WO2018139406A1 - 内視鏡および内視鏡の製造方法 - Google Patents

内視鏡および内視鏡の製造方法 Download PDF

Info

Publication number
WO2018139406A1
WO2018139406A1 PCT/JP2018/001817 JP2018001817W WO2018139406A1 WO 2018139406 A1 WO2018139406 A1 WO 2018139406A1 JP 2018001817 W JP2018001817 W JP 2018001817W WO 2018139406 A1 WO2018139406 A1 WO 2018139406A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
holding frame
light emitting
endoscope
optical
Prior art date
Application number
PCT/JP2018/001817
Other languages
English (en)
French (fr)
Inventor
秀治 宮原
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2017/002354 external-priority patent/WO2018138778A1/ja
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2018139406A1 publication Critical patent/WO2018139406A1/ja
Priority to US16/517,138 priority Critical patent/US10972707B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention relates to an endoscope in which an optical module in which a bonding wire is bonded to an external electrode of an optical element is disposed at a distal end portion, and a method for manufacturing the endoscope.
  • the endoscope has an image sensor such as a CMOS image sensor or a CCD at the distal end of the elongated insertion portion.
  • an image sensor having a high pixel count has been studied.
  • the amount of image signal transmitted from the image sensor to the signal processing device (processor) increases.
  • the electric signal transmission through the metal wiring by the electric signal it is necessary to increase the diameter of the metal wiring in order to transmit a necessary signal amount, and there is a possibility that the insertion portion becomes thick due to the wiring.
  • an E / O type optical module (electric-optical converter) that converts an electrical signal into an optical signal
  • an O / E type optical module optical-electrical conversion
  • Japanese Patent Application Laid-Open No. 2013-025092 discloses an optical element, a substrate on which the optical element is mounted, and a holding portion having a through hole into which an optical fiber that transmits an optical signal input / output from the optical element is inserted. (Ferrule) is disclosed.
  • the optical fiber is not very strong against stress. If the flexible insertion part, especially the bending part, of the endoscope is greatly deformed, tensile / compressive stress is repeatedly applied to the optical fiber, which may cause loss of the video signal transmitted by the optical fiber. May occur.
  • Japanese Patent Application Laid-Open No. 2015-97589 discloses an endoscope in which no stress is applied to the optical fiber even if the bending portion is deformed because the optical fiber is inserted through the center of the bending portion.
  • the fiber tip portion of the optical fiber inserted in the ferrule is arranged in parallel to the central axis of the tip portion.
  • the optical axis of the optical element does not coincide with the central axis of the tip.
  • an optical fiber cannot be arrange
  • “largely bent” means that the radius of curvature is reduced (that is, the curvature is increased).
  • the optical fiber is bent greatly, there is a risk that a video signal transmitted through the optical fiber is lost.
  • the bending angle of the optical fiber is reduced so as not to cause a loss in the video signal to be transmitted, the length of the rigid distal end portion becomes longer and it becomes difficult to reduce the invasiveness.
  • an optical module if the light emitting surface of the optical element and the incident end surface of the optical fiber are arranged close to each other in parallel, multiple reflections may occur between the light emitting surface and the incident end surface, which may cause noise. There is.
  • Japanese Laid-Open Patent Publication No. 2001-281503 discloses an optical module that prevents multiple reflections by disposing an optical element at a predetermined inclination angle with respect to the bottom surface of a ferrule that is a support member of an optical fiber. Has been. This optical element is provided with a convex angle holding member only for tilting.
  • Japanese Patent Application Laid-Open No. 2010-219166 discloses forming an opening or notch from which a bonding wire protrudes in a wavelength conversion member disposed on an optical element.
  • Embodiments of the present invention are intended to provide a minimally invasive endoscope that displays a high-quality image with high reliability, and a method for manufacturing the endoscope.
  • the endoscope includes an imaging element that captures an image of a subject and outputs an imaging signal, and an optical module that converts the imaging signal into an optical signal and transmits the optical signal using an optical fiber at a distal end portion of the insertion portion.
  • a first light emitting element having an external electrode disposed in the first region, a first main surface and a second main surface opposite to the first main surface, wherein the first main surface There is a wiring board on which the light emitting element and the bonding electrode are arranged, a bonding wire connecting the external electrode and the bonding electrode, an insertion hole, and the optical fiber is inserted into the insertion hole
  • the side plate is fixed to the first main surface of the wiring board, the light emitting element is accommodated therein, a holding frame having an opening on a side surface, and the inside of the holding frame A transparent resin disposed, and the upper plate is inclined at a predetermined inclination angle with respect to the first main surface, and the length of the upper plate to the first region is Is longer than the length to the second region.
  • An endoscope manufacturing method includes a light emitting surface that outputs an optical signal and a back surface that faces the light emitting surface, and includes a first region and a second region that bisect the light emitting surface.
  • a light emitting device having an external electrode disposed in the first region has a first main surface and a second main surface opposite to the first main surface, and the first main surface
  • a light emitting element disposing step disposed on the first main surface of the wiring board on which the bonding electrode is disposed; a bonding step of connecting the external electrode and the bonding electrode with a bonding wire;
  • a holding frame having an upper plate and a side plate on the first main surface and having an opening on a side surface and inclined at a predetermined inclination angle with respect to the first main surface is provided on the first plate of the upper plate.
  • the first distance to the first region is longer than the second distance to the second region, and the light emitting element is accommodated inside.
  • the embodiment of the present invention it is possible to provide a minimally invasive endoscope that displays a high-quality image with high reliability, and a method for manufacturing the endoscope.
  • FIG. 1 is a perspective view of an endoscope system including an endoscope according to a first embodiment. It is a top view of the tip part of the endoscope of a 1st embodiment.
  • FIG. 3 is a cross-sectional view of the distal end portion of the endoscope according to the first embodiment taken along line III-III in FIG. 2.
  • It is an exploded view of the optical module of the endoscope of the first embodiment. It is sectional drawing of the optical module of the endoscope of 1st Embodiment. It is a side view of the optical module of the endoscope of the first embodiment. It is a top view of the optical module of the endoscope of the first embodiment. It is a perspective view of the holding frame of the optical module of the endoscope of the first embodiment.
  • An endoscope system 8 including the endoscope 9 according to the present embodiment shown in FIG. 1 includes an endoscope 9, a processor 80, a light source device 81, and a monitor 82.
  • the endoscope 9 inserts an insertion section 90 having a circular cross section into the body cavity of the subject, captures an in-vivo image of the subject, and outputs an imaging signal.
  • the operation unit 91 has a treatment instrument insertion port of a channel 94 (see FIG. 2) into which a bioforceps, an electric knife, a test probe, and the like are inserted in the body cavity of the subject.
  • the insertion portion 90 includes a hard tip portion 90A, a bendable bending portion 90B provided continuously with the tip portion 90A, and a soft portion 90C provided continuously with the bending portion 90B.
  • the bending portion 90B is bent by the operation of the operation portion 91.
  • the universal cord 92 extended from the operation unit 91 is connected to the processor 80 and the light source device 81 via the connector 93.
  • the universal cable 92 is inserted with a signal cable 40M for transmitting an electrical signal output from the O / E type optical module 1X.
  • the optical module 1X may be disposed on the connector 93 of the universal cord 92 or the like.
  • the processor 80 controls the entire endoscope system 8 and performs signal processing on the imaging signal output from the imaging device 3 (see FIG. 3) to output it as an image signal.
  • the monitor 82 displays the image signal output from the processor 80.
  • the light source device 81 has, for example, a white LED. Illumination light emitted from the light source device 81 is guided to the illumination optical system 96 (see FIG. 2) of the distal end portion 90A via a universal cord 92 and a light guide (not shown) that passes through the insertion portion 90, and illuminates the subject. To do.
  • the imaging device 3 including the E / O type optical module 1 (see FIGS. 3 to 7) is disposed at the distal end portion 90A.
  • the electrical signal is converted into an optical signal by the optical module 1 at the distal end portion 90 ⁇ / b> A and transmitted to the operation unit 91 through the thin optical fiber 40 that is inserted through the insertion unit 90.
  • the optical signal is converted again into an electrical signal by the O / E type optical module 1X disposed in the operation unit 91, and is connected to the electrical connector 93 via the signal cable 40M which is a metal wiring through which the universal cord 92 is inserted. Is transmitted.
  • the imaging signal is transmitted through the optical fiber 40 in the insertion portion 90 with a small diameter, and is a signal that is not inserted into the body and is a metal wiring thicker than the optical fiber 40 in the universal cord 92 with a small outer diameter limit. It is transmitted via the cable 40M.
  • the optical fiber 40 passes through the universal cord 92.
  • FIG. 2 is a front view of the distal end portion 90A of the endoscope 9 as viewed from the distal end direction.
  • tip parts contain the cylindrical housing
  • the housing 4 has a plurality of through holes parallel to the central axis C1 of the distal end portion 90A.
  • the observation window of the imaging optical system 2A and the opening of the channel 94 are disposed on the distal end surface so as to sandwich the central axis C1 of the distal end portion 90A (the central axis C of the insertion portion 90). That is, the optical axis O of the imaging optical system 2A inserted into the through hole of the housing 4 is parallel to the central axis C1 (C) and is eccentric.
  • an illumination window of two illumination optical systems 96 and an air / water supply nozzle 97 are disposed on the front end surface.
  • FIG. 3 shows a plane (YZ plane) including the optical axis O of the imaging optical system 2A and the central axis C of the tip 90A, as indicated by the line III-III in FIG.
  • the image pickup apparatus 3 including the image pickup optical system 2A, the image pickup element 2B, and the optical module 1 is accommodated in the through hole of the housing 4 of the distal end portion 90A having a length L90A.
  • the image sensor 2B that images a subject and outputs an image signal is a CMOS image sensor or a CCD.
  • the imaging signal is converted into an optical signal in the optical module 1.
  • the optical fiber 40 of the optical module 1 includes, for example, a 50 ⁇ m diameter core that transmits light and a 125 ⁇ m diameter cladding that covers the outer periphery of the core.
  • the optical fiber 40 extends toward the central axis C1 of the distal end portion 90A, and the bending portion 90B is disposed along the central axis C2 of the bending portion 90B.
  • a guide member 99 for arranging the optical fiber 40 along the central axis C1 (central axis C) is disposed at the proximal end portion of the distal end portion 90A and the curved portion 90B. Details of the guide member 99 are disclosed in Japanese Patent Application Laid-Open No. 2015-97589 already described. Although not shown, it is preferable that the guide member 99 is also disposed in the soft portion 90C. Since the soft portion 90C is not greatly deformed compared to the bending portion 90B, the arrangement interval of the guide members 99 in the soft portion 90C may be longer than the arrangement interval in the bending portion 90B.
  • a single multi-lumen tube having an outer diameter substantially the same as the inner diameter of the bending portion 90B and passing through the bending portion 90B may be used. That is, the optical fiber 40 can be disposed along the central axis C ⁇ b> 2 by inserting the optical fiber 40 through a conduit that passes through the center of the multi-lumen tube.
  • the optical fiber 40 When the insertion portion 90 is deformed, stress is applied to the optical fiber 40 inserted through the insertion portion 90 of the endoscope 9.
  • the optical fiber 40 receives a large stress particularly when it is deformed by the bending operation of the bending portion 90B.
  • the endoscope 9 since the optical fiber 40 is disposed along the central axis C2 of the bending portion 90B, even if the bending portion 90B is deformed, the optical fiber 40 is not subjected to great stress. For this reason, the endoscope 9 has a low risk of loss in the video signal transmitted by the optical fiber 40 and is highly reliable.
  • the optical fiber 40 has a fiber tip portion with respect to the central axis C ⁇ b> 1 in a cross section (YZ plane) including the central axis C and the optical axis O.
  • the angle ⁇ is, for example, 45 ° ⁇ 10 °, that is, 35 ° or more and 55 ° or less, and the extending direction is arranged toward the central axis C1.
  • the endoscope 9 having the image pickup device 2B having a high number of pixels transmits an image signal via the optical fiber 40, and therefore displays a low-invasive and high-quality image. it can. Further, since the optical fiber 40 can be disposed along the central axis C2 of the bending portion 90B without greatly bending the optical fiber 40, the reliability is high. Furthermore, since the optical fiber 40 can be disposed along the central axis C2 of the curved portion 90B at a short distance, the endoscope 9 has a short length L90A of the distal end portion 90A and is minimally invasive.
  • the optical module 1 includes a wiring board 10, an optical element 20, a bonding wire 30, a ferrule 50, a holding frame 60, and a transparent resin 70.
  • the wiring board 10 has a first main surface 10SA and a second main surface 10SB facing the first main surface 10SA.
  • the optical element 20 and the bonding electrode 11 are disposed on the first main surface 10SA of the wiring board 10.
  • a driving signal is transmitted to the bonding electrode 11 via a wiring (not shown).
  • the image sensor 2 ⁇ / b> B is mounted on the second main surface 10 ⁇ / b> SB of the wiring board 10 of the optical module 1.
  • the first main surface 10SA and the second main surface 10SB are perpendicular to the optical axis O of the image sensor 2B.
  • Electronic components such as a driving IC and a chip capacitor for driving the optical element 20 may be mounted on the wiring board 10.
  • the optical element 20 has a light emitting surface 20SA that outputs an optical signal and a back surface 20SB that faces the light emitting surface 20SA.
  • the optical element 20 is a surface emitting laser chip having a light emitting unit 21 that outputs light of an optical signal.
  • the ultra-small optical element 20 having a planar view size (size in the direction perpendicular to the optical axis) of 250 ⁇ m ⁇ 300 ⁇ m and a thickness of 150 ⁇ m includes a light emitting unit 21 having a diameter of 20 ⁇ m and an external device that supplies a drive signal to the light emitting unit 21
  • An electrode 22 is provided on the light emitting surface 20SA.
  • the two external electrodes 22 are disposed only in the first region 20SA1 of the first region 20SA1 and the second region 20SA2 that bisect the light emitting surface 20SA.
  • the first area 20SA1 and the second area 20SA2 do not have to have the same area (that is, the light emitting surface 20SA is accurately divided into two halves), as long as they are separated as separate areas. Good.
  • the bonding wire 30 connects the external electrode 22 of the optical element 20 and the bonding electrode 11 of the wiring board 10.
  • the bonding wire 30 is, for example, a gold wire having a diameter of 30 ⁇ m.
  • the bonding wire 30 protrudes about 100 ⁇ m from the light emitting surface 20SA.
  • the holding frame 60 has an upper plate 61 and a plurality of side plates 62, 63, 64.
  • the side plates 62, 63, 64 are fixed to the first main surface 10SA of the wiring board 10.
  • In the interior S ⁇ b> 60 of the holding frame 60 there is a space formed by the upper plate 61 and the side plates 62, 63, 64. Of the four side surfaces, the side surface having the widest area facing the side plate 64 is the opening O60.
  • the optical element 20 disposed on the wiring board 10 is accommodated in the interior S ⁇ b> 60 of the holding frame 60.
  • the upper plate 61 of the holding frame 60 is inclined at a predetermined inclination angle ⁇ with respect to the first main surface 10SA of the wiring board 10. That is, as shown in FIG. 5, the first distance d1 to the first area 20SA1 of the upper plate 61 is longer than the second distance d2 to the second area 20SA2.
  • the bonding wire 30 protrudes from the light emitting surface 20SA by about 100 ⁇ m. However, since the upper plate 61 is inclined, the bonding wire 30 is not in contact with the upper plate 61. For this reason, even if the upper plate 61 is a conductor, the two bonding wires 30 do not conduct.
  • the bonding wire 30 is deformed by being pressed by the upper plate 61 and stress is applied to the joint portion. It is never applied. For this reason, the joining reliability of the optical module 1 is ensured.
  • the bonding wire 30 is in contact with the upper plate 61, if the optical module 1 is not greatly deformed, the bonding reliability of the optical module 1 may be ensured. However, it is preferable that the bonding wire 30 is not in contact with the upper plate 61.
  • the optical module 1 since the upper plate 61 is inclined, the optical module 1 has a length from the first main surface 10SA of the wiring board 10 to the upper surface of the ferrule 50 as compared with the optical module in which the upper plate 61 is not inclined. short. That is, since the length of the optical module 1 in the optical axis direction is short, the endoscope 9 has a short distal end portion 90A and is minimally invasive.
  • a transparent resin 70 is disposed in the interior S60 of the holding frame 60.
  • the transparent resin 70 is a refractive index matching material having substantially the same refractive index as that of the core of the optical fiber 40.
  • the transparent resin 70 for example, an acrylic resin, an epoxy resin, a vinyl resin, an ethylene resin, a silicone resin, a urethane resin, a polyamide resin, a fluorine resin, a polybutadiene resin, or a polycarbonate resin is used. .
  • acrylic resins and epoxy resins are suitable for the transparent resin 70 from the viewpoint of moisture resistance, heat resistance, peel resistance, and impact resistance.
  • the holding frame 60 has side plates 62, 63, and 64, but there is no side plate on the surface facing the side plate 64 and an opening O60.
  • the transparent resin 70 is injected in a liquid state from the opening O60 into the interior S60 after fixing the holding frame 60 to the wiring board 10, and is solidified by a curing process such as heating or ultraviolet irradiation.
  • the ferrule 50 is fixed to the upper plate 61 of the holding frame 60 using an adhesive 55.
  • the ferrule 50 is made of glass, a metal member, ceramic, or silicon.
  • the inner wall shape of the insertion hole H50 of the ferrule 50 may be a columnar shape as long as the optical fiber 40 can be held by the wall surface.
  • the fiber tip of the optical fiber 40 is inserted into the insertion hole 50H of the ferrule 50 and is optically coupled to the optical element 20. That is, the upper plate 61 of the holding frame 60 has a through hole H60 that serves as an optical path.
  • the depth direction of the insertion hole 50H is perpendicular to the bottom surface of the ferrule 50. For this reason, the fiber tip portion of the optical fiber 40 is disposed perpendicular to the upper plate 61 of the holding frame 60 when inserted into the insertion hole 50H.
  • the optical fiber 40 Since the upper plate 61 is inclined at an inclination angle ⁇ with respect to the first main surface 10SA of the wiring board 10, the optical fiber 40 has, for example, an end portion 90A at an inclination angle ⁇ of not less than 35 degrees and not more than 55 degrees. It extends toward the central axis C1. For this reason, since the endoscope 9 can arrange the optical fiber 40 at a short distance along the central axis C2 of the bending portion 90B, the endoscope 9 has a short length L90A of the distal end portion 90A and is minimally invasive.
  • the optical element 20 is arranged on the first main surface 10SA of the wiring board 10 with, for example, an adhesive.
  • the external electrode 22 of the optical element 20 and the bonding electrode 11 of the wiring board 10 are connected by the bonding wire 30.
  • the bonding wire 30 protrudes about 100 ⁇ m from the light emitting surface 20SA in order to ensure the bonding reliability.
  • the holding frame 60 is arranged on the first main surface 10SA of the wiring board 10 and the optical element 20 is arranged in the interior S60.
  • the upper plate 61 of the holding frame 60 is inclined with respect to the first main surface 10SA. For this reason, the bonding wire 30 is not deformed.
  • Step A liquid uncured transparent resin 70 is injected into the interior S60 of the holding frame 60 through the opening O60, and a curing process is performed. Since there is an opening O60 on the side surface of the holding frame 60, the transparent resin 70 can be easily injected into the interior S60.
  • the transparent resin 70 is filled at least between the light emitting surface 20SA and the optical fiber 40, the interior S60 may not be completely filled. Conversely, a part of the transparent resin 70 may extend to the outside of the holding frame 60. Further, the outer surface of the optical module 1 may be covered with a light shielding resin.
  • positioning process S15 may be performed after resin arrangement
  • the optical module 1 and the like are disposed at the distal end portion 90A, and the endoscope 9 is completed.
  • the above manufacturing method can provide a minimally invasive endoscope that displays a high-quality image with high reliability.
  • the optical module 1 may include holding frames 60a, 60b, and 60c shown in FIGS. 8B, 8C, and 8D.
  • the holding frame 60 a shown in FIG. 8B does not have the side plate 64.
  • the upper plate 61 is held by two side plates 62 and 63. Note that a holding frame having only one side plate may be used as long as the upper plate 61 can be stably held. In other words, the holding frame only needs to have at least one side plate.
  • the 8C includes a side plate 65 that faces the side plate 64.
  • the side plate 65 has two openings O60.
  • a part of the bonding wire 30 protrudes from the opening O60 to the outside of the holding frame 60b.
  • the holding frame 60b can be disposed on the first main surface 10SA on which the bonding wire 30 is disposed so as not to contact the bonding wire 30.
  • the holding frame 60c shown in FIG. 8D has four pillars 66 that have the same effects as the side plates and can be regarded as side plates. Further, when the upper plate 61c is made of a transparent material, there may be no through hole. Further, the upper plate 61c and the column 66 are separate members.
  • the holding frame can be variously modified as long as the light emitting element can be accommodated therein and the upper plate inclined so as not to deform the bonding wire is stably held. .
  • the endoscopes 9A to 9E according to the embodiments described below are similar to the endoscope 9 according to the first embodiment and have the same effects. Omitted.
  • the endoscope 9A of the present embodiment includes an optical module 1A shown in FIG.
  • two position defining members 15 that define the position of the holding frame 60 on the first main surface 10SA are disposed on the first main surface 10SA of the wiring board 10.
  • the holding frame 60 has its in-plane (XY plane) position defined by the corners of the side plates 62 and 63 coming into contact with the wall surfaces of the respective position defining members 15.
  • the L-shaped position defining member 15 can accurately define the position in the in-plane direction of the holding frame 60 even if only two orthogonal wall surfaces are sufficiently long.
  • the optical module 1 ⁇ / b> A only needs to have at least one position defining member 15.
  • the optical module 1A is easier to position the holding frame 60 than the optical module 1.
  • the endoscope 9B includes an optical module 1B shown in FIG.
  • the optical module 1B includes two position inclination defining members 15B disposed between the side plates 62 and 63 of the holding frame 60B and the first main surface 10SA of the wiring board 10.
  • the position inclination defining member 15B defines the position of the holding frame 60B and the inclination angle of the upper plate 61 on the first main surface 10SA.
  • the corners of the side plates 62 and 63 of the holding frame 60B are fitted into the recess (notch) T15B at the top of the position inclination defining member 15B.
  • the inclination angle of the upper plate 61 is defined based on the height of the recess T15B from the first main surface 10SA.
  • the holding frame 60B be accurately arranged on the wiring board 10 at a predetermined angle, but also the holding frame 60B can be easily manufactured.
  • the inclination angle may be prescribed
  • the optical module 1B only needs to have at least one position inclination defining member 15B.
  • the endoscope 9C of this embodiment includes an optical module 1C.
  • the first main surface 10SA of the wiring board 10C has two grooves T10 that define the position of the holding frame 60C on the first main surface 10SA, and the side plate of the holding frame 60C. 62C and 63C are fitted in the respective grooves T10.
  • the bottom surface of the side plate 64 is in contact with the first main surface 10SA.
  • the first main surface 10SA may have one groove T10, and only the side plate 62C may be engaged with the groove T10. In other words, the wiring board 10C only needs to have at least one groove T10.
  • the optical module 1C can easily and accurately arrange the holding frame 60C on the wiring board 10.
  • the endoscope 9D of this embodiment includes an optical module 1D shown in FIG.
  • the optical module 1D not only the position of the holding frame 60D on the first main surface 10SA is defined based on the position of the groove T10D in which the side plates 62D and 63D of the holding frame 60D are fitted, but also the side plates 62D and 63D.
  • the inclination angle of the upper plate 61 is defined based on the depth of the groove T10D into which the is inserted.
  • the depth of the groove T10 was constant.
  • the depth of the groove T10D is inclined with respect to the first main surface 10SA, and the inclination angle ⁇ becomes the inclination angle ⁇ of the upper plate 61.
  • the optical module 1D is easy to manufacture because the position of the holding frame 60D and the inclination angle of the upper plate 61 are defined based on the position and shape of the groove T10D.
  • a part of the groove T10D may be a through hole.
  • the wiring board 10D only needs to have at least one groove T10D.
  • the endoscope 9E of this embodiment includes an optical module 1E shown in FIG.
  • the inclination angle ⁇ of the upper plate 61 with respect to the first main surface 10SA is not less than 2 degrees and not more than 12 degrees.
  • the light emitting surface 20SA of the optical element 20 is inclined with respect to the end surface 40SA of the optical fiber 40 at an inclination angle of 2 degrees or more and 12 degrees or less. For this reason, the optical module 1E has few multiple reflections at the interface and hardly generates noise.
  • the endoscope 9E having the optical module 1E can display a high-quality image.
  • the optical module 1E has a smaller inclination angle ⁇ of the optical fiber 40 than the optical module 1 or the like. For this reason, in the endoscope 9E, the length L90A of the distal end portion 90A is longer than that of the endoscope 9. However, in the optical module 1E, the length L90A of the distal end portion 90A is short and less invasive than an endoscope having an inclination angle ⁇ of zero.
  • the endoscope 9 and the like having the E / O type optical module having a light emitting element for converting an electrical signal into an optical signal at the distal end portion 90A of the insertion portion 90 has been described.
  • the endoscope of the embodiment may include an O / E type optical module 1X having a light receiving element that converts a light control signal into an electric control signal to the image pickup device 2B at the distal end portion 90A.
  • the endoscope 9 may be a medical endoscope or an industrial endoscope.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

内視鏡9は光モジュール1を具備し、前記光モジュール1は、発光面20SAを二等分する第1の領域20SA1と第2の領域20SA2のうち前記第1の領域20SA1に外部電極22が配設されている光素子20と、第1の主面10SAに前記光素子20と接合電極11とが配設されている配線板10と、前記外部電極22と前記接合電極11とを接続しているボンディングワイヤ30と、光ファイバ40が挿入されているフェルール50と、上板61に前記フェルール50が配設されており、側板62、63が前記第1の主面10SAに固定されており、内部O60に前記光素子20が収容されており、側面に開口S60のある保持枠60と、前記内部O60に配設されている透明樹脂70と、を具備しており、前記上板61が前記第1の主面10SAに対して所定の傾斜角度θで傾斜している。

Description

内視鏡および内視鏡の製造方法
 本発明は、光素子の外部電極にボンディングワイヤが接合されている光モジュールが、先端部に配設された内視鏡、および前記内視鏡の製造方法に関する。
 内視鏡は、細長い挿入部の先端部に、CMOSイメージセンサまたはCCD等の撮像素子を有する。近年、高品質の画像を表示するため、高画素数の撮像素子が検討されている。高画素数の撮像素子を使用した場合には、撮像素子から信号処理装置(プロセッサ)へ伝送する画像信号量が増加する。このため、電気信号によるメタル配線を介した電気信号伝送では、必要な信号量を伝送するためにメタル配線の線径を太くする必要があり、配線のため挿入部が太くなるおそれがある。
 挿入部を細径化し低侵襲化するには、電気信号に替えて光信号による細い光ファイバを介した光信号伝送が好ましい。光信号伝送には、電気信号を光信号に変換するE/O型の光モジュール(電気-光変換器)と、光信号を電気信号に変換するO/E型の光モジュール(光-電気変換器)とが用いられる。
 日本国特開2013-025092号公報には、光素子と、光素子が実装される基板と、光素子から入出力される光信号を伝送する光ファイバが挿入されている貫通孔を有する保持部(フェルール)と、を具備する光モジュールが開示されている。
 ここで、光ファイバは、応力に対する強度がそれほど強くはない。内視鏡の可撓性の挿入部、特に湾曲部が大きく変形すると、光ファイバには、引張応力/圧縮応力が繰り返して印加されるため、場合によっては、光ファイバが伝送する映像信号に損失が生じるおそれがある。
 日本国特開2015-97589号公報には、光ファイバが湾曲部の中心を挿通しているため、湾曲部が変形しても、光ファイバに応力が印加されない内視鏡が開示されている。
 上記内視鏡では、先端部の中心軸に対して、フェルールに挿入されている光ファイバのファイバ先端部が平行に配置されている。光素子の光軸は先端部の中心軸と一致していない。このため、光ファイバを大きく曲げないと、湾曲部の中心軸に光ファイバを配置することはできない。ここで、「大きく曲げる」とは、曲率半径を小さくする(すなわち、曲率が大きくなる)という意味である。しかし、光ファイバを大きく曲げると光ファイバで伝送する映像信号に損失が生じるおそれがある。一方、伝送する映像信号に損失が生じないように光ファイバの曲げ角度を小さくすると、硬性の先端部の長さが長くなり低侵襲化が容易ではなくなる。
 また、光モジュールにおいて、光素子の発光面と光ファイバの入射端面とが近接して平行に配置されていると、発光面と入射端面との間で多重反射が発生しノイズの原因となるおそれがありる。
 日本国特開2001-281503号公報には、光ファイバの支持部材であるフェルールの底面に対して、光素子を所定の傾斜角度で傾斜して配置することで多重反射を防止した光モジュールが開示されている。この光素子には傾斜配置するためだけに、凸状の角度保持部材が配設されている。
 また、光モジュールの光素子の外部電極が、ボンディングワイヤで接続されている場合には、ボンディングワイヤが凸形状のため、光ファイバと光素子との間隔を小さくすることが容易ではなく、伝送効率が低下することがある。
 日本国特開2010-219166号公報には、光素子の上に配設されている波長変換部材に、ボンディングワイヤが突出する開口部または切りかき部を形成することが開示されている。
特開2013-025092号公報 特開2015-97589号公報 特開2001-281503号公報 特開2010-219166号公報
 本発明の実施形態は、信頼性が高く高品質の画像を表示する低侵襲の内視鏡、および、前記内視鏡の製造方法を提供することを目的とする。
 実施形態の内視鏡は、被写体を撮影し撮像信号を出力する撮像素子と、前記撮像信号を光信号に変換し光ファイバを用いて伝送する光モジュールと、を挿入部の先端部に具備する内視鏡であって、前記光モジュールは、前記光信号を出力する発光面と前記発光面と対向する裏面とを有し、前記発光面を二等分する第1の領域と第2の領域のうち前記第1の領域に外部電極が配設されている発光素子と、第1の主面と前記第1の主面と対向する第2の主面とを有し、前記第1の主面に前記発光素子と接合電極とが配設されている配線板と、前記外部電極と前記接合電極とを接続しているボンディングワイヤと、挿入孔があり、前記挿入孔に前記光ファイバが挿入されているフェルールと、上板と側板とを有し、前記上板に前記フェルールが配設されており、前記側板が前記配線板の前記第1の主面に固定されており、内部に前記発光素子が収容されており、側面に開口のある保持枠と、前記保持枠の前記内部に配設されている透明樹脂と、を具備しており、前記上板が前記第1の主面に対して所定の傾斜角度で傾斜しており、前記上板の前記第1の領域までの長さが前記第2の領域までの長さよりも長い。
 実施形態の内視鏡の製造方法は、光信号を出力する発光面と前記発光面と対向する裏面とを有し、前記発光面を二等分する第1の領域と第2の領域のうち前記第1の領域に外部電極が配設されている発光素子を、第1の主面と前記第1の主面と対向する第2の主面とを有し、前記第1の主面に接合電極が配設されている配線板の前記第1の主面に配設する発光素子配設工程と、前記外部電極と前記接合電極とをボンディングワイヤで接続するボンディング工程と、前記配線板の前記第1の主面に、上板と側板とを有し側面に開口があり、前記第1の主面に対して所定の傾斜角度で傾斜している保持枠を、前記上板の前記第1の領域までの第1の距離が前記第2の領域までの第2の距離よりも長く、かつ、内部に前記発光素子が収容されるように配設する保持枠配設工程と、前記上板にフェルールを配設するフェルール配設工程と、前記フェルールの挿入孔に、前記光信号を伝送する光ファイバを挿入する光ファイバ配設工程と、前記保持枠の前記開口から前記内部に透明樹脂を注入する樹脂配設工程と、を具備する。
 本発明の実施形態によれば、信頼性が高く高品質の画像を表示する低侵襲の内視鏡、および、前記内視鏡の製造方法を提供できる。
第1実施形態の内視鏡を含む内視鏡システムの斜視図である。 第1実施形態の内視鏡の先端部の平面図である。 第1実施形態の内視鏡の先端部の図2のIII-III線に沿った断面図である。 第1実施形態の内視鏡の光モジュールの分解図である。 第1実施形態の内視鏡の光モジュールの断面図である。 第1実施形態の内視鏡の光モジュールの側面図である。 第1実施形態の内視鏡の光モジュールの上面図である。 第1実施形態の内視鏡の光モジュールの保持枠の斜視図である。 第1実施形態の内視鏡の光モジュールの保持枠の斜視図である。 第1実施形態の内視鏡の光モジュールの保持枠の斜視図である。 第1実施形態の内視鏡の光モジュールの保持枠の斜視図である。 第1実施形態の内視鏡の光モジュールの製造方法を説明するフローチャートである。 第2実施形態の内視鏡の光モジュールの分解図である。 第3実施形態の内視鏡の光モジュールの分解図である。 第4実施形態の内視鏡の光モジュールの分解図である。 第5実施形態の内視鏡の光モジュールの分解図である。 第6実施形態の内視鏡の光モジュールの断面図である。
<第1実施形態>
 図1に示す本実施形態の内視鏡9を含む内視鏡システム8は、内視鏡9と、プロセッサ80と、光源装置81と、モニタ82と、を具備する。例えば、内視鏡9は、断面が円形の挿入部90を被検体の体腔内に挿入されて、被検体の体内画像を撮影し撮像信号を出力する。
 なお、以下の説明において、各実施形態に基づく図面は、模式的なものであり、各部分の厚みと幅との関係、夫々の部分の厚みの比率などは現実のものとは異なることに留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、一部の構成要素の図示、符号の付与を省略する場合がある。
 内視鏡9の挿入部90の基端部には、内視鏡9を操作する各種ボタン類が設けられた操作部91が配設されている。操作部91には、被検体の体腔内に、生体鉗子、電気メスおよび検査プローブ等を挿入するチャンネル94(図2参照)の処置具挿入口がある。
 挿入部90は、硬性の先端部90Aと、先端部90Aに連設された湾曲自在な湾曲部90Bと、湾曲部90Bに連設された軟性部90Cとを有する。湾曲部90Bは、操作部91の操作によって湾曲する。
 操作部91から延設されているユニバーサルコード92は、コネクタ93を介してプロセッサ80および光源装置81に接続される。ユニバーサルコード92には、O/E型の光モジュール1Xが出力する電気信号を伝送する信号ケーブル40Mが挿通している。なお、光モジュール1Xは、ユニバーサルコード92のコネクタ93等に配置されていてもよい。
 プロセッサ80は内視鏡システム8の全体を制御するとともに、撮像装置3(図3参照)が出力する撮像信号に信号処理を行い画像信号として出力する。モニタ82は、プロセッサ80が出力する画像信号を表示する。
 光源装置81は、例えば、白色LEDを有する。光源装置81が出射する照明光は、ユニバーサルコード92および挿入部90を挿通するライトガイド(不図示)を介して先端部90Aの照明光学系96(図2参照)に導光され、被写体を照明する。
 先端部90Aには、E/O型の光モジュール1(図3~図7参照)を含む撮像装置3が配設されている。内視鏡9では、電気信号は先端部90Aの光モジュール1で光信号に変換されて、挿入部90を挿通する細い光ファイバ40を介して操作部91まで伝送される。そして、操作部91に配設されているO/E型の光モジュール1Xにより光信号は再び電気信号に変換され、ユニバーサルコード92を挿通するメタル配線である信号ケーブル40Mを介して電気コネクタ93に伝送される。
 撮像信号は、細径の挿入部90内においては光ファイバ40を介して伝送され、体内に挿入されず外径の制限の小さいユニバーサルコード92内においては光ファイバ40よりも太いメタル配線である信号ケーブル40Mを介して伝送される。
 なお、光モジュール1Xがコネクタ93またはプロセッサ80に配置されている場合には、光ファイバ40はユニバーサルコード92を挿通している。
 図2は、内視鏡9の先端部90Aを先端方向から見た正面図である。先端部90Aは、樹脂からなる外皮5で外周面が覆われている、後部が筒状の円筒形の筐体4を含む。筐体4には、先端部90Aの中心軸C1に平行な複数の貫通孔がある。
 撮像光学系2Aの観察窓とチャンネル94の開口とは、先端部90Aの中心軸C1(挿入部90の中心軸C)を間に、はさむように、先端面に配設されている。すなわち、筐体4の貫通孔に挿入されている撮像光学系2Aの光軸Oは、中心軸C1(C)と平行であり、かつ、偏心している。
 先端面には、さらに、2つの照明光学系96の照明窓、および、送気送水用のノズル97が配設されている。
 図3は、図2のIII-III線に示すように、撮像光学系2Aの光軸Oと先端部90Aの中心軸Cとを含む面(YZ面)を示している。
 撮像光学系2Aと撮像素子2Bと光モジュール1とを含む撮像装置3は、長さL90Aの先端部90Aの筐体4の貫通孔に収容されている。
 被写体を撮影し撮像信号を出力する撮像素子2Bは、CMOSイメージセンサまたはCCDである。撮像信号は光モジュール1において光信号に変換される。
 光モジュール1の光ファイバ40は、例えば、光を伝送する50μm径のコアと、コアの外周を覆う125μm径のクラッドとからなる。光ファイバ40は、先端部90Aの中心軸C1に向かって延設され、湾曲部90Bにおいては湾曲部90Bの中心軸C2に沿って配置されている。
 すなわち、先端部90Aの基端部および湾曲部90Bには、光ファイバ40を中心軸C1(中心軸C)に沿って配置するためのガイド部材99が配設されている。ガイド部材99の詳細は、すでに説明した日本国特開2015-97589号公報に開示されている。図示しないが、軟性部90Cにも、ガイド部材99が配設されていることが好ましい。なお、軟性部90Cは、湾曲部90Bに比べると大きくは変形しないため、軟性部90Cにおけるガイド部材99の配置間隔は、湾曲部90Bにおける配置間隔よりも長くてもよい。
 ガイド部材として、湾曲部90Bの内径と略同じ外径で、湾曲部90Bを挿通している1本のマルチルーメンチューブを用いてもよい。すなわち、マルチルーメンチューブの中央を挿通している管路に光ファイバ40を挿通することで、光ファイバ40を中心軸C2に沿って配置できる。
 内視鏡9の挿入部90を挿通している光ファイバ40には、挿入部90が変形すると応力が印加される。光ファイバ40が大きな応力を受けるのは、特に、湾曲部90Bの湾曲操作により変形した場合である。
 内視鏡9では、光ファイバ40が、湾曲部90Bの中心軸C2に沿って配置されているため、湾曲部90Bが変形しても、光ファイバ40が大きな応力を受けることがない。このため、内視鏡9は、光ファイバ40が伝送する映像信号に損失が生じるおそれが低く、信頼性が高い。
 さらに、図3に示すように、内視鏡9の光モジュール1では、光ファイバ40は、ファイバ先端部が、中心軸Cおよび光軸Oを含む断面(YZ面)において、中心軸C1に対して角度θ、例えば、45度±10度、すなわち、35度以上55度以下に傾斜しており、延設方向が中心軸C1に向かって配置されている。
 以上の説明のように、高画素数の撮像素子2Bを有している内視鏡9は、光ファイバ40を介して画像信号を伝送するため、低侵襲で、かつ、高品質の画像が表示できる。また、光ファイバ40を大きく曲げることなく、湾曲部90Bの中心軸C2に沿って光ファイバ40を配置できるため、信頼性が高い。さらに、光ファイバ40を短い距離で湾曲部90Bの中心軸C2に沿って配置できるため、内視鏡9は先端部90Aの長さL90Aが短く、低侵襲である。
 次に図4~図8Aを用いて、内視鏡9の光モジュール1の詳細について説明する。
 光モジュール1は、配線板10と光素子20とボンディングワイヤ30とフェルール50と保持枠60と透明樹脂70とを有する。
 配線板10は、第1の主面10SAと第1の主面10SAと対向する第2の主面10SBとを有する。配線板10の第1の主面10SAには光素子20と接合電極11とが配設されている。接合電極11には図示しない配線を介して駆動信号が伝送される。
 図3に示したように、光モジュール1の配線板10の第2の主面10SBには撮像素子2Bが実装されている。このため、第1の主面10SAおよび第2の主面10SBは、撮像素子2Bの光軸Oに対して垂直である。配線板10に、光素子20を駆動するための駆動用ICおよびチップコンデンサ等の電子部品が実装されていてもよい。
 光素子20は、光信号を出力する発光面20SAと発光面20SAと対向する裏面20SBとを有する。光素子20は、光信号の光を出力する発光部21を有する面発光レーザーチップである。例えば、平面視寸法(光軸直交方向のサイズ)が250μm×300μmで厚さが150μmと超小型の光素子20は、直径が20μmの発光部21と、発光部21に駆動信号を供給する外部電極22とを発光面20SAに有する。
 光素子20では、2つの外部電極22は、発光面20SAを二等分する第1の領域20SA1と第2の領域20SA2のうち、第1の領域20SA1にだけ配設されている。ここで、第1の領域20SA1と第2の領域20SA2とは、面積が完全に同じ(すなわち発光面20SAが正確に二等分されている)必要はなく、別々の領域として分けられていればよい。
 ボンディングワイヤ30は、光素子20の外部電極22と、配線板10の接合電極11とを接続している。ボンディングワイヤ30は、例えば直径が30μmの金線である。ボンディングワイヤ30は、発光面20SAから100μm程度突出している。
 保持枠60は、上板61と複数の側板62、63、64とを有する。側板62、63、64は、配線板10の第1の主面10SAに固定されている。保持枠60の内部S60には、上板61と側板62、63、64とにより形成されている空間がある。4つの側面のうち、側板64と対向する最も面積が広い側面は開口O60となっている。配線板10に配設されている光素子20は保持枠60の内部S60に収容されている。
 保持枠60の上板61は、配線板10の第1の主面10SAに対して、所定の傾斜角度θで傾斜している。すなわち、図5に示すように、上板61の第1の領域20SA1までの第1の距離d1が第2の領域20SA2までの第2の距離d2よりも長い。
 すでに説明したように、ボンディングワイヤ30は、発光面20SAから100μm程度突出している。しかし、上板61が傾斜しているため、ボンディングワイヤ30は上板61と接触していない。このため、上板61が導体であっても、2本のボンディングワイヤ30が導通することはない。
 また、上板61が不導体、例えば、樹脂またはセラミックであっても、保持枠60を配線板10に配設する時に、上板61に押圧されてボンディングワイヤ30が変形し接合部に応力が印加されることは無い。このため、光モジュール1は接合信頼性が担保される。
 なお、ボンディングワイヤ30が上板61と接触していても大きく変形していなければ、光モジュール1は接合信頼性が担保される場合もある。しかし、ボンディングワイヤ30が上板61と接触していないことが好ましい。
 また、上板61が傾斜しているため、光モジュール1は、上板61が傾斜していない光モジュールよりも、配線板10の第1の主面10SAからフェルール50の上面までの長さが短い。すなわち、光モジュール1の光軸方向の長さが短いため、内視鏡9は硬性の先端部90Aの長さが短く低侵襲である。
 保持枠60の内部S60には、透明樹脂70が配設されている。透明樹脂70は、光ファイバ40のコアと略同じ屈折率の屈折率整合材である。透明樹脂70には、例えば、アクリル系樹脂、エポキシ系樹脂、ビニル系樹脂、エチレン系樹脂、シリコーン系樹脂、ウレタン系樹脂、ポリアミド系樹脂、フッ素系樹脂、ポリブタジエン系樹脂、またはポリカーボネート系樹脂を用いる。中でも、アクリル系樹脂およびエポキシ系樹脂は、耐湿性、耐熱性、耐剥離性および耐衝撃性という観点から透明樹脂70に好適である。
 なお、図4に示す透明樹脂70には、光素子20に対応する空間が示されているが、ボンディングワイヤ30に対応する空間は示されていない。
 保持枠60は、側板62、63、64を有するが、側板64と対向する面には側板はなく開口O60となっている。透明樹脂70は、配線板10に保持枠60を固定したあとで、開口O60から内部S60に液体状態で注入され、硬化処理、例えば、加熱または紫外線照射により固体化する。
 保持枠60の上板61には、接着剤55を用いてフェルール50が固定されている。フェルール50は、ガラス、金属部材、セラミック、または、シリコンからなる。フェルール50の挿入孔H50の内壁形状は、円柱状のほか、その壁面で光ファイバ40を保持できれば、角柱状であってもよい。
 光ファイバ40のファイバ先端部は、フェルール50の挿入孔50Hに挿入され、光素子20と光結合する。すなわち、保持枠60の上板61には光路となる貫通孔H60がある。
 挿入孔50Hの深さ方向はフェルール50の底面に対して垂直である。このため、光ファイバ40のファイバ先端部は、挿入孔50Hに挿入されると、保持枠60の上板61に対して垂直に配設される。
 上板61は、配線板10の第1の主面10SAに対して傾斜角度θで傾斜しているため、光ファイバ40は、例えば、35度以上55度以下の傾斜角度θで、先端部90Aの中心軸C1に向かって延設されている。このため、内視鏡9は、光ファイバ40を短い距離で湾曲部90Bの中心軸C2に沿って配置できるため、内視鏡9は先端部90Aの長さL90Aが短く低侵襲である。
<内視鏡(光モジュール)の製造方法>
 図9のフローチャートにそって、内視鏡9の光モジュール1の製造方法を簡単に説明する。
<ステップS11>発光素子配設工程
 光素子20が配線板10の第1の主面10SAに、例えば、接着剤により配設される。
<ステップS12>ボンディング工程
 光素子20の外部電極22と配線板10の接合電極11とがボンディングワイヤ30で接続される。ボンディングワイヤ30は、接合信頼性を担保するために、発光面20SAから100μm程度突出してしまう。
<ステップS13>保持枠配設工程
 配線板10の第1の主面10SAに保持枠60が、内部S60に光素子20が収容されるように配設される。保持枠60の上板61は、第1の主面10SAに対して傾斜している。このため、ボンディングワイヤ30が変形することはない。
<ステップS14>フェルール配設工程
 保持枠60の上板61にフェルール50が配設される。
<ステップS15>光ファイバ配設工程
 フェルール50の挿入孔H50に、光信号を伝送する光ファイバ40のファイバ先端部が挿入され固定される。
<ステップS16>樹脂配設工程
 液体状の未硬化の透明樹脂70が保持枠60の内部S60に、開口O60を介して注入され、さらに、硬化処理が行われる。保持枠60の側面には開口O60があるため、透明樹脂70を内部S60に容易に注入できる。
 透明樹脂70は少なくとも、発光面20SAと光ファイバ40との間に充填されていれば、内部S60を完全に充填していなくともよい。逆に、透明樹脂70の一部が保持枠60の外部にまで広がっていてもよい。また、光モジュール1の外面が、遮光樹脂により覆われていてもよい。
 なお、樹脂配設工程S16のあとに、光ファイバ配設工程S15が行われてもよい。光モジュール1等が、先端部90Aに配設され、内視鏡9が完成する。
 上記製造方法によれば、信頼性が高く高品質の画像を表示する低侵襲の内視鏡が提供できる。
 なお、光モジュール1は、図8B、図8C、図8Dに示す保持枠60a、60b、60cを具備していてもよい。
 図8Bに示す保持枠60aは、側板64を有していない。上板61は2枚の側板62、63により保持されている。なお、上板61が安定に保持できれば、側板を1つだけ有している保持枠を用いてもよい。言い替えれば、保持枠は少なくとも1つの側板を有していればよい。
 図8Cに示す保持枠60bは、側板64と対向する側板65を有する。側板65には2つの開口O60がある。図示しないが、ボンディングワイヤ30の一部は、開口O60から保持枠60bの外に突出する。また、開口O60はスリット状であるため、ボンディングワイヤ30が配設された第1の主面10SAに、ボンディングワイヤ30と接触しないように保持枠60bを配設できる。
 図8Dに示す保持枠60cは、側板と同様の効果を有し側板と見なすことのできる、4本の柱66を有する。また、上板61cが透明材料からなる場合には貫通孔はなくてもよい。さらに、上板61cと柱66とは別部材である。
 以上の説明のように、保持枠は、内部に発光素子が収容でき、かつ、ボンディングワイヤが変形しないように傾斜している上板を安定に保持していれば、種々の改変が可能である。
 以下で説明する実施形態の内視鏡9A~9Eは、第1実施形態の内視鏡9と類似し同じ効果を有しているので、同じ機能の構成要素には同じ符号を付し説明は省略する。
<第2実施形態>
 本実施形態の内視鏡9Aは、図10に示す光モジュール1Aを具備する。光モジュール1Aは、配線板10の第1の主面10SAに、第1の主面10SAにおける保持枠60の位置を規定する2つの位置規定部材15が配設されている
 保持枠60は、側板62、63の角部が、それぞれの位置規定部材15の壁面と当接することで、面内(XY平面)方向の位置が規定されている。なお、L字形の位置規定部材15は、直交する2つの壁面が十分に長ければ、1つでも、保持枠60面内方向の位置が正確に規定できる。言い替えれば、光モジュール1Aは少なくとも1つの位置規定部材15を有していればよい。
 光モジュール1Aは、保持枠60の位置決めが光モジュール1よりも容易である。
<第3実施形態>
 本実施形態の内視鏡9Bは、図11に示す光モジュール1Bを具備する。光モジュール1Bは、保持枠60Bの側板62、63と配線板10の第1の主面10SAとの間に配設されている2つの位置傾斜規定部材15Bを具備する。
 位置傾斜規定部材15Bにより、第1の主面10SAにおける保持枠60Bの位置および上板61の傾斜角度が規定されている。
 すなわち、位置傾斜規定部材15Bの上部の凹部(切り欠き)T15Bに保持枠60Bの側板62、63の角部が嵌合している。凹部T15Bの第1の主面10SAからの高さに基づき、上板61の傾斜角度が規定されている。
 光モジュール1Bは、保持枠60Bを配線板10に所定角度に正確に配設できるだけでなく、保持枠60Bの作製が容易である。
 なお、傾斜規定部材に凹部がなく、傾斜規定部材の上面と当接することで、少なくとも傾斜角度だけが規定されていてもよい。また、光モジュール1Bは少なくとも1つの位置傾斜規定部材15Bを有していればよい。
<第4実施形態>
 本実施形態の内視鏡9Cは光モジュール1Cを具備する。図12に示す光モジュール1Cでは、配線板10Cの第1の主面10SAには、第1の主面10SAにおける保持枠60Cの位置を規定する2本の溝T10があり、保持枠60Cの側板62C、63Cが、それぞれの溝T10に嵌合している。
 側板64の底面は、第1の主面10SAに当接している。なお、第1の主面10SAに1本の溝T10があり、側板62Cだけが溝T10と嵌合していてもよい。言い替えれば、配線板10Cには少なくとも1本の溝T10があればよい。
 光モジュール1Cは、保持枠60Cを配線板10に、容易に、かつ、正確に配設できる。
<第5実施形態>
 本実施形態の内視鏡9Dは、図13に示す光モジュール1Dを具備する。光モジュール1Dは、保持枠60Dの側板62D、63Dが嵌合している溝T10Dの位置に基づき第1の主面10SAにおける保持枠60Dの位置が規定されているだけでなく、側板62D、63Dが挿入されている溝T10Dの深さに基づき上板61の傾斜角度が規定されている。
 すなわち、光モジュール1Cでは溝T10の深さは一定であった。これに対して、溝T10Dの深さは第1の主面10SAに対して傾斜しており、その傾斜角度θが、上板61の傾斜角度θとなる。
 光モジュール1Dは、溝T10Dの位置および形状に基づき、保持枠60Dの位置および上板61の傾斜角度が規定されるため、製造が容易である。
 なお、配線板10Dの厚さが薄い場合には、溝T10Dの一部は貫通孔であってもよい。また、配線板10Dには少なくとも1本の溝T10Dがあればよい。
<第6実施形態>
 本実施形態の内視鏡9Eは、図14に示す光モジュール1Eを具備する。光モジュール1Eは、上板61の第1の主面10SAに対する傾斜角度θが、2度以上12度以下である。
 光モジュール1Eは、光素子20の発光面20SAが、光ファイバ40の端面40SAに対して、2度以上12度以下の傾斜角度で傾斜している。このため、光モジュール1Eは、界面における多重反射が少なくノイズが発生しにくい。光モジュール1Eを有する内視鏡9Eは高品質の画像を表示できる。
 なお、光モジュール1等に比べると光モジュール1Eは光ファイバ40の傾斜角度θが小さい。このため、内視鏡9Eは、内視鏡9よりも先端部90Aの長さL90Aが長い。しかし、光モジュール1Eは、傾斜角度θがゼロの内視鏡と比べると、先端部90Aの長さL90Aが短く低侵襲である。
 なお、以上の実施形態では、電気信号を光信号に変換する発光素子を有するE/O型の光モジュールを挿入部90の先端部90Aに有する内視鏡9等について説明した。しかし、実施形態の内視鏡は、光制御信号を撮像素子2Bへの電気制御信号に変換する受光素子を有するO/E型の光モジュール1Xを先端部90Aに有していてもよい。また、内視鏡9は、医療用内視鏡でも工業用内視鏡でもよい。
 本発明は、上述した実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更、組み合わせおよび応用が可能である。
 本出願は、2017年1月24日に出願された国際特許出願PCT/JP2017/002354、および、2017年9月20日に出願された国際特許出願PCT/JP2017/033883を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。
1、1A~1E、1X・・・光モジュール
2A・・・撮像光学系
2B・・・撮像素子
3・・・撮像装置
4・・・筐体
8・・・内視鏡システム
9、9A~1E・・・内視鏡
10・・・配線板
10SA・・・第1の主面
11・・・接合電極
15・・・位置規定部材
15B・・・位置傾斜規定部材
20・・・光素子
20SA・・・発光面
20SA1・・・第1の領域
20SA2・・・第2の領域
21・・・発光部
22・・・外部電極
30・・・ボンディングワイヤ
40・・・光ファイバ
50・・・フェルール
50H・・・挿入孔
60・・・保持枠
61・・・上板
70・・・透明樹脂
90・・・挿入部
90A・・・先端部

Claims (11)

  1.  被写体を撮影し撮像信号を出力する撮像素子と、前記撮像信号を光信号に変換し光ファイバを用いて伝送する光モジュールと、を挿入部の先端部に具備する内視鏡であって、前記光モジュールは、
     前記光信号を出力する発光面と前記発光面と対向する裏面とを有し、前記発光面を二等分する第1の領域と第2の領域のうち前記第1の領域に外部電極が配設されている発光素子と、
     第1の主面と前記第1の主面と対向する第2の主面とを有し、前記第1の主面に前記発光素子と接合電極とが配設されている配線板と、
     前記外部電極と前記接合電極とを接続しているボンディングワイヤと、
     挿入孔があり、前記挿入孔に前記光ファイバが挿入されているフェルールと、
     上板と側板とを有し、前記上板に前記フェルールが配設されており、前記側板が前記配線板の前記第1の主面に固定されており、内部に前記発光素子が収容されており、側面に開口のある保持枠と、
     前記保持枠の前記内部に配設されている透明樹脂と、を具備しており、
     前記上板が前記第1の主面に対して所定の傾斜角度で傾斜しており、前記上板の前記第1の領域までの第1の長さが前記第2の領域までの第2の長さよりも長いことを特徴とする内視鏡。
  2.  前記挿入部が、前記先端部から延設された湾曲部を有し、
     前記光モジュールが前記先端部の中心軸から偏心した位置で、かつ、前記第2の領域が前記中心軸側に配置されており、前記中心軸に向かって延設されている前記光ファイバが、前記湾曲部の中心を挿通していることを特徴とする請求項1に記載の内視鏡。
  3.  前記傾斜角度が、35度以上55度以下であることを特徴とする請求項1または請求項2に記載の内視鏡。
  4.  前記ボンディングワイヤが前記上板と接触していないことを特徴とする請求項1から請求項3のいずれか1項に記載の内視鏡。
  5.  前記保持枠の前記開口から、前記ボンディングワイヤの一部が突出していることを特徴とする請求項1から請求項4のいずれか1項に記載の内視鏡。
  6.  前記配線板の前記第1の主面に配設されている位置規定部材を更に具備し、
     前記位置規定部材に基づき前記第1の主面における前記保持枠の位置を規定されていることを特徴とする請求項1から請求項5のいずれか1項に記載の内視鏡。
  7.  前記側板と前記第1の主面との間に配設されている傾斜規定部材を更に具備し、
     前記傾斜規定部材に基づき、前記上板の前記傾斜角度が規定されていることを特徴とする請求項1から請求項5のいずれか1項に記載の内視鏡。
  8.  前記側板と前記第1の主面との間に配設されている位置傾斜規定部材を更に具備し、
     前記位置傾斜規定部材に基づき、前記第1の主面における前記保持枠の位置および前記上板の前記傾斜角度が規定されていることを特徴とする請求項1から請求項5のいずれか1項に記載の内視鏡。
  9.  前記配線板の前記第1の主面に、前記第1の主面における前記保持枠の位置を規定する溝があり、
     前記溝に前記保持枠の側板が嵌合していることを特徴とする請求項1から請求項5のいずれか1項に記載の内視鏡。
  10.  前記側板が挿入されている前記溝の深さに基づき、前記上板の前記傾斜角度が規定されていることを特徴とする請求項9に記載の内視鏡。
  11.  光信号を出力する発光面と前記発光面と対向する裏面とを有し、前記発光面を二等分する第1の領域と第2の領域のうち前記第1の領域に外部電極が配設されている発光素子を、第1の主面と前記第1の主面と対向する第2の主面とを有し、前記第1の主面に接合電極が配設されている配線板の前記第1の主面に配設する発光素子配設工程と、
     前記外部電極と前記接合電極とをボンディングワイヤで接続するボンディング工程と、
     前記配線板の前記第1の主面に、上板と側板とを有し側面に開口があり、前記第1の主面に対して傾斜している保持枠を、前記上板の前記第1の領域までの第1の距離が前記第2の領域までの第2の距離よりも長く、かつ、内部に前記発光素子が収容されるように配設する保持枠配設工程と、
     前記上板にフェルールを配設するフェルール配設工程と、
     前記フェルールの挿入孔に、前記光信号を伝送する光ファイバを挿入する光ファイバ配設工程と、
     前記保持枠の前記開口から前記内部に透明樹脂を注入する樹脂配設工程と、を具備することを特徴とする内視鏡の製造方法。
PCT/JP2018/001817 2017-01-24 2018-01-22 内視鏡および内視鏡の製造方法 WO2018139406A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/517,138 US10972707B2 (en) 2017-01-24 2019-07-19 Endoscope and method of manufacturing endoscope

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/002354 WO2018138778A1 (ja) 2017-01-24 2017-01-24 内視鏡
JPPCT/JP2017/002354 2017-01-24
PCT/JP2017/033883 WO2018138962A1 (ja) 2017-01-24 2017-09-20 内視鏡
JPPCT/JP2017/033883 2017-09-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/517,138 Continuation US10972707B2 (en) 2017-01-24 2019-07-19 Endoscope and method of manufacturing endoscope

Publications (1)

Publication Number Publication Date
WO2018139406A1 true WO2018139406A1 (ja) 2018-08-02

Family

ID=62978432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001817 WO2018139406A1 (ja) 2017-01-24 2018-01-22 内視鏡および内視鏡の製造方法

Country Status (1)

Country Link
WO (1) WO2018139406A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10972707B2 (en) * 2017-01-24 2021-04-06 Olympus Corporation Endoscope and method of manufacturing endoscope

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144831A (ja) * 1997-07-28 1999-02-16 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザモジュール
JP2001281503A (ja) * 2000-03-30 2001-10-10 Seiko Epson Corp 光モジュールおよびその製造方法
JP2014137584A (ja) * 2013-01-18 2014-07-28 Olympus Corp 光伝送モジュールおよび撮像装置
JP2015068835A (ja) * 2013-09-26 2015-04-13 オリンパス株式会社 光伝送モジュール、及び内視鏡
JP2015097588A (ja) * 2013-11-18 2015-05-28 オリンパス株式会社 光伝送モジュール及び内視鏡
WO2015079780A1 (ja) * 2013-11-28 2015-06-04 オリンパス株式会社 内視鏡
WO2016117121A1 (ja) * 2015-01-23 2016-07-28 オリンパス株式会社 光伝送モジュールおよび内視鏡
WO2016189691A1 (ja) * 2015-05-27 2016-12-01 オリンパス株式会社 内視鏡および光伝送モジュール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144831A (ja) * 1997-07-28 1999-02-16 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザモジュール
JP2001281503A (ja) * 2000-03-30 2001-10-10 Seiko Epson Corp 光モジュールおよびその製造方法
JP2014137584A (ja) * 2013-01-18 2014-07-28 Olympus Corp 光伝送モジュールおよび撮像装置
JP2015068835A (ja) * 2013-09-26 2015-04-13 オリンパス株式会社 光伝送モジュール、及び内視鏡
JP2015097588A (ja) * 2013-11-18 2015-05-28 オリンパス株式会社 光伝送モジュール及び内視鏡
WO2015079780A1 (ja) * 2013-11-28 2015-06-04 オリンパス株式会社 内視鏡
WO2016117121A1 (ja) * 2015-01-23 2016-07-28 オリンパス株式会社 光伝送モジュールおよび内視鏡
WO2016189691A1 (ja) * 2015-05-27 2016-12-01 オリンパス株式会社 内視鏡および光伝送モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10972707B2 (en) * 2017-01-24 2021-04-06 Olympus Corporation Endoscope and method of manufacturing endoscope

Similar Documents

Publication Publication Date Title
US11172812B2 (en) Endoscope
US10972707B2 (en) Endoscope and method of manufacturing endoscope
US10281710B2 (en) Imaging module and endoscope apparatus each having a flexible substrate divided into different regions where a chip having a transmission buffer and a drive signal cable are connected to the different regions
US8179428B2 (en) Imaging apparatus for electronic endoscope and electronic endoscope
US11435570B2 (en) Image pickup apparatus for endoscope, endoscope, and manufacturing method of image pickup apparatus for endoscope
US10321815B2 (en) Image pickup module and endoscope
US10088669B2 (en) Endoscope
US20190384013A1 (en) Optical module, endoscope and manufacturing method of optical module
US11330972B2 (en) Oblique-viewing endoscope
US11762156B2 (en) Optical module for endoscope, endoscope, and manufacturing method of optical module for endoscope
WO2019176601A1 (ja) 撮像ユニットおよび斜視型内視鏡
US9629524B2 (en) Image pickup unit for endoscope having first and second leads with differing distances to image pickup device
WO2018139406A1 (ja) 内視鏡および内視鏡の製造方法
WO2017072862A1 (ja) 撮像ユニットおよび内視鏡
US11918179B2 (en) Image pickup apparatus for endoscope, endoscope, and manufacturing method for image pickup apparatus for endoscope
WO2020065757A1 (ja) 内視鏡用撮像装置、内視鏡、および、内視鏡用撮像装置の製造方法
US20210382250A1 (en) Manufacturing method for image pickup apparatus for endoscope, image pickup apparatus for endoscope, and endoscope
US20200049908A1 (en) Optical module and endoscope
WO2021176596A1 (ja) 内視鏡用撮像装置、および、内視鏡
WO2019224942A1 (ja) 内視鏡用光モジュール、内視鏡、および内視鏡用光モジュールの製造方法
US20180307035A1 (en) Optical transmission module and endoscope
WO2020179067A1 (ja) 内視鏡用光トランスデューサ、内視鏡用撮像装置、および内視鏡
US20240302643A1 (en) Endoscope imaging device and endoscope
US11986154B2 (en) Optical transducer for endoscope, endoscope, and manufacturing method of optical transducer for endoscope
US20200237194A1 (en) Endoscope and endoscope system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP