記4に記載された光ネットワーク制御装置。
 (付記6)
 前記伝送方式は、使用される前記光キャリアの帯域幅が最小となるように選択される、付記4に記載された光ネットワーク制御装置。
 (付記7)
 前記複数の伝送方式は、変調多値度及びボーレートの少なくとも一方が異なる前記光キャリアの変調方式を含む、付記4乃至6のいずれか1項に記載された光ネットワーク制御装置。
 (付記8)
 前記伝送方式は、狭窄された前記光キャリアの光周波数帯域幅に基づいて設定される、付記4乃至7のいずれか1項に記載された光ネットワーク制御装置。
 (付記9)
 前記伝送方式は、前記複数の光伝送装置間の光周波数配置のフラグメンテーションを低減するように前記光キャリアの配置を行うことを特徴とする付記1乃至8のいずれか1項に記載された光ネットワーク制御装置。
 (付記10)
 前記伝送方式は、さらに、前記経路上の品質情報に基づいて抽出される、付記1乃至9のいずれか1項に記載された光ネットワーク制御装置。
 (付記11)
 前記制御部は、前記複数の光伝送装置間の距離が最短となる前記経路を抽出することを特徴とする、付記1乃至10のいずれか1項に記載された光ネットワーク制御装置。
 (付記12)
 複数のサービスが多重されたクライアント信号を複数の光キャリアを用いて複数の光伝送装置間を伝送する際の経路及び伝送方式の設定を行うための情報を保持し、
 前記情報及びトラフィック要求に基づいて、前記複数の光伝送装置間の経路を抽出し、
 前記経路において前記クライアント信号に含まれる同一の前記サービスのフレームが分割されない条件で前記クライアント信号を前記複数の光キャリアにマッピング可能な伝送方式を抽出し、
 抽出された前記伝送方式に基づいて前記クライアント信号を伝送するために前記複数の光伝送装置に設定される制御情報を生成し、
 前記制御情報を前記複数の光伝送装置へ出力する、
ことを特徴とする光ネットワーク制御装置の制御方法。
 (付記13)
 前記クライアント信号は、複数のMAC(Media Access Control)フレームが時分割で多重されて構成されている、付記12に記載された光ネットワーク制御装置の制御方法。
 (付記14)
 前記クライアント信号は、異なる伝送速度を有する前記MACフレームが多重されて構成される、付記13に記載された光ネットワーク制御装置の制御方法。
 (付記15)
 複数の前記伝送方式を抽出した場合に、
 1つの伝送方式を選択し、
 選択された前記伝送方式を前記制御情報として前記複数の光伝送装置へ出力する、
付記12乃至14のいずれか1項に記載された光ネットワーク制御装置の制御方法。
 (付記16)
 前記伝送方式は、光キャリア数が最小となるように選択される、付記15に記載された光ネットワーク制御装置の制御方法。
 (付記17)
 前記伝送方式は、使用される前記光キャリアの帯域幅が最小となるように選択される、付記15に記載された光ネットワーク制御装置の制御方法。
 (付記18)
 前記複数の伝送方式は、変調多値度及びボーレートの少なくとも一方が異なる前記光キャリアの変調方式を含む、付記15乃至17のいずれか1項に記載された光ネットワーク制御装置の制御方法。
 (付記19)
 前記伝送方式は、狭窄された前記光キャリアの光周波数帯域幅に基づいて設定される、付記15乃至18のいずれか1項に記載された光ネットワーク制御装置の制御方法。
 (付記20)
 前記伝送方式は、前記複数の光伝送装置間の光周波数配置のフラグメンテーションを低減するように前記光キャリアの配置を行うことを特徴とする付記15乃至19のいずれか1項に記載された光ネットワーク制御装置の制御方法。
 (付記21)
 前記伝送方式は、さらに、前記経路上の品質情報に基づいて抽出される、付記12乃至20のいずれか1項に記載された光ネットワーク制御装置の制御方法。
 (付記22)
 前記経路は、前記複数の光伝送装置間の距離が最短となる経路であることを特徴とする、付記12乃至21のいずれか1項に記載された光ネットワーク制御装置の制御方法。
 (付記23)
 光ネットワーク制御装置のコンピュータに、
 複数のサービスが多重されたクライアント信号を複数の光キャリアを用いて複数の光伝送装置間を伝送する際の経路及び伝送方式の設定を行うための情報を保持する手順、
 前記情報及びトラフィック要求に基づいて、前記複数の光伝送装置間の経路を抽出する手順、
 前記経路において前記クライアント信号に含まれる同一の前記サービスのフレームが分割されない条件で前記クライアント信号を前記複数の光キャリアにマッピング可能な伝送方式を抽出する手順、
 抽出された前記伝送方式に基づいて前記クライアント信号を伝送するために前記複数の光伝送装置に設定される制御情報を生成する手順、
 前記制御情報を前記複数の光伝送装置へ出力する手順、
を実行させるための光ネットワーク制御装置の制御プログラム。
 (付記24)
 2台の光伝送装置と、
 付記1乃至11のいずれか1項に記載された光ネットワーク制御装置と、
を備え、
 前記光ネットワーク制御装置は、前記光伝送装置間でクライアント信号を伝送するためのトラフィック要求に基づいて前記光伝送装置間の経路及び伝送方式を設定するための制御情報を生成し、
 前記複数の光伝送装置の動作は前記制御情報に基づいて設定される、
光伝送システム。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記の実施形態に限定されない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 また、それぞれの実施形態に記載された構成は、必ずしも互いに排他的なものではない。本発明の作用及び効果は、上述の実施形態の全部又は一部を組み合わせた構成によって実現されてもよい。
 この出願は、2017年1月24日に出願された日本出願特願2017-009985を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1  光伝送システム
 10  光ネットワーク
 101  光ネットワーク制御装置
 102  光伝送装置
 103  光伝送装置制御部
 104  クライアントインターフェース
 105  多重分離部
 106  ラインインターフェース
 201  データベース
 202  光周波数情報格納部
 203  クライアント信号情報格納部
 204  光ノード情報格納部
 205  制御部
 206  経路探索部
 207  伝送判定部
 208  マッピング判定部
 209  伝送方式決定部
 301、501  クライアント信号
 302、303、502、503  伝送方式

Claims (24)

  1.  複数のサービスが多重されたクライアント信号を複数の光キャリアを用いて複数の光伝送装置間を伝送する際の経路及び伝送方式の設定を行うための情報を保持するデータベースと、
     前記データベースの情報及びトラフィック要求に基づいて、前記複数の光伝送装置間の経路を抽出し、前記経路において前記クライアント信号に含まれる同一の前記サービスのフレームが分割されない条件で前記クライアント信号を前記複数の光キャリアにマッピング可能な伝送方式を抽出する制御手段と、
     前記制御手段において抽出された前記伝送方式に基づいて前記クライアント信号を伝送するために前記複数の光伝送装置に設定される制御情報を生成し、前記制御情報を前記複数の光伝送装置へ出力する伝送方式決定手段と、
    を備える光ネットワーク制御装置。
  2.  前記クライアント信号は、複数のMAC(Media Access Control)フレームが時分割で多重されて構成されている、請求項1に記載された光ネットワーク制御装置。
  3.  前記クライアント信号は、異なる伝送速度を有する前記MACフレームが多重されて構成される、請求項2に記載された光ネットワーク制御装置。
  4.  前記制御手段が複数の前記伝送方式を抽出した場合に、前記伝送方式決定手段は、1つの伝送方式を選択し、選択された前記伝送方式を前記制御情報として前記複数の光伝送装置へ出力する、請求項1乃至3のいずれか1項に記載された光ネットワーク制御装置。
  5.  前記伝送方式は、光キャリア数が最小となるように選択される、請求項4に記載された光ネットワーク制御装置。
  6.  前記伝送方式は、使用される前記光キャリアの帯域幅が最小となるように選択される、請求項4に記載された光ネットワーク制御装置。
  7.  前記複数の伝送方式は、変調多値度及びボーレートの少なくとも一方が異なる前記光キャリアの変調方式を含む、請求項4乃至6のいずれか1項に記載された光ネットワーク制御装置。
  8.  前記伝送方式は、狭窄された前記光キャリアの光周波数帯域幅に基づいて設定される、請求項4乃至7のいずれか1項に記載された光ネットワーク制御装置。
  9.  前記伝送方式は、前記複数の光伝送装置間の光周波数配置のフラグメンテーションを低減するように前記光キャリアの配置を行うことを特徴とする請求項1乃至8のいずれか1項に記載された光ネットワーク制御装置。
  10.  前記伝送方式は、さらに、前記経路上の品質情報に基づいて抽出される、請求項1乃至9のいずれか1項に記載された光ネットワーク制御装置。
  11.  前記制御手段は、前記複数の光伝送装置間の距離が最短となる前記経路を抽出することを特徴とする、請求項1乃至10のいずれか1項に記載された光ネットワーク制御装置。
  12.  複数のサービスが多重されたクライアント信号を複数の光キャリアを用いて複数の光伝送装置間を伝送する際の経路及び伝送方式の設定を行うための情報を保持し、
     前記情報及びトラフィック要求に基づいて、前記複数の光伝送装置間の経路を抽出し、
     前記経路において前記クライアント信号に含まれる同一の前記サービスのフレームが分割されない条件で前記クライアント信号を前記複数の光キャリアにマッピング可能な伝送方式を抽出し、
     抽出された前記伝送方式に基づいて前記クライアント信号を伝送するために前記複数の光伝送装置に設定される制御情報を生成し、
     前記制御情報を前記複数の光伝送装置へ出力する、
    ことを特徴とする光ネットワーク制御装置の制御方法。
  13.  前記クライアント信号は、複数のMAC(Media Access Control)フレームが時分割で多重されて構成されている、請求項12に記載された光ネットワーク制御装置の制御方法。
  14.  前記クライアント信号は、異なる伝送速度を有する前記MACフレームが多重されて構成される、請求項13に記載された光ネットワーク制御装置の制御方法。
  15.  複数の前記伝送方式を抽出した場合に、
     1つの伝送方式を選択し、
     選択された前記伝送方式を前記制御情報として前記複数の光伝送装置へ出力する、
    請求項12乃至14のいずれか1項に記載された光ネットワーク制御装置の制御方法。
  16.  前記伝送方式は、光キャリア数が最小となるように選択される、請求項15に記載された光ネットワーク制御装置の制御方法。
  17.  前記伝送方式は、使用される前記光キャリアの帯域幅が最小となるように選択される、請求項15に記載された光ネットワーク制御装置の制御方法。
  18.  前記複数の伝送方式は、変調多値度及びボーレートの少なくとも一方が異なる前記光キャリアの変調方式を含む、請求項15乃至17のいずれか1項に記載された光ネットワーク制御装置の制御方法。
  19.  前記伝送方式は、狭窄された前記光キャリアの光周波数帯域幅に基づいて設定される、請求項15乃至18のいずれか1項に記載された光ネットワーク制御装置の制御方法。
  20.  前記伝送方式は、前記複数の光伝送装置間の光周波数配置のフラグメンテーションを低減するように前記光キャリアの配置を行うことを特徴とする請求項15乃至19のいずれか1項に記載された光ネットワーク制御装置の制御方法。
  21.  前記伝送方式は、さらに、前記経路上の品質情報に基づいて抽出される、請求項12乃至20のいずれか1項に記載された光ネットワーク制御装置の制御方法。
  22.  前記経路は、前記複数の光伝送装置間の距離が最短となる経路であることを特徴とする、請求項12乃至21のいずれか1項に記載された光ネットワーク制御装置の制御方法。
  23.  光ネットワーク制御装置のコンピュータに、
     複数のサービスが多重されたクライアント信号を複数の光キャリアを用いて複数の光伝送装置間を伝送する際の経路及び伝送方式の設定を行うための情報を保持する手順、
     前記情報及びトラフィック要求に基づいて、前記複数の光伝送装置間の経路を抽出する手順、
     前記経路において前記クライアント信号に含まれる同一の前記サービスのフレームが分割されない条件で前記クライアント信号を前記複数の光キャリアにマッピング可能な伝送方式を抽出する手順、
     抽出された前記伝送方式に基づいて前記クライアント信号を伝送するために前記複数の光伝送装置に設定される制御情報を生成する手順、
     前記制御情報を前記複数の光伝送装置へ出力する手順、
    を実行させるための光ネットワーク制御装置の制御プログラムの記録媒体。
  24.  2台の光伝送装置と、
     請求項1乃至11のいずれか1項に記載された光ネットワーク制御装置と、
    を備え、
     前記光ネットワーク制御装置は、前記光伝送装置間でクライアント信号を伝送するためのトラフィック要求に基づいて前記光伝送装置間の経路及び伝送方式を設定するための制御情報を生成し、
     前記複数の光伝送装置の動作は前記制御情報に基づいて設定される、
    光伝送システム。
PCT/JP2018/001828 2017-01-24 2018-01-22 光ネットワーク制御装置及びその制御方法 WO2018139410A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017009985 2017-01-24
JP2017-009985 2017-01-24

Publications (1)

Publication Number Publication Date
WO2018139410A1 true WO2018139410A1 (ja) 2018-08-02

Family

ID=62979329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001828 WO2018139410A1 (ja) 2017-01-24 2018-01-22 光ネットワーク制御装置及びその制御方法

Country Status (1)

Country Link
WO (1) WO2018139410A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283323A (ja) * 2007-05-09 2008-11-20 Hitachi Communication Technologies Ltd Ponシステムにおける動的帯域割当方式
US20160087750A1 (en) * 2014-09-24 2016-03-24 Electronics And Telecommunications Research Institute Method and apparatus for transmitting orthogonal frequency division multiplexing (ofdm) signal in optical network
WO2016157801A1 (ja) * 2015-03-27 2016-10-06 日本電気株式会社 光ネットワークシステム、光ノード装置、および光ネットワーク制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283323A (ja) * 2007-05-09 2008-11-20 Hitachi Communication Technologies Ltd Ponシステムにおける動的帯域割当方式
US20160087750A1 (en) * 2014-09-24 2016-03-24 Electronics And Telecommunications Research Institute Method and apparatus for transmitting orthogonal frequency division multiplexing (ofdm) signal in optical network
WO2016157801A1 (ja) * 2015-03-27 2016-10-06 日本電気株式会社 光ネットワークシステム、光ノード装置、および光ネットワーク制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJISAWA, SHINSUKE ET AL.: "Utilization of spectrum slot fragmentation to improve network resource efficiency on elastic optical network", OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 22 March 2015 (2015-03-22), pages 1 - 3, XP032784882 *

Similar Documents

Publication Publication Date Title
Lu et al. Highly efficient data migration and backup for big data applications in elastic optical inter-data-center networks
JP7568031B2 (ja) 光ネットワークシステム
JP2013026816A (ja) 光ネットワークおよび光接続方法
US9941992B2 (en) Method and apparatus for efficient network utilization using superchannels
JP6578870B2 (ja) 光ネットワーク制御装置、光ノード装置、および光ネットワーク制御方法
JP5759636B2 (ja) 光ネットワークにおいて帯域幅を割り当てる方法
US9667375B2 (en) Channel establishment method and device
WO2018139410A1 (ja) 光ネットワーク制御装置及びその制御方法
US9537603B2 (en) Channel establishment method and device
US9479283B2 (en) Channel establishment method and device
Xiong et al. Exploiting SDN principles for extremely fast restoration in elastic optical datacenter networks
Yu et al. Cost-effective service function chain mapping approaches in edge-cloud elastic optical networks
WO2020043318A1 (en) Time and wavelength division multiplexing
US8699518B2 (en) Dynamic circuit adjustment
CN116887080B (zh) 云边弹性光网络中频谱和计算资源占用联合卸载方法
Tang et al. Electronic Traffic Grooming in Dedicated Path Protected IP over Elastic Optical Network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP