WO2018139206A1 - Polycarbonate resin composition for optical parts and optical part - Google Patents

Polycarbonate resin composition for optical parts and optical part Download PDF

Info

Publication number
WO2018139206A1
WO2018139206A1 PCT/JP2018/000555 JP2018000555W WO2018139206A1 WO 2018139206 A1 WO2018139206 A1 WO 2018139206A1 JP 2018000555 W JP2018000555 W JP 2018000555W WO 2018139206 A1 WO2018139206 A1 WO 2018139206A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
resin composition
parts
polyalkylene glycol
glycol
Prior art date
Application number
PCT/JP2018/000555
Other languages
French (fr)
Japanese (ja)
Inventor
恵介 冨田
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to JP2018517228A priority Critical patent/JP6446601B1/en
Publication of WO2018139206A1 publication Critical patent/WO2018139206A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to a polycarbonate resin composition for optical parts and an optical part, and more specifically, a polycarbonate resin composition for optical parts having a good hue and extremely low gas generation and mold contamination during molding, and molding the same. Related to the optical component.
  • a liquid crystal display device used in personal computers, mobile phones, and the like has a surface light source device incorporated in order to meet the demands for thinning, lightening, labor saving, and high definition.
  • the surface light source device has a wedge-shaped cross-section light guide plate or a flat plate shape with a uniform inclined surface for the purpose of uniformly and efficiently guiding incident light to the liquid crystal display side.
  • a light guide plate is provided. In some cases, an uneven pattern is formed on the surface of the light guide plate to provide a light scattering function.
  • Such a light guide plate is obtained by injection molding of a thermoplastic resin, and the above concavo-convex pattern is imparted by transferring the concavo-convex portion formed on the surface of the nest.
  • the light guide plate has been molded from a resin material such as polymethylmethacrylate (PMMA).
  • PMMA polymethylmethacrylate
  • Polycarbonate resin is excellent in mechanical properties, thermal properties, electrical properties, and weather resistance, but its light transmittance is lower than that of PMMA, etc., so that a surface light source body is formed from a light guide plate made of polycarbonate resin and a light source.
  • a surface light source body is formed from a light guide plate made of polycarbonate resin and a light source.
  • the luminance is low.
  • Patent Document 1 discloses a method for improving light transmittance and luminance by adding an acrylic resin and an alicyclic epoxy
  • Patent Document 2 describes a transfer property of a concavo-convex portion to a light guide plate by modifying a polycarbonate resin terminal.
  • a method for improving the brightness by increasing the brightness and Patent Document 3 propose a method for improving the brightness by introducing a copolyester carbonate having an aliphatic segment to improve the transferability.
  • Patent Document 1 improves the hue by adding an acrylic resin, it cannot be increased in light transmittance and brightness due to white turbidity, and the transmittance is improved by adding an alicyclic epoxy. Although there is a possibility, the effect of improving the hue is not recognized. In the case of Patent Document 2 and Patent Document 3, although an improvement effect of fluidity and transferability can be expected, there is a disadvantage that heat resistance is lowered.
  • Patent Document 4 discloses a ⁇ -irradiation-resistant polycarbonate resin containing the same.
  • Patent Document 5 describes a thermoplastic resin composition excellent in antistatic properties and surface appearance blended with PMMA or the like.
  • patent document 6 the proposal which improves the transmittance
  • the present invention has been made in view of the above circumstances, and its purpose is to provide an optical material that has a good hue without impairing the original properties of the polycarbonate resin, and that has very little gas generation and mold contamination during molding.
  • the object is to provide a polycarbonate resin composition for parts and an optical part.
  • the inventor has a polystyrene-reduced weight average molecular weight (Mw) by a gel permeation chromatography in a specific range, and the weight average molecular weight (Mw) and number average.
  • Mw weight average molecular weight
  • Mn molecular weight ratio
  • the present inventors have found that a polycarbonate resin composition for optical parts can be obtained with extremely little gas generation and mold contamination.
  • the present invention relates to the following polycarbonate resin composition for optical parts and optical parts.
  • the polystyrene-reduced weight average molecular weight (Mw) measured with a tetrahydrofuran solvent by gel permeation chromatography with respect to 100 parts by mass of the polycarbonate resin (A) is more than 4,000 to 7,700, and the weight average molecular weight ( 0.1 to 4 parts by mass of polyalkylene glycol (B) having a ratio (Mw / Mn) of 2.5 or less (Mw) to number average molecular weight (Mn) and 0.005 of phosphorus stabilizer (C)
  • a polycarbonate resin composition for optical parts characterized by containing ⁇ 0.5 part by mass.
  • the polyalkylene glycol (B) is a branch selected from a linear alkylene ether unit represented by the following general formula (3) and units represented by the following general formulas (4-1) to (4-4)
  • p represents an integer of 2 to 6.
  • R 1 to R 10 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and each of the formulas (4-1) to (4- In 4), at least one of R 1 to R 10 is an alkyl group having 1 to 3 carbon atoms.
  • R 1 , R 2 and R 3 may be the same or different and each represents an aryl group having 6 to 30 carbon atoms.
  • R 4 and R 5 may be the same or different and each represents an aryl group having 6 to 30 carbon atoms.
  • [8] The polycarbonate resin for optical components according to [1] or [2], further containing 0.0005 to 0.2 parts by mass of the epoxy compound (D) with respect to 100 parts by mass of the polycarbonate resin (A). Composition.
  • the polycarbonate resin composition of the present invention can provide an optical component having a good hue without deteriorating the original properties of the polycarbonate resin, generating little gas during molding, and extremely little mold contamination. .
  • the polycarbonate resin composition for optical parts of the present invention has a polystyrene-reduced weight average molecular weight (Mw) of more than 4,000 to 7,7, measured with a tetrahydrofuran solvent by gel permeation chromatography with respect to 100 parts by mass of the polycarbonate resin (A).
  • Polycarbonate resin (A) There is no restriction
  • the polycarbonate resin is a polymer having a basic structure having a carbonic acid bond represented by the formula: — [— O—X—O—C ( ⁇ O) —] —.
  • X is generally a hydrocarbon, but for imparting various properties, X into which a hetero atom or a hetero bond is introduced may be used.
  • the polycarbonate resin can be classified into an aromatic polycarbonate resin in which the carbon directly bonded to the carbonic acid bond is an aromatic carbon, and an aliphatic polycarbonate resin in which the carbon is an aliphatic carbon, either of which can be used.
  • aromatic polycarbonate resins are preferred from the viewpoints of heat resistance, mechanical properties, electrical characteristics, and the like.
  • the polycarbonate polymer formed by making a dihydroxy compound and a carbonate precursor react is mentioned.
  • a polyhydroxy compound or the like may be reacted.
  • a method of reacting carbon dioxide with a cyclic ether using a carbonate precursor may be used.
  • the polycarbonate polymer may be linear or branched.
  • the polycarbonate polymer may be a homopolymer composed of one type of repeating unit or a copolymer having two or more types of repeating units.
  • the copolymer can be selected from various copolymerization forms such as a random copolymer and a block copolymer.
  • such a polycarbonate polymer is a thermoplastic resin.
  • aromatic dihydroxy compounds include: Dihydroxybenzenes such as 1,2-dihydroxybenzene, 1,3-dihydroxybenzene (ie, resorcinol), 1,4-dihydroxybenzene; Dihydroxybiphenyls such as 2,5-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl;
  • 2,2′-dihydroxy-1,1′-binaphthyl 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 1, , 7-dihydroxynaphthalene, dihydroxynaphthalene such as 2,7-dihydroxynaphthalene;
  • 2,2-bis (4-hydroxyphenyl) propane ie, bisphenol A
  • 1,1-bis (4-hydroxyphenyl) propane 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3-methoxy-4-hydroxyphenyl) propane, 2- (4-hydroxyphenyl) -2- (3-methoxy-4-hydroxyphenyl) propane, 1,1-bis (3-tert-butyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane, 2- (4-hydroxyphenyl) -2- (3-cyclohexyl-4-hydroxyphenyl) propane, ⁇ , ⁇ '-bis (4-hydroxyphenyl) -1,4-diisopropylbenzene, 1,3-bis [2- (4-hydroxyphenyl) -2-propyl] benzene, Bis (4-hydroxyphenyl) methane, Bis (4-hydroxyphenyl)
  • 1,1-bis (4-hydroxyphenyl) cyclopentane 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3-dimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3,4-dimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3,5-dimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxy-3,5-dimethylphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3-propyl-5-methylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3-tert-butyl-cyclohexane, 1,1-bis (4-hydroxyphenyl) -4-tert-butyl-cyclohexan
  • Dihydroxydiaryl sulfoxides such as 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide;
  • bis (hydroxyaryl) alkanes are preferable, and bis (4-hydroxyphenyl) alkanes are preferable, and 2,2-bis (4-hydroxyphenyl) propane (particularly from the viewpoint of impact resistance and heat resistance). That is, bisphenol A) is preferred.
  • 1 type may be used for an aromatic dihydroxy compound and it may use 2 or more types together by arbitrary combinations and a ratio.
  • Ethane-1,2-diol propane-1,2-diol, propane-1,3-diol, 2,2-dimethylpropane-1,3-diol, 2-methyl-2-propylpropane-1,3- Alkanediols such as diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol, decane-1,10-diol;
  • Glycols such as ethylene glycol, 2,2'-oxydiethanol (ie, diethylene glycol), triethylene glycol, propylene glycol, spiro glycol and the like;
  • 1,2-epoxyethane ie ethylene oxide
  • 1,2-epoxypropane ie propylene oxide
  • 1,2-epoxycyclopentane 1,2-epoxycyclohexane
  • 1,4-epoxycyclohexane 1,4-epoxycyclohexane
  • 1-methyl -1,2-epoxycyclohexane 2,3-epoxynorbornane
  • cyclic ethers such as 1,3-epoxypropane; and the like.
  • carbonyl halides, carbonate esters and the like are used as examples of carbonate precursors.
  • 1 type may be used for a carbonate precursor and it may use 2 or more types together by arbitrary combinations and a ratio.
  • carbonyl halide examples include phosgene; haloformates such as a bischloroformate of a dihydroxy compound and a monochloroformate of a dihydroxy compound.
  • carbonate ester examples include diaryl carbonates such as diphenyl carbonate and ditolyl carbonate; dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; biscarbonate bodies of dihydroxy compounds, monocarbonate bodies of dihydroxy compounds, and cyclic carbonates. And carbonate bodies of dihydroxy compounds such as
  • the manufacturing method of polycarbonate resin is not specifically limited, Arbitrary methods are employable. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
  • Arbitrary methods include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
  • a polycarbonate resin is produced by an interfacial polymerization method.
  • a dihydroxy compound and a carbonate precursor preferably phosgene
  • an organic solvent inert to the reaction and an aqueous alkaline solution, usually at a pH of 9 or higher.
  • Polycarbonate resin is obtained by interfacial polymerization in the presence.
  • a molecular weight adjusting agent may be present as necessary, or an antioxidant may be present to prevent the oxidation of the dihydroxy compound.
  • the dihydroxy compound and the carbonate precursor are as described above.
  • phosgene is preferably used, and a method using phosgene is particularly called a phosgene method.
  • organic solvent inert to the reaction examples include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene and dichlorobenzene; aromatic hydrocarbons such as benzene, toluene and xylene; It is done.
  • 1 type may be used for an organic solvent and it may use 2 or more types together by arbitrary combinations and a ratio.
  • alkali compound contained in the alkaline aqueous solution examples include alkali metal compounds and alkaline earth metal compounds such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and sodium hydrogen carbonate, among which sodium hydroxide and water Potassium oxide is preferred.
  • 1 type may be used for an alkali compound and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the concentration of the alkali compound in the alkaline aqueous solution is not limited, but it is usually used at 5 to 10% by mass in order to control the pH in the alkaline aqueous solution of the reaction to 10 to 12.
  • the molar ratio of the bisphenol compound to the alkali compound is usually 1: 1.9 or more in order to control the pH of the aqueous phase to be 10 to 12, preferably 10 to 11.
  • the ratio is 1: 2.0 or more, usually 1: 3.2 or less, and more preferably 1: 2.5 or less.
  • polymerization catalyst examples include aliphatic tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, and trihexylamine; alicyclic rings such as N, N′-dimethylcyclohexylamine and N, N′-diethylcyclohexylamine Tertiary amines; aromatic tertiary amines such as N, N′-dimethylaniline and N, N′-diethylaniline; quaternary ammonium salts such as trimethylbenzylammonium chloride, tetramethylammonium chloride, triethylbenzylammonium chloride, etc. Pyridine; guanine; guanidine salt; and the like.
  • 1 type may be used for a polymerization catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the molecular weight regulator examples include aromatic phenols having a monohydric phenolic hydroxyl group; aliphatic alcohols such as methanol and butanol; mercaptans; phthalimides and the like, among which aromatic phenols are preferred.
  • aromatic phenols include alkyl groups such as m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, p-tert-butylphenol, and p-long chain alkyl-substituted phenol.
  • a molecular weight regulator may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the amount used of the molecular weight regulator is usually 0.5 mol or more, preferably 1 mol or more, and usually 50 mol or less, preferably 30 mol or less, per 100 mol of the dihydroxy compound.
  • the order of mixing the reaction substrate, reaction medium, catalyst, additive and the like is arbitrary as long as a desired polycarbonate resin is obtained, and an appropriate order may be arbitrarily set.
  • the molecular weight regulator can be mixed at any time as long as it is between the reaction (phosgenation) of the dihydroxy compound and phosgene and the start of the polymerization reaction.
  • the reaction temperature is usually 0 to 40 ° C.
  • the reaction time is usually several minutes (for example, 10 minutes) to several hours (for example, 6 hours).
  • melt transesterification method for example, a transesterification reaction between a carbonic acid diester and a dihydroxy compound is performed.
  • the dihydroxy compound is as described above.
  • examples of the carbonic acid diester include dialkyl carbonate compounds such as dimethyl carbonate, diethyl carbonate, and di-tert-butyl carbonate; diphenyl carbonate; substituted diphenyl carbonate such as ditolyl carbonate, and the like. Among these, diphenyl carbonate and substituted diphenyl carbonate are preferable, and diphenyl carbonate is more preferable.
  • carbonic acid diester may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the ratio of the dihydroxy compound and the carbonic acid diester is arbitrary as long as the desired polycarbonate resin is obtained, but it is preferable to use an equimolar amount or more of the carbonic acid diester with respect to 1 mol of the dihydroxy compound, and above all, 1.01 mol or more is used. It is more preferable.
  • the upper limit is usually 1.30 mol or less. By setting it as such a range, the amount of terminal hydroxyl groups can be adjusted to a suitable range.
  • the amount of terminal hydroxyl groups tends to have a large effect on thermal stability, hydrolysis stability, color tone, and the like. For this reason, you may adjust the amount of terminal hydroxyl groups as needed by a well-known arbitrary method.
  • a polycarbonate resin in which the amount of terminal hydroxyl groups is adjusted can be usually obtained by adjusting the mixing ratio of the carbonic diester and the aromatic dihydroxy compound; the degree of vacuum during the transesterification reaction, and the like.
  • the molecular weight of the polycarbonate resin usually obtained can also be adjusted by this operation.
  • the mixing ratio is as described above.
  • a more aggressive adjustment method there may be mentioned a method in which a terminal terminator is mixed separately during the reaction.
  • the terminal terminator at this time include monohydric phenols, monovalent carboxylic acids, carbonic acid diesters, and the like.
  • 1 type may be used for a terminal terminator and it may use 2 or more types together by arbitrary combinations and a ratio.
  • a transesterification catalyst is usually used. Any transesterification catalyst can be used. Among these, for example, it is preferable to use an alkali metal compound and / or an alkaline earth metal compound. In addition, auxiliary compounds such as basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds may be used in combination. In addition, 1 type may be used for a transesterification catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the reaction temperature is usually 100 to 320 ° C.
  • the pressure during the reaction is usually a reduced pressure condition of 2 mmHg or less.
  • a melt polycondensation reaction may be performed under the above conditions while removing by-products such as aromatic hydroxy compounds.
  • the melt polycondensation reaction can be performed by either a batch method or a continuous method.
  • the order which mixes a reaction substrate, a reaction medium, a catalyst, an additive, etc. is arbitrary as long as a desired aromatic polycarbonate resin is obtained, What is necessary is just to set an appropriate order arbitrarily.
  • the melt polycondensation reaction is preferably carried out continuously.
  • a catalyst deactivator may be used as necessary.
  • a compound that neutralizes the transesterification catalyst can be arbitrarily used. Examples thereof include sulfur-containing acidic compounds and derivatives thereof.
  • 1 type may be used for a catalyst deactivator and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the amount of the catalyst deactivator used is usually 0.5 equivalents or more, preferably 1 equivalent or more, and usually 10 equivalents or less, relative to the alkali metal or alkaline earth metal contained in the transesterification catalyst. Preferably it is 5 equivalents or less. Furthermore, it is 1 ppm or more normally with respect to polycarbonate resin, and is 100 ppm or less normally, Preferably it is 20 ppm or less.
  • the molecular weight of the polycarbonate resin (A) is preferably 10,000 to 26,000 in terms of viscosity average molecular weight (Mv) converted from the solution viscosity measured at a temperature of 25 ° C. using methylene chloride as a solvent.
  • Mv viscosity average molecular weight
  • it is 10,500 or more, More preferably, it is 11,000 or more, Especially, 11,500 or more, Most preferably, it is 12,000 or more, More preferably, it is 24,000 or less, More preferably, it is 20,000 or less is there.
  • the mechanical strength of the polycarbonate resin composition of the present invention can be further improved, and by making the viscosity average molecular weight not more than the upper limit of the above range, The fluidity of the polycarbonate resin composition of the invention can be suppressed and improved, and the molding processability can be improved and the thin-wall molding process can be easily performed.
  • Two or more types of polycarbonate resins having different viscosity average molecular weights may be mixed and used, and in this case, a polycarbonate resin having a viscosity average molecular weight outside the above-mentioned preferred range may be mixed.
  • the intrinsic viscosity [ ⁇ ] is a value calculated from the following equation by measuring the specific viscosity [ ⁇ sp ] at each solution concentration [C] (g / dl).
  • the terminal hydroxyl group concentration of the polycarbonate resin is arbitrary and may be appropriately selected and determined, but is usually 1,000 ppm or less, preferably 800 ppm or less, more preferably 600 ppm or less. Thereby, the residence heat stability and color tone of polycarbonate resin can be improved more.
  • the lower limit is usually 10 ppm or more, preferably 30 ppm or more, more preferably 40 ppm or more, particularly for polycarbonate resins produced by the melt transesterification method. Thereby, the fall of molecular weight can be suppressed and the mechanical characteristic of a resin composition can be improved more.
  • the unit of the terminal hydroxyl group concentration represents the mass of the terminal hydroxyl group with respect to the mass of the polycarbonate resin in ppm.
  • the measuring method is a colorimetric determination by the titanium tetrachloride / acetic acid method (method described in Macromol. Chem. 88 215 (1965)).
  • the polycarbonate resin is a polycarbonate resin alone (the polycarbonate resin alone is not limited to an embodiment containing only one type of polycarbonate resin, and is used in a sense including an embodiment containing a plurality of types of polycarbonate resins having different monomer compositions and molecular weights, for example. .), Or an alloy (mixture) of a polycarbonate resin and another thermoplastic resin may be used in combination.
  • a polycarbonate resin is copolymerized with an oligomer or polymer having a siloxane structure; for the purpose of further improving thermal oxidation stability and flame retardancy
  • the polycarbonate resin may contain a polycarbonate oligomer.
  • the viscosity average molecular weight [Mv] of this polycarbonate oligomer is usually 1,500 or more, preferably 2,000 or more, and usually 9,500 or less, preferably 9,000 or less.
  • the polycarbonate ligomer contained is preferably 30% by mass or less of the polycarbonate resin (including the polycarbonate oligomer).
  • the polycarbonate resin may be not only a virgin raw material but also a polycarbonate resin regenerated from a used product (so-called material-recycled polycarbonate resin).
  • the regenerated polycarbonate resin is preferably 80% by mass or less of the polycarbonate resin, and more preferably 50% by mass or less.
  • Recycled polycarbonate resin is likely to have undergone deterioration such as heat deterioration and aging deterioration, so when such polycarbonate resin is used more than the above range, hue and mechanical properties can be reduced. It is because there is sex.
  • the polycarbonate resin composition for optical parts of the present invention has a polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography with a tetrahydrofuran solvent of more than 4,000 to 7,700, and the weight average molecular weight (Mw). And a polyalkylene glycol (B) having a ratio (Mw / Mn) of 2.5 or less to the number average molecular weight (Mn).
  • Mw polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography with a tetrahydrofuran solvent of more than 4,000 to 7,700, and the weight average molecular weight (Mw).
  • Mw polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography with a tetrahydrofuran solvent of more than 4,000 to 7,700, and the weight average molecular weight (Mw).
  • Mn number average molecular weight
  • the weight average molecular weight (Mw) of the polyalkylene glycol (B) is preferably 4,050 or more, more preferably 4,100 or more, further 4,200 or more, 4,300 or more, especially 4,400 or more, especially More than 4,500, most preferably more than 5,000, preferably 7,500 or less, more preferably 7,400 or less, further preferably 7,350 or less, particularly 7300 or less.
  • the Mw / Mn of the polyalkylene glycol (B) is preferably 2.4 or less, more preferably 2.3 or less, still more preferably 2.2 or less, and particularly preferably 2.15 or less.
  • the lower limit of Mw / Mn is usually 1.0, preferably 1.1, more preferably 1.2, still more preferably 1.3, and particularly 1.35 or more.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polyalkylene glycol (B) are measured in terms of polystyrene measured with a tetrahydrofuran solvent by gel permeation chromatography. The details of the measurement method are as described in detail in the examples.
  • polyalkylene glycol (B) various polyalkylene glycols can be used.
  • An alkylene glycol is mentioned as a preferable thing.
  • the branched polyalkylene glycol represented by the following general formula (1) or the linear polyalkylene glycol represented by the following general formula (2) may be a copolymer with another copolymer component. Although it is good, it is preferably a homopolymer.
  • R represents an alkyl group having 1 to 3 carbon atoms
  • X and Y each independently represent a hydrogen atom, an aliphatic acyl group having 1 to 23 carbon atoms, an alkyl group having 1 to 23 carbon atoms, carbon An aryl group having 6 to 22 carbon atoms or an aralkyl group having 7 to 23 carbon atoms, and m represents an integer of 10 to 400.
  • the branched polyalkylene glycol represented by the general formula (1) may be a homopolymer composed of one kind of R or a copolymer composed of different Rs.
  • X and Y are each independently a hydrogen atom, an aliphatic acyl group having 2 to 23 carbon atoms, an alkyl group having 1 to 23 carbon atoms, an aryl group having 6 to 22 carbon atoms, or 7 to 23 carbon atoms).
  • p represents an integer of 2 to 6
  • r represents an integer of 6 to 100.
  • the linear polyalkylene glycol represented by the general formula (2) may be a homopolymer composed of a single p or a copolymer composed of a different p.
  • branched polyalkylene glycol in the general formula (1), (2-methyl) ethylene glycol in which X and Y are hydrogen atoms and R is a methyl group and (2-ethyl) ethylene glycol in which an ethyl group is preferable are preferable. .
  • linear polyalkylene glycol in general formula (2), X and Y are hydrogen atoms, p is 2, polyethylene glycol, p is 3, polytrimethylene glycol, and p is 4, polytetramethylene.
  • Preferable examples include glycol, polypentamethylene glycol having p of 5, and polyhexamethylene glycol having p of 6, more preferably polytrimethylene glycol and polytetramethylene glycol.
  • the polyalkylene glycol (B) is selected from linear alkylene ether units (P1) represented by the following general formula (3) and units represented by the following general formulas (4-1) to (4-4).
  • P1 linear alkylene ether units
  • 4-1) to (4-4) units represented by the following general formulas (4-1) to (4-4).
  • a polyalkylene glycol copolymer having a branched alkylene ether unit (P2) is also preferred.
  • p represents an integer of 2 to 6.
  • a linear alkylene ether unit represented by General formula (3) the single unit which consists of 1 type of p, or the several unit which consists of different p may mix.
  • R 1 to R 10 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and each of the formulas (4-1) to (4- In 4), at least one of R 1 to R 10 is an alkyl group having 1 to 3 carbon atoms.
  • the branched alkylene ether units represented by general formulas (4-1) to (4-4) are composed of branched alkylene ether units having any one structure of general formulas (4-1) to (4-4). It may be a homopolymer or a copolymer composed of branched alkylene ether units having a plurality of structures.
  • linear alkylene ether unit (P1) represented by the general formula (3) when describing it as glycol, ethylene glycol in which p is 2, trimethylene glycol in which p is 3, and tetra in which p is 4 Examples thereof include methylene glycol, pentamethylene glycol having p of 5, and hexamethylene glycol having p of 6, which may be mixed, preferably trimethylene glycol and tetramethylene glycol, and tetramethylene glycol is particularly preferable.
  • Trimethylene glycol is industrially obtained by hydroformylating ethylene oxide to obtain 3-hydroxypropionaldehyde and hydrogenating it, or 3-hydroxypropionaldehyde obtained by hydrating acrolein is hydrogenated with a Ni catalyst. Manufactured by the method. Recently, trimethylene glycol is also produced by reducing glycerin, glucose, starch and the like to microorganisms by a bio method.
  • branched alkylene ether unit represented by the general formula (4-1) is described as glycol, (2-methyl) ethylene glycol, (2-ethyl) ethylene glycol, (2,2-dimethyl) ethylene glycol, etc. These may be mixed, and (2-methyl) ethylene glycol and (2-ethyl) ethylene glycol are preferred.
  • branched alkylene ether unit represented by the general formula (4-2) is described as glycol, (2-methyl) trimethylene glycol, (3-methyl) trimethylene glycol, (2-ethyl) trimethylene glycol , (3-ethyl) triethylene glycol, (2,2-dimethyl) trimethylene glycol, (2,2-methylethyl) trimethylene glycol, (2,2-diethyl) trimethylene glycol (ie neopentyl glycol) (3,3-dimethyl) trimethylene glycol, (3,3-methylethyl) trimethylene glycol, (3,3-diethyl) trimethylene glycol, and the like, and these may be mixed.
  • the branched alkylene ether unit represented by the above general formula (4-3) is described as glycol.
  • branched alkylene ether unit represented by the general formula (4-4) is described as glycol, (3-methyl) pentamethylene glycol, (4-methyl) pentamethylene glycol, (5-methyl) pentamethylene glycol , (3-ethyl) pentamethylene glycol, (4-ethyl) pentamethylene glycol, (5-ethyl) pentamethylene glycol, (3,3-dimethyl) pentamethylene glycol, (3,3-methylethyl) pentamethylene glycol (3,3-diethyl) pentamethylene glycol, (4,4-dimethyl) pentamethylene glycol, (4,4-methylethyl) pentamethylene glycol, (4,4-diethyl) pentamethylene glycol, (5,5 -Dimethyl) pentamethyleneglycol , (5,5-methylethyl) pentamethylene glycol, (5,5-diethyl) such as pentamethylene glycol, and the like, may also
  • the units represented by the general formulas (4-1) to (4-4) constituting the branched alkylene ether unit have been described for convenience by way of glycols, but are not limited to these glycols. Alternatively, these polyether-forming derivatives may be used.
  • the polyalkylene glycol copolymer include a copolymer composed of a tetramethylene ether unit and a unit represented by the general formula (4-3), particularly a tetramethylene ether unit and 3-methyltetramethylene.
  • a copolymer comprising an ether unit is more preferable.
  • a copolymer comprising a tetramethylene ether unit and a unit represented by the general formula (4-1) is also preferred, and in particular, a copolymer comprising a tetramethylene ether unit and a 2-methylethylene ether unit, and tetramethylene ether More preferred are copolymers comprising units and 2-ethylethylene ether units.
  • a copolymer composed of a tetramethylene ether unit and the above general formula (4-2) is also preferable, and a copolymer composed of a 2,2-dimethyltrimethylene ether unit, that is, a neopentyl glycol ether unit is also preferable.
  • the polyalkylene glycol copolymer may be a random copolymer or a block copolymer.
  • the copolymerization ratio of (P1) / (P2) is preferably 95/5 to 5/95, more preferably 93/7 to 40/60, and still more preferably 90/10. It is more preferable that the linear alkylene ether unit (P1) is rich.
  • the mole fraction is measured using a 1 H-NMR measuring apparatus and deuterated chloroform as a solvent.
  • X and / or Y may be an aliphatic acyl group or alkyl group having 1 to 23 carbon atoms.
  • the esterified product or etherified product of polyalkylene glycol does not necessarily need to be esterified or etherified entirely, and is preferably a partially esterified product or an etherified product.
  • the fatty acid ester product either a linear or branched fatty acid ester can be used, and the fatty acid constituting the fatty acid ester may be a saturated fatty acid or an unsaturated fatty acid. Also, those in which some hydrogen atoms are substituted with a substituent such as a hydroxyl group can be used.
  • the fatty acid constituting the fatty acid ester is a monovalent or divalent fatty acid having 1 to 23 carbon atoms, such as a monovalent saturated fatty acid, specifically formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid.
  • Enanthic acid caprylic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid and monovalent unsaturated fatty acids, specifically, Unsaturated fatty acids such as oleic acid, elaidic acid, linoleic acid, linolenic acid and arachidonic acid, and divalent fatty acids having 10 or more carbon atoms, specifically sebacic acid, undecanedioic acid, dodecanedioic acid, tetradecanedioic acid , Tapsia and decenedioic acid, undecenedioic acid, dodecenedioic acid. These fatty acids can be used alone or in combination.
  • the fatty acid also includes a fatty acid having one or more hydroxyl groups in the molecule.
  • fatty acid ester of polyalkylene glycol include polypropylene glycol stearate in which R is a methyl group, X and Y are aliphatic acyl groups having 18 carbon atoms in general formula (I-1), and R is a methyl group , Polypropylene glycol behenate wherein X and Y are aliphatic acyl groups having 22 carbon atoms.
  • fatty acid ester of polyalkylene glycol include polyalkylene glycol monopalmitate, polyalkylene glycol dipalmitate, polyalkylene glycol monostearate, polyalkylene glycol distearate, polyalkylene glycol (monopalmitin) Acid / monostearic acid) ester, polyalkylene glycol behenate and the like.
  • the alkyl group constituting the alkyl ether of the polyalkylene glycol may be either linear or branched, for example, carbon number such as methyl group, ethyl group, propyl group, butyl group, octyl group, lauryl group, stearyl group, etc.
  • Examples of such polyalkylene glycols include alkylmethyl ether, ethyl ether, butyl ether, lauryl ether, stearyl ether and the like of polyalkylene glycol.
  • the polyalkylene glycol (B) may contain a polyol-derived structure such as 1,4-butanediol, glycerol, sorbitol, benzenediol, bisphenol A, cyclohexanediol, and spiroglycol in the structure.
  • a polyol-derived structure such as 1,4-butanediol, glycerol, sorbitol, benzenediol, bisphenol A, cyclohexanediol, and spiroglycol in the structure.
  • these organic groups can be imparted to the main chain.
  • Particularly preferred are glycerol, sorbitol, bisphenol A and the like.
  • polyalkylene glycol having an organic group in the structure examples include polyethylene glycol glyceryl ether, poly (2-methyl) ethylene glycol glyceryl ether, poly (2-ethyl) ethylene glycol glyceryl ether, polytetramethylene glycol glyceryl ether, Polyethylene glycol-poly (2-methyl) ethylene glycol glyceryl ether, polytetramethylene glycol-poly (2-methyl) ethylene glycol glyceryl ether, polytetramethylene glycol-poly (2-ethyl) polyethylene glycol glyceryl ether, polyethylene glycol sorbitol Ether, poly (2-methyl) ethylene glycol sorbyl ether, poly (2-ethyl) ethylene glycol sorbyl Ether, polytetramethylene glycol sorbitol ether, polyethylene glycol-poly (2-methyl) ethylene glycol sorbitol ether, polytetramethylene glycol
  • the above polyalkylene glycol (B) may be used alone or in combination of two or more.
  • the content of the polyalkylene glycol (B) is 0.1 to 4 parts by mass with respect to 100 parts by mass of the polycarbonate resin (A).
  • the preferred content is 0.15 parts by mass or more, more preferably 0.2 parts by mass or more, further preferably 0.3 parts by mass or more, particularly preferably 0.4 parts by mass or more, preferably 3.5 parts by mass.
  • it is more preferably 3 parts by mass or less, further preferably 2.5 parts by mass or less, and particularly preferably 2 parts by mass or less.
  • the content is less than 0.1 parts by mass, the hue and yellowing are not sufficiently improved.
  • the transmittance decreases due to white turbidity of the polycarbonate resin, and at the time of melt kneading by an extruder.
  • the strand breaks frequently, making it difficult to produce resin composition pellets.
  • the polycarbonate resin composition of the present invention contains a phosphorus stabilizer.
  • a phosphorus stabilizer By containing a phosphorus stabilizer, the hue of the polycarbonate resin composition of the present invention is improved, and the heat discoloration is further improved. Any known phosphorous stabilizer can be used.
  • phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid
  • acidic pyrophosphate metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, and acidic calcium pyrophosphate
  • phosphoric acid Phosphates of Group 1 or Group 2B metals such as potassium, sodium phosphate, cesium phosphate, and zinc phosphate
  • phosphate compounds, phosphite compounds, phosphonite compounds and the like can be mentioned, and phosphite compounds are particularly preferred.
  • the phosphite compound is a trivalent phosphorus compound represented by the general formula: P (OR) 3 , and R represents a monovalent or divalent organic group.
  • Examples of such phosphite compounds include triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphine.
  • an aromatic phosphite compound represented by the following formula (1) or (2) is more preferable because the heat discoloration of the polycarbonate resin composition of the present invention is effectively enhanced. .
  • R 1 , R 2 and R 3 may be the same or different and each represents an aryl group having 6 to 30 carbon atoms. ]
  • R 4 and R 5 may be the same or different and each represents an aryl group having 6 to 30 carbon atoms. ]
  • phosphite compound represented by the above formula (1) triphenyl phosphite, tris (monononylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite and the like are preferable. Tris (2,4-di-tert-butylphenyl) phosphite is more preferred.
  • organic phosphite compounds include, for example, “ADEKA STAB 1178” manufactured by ADEKA, “SUMILIZER TNP” manufactured by Sumitomo Chemical Co., Ltd., “JP-351” manufactured by Johoku Chemical Industry Co., Ltd., and “ADEKA STAB manufactured by ADEKA. 2112 ",” Irgaphos 168 “manufactured by BASF,” JP-650 "manufactured by Johoku Chemical Industry Co., Ltd., and the like.
  • Examples of the phosphite compound represented by the above formula (2) include bis (2,4-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite and bis (2,6-di-tert-butyl). Those having a pentaerythritol diphosphite structure such as -4-methylphenyl) pentaerythritol diphosphite and bis (2,4-dicumylphenyl) pentaerythritol diphosphite are particularly preferred. Specific examples of such an organic phosphite compound include “Adekastab PEP-24G”, “Adekastab PEP-36” manufactured by Adeka, “Doverphos S-9228” manufactured by Doverchemical, and the like.
  • the aromatic phosphite compound represented by the above formula (2) is more preferable because the hue is more excellent.
  • 1 type may contain phosphorus stabilizer and 2 or more types may contain it by arbitrary combinations and a ratio.
  • the content of the phosphorus stabilizer (C) is 0.005 to 0.5 parts by mass, preferably 0.007 parts by mass or more, more preferably 0.005 parts by mass with respect to 100 parts by mass of the polycarbonate resin (A). 008 parts by mass or more, particularly preferably 0.01 parts by mass or more, preferably 0.4 parts by mass or less, more preferably 0.3 parts by mass or less, still more preferably 0.2 parts by mass or less, particularly 0 .1 part by mass or less.
  • the content of the phosphorus stabilizer (C) is less than 0.005 parts by mass of the above range, the hue and heat discoloration are insufficient, and the content of the phosphorus stabilizer (C) is 0.5 parts by mass. If it exceeds 1, not only the heat discoloration is deteriorated, but also the wet heat stability is lowered.
  • the resin composition of the present invention contains an epoxy compound (D).
  • the heat discoloration can be further improved.
  • epoxy compound (D) a compound having one or more epoxy groups in one molecule is used. Specifically, phenyl glycidyl ether, allyl glycidyl ether, t-butylphenyl glycidyl ether, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexylcarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl -3 ', 4'-epoxy-6'-methylcyclohexyl carboxylate, 2,3-epoxycyclohexylmethyl-3', 4'-epoxycyclohexyl carboxylate, 4- (3,4-epoxy-5-methylcyclohexyl) Butyl-3 ′, 4′-epoxycyclohexylcarboxylate, 3,4-epoxycyclohexylethylene oxide, cyclohexylmethyl 3,4-epoxycyclohexylcarbox
  • alicyclic epoxy compounds are preferably used, and 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexylcarboxylate is particularly preferable.
  • the content of the epoxy compound (D) is preferably 0.0005 to 0.2 parts by mass, more preferably 0.001 parts by mass or more, and still more preferably 0.005 parts by mass with respect to 100 parts by mass of the polycarbonate resin (A). 003 parts by mass or more, particularly preferably 0.005 parts by mass or more, more preferably 0.15 parts by mass or less, still more preferably 0.1 parts by mass or less, and particularly preferably 0.05 parts by mass or less.
  • the content of the epoxy compound (D) is less than 0.0005 parts by mass, the hue and the heat discoloration tend to be insufficient.
  • the content exceeds 0.2 parts by mass the heat discoloration tends to deteriorate, Hue and wet heat stability tend to decrease.
  • the mass ratio (C / D) of the content of the epoxy compound (D) and the content of the phosphorus stabilizer (C) is preferably 0, or more than 0 and less than 6.0, more preferably It is 0.1 to 5.5, and more preferably 0.5 to 5.0.
  • the polycarbonate resin composition of the present invention includes other additives other than those described above, for example, antioxidants, mold release agents, ultraviolet absorbers, fluorescent brighteners, pigments, dyes, other polymers other than polycarbonate resins, Additives such as a flame retardant, an impact resistance improver, an antistatic agent, a plasticizer, and a compatibilizing agent can be contained. These additives may be used alone or in combination of two or more.
  • the manufacturing method of a well-known polycarbonate resin composition can be employ
  • other components to be blended as necessary are mixed in advance using various mixers such as a tumbler and a Henschel mixer, and then Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder And a melt kneading method using a mixer such as a kneader.
  • the temperature for melt kneading is not particularly limited, but is usually in the range of 240 to 320 ° C.
  • the polycarbonate resin composition for optical components of the present invention can be produced by molding pellets obtained by pelletizing the above-described polycarbonate resin composition by various molding methods. Moreover, the resin melt-kneaded by an extruder can be directly molded into an optical component without going through the pellets.
  • the polycarbonate resin composition of the present invention is excellent in fluidity and hue, and has very little gas generation and mold contamination during molding. Therefore, by injection molding, optical components, particularly thin optical components that are prone to mold contamination. It is particularly preferably used for molding.
  • the resin temperature at the time of injection molding is preferably molded at a resin temperature higher than 260 to 300 ° C., which is a temperature generally applied to injection molding of polycarbonate resin, particularly in the case of a thin molded product.
  • a resin temperature of ⁇ 400 ° C. is preferred.
  • the resin temperature is more preferably 310 ° C or higher, further preferably 315 ° C or higher, particularly preferably 320 ° C or higher, and more preferably 390 ° C or lower.
  • the conventional polycarbonate resin composition When the conventional polycarbonate resin composition is used, there is a problem that when the resin temperature at the time of molding is increased in order to mold a thin molded product, the molded product is likely to be yellowed. By using the composition, it becomes possible to produce a molded product having a good hue, particularly a thin-walled optical component, even in the above temperature range.
  • the resin temperature is grasped as the barrel set temperature when it is difficult to directly measure the resin temperature.
  • the thin-walled molded article refers to a molded article having a plate-shaped portion having a thickness of usually 1 mm or less, preferably 0.8 mm or less, more preferably 0.6 mm or less.
  • the plate-like portion may be a flat plate or a curved plate, may be a flat surface, may have irregularities on the surface, and the cross section has an inclined surface. Or a wedge-shaped cross section.
  • optical components include components of equipment and instruments that directly or indirectly use light sources such as LEDs, organic EL, incandescent bulbs, fluorescent lamps, and cathode tubes, and light guide plates and surface light emitter members are typical. It is illustrated as a thing.
  • the light guide plate is used to guide light from a light source such as an LED in a liquid crystal backlight unit, various display devices, and lighting devices. It diffuses by the unevenness and emits uniform light.
  • the shape is usually flat, and the surface may or may not have irregularities.
  • the light guide plate is usually formed preferably by an injection molding method, an ultra-high speed injection molding method, an injection compression molding method, a melt extrusion molding method (for example, a T-die molding method), or the like.
  • the light guide plate molded using the resin composition of the present invention does not have white turbidity or transmittance, has a good hue, and has few molding defects due to mold contamination.
  • the light guide plate using the polycarbonate resin composition of the present invention can be suitably used in the fields of liquid crystal backlight units, various display devices, and lighting devices.
  • Examples of such devices include mobile phones, mobile notebooks, netbooks, slate PCs, tablet PCs, smartphones, tablet terminals, and other portable terminals, cameras, watches, notebook computers, various displays, lighting devices, and the like. It is done.
  • the shape as the optical component may be a film or a sheet, and specific examples thereof include a light guide film and the like.
  • a light guide or a lens that guides light from a light source such as an LED in a vehicle headlight (head lamp) or a rear lamp or a fog lamp for an automobile or a motorcycle is also suitable. Also, it can be suitably used.
  • the light guide plate using the polycarbonate resin composition of the present invention can be suitably used in the fields of liquid crystal backlight units, various display devices, and lighting devices.
  • Examples of such devices include mobile phones, mobile notebooks, netbooks, slate PCs, tablet PCs, smartphones, tablet terminals, and other portable terminals, cameras, watches, notebook computers, various displays, lighting devices, and the like. It is done.
  • the raw materials and evaluation methods used in the following examples and comparative examples are as follows.
  • the measuring method of the viscosity average molecular weight of polycarbonate resin (A) is as having mentioned above.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polyalkylene glycol were measured by gel permeation chromatography as follows.
  • HLC-8320 manufactured by Tosoh Corporation
  • KF-G, KF-805L ⁇ 3, and KF-800D all manufactured by Shodex
  • the column temperature was 40 ° C.
  • the detector used was an RI detector of HLC-8320. Tetrahydrofuran was used as an eluent, and a calibration curve was prepared using standard polystyrene manufactured by Shodex.
  • Examples 1 to 14, Comparative Examples 1 to 5 [Production of resin composition pellets] Each component described above was blended in the proportions (parts by mass) shown in Tables 2 to 3 below, mixed for 20 minutes with a tumbler, and then a single screw extruder with a screw diameter of 40 mm (manufactured by Tanabe Plastic Machinery Co., Ltd.) VS-40 "), the cylinder temperature was melt kneaded at 240 ° C, and pellets were obtained by strand cutting.
  • B Although mold deposits are less than the state after the 200-shot molding of Comparative Example 1, some mold resistance is observed.
  • C Mold adhering material is at the same level as the state after 200 shot molding of Comparative Example 1.
  • D There are more mold deposits than the state after the 200-shot molding of Comparative Example 1, and the mold contamination is noticeable.
  • the drop mold shown in FIG. 1 is a mold designed to introduce a resin composition from the gate G so that the generated gas easily accumulates at the tip P portion.
  • the gate G has a width of 1 mm and a thickness of 1 mm.
  • the width h1 is 14.5 mm
  • the length h2 is 7 mm
  • the length h3 is 27 mm
  • the thickness of the molded part is 3 mm.
  • the polycarbonate resin composition of the present invention has a good hue and generates very little gas during molding and mold contamination, and can therefore be used very suitably for optical parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention is a polycarbonate resin composition for optical parts and an optical part, which have a good hue and very little gas generation and mold contamination during molding. The polycarbonate resin composition for optical parts is characterized in containing, with respect to 100 parts by mass of a polycarbonate resin (A): 0.1-4 parts by mass of a polyalkylene glycol (B) that has a weight average molecular weight (Mw), measured in a tetrahydrofuran solvent by gel permeation chromatography and calculated as polystyrene, of greater than 4,000-7,700 and has a ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of 2.5 or less; and 0.005-0.5 parts by mass of a phosphorus stabilizing agent (C).

Description

光学部品用ポリカーボネート樹脂組成物及び光学部品Polycarbonate resin composition for optical parts and optical parts
 本発明は、光学部品用ポリカーボネート樹脂組成物及び光学部品に関し、詳しくは、良好な色相を有し、且つ成形時のガス発生と金型汚染が極めて少ない光学部品用ポリカーボネート樹脂組成物及びそれを成形した光学部品に関する。 The present invention relates to a polycarbonate resin composition for optical parts and an optical part, and more specifically, a polycarbonate resin composition for optical parts having a good hue and extremely low gas generation and mold contamination during molding, and molding the same. Related to the optical component.
 パーソナルコンピュータ、携帯電話等に使用される液晶表示装置には、その薄型化、軽量化、省力化、高精細化の要求に対応するために、面状光源装置が組み込まれている。そして、この面状光源装置には、入光する光を液晶表示側に均一かつ効率的に導く役割を果たす目的で、一面が一様な傾斜面を有する楔型断面の導光板や平板形状の導光板が備えられている。また導光板の表面に凹凸パターンを形成して光散乱機能を付与するものもある。 2. Description of the Related Art A liquid crystal display device used in personal computers, mobile phones, and the like has a surface light source device incorporated in order to meet the demands for thinning, lightening, labor saving, and high definition. The surface light source device has a wedge-shaped cross-section light guide plate or a flat plate shape with a uniform inclined surface for the purpose of uniformly and efficiently guiding incident light to the liquid crystal display side. A light guide plate is provided. In some cases, an uneven pattern is formed on the surface of the light guide plate to provide a light scattering function.
 このような導光板は、熱可塑性樹脂の射出成形によって得られ、上記の凹凸パターンは入れ子の表面に形成された凹凸部の転写によって付与される。従来、導光板はポリメチルメタクリレート(PMMA)等の樹脂材料から成形されてきたが、最近では、より鮮明な画像を映し出す表示装置が求められ、光源近傍で発生する熱によって機器装置内が高温化する傾向にあるため、より耐熱性の高いポリカーボネート樹脂材料に置き換えられつつある。 Such a light guide plate is obtained by injection molding of a thermoplastic resin, and the above concavo-convex pattern is imparted by transferring the concavo-convex portion formed on the surface of the nest. Conventionally, the light guide plate has been molded from a resin material such as polymethylmethacrylate (PMMA). Recently, however, a display device that displays a clearer image has been demanded, and the temperature inside the device is increased by heat generated near the light source. Therefore, it is being replaced with a polycarbonate resin material having higher heat resistance.
 ポリカーボネート樹脂は、機械的性質、熱的性質、電気的性質、耐候性に優れるが、光線透過率は、PMMA等に比べて低いことから、ポリカーボネート樹脂製の導光板と光源とから面光源体を構成した場合、輝度が低いという問題がある。また最近では導光板の入光部と入光部から離れた場所の色度差を少なくすることが求められているが、ポリカーボネート樹脂はPMMAと比べて黄変しやすいという問題がある。 Polycarbonate resin is excellent in mechanical properties, thermal properties, electrical properties, and weather resistance, but its light transmittance is lower than that of PMMA, etc., so that a surface light source body is formed from a light guide plate made of polycarbonate resin and a light source. When configured, there is a problem that the luminance is low. Recently, it has been demanded to reduce the difference in chromaticity between the light incident portion of the light guide plate and the location away from the light incident portion, but there is a problem that the polycarbonate resin is more easily yellowed than PMMA.
 特許文献1には、アクリル樹脂及び脂環式エポキシを添加することにより光線透過率及び輝度を向上させる方法、特許文献2には、ポリカーボネート樹脂末端を変性し導光板への凹凸部の転写性を上げることにより輝度を向上させる方法、特許文献3には、脂肪族セグメントを有するコポリエステルカーボネートを導入して上記の転写性を向上させることにより輝度を向上させる方法が提案されている。 Patent Document 1 discloses a method for improving light transmittance and luminance by adding an acrylic resin and an alicyclic epoxy, and Patent Document 2 describes a transfer property of a concavo-convex portion to a light guide plate by modifying a polycarbonate resin terminal. A method for improving the brightness by increasing the brightness, and Patent Document 3 propose a method for improving the brightness by introducing a copolyester carbonate having an aliphatic segment to improve the transferability.
 しかしながら、特許文献1の方法は、アクリル樹脂の添加により色相は良好になるが白濁するために光線透過率及び輝度を上げることができず、脂環式エポキシを添加することにより、透過率が向上する可能性はあるが、色相の改善効果は認められない。特許文献2及び特許文献3の場合、流動性や転写性の改善効果は期待できるものの、耐熱性が低下するという欠点がある。 However, although the method of Patent Document 1 improves the hue by adding an acrylic resin, it cannot be increased in light transmittance and brightness due to white turbidity, and the transmittance is improved by adding an alicyclic epoxy. Although there is a possibility, the effect of improving the hue is not recognized. In the case of Patent Document 2 and Patent Document 3, although an improvement effect of fluidity and transferability can be expected, there is a disadvantage that heat resistance is lowered.
 一方、ポリエチレングリコール又はポリ(2-メチル)エチレングリコール等をポリカーボネート樹脂等の熱可塑性樹脂に配合することが知られており、特許文献4にはこれを含有する耐γ線照射性のポリカーボネート樹脂が、特許文献5ではPMMA等に配合した帯電防止性と表面外観に優れた熱可塑性樹脂組成物が記載されている。
 そして、特許文献6では、直鎖アルキル基で構成されるポリアルキレングリコールを配合することにより、透過率や色相を改良する提案がなされている。ポリテトラメチレンエーテルグリコールを配合することで透過率や黄変度(イエローインデックス:YI)に改善が見られる。
On the other hand, it is known to blend polyethylene glycol or poly (2-methyl) ethylene glycol or the like into a thermoplastic resin such as a polycarbonate resin. Patent Document 4 discloses a γ-irradiation-resistant polycarbonate resin containing the same. Patent Document 5 describes a thermoplastic resin composition excellent in antistatic properties and surface appearance blended with PMMA or the like.
And in patent document 6, the proposal which improves the transmittance | permeability and a hue is made | formed by mix | blending the polyalkylene glycol comprised by a linear alkyl group. By adding polytetramethylene ether glycol, the transmittance and yellowing degree (yellow index: YI) are improved.
 しかし、特に最近、スマートフォンやタブレット型端末等の各種携帯端末においては、導光板などの光学部品は薄肉化や大型化が著しいスピードで進行しており、導光板成形には、高温のバレル温度、且つ高速射出が求められている。これに伴い、成形時に発生するガスが増加し、金型汚染が進行しやすいという問題が生じている。そのため、これらの成形に用いられる樹脂組成物には優れた光学特性のみならず、高温での射出成形時の金型汚染が少ないことが求められる。 However, in recent years, especially in various portable terminals such as smartphones and tablet terminals, optical parts such as light guide plates are progressing at a remarkable speed of thinning and upsizing. In addition, high-speed injection is required. Along with this, there is a problem that gas generated at the time of molding increases and mold contamination easily proceeds. Therefore, the resin composition used for these moldings is required not only to have excellent optical properties but also to have little mold contamination during injection molding at high temperatures.
特開平11-158364号公報JP-A-11-158364 特開2001-208917号公報Japanese Patent Laid-Open No. 2001-208917 特開2001-215336号公報JP 2001-215336 A 特開平1-22959号公報JP-A-1-22959 特開平9-227785号公報JP-A-9-227785 特許第5699188号公報Japanese Patent No. 5699188
 本発明は、上記実情に鑑みなされたものであり、その目的は、ポリカーボネート樹脂本来の特性を何ら損なうことなく、良好な色相を有し、且つ成形時のガス発生と金型汚染が極めて少ない光学部品用ポリカーボネート樹脂組成物及び光学部品を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to provide an optical material that has a good hue without impairing the original properties of the polycarbonate resin, and that has very little gas generation and mold contamination during molding. The object is to provide a polycarbonate resin composition for parts and an optical part.
 本発明者は、上記課題を達成すべく、鋭意検討を重ねた結果、ゲル浸透クロマトグラフィーによるポリスチレン換算の重量平均分子量(Mw)が特定の範囲にあり、且つ重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が特定の範囲にあるポリアルキレングリコールをリン系安定剤と、ポリカーボネート樹脂に特定の量で配合することにより、良好な色相を有し、且つ成形時のガス発生と金型汚染が極めて少ない光学部品用のポリカーボネート樹脂組成物が得られることを見出し、本発明を完成するに至った。
 本発明は、以下の光学部品用ポリカーボネート樹脂組成物及び光学部品に関する。
As a result of intensive studies to achieve the above-mentioned problems, the inventor has a polystyrene-reduced weight average molecular weight (Mw) by a gel permeation chromatography in a specific range, and the weight average molecular weight (Mw) and number average. By blending a specific amount of polyalkylene glycol with a molecular weight (Mn) ratio (Mw / Mn) in a specific range to a phosphorus stabilizer and a polycarbonate resin, it has a good hue, and at the time of molding The present inventors have found that a polycarbonate resin composition for optical parts can be obtained with extremely little gas generation and mold contamination.
The present invention relates to the following polycarbonate resin composition for optical parts and optical parts.
[1]ポリカーボネート樹脂(A)100質量部に対し、ゲル浸透クロマトグラフィーによりテトラヒドロフラン溶媒で測定したポリスチレン換算の重量平均分子量(Mw)が4,000超~7,700以下であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が2.5以下であるポリアルキレングリコール(B)を0.1~4質量部、リン系安定剤(C)を0.005~0.5質量部含有することを特徴とする光学部品用ポリカーボネート樹脂組成物。
[2]ポリアルキレングリコール(B)が、テトラメチレンエーテル単位を有する上記[1]に記載の光学部品用ポリカーボネート樹脂組成物。
[3]ポリアルキレングリコール(B)が、テトラメチレンエーテル単位からなるポリテトラメチレングリコール単独重合体である上記[1]または[2]に記載の光学部品用ポリカーボネート樹脂組成物。
[4]ポリアルキレングリコール(B)が、下記一般式(3)で表される直鎖アルキレンエーテル単位と下記一般式(4-1)~(4-4)で表される単位から選ばれる分岐アルキレンエーテル単位を有するポリアルキレングリコール共重合体である上記[1]に記載の光学部品用ポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
 (式(3)中、pは2~6の整数を示す。)
Figure JPOXMLDOC01-appb-C000006
 (式(4-1)~(4-4)中、R~R10は各々独立に水素原子又は炭素数1~3のアルキル基を示し、それぞれの式(4-1)~(4-4)において、R~R10の少なくとも1つは炭素数1~3のアルキル基である。)
[1] The polystyrene-reduced weight average molecular weight (Mw) measured with a tetrahydrofuran solvent by gel permeation chromatography with respect to 100 parts by mass of the polycarbonate resin (A) is more than 4,000 to 7,700, and the weight average molecular weight ( 0.1 to 4 parts by mass of polyalkylene glycol (B) having a ratio (Mw / Mn) of 2.5 or less (Mw) to number average molecular weight (Mn) and 0.005 of phosphorus stabilizer (C) A polycarbonate resin composition for optical parts, characterized by containing ~ 0.5 part by mass.
[2] The polycarbonate resin composition for optical components according to [1], wherein the polyalkylene glycol (B) has a tetramethylene ether unit.
[3] The polycarbonate resin composition for optical parts according to the above [1] or [2], wherein the polyalkylene glycol (B) is a polytetramethylene glycol homopolymer comprising tetramethylene ether units.
[4] The polyalkylene glycol (B) is a branch selected from a linear alkylene ether unit represented by the following general formula (3) and units represented by the following general formulas (4-1) to (4-4) The polycarbonate resin composition for optical components according to the above [1], which is a polyalkylene glycol copolymer having an alkylene ether unit.
Figure JPOXMLDOC01-appb-C000005
(In formula (3), p represents an integer of 2 to 6.)
Figure JPOXMLDOC01-appb-C000006
(In the formulas (4-1) to (4-4), R 1 to R 10 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and each of the formulas (4-1) to (4- In 4), at least one of R 1 to R 10 is an alkyl group having 1 to 3 carbon atoms.)
[5]ポリアルキレングリコール(B)が、テトラメチレンエーテル単位と、前記一般式(4-1)で表される単位を有するポリアルキレングリコール共重合体である上記[4]に記載の光学部品用ポリカーボネート樹脂組成物。
[6]ポリアルキレングリコール(B)が、テトラメチレンエーテル単位と、前記一般式(4-2)または(4-3)で表される単位を有するポリアルキレングリコール共重合体である上記[4]に記載の光学部品用ポリカーボネート樹脂組成物。
[7]リン系安定剤(C)が、下記一般式(1)及び/又は(2)で表されるホスファイト化合物である上記[1]に記載の光学部品用ポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
[式(1)中、R、R及びRは、それぞれ同一であっても異なっていてもよく、炭素数6以上30以下のアリール基を表す。]
Figure JPOXMLDOC01-appb-C000008
[式(2)中、R及びRは、それぞれ同一であっても異なっていてもよく、炭素数6以上30以下のアリール基を表す。]
[8]さらに、エポキシ化合物(D)を、ポリカーボネート樹脂(A)100質量部に対し、0.0005~0.2質量部含有する上記[1]又は[2]に記載の光学部品用ポリカーボネート樹脂組成物。
[9]エポキシ化合物(D)が、脂環族エポキシ化合物である上記[8]に記載の光学部品用ポリカーボネート樹脂組成物。
[10]上記[1]~[9]のいずれかに記載のポリカーボネート樹脂組成物を成形した光学部品。
[5] The optical component according to [4], wherein the polyalkylene glycol (B) is a polyalkylene glycol copolymer having a tetramethylene ether unit and a unit represented by the general formula (4-1). Polycarbonate resin composition.
[6] The above [4], wherein the polyalkylene glycol (B) is a polyalkylene glycol copolymer having a tetramethylene ether unit and a unit represented by the general formula (4-2) or (4-3). 2. A polycarbonate resin composition for optical parts.
[7] The polycarbonate resin composition for optical parts according to the above [1], wherein the phosphorus stabilizer (C) is a phosphite compound represented by the following general formula (1) and / or (2).
Figure JPOXMLDOC01-appb-C000007
[In Formula (1), R 1 , R 2 and R 3 may be the same or different and each represents an aryl group having 6 to 30 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000008
[In Formula (2), R 4 and R 5 may be the same or different and each represents an aryl group having 6 to 30 carbon atoms. ]
[8] The polycarbonate resin for optical components according to [1] or [2], further containing 0.0005 to 0.2 parts by mass of the epoxy compound (D) with respect to 100 parts by mass of the polycarbonate resin (A). Composition.
[9] The polycarbonate resin composition for optical components according to [8], wherein the epoxy compound (D) is an alicyclic epoxy compound.
[10] An optical component obtained by molding the polycarbonate resin composition according to any one of [1] to [9].
 本発明のポリカーボネート樹脂組成物は、ポリカーボネート樹脂本来の特性を何ら損なうことなく、成形の際にはガス発生が少なく、また金型汚染が極めて少なく、色相の良好な光学部品を提供することができる。 The polycarbonate resin composition of the present invention can provide an optical component having a good hue without deteriorating the original properties of the polycarbonate resin, generating little gas during molding, and extremely little mold contamination. .
実施例における金型汚染の評価に使用したしずく型金型の平面図である。It is a top view of the drop mold used for evaluation of mold contamination in an example.
 以下、本発明について実施形態及び例示物等を示して詳細に説明する。
 なお、本明細書において、「~」とは、特に断りがない場合、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
Hereinafter, the present invention will be described in detail with reference to embodiments and examples.
In the present specification, unless otherwise specified, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 本発明の光学部品用ポリカーボネート樹脂組成物は、ポリカーボネート樹脂(A)100質量部に対し、ゲル浸透クロマトグラフィーによりテトラヒドロフラン溶媒で測定したポリスチレン換算の重量平均分子量(Mw)が4,000超~7,700以下であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が2.5以下であるポリアルキレングリコール(B)を0.1~4質量部、リン系安定剤(C)を0.005~0.5質量部含有することを特徴とする。
 以下、本発明のポリカーボネート樹脂組成物を構成する各成分、光学部品等につき、詳細に説明する。
The polycarbonate resin composition for optical parts of the present invention has a polystyrene-reduced weight average molecular weight (Mw) of more than 4,000 to 7,7, measured with a tetrahydrofuran solvent by gel permeation chromatography with respect to 100 parts by mass of the polycarbonate resin (A). 0.1 to 4 parts by mass of a polyalkylene glycol (B) having a ratio (Mw / Mn) of not more than 700 and a weight average molecular weight (Mw) to a number average molecular weight (Mn) of not more than 2.5, phosphorus system It contains 0.005 to 0.5 parts by mass of the stabilizer (C).
Hereinafter, each component, optical component and the like constituting the polycarbonate resin composition of the present invention will be described in detail.
[ポリカーボネート樹脂(A)]
 本発明において使用するポリカーボネート樹脂の種類に制限はなく、ポリカーボネート樹脂は、1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。
[Polycarbonate resin (A)]
There is no restriction | limiting in the kind of polycarbonate resin used in this invention, A polycarbonate resin may use 1 type and may use 2 or more types together by arbitrary combinations and arbitrary ratios.
 ポリカーボネート樹脂は、式:-[-O-X-O-C(=O)-]-で示される炭酸結合を有する基本構造の重合体である。
 式中、Xは一般には炭化水素であるが、種々の特性付与のためヘテロ原子、ヘテロ結合の導入されたXを用いてもよい。
The polycarbonate resin is a polymer having a basic structure having a carbonic acid bond represented by the formula: — [— O—X—O—C (═O) —] —.
In the formula, X is generally a hydrocarbon, but for imparting various properties, X into which a hetero atom or a hetero bond is introduced may be used.
 また、ポリカーボネート樹脂は、炭酸結合に直接結合する炭素がそれぞれ芳香族炭素である芳香族ポリカーボネート樹脂、及び脂肪族炭素である脂肪族ポリカーボネート樹脂に分類できるが、いずれを用いることもできる。中でも、耐熱性、機械的物性、電気的特性等の観点から、芳香族ポリカーボネート樹脂が好ましい。 The polycarbonate resin can be classified into an aromatic polycarbonate resin in which the carbon directly bonded to the carbonic acid bond is an aromatic carbon, and an aliphatic polycarbonate resin in which the carbon is an aliphatic carbon, either of which can be used. Of these, aromatic polycarbonate resins are preferred from the viewpoints of heat resistance, mechanical properties, electrical characteristics, and the like.
 ポリカーボネート樹脂の具体的な種類に制限はないが、例えば、ジヒドロキシ化合物とカーボネート前駆体とを反応させてなるポリカーボネート重合体が挙げられる。この際、ジヒドロキシ化合物及びカーボネート前駆体に加えて、ポリヒドロキシ化合物等を反応させるようにしてもよい。また、二酸化炭素をカーボネート前駆体として、環状エーテルと反応させる方法も用いてもよい。またポリカーボネート重合体は、直鎖状でもよく、分岐鎖状でもよい。さらに、ポリカーボネート重合体は1種の繰り返し単位からなる単重合体であってもよく、2種以上の繰り返し単位を有する共重合体であってもよい。このとき共重合体は、ランダム共重合体、ブロック共重合体等、種々の共重合形態を選択することができる。なお、通常、このようなポリカーボネート重合体は、熱可塑性の樹脂となる。 Although there is no restriction | limiting in the specific kind of polycarbonate resin, For example, the polycarbonate polymer formed by making a dihydroxy compound and a carbonate precursor react is mentioned. At this time, in addition to the dihydroxy compound and the carbonate precursor, a polyhydroxy compound or the like may be reacted. Further, a method of reacting carbon dioxide with a cyclic ether using a carbonate precursor may be used. The polycarbonate polymer may be linear or branched. Further, the polycarbonate polymer may be a homopolymer composed of one type of repeating unit or a copolymer having two or more types of repeating units. At this time, the copolymer can be selected from various copolymerization forms such as a random copolymer and a block copolymer. In general, such a polycarbonate polymer is a thermoplastic resin.
 芳香族ポリカーボネート樹脂の原料となるモノマーのうち、芳香族ジヒドロキシ化合物の例を挙げると、
1,2-ジヒドロキシベンゼン、1,3-ジヒドロキシベンゼン(即ち、レゾルシノール)、1,4-ジヒドロキシベンゼン等のジヒドロキシベンゼン類;
2,5-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル等のジヒドロキシビフェニル類;
Among monomers used as raw materials for aromatic polycarbonate resins, examples of aromatic dihydroxy compounds include:
Dihydroxybenzenes such as 1,2-dihydroxybenzene, 1,3-dihydroxybenzene (ie, resorcinol), 1,4-dihydroxybenzene;
Dihydroxybiphenyls such as 2,5-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl;
2,2’-ジヒドロキシ-1,1’-ビナフチル、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等のジヒドロキシナフタレン類; 2,2′-dihydroxy-1,1′-binaphthyl, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 1, , 7-dihydroxynaphthalene, dihydroxynaphthalene such as 2,7-dihydroxynaphthalene;
2,2’-ジヒドロキシジフェニルエーテル、3,3’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン等のジヒドロキシジアリールエーテル類; 2,2'-dihydroxydiphenyl ether, 3,3'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, 1,4-bis (3-hydroxyphenoxy) Dihydroxydiaryl ethers such as benzene and 1,3-bis (4-hydroxyphenoxy) benzene;
2,2-ビス(4-ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)、
1,1-ビス(4-ヒドロキシフェニル)プロパン、
2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、
2,2-ビス(3-メトキシ-4-ヒドロキシフェニル)プロパン、
2-(4-ヒドロキシフェニル)-2-(3-メトキシ-4-ヒドロキシフェニル)プロパン、
1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、
2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、
2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、
2-(4-ヒドロキシフェニル)-2-(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、
α,α’-ビス(4-ヒドロキシフェニル)-1,4-ジイソプロピルベンゼン、
1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン、
ビス(4-ヒドロキシフェニル)メタン、
ビス(4-ヒドロキシフェニル)シクロヘキシルメタン、
ビス(4-ヒドロキシフェニル)フェニルメタン、
ビス(4-ヒドロキシフェニル)(4-プロペニルフェニル)メタン、
ビス(4-ヒドロキシフェニル)ジフェニルメタン、
ビス(4-ヒドロキシフェニル)ナフチルメタン、
1,1-ビス(4-ヒドロキシフェニル)エタン、
1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、
1,1-ビス(4-ヒドロキシフェニル)-1-ナフチルエタン、
1,1-ビス(4-ヒドロキシフェニル)ブタン、
2,2-ビス(4-ヒドロキシフェニル)ブタン、
2,2-ビス(4-ヒドロキシフェニル)ペンタン、
1,1-ビス(4-ヒドロキシフェニル)ヘキサン、
2,2-ビス(4-ヒドロキシフェニル)ヘキサン、
1,1-ビス(4-ヒドロキシフェニル)オクタン、
2,2-ビス(4-ヒドロキシフェニル)オクタン、
4,4-ビス(4-ヒドロキシフェニル)ヘプタン、
2,2-ビス(4-ヒドロキシフェニル)ノナン、
1,1-ビス(4-ヒドロキシフェニル)デカン、
1,1-ビス(4-ヒドロキシフェニル)ドデカン、
等のビス(ヒドロキシアリール)アルカン類;
2,2-bis (4-hydroxyphenyl) propane (ie, bisphenol A),
1,1-bis (4-hydroxyphenyl) propane,
2,2-bis (3-methyl-4-hydroxyphenyl) propane,
2,2-bis (3-methoxy-4-hydroxyphenyl) propane,
2- (4-hydroxyphenyl) -2- (3-methoxy-4-hydroxyphenyl) propane,
1,1-bis (3-tert-butyl-4-hydroxyphenyl) propane,
2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane,
2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane,
2- (4-hydroxyphenyl) -2- (3-cyclohexyl-4-hydroxyphenyl) propane,
α, α'-bis (4-hydroxyphenyl) -1,4-diisopropylbenzene,
1,3-bis [2- (4-hydroxyphenyl) -2-propyl] benzene,
Bis (4-hydroxyphenyl) methane,
Bis (4-hydroxyphenyl) cyclohexylmethane,
Bis (4-hydroxyphenyl) phenylmethane,
Bis (4-hydroxyphenyl) (4-propenylphenyl) methane,
Bis (4-hydroxyphenyl) diphenylmethane,
Bis (4-hydroxyphenyl) naphthylmethane,
1,1-bis (4-hydroxyphenyl) ethane,
1,1-bis (4-hydroxyphenyl) -1-phenylethane,
1,1-bis (4-hydroxyphenyl) -1-naphthylethane,
1,1-bis (4-hydroxyphenyl) butane,
2,2-bis (4-hydroxyphenyl) butane,
2,2-bis (4-hydroxyphenyl) pentane,
1,1-bis (4-hydroxyphenyl) hexane,
2,2-bis (4-hydroxyphenyl) hexane,
1,1-bis (4-hydroxyphenyl) octane,
2,2-bis (4-hydroxyphenyl) octane,
4,4-bis (4-hydroxyphenyl) heptane,
2,2-bis (4-hydroxyphenyl) nonane,
1,1-bis (4-hydroxyphenyl) decane,
1,1-bis (4-hydroxyphenyl) dodecane,
Bis (hydroxyaryl) alkanes such as;
1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、
1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3,3-ジメチルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3,4-ジメチルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3,5-ジメチルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、
1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3-プロピル-5-メチルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3-tert-ブチル-シクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-4-tert-ブチル-シクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3-フェニルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-4-フェニルシクロヘキサン、
等のビス(ヒドロキシアリール)シクロアルカン類;
1,1-bis (4-hydroxyphenyl) cyclopentane,
1,1-bis (4-hydroxyphenyl) cyclohexane,
1,1-bis (4-hydroxyphenyl) -3,3-dimethylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3,4-dimethylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3,5-dimethylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane,
1,1-bis (4-hydroxy-3,5-dimethylphenyl) -3,3,5-trimethylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3-propyl-5-methylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3-tert-butyl-cyclohexane,
1,1-bis (4-hydroxyphenyl) -4-tert-butyl-cyclohexane,
1,1-bis (4-hydroxyphenyl) -3-phenylcyclohexane,
1,1-bis (4-hydroxyphenyl) -4-phenylcyclohexane,
Bis (hydroxyaryl) cycloalkanes such as;
9,9-ビス(4-ヒドロキシフェニル)フルオレン、
9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のカルド構造含有ビスフェノール類;
9,9-bis (4-hydroxyphenyl) fluorene,
Cardio structure-containing bisphenols such as 9,9-bis (4-hydroxy-3-methylphenyl) fluorene;
4,4’-ジヒドロキシジフェニルスルフィド、
4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;
4,4′-dihydroxydiphenyl sulfide,
Dihydroxydiaryl sulfides such as 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfide;
4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類; Dihydroxydiaryl sulfoxides such as 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide;
4,4’-ジヒドロキシジフェニルスルホン、
4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類;
等が挙げられる。
4,4′-dihydroxydiphenyl sulfone,
Dihydroxydiaryl sulfones such as 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfone;
Etc.
 これらの中ではビス(ヒドロキシアリール)アルカン類が好ましく、中でもビス(4-ヒドロキシフェニル)アルカン類が好ましく、特に耐衝撃性、耐熱性の点から2,2-ビス(4-ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)が好ましい。
 なお、芳香族ジヒドロキシ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
Among these, bis (hydroxyaryl) alkanes are preferable, and bis (4-hydroxyphenyl) alkanes are preferable, and 2,2-bis (4-hydroxyphenyl) propane (particularly from the viewpoint of impact resistance and heat resistance). That is, bisphenol A) is preferred.
In addition, 1 type may be used for an aromatic dihydroxy compound and it may use 2 or more types together by arbitrary combinations and a ratio.
 また、脂肪族ポリカーボネート樹脂の原料となるモノマーの例を挙げると、
 エタン-1,2-ジオール、プロパン-1,2-ジオール、プロパン-1,3-ジオール、2,2-ジメチルプロパン-1,3-ジオール、2-メチル-2-プロピルプロパン-1,3-ジオール、ブタン-1,4-ジオール、ペンタン-1,5-ジオール、ヘキサン-1,6-ジオール、デカン-1,10-ジオール等のアルカンジオール類;
In addition, when an example of a monomer that is a raw material of the aliphatic polycarbonate resin is given,
Ethane-1,2-diol, propane-1,2-diol, propane-1,3-diol, 2,2-dimethylpropane-1,3-diol, 2-methyl-2-propylpropane-1,3- Alkanediols such as diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol, decane-1,10-diol;
 シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,4-ジオール、1,4-シクロヘキサンジメタノール、4-(2-ヒドロキシエチル)シクロヘキサノール、2,2,4,4-テトラメチル-シクロブタン-1,3-ジオール等のシクロアルカンジオール類; Cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,4-diol, 1,4-cyclohexanedimethanol, 4- (2-hydroxyethyl) cyclohexanol, 2,2,4, Cycloalkanediols such as 4-tetramethyl-cyclobutane-1,3-diol;
 エチレングリコール、2,2’-オキシジエタノール(即ち、ジエチレングリコール)、トリエチレングリコール、プロピレングリコール、スピログリコール等のグリコール類; Glycols such as ethylene glycol, 2,2'-oxydiethanol (ie, diethylene glycol), triethylene glycol, propylene glycol, spiro glycol and the like;
 1,2-ベンゼンジメタノール、1,3-ベンゼンジメタノール、1,4-ベンゼンジメタノール、1,4-ベンゼンジエタノール、1,3-ビス(2-ヒドロキシエトキシ)ベンゼン、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、2,3-ビス(ヒドロキシメチル)ナフタレン、1,6-ビス(ヒドロキシエトキシ)ナフタレン、4,4’-ビフェニルジメタノール、4,4’-ビフェニルジエタノール、1,4-ビス(2-ヒドロキシエトキシ)ビフェニル、ビスフェノールAビス(2-ヒドロキシエチル)エーテル、ビスフェノールSビス(2-ヒドロキシエチル)エーテル等のアラルキルジオール類; 1,2-benzenedimethanol, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 1,4-benzenediethanol, 1,3-bis (2-hydroxyethoxy) benzene, 1,4-bis ( 2-hydroxyethoxy) benzene, 2,3-bis (hydroxymethyl) naphthalene, 1,6-bis (hydroxyethoxy) naphthalene, 4,4′-biphenyldimethanol, 4,4′-biphenyldiethanol, 1,4- Aralkyldiols such as bis (2-hydroxyethoxy) biphenyl, bisphenol A bis (2-hydroxyethyl) ether, bisphenol S bis (2-hydroxyethyl) ether;
 1,2-エポキシエタン(即ち、エチレンオキシド)、1,2-エポキシプロパン(即ち、プロピレンオキシド)、1,2-エポキシシクロペンタン、1,2-エポキシシクロヘキサン、1,4-エポキシシクロヘキサン、1-メチル-1,2-エポキシシクロヘキサン、2,3-エポキシノルボルナン、1,3-エポキシプロパン等の環状エーテル類;等が挙げられる。 1,2-epoxyethane (ie ethylene oxide), 1,2-epoxypropane (ie propylene oxide), 1,2-epoxycyclopentane, 1,2-epoxycyclohexane, 1,4-epoxycyclohexane, 1-methyl -1,2-epoxycyclohexane, 2,3-epoxynorbornane, cyclic ethers such as 1,3-epoxypropane; and the like.
 ポリカーボネート樹脂の原料となるモノマーのうち、カーボネート前駆体の例を挙げると、カルボニルハライド、カーボネートエステル等が使用される。なお、カーボネート前駆体は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Among the monomers used as the raw material for the polycarbonate resin, carbonyl halides, carbonate esters and the like are used as examples of carbonate precursors. In addition, 1 type may be used for a carbonate precursor and it may use 2 or more types together by arbitrary combinations and a ratio.
 カルボニルハライドとしては、具体的には例えば、ホスゲン;ジヒドロキシ化合物のビスクロロホルメート体、ジヒドロキシ化合物のモノクロロホルメート体等のハロホルメート等が挙げられる。 Specific examples of the carbonyl halide include phosgene; haloformates such as a bischloroformate of a dihydroxy compound and a monochloroformate of a dihydroxy compound.
 カーボネートエステルとしては、具体的には例えば、ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類;ジヒドロキシ化合物のビスカーボネート体、ジヒドロキシ化合物のモノカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。 Specific examples of the carbonate ester include diaryl carbonates such as diphenyl carbonate and ditolyl carbonate; dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; biscarbonate bodies of dihydroxy compounds, monocarbonate bodies of dihydroxy compounds, and cyclic carbonates. And carbonate bodies of dihydroxy compounds such as
ポリカーボネート樹脂の製造方法
 ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。
 以下、これらの方法のうち、特に好適なものについて具体的に説明する。
Manufacturing method of polycarbonate resin The manufacturing method of polycarbonate resin is not specifically limited, Arbitrary methods are employable. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
Hereinafter, a particularly preferable one of these methods will be described in detail.
界面重合法
 まず、ポリカーボネート樹脂を界面重合法で製造する場合について説明する。
 界面重合法では、反応に不活性な有機溶媒及びアルカリ水溶液の存在下で、通常pHを9以上に保ち、ジヒドロキシ化合物とカーボネート前駆体(好ましくは、ホスゲン)とを反応させた後、重合触媒の存在下で界面重合を行うことによってポリカーボネート樹脂を得る。なお、反応系には、必要に応じて分子量調整剤(末端停止剤)を存在させるようにしてもよく、ジヒドロキシ化合物の酸化防止のために酸化防止剤を存在させるようにしてもよい。
Interfacial Polymerization Method First, a case where a polycarbonate resin is produced by an interfacial polymerization method will be described.
In the interfacial polymerization method, a dihydroxy compound and a carbonate precursor (preferably phosgene) are reacted in the presence of an organic solvent inert to the reaction and an aqueous alkaline solution, usually at a pH of 9 or higher. Polycarbonate resin is obtained by interfacial polymerization in the presence. In the reaction system, a molecular weight adjusting agent (terminal terminator) may be present as necessary, or an antioxidant may be present to prevent the oxidation of the dihydroxy compound.
 ジヒドロキシ化合物及びカーボネート前駆体は、前述の通りである。なお、カーボネート前駆体の中でもホスゲンを用いることが好ましく、ホスゲンを用いた場合の方法は特にホスゲン法と呼ばれる。 The dihydroxy compound and the carbonate precursor are as described above. Of the carbonate precursors, phosgene is preferably used, and a method using phosgene is particularly called a phosgene method.
 反応に不活性な有機溶媒としては、例えば、ジクロロメタン、1,2-ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素等;ベンゼン、トルエン、キシレン等の芳香族炭化水素;などが挙げられる。なお、有機溶媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Examples of the organic solvent inert to the reaction include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene and dichlorobenzene; aromatic hydrocarbons such as benzene, toluene and xylene; It is done. In addition, 1 type may be used for an organic solvent and it may use 2 or more types together by arbitrary combinations and a ratio.
 アルカリ水溶液に含有されるアルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム等のアルカリ金属化合物やアルカリ土類金属化合物が挙げられるが、中でも水酸化ナトリウム及び水酸化カリウムが好ましい。なお、アルカリ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Examples of the alkali compound contained in the alkaline aqueous solution include alkali metal compounds and alkaline earth metal compounds such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and sodium hydrogen carbonate, among which sodium hydroxide and water Potassium oxide is preferred. In addition, 1 type may be used for an alkali compound and it may use 2 or more types together by arbitrary combinations and a ratio.
 アルカリ水溶液中のアルカリ化合物の濃度に制限はないが、通常、反応のアルカリ水溶液中のpHを10~12にコントロールするために、5~10質量%で使用される。また、例えばホスゲンを吹き込むに際しては、水相のpHが10~12、好ましくは10~11になる様にコントロールするために、ビスフェノール化合物とアルカリ化合物とのモル比を、通常1:1.9以上、中でも1:2.0以上、また、通常1:3.2以下、中でも1:2.5以下とすることが好ましい。 The concentration of the alkali compound in the alkaline aqueous solution is not limited, but it is usually used at 5 to 10% by mass in order to control the pH in the alkaline aqueous solution of the reaction to 10 to 12. For example, when phosgene is blown, the molar ratio of the bisphenol compound to the alkali compound is usually 1: 1.9 or more in order to control the pH of the aqueous phase to be 10 to 12, preferably 10 to 11. Among these, it is preferable that the ratio is 1: 2.0 or more, usually 1: 3.2 or less, and more preferably 1: 2.5 or less.
 重合触媒としては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン等の脂肪族三級アミン;N,N’-ジメチルシクロヘキシルアミン、N,N’-ジエチルシクロヘキシルアミン等の脂環式三級アミン;N,N’-ジメチルアニリン、N,N’-ジエチルアニリン等の芳香族三級アミン;トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩等;ピリジン;グアニン;グアニジンの塩;等が挙げられる。なお、重合触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Examples of the polymerization catalyst include aliphatic tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, and trihexylamine; alicyclic rings such as N, N′-dimethylcyclohexylamine and N, N′-diethylcyclohexylamine Tertiary amines; aromatic tertiary amines such as N, N′-dimethylaniline and N, N′-diethylaniline; quaternary ammonium salts such as trimethylbenzylammonium chloride, tetramethylammonium chloride, triethylbenzylammonium chloride, etc. Pyridine; guanine; guanidine salt; and the like. In addition, 1 type may be used for a polymerization catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
 分子量調節剤としては、例えば、一価のフェノール性水酸基を有する芳香族フェノール;メタノール、ブタノールなどの脂肪族アルコール;メルカプタン;フタル酸イミド等が挙げられるが、中でも芳香族フェノールが好ましい。このような芳香族フェノールとしては、具体的に、m-メチルフェノール、p-メチルフェノール、m-プロピルフェノール、p-プロピルフェノール、p-tert-ブチルフェノール、p-長鎖アルキル置換フェノール等のアルキル基置換フェノール;イソプロパニルフェノール等のビニル基含有フェノール;エポキシ基含有フェノール;o-ヒドロキシ安息香酸、2-メチル-6-ヒドロキシフェニル酢酸等のカルボキシル基含有フェノール;等が挙げられる。なお、分子量調整剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Examples of the molecular weight regulator include aromatic phenols having a monohydric phenolic hydroxyl group; aliphatic alcohols such as methanol and butanol; mercaptans; phthalimides and the like, among which aromatic phenols are preferred. Specific examples of such aromatic phenols include alkyl groups such as m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, p-tert-butylphenol, and p-long chain alkyl-substituted phenol. And substituted phenols; vinyl group-containing phenols such as isopropanyl phenol; epoxy group-containing phenols; carboxyl group-containing phenols such as o-hydroxybenzoic acid and 2-methyl-6-hydroxyphenylacetic acid; In addition, a molecular weight regulator may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
 分子量調節剤の使用量は、ジヒドロキシ化合物100モルに対して、通常0.5モル以上、好ましくは1モル以上であり、また、通常50モル以下、好ましくは30モル以下である。分子量調整剤の使用量をこの範囲とすることで、樹脂組成物の熱安定性及び耐加水分解性を向上させることができる。 The amount used of the molecular weight regulator is usually 0.5 mol or more, preferably 1 mol or more, and usually 50 mol or less, preferably 30 mol or less, per 100 mol of the dihydroxy compound. By making the usage-amount of a molecular weight modifier into this range, the thermal stability and hydrolysis resistance of a resin composition can be improved.
 反応の際に、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望のポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。例えば、カーボネート前駆体としてホスゲンを用いた場合には、分子量調節剤はジヒドロキシ化合物とホスゲンとの反応(ホスゲン化)の時から重合反応開始時までの間であれば任意の時期に混合できる。
 なお、反応温度は通常0~40℃であり、反応時間は通常は数分(例えば、10分)~数時間(例えば、6時間)である。
In the reaction, the order of mixing the reaction substrate, reaction medium, catalyst, additive and the like is arbitrary as long as a desired polycarbonate resin is obtained, and an appropriate order may be arbitrarily set. For example, when phosgene is used as the carbonate precursor, the molecular weight regulator can be mixed at any time as long as it is between the reaction (phosgenation) of the dihydroxy compound and phosgene and the start of the polymerization reaction.
The reaction temperature is usually 0 to 40 ° C., and the reaction time is usually several minutes (for example, 10 minutes) to several hours (for example, 6 hours).
溶融エステル交換法
 次に、ポリカーボネート樹脂を溶融エステル交換法で製造する場合について説明する。
 溶融エステル交換法では、例えば、炭酸ジエステルとジヒドロキシ化合物とのエステル交換反応を行う。
Next, a case where a polycarbonate resin is produced by a melt transesterification method will be described.
In the melt transesterification method, for example, a transesterification reaction between a carbonic acid diester and a dihydroxy compound is performed.
 ジヒドロキシ化合物は、前述の通りである。
 一方、炭酸ジエステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ-tert-ブチルカーボネート等の炭酸ジアルキル化合物;ジフェニルカーボネート;ジトリルカーボネート等の置換ジフェニルカーボネートなどが挙げられる。中でも、ジフェニルカーボネート及び置換ジフェニルカーボネートが好ましく、特にジフェニルカーボネートがより好ましい。なお、炭酸ジエステルは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
The dihydroxy compound is as described above.
On the other hand, examples of the carbonic acid diester include dialkyl carbonate compounds such as dimethyl carbonate, diethyl carbonate, and di-tert-butyl carbonate; diphenyl carbonate; substituted diphenyl carbonate such as ditolyl carbonate, and the like. Among these, diphenyl carbonate and substituted diphenyl carbonate are preferable, and diphenyl carbonate is more preferable. In addition, carbonic acid diester may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
 ジヒドロキシ化合物と炭酸ジエステルとの比率は、所望のポリカーボネート樹脂が得られる限り任意であるが、ジヒドロキシ化合物1モルに対して、炭酸ジエステルを等モル量以上用いることが好ましく、中でも1.01モル以上用いることがより好ましい。なお、上限は通常1.30モル以下である。このような範囲にすることで、末端水酸基量を好適な範囲に調整できる。 The ratio of the dihydroxy compound and the carbonic acid diester is arbitrary as long as the desired polycarbonate resin is obtained, but it is preferable to use an equimolar amount or more of the carbonic acid diester with respect to 1 mol of the dihydroxy compound, and above all, 1.01 mol or more is used. It is more preferable. The upper limit is usually 1.30 mol or less. By setting it as such a range, the amount of terminal hydroxyl groups can be adjusted to a suitable range.
 ポリカーボネート樹脂では、その末端水酸基量が熱安定性、加水分解安定性、色調等に大きな影響を及ぼす傾向がある。このため、公知の任意の方法によって末端水酸基量を必要に応じて調整してもよい。エステル交換反応においては、通常、炭酸ジエステルと芳香族ジヒドロキシ化合物との混合比率;エステル交換反応時の減圧度などを調整することにより、末端水酸基量を調整したポリカーボネート樹脂を得ることができる。なお、この操作により、通常は得られるポリカーボネート樹脂の分子量を調整することもできる。 In polycarbonate resins, the amount of terminal hydroxyl groups tends to have a large effect on thermal stability, hydrolysis stability, color tone, and the like. For this reason, you may adjust the amount of terminal hydroxyl groups as needed by a well-known arbitrary method. In the transesterification reaction, a polycarbonate resin in which the amount of terminal hydroxyl groups is adjusted can be usually obtained by adjusting the mixing ratio of the carbonic diester and the aromatic dihydroxy compound; the degree of vacuum during the transesterification reaction, and the like. In addition, the molecular weight of the polycarbonate resin usually obtained can also be adjusted by this operation.
 炭酸ジエステルとジヒドロキシ化合物との混合比率を調整して末端水酸基量を調整する場合、その混合比率は前記の通りである。
 また、より積極的な調整方法としては、反応時に別途、末端停止剤を混合する方法が挙げられる。この際の末端停止剤としては、例えば、一価フェノール類、一価カルボン酸類、炭酸ジエステル類などが挙げられる。なお、末端停止剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
When adjusting the amount of terminal hydroxyl groups by adjusting the mixing ratio of the carbonic acid diester and the dihydroxy compound, the mixing ratio is as described above.
Further, as a more aggressive adjustment method, there may be mentioned a method in which a terminal terminator is mixed separately during the reaction. Examples of the terminal terminator at this time include monohydric phenols, monovalent carboxylic acids, carbonic acid diesters, and the like. In addition, 1 type may be used for a terminal terminator and it may use 2 or more types together by arbitrary combinations and a ratio.
 溶融エステル交換法によりポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。エステル交換触媒は任意のものを使用できる。中でも、例えばアルカリ金属化合物及び/又はアルカリ土類金属化合物を用いることが好ましい。また補助的に、例えば塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物などの塩基性化合物を併用してもよい。なお、エステル交換触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 When a polycarbonate resin is produced by the melt transesterification method, a transesterification catalyst is usually used. Any transesterification catalyst can be used. Among these, for example, it is preferable to use an alkali metal compound and / or an alkaline earth metal compound. In addition, auxiliary compounds such as basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds may be used in combination. In addition, 1 type may be used for a transesterification catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
 溶融エステル交換法において、反応温度は通常100~320℃である。また、反応時の圧力は通常2mmHg以下の減圧条件である。具体的操作としては、前記の条件で、芳香族ヒドロキシ化合物等の副生成物を除去しながら、溶融重縮合反応を行えばよい。 In the melt transesterification method, the reaction temperature is usually 100 to 320 ° C. The pressure during the reaction is usually a reduced pressure condition of 2 mmHg or less. As a specific operation, a melt polycondensation reaction may be performed under the above conditions while removing by-products such as aromatic hydroxy compounds.
 溶融重縮合反応は、バッチ式、連続式のいずれの方法でも行うことができる。バッチ式で行う場合、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望の芳香族ポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。ただし中でも、ポリカーボネート樹脂の安定性等を考慮すると、溶融重縮合反応は連続式で行うことが好ましい。 The melt polycondensation reaction can be performed by either a batch method or a continuous method. When performing by a batch type, the order which mixes a reaction substrate, a reaction medium, a catalyst, an additive, etc. is arbitrary as long as a desired aromatic polycarbonate resin is obtained, What is necessary is just to set an appropriate order arbitrarily. However, considering the stability of the polycarbonate resin and the like, the melt polycondensation reaction is preferably carried out continuously.
 溶融エステル交換法においては、必要に応じて、触媒失活剤を用いてもよい。触媒失活剤としてはエステル交換触媒を中和する化合物を任意に用いることができる。その例を挙げると、イオウ含有酸性化合物及びその誘導体などが挙げられる。なお、触媒失活剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 In the melt transesterification method, a catalyst deactivator may be used as necessary. As the catalyst deactivator, a compound that neutralizes the transesterification catalyst can be arbitrarily used. Examples thereof include sulfur-containing acidic compounds and derivatives thereof. In addition, 1 type may be used for a catalyst deactivator and it may use 2 or more types together by arbitrary combinations and a ratio.
 触媒失活剤の使用量は、前記のエステル交換触媒が含有するアルカリ金属又はアルカリ土類金属に対して、通常0.5当量以上、好ましくは1当量以上であり、また、通常10当量以下、好ましくは5当量以下である。更には、ポリカーボネート樹脂に対して、通常1ppm以上であり、また、通常100ppm以下、好ましくは20ppm以下である。 The amount of the catalyst deactivator used is usually 0.5 equivalents or more, preferably 1 equivalent or more, and usually 10 equivalents or less, relative to the alkali metal or alkaline earth metal contained in the transesterification catalyst. Preferably it is 5 equivalents or less. Furthermore, it is 1 ppm or more normally with respect to polycarbonate resin, and is 100 ppm or less normally, Preferably it is 20 ppm or less.
 ポリカーボネート樹脂(A)の分子量は、溶媒としてメチレンクロライドを用い、温度25℃で測定された溶液粘度より換算した粘度平均分子量(Mv)で、10,000~26,000であることが好ましく、より好ましくは10,500以上、さらに好ましくは11,000以上、特には11,500以上、最も好ましくは12,000以上であり、より好ましくは24,000以下であり、更に好ましくは20,000以下である。粘度平均分子量を上記範囲の下限値以上とすることにより、本発明のポリカーボネート樹脂組成物の機械的強度をより向上させることができ、粘度平均分子量を上記範囲の上限値以下とすることにより、本発明のポリカーボネート樹脂組成物の流動性低下を抑制して改善でき、成形加工性を高めて薄肉成形加工を容易に行えるようになる。
 なお、粘度平均分子量の異なる2種類以上のポリカーボネート樹脂を混合して用いてもよく、この場合には、粘度平均分子量が上記の好適な範囲外であるポリカーボネート樹脂を混合してもよい。
The molecular weight of the polycarbonate resin (A) is preferably 10,000 to 26,000 in terms of viscosity average molecular weight (Mv) converted from the solution viscosity measured at a temperature of 25 ° C. using methylene chloride as a solvent. Preferably it is 10,500 or more, More preferably, it is 11,000 or more, Especially, 11,500 or more, Most preferably, it is 12,000 or more, More preferably, it is 24,000 or less, More preferably, it is 20,000 or less is there. By making the viscosity average molecular weight more than the lower limit of the above range, the mechanical strength of the polycarbonate resin composition of the present invention can be further improved, and by making the viscosity average molecular weight not more than the upper limit of the above range, The fluidity of the polycarbonate resin composition of the invention can be suppressed and improved, and the molding processability can be improved and the thin-wall molding process can be easily performed.
Two or more types of polycarbonate resins having different viscosity average molecular weights may be mixed and used, and in this case, a polycarbonate resin having a viscosity average molecular weight outside the above-mentioned preferred range may be mixed.
 なお、粘度平均分子量[Mv]とは、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dl/g)を求め、Schnellの粘度式、すなわち、η=1.23×10-4Mv0.83から算出される値を意味する。また、極限粘度[η]とは、各溶液濃度[C](g/dl)での比粘度[ηsp]を測定し、下記式により算出した値である。
Figure JPOXMLDOC01-appb-M000009
The viscosity average molecular weight [Mv] is obtained by using methylene chloride as a solvent and obtaining an intrinsic viscosity [η] (unit: dl / g) at a temperature of 20 ° C. using an Ubbelohde viscometer. , Η = 1.23 × 10 −4 Mv 0.83 . The intrinsic viscosity [η] is a value calculated from the following equation by measuring the specific viscosity [η sp ] at each solution concentration [C] (g / dl).
Figure JPOXMLDOC01-appb-M000009
 ポリカーボネート樹脂の末端水酸基濃度は任意であり、適宜選択して決定すればよいが、通常1,000ppm以下、好ましくは800ppm以下、より好ましくは600ppm以下である。これによりポリカーボネート樹脂の滞留熱安定性及び色調をより向上させることができる。また、その下限は、特に溶融エステル交換法で製造されたポリカーボネート樹脂では、通常10ppm以上、好ましくは30ppm以上、より好ましくは40ppm以上である。これにより、分子量の低下を抑制し、樹脂組成物の機械的特性をより向上させることができる。 The terminal hydroxyl group concentration of the polycarbonate resin is arbitrary and may be appropriately selected and determined, but is usually 1,000 ppm or less, preferably 800 ppm or less, more preferably 600 ppm or less. Thereby, the residence heat stability and color tone of polycarbonate resin can be improved more. In addition, the lower limit is usually 10 ppm or more, preferably 30 ppm or more, more preferably 40 ppm or more, particularly for polycarbonate resins produced by the melt transesterification method. Thereby, the fall of molecular weight can be suppressed and the mechanical characteristic of a resin composition can be improved more.
 なお、末端水酸基濃度の単位は、ポリカーボネート樹脂の質量に対する、末端水酸基の質量をppmで表示したものである。その測定方法は、四塩化チタン/酢酸法による比色定量(Macromol.Chem.88 215(1965)に記載の方法)である。 In addition, the unit of the terminal hydroxyl group concentration represents the mass of the terminal hydroxyl group with respect to the mass of the polycarbonate resin in ppm. The measuring method is a colorimetric determination by the titanium tetrachloride / acetic acid method (method described in Macromol. Chem. 88 215 (1965)).
 ポリカーボネート樹脂は、ポリカーボネート樹脂単独(ポリカーボネート樹脂単独とは、ポリカーボネート樹脂の1種のみを含む態様に限定されず、例えば、モノマー組成や分子量が互いに異なる複数種のポリカーボネート樹脂を含む態様を含む意味で用いる。)で用いてもよく、ポリカーボネート樹脂と他の熱可塑性樹脂とのアロイ(混合物)とを組み合わせて用いてもよい。さらに、例えば、難燃性や耐衝撃性をさらに高める目的で、ポリカーボネート樹脂を、シロキサン構造を有するオリゴマー又はポリマーとの共重合体;熱酸化安定性や難燃性をさらに向上させる目的でリン原子を有するモノマー、オリゴマー又はポリマーとの共重合体;熱酸化安定性を向上させる目的で、ジヒドロキシアントラキノン構造を有するモノマー、オリゴマー又はポリマーとの共重合体;光学的性質を改良するためにポリスチレン等のオレフィン系構造を有するオリゴマー又はポリマーとの共重合体;耐薬品性を向上させる目的でポリエステル樹脂オリゴマー又はポリマーとの共重合体;等の、ポリカーボネート樹脂を主体とする共重合体として構成してもよい。 The polycarbonate resin is a polycarbonate resin alone (the polycarbonate resin alone is not limited to an embodiment containing only one type of polycarbonate resin, and is used in a sense including an embodiment containing a plurality of types of polycarbonate resins having different monomer compositions and molecular weights, for example. .), Or an alloy (mixture) of a polycarbonate resin and another thermoplastic resin may be used in combination. Further, for example, for the purpose of further improving flame retardancy and impact resistance, a polycarbonate resin is copolymerized with an oligomer or polymer having a siloxane structure; for the purpose of further improving thermal oxidation stability and flame retardancy A monomer, oligomer or polymer having a copolymer; a copolymer with a monomer, oligomer or polymer having a dihydroxyanthraquinone structure for the purpose of improving thermal oxidation stability; Copolymers with oligomers or polymers having an olefinic structure; copolymers with polyester resin oligomers or polymers for the purpose of improving chemical resistance; Good.
 また、成形品の外観の向上や流動性の向上を図るため、ポリカーボネート樹脂は、ポリカーボネートオリゴマーを含有していてもよい。このポリカーボネートオリゴマーの粘度平均分子量[Mv]は、通常1,500以上、好ましくは2,000以上であり、また、通常9,500以下、好ましくは9,000以下である。さらに、含有されるポリカーボネートリゴマーは、ポリカーボネート樹脂(ポリカーボネートオリゴマーを含む)の30質量%以下とすることが好ましい。 Further, in order to improve the appearance of the molded product and the fluidity, the polycarbonate resin may contain a polycarbonate oligomer. The viscosity average molecular weight [Mv] of this polycarbonate oligomer is usually 1,500 or more, preferably 2,000 or more, and usually 9,500 or less, preferably 9,000 or less. Furthermore, the polycarbonate ligomer contained is preferably 30% by mass or less of the polycarbonate resin (including the polycarbonate oligomer).
 さらにポリカーボネート樹脂は、バージン原料だけでなく、使用済みの製品から再生されたポリカーボネート樹脂(いわゆるマテリアルリサイクルされたポリカーボネート樹脂)であってもよい。
 ただし、再生されたポリカーボネート樹脂は、ポリカーボネート樹脂のうち、80質量%以下であることが好ましく、中でも50質量%以下であることがより好ましい。再生されたポリカーボネート樹脂は、熱劣化や経年劣化等の劣化を受けている可能性が高いため、このようなポリカーボネート樹脂を前記の範囲よりも多く用いた場合、色相や機械的物性を低下させる可能性があるためである。
Further, the polycarbonate resin may be not only a virgin raw material but also a polycarbonate resin regenerated from a used product (so-called material-recycled polycarbonate resin).
However, the regenerated polycarbonate resin is preferably 80% by mass or less of the polycarbonate resin, and more preferably 50% by mass or less. Recycled polycarbonate resin is likely to have undergone deterioration such as heat deterioration and aging deterioration, so when such polycarbonate resin is used more than the above range, hue and mechanical properties can be reduced. It is because there is sex.
[ポリアルキレングリコール(B)]
 本発明の光学部品用ポリカーボネート樹脂組成物は、ゲル浸透クロマトグラフィーによりテトラヒドロフラン溶媒で測定したポリスチレン換算の重量平均分子量(Mw)が4,000超~7,700以下であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が2.5以下であるポリアルキレングリコール(B)を含有する。
 このようなポリアルキレングリコール(B)を含有することにより、良好な色相を有し、且つ成形時のガス発生と金型汚染が極めて少ない光学部品を得ることができる。重量平均分子量(Mw)が4,000以下では射出成形時の金型付着物が増加し、7,700を超えると、ポリカーボネートと相溶せず白濁し、また、Mw/Mnが2.5を超えると、Mwが4,000超であっても射出成形時の金型付着物が増加する。
[Polyalkylene glycol (B)]
The polycarbonate resin composition for optical parts of the present invention has a polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography with a tetrahydrofuran solvent of more than 4,000 to 7,700, and the weight average molecular weight (Mw). And a polyalkylene glycol (B) having a ratio (Mw / Mn) of 2.5 or less to the number average molecular weight (Mn).
By containing such a polyalkylene glycol (B), it is possible to obtain an optical component having a good hue and generating very little gas during molding and mold contamination. When the weight average molecular weight (Mw) is 4,000 or less, the deposit on the mold at the time of injection molding increases. When the weight average molecular weight (Mw) exceeds 7,700, it becomes incompatible with polycarbonate and becomes cloudy, and Mw / Mn is 2.5. When it exceeds Mw, even if Mw exceeds 4,000, mold deposits at the time of injection molding increase.
 ポリアルキレングリコール(B)の重量平均分子量(Mw)は、好ましくは4,050以上、より好ましくは4,100以上、さらには4,200以上、4,300以上、中でも4,400以上、特には4,500超、最も好ましくは5,000超であり、好ましくは7,500以下、より好ましくは7,400以下、さらに好ましくは7,350以下、特には7300以下が好ましい。また、ポリアルキレングリコール(B)のMw/Mnは好ましくは2.4以下、より好ましくは2.3以下、さらに好ましくは2.2以下、特に好ましくは2.15以下である。Mw/Mnの下限は、通常1.0であり、好ましくは1.1、より好ましくは1.2、さらに好ましくは1.3、特には1.35以上である。 The weight average molecular weight (Mw) of the polyalkylene glycol (B) is preferably 4,050 or more, more preferably 4,100 or more, further 4,200 or more, 4,300 or more, especially 4,400 or more, especially More than 4,500, most preferably more than 5,000, preferably 7,500 or less, more preferably 7,400 or less, further preferably 7,350 or less, particularly 7300 or less. The Mw / Mn of the polyalkylene glycol (B) is preferably 2.4 or less, more preferably 2.3 or less, still more preferably 2.2 or less, and particularly preferably 2.15 or less. The lower limit of Mw / Mn is usually 1.0, preferably 1.1, more preferably 1.2, still more preferably 1.3, and particularly 1.35 or more.
 ポリアルキレングリコール(B)の重量平均分子量(Mw)と数平均分子量(Mn)の測定は、ゲル浸透クロマトグラフィーによりテトラヒドロフラン溶媒で測定したポリスチレン換算により行われる。測定法の詳細は、実施例の詳記する通りである。 The weight average molecular weight (Mw) and number average molecular weight (Mn) of the polyalkylene glycol (B) are measured in terms of polystyrene measured with a tetrahydrofuran solvent by gel permeation chromatography. The details of the measurement method are as described in detail in the examples.
 ポリアルキレングリコール(B)としては、各種のポリアルキレングリコールが使用でき、例えば、下記一般式(1)で表される分岐型ポリアルキレングリコール又は下記一般式(2)で表される直鎖型ポリアルキレングリコールが好ましいものとして挙げられる。なお、下記一般式(1)で表される分岐型ポリアルキレングリコール又は下記一般式(2)で表される直鎖型ポリアルキレングリコールは、他の共重合成分との共重合体であってもよいが、単独重合体であることが好ましい。 As the polyalkylene glycol (B), various polyalkylene glycols can be used. For example, a branched polyalkylene glycol represented by the following general formula (1) or a linear polyalkylene glycol represented by the following general formula (2) An alkylene glycol is mentioned as a preferable thing. The branched polyalkylene glycol represented by the following general formula (1) or the linear polyalkylene glycol represented by the following general formula (2) may be a copolymer with another copolymer component. Although it is good, it is preferably a homopolymer.
Figure JPOXMLDOC01-appb-C000010
(式中、Rは炭素数1~3のアルキル基を示し、XおよびYは、それぞれ独立に、水素原子、炭素数1~23の脂肪族アシル基、炭素数1~23のアルキル基、炭素数6~22のアリール基又は炭素数7~23のアラルキル基を示し、mは10~400の整数を示す。)
 上記一般式(1)で表される分岐型ポリアルキレングリコールは、一種のRからなる単独重合体でも、また異なるRからなる共重合体であってもよい。
Figure JPOXMLDOC01-appb-C000010
(Wherein R represents an alkyl group having 1 to 3 carbon atoms, and X and Y each independently represent a hydrogen atom, an aliphatic acyl group having 1 to 23 carbon atoms, an alkyl group having 1 to 23 carbon atoms, carbon An aryl group having 6 to 22 carbon atoms or an aralkyl group having 7 to 23 carbon atoms, and m represents an integer of 10 to 400.)
The branched polyalkylene glycol represented by the general formula (1) may be a homopolymer composed of one kind of R or a copolymer composed of different Rs.
Figure JPOXMLDOC01-appb-C000011
(式中、X及びYは、それぞれ独立に、水素原子、炭素数2~23の脂肪族アシル基、炭素数1~23のアルキル基、炭素数6~22のアリール基又は炭素数7~23のアラルキル基を示し、pは2~6の整数、rは6~100の整数を示す。)
 上記一般式(2)で表される直鎖型ポリアルキレングリコールは、一種のpからなる単独重合体でも、また異なるpからなる共重合体であってもよい。
Figure JPOXMLDOC01-appb-C000011
(Wherein X and Y are each independently a hydrogen atom, an aliphatic acyl group having 2 to 23 carbon atoms, an alkyl group having 1 to 23 carbon atoms, an aryl group having 6 to 22 carbon atoms, or 7 to 23 carbon atoms). (Wherein p represents an integer of 2 to 6, and r represents an integer of 6 to 100).
The linear polyalkylene glycol represented by the general formula (2) may be a homopolymer composed of a single p or a copolymer composed of a different p.
 分岐型ポリアルキレングリコールとしては、一般式(1)中、X、Yが水素原子で、Rがメチル基である(2-メチル)エチレングリコールやエチル基である(2-エチル)エチレングリコールが好ましい。 As the branched polyalkylene glycol, in the general formula (1), (2-methyl) ethylene glycol in which X and Y are hydrogen atoms and R is a methyl group and (2-ethyl) ethylene glycol in which an ethyl group is preferable are preferable. .
 直鎖型ポリアルキレングリコールとしては、一般式(2)中のX及びYが水素原子で、pが2であるポリエチレングリコール、pが3であるポリトリメチレングリコール、pが4であるポリテトラメチレングリコール、pが5であるポリペンタメチレングリコール、pが6であるポリヘキサメチレングリコールが好ましく挙げられ、より好ましくはポリトリメチレングリコール、ポリテトラメチレングリコールである。 As the linear polyalkylene glycol, in general formula (2), X and Y are hydrogen atoms, p is 2, polyethylene glycol, p is 3, polytrimethylene glycol, and p is 4, polytetramethylene. Preferable examples include glycol, polypentamethylene glycol having p of 5, and polyhexamethylene glycol having p of 6, more preferably polytrimethylene glycol and polytetramethylene glycol.
 ポリアルキレングリコール(B)としては、下記一般式(3)で表される直鎖アルキレンエーテル単位(P1)と下記一般式(4-1)~(4-4)で表される単位から選ばれる分岐アルキレンエーテル単位(P2)を有するポリアルキレングリコール共重合体も好ましいものとして挙げられる。 The polyalkylene glycol (B) is selected from linear alkylene ether units (P1) represented by the following general formula (3) and units represented by the following general formulas (4-1) to (4-4). A polyalkylene glycol copolymer having a branched alkylene ether unit (P2) is also preferred.
Figure JPOXMLDOC01-appb-C000012
 (式(3)中、pは2~6の整数を示す。)
 一般式(3)で表される直鎖アルキレンエーテル単位としては、一種のpからなる単独の単位でも、また異なるpからなる複数の単位が混合していてもよい。
Figure JPOXMLDOC01-appb-C000012
(In formula (3), p represents an integer of 2 to 6.)
As a linear alkylene ether unit represented by General formula (3), the single unit which consists of 1 type of p, or the several unit which consists of different p may mix.
Figure JPOXMLDOC01-appb-C000013
 (式(4-1)~(4-4)中、R~R10は各々独立に水素原子又は炭素数1~3のアルキル基を示し、それぞれの式(4-1)~(4-4)において、R~R10の少なくとも1つは炭素数1~3のアルキル基である。)
Figure JPOXMLDOC01-appb-C000013
(In the formulas (4-1) to (4-4), R 1 to R 10 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and each of the formulas (4-1) to (4- In 4), at least one of R 1 to R 10 is an alkyl group having 1 to 3 carbon atoms.)
 一般式(4-1)~(4-4)で表される分岐アルキレンエーテル単位としては、一般式(4-1)~(4-4)のいずれかひとつの構造の分岐アルキレンエーテル単位で構成される単独重合体でも、また複数の構造の分岐アルキレンエーテル単位で構成される共重合体であってもよい。 The branched alkylene ether units represented by general formulas (4-1) to (4-4) are composed of branched alkylene ether units having any one structure of general formulas (4-1) to (4-4). It may be a homopolymer or a copolymer composed of branched alkylene ether units having a plurality of structures.
 上記一般式(3)で示される直鎖アルキレンエーテル単位(P1)としては、それをグリコールとして記載すると、pが2であるエチレングリコール、pが3であるトリメチレングリコール、pが4であるテトラメチレングリコール、pが5のペンタメチレングリコール、pが6のヘキサメチレングリコールが挙げられ、これらが混合していてもよく、好ましくはトリメチレングリコール、テトラメチレングリコールであり、テトラメチレングリコールが特に好ましい。 As the linear alkylene ether unit (P1) represented by the general formula (3), when describing it as glycol, ethylene glycol in which p is 2, trimethylene glycol in which p is 3, and tetra in which p is 4 Examples thereof include methylene glycol, pentamethylene glycol having p of 5, and hexamethylene glycol having p of 6, which may be mixed, preferably trimethylene glycol and tetramethylene glycol, and tetramethylene glycol is particularly preferable.
 トリメチレングリコールは、工業的にはエチレンオキシドのヒドロホルミル化により3-ヒドロキシプロピオンアルデヒドを得、これを水添する方法、又はアクロレインを水和して得た3-ヒドロキシプロピオンアルデヒドをNi触媒で水素化する方法で製造される。また、最近ではバイオ法により、グリセリン、グルコース、澱粉等を微生物に還元させてトリメチレングリコールを製造することも行われている。 Trimethylene glycol is industrially obtained by hydroformylating ethylene oxide to obtain 3-hydroxypropionaldehyde and hydrogenating it, or 3-hydroxypropionaldehyde obtained by hydrating acrolein is hydrogenated with a Ni catalyst. Manufactured by the method. Recently, trimethylene glycol is also produced by reducing glycerin, glucose, starch and the like to microorganisms by a bio method.
 上記一般式(4-1)で示される分岐アルキレンエーテル単位として、これをグリコールとして記載すると、(2-メチル)エチレングリコール、(2-エチル)エチレングリコール、(2,2-ジメチル)エチレングリコールなどが挙げられ、これらが混合していてもよく、好ましくは(2-メチル)エチレングリコール、(2-エチル)エチレングリコールである。 When the branched alkylene ether unit represented by the general formula (4-1) is described as glycol, (2-methyl) ethylene glycol, (2-ethyl) ethylene glycol, (2,2-dimethyl) ethylene glycol, etc. These may be mixed, and (2-methyl) ethylene glycol and (2-ethyl) ethylene glycol are preferred.
 上記一般式(4-2)で示される分岐アルキレンエーテル単位として、これをグリコールとして記載すると、(2-メチル)トリメチレングリコール、(3-メチル)トリメチレングリコール、(2-エチル)トリメチレングリコール、(3-エチル)トリエチレングリコール、(2,2-ジメチル)トリメチレングリコール、(2,2-メチルエチル)トリメチレングリコール、(2,2-ジエチル)トリメチレングリコール(即ち、ネオペンチルグリコール)、(3,3-ジメチル)トリメチレングリコール、(3,3-メチルエチル)トリメチレングリコール、(3,3-ジエチル)トリメチレングリコールなどが挙げられ、これらが混合していてもよい。 When the branched alkylene ether unit represented by the general formula (4-2) is described as glycol, (2-methyl) trimethylene glycol, (3-methyl) trimethylene glycol, (2-ethyl) trimethylene glycol , (3-ethyl) triethylene glycol, (2,2-dimethyl) trimethylene glycol, (2,2-methylethyl) trimethylene glycol, (2,2-diethyl) trimethylene glycol (ie neopentyl glycol) (3,3-dimethyl) trimethylene glycol, (3,3-methylethyl) trimethylene glycol, (3,3-diethyl) trimethylene glycol, and the like, and these may be mixed.
 上記一般式(4-3)で示される分岐アルキレンエーテル単位として、これをグリコールとして記載すると、(3-メチル)テトラメチレングリコール、(4-メチル)テトラメチレングリコール、(3-エチル)テトラメチレングリコール、(4-エチル)テトラメチレングリコール、(3,3-ジメチル)テトラメチレングリコール、(3,3-メチルエチル)テトラメチレングリコール、(3,3-ジエチル)テトラメチレングリコール、(4,4-ジメチル)テトラメチレングリコール、(4,4-メチルエチル)テトラメチレングリコール、(4,4-ジエチル)テトラメチレングリコールなどが挙げられ、これらが混合していてもよく、(3-メチル)テトラメチレングリコールが好ましい。 The branched alkylene ether unit represented by the above general formula (4-3) is described as glycol. (3-Methyl) tetramethylene glycol, (4-methyl) tetramethylene glycol, (3-ethyl) tetramethylene glycol , (4-ethyl) tetramethylene glycol, (3,3-dimethyl) tetramethylene glycol, (3,3-methylethyl) tetramethylene glycol, (3,3-diethyl) tetramethylene glycol, (4,4-dimethyl) ) Tetramethylene glycol, (4,4-methylethyl) tetramethylene glycol, (4,4-diethyl) tetramethylene glycol, etc., and these may be mixed, and (3-methyl) tetramethylene glycol preferable.
 上記一般式(4-4)で示される分岐アルキレンエーテル単位として、これをグリコールとして記載すると、(3-メチル)ペンタメチレングリコール、(4-メチル)ペンタメチレングリコール、(5-メチル)ペンタメチレングリコール、(3-エチル)ペンタメチレングリコール、(4-エチル)ペンタメチレングリコール、(5-エチル)ペンタメチレングリコール、(3,3-ジメチル)ペンタメチレングリコール、(3,3-メチルエチル)ペンタメチレングリコール、(3,3-ジエチル)ペンタメチレングリコール、(4,4-ジメチル)ペンタメチレングリコール、(4,4-メチルエチル)ペンタメチレングリコール、(4,4-ジエチル)ペンタメチレングリコール、(5,5-ジメチル)ペンタメチレングリコール、(5,5-メチルエチル)ペンタメチレングリコール、(5,5-ジエチル)ペンタメチレングリコールなどが挙げられ、これらが混合していてもよい。 When the branched alkylene ether unit represented by the general formula (4-4) is described as glycol, (3-methyl) pentamethylene glycol, (4-methyl) pentamethylene glycol, (5-methyl) pentamethylene glycol , (3-ethyl) pentamethylene glycol, (4-ethyl) pentamethylene glycol, (5-ethyl) pentamethylene glycol, (3,3-dimethyl) pentamethylene glycol, (3,3-methylethyl) pentamethylene glycol (3,3-diethyl) pentamethylene glycol, (4,4-dimethyl) pentamethylene glycol, (4,4-methylethyl) pentamethylene glycol, (4,4-diethyl) pentamethylene glycol, (5,5 -Dimethyl) pentamethyleneglycol , (5,5-methylethyl) pentamethylene glycol, (5,5-diethyl) such as pentamethylene glycol, and the like, may also be these mixtures.
 以上、分岐アルキレンエーテル単位を構成する一般式(4-1)~(4-4)で表される単位を、便宜的にグリコールを例として記載したが、これらグリコールに限らず、これらのアルキレンオキシドや、これらのポリエーテル形成性誘導体であってもよい。 The units represented by the general formulas (4-1) to (4-4) constituting the branched alkylene ether unit have been described for convenience by way of glycols, but are not limited to these glycols. Alternatively, these polyether-forming derivatives may be used.
 ポリアルキレングリコール共重合体として好ましいものを挙げると、テトラメチレンエーテル単位と前記一般式(4-3)で表される単位からなる共重合体が好ましく、特にテトラメチレンエーテル単位と3-メチルテトラメチレンエーテル単位からなる共重合体がより好ましい。また、テトラメチレンエーテル単位と前記一般式(4-1)で表される単位からなる共重合体も好ましく、特にテトラメチレンエーテル単位と2-メチルエチレンエーテル単位からなる共重合体、及びテトラメチレンエーテル単位と2-エチルエチレンエーテル単位からなる共重合体がより好ましい。さらに、テトラメチレンエーテル単位と前記一般式(4-2)からなる共重合体も好ましく、2,2-ジメチルトリメチレンエーテル単位、即ちネオペンチルグリコールエーテル単位からなる共重合体も好ましい。 Preferable examples of the polyalkylene glycol copolymer include a copolymer composed of a tetramethylene ether unit and a unit represented by the general formula (4-3), particularly a tetramethylene ether unit and 3-methyltetramethylene. A copolymer comprising an ether unit is more preferable. Further, a copolymer comprising a tetramethylene ether unit and a unit represented by the general formula (4-1) is also preferred, and in particular, a copolymer comprising a tetramethylene ether unit and a 2-methylethylene ether unit, and tetramethylene ether More preferred are copolymers comprising units and 2-ethylethylene ether units. Further, a copolymer composed of a tetramethylene ether unit and the above general formula (4-2) is also preferable, and a copolymer composed of a 2,2-dimethyltrimethylene ether unit, that is, a neopentyl glycol ether unit is also preferable.
 ポリアルキレングリコール共重合体は、ランダム共重合体やブロック共重合体であってもよい。 The polyalkylene glycol copolymer may be a random copolymer or a block copolymer.
 ポリアルキレングリコール共重合体の前記一般式(3)で表される直鎖アルキレンエーテル単位(P1)と前記一般式(4-1)~(4-4)で表される分岐アルキレンエーテル単位(P2)の共重合比率は、(P1)/(P2)のモル比で、好ましくは95/5~5/95であり、より好ましくは93/7~40/60であり、更に好ましくは90/10~65/35であり、直鎖アルキレンエーテル単位(P1)がリッチであることがより好ましい。
 なお、モル分率は、H-NMR測定装置を用い、重水素化クロロホルムを溶媒として測定される。
The linear alkylene ether unit (P1) represented by the general formula (3) and the branched alkylene ether unit (P2) represented by the general formulas (4-1) to (4-4) of the polyalkylene glycol copolymer. The copolymerization ratio of (P1) / (P2) is preferably 95/5 to 5/95, more preferably 93/7 to 40/60, and still more preferably 90/10. It is more preferable that the linear alkylene ether unit (P1) is rich.
The mole fraction is measured using a 1 H-NMR measuring apparatus and deuterated chloroform as a solvent.
 また、ポリアルキレングリコール(B)として、その片末端あるいは両末端が脂肪酸又はアルコールで封鎖されていてもその性能発現に影響はなく、脂肪酸エステル化物又はエーテル化物を同様に使用することができ、従って、一般式(1)、(2)中のX及び/又はYは炭素数1~23の脂肪族アシル基又はアルキル基であってもよい。 Further, as polyalkylene glycol (B), even if one or both ends thereof are blocked with fatty acid or alcohol, there is no effect on the performance expression, and fatty acid esterified products or etherified products can be used similarly. In the general formulas (1) and (2), X and / or Y may be an aliphatic acyl group or alkyl group having 1 to 23 carbon atoms.
 ポリアルキレングリコールのエステル化物又はエーテル化物は、必ずしも全部をエステル化又はエーテル化している必要はなく、部分エステル化物又はエーテル化物であることが好ましい。 The esterified product or etherified product of polyalkylene glycol does not necessarily need to be esterified or etherified entirely, and is preferably a partially esterified product or an etherified product.
 脂肪酸エステル化物としては、直鎖状又は分岐状脂肪酸エステルのいずれも使用でき、脂肪酸エステルを構成する脂肪酸は、飽和脂肪酸であってもよく不飽和脂肪酸であってもよい。また、一部の水素原子がヒドロキシル基などの置換基で置換されたものも使用できる。
 脂肪酸エステルを構成する脂肪酸としては、炭素数1~23の1価又は2価の脂肪酸、例えば、1価の飽和脂肪酸、具体的には、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキジン酸、ベヘン酸や、1価の不飽和脂肪酸、具体的には、オレイン酸、エライジン酸、リノール酸、リノレン酸、アラキドン酸などの不飽和脂肪酸、また炭素数10以上の二価の脂肪酸、具体的には、セバシン酸、ウンデカン二酸、ドデカン二酸、テトラデカン二酸、タプシア酸及びデセン二酸、ウンデセン二酸、ドデセン二酸が挙げられる。
 これらの脂肪酸は1種又は2種以上組み合せて使用できる。前記脂肪酸には、1つ又は複数のヒドロキシル基を分子内に有する脂肪酸も含まれる。
As the fatty acid ester product, either a linear or branched fatty acid ester can be used, and the fatty acid constituting the fatty acid ester may be a saturated fatty acid or an unsaturated fatty acid. Also, those in which some hydrogen atoms are substituted with a substituent such as a hydroxyl group can be used.
The fatty acid constituting the fatty acid ester is a monovalent or divalent fatty acid having 1 to 23 carbon atoms, such as a monovalent saturated fatty acid, specifically formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid. , Enanthic acid, caprylic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid and monovalent unsaturated fatty acids, specifically, Unsaturated fatty acids such as oleic acid, elaidic acid, linoleic acid, linolenic acid and arachidonic acid, and divalent fatty acids having 10 or more carbon atoms, specifically sebacic acid, undecanedioic acid, dodecanedioic acid, tetradecanedioic acid , Tapsia and decenedioic acid, undecenedioic acid, dodecenedioic acid.
These fatty acids can be used alone or in combination. The fatty acid also includes a fatty acid having one or more hydroxyl groups in the molecule.
 ポリアルキレングリコールの脂肪酸エステルの好ましい具体例としては、一般式(I-1)において、Rがメチル基、X及びYが炭素数18の脂肪族アシル基であるポリプロピレングリコールステアレート、Rがメチル基、X及びYが炭素数22の脂肪族アシル基であるポリプロピレングリコールベヘネートが挙げられる。ポリアルキレングリコールの脂肪酸エステルの好ましい具体例としては、ポリアルキレングリコールモノパルミチン酸エステル、ポリアルキレングリコールジパルミチン酸エステル、ポリアルキレングリコールモノステアリン酸エステル、ポリアルキレングリコールジステアリン酸エステル、ポリアルキレングリコール(モノパルミチン酸・モノステアリン酸)エステル、ポリアルキレングリコールベヘネート等が挙げられる。 Preferable specific examples of the fatty acid ester of polyalkylene glycol include polypropylene glycol stearate in which R is a methyl group, X and Y are aliphatic acyl groups having 18 carbon atoms in general formula (I-1), and R is a methyl group , Polypropylene glycol behenate wherein X and Y are aliphatic acyl groups having 22 carbon atoms. Preferable specific examples of the fatty acid ester of polyalkylene glycol include polyalkylene glycol monopalmitate, polyalkylene glycol dipalmitate, polyalkylene glycol monostearate, polyalkylene glycol distearate, polyalkylene glycol (monopalmitin) Acid / monostearic acid) ester, polyalkylene glycol behenate and the like.
 ポリアルキレングリコールのアルキルエーテルを構成するアルキル基としては、直鎖状又は分岐状のいずれでもよく、例えばメチル基、エチル基、プロピル基、ブチル基、オクチル基、ラウリル基、ステアリル基等の炭素数1~23のアルキル基が挙げられ、このようなポリアルキレングリコールとしては、ポリアルキレングリコールのアルキルメチルエーテル、エチルエーテル、ブチルエーテル、ラウリルエーテル、ステアリルエーテル等が好ましく例示できる。 The alkyl group constituting the alkyl ether of the polyalkylene glycol may be either linear or branched, for example, carbon number such as methyl group, ethyl group, propyl group, butyl group, octyl group, lauryl group, stearyl group, etc. Examples of such polyalkylene glycols include alkylmethyl ether, ethyl ether, butyl ether, lauryl ether, stearyl ether and the like of polyalkylene glycol.
 上記ポリアルキレングリコール(B)としては、構造中に1,4-ブタンジオール、グリセロール、ソルビトール、ベンゼンジオール、ビスフェノールA、シクロヘキサンジオール、スピログリコールなどのポリオール由来の構造が含まれていてもよい。ポリアルキレングリコールの重合時にこれらのポリオールを加えることで、これらの有機基を主鎖中に付与することができる。特に好ましくはグリセロール、ソルビトール、ビスフェノールAなどが挙げられる。 The polyalkylene glycol (B) may contain a polyol-derived structure such as 1,4-butanediol, glycerol, sorbitol, benzenediol, bisphenol A, cyclohexanediol, and spiroglycol in the structure. By adding these polyols during the polymerization of the polyalkylene glycol, these organic groups can be imparted to the main chain. Particularly preferred are glycerol, sorbitol, bisphenol A and the like.
 構造中に有機基を含有するポリアルキレングリコールとしては、例えば、ポリエチレングリコールグリセリルエーテル、ポリ(2-メチル)エチレングリコールグリセリルエーテル、ポリ(2-エチル)エチレングリコールグリセリルエーテル、ポリテトラメチレングリコールグリセリルエーテル、ポリエチレングリコール-ポリ(2-メチル)エチレングリコールグリセリルエーテル、ポリテトラメチレングリコール-ポリ(2-メチル)エチレングリコールグリセリルエーテル、ポリテトラメチレングリコール-ポリ(2-エチル)ポリエチレングリコールグリセリルエーテル、ポリエチレングリコールソルビチルエーテル、ポリ(2-メチル)エチレングリコールソルビチルエーテル、ポリ(2-エチル)エチレングリコールソルビチルエーテル、ポリテトラメチレングリコールソルビチルエーテル、ポリエチレングリコール-ポリ(2-メチル)エチレングリコールソルビチルエーテル、ポリテトラメチレングリコール-ポリ(2-メチル)エチレングリコールソルビチルエーテル、ポリテトラメチレングリコール-ポリ(2-エチル)エチレングリコールソルビチルエーテル、ビスフェノールA-ビス(ポリエチレングリコール)エーテル、ビスフェノールA-ビス(ポリ(2-メチル)エチレングリコール)エーテル、ビスフェノールA-ビス(ポリ(2-エチル)エチレングリコール)エーテル、ビスフェノールA-ビス(ポリテトラメチレングリコール)エーテル、ビスフェノールA-ビス(ポリエチレングリコール-ポリ(2-メチル)エチレングリコール)エーテル、ビスフェノールA-ビス(ポリテトラメチレングリコール-ポリ(2-メチル)エチレングリコール)エーテル、ビスフェノールA-ビス(ポリテトラメチレングリコール-ポリ(2-エチル)ポリエチレングリコール)エーテル等が好ましいものとして挙げられる。 Examples of the polyalkylene glycol having an organic group in the structure include polyethylene glycol glyceryl ether, poly (2-methyl) ethylene glycol glyceryl ether, poly (2-ethyl) ethylene glycol glyceryl ether, polytetramethylene glycol glyceryl ether, Polyethylene glycol-poly (2-methyl) ethylene glycol glyceryl ether, polytetramethylene glycol-poly (2-methyl) ethylene glycol glyceryl ether, polytetramethylene glycol-poly (2-ethyl) polyethylene glycol glyceryl ether, polyethylene glycol sorbitol Ether, poly (2-methyl) ethylene glycol sorbyl ether, poly (2-ethyl) ethylene glycol sorbyl Ether, polytetramethylene glycol sorbitol ether, polyethylene glycol-poly (2-methyl) ethylene glycol sorbitol ether, polytetramethylene glycol-poly (2-methyl) ethylene glycol sorbitol ether, polytetramethylene glycol-poly (2 -Ethyl) ethylene glycol sorbyl ether, bisphenol A-bis (polyethylene glycol) ether, bisphenol A-bis (poly (2-methyl) ethylene glycol) ether, bisphenol A-bis (poly (2-ethyl) ethylene glycol) ether Bisphenol A-bis (polytetramethylene glycol) ether, bisphenol A-bis (polyethylene glycol-poly (2-methyl) ethylene glycol) Preferred examples include ether, bisphenol A-bis (polytetramethylene glycol-poly (2-methyl) ethylene glycol) ether, and bisphenol A-bis (polytetramethylene glycol-poly (2-ethyl) polyethylene glycol) ether. .
 上記ポリアルキレングリコール(B)は、1種類を単独で用いても、2種類以上を併用してもよい。 The above polyalkylene glycol (B) may be used alone or in combination of two or more.
 ポリアルキレングリコール(B)の含有量は、ポリカーボネート樹脂(A)100質量部に対し、0.1~4質量部である。好ましい含有量は0.15質量部以上、より好ましくは0.2質量部以上、さらに好ましくは0.3質量部以上、特に好ましくは0.4質量部以上であり、好ましくは3.5質量部以下、より好ましくは3質量部以下、さらに好ましくは2.5質量部以下、特に好ましくは2質量部以下である。含有量が0.1質量部を下回ると、色相や黄変の改善が十分でなく、4質量部を超えると、ポリカーボネート樹脂の白濁により透過率が低下するとともに、押出機による溶融混練の際に、ストランドの断線が多発し、樹脂組成物ペレットの作成が困難となる。 The content of the polyalkylene glycol (B) is 0.1 to 4 parts by mass with respect to 100 parts by mass of the polycarbonate resin (A). The preferred content is 0.15 parts by mass or more, more preferably 0.2 parts by mass or more, further preferably 0.3 parts by mass or more, particularly preferably 0.4 parts by mass or more, preferably 3.5 parts by mass. Hereinafter, it is more preferably 3 parts by mass or less, further preferably 2.5 parts by mass or less, and particularly preferably 2 parts by mass or less. When the content is less than 0.1 parts by mass, the hue and yellowing are not sufficiently improved. When the content exceeds 4 parts by mass, the transmittance decreases due to white turbidity of the polycarbonate resin, and at the time of melt kneading by an extruder. The strand breaks frequently, making it difficult to produce resin composition pellets.
[リン系安定剤(C)]
 本発明のポリカーボネート樹脂組成物は、リン系安定剤を含有する。リン系安定剤を含有することで、本発明のポリカーボネート樹脂組成物の色相が良好なものとなり、さらに耐熱変色性が向上する。
 リン系安定剤としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族又は第2B族金属のリン酸塩;ホスフェート化合物、ホスファイト化合物、ホスホナイト化合物などが挙げられるが、ホスファイト化合物が特に好ましい。ホスファイト化合物を選択することで、より高い耐変色性と連続生産性を有するポリカーボネート樹脂組成物が得られる。
[Phosphorus stabilizer (C)]
The polycarbonate resin composition of the present invention contains a phosphorus stabilizer. By containing a phosphorus stabilizer, the hue of the polycarbonate resin composition of the present invention is improved, and the heat discoloration is further improved.
Any known phosphorous stabilizer can be used. Specific examples include phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid; acidic pyrophosphate metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, and acidic calcium pyrophosphate; phosphoric acid Phosphates of Group 1 or Group 2B metals such as potassium, sodium phosphate, cesium phosphate, and zinc phosphate; phosphate compounds, phosphite compounds, phosphonite compounds and the like can be mentioned, and phosphite compounds are particularly preferred. By selecting a phosphite compound, a polycarbonate resin composition having higher discoloration resistance and continuous productivity can be obtained.
 ここでホスファイト化合物は、一般式:P(OR)で表される3価のリン化合物であり、Rは、1価又は2価の有機基を表す。
 このようなホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト、ビス(2,6-ジ-tert-ブチルフェニル)オクチルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレン-ジホスファイト、6-[3-(3-tert-ブチル-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]-ジオキサホスフェピン等が挙げられる。
Here, the phosphite compound is a trivalent phosphorus compound represented by the general formula: P (OR) 3 , and R represents a monovalent or divalent organic group.
Examples of such phosphite compounds include triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphine. Phyto, monooctyl diphenyl phosphite, dioctyl monophenyl phosphite, monodecyl diphenyl phosphite, didecyl monophenyl phosphite, tridecyl phosphite, trilauryl phosphite, tristearyl phosphite, distearyl pentaerythritol diphosphite, Bis (2,4-di-tert-butyl-4-methylphenyl) pentaerythritol phosphite, bis (2,6-di-tert-butylphenyl) octyl phosphite, 2,2-methylene (4,6-di-tert-butylphenyl) octyl phosphite, tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylene-diphosphite, 6- [3- (3-tert- Butyl-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-tert-butyldibenzo [d, f] [1,3,2] -dioxaphosphine.
 このようなホスファイト化合物のなかでも、下記式(1)又は(2)で表される芳香族ホスファイト化合物が、本発明のポリカーボネート樹脂組成物の耐熱変色性が効果的に高まるため、より好ましい。 Among such phosphite compounds, an aromatic phosphite compound represented by the following formula (1) or (2) is more preferable because the heat discoloration of the polycarbonate resin composition of the present invention is effectively enhanced. .
Figure JPOXMLDOC01-appb-C000014
[式(1)中、R、R及びRは、それぞれ同一であっても異なっていてもよく、炭素数6以上30以下のアリール基を表す。]
Figure JPOXMLDOC01-appb-C000014
[In Formula (1), R 1 , R 2 and R 3 may be the same or different and each represents an aryl group having 6 to 30 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000015
[式(2)中、R及びRは、それぞれ同一であっても異なっていてもよく、炭素数6以上30以下のアリール基を表す。]
Figure JPOXMLDOC01-appb-C000015
[In Formula (2), R 4 and R 5 may be the same or different and each represents an aryl group having 6 to 30 carbon atoms. ]
 上記式(1)で表されるホスファイト化合物としては、中でもトリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト等が好ましく、中でもトリス(2,4-ジ-tert-ブチルフェニル)ホスファイトがより好ましい。このような、有機ホスファイト化合物としては、具体的には例えば、ADEKA社製「アデカスタブ1178」、住友化学社製「スミライザーTNP」、城北化学工業社製「JP-351」、ADEKA社製「アデカスタブ2112」、BASF社製「イルガフォス168」、城北化学工業社製「JP-650」等が挙げられる。 As the phosphite compound represented by the above formula (1), triphenyl phosphite, tris (monononylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite and the like are preferable. Tris (2,4-di-tert-butylphenyl) phosphite is more preferred. Specific examples of such organic phosphite compounds include, for example, “ADEKA STAB 1178” manufactured by ADEKA, “SUMILIZER TNP” manufactured by Sumitomo Chemical Co., Ltd., “JP-351” manufactured by Johoku Chemical Industry Co., Ltd., and “ADEKA STAB manufactured by ADEKA. 2112 "," Irgaphos 168 "manufactured by BASF," JP-650 "manufactured by Johoku Chemical Industry Co., Ltd., and the like.
 上記式(2)で表されるホスファイト化合物としては、中でもビス(2,4-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイトのようなペンタエリスリトールジホスファイト構造を有するものが特に好ましい。このような、有機ホスファイト化合物としては、具体的には例えば、アデカ社製「アデカスタブPEP-24G」、「アデカスタブPEP-36」、Doverchemical社製「Doverphos S-9228」等が好ましく挙げられる。 Examples of the phosphite compound represented by the above formula (2) include bis (2,4-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite and bis (2,6-di-tert-butyl). Those having a pentaerythritol diphosphite structure such as -4-methylphenyl) pentaerythritol diphosphite and bis (2,4-dicumylphenyl) pentaerythritol diphosphite are particularly preferred. Specific examples of such an organic phosphite compound include “Adekastab PEP-24G”, “Adekastab PEP-36” manufactured by Adeka, “Doverphos S-9228” manufactured by Doverchemical, and the like.
 ホスファイト化合物の中でも、上記式(2)で表される芳香族ホスファイト化合物が、色相がより優れるため、より好ましい。
 なお、リン系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
Among the phosphite compounds, the aromatic phosphite compound represented by the above formula (2) is more preferable because the hue is more excellent.
In addition, 1 type may contain phosphorus stabilizer and 2 or more types may contain it by arbitrary combinations and a ratio.
 リン系安定剤(C)の含有量は、ポリカーボネート樹脂(A)100質量部に対して、0.005~0.5質量部であり、好ましくは0.007質量部以上、より好ましくは0.008質量部以上、特に好ましくは0.01質量部以上であり、また、好ましくは0.4質量以下、より好ましくは0.3質量部以下、さらに好ましくは0.2質量部以下、特には0.1質量部以下である。リン系安定剤(C)の含有量が前記範囲の0.005質量部未満の場合は、色相、耐熱変色性が不十分となり、リン系安定剤(C)の含有量が0.5質量部を超える場合は、耐熱変色性がかえって悪化するだけでなく、湿熱安定性も低下する。 The content of the phosphorus stabilizer (C) is 0.005 to 0.5 parts by mass, preferably 0.007 parts by mass or more, more preferably 0.005 parts by mass with respect to 100 parts by mass of the polycarbonate resin (A). 008 parts by mass or more, particularly preferably 0.01 parts by mass or more, preferably 0.4 parts by mass or less, more preferably 0.3 parts by mass or less, still more preferably 0.2 parts by mass or less, particularly 0 .1 part by mass or less. When the content of the phosphorus stabilizer (C) is less than 0.005 parts by mass of the above range, the hue and heat discoloration are insufficient, and the content of the phosphorus stabilizer (C) is 0.5 parts by mass. If it exceeds 1, not only the heat discoloration is deteriorated, but also the wet heat stability is lowered.
[エポキシ化合物(D)]
 本発明の樹脂組成物はエポキシ化合物(D)を含有することも好ましい。エポキシ化合物(D)をポリアルキレングリコール(B)と併せて含有することで耐熱変色性をより向上させることができる。
[Epoxy compound (D)]
It is also preferable that the resin composition of the present invention contains an epoxy compound (D). By containing the epoxy compound (D) together with the polyalkylene glycol (B), the heat discoloration can be further improved.
 エポキシ化合物(D)としては、1分子中にエポキシ基を1個以上有する化合物が用いられる。具体的には、フェニルグリシジルエーテル、アリルグリシジルエーテル、t-ブチルフェニルグリシジルエーテル、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキシルカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-3’,4’-エポキシ-6’-メチルシクロヘキシルカルボキシレート、2,3-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキシルカルボキシレート、4-(3,4-エポキシ-5-メチルシクロヘキシル)ブチル-3’,4’-エポキシシクロヘキシルカルボキシレート、3,4-エポキシシクロヘキシルエチレンオキシド、シクロヘキシルメチル3,4-エポキシシクロヘキシルカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-6’-メチルシロヘキシルカルボキシレート、ビスフェノール-Aジグリシジルエーテル、テトラブロモビスフェノール-Aグリシジルエーテル、フタル酸のジグリシジルエステル、ヘキサヒドロフタル酸のジグリシジルエステル、ビス-エポキシジシクロペンタジエニルエーテル、ビス-エポキシエチレングリコール、ビス-エポキシシクロヘキシルアジペート、ブタジエンジエポキシド、テトラフェニルエチレンエポキシド、オクチルエポキシタレート、エポキシ化ポリブタジエン、3,4-ジメチル-1,2-エポキシシクロヘキサン、3,5-ジメチル-1,2-エポキシシクロヘキサン、3-メチル-5-t-ブチル-1,2-エポキシシクロヘキサン、オクタデシル-2,2-ジメチル-3,4-エポキシシクロヘキシルカルボキシレート、N-ブチル-2,2-ジメチル-3,4-エポキシシクロヘキシルカルボキシレート、シクロヘキシル-2-メチル-3,4-エポキシシクロヘキシルカルボキシレート、N-ブチル-2-イソプロピル-3,4-エポキシ-5-メチルシクロヘキシルカルボキシレート、オクタデシル-3,4-エポキシシクロヘキシルカルボキシレート、2-エチルヘキシル-3’,4’-エポキシシクロヘキシルカルボキシレート、4,6-ジメチル-2,3-エポキシシクロヘキシル-3’,4’-エポキシシクロヘキシルカルボキシレート、4,5-エポキシ無水テトラヒドロフタル酸、3-t-ブチル-4,5-エポキシ無水テトラヒドロフタル酸、ジエチル4,5-エポキシ-シス-1,2-シクロヘキシルジカルボキシレート、ジ-n-ブチル-3-t-ブチル-4,5-エポキシ-シス-1,2-シクロヘキシルジカルボキシレート、エポキシ化大豆油、エポキシ化アマニ油などを好ましく例示することができる。
 エポキシ化合物は、単独で用いても2種以上組み合わせて用いてもよい。
As the epoxy compound (D), a compound having one or more epoxy groups in one molecule is used. Specifically, phenyl glycidyl ether, allyl glycidyl ether, t-butylphenyl glycidyl ether, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexylcarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl -3 ', 4'-epoxy-6'-methylcyclohexyl carboxylate, 2,3-epoxycyclohexylmethyl-3', 4'-epoxycyclohexyl carboxylate, 4- (3,4-epoxy-5-methylcyclohexyl) Butyl-3 ′, 4′-epoxycyclohexylcarboxylate, 3,4-epoxycyclohexylethylene oxide, cyclohexylmethyl 3,4-epoxycyclohexylcarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl-6 ′ -Methylsiloxyl carboxylate, bisphenol-A diglycidyl ether, tetrabromobisphenol-A glycidyl ether, diglycidyl ester of phthalic acid, diglycidyl ester of hexahydrophthalic acid, bis-epoxy dicyclopentadienyl ether, bis- Epoxyethylene glycol, bis-epoxycyclohexyl adipate, butadiene diepoxide, tetraphenylethylene epoxide, octyl epoxytalate, epoxidized polybutadiene, 3,4-dimethyl-1,2-epoxycyclohexane, 3,5-dimethyl-1,2, -Epoxycyclohexane, 3-methyl-5-t-butyl-1,2-epoxycyclohexane, octadecyl-2,2-dimethyl-3,4-epoxycyclohexylcarboxy N-butyl-2,2-dimethyl-3,4-epoxycyclohexyl carboxylate, cyclohexyl-2-methyl-3,4-epoxycyclohexyl carboxylate, N-butyl-2-isopropyl-3,4-epoxy -5-methylcyclohexyl carboxylate, octadecyl-3,4-epoxycyclohexyl carboxylate, 2-ethylhexyl-3 ', 4'-epoxycyclohexyl carboxylate, 4,6-dimethyl-2,3-epoxycyclohexyl-3', 4'-epoxycyclohexylcarboxylate, 4,5-epoxytetrahydrophthalic anhydride, 3-tert-butyl-4,5-epoxytetrahydrophthalic anhydride, diethyl 4,5-epoxy-cis-1,2-cyclohexyldicarboxylate Rate, j-n-b Le -3-t-butyl-4,5-epoxy - cis-1,2-cyclohexyl dicarboxylate, epoxidized soybean oil, can be preferably exemplified such as epoxidized linseed oil.
Epoxy compounds may be used alone or in combination of two or more.
 これらのうち、脂環族エポキシ化合物が好ましく用いられ、特に、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキシルカルボキシレートが好ましい。 Of these, alicyclic epoxy compounds are preferably used, and 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexylcarboxylate is particularly preferable.
 エポキシ化合物(D)の好ましい含有量は、ポリカーボネート樹脂(A)100質量部に対して、0.0005~0.2質量部であり、より好ましくは0.001質量部以上、さらに好ましくは0.003質量部以上、特に好ましくは0.005質量部以上であり、また、より好ましくは0.15質量以下、さらに好ましくは0.1質量部以下、特に好ましくは0.05質量部以下である。エポキシ化合物(D)の含有量が、0.0005質量部未満の場合は、色相、耐熱変色性が不十分となりやすく、0.2質量部を超える場合は、耐熱変色性がかえって悪化しやすく、色相や湿熱安定性も低下しやすい。 The content of the epoxy compound (D) is preferably 0.0005 to 0.2 parts by mass, more preferably 0.001 parts by mass or more, and still more preferably 0.005 parts by mass with respect to 100 parts by mass of the polycarbonate resin (A). 003 parts by mass or more, particularly preferably 0.005 parts by mass or more, more preferably 0.15 parts by mass or less, still more preferably 0.1 parts by mass or less, and particularly preferably 0.05 parts by mass or less. When the content of the epoxy compound (D) is less than 0.0005 parts by mass, the hue and the heat discoloration tend to be insufficient. When the content exceeds 0.2 parts by mass, the heat discoloration tends to deteriorate, Hue and wet heat stability tend to decrease.
 また、エポキシ化合物(D)の含有量とリン系安定剤(C)の含有量の質量比(C/D)は、0、あるいは0より多く6.0未満であることが好ましく、より好ましくは0.1~5.5であり、0.5~5.0であることがさらに好ましい。 The mass ratio (C / D) of the content of the epoxy compound (D) and the content of the phosphorus stabilizer (C) is preferably 0, or more than 0 and less than 6.0, more preferably It is 0.1 to 5.5, and more preferably 0.5 to 5.0.
[添加剤等]
 本発明のポリカーボネート樹脂組成物は、上記した以外のその他の添加剤、例えば、酸化防止剤、離型剤、紫外線吸収剤、蛍光増白剤、顔料、染料、ポリカーボネート樹脂以外の他のポリマー、難燃剤、耐衝撃改良剤、帯電防止剤、可塑剤、相溶化剤などの添加剤を含有することができる。これらの添加剤は一種又は二種以上を配合してもよい。
[Additives, etc.]
The polycarbonate resin composition of the present invention includes other additives other than those described above, for example, antioxidants, mold release agents, ultraviolet absorbers, fluorescent brighteners, pigments, dyes, other polymers other than polycarbonate resins, Additives such as a flame retardant, an impact resistance improver, an antistatic agent, a plasticizer, and a compatibilizing agent can be contained. These additives may be used alone or in combination of two or more.
[ポリカーボネート樹脂組成物の製造方法]
 本発明のポリカーボネート樹脂組成物の製造方法に制限はなく、公知のポリカーボネート樹脂組成物の製造方法を広く採用でき、ポリカーボネート樹脂(A)、ポリアルキレングリコール(B)及びリン系安定剤(C)、並びに、必要に応じて配合されるその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。なお、溶融混練の温度は特に制限されないが、通常240~320℃の範囲である。
[Production Method of Polycarbonate Resin Composition]
There is no restriction | limiting in the manufacturing method of the polycarbonate resin composition of this invention, The manufacturing method of a well-known polycarbonate resin composition can be employ | adopted widely, polycarbonate resin (A), polyalkylene glycol (B), and phosphorus stabilizer (C), In addition, other components to be blended as necessary are mixed in advance using various mixers such as a tumbler and a Henschel mixer, and then Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder And a melt kneading method using a mixer such as a kneader. The temperature for melt kneading is not particularly limited, but is usually in the range of 240 to 320 ° C.
[光学部品]
 本発明の光学部品用ポリカーボネート樹脂組成物は、上記したポリカーボネート樹脂組成物をペレタイズしたペレットを各種の成形法で成形して光学部品を製造することができる。またペレットを経由せずに、押出機で溶融混練された樹脂を直接、成形して光学部品にすることもできる。
[Optical parts]
The polycarbonate resin composition for optical components of the present invention can be produced by molding pellets obtained by pelletizing the above-described polycarbonate resin composition by various molding methods. Moreover, the resin melt-kneaded by an extruder can be directly molded into an optical component without going through the pellets.
 本発明のポリカーボネート樹脂組成物は、流動性や色相に優れ、成形時のガス発生と金型汚染が極めて少ないことから、射出成形法により、光学部品、特に金型汚染が起こりやすい薄肉の光学部品を成形するのに特に好適に用いられる。射出成形の際の樹脂温度は、特に薄肉の成形品の場合には、一般にポリカーボネート樹脂の射出成形に適用される温度である260~300℃よりも高い樹脂温度にて成形することが好ましく、305~400℃の樹脂温度が好ましい。樹脂温度は310℃以上であるのがより好ましく、315℃以上がさらに好ましく、320℃以上が特に好ましく、390℃以下がより好ましい。従来のポリカーボネート樹脂組成物を用いた場合には、薄肉成形品を成形するために成形時の樹脂温度を高めると、成形品の黄変が生じやすくなるという問題もあったが、本発明の樹脂組成物を使用することで、上記の温度範囲であっても、良好な色相を有する成形品、特に薄肉の光学部品を製造することが可能となる。
 なお、樹脂温度とは、直接測定することが困難な場合はバレル設定温度として把握される。
The polycarbonate resin composition of the present invention is excellent in fluidity and hue, and has very little gas generation and mold contamination during molding. Therefore, by injection molding, optical components, particularly thin optical components that are prone to mold contamination. It is particularly preferably used for molding. The resin temperature at the time of injection molding is preferably molded at a resin temperature higher than 260 to 300 ° C., which is a temperature generally applied to injection molding of polycarbonate resin, particularly in the case of a thin molded product. A resin temperature of ˜400 ° C. is preferred. The resin temperature is more preferably 310 ° C or higher, further preferably 315 ° C or higher, particularly preferably 320 ° C or higher, and more preferably 390 ° C or lower. When the conventional polycarbonate resin composition is used, there is a problem that when the resin temperature at the time of molding is increased in order to mold a thin molded product, the molded product is likely to be yellowed. By using the composition, it becomes possible to produce a molded product having a good hue, particularly a thin-walled optical component, even in the above temperature range.
The resin temperature is grasped as the barrel set temperature when it is difficult to directly measure the resin temperature.
 ここで、薄肉成形品とは、通常肉厚が1mm以下、好ましくは0.8mm以下、より好ましくは0.6mm以下の板状部を有する成形品をいう。ここで、板状部は、平板であっても曲板状になっていてもよく、平坦な表面であっても、表面に凹凸等を有してもよく、また断面は傾斜面を有していたり、楔型断面等であってもよい。 Here, the thin-walled molded article refers to a molded article having a plate-shaped portion having a thickness of usually 1 mm or less, preferably 0.8 mm or less, more preferably 0.6 mm or less. Here, the plate-like portion may be a flat plate or a curved plate, may be a flat surface, may have irregularities on the surface, and the cross section has an inclined surface. Or a wedge-shaped cross section.
 光学部品としては、LED、有機EL、白熱電球、蛍光ランプ、陰極管等の光源を直接又は間接に利用する機器・器具の部品が挙げられ、導光板や面発光体用部材等が代表的なものとして例示される。
 導光板は、液晶バックライトユニットや各種の表示装置、照明装置の中で、LED等の光源の光を導光するためのものであり、側面又は裏面等から入れた光を、通常表面に設けられた凹凸により拡散させ、均一の光を出す。その形状は、通常平板状であり、表面には凹凸を有していても有していなくてもよい。
 導光板の成形は、通常、好ましくは射出成形法、超高速射出成形法、射出圧縮成形法、溶融押出成形法(例えばTダイ成形法)などにより行われる。
 本発明の樹脂組成物を用いて成形した導光板は、白濁や透過率の低下がなく、良好な色相を有し且つ金型汚染による成形不良が少ない。
Examples of optical components include components of equipment and instruments that directly or indirectly use light sources such as LEDs, organic EL, incandescent bulbs, fluorescent lamps, and cathode tubes, and light guide plates and surface light emitter members are typical. It is illustrated as a thing.
The light guide plate is used to guide light from a light source such as an LED in a liquid crystal backlight unit, various display devices, and lighting devices. It diffuses by the unevenness and emits uniform light. The shape is usually flat, and the surface may or may not have irregularities.
The light guide plate is usually formed preferably by an injection molding method, an ultra-high speed injection molding method, an injection compression molding method, a melt extrusion molding method (for example, a T-die molding method), or the like.
The light guide plate molded using the resin composition of the present invention does not have white turbidity or transmittance, has a good hue, and has few molding defects due to mold contamination.
 本発明のポリカーボネート樹脂組成物を用いた導光板は、液晶バックライトユニットや各種の表示装置、照明装置の分野で好適に使用できる。このような装置の例としては、携帯電話、モバイルノート、ネットブック、スレートPC、タブレットPC、スマートフォン、タブレット型端末等の各種携帯端末、カメラ、時計、ノートパソコン、各種ディスプレイ、照明機器等が挙げられる。 The light guide plate using the polycarbonate resin composition of the present invention can be suitably used in the fields of liquid crystal backlight units, various display devices, and lighting devices. Examples of such devices include mobile phones, mobile notebooks, netbooks, slate PCs, tablet PCs, smartphones, tablet terminals, and other portable terminals, cameras, watches, notebook computers, various displays, lighting devices, and the like. It is done.
 また、光学部品としての形状はフィルムあるいはシートであってもよく、その具体例としては、例えば導光フィルム等が挙げられる。 Further, the shape as the optical component may be a film or a sheet, and specific examples thereof include a light guide film and the like.
 また、光学部品としては、自動車あるいはオートバイ等の車両用前照灯(ヘッドランプ)あるいはリアランプ、フォグランプ等において、LED等の光源からの光を導光するライトガイドやレンズ等も好適であり、これらにも好適に使用することができる。 In addition, as an optical component, a light guide or a lens that guides light from a light source such as an LED in a vehicle headlight (head lamp) or a rear lamp or a fog lamp for an automobile or a motorcycle is also suitable. Also, it can be suitably used.
 本発明のポリカーボネート樹脂組成物を用いた導光板は、液晶バックライトユニットや各種の表示装置、照明装置の分野で好適に使用できる。このような装置の例としては、携帯電話、モバイルノート、ネットブック、スレートPC、タブレットPC、スマートフォン、タブレット型端末等の各種携帯端末、カメラ、時計、ノートパソコン、各種ディスプレイ、照明機器等が挙げられる。 The light guide plate using the polycarbonate resin composition of the present invention can be suitably used in the fields of liquid crystal backlight units, various display devices, and lighting devices. Examples of such devices include mobile phones, mobile notebooks, netbooks, slate PCs, tablet PCs, smartphones, tablet terminals, and other portable terminals, cameras, watches, notebook computers, various displays, lighting devices, and the like. It is done.
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定して解釈されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not construed as being limited to the following examples.
 以下の実施例及び比較例で使用した原料及び評価方法は次の通りである。なお、ポリカーボネート樹脂(A)の粘度平均分子量の測定方法は、前述した通りである。 The raw materials and evaluation methods used in the following examples and comparative examples are as follows. In addition, the measuring method of the viscosity average molecular weight of polycarbonate resin (A) is as having mentioned above.
 ポリアルキレングリコールの重量平均分子量(Mw)と数平均分子量(Mn)のゲル浸透クロマトグラフィーによる測定は、具体的には以下のようにして行った。
 ゲル浸透クロマトグラフィー装置には、HLC-8320(東ソー社製)を用い、カラムとして、KF-G、KF-805L×3、KF-800D(いずれもShodex社製)を接続して用いた。カラム温度は40℃とした。検出器はHLC-8320のRI検出器を用いた。溶離液として、テトラヒドロフランを用い、検量線は、Shodex社製の標準ポリスチレンを使用して作成した。
Specifically, the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polyalkylene glycol were measured by gel permeation chromatography as follows.
As the gel permeation chromatography apparatus, HLC-8320 (manufactured by Tosoh Corporation) was used, and KF-G, KF-805L × 3, and KF-800D (all manufactured by Shodex) were connected and used as columns. The column temperature was 40 ° C. The detector used was an RI detector of HLC-8320. Tetrahydrofuran was used as an eluent, and a calibration curve was prepared using standard polystyrene manufactured by Shodex.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
(実施例1~14、比較例1~5)
[樹脂組成物ペレットの製造]
 上記した各成分を、以下の表2~3に記した割合(質量部)で配合し、タンブラーにて20分混合した後、スクリュー径40mmのベント付単軸押出機(田辺プラスチック機械社製「VS-40」)により、シリンダー温度を240℃で溶融混練し、ストランドカットによりペレットを得た。
(Examples 1 to 14, Comparative Examples 1 to 5)
[Production of resin composition pellets]
Each component described above was blended in the proportions (parts by mass) shown in Tables 2 to 3 below, mixed for 20 minutes with a tumbler, and then a single screw extruder with a screw diameter of 40 mm (manufactured by Tanabe Plastic Machinery Co., Ltd.) VS-40 "), the cylinder temperature was melt kneaded at 240 ° C, and pellets were obtained by strand cutting.
[色相(YI)の測定]
 得られたペレットを120℃で5~7時間、熱風循環式乾燥機により乾燥した後、射出成形機(東芝機械社製「EC100SX-2A」)により、樹脂温度340℃、金型温度80℃で長光路成形品(300mm×7mm×4mm)を成形した。
 この長光路成形品について、300mmの光路長でYI(黄変度)の測定を行った。測定には長光路分光透過色計(日本電色工業社製「ASA 1」、C光源、2°視野)を使用した。
[Measurement of Hue (YI)]
The obtained pellets were dried at 120 ° C. for 5 to 7 hours with a hot air circulating dryer, and then with an injection molding machine (“EC100SX-2A” manufactured by Toshiba Machine Co., Ltd.) at a resin temperature of 340 ° C. and a mold temperature of 80 ° C. A long optical path molded product (300 mm × 7 mm × 4 mm) was molded.
About this long optical path molded product, YI (yellowing degree) was measured at an optical path length of 300 mm. For the measurement, a long optical path spectral transmission color meter (“ASA 1” manufactured by Nippon Denshoku Industries Co., Ltd., C light source, 2 ° visual field) was used.
[金型汚染性評価(金型付着物)]
射出成形における汚染性評価(金型汚れ)
 上記で得られたペレットを、120℃で5時間乾燥させた後、射出成形機(住友重機械工業社製「SE8M」)を用い、図1に示すようなしずく型金型を用いて、シリンダー温度を340℃、成形サイクル10秒、金型温度40℃の条件にて、200ショット射出成形し、終了後の金型固定側の金属鏡面に発生する白い付着物による汚れの状態を、比較例1と比較した下記の基準で、目視にて評価判定した。
 A:金型付着物は、比較例1の200ショット成形後の状態より極めて少なく、耐金型汚染性は極めて良好である。
 B:金型付着物は、比較例1の200ショット成形後の状態より少ないが、耐金型汚染性は若干見られる。
 C:金型付着物は、比較例1の200ショット成形後の状態と同レベルである。
 D:金型付着物は、比較例1の200ショット成形後の状態より多く、金型汚染が著しく見られる。
[Evaluation of mold contamination (mold deposits)]
Contamination evaluation in injection molding (mold dirt)
After the pellets obtained above were dried at 120 ° C. for 5 hours, an injection molding machine (“SE8M” manufactured by Sumitomo Heavy Industries, Ltd.) was used and a drop mold as shown in FIG. A comparative example shows the state of contamination due to white deposits generated on the metal mirror surface on the mold fixing side after 200 shot injection molding under conditions of a temperature of 340 ° C., a molding cycle of 10 seconds, and a mold temperature of 40 ° C. The following criteria compared with 1 were evaluated and judged visually.
A: The amount of mold deposits is much less than that after the 200-shot molding in Comparative Example 1, and the mold contamination resistance is very good.
B: Although mold deposits are less than the state after the 200-shot molding of Comparative Example 1, some mold resistance is observed.
C: Mold adhering material is at the same level as the state after 200 shot molding of Comparative Example 1.
D: There are more mold deposits than the state after the 200-shot molding of Comparative Example 1, and the mold contamination is noticeable.
 なお、図1のしずく型金型は、ゲートGから樹脂組成物を導入し、尖端P部分に発生ガスが溜まり易くなるように設計した金型である。ゲートGの幅は1mm、厚みは1mmであり、図1において、幅h1は14.5mm、長さh2は7mm、長さh3は27mmであり、成形部の厚みは3mmである。
 以上の評価結果を以下の表2に示す。
The drop mold shown in FIG. 1 is a mold designed to introduce a resin composition from the gate G so that the generated gas easily accumulates at the tip P portion. The gate G has a width of 1 mm and a thickness of 1 mm. In FIG. 1, the width h1 is 14.5 mm, the length h2 is 7 mm, the length h3 is 27 mm, and the thickness of the molded part is 3 mm.
The above evaluation results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 本発明のポリカーボネート樹脂組成物は、良好な色相を有し、且つ成形時のガス発生と金型汚染が極めて少ないので、光学部品に極めて好適に利用できる。 The polycarbonate resin composition of the present invention has a good hue and generates very little gas during molding and mold contamination, and can therefore be used very suitably for optical parts.

Claims (10)

  1.  ポリカーボネート樹脂(A)100質量部に対し、ゲル浸透クロマトグラフィーによりテトラヒドロフラン溶媒で測定したポリスチレン換算の重量平均分子量(Mw)が4,000超~7,700以下であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が2.5以下であるポリアルキレングリコール(B)を0.1~4質量部、リン系安定剤(C)を0.005~0.5質量部含有することを特徴とする光学部品用ポリカーボネート樹脂組成物。 The polystyrene-reduced weight average molecular weight (Mw) measured with a tetrahydrofuran solvent by gel permeation chromatography with respect to 100 parts by mass of the polycarbonate resin (A) is 4,000 to 7,700, and the weight average molecular weight (Mw) The polyalkylene glycol (B) having a ratio (Mw / Mn) to the number average molecular weight (Mn) of 2.5 or less is 0.1 to 4 parts by mass, and the phosphorus stabilizer (C) is 0.005 to 0.005. A polycarbonate resin composition for optical parts, comprising 5 parts by mass.
  2.  ポリアルキレングリコール(B)が、テトラメチレンエーテル単位を有する請求項1に記載の光学部品用ポリカーボネート樹脂組成物。 The polycarbonate resin composition for optical components according to claim 1, wherein the polyalkylene glycol (B) has a tetramethylene ether unit.
  3.  ポリアルキレングリコール(B)が、テトラメチレンエーテル単位からなるポリテトラメチレングリコール単独重合体である請求項1または2に記載の光学部品用ポリカーボネート樹脂組成物。 The polycarbonate resin composition for optical parts according to claim 1 or 2, wherein the polyalkylene glycol (B) is a polytetramethylene glycol homopolymer comprising tetramethylene ether units.
  4.  ポリアルキレングリコール(B)が、下記一般式(3)で表される直鎖アルキレンエーテル単位と下記一般式(4-1)~(4-4)で表される単位から選ばれる分岐アルキレンエーテル単位を有するポリアルキレングリコール共重合体である請求項1に記載の光学部品用ポリカーボネート樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     (式(3)中、pは2~6の整数を示す。)
    Figure JPOXMLDOC01-appb-C000002
     (式(4-1)~(4-4)中、R~R10は各々独立に水素原子又は炭素数1~3のアルキル基を示し、それぞれの式(4-1)~(4-4)において、R~R10の少なくとも1つは炭素数1~3のアルキル基である。)
    The polyalkylene glycol (B) is a branched alkylene ether unit selected from linear alkylene ether units represented by the following general formula (3) and units represented by the following general formulas (4-1) to (4-4) The polycarbonate resin composition for optical components according to claim 1, wherein the polycarbonate resin composition is a polyalkylene glycol copolymer.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (3), p represents an integer of 2 to 6.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formulas (4-1) to (4-4), R 1 to R 10 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and each of the formulas (4-1) to (4- In 4), at least one of R 1 to R 10 is an alkyl group having 1 to 3 carbon atoms.)
  5.  ポリアルキレングリコール(B)が、テトラメチレンエーテル単位と、前記一般式(4-1)で表される単位を有するポリアルキレングリコール共重合体である請求項4に記載の光学部品用ポリカーボネート樹脂組成物。 The polycarbonate resin composition for optical parts according to claim 4, wherein the polyalkylene glycol (B) is a polyalkylene glycol copolymer having a tetramethylene ether unit and a unit represented by the general formula (4-1). .
  6.  ポリアルキレングリコール(B)が、テトラメチレンエーテル単位と、前記一般式(4-2)または(4-3)で表される単位を有するポリアルキレングリコール共重合体である請求項4に記載の光学部品用ポリカーボネート樹脂組成物。 The optical system according to claim 4, wherein the polyalkylene glycol (B) is a polyalkylene glycol copolymer having a tetramethylene ether unit and a unit represented by the general formula (4-2) or (4-3). Polycarbonate resin composition for parts.
  7.  リン系安定剤(C)が、下記一般式(1)及び/又は(2)で表されるホスファイト化合物である請求項1に記載の光学部品用ポリカーボネート樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    [式(1)中、R、R及びRは、それぞれ同一であっても異なっていてもよく、炭素数6以上30以下のアリール基を表す。]
    Figure JPOXMLDOC01-appb-C000004
    [式(2)中、R及びRは、それぞれ同一であっても異なっていてもよく、炭素数6以上30以下のアリール基を表す。]
    The polycarbonate resin composition for optical components according to claim 1, wherein the phosphorus stabilizer (C) is a phosphite compound represented by the following general formula (1) and / or (2).
    Figure JPOXMLDOC01-appb-C000003
    [In Formula (1), R 1 , R 2 and R 3 may be the same or different and each represents an aryl group having 6 to 30 carbon atoms. ]
    Figure JPOXMLDOC01-appb-C000004
    [In Formula (2), R 4 and R 5 may be the same or different and each represents an aryl group having 6 to 30 carbon atoms. ]
  8.  さらに、エポキシ化合物(D)を、ポリカーボネート樹脂(A)100質量部に対し、0.0005~0.2質量部含有する請求項1又は2に記載の光学部品用ポリカーボネート樹脂組成物。 The polycarbonate resin composition for optical parts according to claim 1 or 2, further comprising 0.0005 to 0.2 parts by mass of the epoxy compound (D) with respect to 100 parts by mass of the polycarbonate resin (A).
  9.  エポキシ化合物(D)が、脂環族エポキシ化合物である請求項8に記載の光学部品用ポリカーボネート樹脂組成物。 The polycarbonate resin composition for optical components according to claim 8, wherein the epoxy compound (D) is an alicyclic epoxy compound.
  10.  請求項1~9のいずれか1項に記載のポリカーボネート樹脂組成物を成形した光学部品。 An optical component formed by molding the polycarbonate resin composition according to any one of claims 1 to 9.
PCT/JP2018/000555 2017-01-26 2018-01-12 Polycarbonate resin composition for optical parts and optical part WO2018139206A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018517228A JP6446601B1 (en) 2017-01-26 2018-01-12 Polycarbonate resin composition for optical parts and optical parts

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017011833 2017-01-26
JP2017-011833 2017-01-26
JP2017077339 2017-04-10
JP2017-077339 2017-04-10
JP2017-133463 2017-07-07
JP2017133463 2017-07-07

Publications (1)

Publication Number Publication Date
WO2018139206A1 true WO2018139206A1 (en) 2018-08-02

Family

ID=62978264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000555 WO2018139206A1 (en) 2017-01-26 2018-01-12 Polycarbonate resin composition for optical parts and optical part

Country Status (2)

Country Link
JP (1) JP6446601B1 (en)
WO (1) WO2018139206A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093914A (en) * 2013-11-11 2015-05-18 出光興産株式会社 Aromatic polycarbonate resin molded body
JP2016125028A (en) * 2015-01-07 2016-07-11 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition for thin-walled optical component, and thin-walled optical component
JP2016130298A (en) * 2015-01-07 2016-07-21 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition for thin optical components, and thin optical component
JP2017171811A (en) * 2016-03-24 2017-09-28 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093914A (en) * 2013-11-11 2015-05-18 出光興産株式会社 Aromatic polycarbonate resin molded body
JP2016125028A (en) * 2015-01-07 2016-07-11 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition for thin-walled optical component, and thin-walled optical component
JP2016130298A (en) * 2015-01-07 2016-07-21 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition for thin optical components, and thin optical component
JP2017171811A (en) * 2016-03-24 2017-09-28 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition

Also Published As

Publication number Publication date
JPWO2018139206A1 (en) 2019-02-07
JP6446601B1 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
JP6101856B1 (en) Polycarbonate resin composition for thin optical parts and thin optical parts
JP5699240B1 (en) Polycarbonate resin composition for thin optical parts and thin optical parts
JP5699188B2 (en) Polycarbonate resin composition for thin optical parts and thin optical parts
JP5893774B1 (en) Polycarbonate resin composition for thin optical parts and thin optical parts
JP2018028025A (en) Polycarbonate resin composition for optical members
WO2015011994A1 (en) Polycarbonate resin composition for thin optical component, and thin optical component
JP6893340B2 (en) Polycarbonate resin composition for optical components and optical components
JP6587948B2 (en) Polycarbonate resin composition for optical parts and optical parts
JP6416423B1 (en) Polycarbonate resin composition for optical parts and optical parts
WO2019187876A1 (en) Polycarbonate resin composition
JP2017171811A (en) Polycarbonate resin composition
JP6522818B2 (en) Polycarbonate resin composition for optical parts and optical parts
WO2016111117A1 (en) Polycarbonate resin composition for thin optical components, and thin optical component
JP2018090762A (en) Polycarbonate resin composition for optical components
JP6446601B1 (en) Polycarbonate resin composition for optical parts and optical parts
JP6522493B2 (en) Polycarbonate resin composition for optical parts and optical parts
JP6490490B2 (en) Polycarbonate resin composition and thin optical component
WO2018193702A1 (en) Polycarbonate resin composition for optical component and optical component
JP6396792B2 (en) Polycarbonate resin composition for light guide member and light guide member
JP2018131632A (en) Polycarbonate resin composition for thin optical component, and thin optical component
JP2019099651A (en) Polycarbonate resin composition for optical members
JP2018095812A (en) Polycarbonate resin composition for optical components
JP6422734B2 (en) Polycarbonate resin composition for thin optical parts and thin optical parts
JP2019214744A (en) Polycarbonate resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517228

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18745245

Country of ref document: EP

Kind code of ref document: A1