WO2018138905A1 - Base station, wireless terminal, wireless communication system, and wireless communication method - Google Patents

Base station, wireless terminal, wireless communication system, and wireless communication method Download PDF

Info

Publication number
WO2018138905A1
WO2018138905A1 PCT/JP2017/003143 JP2017003143W WO2018138905A1 WO 2018138905 A1 WO2018138905 A1 WO 2018138905A1 JP 2017003143 W JP2017003143 W JP 2017003143W WO 2018138905 A1 WO2018138905 A1 WO 2018138905A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
base station
transmission
reception
wireless terminal
Prior art date
Application number
PCT/JP2017/003143
Other languages
French (fr)
Japanese (ja)
Inventor
孝斗 江崎
義博 河▲崎▼
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2018564069A priority Critical patent/JP7031609B2/en
Priority to PCT/JP2017/003143 priority patent/WO2018138905A1/en
Publication of WO2018138905A1 publication Critical patent/WO2018138905A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present invention relates to a base station, a wireless terminal, a wireless communication system, and a wireless communication method.
  • TDD Self-contained TDD Subframe is being studied in the fifth generation (Fifth Generation; 5G) mobile communications, whose specifications are being developed by the Third Generation Partnership Project (3GPP).
  • 5G Fifth Generation
  • 3GPP Third Generation Partnership Project
  • TDD is an abbreviation for Time Division Duplex.
  • Self-contained TDD may be referred to as “built-in TDD”.
  • the same radio resource can be shared between the data and the Automatic Repeat Request (ARQ) response.
  • ARQ Automatic Repeat Request
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • a wireless terminal can make a Hybrid ARQ (HARQ) response at the timing of an Uplink (UL) subframe.
  • HARQ RoundRTrip Time RTT depends on the position of the UL subframe.
  • the wireless terminal can transmit the HARQ response without waiting for the UL subframe, the latency can be reduced, and the uplink / downlink (UL / DL) ratio and delay are reduced. And can be separated.
  • ACK or NACK is an example of information indicating reception success or reception failure, or decoding success or decoding failure.
  • the wireless terminal since the ACK / NACK determination by the wireless terminal is performed using the block decoding processing result of the received data, the wireless terminal transmits ACK / NACK within the transmission time of the ACK response depending on the time required for the block decoding processing. It may be difficult to determine.
  • an object of the present invention is to efficiently secure a time from reception of data by a wireless terminal to transmission of information indicating reception success or reception failure, or decoding success or decoding failure.
  • the present invention is not limited to the above-described object, and other effects of the present invention can be achieved by the functions and effects derived from the respective configurations shown in the embodiments for carrying out the invention which will be described later. It can be positioned as one of
  • the base station may include a transmission unit and a reception unit.
  • the transmission unit generates transmission data obtained by multiplexing the first data at a timing that precedes the second data in radio resources used for time division duplex (TDD) communication with the radio terminal.
  • the transmission data may be transmitted to the wireless terminal.
  • the second data may be data having a higher delay tolerance than the first data.
  • the reception unit receives first response information indicating successful reception or reception failure of the first data or successful decoding or decoding failure in the wireless resource from the wireless terminal that has received the transmission data. You may receive it.
  • UE User Equipment
  • FIG. 1 is a block diagram illustrating a configuration example of a radio communication system 100 according to an embodiment.
  • the radio communication system 100 may include, for example, a radio base station 110, a User Equipment (UE) 120, and a host device 130.
  • UE User Equipment
  • the radio communication system 100 may include a plurality of radio base stations 110, and may include a plurality of UEs 120.
  • the radio communication system 100 performs radio communication according to a predetermined radio communication method between the radio base station 110 and the UE 120.
  • the wireless communication method may be a wireless communication method of the fifth generation or later, or may be an existing wireless communication method such as LTE / LTE-A or Worldwide Interoperability for Microwave Access (WiMAX).
  • WiMAX Worldwide Interoperability for Microwave Access
  • the wireless communication method is a wireless communication method using a fifth generation built-in TDD subframe.
  • the wireless base station 110 is an example of a base station or a first wireless communication device.
  • the radio base station 110 for example, a radio signal connected to a macro base station, a micro base station, a femto base station, a pico base station, a metro base station, a home base station, or a Centralized Radio Access Network (C-RAN) It may be a transmission / reception device.
  • the radio signal transmitting / receiving device include Remote Radio Equipment (RRE), Remote Radio Head (RRH), and the like.
  • the radio base station 110 When a radio signal transmitting / receiving apparatus is used as the radio base station 110, the radio base station 110 is connected to each of the radio base stations 110 at any position of the radio base station 110 shown in FIG. There may be a data processing device.
  • the data processing device performs various processes on data transmitted from the wireless signal transmitting / receiving device or data received by the wireless signal transmitting / receiving device. Examples of the data processing device include Baseband Unit (BBU).
  • BBU Baseband Unit
  • the function as the radio base station 110 may be distributed in both the data processing device and the radio signal transmitting / receiving device.
  • the radio base station 110 may form or provide a radio area.
  • the wireless area may include a “virtual wireless area” that handles a plurality of wireless areas as one virtual wireless area.
  • a radio area may be a cell or a sector.
  • the cell may include a cell such as a macro cell, a micro cell, a femto cell, a pico cell, a metro cell, or a home cell.
  • the cell is formed according to a range in which the radio wave transmitted by the radio base station 110 can be received by the UE 120 with the required quality (for example, a range that can satisfy the required radio channel quality, which may be referred to as coverage). It is an example of a wireless area.
  • the term “cell” means an individual geographical area in which the radio base station 110 provides radio services, and is managed by the radio base station 110 in order to communicate with the UE 120 in the individual geographical area. It may also mean part of the function. In the following description, the function or operation of the radio base station 110 may be described as a function or operation of a cell formed or provided by the radio base station 110 in some cases.
  • the radio base station 110 may relay communication between the UE 120 and the upper apparatus 130 or between the UEs 120 by performing radio communication with the UE 120.
  • the radio communication may be performed using radio resources allocated from the radio base station 110 to the UE 120.
  • the radio resource may be a resource related to time and frequency.
  • the radio base station 110 may be connected to the higher-level device 130 via, for example, an S1 interface.
  • UE 120 is an example of a wireless terminal or a second wireless communication device.
  • the UE 120 include a mobile station having a wireless communication function, such as a mobile phone such as a smartphone, a movable personal computer (PC) such as a tablet terminal, a laptop, or a data communication device such as a mobile router.
  • the mobile station may be attached to a moving body such as a vehicle and move.
  • UE 120 may be a device such as a sensor (including an Integrated Circuit (IC) chip) having a wireless communication function.
  • IC Integrated Circuit
  • the host device 130 is an example of a control device. Examples of the host device 130 include at least one of MME, SGW, and other control or management nodes.
  • MME Mobility Management Entity.
  • C-plane Network Control Control Plane
  • SGW Serving Gateway, and for example, User Plane (U-plane) data (user data) may be processed.
  • the host device 130 may exist in the host network 140.
  • Examples of the upper network 140 include a wired network in which packet communication is performed.
  • the packet communication may be, for example, Internet (Protocol (IP) packet communication.
  • IP Internet
  • the wired network may be referred to as a packet core network such as Evolved Packet Core (EPC).
  • EPC Evolved Packet Core
  • FIG. 2 shows DL transmission data transmitted from the radio base station 110 to the UE 120 and UL ACK / NACK transmitted from the UE 120 to the radio base station 110 as an example of the built-in TDD subframe.
  • a Guard-Period may be provided between DL transmission data and UL ACK / NACK.
  • GP is an example of a region for preventing interference between separate signals (eg, DL signal and UL signal). Note that a period corresponding to GP may be realized by timing control by the radio base station 110 or the UE 120, and in this case, the GP may not be provided.
  • DL transmission data and UL ACK / NACK are transmitted using temporally continuous radio resources in the same frequency band, where the vertical axis represents the frequency band and the horizontal axis represents time. Show the state.
  • “address headers” including a destination address, “DL Control” which is an example of control information including scheduling information, and data to be transmitted, for example, “Data” including user data are mapped.
  • DL Control which is an example of control information including scheduling information
  • Data including user data
  • RS Reference Signal
  • the UE 120 Upon receiving the DL transmission data from the radio base station 110, the UE 120 demodulates and decodes “Data” using the scheduling information included in “DL Control”, and determines the ACK / ID determined using the demodulation or decoding processing result. NACK is transmitted to UE120.
  • ACK is an example of response information indicating reception success or decoding success
  • NACK is an example of response information indicating reception failure or decoding failure
  • ACK or NACK transmitted from the UE 120 to the radio base station 110 is an example of response information indicating reception success or reception failure, or decoding success or decoding failure.
  • the ACK / NACK determination by the UE 120 is performed using the data demodulation or decoding result as described above.
  • the UE 120 performs demodulation and decoding (for example, block decoding) processing after receiving data (or in parallel), it is difficult to transmit an ACK response to the radio base station 110 immediately after receiving data.
  • demodulation and decoding for example, block decoding
  • the time from DL transmission data to ACK is assumed to be about 100 to 200 ⁇ s (microseconds).
  • guard time may be the period for which GP occupies the time direction of radio resources, for example.
  • the guard time is unduly long, and data or the like is not transmitted during the guard time, which may impair the utilization efficiency of radio resources.
  • the wireless communication system 100 may perform the processing exemplified below.
  • the radio base station 110 generates transmission data in which the first data is multiplexed at a timing that precedes the second data in radio resources used for time division duplex (TDD) communication with the UE 120. Then, the transmission data may be transmitted to the UE 120.
  • the second data may be data having a higher delay tolerance than the first data.
  • the UE 120 may transmit, to the radio base station 110, the first response information indicating the reception success or reception failure of the first data or the decoding success or the decoding failure in the radio resource.
  • the time from when the UE 120 receives the first data of the transmission data to when the first response information is transmitted to the radio base station 110 can be used for the transmission of the second data.
  • at least a part of the guard time provided for securing the processing time from the reception of the first data by the UE 120 to the transmission of the first response information is set as the second data. Can be used for transmission.
  • the UE 120 since the second data is data having a higher delay tolerance than the first data, the UE 120 performs a process of transmitting the first response information to the radio base station 110 in response to the second data. This can be performed with priority over the process of transmitting information to the radio base station 110.
  • the time until the ACK response by the UE 120 can be secured, and the design can be facilitated.
  • the downlink transmission data from the radio base station 110 to the UE 120 may be data obtained by time division multiplexing (TDM) of the first data and the second data, and the first data, the second data, May be data obtained by spatially multiplexing (Spatial Mulplexing).
  • TDM time division multiplexing
  • Spatial Mulplexing spatially multiplexing
  • the UE 120 may transmit the first response information to the radio base station 110 after the time division multiplexing timing of the second data of the transmission data.
  • the UE 120 may transmit the first information to the radio base station 110 at a timing that precedes the spatial multiplexing timing of the second data of the transmission data.
  • UE 120 may receive the second data after receiving the first data and performing an ACK response.
  • the built-in TDD subframe is considered as one of the methods for achieving separation of the UL / DL ratio and the delay in 3GPP. It is also positioned as one.
  • MIMO is an abbreviation for Multiple-Input and Multiple-Output
  • D2D is an abbreviation for Device to Device.
  • the HARQ ACK response corresponding to PDSCH is transmitted on PUCCH (associated with the PDCCH resource that scheduled PDSCH) or PUSCH (when UL-SCH is scheduled) after 4 subframes.
  • PUCCH associated with the PDCCH resource that scheduled PDSCH
  • PUSCH when UL-SCH is scheduled
  • PDSCH is an abbreviation for Physical Downlink Shared Channel
  • PUCCH is an abbreviation for Physical Uplink Control Channel
  • PDCCH is an abbreviation for PhysicalPhysDownlink Control Channel
  • PUSCH is an abbreviation for Physical Uplink Shared Channel
  • UL-SCH is an abbreviation for Uplink Shared Channel.
  • (B) RS becomes on-demand transmission and the overhead of the entire system can be reduced.
  • a base station transmits a Cell-specific Reference Signal (C-RS) over the entire band in subframes other than the Multicast-Broadcast Single-Frequency Network (MBSFN) subframe, and the terminal transmits this C-RS.
  • C-RS Cell-specific Reference Signal
  • MSSFN Multicast-Broadcast Single-Frequency Network
  • the built-in TDD subframe has advantages of easy resource management and reduced delay of the entire system.
  • the wireless communication system 100 it is possible to efficiently secure the time from the data reception by the UE 120 to the ACK response while taking advantage of the above-described built-in TDD subframe.
  • the second data is data having a higher delay tolerance than the first data.
  • the first data may be low-delay data that requires a low delay for the ACK response
  • the second data may be delay-allowed data that allows a delay of the ACK response.
  • the low delay data is arranged in the first half and the delay allowable data is arranged in the second half in the radio resource.
  • Second example of delay tolerance data As a first example of delay tolerance data, common information for which an ACK response is not required may be used as shown in FIG. Examples of common information for which an ACK response is not required include broadcast information such as System Information Block (SIB) and RS.
  • SIB System Information Block
  • RS RS
  • “Data” that is an example of the first data and an example of the second data are included in the transmission data from the radio base station 110.
  • “BCH” may be time-division multiplexed. BCH is an abbreviation for Broadcast Channel.
  • the radio base station 110 in order to reduce congestion of wireless traffic in 5G mobile communication, it is considered to stop or restrict common notification of information such as RS to a plurality of wireless terminals.
  • the radio base station 110 individually transmits common information such as SIB and RS to the UE 120 periodically, at a specific timing, or on demand. Therefore, in the example of FIG. 4, such common information may be used as the second data.
  • RS exists at the head of the downlink transmission data, but the RS may be mapped to one or both of “RS” and “BCH”. RSs may be grouped according to applications such as calculation of phase noise and calculation of Channel State Information (CSI).
  • CSI Channel State Information
  • the UE 120 may demodulate “Data” which is an example of the first data, and may perform decoding when the demodulation is completed. Note that demodulation may be performed on a symbol-by-symbol basis, for example, at the reception timing of an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the UE 120 determines reception success or reception failure using the demodulation result, or decoding success or decoding failure using the decoding result, and transmits ACK / NACK to the radio base station 110 at the first timing. Good.
  • RAB Radio Access Bearer
  • SRB Signaling Radio Bearer
  • the transmission data from the radio base station 110 includes “VLL Data that is an example of the first data. ”And“ non VLL Data ”which is an example of the second data may be time-division multiplexed.
  • VLL is an abbreviation for Very Low Latency.
  • the UE 120 may demodulate “VLLVData”, which is an example of the first data, as in the example of FIG. 4, and may perform decoding when the demodulation is completed.
  • VLLVData is an example of the first data, as in the example of FIG. 4, and may perform decoding when the demodulation is completed.
  • the UE 120 determines reception success or reception failure using the demodulation result, or decoding success or decoding failure using the decoding result, and is addressed to the radio base station 110 at the first timing.
  • ACK / NACK may be transmitted to
  • the UE 120 may demodulate “non-VLL data” which is an example of the second data, and may perform decoding when the demodulation is completed.
  • the demodulation of “non ⁇ VLL Data ” may be performed on a symbol-by-symbol basis like“ VLL Data ”, and may be performed in parallel with the decoding of“ VLL Data ”in at least some time intervals. .
  • the UE 120 determines reception success or reception failure using the demodulation result, or decoding success or decoding failure using the decoding result, and transmits ACK / NACK to the radio base station 110 at the second timing. Good.
  • ACK response timing The first timing at which the ACK of the first data is returned, the fact that the ACK of the second data is not required (example in FIG. 4), and the ACK of the second data At least one of the second timings of returning (example in FIG. 5) may be notified by the following method (i) or (ii).
  • the radio base station 110 notifies the UE 120 by “Control”, which is an example of control information.
  • FIG. 6 is a diagram showing an example of the data structure of the control information. As illustrated in FIG. 6, for example, “common information”, “low delay data control information”, and “delayable data control information” may be set in the control information from the beginning of the data. The control information may be set for each subframe of Transmission ⁇ Time Interval (TTI).
  • TTI Time Interval
  • Communication information may include control information common to all data, for example, the presence / absence of low-delay data, the presence / absence of delay-tolerant data, the time length of the corresponding channel, or the number of symbols.
  • “low-delay data control information” may be multiplexed with downlink control information.
  • “Low-delay data control information” includes the transmission block size of low-delay data, modulation schemes such as Phase-Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM), spatial multiplexing schemes and parameters, and ACK for low-delay data Information such as response resources may be included.
  • PSK Phase-Shift Keying
  • QAM Quadrature Amplitude Modulation
  • ACK for low-delay data Information such as response resources may be included.
  • “low delay data control information” is an example of first control information indicating the first transmission timing for the first response information.
  • delay tolerance data control information may be multiplexed with the downlink control information.
  • the “delay allowable data control information” may include information such as a transmission block size of delay allowable data, a modulation scheme such as PSK and QAM, a spatial multiplexing scheme and spatial multiplexing parameters, and an ACK response resource of delay allowable data.
  • the “delayable data control information” is an example of second control information indicating the second transmission timing for the second response information.
  • FIG. 7 shows an example of a sequence when ACK response timing is notified using downlink control information.
  • the UE 120 makes a radio link connection establishment request to the radio base station 110 and notifies an ACK response delay time (process A1).
  • the radio base station 110 performs radio link establishment setting for the UE 120 (process A2).
  • the wireless link connection establishment request may be, for example, a Random Access Preamble in a Random Access (RA) procedure.
  • the ACK response possible delay time may be, for example, the shortest delay time from when UE 120 receives downlink transmission data until it returns an ACK response, or may be information indicating the processing performance of UE 120 .
  • the ACK response possible delay may be included in the information transmitted in the procedure of establishing the radio link connection, or may be notified from the UE 120 to the radio base station 110 separately from such information.
  • the radio base station 110 transmits the downlink data to the UE 120, and notifies the UE 120 of the ACK response delay time using the control information (Processing A3).
  • the UE 120 transmits an ACK response according to the ACK response time notified from the radio base station 110 (process A4).
  • the UE 120 is notified in advance from the radio base station 110.
  • Preliminary notification may include at least one of notification based on control information of a subframe before downlink transmission data including first data, and notification in predetermined communication.
  • the “predetermined communication” includes, for example, processing for the UE 120 to connect to the radio base station 110, for example, communication in a random access procedure between the radio base station 110 and the UE 120, a radio resource control (RRC) connection procedure, or the like.
  • RRC radio resource control
  • FIG. 8 shows an example of a sequence when the ACK response timing is notified in advance by broadcast information.
  • the radio base station 110 transmits broadcast information to the UE 120 and notifies the ACK response delay time (process B1).
  • the radio base station 110 transmits downlink data to the UE 120 (process B2).
  • UE 120 transmits an ACK response according to the ACK response time notified by the broadcast information (processing B3).
  • radio base station 110 and the UE 120 configuration examples of each of the radio base station 110 and the UE 120 according to an embodiment will be described with reference to FIGS. 9 to 12.
  • the radio base station 210 shown in FIG. 9 and the radio base station 310 shown in FIG. 10 are examples of the radio base station 110 shown in FIG.
  • UE220 shown in FIG. 11 and UE320 shown in FIG. 12 are examples of UE120 shown in FIG. 1, respectively.
  • the radio base station 210 illustratively includes an antenna 211, a radio frequency (RF) receiving unit 212, a baseband receiving unit 213, and a scheduling unit 214.
  • RF radio frequency
  • a line termination unit 215, a baseband transmission unit 216, and an RF transmission unit 217 may be provided.
  • the antenna 211 is an example of an interface that transmits and receives radio signals to and from the UE 220.
  • the antenna 211 may receive a UL radio signal transmitted from the UE 220 and output the received UL radio signal to the RF reception unit 212.
  • the antenna 211 may transmit a DL radio signal (for example, a modulated signal) input from the RF transmission unit 217 to the UE 220.
  • the antenna 211 may be provided separately for reception and transmission.
  • the RF reception unit 212 performs a predetermined reception process on the UL reception signal to generate an uplink carrier-removed signal, and outputs the generated signal to the baseband reception unit 213.
  • the reception processing may include, for example, low noise amplification of the received signal, frequency conversion (down conversion) to a baseband frequency, gain adjustment, demodulation, and the like.
  • Baseband reception section 213 performs baseband reception processing on the signal from which the upstream carrier wave has been removed from the upstream reception signal by RF reception section 212, and outputs the reception signal obtained by the baseband reception processing to line termination section 215.
  • the baseband reception process may include decoding using uplink scheduling information notified from the scheduling unit 214.
  • the scheduling unit 214 generates uplink scheduling information and downlink scheduling information by using the radio channel quality with the UE 220 or the like acquired from the UE 220 or measured by the radio base station 210.
  • the uplink scheduling may include radio resources used for uplink data transmission, a modulation scheme, a coding rate, and the like.
  • the downlink scheduling information may include information indicating the UE 220 selected by the radio base station 210 as a communication destination, radio resources used for downlink data transmission, a modulation scheme, a coding rate, and the like.
  • the line termination unit 215 terminates the connection with the wireless network or the wired network.
  • the wired network may include an upper network such as an S1 line (for example, the upper network 140 in FIG. 1), a network between the wireless base station 210 such as an X2 line, and the like.
  • the line termination unit 215 may transmit the reception signal input from the baseband reception unit 213 to a higher-level network that is a destination or a destination of the reception signal.
  • the line termination unit 215 may output the transmission signal addressed to the UE 220 received from the upper network to the baseband transmission unit 216.
  • the baseband transmission unit 216 performs baseband transmission processing on the transmission signal input from the line termination unit 215, and outputs a downlink baseband signal obtained by the baseband transmission processing to the RF transmission unit 217.
  • the baseband transmission process may include encoding using downlink scheduling information notified from the scheduling unit 214.
  • the baseband transmission unit 216 may generate and map low-delay data and delay-acceptable data for the built-in TDD subframe using the scheduling information notified from the scheduling unit 214.
  • the RF transmitter 217 performs a predetermined transmission process on the downlink baseband signal to generate a downlink modulated signal, and outputs the generated downlink modulated signal to the antenna 211.
  • the transmission processing may include, for example, signal modulation, frequency conversion to radio frequency (up-conversion), power amplification, and the like.
  • At least one of the scheduling unit 214, the line termination unit 215, the baseband transmission unit 216, and the RF transmission unit 217 described above is an example of the transmission unit 218 that performs processing of the transmission system of the radio base station 110 according to an embodiment. is there.
  • the transmission unit 218 generates transmission data obtained by multiplexing the first data at a timing that precedes the second data in the radio resource used for time division duplex (TDD) communication with the UE 120, The transmission data may be transmitted to UE 120.
  • TDD time division duplex
  • the RF reception unit 212 the baseband reception unit 213, and the scheduling unit 214 described above is an example of the reception unit 219 that performs processing of the reception system of the radio base station 110 according to an embodiment.
  • the receiving unit 219 may receive, from the UE 120 that has received the transmission data, first response information indicating whether the first data has been successfully received or received, or whether the decoding has succeeded or failed in the radio resource.
  • the radio base station 310 illustratively includes an antenna 311, an RF circuit 312, an integrated circuit (IC) 313, a processor 315, storage areas 314 and 316, and a network interface (IF) 317. It's okay.
  • the antenna 311 is an example of the antenna 211 shown in FIG. 9, and may transmit and receive radio signals to and from the UE 320 (see FIG. 12).
  • the RF circuit 312 is an example of the RF reception unit 212 and the RF transmission unit 217 illustrated in FIG. Note that the RF circuit 312 may be provided separately for the RF receiver 212 and the RF transmitter 217.
  • the IC 313 is an example of the baseband receiving unit 213 and the baseband transmitting unit 216 shown in FIG.
  • the processor 315 is an example of the scheduling unit 214 and the line termination unit 215 illustrated in FIG.
  • the IC 313 and the processor 315 may perform various controls and calculations.
  • Examples of the IC 313 and the processor 315 include an integrated circuit (IC) such as a CPU, MPU, DSP, ASIC, or FPGA.
  • IC integrated circuit
  • CPU is an abbreviation for Central Processing Unit
  • MPU is an abbreviation for Micro Processing Unit
  • DSP is an abbreviation for Digital Signal Processor
  • ASIC is an abbreviation for Application Specific Integrated Circuit
  • FPGA is an abbreviation for Field Programmable Gate Array.
  • Storage areas 314 and 316 are examples of hardware used for the IC 313 and the processor 315, respectively, for storing various data such as control information and user data, and information such as programs.
  • a volatile memory and a nonvolatile memory may be used as the storage areas 314 and 316, respectively.
  • volatile memory include Random Access Memory (RAM).
  • non-volatile memory include Read Only Memory (ROM), flash memory, Electrically Erasable Programmable Read-Only Memory (EEPROM), and the like.
  • the network IF 317 is an example of a communication interface that performs connection and communication control with a host network (for example, the host network 140 in FIG. 1), and transmits and receives signals to and from the host device 130 (see FIG. 1). You can do it.
  • a host network for example, the host network 140 in FIG. 1
  • the network IF 317 is an example of a communication interface that performs connection and communication control with a host network (for example, the host network 140 in FIG. 1), and transmits and receives signals to and from the host device 130 (see FIG. 1). You can do it.
  • the IC 313 and the processor 315 can implement the functions of the radio base station 210 shown in FIG. 9 by executing the programs stored in the storage areas 314 and 316, respectively.
  • the UE 220 illustratively includes an antenna 221, an RF reception unit 222, a baseband reception unit 223, a layer 2 processing unit 224, and a baseband transmission unit. 225 and an RF transmitter 226 may be provided.
  • the antenna 221 is an example of an interface that transmits and receives radio signals to and from the radio base station 210.
  • the antenna 221 may receive a DL radio signal transmitted from the radio base station 210 and output the received DL radio signal to the RF receiver 222.
  • the antenna 221 may transmit a UL radio signal (for example, a modulated signal) input from the RF transmission unit 226 to the radio base station 210.
  • the antenna 221 may be provided separately for reception and transmission.
  • the RF reception unit 222 performs a predetermined reception process on the DL reception signal, generates a signal after removing the downlink carrier wave, and outputs the generated signal to the baseband reception unit 223.
  • the reception processing may include, for example, low noise amplification of the received signal, frequency conversion (down conversion) to a baseband frequency, gain adjustment, demodulation, and the like.
  • the baseband reception unit 223 performs baseband reception processing on the signal from which the downlink carrier wave has been removed from the downlink reception signal by the RF reception unit 222, and the reception signal obtained by the baseband reception processing is sent to the layer 2 processing unit 224. Output.
  • the baseband reception process may include decoding using downlink scheduling information.
  • the downlink scheduling information may be included in the control information of data received from the radio base station 210, for example.
  • the layer 2 processing unit 224 performs various processes related to layer 2.
  • the layer 2 processing unit 224 may perform processing related to a Medium Access Control (MAC) layer related to radio resource allocation, HARQ retransmission control, and the like.
  • MAC Medium Access Control
  • the layer 2 processing unit 224 may determine ACK / NACK or the like using the received signal or the like input from the baseband receiving unit 223. Further, the layer 2 processing unit 224 may exchange the received reception signal and the transmission signal to be transmitted with the processor 325 of the UE 220 (see FIG. 12).
  • the transmission signal may include user data and various control information (for example, ACK response).
  • the baseband transmission unit 225 performs baseband transmission processing on the transmission signal input from the layer 2 processing unit 224 and outputs an uplink baseband signal obtained by the baseband transmission processing to the RF transmission unit 226.
  • the baseband transmission process may include encoding using uplink scheduling information.
  • the uplink scheduling information may be included in the control information of data received from the radio base station 210, for example.
  • the RF transmission unit 226 performs predetermined transmission processing on the uplink baseband signal to generate an uplink modulated signal, and outputs the generated uplink modulated signal to the antenna 221.
  • the transmission processing may include, for example, signal modulation, frequency conversion to radio frequency (up-conversion), power amplification, and the like.
  • At least one of the RF reception unit 222 and the baseband reception unit 223 described above is an example of the reception unit 228 that performs processing of the reception system of the UE 120 according to an embodiment.
  • TDD time division duplex
  • the transmission unit 229 may transmit, to the radio base station 110, the first response information indicating the reception success or reception failure of the first data, or the decoding success or the decoding failure in the radio resource.
  • the UE 320 may illustratively include an antenna 321, an RF circuit 322, an IC 323, a processor 325, and storage areas 324 and 326.
  • the antenna 321 is an example of the antenna 221 shown in FIG. 11 and may transmit and receive a radio signal to and from the radio base station 310.
  • the RF circuit 322 is an example of the RF receiver 222 and the RF transmitter 226 shown in FIG. Note that the RF circuit 322 may be provided separately for the RF receiver 222 and the RF transmitter 226.
  • the IC 323 is an example of the baseband receiving unit 223 and the baseband transmitting unit 225 shown in FIG.
  • the processor 325 is an example of the layer 2 processing unit 224 illustrated in FIG.
  • the IC 323 and the processor 325 may perform various controls and operations, respectively.
  • Examples of the IC 323 and the processor 325 include an integrated circuit (IC) such as a CPU, MPU, DSP, ASIC, or FPGA, respectively.
  • IC integrated circuit
  • Storage areas 324 and 326 are examples of hardware used for the IC 323 and the processor 325, respectively, for storing various data such as control information and user data, and information such as programs.
  • the storage areas 324 and 326 for example, at least one of a volatile memory and a nonvolatile memory may be used, respectively.
  • the volatile memory include a RAM.
  • the non-volatile memory include ROM, flash memory, EEPROM, and the like.
  • the IC 323 and the processor 325 can implement the functions of the UE 220 shown in FIG. 11 by executing the programs stored in the storage areas 324 and 326, respectively.
  • the scheduling unit 214 of the radio base station 210 acquires a transmission buffer size for each user (for example, UE 220) from the baseband transmission unit 216. Then, scheduling section 214 extracts UE 220 having a transmission buffer size larger than “0”, in other words, UE 220 having data to be transmitted as a scheduling target (step P11).
  • the line termination unit 215 may store, for each user, data or the like destined for the user.
  • the scheduling unit 214 selects the UE 220 to be transmitted from the extracted UE 220 at the corresponding timing (Step P12).
  • Examples of the selection method of the UE 220 include selection based on round robin and selection based on Proportional Fairness (PF).
  • the scheduling unit 214 determines scheduling parameters related to the transmission block size of low delay data, modulation scheme, coding rate, and the like based on the buffer size of low delay data for the selected UE 220 (step P13).
  • the scheduling unit 214 determines scheduling parameters related to the transmission block size of the delay allowable data, the modulation scheme, the coding rate, and the like based on the buffer size of the delay allowable data for the selected UE 220 (Step P14).
  • the scheduling unit 214 notifies the baseband transmission unit 216 of scheduling information including the scheduling parameters for each of the low delay data and the delay allowable data (step P15), and the scheduling process ends.
  • the scheduling information notified to the baseband transmission unit 216 in step P15 may include an ACK response timing for at least one of low delay data and delay allowable data.
  • the ACK response timing may be determined, for example, in steps P13 and P14.
  • the ACK response timing may be determined according to, for example, the type and capability of the UE 220.
  • the baseband transmission unit 216 generates a reference signal for the frequency resource notified by the scheduling information. Then, the baseband transmission unit 216 performs mapping on a time-frequency resource in which the reference signal is mapped in advance (Step P21).
  • the baseband transmission unit 216 performs coding and modulation processing on downlink control information including transmission information of both low delay data and delay allowable data using scheduling information together with the RF transmission unit 217. Then, the baseband transmission unit 216 maps the modulated downlink control information to the time frequency resource in which the downlink control information is predetermined to be mapped to the frequency resource notified by the scheduling information (step) P22).
  • the radio base station 210 may notify the UE 220 of the ACK response timing using downlink control information, for example.
  • the baseband transmission unit 216 may multiplex the ACK response timing information notified from the scheduling unit 214 with the downlink control information.
  • the baseband transmission unit 216 performs encoding and modulation processing of low-delay data using scheduling information together with the RF transmission unit 217. Then, the baseband transmission unit 216 maps the modulated low delay data to the time frequency resource for low delay data transmission notified by the scheduling information (step P23).
  • the baseband transmission unit 216 performs encoding and modulation processing of allowable delay data based on the scheduling information together with the RF transmission unit 217. Then, the baseband transmission unit 216 maps the modulated delay allowable data to the time frequency resource for delay allowable data transmission notified by the scheduling information (step P24), and the baseband processing ends.
  • the downlink transmission data generated in steps P 21 to P 24 is subjected to the remaining transmission processing by the RF transmission unit 217 and transmitted to the UE 220 via the antenna 211.
  • the RF reception unit 222 and the baseband reception unit 223 of the UE 220 receive the reference signal from the radio base station 210 (step P31), and receive the received reference.
  • Channel estimation is performed based on the signal (step P32).
  • the RF receiver 222 and the baseband receiver 223 use the channel estimation result to demodulate and decode the downlink control signal (step P33), and demodulate and decode the low delay data (step P34).
  • the baseband receiving unit 223 determines ACK or NACK using the demodulation and decoding results of the low delay data, and notifies the baseband transmitting unit 225 of information indicating the determined ACK or NACK as feedback information (step P35). .
  • the RF reception unit 222 and the baseband reception unit 223 use the channel estimation result to demodulate and decode the delay tolerance data (step P36), and the reception process ends.
  • decoded low-delay data and delay-allowed data may be output to the layer 2 processing unit 224, respectively.
  • the UE 220 transmits an ACK / NACK response based on the ACK response timing multiplexed in the downlink control information received from the radio base station 210. Good.
  • the layer 2 processing unit 224 and the baseband transmission unit 225 of the UE 220 generate feedback transmission data for both ACK and NACK (step P41).
  • the baseband transmission unit 225 waits for feedback information notification from the baseband reception unit 223 (step P42).
  • the feedback information may be notified from the baseband receiving unit 223 in step P35 of FIG. 15, for example.
  • the baseband transmission unit 225 determines whether or not the notified feedback information is ACK (step P43). When the feedback information is ACK (Yes in Step P43), the baseband transmission unit 225 maps the ACK feedback transmission data generated in Step P41 together with the RF transmission unit 226 and transmits it to the radio base station 210 (Step P44). ).
  • the baseband transmission unit 225 maps the NACK feedback transmission data generated in Step P41 together with the RF transmission unit 226, and transmits the mapped data to the radio base station 210 ( Step P45).
  • the ACK response timing of the transmission process illustrated in FIG. 16 may be determined for each UE 220 in advance.
  • the ACK response timing may be set for the UE 220 by the parameter setting for the UE 220 by the higher layer.
  • the notification information may be set.
  • These ACK response timings may be individually set for at least low delay data and delay tolerance data.
  • UE220 may implement an ACK response using these preset ACK response timings.
  • the radio base station 110 transmits, to the UE 120, downlink transmission data in which low-delay data is multiplexed at a timing that precedes the delay allowable data in time. It is not limited.
  • the UE 120 may transmit UL data in order to ensure the processing time of the ACK response. That is, for the downlink radio resource for transmitting delay tolerance data, the UE 120 may transmit uplink data to the radio base station 110 instead of the downlink data being transmitted by the radio base station 110.
  • FIG. 17 is a diagram illustrating an example in which the UE 120 transmits UL data after receiving low-delay data.
  • the UE 120 receives a control signal instructing transmission of UL data as UL data transmission processing, performs processing such as data encoding and modulation based on the control signal, and transmits the modulated UL data. It may be transmitted to the radio base station 110. Further, as the ACK response process, the UE 120 may demodulate and decode DL data, and transmit ACK to the radio base station 110 based on the demodulation and decoding results.
  • the UE 120 receives the UL data transmission by the transmission system (for example, the baseband transmission unit 225 and the RF transmission unit 226 in FIG. 11), thereby receiving the reception system (for example, the RF reception unit 222 and the baseband reception in FIG. 11).
  • the reception time of DL data in the unit 223) can be secured.
  • the radio base station 110 performs DL between the transmission of the control signal by the radio base station 110 and the transmission of the UL data by the UE 120 in the radio resource. It can also be understood as including data transmission.
  • the radio base station 110 receives the uplink data channel and the ACK response from the UE 120 after transmitting the reference signal, the control signal, and the downlink low delay data channel as the downlink signal. It's okay.
  • the control signal may include first information for demodulating and decoding the downlink low delay data channel in the UE 120 and second information for transmitting the uplink data channel in the UE 120. Note that the first information and the second information may each be scheduling information.
  • the UE 120 receives the reference signal, the control signal, and the downlink low delay data channel transmitted from the radio base station 110, demodulates and decodes the control signal using the reference signal, and is multiplexed on the control signal. You may get.
  • the UE 120 may attempt to demodulate and decode the downlink low-delay data channel using the reference signal and the scheduling information, and determine an ACK or NACK response according to the success or failure of the decoding result.
  • the UE 120 encodes and modulates the uplink data so that the uplink data channel can be transmitted at a timing immediately after the downlink low delay data channel. Processing may be performed. Then, the UE 120 may transmit the modulated uplink data channel to the radio base station 110.
  • the transmission data from the radio base station 110 to the UE 120 includes the first information used for receiving the first data and the second information used for transmitting the second data. It may be data in which the control information and the first data are multiplexed.
  • the radio base station 110 is second data generated by the UE 120 using the second information included in the control information, and is transmitted from the UE 120 after the multiplexing timing of the first data of the transmission data. Second data may be received. Furthermore, the radio base station 110 is response information determined by the UE 120 using the first information included in the control information, and the response information transmitted from the UE 120 after the transmission timing of the second data. You may receive it.
  • the radio base station 110 may scramble the first data by a terminal-specific sequence, for example, a UE120-specific sequence, and scramble the second data by a cell-common sequence.
  • the second data may be descrambled by other wireless terminals in the cell, for example.
  • the radio base station 110 may encode the first data using a terminal-specific reference signal, for example, a UE120-specific reference signal, and encode the second data using a cell-common reference signal. .
  • the UE 120 may demodulate the first data using a terminal-specific reference signal, for example, a UE 120-specific reference signal, and demodulate the second data using a cell-common reference signal.
  • the reference signal common to cells may be included in broadcast information such as BCH from the radio base station 110 or common information.
  • the error detection code such as Cyclic Redundancy Check (CRC) added to the first data and the error detection code added to the second data may have different data lengths. For example, by shortening the error detection code added to the first data than the error detection code added to the second data, the processing time for error detection and error correction for the first data can be shortened. . Thereby, time until UE120 transmits ACK response after receiving 1st data can be shortened.
  • CRC Cyclic Redundancy Check
  • the radio base station 110 may apply different encoding methods to the encoding method for the first data and the encoding method for the second data.
  • the radio base station 110 may perform dynamic scheduling on the first data and perform semi-persistent scheduling (SPS) or persistent scheduling on the second data.
  • SPS semi-persistent scheduling
  • the data area in the downlink transmission data addressed to the UE 120 from the radio base station 110 includes one (for example, first) or two (for example, first and second) data. However, three or more data may be included.
  • the number n of data multiplexed in the data area (n is an integer of 1 or more) and the selection of n data are performed by, for example, the ACK / It may be determined from the time required to determine NACK and the reception time of the remaining data.
  • the radio base station 110 determines the data and the number of data to be multiplexed together with the first data so that the reception time is shorter and the maximum reception time than the time required for ACK / NACK determination for the first data. You can do it.
  • individual control information may be set for each data multiplexed together with the first data.
  • the radio base station 110 includes the start position of the second data and subsequent data in the data area, for example, included in each subframe. May be expressed by the OFDM symbol number of the data. Such a start position may be set, for example, in the control information described with reference to FIG.
  • Wireless communication system 110 210, 310 Base station 120, 220, 320 Wireless terminal 130 Host device 140 Host network 211, 221, 311, 321 Antenna 212, 222 RF receiver 213, 223 Baseband receiver 214 Scheduling unit 215 Line Terminator 216, 225 Baseband transmitter 217, 226 RF transmitter 218, 229 Transmitter 219, 228 Receiver 224 Layer 2 processor 312, 322 RF circuit 313, 323 IC 314, 316, 324, 326 Storage area 315, 325 Processor 317 Network IF

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A base station (110) is provided with: a transmission unit for generating transmission data in which first data is multiplexed at a timing that temporally precedes second data having higher allowance for a delay than does the first data, and transmitting the transmission data to a wireless terminal (120), by a wireless resource used in time-division-duplexed (TDD) communication with the wireless terminal (120); and a reception unit for receiving first response information from the wireless terminal (120) that received the transmission data, the first response information indicating that the first data was successfully received or could not be received, or indicating that the first data was successfully decoded or could not be decoded, by the wireless resource.

Description

基地局、無線端末、無線通信システム、及び無線通信方法Base station, wireless terminal, wireless communication system, and wireless communication method
 本発明は、基地局、無線端末、無線通信システム、及び無線通信方法に関する。 The present invention relates to a base station, a wireless terminal, a wireless communication system, and a wireless communication method.
 Third Generation Partnership Project(3GPP)で仕様の策定が進められている第5世代(Fifth Generation;5G)モバイル通信では、Self-contained TDD Subframeが検討されている。なお、TDDはTime Division Duplex(時分割複信)の略称である。以下、Self-contained TDDを「内蔵型TDD」と表記する場合がある。 Self-contained TDD Subframe is being studied in the fifth generation (Fifth Generation; 5G) mobile communications, whose specifications are being developed by the Third Generation Partnership Project (3GPP). Note that TDD is an abbreviation for Time Division Duplex. Hereinafter, Self-contained TDD may be referred to as “built-in TDD”.
 内蔵型TDDでは、データとAutomatic Repeat Request(ARQ)応答とで同一の無線リソースを共有させることができる。 In the built-in TDD, the same radio resource can be shared between the data and the Automatic Repeat Request (ARQ) response.
 例えば、3GPPで仕様が策定されるLong Term Evolution(LTE)又はLTE-Advanced(LTE-A)(以下、これらを総称して、単に「LTE」と表記する場合がある)では、同時送受信を実現する通信手法の一つとして、TDDが採用されている。LTEで採用されているTDDでは、無線端末はUplink(UL)サブフレームのタイミングにおいてHybrid ARQ(HARQ)応答が可能である。換言すれば、TDDでは、ULサブフレームの位置によってHARQ Round Trip Time(RTT)が左右されていた。 For example, Long Term Evolution (LTE) or LTE-Advanced (LTE-A) (hereinafter referred to as “LTE” in some cases) whose specifications are defined by 3GPP realizes simultaneous transmission and reception. As one of the communication methods, TDD is adopted. In TDD adopted in LTE, a wireless terminal can make a Hybrid ARQ (HARQ) response at the timing of an Uplink (UL) subframe. In other words, in TDD, HARQ RoundRTrip Time (RTT) depends on the position of the UL subframe.
 これに対し、内蔵型TDDサブフレームでは、無線端末はULサブフレームを待つことなくHARQ応答を送信することが可能となるため、レイテンシを削減可能となり、Uplink/Downlink(UL/DL)比と遅延とを切り離すことができる。 On the other hand, in the built-in TDD subframe, since the wireless terminal can transmit the HARQ response without waiting for the UL subframe, the latency can be reduced, and the uplink / downlink (UL / DL) ratio and delay are reduced. And can be separated.
 上述のように、内蔵型TDDサブフレームでは、無線端末は、データを受信した無線リソースの末尾にて当該データのACK又はNACKを送信できるため、データを受信してからACK又はNACKを送信するまでの時間をTDDよりも短くできる。なお、ACK又はNACK(以下、「ACK/NACK」又は単に「ACK」と表記する場合がある)は、受信成功又は受信失敗、あるいは、復号成功又は復号失敗を示す情報の一例である。 As described above, in the built-in TDD subframe, since the wireless terminal can transmit ACK or NACK of the data at the end of the wireless resource that has received the data, until the ACK or NACK is transmitted after the data is received Can be made shorter than TDD. Note that ACK or NACK (hereinafter sometimes referred to as “ACK / NACK” or simply “ACK”) is an example of information indicating reception success or reception failure, or decoding success or decoding failure.
 しかし、無線端末によるACK/NACKの決定は受信したデータのブロック復号処理結果を用いて行なわれるため、ブロック復号処理に要する時間によっては、ACK応答の送信時間内に、無線端末がACK/NACKを決定することが困難となる場合がある。 However, since the ACK / NACK determination by the wireless terminal is performed using the block decoding processing result of the received data, the wireless terminal transmits ACK / NACK within the transmission time of the ACK response depending on the time required for the block decoding processing. It may be difficult to determine.
 1つの側面では、本発明は、無線端末によるデータ受信から受信成功又は受信失敗、あるいは、復号成功又は復号失敗を示す情報の送信までの時間を効率良く確保することを目的の1つとする。 In one aspect, an object of the present invention is to efficiently secure a time from reception of data by a wireless terminal to transmission of information indicating reception success or reception failure, or decoding success or decoding failure.
 なお、前記目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本発明の他の目的の1つとして位置付けることができる。 In addition, the present invention is not limited to the above-described object, and other effects of the present invention can be achieved by the functions and effects derived from the respective configurations shown in the embodiments for carrying out the invention which will be described later. It can be positioned as one of
 1つの側面において、基地局は、送信部と、受信部と、を備えてよい。前記送信部は、無線端末との時分割複信(TDD)通信に用いる無線リソースにおいて、第1のデータを、第2のデータよりも時間的に先行するタイミングで多重した送信データを生成して、前記送信データを前記無線端末宛に送信してよい。前記第2のデータは、前記第1のデータよりも遅延許容度の高いデータであってよい。また、前記受信部は、前記送信データを受信した前記無線端末から、前記無線リソースにおいて、前記第1のデータの受信成功又は受信失敗、あるいは、復号成功又は復号失敗を示す第1の応答情報を受信してよい。 In one aspect, the base station may include a transmission unit and a reception unit. The transmission unit generates transmission data obtained by multiplexing the first data at a timing that precedes the second data in radio resources used for time division duplex (TDD) communication with the radio terminal. The transmission data may be transmitted to the wireless terminal. The second data may be data having a higher delay tolerance than the first data. In addition, the reception unit receives first response information indicating successful reception or reception failure of the first data or successful decoding or decoding failure in the wireless resource from the wireless terminal that has received the transmission data. You may receive it.
 1つの側面では、無線端末によるデータ受信から受信成功又は受信失敗、あるいは、復号成功又は復号失敗を示す情報の送信までの時間を効率良く確保することができる。 In one aspect, it is possible to efficiently secure the time from data reception by the wireless terminal to transmission of information indicating reception success or reception failure, or decoding success or decoding failure.
一実施形態に係る無線通信システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the radio | wireless communications system which concerns on one Embodiment. 内蔵型TDDサブフレームの一例を示す図である。It is a figure which shows an example of a built-in type TDD sub-frame. 内蔵型TDDサブフレームにおけるガード時間を説明する図である。It is a figure explaining the guard time in a built-in type TDD sub-frame. 遅延が許容されるデータの一例を示す図である。It is a figure which shows an example of the data which a delay is accept | permitted. 遅延が許容されるデータの一例を示す図である。It is a figure which shows an example of the data which a delay is accept | permitted. 制御情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of control information. 下り制御情報を用いてACK応答タイミングが通知される場合のシーケンスの一例を示す図である。It is a figure which shows an example of a sequence in case an ACK response timing is notified using downlink control information. ACK応答タイミングが予め報知情報によって通知される場合のシーケンスの一例を示す図である。It is a figure which shows an example of a sequence in case ACK response timing is notified by alerting | reporting information previously. 一実施形態に係る無線基地局の機能構成例を示すブロック図である。It is a block diagram which shows the function structural example of the wireless base station which concerns on one Embodiment. 一実施形態に係る無線基地局のハードウェア構成例を示すブロック図である。It is a block diagram which shows the hardware structural example of the wireless base station which concerns on one Embodiment. 一実施形態に係るUser Equipment(UE)の機能構成例を示すブロック図である。It is a block diagram which shows the function structural example of User Equipment (UE) concerning one Embodiment. 一実施形態に係るUEのハードウェア構成例を示すブロック図である。It is a block diagram which shows the hardware structural example of UE which concerns on one Embodiment. 無線基地局によるスケジューリング処理の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the scheduling process by a wireless base station. 無線基地局によるベースバンド処理の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the baseband process by a wireless base station. UEによる受信処理の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the reception process by UE. UEによる送信処理の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the transmission process by UE. UEが低遅延データを受信した後にULデータを送信する例を示す図である。It is a figure which shows the example which transmits UL data, after UE receives low delay data.
 以下、図面を参照して本発明の実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。例えば、本実施形態を、その趣旨を逸脱しない範囲で種々変形して実施することができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below is merely an example, and there is no intention to exclude various modifications and technical applications that are not explicitly described below. For example, the present embodiment can be implemented with various modifications without departing from the spirit of the present embodiment.
 なお、以下の実施形態で用いる図面において、同一符号を付した部分は、特に断らない限り、同一若しくは同様の部分を表す。 In the drawings used in the following embodiments, the same reference numerals denote the same or similar parts unless otherwise specified.
 〔1〕一実施形態
 〔1-1〕無線通信システムの構成例
 図1は、一実施形態に係る無線通信システム100の構成例を示すブロック図である。図1に示すように、一実施形態に係る無線通信システム100は、例示的に、無線基地局110、User Equipment(UE)120、及び上位装置130を備えてよい。なお、無線通信システム100は、複数の無線基地局110を備えてもよく、また、複数のUE120を備えてもよい。
[1] One Embodiment [1-1] Configuration Example of Radio Communication System FIG. 1 is a block diagram illustrating a configuration example of a radio communication system 100 according to an embodiment. As illustrated in FIG. 1, the radio communication system 100 according to an embodiment may include, for example, a radio base station 110, a User Equipment (UE) 120, and a host device 130. Note that the radio communication system 100 may include a plurality of radio base stations 110, and may include a plurality of UEs 120.
 無線通信システム100は、無線基地局110とUE120との間で、予め定められた無線通信方式に従った無線通信を行なう。例えば、無線通信方式は、第5世代以降の無線通信方式であってもよく、LTE/LTE-A、又はWorldwide Interoperability for Microwave Access(WiMAX)等の既存の無線通信方式であってもよい。一例として、以下の説明では、無線通信方式は第5世代の内蔵型TDDサブフレームを用いた無線通信方式であるものとする。 The radio communication system 100 performs radio communication according to a predetermined radio communication method between the radio base station 110 and the UE 120. For example, the wireless communication method may be a wireless communication method of the fifth generation or later, or may be an existing wireless communication method such as LTE / LTE-A or Worldwide Interoperability for Microwave Access (WiMAX). As an example, in the following description, it is assumed that the wireless communication method is a wireless communication method using a fifth generation built-in TDD subframe.
 無線基地局110は、基地局又は第1の無線通信装置の一例である。無線基地局110としては、例えば、マクロ基地局、マイクロ基地局、フェムト基地局、ピコ基地局、メトロ基地局、ホーム基地局、又はCentralized-Radio Access Network(C-RAN)に接続される無線信号送受信装置等であってもよい。無線信号送受信装置としては、例えば、Remote Radio Equipment(RRE)やRemote Radio Head(RRH)等が挙げられる。 The wireless base station 110 is an example of a base station or a first wireless communication device. As the radio base station 110, for example, a radio signal connected to a macro base station, a micro base station, a femto base station, a pico base station, a metro base station, a home base station, or a Centralized Radio Access Network (C-RAN) It may be a transmission / reception device. Examples of the radio signal transmitting / receiving device include Remote Radio Equipment (RRE), Remote Radio Head (RRH), and the like.
 無線基地局110として無線信号送受信装置が用いられる場合、図1に示す無線基地局110のいずれかの位置、又は、無線基地局110と離れた位置に、無線基地局110の各々と接続されたデータ処理装置が存在してよい。データ処理装置は、無線信号送受信装置から送信されるデータ又は無線信号送受信装置で受信されたデータに対する種々の処理を行なう。データ処理装置としては、例えば、Baseband Unit(BBU)等が挙げられる。この場合、無線基地局110としての機能は、データ処理装置及び無線信号送受信装置の双方に分散して存在してもよい。 When a radio signal transmitting / receiving apparatus is used as the radio base station 110, the radio base station 110 is connected to each of the radio base stations 110 at any position of the radio base station 110 shown in FIG. There may be a data processing device. The data processing device performs various processes on data transmitted from the wireless signal transmitting / receiving device or data received by the wireless signal transmitting / receiving device. Examples of the data processing device include Baseband Unit (BBU). In this case, the function as the radio base station 110 may be distributed in both the data processing device and the radio signal transmitting / receiving device.
 無線基地局110は、無線エリアを形成又は提供してよい。なお、無線エリアには、複数の無線エリアを1つの仮想的な無線エリアとして扱う「仮想無線エリア」が含まれてもよい。無線エリアは、セル又はセクタであってよい。セルには、マクロセル、マイクロセル、フェムトセル、ピコセル、メトロセル、又はホームセル等のセルが含まれてよい。なお、セルは、無線基地局110が送信する無線電波をUE120が所要品質で受信可能な範囲(例えば、所要の無線回線品質を満たすことができる範囲、カバレッジと称してもよい)に応じて形成される無線エリアの一例である。 The radio base station 110 may form or provide a radio area. The wireless area may include a “virtual wireless area” that handles a plurality of wireless areas as one virtual wireless area. A radio area may be a cell or a sector. The cell may include a cell such as a macro cell, a micro cell, a femto cell, a pico cell, a metro cell, or a home cell. The cell is formed according to a range in which the radio wave transmitted by the radio base station 110 can be received by the UE 120 with the required quality (for example, a range that can satisfy the required radio channel quality, which may be referred to as coverage). It is an example of a wireless area.
 なお、「セル」という用語は、無線基地局110が無線サービスを提供する個々の地理的範囲を意味する他、その個々の地理的範囲においてUE120と通信を行なうために無線基地局110が管理する機能の一部をも意味してよい。以下の説明において、無線基地局110の機能又は動作を、当該無線基地局110が形成又は提供するセルの機能又は動作として説明する場合がある。 The term “cell” means an individual geographical area in which the radio base station 110 provides radio services, and is managed by the radio base station 110 in order to communicate with the UE 120 in the individual geographical area. It may also mean part of the function. In the following description, the function or operation of the radio base station 110 may be described as a function or operation of a cell formed or provided by the radio base station 110 in some cases.
 無線基地局110は、UE120との間で無線通信を行なうことにより、UE120と上位装置130との間、又は、UE120間の通信を中継してよい。無線通信は、無線基地局110からUE120に割り当てられた無線リソースを用いて行なわれてよい。なお、無線リソースは時間及び周波数に関連するリソースであってよい。無線基地局110は、例えばS1インタフェースを介して上位装置130に接続されてよい。 The radio base station 110 may relay communication between the UE 120 and the upper apparatus 130 or between the UEs 120 by performing radio communication with the UE 120. The radio communication may be performed using radio resources allocated from the radio base station 110 to the UE 120. The radio resource may be a resource related to time and frequency. The radio base station 110 may be connected to the higher-level device 130 via, for example, an S1 interface.
 UE120は無線端末又は第2の無線通信装置の一例である。UE120としては、例えば、スマートフォン等の携帯電話、タブレット端末、ラップトップ等の移動可能なPersonal Computer(PC)、モバイルルータ等のデータ通信装置、等の、無線通信機能を有する移動局が挙げられる。なお、移動局は、例えば車両等の移動体に取り付けられて移動してもよい。また、UE120は、これらの移動局の他にも、無線通信機能を有するセンサ等の装置(Integrated Circuit(IC)チップを含む)であってもよい。 UE 120 is an example of a wireless terminal or a second wireless communication device. Examples of the UE 120 include a mobile station having a wireless communication function, such as a mobile phone such as a smartphone, a movable personal computer (PC) such as a tablet terminal, a laptop, or a data communication device such as a mobile router. The mobile station may be attached to a moving body such as a vehicle and move. In addition to these mobile stations, UE 120 may be a device such as a sensor (including an Integrated Circuit (IC) chip) having a wireless communication function.
 上位装置130は制御装置の一例である。上位装置130としては、例えば、MME、SGW、及び、他の制御又は管理ノード、の少なくとも1つが挙げられる。「MME」はMobility Management Entityの略称であり、例えば、無線基地局110を収容し、ネットワーク制御のControl Plane(C-plane)の処理を行なってよい。「SGW」はServing Gatewayの略称であり、例えば、User Plane(U-plane)のデータ(ユーザデータ)を処理してよい。 The host device 130 is an example of a control device. Examples of the host device 130 include at least one of MME, SGW, and other control or management nodes. “MME” is an abbreviation for Mobility Management Entity. For example, the wireless base station 110 may be accommodated and Network Control Control Plane (C-plane) processing may be performed. “SGW” is an abbreviation for Serving Gateway, and for example, User Plane (U-plane) data (user data) may be processed.
 上位装置130は、上位ネットワーク140に存在してよい。上位ネットワーク140としては、例えば、パケット通信が行なわれる有線ネットワークが挙げられる。パケット通信は、例えばInternet Protocol(IP)パケット通信であってよい。有線ネットワークは、Evolved Packet Core(EPC)等のパケットコア網と称されてもよい。 The host device 130 may exist in the host network 140. Examples of the upper network 140 include a wired network in which packet communication is performed. The packet communication may be, for example, Internet (Protocol (IP) packet communication. The wired network may be referred to as a packet core network such as Evolved Packet Core (EPC).
 〔1-2〕一実施形態の説明
 次に、図2~図8を参照して、一実施形態に係る手法について説明する。
[1-2] Description of an Embodiment Next, a method according to an embodiment will be described with reference to FIGS.
 図2に、内蔵型TDDサブフレームの一例として、無線基地局110からUE120宛に送信されるDL送信データと、UE120から無線基地局110宛に送信されるUL ACK/NACKとを示す。DL送信データとUL ACK/NACKとの間にはGuard Period(GP)が設けられてよい。GPは、別個の信号(例えばDL信号及びUL信号)間の干渉を防ぐための領域の一例である。なお、GPに相当する期間を無線基地局110又はUE120によるタイミング制御によって実現してもよく、この場合、GPは設けられなくてもよい。 FIG. 2 shows DL transmission data transmitted from the radio base station 110 to the UE 120 and UL ACK / NACK transmitted from the UE 120 to the radio base station 110 as an example of the built-in TDD subframe. A Guard-Period (GP) may be provided between DL transmission data and UL ACK / NACK. GP is an example of a region for preventing interference between separate signals (eg, DL signal and UL signal). Note that a period corresponding to GP may be realized by timing control by the radio base station 110 or the UE 120, and in this case, the GP may not be provided.
 なお、図2の例では、縦軸を周波数帯域、横軸を時間として、DL送信データとUL ACK/NACKとが同一の周波数帯域であって時間的に連続した無線リソースを用いて伝送される様子を示す。 In the example of FIG. 2, DL transmission data and UL ACK / NACK are transmitted using temporally continuous radio resources in the same frequency band, where the vertical axis represents the frequency band and the horizontal axis represents time. Show the state.
 DL送信データには、宛先アドレスを含む「address headers」と、スケジューリング情報を含む制御情報の一例である「DL Control」と、送信対象となるデータ、例えばユーザデータを含む「Data」と、がマッピングされている。なお、「address headers」の位置には、参照信号の一例としてのReference Signal(RS)がマッピングされてもよい。UE120は、無線基地局110からDL送信データを受信すると、「DL Control」に含まれるスケジューリング情報を用いて「Data」の復調及び復号を行ない、復調又は復号の処理結果を用いて決定したACK/NACKをUE120に送信する。 In the DL transmission data, “address headers” including a destination address, “DL Control” which is an example of control information including scheduling information, and data to be transmitted, for example, “Data” including user data are mapped. Has been. Note that Reference Signal (RS) as an example of a reference signal may be mapped to the position of “address headers”. Upon receiving the DL transmission data from the radio base station 110, the UE 120 demodulates and decodes “Data” using the scheduling information included in “DL Control”, and determines the ACK / ID determined using the demodulation or decoding processing result. NACK is transmitted to UE120.
 なお、ACKは受信成功又は復号成功を示す応答情報の一例であり、NACKは受信失敗又は復号失敗を示す応答情報の一例である。また、UE120から無線基地局110に送信されるACK又はNACKは、受信成功又は受信失敗、あるいは、復号成功又は復号失敗を示す応答情報の一例である。 Note that ACK is an example of response information indicating reception success or decoding success, and NACK is an example of response information indicating reception failure or decoding failure. In addition, ACK or NACK transmitted from the UE 120 to the radio base station 110 is an example of response information indicating reception success or reception failure, or decoding success or decoding failure.
 図3に例示するように、UE120によるACK/NACKの決定は、上述したようにデータの復調又は復号結果を用いて行なわれる。しかし、UE120では、データの受信後に(あるいは並行して)復調及び復号(例えばブロック復号)処理が行なわれるため、データの受信直後にACK応答を無線基地局110に送信することは困難である。なお、5Gモバイル通信では、内蔵型TDDのタイムスロットにおいて、DL送信データからACKまでの時間として100~200μs(マイクロ秒)程度が想定されている。 As illustrated in FIG. 3, the ACK / NACK determination by the UE 120 is performed using the data demodulation or decoding result as described above. However, since the UE 120 performs demodulation and decoding (for example, block decoding) processing after receiving data (or in parallel), it is difficult to transmit an ACK response to the radio base station 110 immediately after receiving data. In 5G mobile communication, in a built-in TDD time slot, the time from DL transmission data to ACK is assumed to be about 100 to 200 μs (microseconds).
 そこで、図3に例示するように、UE120によるデータを受信してからACK応答までの処理時間を確保するために、ガード時間を長くとることが考えられる。なお、ガード時間は、例えば、GPが無線リソースの時間方向に占める期間であってよい。 Therefore, as illustrated in FIG. 3, it is conceivable to increase the guard time in order to secure the processing time from the reception of data by the UE 120 to the ACK response. In addition, guard time may be the period for which GP occupies the time direction of radio resources, for example.
 しかし、この場合、不当にガード時間が長くなり、当該ガード時間においてはデータ等の伝送が行なわれないため、無線リソースの利用効率を損なう可能性がある。 However, in this case, the guard time is unduly long, and data or the like is not transmitted during the guard time, which may impair the utilization efficiency of radio resources.
 そこで、一実施形態に係る無線通信システム100は、以下に例示する処理を行なってよい。 Therefore, the wireless communication system 100 according to an embodiment may perform the processing exemplified below.
 例えば、無線基地局110は、UE120との時分割複信(TDD)通信に用いる無線リソースにおいて、第1のデータを、第2のデータよりも時間的に先行するタイミングで多重した送信データを生成して、送信データをUE120宛に送信してよい。この第2のデータは、第1のデータよりも遅延許容度の高いデータであってよい。 For example, the radio base station 110 generates transmission data in which the first data is multiplexed at a timing that precedes the second data in radio resources used for time division duplex (TDD) communication with the UE 120. Then, the transmission data may be transmitted to the UE 120. The second data may be data having a higher delay tolerance than the first data.
 また、UE120は、当該無線リソースにおいて、第1のデータの受信成功又は受信失敗、あるいは、復号成功又は復号失敗を示す第1の応答情報を無線基地局110宛に送信してよい。 In addition, the UE 120 may transmit, to the radio base station 110, the first response information indicating the reception success or reception failure of the first data or the decoding success or the decoding failure in the radio resource.
 これにより、UE120が送信データの第1のデータを受信してから第1の応答情報を無線基地局110宛に送信するまでの時間を、第2のデータの伝送に用いることができる。換言すれば、UE120による第1のデータを受信してから第1の応答情報を送信するまでの処理時間を確保するために設けられるガード時間のうちの少なくとも一部の時間を、第2のデータの伝送に充てることができる。 Thereby, the time from when the UE 120 receives the first data of the transmission data to when the first response information is transmitted to the radio base station 110 can be used for the transmission of the second data. In other words, at least a part of the guard time provided for securing the processing time from the reception of the first data by the UE 120 to the transmission of the first response information is set as the second data. Can be used for transmission.
 また、第2のデータは、第1のデータよりも遅延許容度の高いデータであるため、UE120は、第1の応答情報を無線基地局110に送信する処理を、第2のデータに係る応答情報を無線基地局110に送信する処理よりも優先して行なうことができる。 Further, since the second data is data having a higher delay tolerance than the first data, the UE 120 performs a process of transmitting the first response information to the radio base station 110 in response to the second data. This can be performed with priority over the process of transmitting information to the radio base station 110.
 従って、UE120によるACK応答までの時間を確保することができ、設計を容易とすることができる。また、第1のデータの受信後、ACK応答までの空きリソースの有効活用を可能とすることができる。 Therefore, the time until the ACK response by the UE 120 can be secured, and the design can be facilitated. In addition, it is possible to effectively use free resources until the ACK response after receiving the first data.
 なお、無線基地局110からUE120への下り送信データは、第1のデータと第2のデータとを時分割多重(TDM)したデータであってもよく、第1のデータと第2のデータとを空間多重(Spatial Mulplexing)したデータであってもよい。 The downlink transmission data from the radio base station 110 to the UE 120 may be data obtained by time division multiplexing (TDM) of the first data and the second data, and the first data, the second data, May be data obtained by spatially multiplexing (Spatial Mulplexing).
 多重方式として時分割多重が用いられる場合、UE120は、送信データの第2のデータの時分割多重タイミングよりも後において、第1の応答情報を無線基地局110に送信してよい。 When time division multiplexing is used as the multiplexing scheme, the UE 120 may transmit the first response information to the radio base station 110 after the time division multiplexing timing of the second data of the transmission data.
 多重方式として空間多重が用いられる場合、UE120は、送信データの第2のデータの空間多重タイミングよりも時間的に先行するタイミングにおいて、第1の情報を無線基地局110に送信してよい。このように、空間多重の場合、UE120は、第1のデータを受信してACK応答を行なった後、第2のデータを受信してよい。 When spatial multiplexing is used as the multiplexing scheme, the UE 120 may transmit the first information to the radio base station 110 at a timing that precedes the spatial multiplexing timing of the second data of the transmission data. Thus, in the case of spatial multiplexing, UE 120 may receive the second data after receiving the first data and performing an ACK response.
 ところで、内蔵型TDDサブフレームは、上述のように、3GPPにおいて、UL/DL比と遅延とを切り離すことを達成する手法の一つとして検討されているが、さらに、以下を達成する手法の一つとしても位置付けられる。 By the way, as described above, the built-in TDD subframe is considered as one of the methods for achieving separation of the UL / DL ratio and the delay in 3GPP. It is also positioned as one.
 (a)ライセンス/アンライセンス帯域、Massive MIMO、及びD2Dのいずれの方式も共通にカバーできるフレームフォーマットを提供すること。 (A) To provide a frame format that can cover all license / unlicensed bandwidth, Massive MIMO, and D2D methods.
 なお、MIMOはMultiple-Input and Multiple-Outputの略称であり、D2DはDevice to Deviceの略称である。 Note that MIMO is an abbreviation for Multiple-Input and Multiple-Output, and D2D is an abbreviation for Device to Device.
 (b)アプリケーションレイヤでの低遅延を実現すること。 (B) Realize low delay in the application layer.
 これらは、例えば内蔵型TDDサブフレームの以下のような利点によって達成することができる。 These can be achieved by the following advantages of the built-in TDD subframe, for example.
 (A)データとARQ応答とで同一の無線リソースを共有することで、リソース管理が容易となる。 (A) Resource management is facilitated by sharing the same radio resource between the data and the ARQ response.
 LTEでは、PDSCHに対応するHARQ ACK応答は4サブフレーム後のPUCCH(PDSCHをスケジューリングしたPDCCHのリソースに関連付けられる)若しくはPUSCH(UL-SCHがスケジューリングされている場合)で送信される。このように、或るルールに基づいて独立した無線リソースに割り当てられたPDSCHとHARQ ACK応答が関連付けられるという仕様は複雑であり、実装や仕様拡張の阻害となっていた。そこで、ARQ応答とで同一の無線リソースを共有するフレームフォーマットを採用することで、リソース管理を容易とすることができる。 In LTE, the HARQ ACK response corresponding to PDSCH is transmitted on PUCCH (associated with the PDCCH resource that scheduled PDSCH) or PUSCH (when UL-SCH is scheduled) after 4 subframes. Thus, the specification that the PDSCH assigned to the independent radio resource based on a certain rule is associated with the HARQ ACK response is complicated, which hinders implementation and specification expansion. Therefore, resource management can be facilitated by adopting a frame format that shares the same radio resource with the ARQ response.
 なお、PDSCHはPhysical Downlink Shared Channelの略称であり、PUCCHはPhysical Uplink Control Channelの略称である。また、PDCCHはPhysical Downlink Control Channelの略称であり、PUSCHはPhysical Uplink Shared Channelの略称であり、UL-SCHはUplink Shared Channelの略称である。 PDSCH is an abbreviation for Physical Downlink Shared Channel, and PUCCH is an abbreviation for Physical Uplink Control Channel. PDCCH is an abbreviation for PhysicalPhysDownlink Control Channel, PUSCH is an abbreviation for Physical Uplink Shared Channel, and UL-SCH is an abbreviation for Uplink Shared Channel.
 (B)RSがオンデマンド(On Demand)送信になりシステム全体のオーバヘッドを低減可能となる。 (B) RS becomes on-demand transmission and the overhead of the entire system can be reduced.
 LTEでは、基地局はMulticast-Broadcast Single-Frequency Network(MBSFN)サブフレーム以外のサブフレームではCell specific Reference Signal(C-RS)を全帯域に渡って送信しており、端末はこのC-RSを用いて復調を実施する。内蔵型TDDサブフレームによれば、同一フレーム内でUE SpecificなRSを送信するため、C-RSを含むセル共通情報の送受信によるオーバヘッドを少なくすることができる。 In LTE, a base station transmits a Cell-specific Reference Signal (C-RS) over the entire band in subframes other than the Multicast-Broadcast Single-Frequency Network (MBSFN) subframe, and the terminal transmits this C-RS. To perform demodulation. According to the built-in TDD subframe, since UE-specific RS is transmitted in the same frame, overhead due to transmission / reception of cell common information including C-RS can be reduced.
 このように、内蔵型TDDサブフレームによれば、リソース管理の容易化やシステム全体の遅延低減という利点がある。 Thus, the built-in TDD subframe has advantages of easy resource management and reduced delay of the entire system.
 以上のことから、一実施形態に係る無線通信システム100によれば、上述した内蔵型TDDサブフレームの利点を活かしつつ、UE120によるデータ受信からACK応答までの時間を効率良く確保することができる。 From the above, according to the wireless communication system 100 according to the embodiment, it is possible to efficiently secure the time from the data reception by the UE 120 to the ACK response while taking advantage of the above-described built-in TDD subframe.
 〔1-2-1〕第1及び第2のデータについて
 上述のように、第2のデータは、第1のデータよりも遅延許容度の高いデータである。例えば、第1のデータはACK応答について低遅延が求められる低遅延データであってよく、第2のデータはACK応答の遅延が許容される遅延許容データであってよい。このように、無線リソースには、低遅延データが前半に、遅延許容データが後半に、それぞれ配置されるものと捉えることができる。
[1-2-1] First and Second Data As described above, the second data is data having a higher delay tolerance than the first data. For example, the first data may be low-delay data that requires a low delay for the ACK response, and the second data may be delay-allowed data that allows a delay of the ACK response. As described above, it can be understood that the low delay data is arranged in the first half and the delay allowable data is arranged in the second half in the radio resource.
 (遅延許容データの第1の例)
 遅延許容データの第1の例として、図4に示すように、ACK応答が求められない共通情報が用いられてもよい。ACK応答が求められない共通情報としては、System Information Block(SIB)、RS等の報知情報が挙げられる。
(First example of delay tolerance data)
As a first example of delay tolerance data, common information for which an ACK response is not required may be used as shown in FIG. Examples of common information for which an ACK response is not required include broadcast information such as System Information Block (SIB) and RS.
 図4に例示するように、第2のデータとして共通情報が用いられる場合、無線基地局110からの送信データには、第1のデータの一例である「Data」と、第2のデータの一例である「BCH」とが時分割多重されてよい。BCHは、Broadcast Channelの略称である。 As illustrated in FIG. 4, when common information is used as the second data, “Data” that is an example of the first data and an example of the second data are included in the transmission data from the radio base station 110. “BCH” may be time-division multiplexed. BCH is an abbreviation for Broadcast Channel.
 3GPPでは、5Gモバイル通信において、無線トラフィックの輻輳を低減させる等のために、複数の無線端末に対するRS等の情報の共通報知を止める若しくは制限することが検討されている。この場合、無線基地局110は、SIBやRS等の共通情報を、周期的に、特定のタイミングで、あるいは、オンデマンドで、UE120に対して個別に送信することが考えられる。そこで、図4の例では、このような共通情報を第2のデータとして用いてよい。 In 3GPP, in order to reduce congestion of wireless traffic in 5G mobile communication, it is considered to stop or restrict common notification of information such as RS to a plurality of wireless terminals. In this case, it is conceivable that the radio base station 110 individually transmits common information such as SIB and RS to the UE 120 periodically, at a specific timing, or on demand. Therefore, in the example of FIG. 4, such common information may be used as the second data.
 なお、図4の例では、下り送信データの先頭に「RS」が存在するが、RSは、「RS」及び「BCH」の一方又は双方にマッピングされてもよい。RSは、位相雑音の算出や、Channel State Information(CSI)の算出等の用途別にまとめられてもよい。 In the example of FIG. 4, “RS” exists at the head of the downlink transmission data, but the RS may be mapped to one or both of “RS” and “BCH”. RSs may be grouped according to applications such as calculation of phase noise and calculation of Channel State Information (CSI).
 図4の例において、UE120は、第1のデータの一例である「Data」の復調を行ない、復調が完了すると復号を行なってよい。なお、復調は、例えば、Orthogonal Frequency Division Multiplexing(OFDM)シンボルの受信タイミングにおいて、シンボル単位で行なわれてよい。 In the example of FIG. 4, the UE 120 may demodulate “Data” which is an example of the first data, and may perform decoding when the demodulation is completed. Note that demodulation may be performed on a symbol-by-symbol basis, for example, at the reception timing of an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
 そして、UE120は、復調結果を用いた受信成功又は受信失敗、あるいは、復号結果を用いた復号成功又は復号失敗を判定し、第1のタイミングで無線基地局110宛にACK/NACKを送信してよい。 Then, the UE 120 determines reception success or reception failure using the demodulation result, or decoding success or decoding failure using the decoding result, and transmits ACK / NACK to the radio base station 110 at the first timing. Good.
 (遅延許容データの第2の例)
 遅延許容データの第2の例として、図5に示すように、極低遅延が求められないRadio Access Bearer(RAB)が用いられてもよい。RABとしては、例えば、Signaling Radio Bearer(SRB)、音声等が挙げられる。
(Second example of delay tolerance data)
As a second example of the delay tolerance data, as shown in FIG. 5, a Radio Access Bearer (RAB) that does not require an extremely low delay may be used. Examples of RAB include Signaling Radio Bearer (SRB), voice, and the like.
 図5に例示するように、第2のデータとしてRAB(例えばRABで伝送される情報)が用いられる場合、無線基地局110からの送信データには、第1のデータの一例である「VLL Data」と、第2のデータの一例である「non VLL Data」とが時分割多重されてよい。VLLは、Very Low Latency(極低遅延)の略称である。 As illustrated in FIG. 5, when RAB (for example, information transmitted by RAB) is used as the second data, the transmission data from the radio base station 110 includes “VLL Data that is an example of the first data. ”And“ non VLL Data ”which is an example of the second data may be time-division multiplexed. VLL is an abbreviation for Very Low Latency.
 図5の例において、UE120は、図4の例と同様に、第1のデータの一例である「VLL Data」の復調を行ない、復調が完了すると復号を行なってよい。 In the example of FIG. 5, the UE 120 may demodulate “VLLVData”, which is an example of the first data, as in the example of FIG. 4, and may perform decoding when the demodulation is completed.
 そして、UE120は、図4の例と同様に、復調結果を用いた受信成功又は受信失敗、あるいは、復号結果を用いた復号成功又は復号失敗を判定し、第1のタイミングで無線基地局110宛にACK/NACKを送信してよい。 Then, as in the example of FIG. 4, the UE 120 determines reception success or reception failure using the demodulation result, or decoding success or decoding failure using the decoding result, and is addressed to the radio base station 110 at the first timing. ACK / NACK may be transmitted to
 また、UE120は、第2のデータの一例である「non VLL Data」の復調を行ない、復調が完了すると復号を行なってよい。なお、「non VLL Data」の復調は、「VLL Data」と同様にシンボル単位で行なわれてよく、また、「VLL Data」の復号と少なくとも一部の時間区間で並行して行なわれてもよい。 Also, the UE 120 may demodulate “non-VLL data” which is an example of the second data, and may perform decoding when the demodulation is completed. The demodulation of “non「 VLL Data ”may be performed on a symbol-by-symbol basis like“ VLL Data ”, and may be performed in parallel with the decoding of“ VLL Data ”in at least some time intervals. .
 そして、UE120は、復調結果を用いた受信成功又は受信失敗、あるいは、復号結果を用いた復号成功又は復号失敗を判定し、第2のタイミングで無線基地局110宛にACK/NACKを送信してよい。 Then, the UE 120 determines reception success or reception failure using the demodulation result, or decoding success or decoding failure using the decoding result, and transmits ACK / NACK to the radio base station 110 at the second timing. Good.
 〔1-2-2〕ACK応答タイミングについて
 第1のデータのACKを返す第1のタイミング、第2のデータのACKが不要である旨(図4の例)、及び、第2のデータのACKを返す第2のタイミング(図5の例)、の少なくとも1つは、以下の(i)又は(ii)の手法により通知されてよい。
[1-2-2] ACK response timing The first timing at which the ACK of the first data is returned, the fact that the ACK of the second data is not required (example in FIG. 4), and the ACK of the second data At least one of the second timings of returning (example in FIG. 5) may be notified by the following method (i) or (ii).
 (i)無線基地局110からUE120に、制御情報の一例である「Control」により通知される。 (I) The radio base station 110 notifies the UE 120 by “Control”, which is an example of control information.
 図6は、制御情報のデータ構造の一例を示す図である。図6に示すように、制御情報には、例示的に、データの先頭から、「共通情報」、「低遅延データ制御情報」、及び「遅延許容データ制御情報」が設定されてよい。なお、制御情報は、Transmission Time Interval(TTI)のサブフレーム毎に設定されてよい。 FIG. 6 is a diagram showing an example of the data structure of the control information. As illustrated in FIG. 6, for example, “common information”, “low delay data control information”, and “delayable data control information” may be set in the control information from the beginning of the data. The control information may be set for each subframe of Transmission の Time Interval (TTI).
 「共通情報」には、全てのデータに共通する制御情報、例えば、低遅延データの有無、遅延許容データの有無、該当チャネルの時間長若しくはシンボル数等が含まれてよい。 “Common information” may include control information common to all data, for example, the presence / absence of low-delay data, the presence / absence of delay-tolerant data, the time length of the corresponding channel, or the number of symbols.
 低遅延データが送信される場合、下り制御情報にも「低遅延データ制御情報」が多重されてよい。「低遅延データ制御情報」には、低遅延データの送信ブロックサイズ、Phase-Shift Keying(PSK)やQuadrature Amplitude Modulation(QAM)等の変調方式、空間多重方式や空間多重パラメータ、低遅延データのACK応答リソース等の情報が含まれてよい。換言すれば、「低遅延データ制御情報」は、第1の応答情報についての第1の送信タイミングを示す第1の制御情報の一例である。 When low-delay data is transmitted, “low-delay data control information” may be multiplexed with downlink control information. “Low-delay data control information” includes the transmission block size of low-delay data, modulation schemes such as Phase-Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM), spatial multiplexing schemes and parameters, and ACK for low-delay data Information such as response resources may be included. In other words, “low delay data control information” is an example of first control information indicating the first transmission timing for the first response information.
 遅延許容データが送信される場合、下り制御情報にも「遅延許容データ制御情報」が多重されてよい。「遅延許容データ制御情報」には、遅延許容データの送信ブロックサイズ、PSKやQAM等の変調方式、空間多重方式や空間多重パラメータ、遅延許容データのACK応答リソース等の情報が含まれてよい。換言すれば、「遅延許容データ制御情報」は、第2の応答情報についての第2の送信タイミングを示す第2の制御情報の一例である。 “When delay tolerance data is transmitted,“ delay tolerance data control information ”may be multiplexed with the downlink control information. The “delay allowable data control information” may include information such as a transmission block size of delay allowable data, a modulation scheme such as PSK and QAM, a spatial multiplexing scheme and spatial multiplexing parameters, and an ACK response resource of delay allowable data. In other words, the “delayable data control information” is an example of second control information indicating the second transmission timing for the second response information.
 図7に、下り制御情報を用いてACK応答タイミングが通知される場合のシーケンスの一例を示す。例えば、UE120は、無線基地局110に対して、無線リンク接続確立要求を行ない、ACK応答可能遅延時間を通知する(処理A1)。無線基地局110は、UE120に対して、無線リンク確立設定を行なう(処理A2)。 FIG. 7 shows an example of a sequence when ACK response timing is notified using downlink control information. For example, the UE 120 makes a radio link connection establishment request to the radio base station 110 and notifies an ACK response delay time (process A1). The radio base station 110 performs radio link establishment setting for the UE 120 (process A2).
 なお、無線リンク接続確立要求は、例えば、Random Access(RA;ランダムアクセス)手順におけるRandom Access Preambleであってもよい。ACK応答可能遅延時間は、例えば、UE120が下り送信データを受信してからACK応答を返すまでの最短の遅延時間であってもよく、あるいは、UE120の処理性能を示す情報等であってもよい。ACK応答可能遅延は、無線リンク接続確立の手順において伝送される情報に含められてもよいし、このような情報とは別に、UE120から無線基地局110に通知されてもよい。 The wireless link connection establishment request may be, for example, a Random Access Preamble in a Random Access (RA) procedure. The ACK response possible delay time may be, for example, the shortest delay time from when UE 120 receives downlink transmission data until it returns an ACK response, or may be information indicating the processing performance of UE 120 . The ACK response possible delay may be included in the information transmitted in the procedure of establishing the radio link connection, or may be notified from the UE 120 to the radio base station 110 separately from such information.
 無線基地局110は、UE120宛の下りデータが発生すると、UE120に対して下りデータを送信し、制御情報でUE120に対するACK応答遅延時間を通知する(処理A3)。UE120は、無線基地局110から通知されたACK応答時間に従って、ACK応答を送信する(処理A4)。 When the downlink data addressed to the UE 120 is generated, the radio base station 110 transmits the downlink data to the UE 120, and notifies the UE 120 of the ACK response delay time using the control information (Processing A3). The UE 120 transmits an ACK response according to the ACK response time notified from the radio base station 110 (process A4).
 (ii)無線基地局110からUE120に予め通知される。 (Ii) The UE 120 is notified in advance from the radio base station 110.
 「予め通知」とは、第1のデータを含む下り送信データよりも前のサブフレームの制御情報等により通知されること、及び、所定の通信において通知されること、の少なくとも一方を含んでよい。「所定の通信」には、例えばUE120が無線基地局110に接続するための処理、例えば無線基地局110とUE120との間のランダムアクセス手順やRadio Resource Control(RRC)接続手順等における通信、あるいは関連する通信が含まれてもよい。 “Preliminary notification” may include at least one of notification based on control information of a subframe before downlink transmission data including first data, and notification in predetermined communication. . The “predetermined communication” includes, for example, processing for the UE 120 to connect to the radio base station 110, for example, communication in a random access procedure between the radio base station 110 and the UE 120, a radio resource control (RRC) connection procedure, or the like. Related communications may be included.
 図8に、ACK応答タイミングが予め報知情報によって通知される場合のシーケンスの一例を示す。例えば、無線基地局110は、UE120に対して、報知情報を送信し、ACK応答遅延時間を通知する(処理B1)。無線基地局110は、UE120に対して、下りデータを送信する(処理B2)。 FIG. 8 shows an example of a sequence when the ACK response timing is notified in advance by broadcast information. For example, the radio base station 110 transmits broadcast information to the UE 120 and notifies the ACK response delay time (process B1). The radio base station 110 transmits downlink data to the UE 120 (process B2).
 UE120は、UE120は、報知情報により通知されたACK応答時間に従って、ACK応答を送信する(処理B3)。 UE 120 transmits an ACK response according to the ACK response time notified by the broadcast information (processing B3).
 〔1-3〕各装置の構成例
 次に、図9~図12を参照して、一実施形態に係る無線基地局110及びUE120の各々の構成例について説明する。なお、図9に示す無線基地局210及び図10に示す無線基地局310は、それぞれ、図1に示す無線基地局110の一例である。また、図11に示すUE220及び図12に示すUE320は、それぞれ、図1に示すUE120の一例である。
[1-3] Configuration Examples of Each Device Next, configuration examples of each of the radio base station 110 and the UE 120 according to an embodiment will be described with reference to FIGS. 9 to 12. Note that the radio base station 210 shown in FIG. 9 and the radio base station 310 shown in FIG. 10 are examples of the radio base station 110 shown in FIG. Moreover, UE220 shown in FIG. 11 and UE320 shown in FIG. 12 are examples of UE120 shown in FIG. 1, respectively.
 〔1-3-1〕基地局の構成例
 図9に示すように、無線基地局210は、例示的に、アンテナ211、Radio Frequency(RF)受信部212、ベースバンド受信部213、スケジューリング部214、回線終端部215、ベースバンド送信部216、及び、RF送信部217を備えてよい。
[1-3-1] Configuration Example of Base Station As shown in FIG. 9, the radio base station 210 illustratively includes an antenna 211, a radio frequency (RF) receiving unit 212, a baseband receiving unit 213, and a scheduling unit 214. , A line termination unit 215, a baseband transmission unit 216, and an RF transmission unit 217 may be provided.
 アンテナ211は、UE220との間で無線信号を送受信するインタフェースの一例である。アンテナ211は、例えば、UE220から送信されたULの無線信号を受信して、受信したULの無線信号をRF受信部212に出力してよい。また、アンテナ211は、RF送信部217から入力されたDLの無線信号(例えば変調信号)をUE220へ送信してよい。なお、アンテナ211は、受信用及び送信用で別々に設けられてもよい。 The antenna 211 is an example of an interface that transmits and receives radio signals to and from the UE 220. For example, the antenna 211 may receive a UL radio signal transmitted from the UE 220 and output the received UL radio signal to the RF reception unit 212. The antenna 211 may transmit a DL radio signal (for example, a modulated signal) input from the RF transmission unit 217 to the UE 220. Note that the antenna 211 may be provided separately for reception and transmission.
 RF受信部212は、ULの受信信号について所定の受信処理を施して上り搬送波除去後信号を生成して、生成した当該信号をベースバンド受信部213に出力する。受信処理には、例示的に、受信信号の低雑音増幅、ベースバンド周波数への周波数変換(ダウンコンバート)、利得調整、復調等が含まれてもよい。 The RF reception unit 212 performs a predetermined reception process on the UL reception signal to generate an uplink carrier-removed signal, and outputs the generated signal to the baseband reception unit 213. The reception processing may include, for example, low noise amplification of the received signal, frequency conversion (down conversion) to a baseband frequency, gain adjustment, demodulation, and the like.
 ベースバンド受信部213は、RF受信部212により上り受信信号から上り搬送波が除去された信号に対してベースバンド受信処理を施し、ベースバンド受信処理により得られた受信信号を回線終端部215に出力する。ベースバンド受信処理には、例示的に、スケジューリング部214から通知される上りスケジューリング情報を用いた復号が含まれてよい。 Baseband reception section 213 performs baseband reception processing on the signal from which the upstream carrier wave has been removed from the upstream reception signal by RF reception section 212, and outputs the reception signal obtained by the baseband reception processing to line termination section 215. To do. For example, the baseband reception process may include decoding using uplink scheduling information notified from the scheduling unit 214.
 スケジューリング部214は、UE220から取得した、又は無線基地局210が測定した、UE220との間の無線回線品質等を用いて、上りスケジューリング情報及び下りスケジューリング情報を生成する。上りスケジューリングには、上りデータ伝送に使用する無線リソース、変調方式、及び符号化率等が含まれてよい。下りスケジューリング情報には、無線基地局210が通信先として選択したUE220を示す情報、並びに、下りデータ伝送に使用する無線リソース、変調方式、及び符号化率等が含まれてよい。 The scheduling unit 214 generates uplink scheduling information and downlink scheduling information by using the radio channel quality with the UE 220 or the like acquired from the UE 220 or measured by the radio base station 210. The uplink scheduling may include radio resources used for uplink data transmission, a modulation scheme, a coding rate, and the like. The downlink scheduling information may include information indicating the UE 220 selected by the radio base station 210 as a communication destination, radio resources used for downlink data transmission, a modulation scheme, a coding rate, and the like.
 回線終端部215は、無線ネットワーク又は有線ネットワークとの接続を終端する。有線ネットワークには、S1回線等の上位ネットワーク(例えば図1の上位ネットワーク140)、X2回線等の無線基地局210との間のネットワーク等が含まれてもよい。 The line termination unit 215 terminates the connection with the wireless network or the wired network. The wired network may include an upper network such as an S1 line (for example, the upper network 140 in FIG. 1), a network between the wireless base station 210 such as an X2 line, and the like.
 例えば、回線終端部215は、ベースバンド受信部213から入力される受信信号を、当該受信信号の宛先又は経由先である上位ネットワークに送信してよい。また、回線終端部215は、上位ネットワークから受信したUE220宛の送信信号を、ベースバンド送信部216に出力してよい。 For example, the line termination unit 215 may transmit the reception signal input from the baseband reception unit 213 to a higher-level network that is a destination or a destination of the reception signal. In addition, the line termination unit 215 may output the transmission signal addressed to the UE 220 received from the upper network to the baseband transmission unit 216.
 ベースバンド送信部216は、回線終端部215から入力された送信信号に対してベースバンド送信処理を施し、ベースバンド送信処理により得られた下りベースバンド信号をRF送信部217に出力する。ベースバンド送信処理には、例示的に、スケジューリング部214から通知される下りスケジューリング情報を用いた符号化が含まれてよい。 The baseband transmission unit 216 performs baseband transmission processing on the transmission signal input from the line termination unit 215, and outputs a downlink baseband signal obtained by the baseband transmission processing to the RF transmission unit 217. For example, the baseband transmission process may include encoding using downlink scheduling information notified from the scheduling unit 214.
 一実施形態において、ベースバンド送信部216は、スケジューリング部214から通知されたスケジューリング情報を用いて、内蔵型TDDサブフレームについて低遅延データ及び遅延許容データを生成しマッピングしてよい。 In one embodiment, the baseband transmission unit 216 may generate and map low-delay data and delay-acceptable data for the built-in TDD subframe using the scheduling information notified from the scheduling unit 214.
 RF送信部217は、下りベースバンド信号について所定の送信処理を施して下り変調信号を生成し、生成した下り変調信号をアンテナ211に出力する。送信処理には、例示的に、信号の変調、無線周波数への周波数変換(アップコンバート)、電力増幅等が含まれてもよい。 The RF transmitter 217 performs a predetermined transmission process on the downlink baseband signal to generate a downlink modulated signal, and outputs the generated downlink modulated signal to the antenna 211. The transmission processing may include, for example, signal modulation, frequency conversion to radio frequency (up-conversion), power amplification, and the like.
 上述したスケジューリング部214、回線終端部215、ベースバンド送信部216、及びRF送信部217の少なくとも1つは、一実施形態に係る無線基地局110の送信系の処理を行なう送信部218の一例である。送信部218は、UE120との時分割複信(TDD)通信に用いる無線リソースにおいて、第1のデータを、第2のデータよりも時間的に先行するタイミングで多重した送信データを生成して、送信データをUE120宛に送信してよい。 At least one of the scheduling unit 214, the line termination unit 215, the baseband transmission unit 216, and the RF transmission unit 217 described above is an example of the transmission unit 218 that performs processing of the transmission system of the radio base station 110 according to an embodiment. is there. The transmission unit 218 generates transmission data obtained by multiplexing the first data at a timing that precedes the second data in the radio resource used for time division duplex (TDD) communication with the UE 120, The transmission data may be transmitted to UE 120.
 また、上述したRF受信部212、ベースバンド受信部213、及びスケジューリング部214の少なくとも1つは、一実施形態に係る無線基地局110の受信系の処理を行なう受信部219の一例である。受信部219は、送信データを受信したUE120から、上記無線リソースにおいて、第1のデータの受信成功又は受信失敗、あるいは、復号成功又は復号失敗を示す第1の応答情報を受信してよい。 In addition, at least one of the RF reception unit 212, the baseband reception unit 213, and the scheduling unit 214 described above is an example of the reception unit 219 that performs processing of the reception system of the radio base station 110 according to an embodiment. The receiving unit 219 may receive, from the UE 120 that has received the transmission data, first response information indicating whether the first data has been successfully received or received, or whether the decoding has succeeded or failed in the radio resource.
 次に、図10を参照して、無線基地局310のハードウェア構成例について説明する。図10に示すように、無線基地局310は、例示的に、アンテナ311、RF回路312、Integrated Circuit(IC)313、プロセッサ315、記憶領域314及び316、並びに、ネットワークInterface(IF)317を備えてよい。 Next, a hardware configuration example of the radio base station 310 will be described with reference to FIG. As illustrated in FIG. 10, the radio base station 310 illustratively includes an antenna 311, an RF circuit 312, an integrated circuit (IC) 313, a processor 315, storage areas 314 and 316, and a network interface (IF) 317. It's okay.
 アンテナ311は、図9に示すアンテナ211の一例であり、UE320(図12参照)との間で無線信号の送受信を行なってよい。RF回路312は、図9に示すRF受信部212及びRF送信部217の一例である。なお、RF回路312は、RF受信部212とRF送信部217とで別々に設けられてもよい。 The antenna 311 is an example of the antenna 211 shown in FIG. 9, and may transmit and receive radio signals to and from the UE 320 (see FIG. 12). The RF circuit 312 is an example of the RF reception unit 212 and the RF transmission unit 217 illustrated in FIG. Note that the RF circuit 312 may be provided separately for the RF receiver 212 and the RF transmitter 217.
 IC313は、図9に示すベースバンド受信部213及びベースバンド送信部216の一例である。プロセッサ315は、図9に示すスケジューリング部214及び回線終端部215の一例である。 The IC 313 is an example of the baseband receiving unit 213 and the baseband transmitting unit 216 shown in FIG. The processor 315 is an example of the scheduling unit 214 and the line termination unit 215 illustrated in FIG.
 IC313及びプロセッサ315は、それぞれ種々の制御や演算を行なってよい。IC313及びプロセッサ315としては、それぞれ、例えば、CPU、MPU、DSP、ASIC、又は、FPGA等の集積回路(IC)が挙げられる。なお、CPUはCentral Processing Unitの略称であり、MPUはMicro Processing Unitの略称であり、DSPはDigital Signal Processorの略称である。また、ASICはApplication Specific Integrated Circuitの略称であり、FPGAはField Programmable Gate Arrayの略称である。 The IC 313 and the processor 315 may perform various controls and calculations. Examples of the IC 313 and the processor 315 include an integrated circuit (IC) such as a CPU, MPU, DSP, ASIC, or FPGA. CPU is an abbreviation for Central Processing Unit, MPU is an abbreviation for Micro Processing Unit, and DSP is an abbreviation for Digital Signal Processor. ASIC is an abbreviation for Application Specific Integrated Circuit, and FPGA is an abbreviation for Field Programmable Gate Array.
 記憶領域314及び316は、それぞれ、IC313及びプロセッサ315に用いられ、制御情報やユーザデータ等の種々のデータ及びプログラム等の情報を格納するハードウェアの一例である。記憶領域314及び316としては、それぞれ、例えば、揮発性メモリ及び不揮発性メモリの少なくとも一方が用いられてよい。揮発性メモリとしては、例えばRandom Access Memory(RAM)が挙げられる。不揮発性メモリとしては、例えばRead Only Memory(ROM)、フラッシュメモリ、又は、Electrically Erasable Programmable Read-Only Memory(EEPROM)等が挙げられる。 Storage areas 314 and 316 are examples of hardware used for the IC 313 and the processor 315, respectively, for storing various data such as control information and user data, and information such as programs. For example, at least one of a volatile memory and a nonvolatile memory may be used as the storage areas 314 and 316, respectively. Examples of the volatile memory include Random Access Memory (RAM). Examples of the non-volatile memory include Read Only Memory (ROM), flash memory, Electrically Erasable Programmable Read-Only Memory (EEPROM), and the like.
 ネットワークIF317は、上位ネットワーク(例えば図1の上位ネットワーク140)との間の接続及び通信の制御等を行なう通信インタフェースの一例であり、上位装置130(図1参照)との間で信号の送受信を行なってよい。 The network IF 317 is an example of a communication interface that performs connection and communication control with a host network (for example, the host network 140 in FIG. 1), and transmits and receives signals to and from the host device 130 (see FIG. 1). You can do it.
 例えば、IC313及びプロセッサ315は、それぞれ、記憶領域314及び316に格納されたプログラムを実行することにより、図9に示す無線基地局210の機能を実現できる。 For example, the IC 313 and the processor 315 can implement the functions of the radio base station 210 shown in FIG. 9 by executing the programs stored in the storage areas 314 and 316, respectively.
 〔1-3-2〕無線端末の構成例
 図11に示すように、UE220は、例示的に、アンテナ221、RF受信部222、ベースバンド受信部223、レイヤ2処理部224、ベースバンド送信部225、及び、RF送信部226を備えてよい。
[1-3-2] Configuration Example of Radio Terminal As shown in FIG. 11, the UE 220 illustratively includes an antenna 221, an RF reception unit 222, a baseband reception unit 223, a layer 2 processing unit 224, and a baseband transmission unit. 225 and an RF transmitter 226 may be provided.
 アンテナ221は、無線基地局210との間で無線信号を送受信するインタフェースの一例である。アンテナ221は、例えば、無線基地局210から送信されたDLの無線信号を受信して、受信したDLの無線信号をRF受信部222に出力してよい。また、アンテナ221は、RF送信部226から入力されたULの無線信号(例えば変調信号)を無線基地局210へ送信してよい。なお、アンテナ221は、受信用及び送信用で別々に設けられてもよい。 The antenna 221 is an example of an interface that transmits and receives radio signals to and from the radio base station 210. For example, the antenna 221 may receive a DL radio signal transmitted from the radio base station 210 and output the received DL radio signal to the RF receiver 222. The antenna 221 may transmit a UL radio signal (for example, a modulated signal) input from the RF transmission unit 226 to the radio base station 210. Note that the antenna 221 may be provided separately for reception and transmission.
 RF受信部222は、DLの受信信号について所定の受信処理を施して下り搬送波除去後信号を生成して、生成した当該信号をベースバンド受信部223に出力する。受信処理には、例示的に、受信信号の低雑音増幅、ベースバンド周波数への周波数変換(ダウンコンバート)、利得調整、復調等が含まれてもよい。 The RF reception unit 222 performs a predetermined reception process on the DL reception signal, generates a signal after removing the downlink carrier wave, and outputs the generated signal to the baseband reception unit 223. The reception processing may include, for example, low noise amplification of the received signal, frequency conversion (down conversion) to a baseband frequency, gain adjustment, demodulation, and the like.
 ベースバンド受信部223は、RF受信部222により下り受信信号から下り搬送波が除去された信号に対してベースバンド受信処理を施し、ベースバンド受信処理により得られた受信信号をレイヤ2処理部224に出力する。ベースバンド受信処理には、例示的に、下りスケジューリング情報を用いた復号が含まれてよい。下りスケジューリング情報は、例えば、無線基地局210から受信したデータの制御情報に含まれてよい。 The baseband reception unit 223 performs baseband reception processing on the signal from which the downlink carrier wave has been removed from the downlink reception signal by the RF reception unit 222, and the reception signal obtained by the baseband reception processing is sent to the layer 2 processing unit 224. Output. For example, the baseband reception process may include decoding using downlink scheduling information. The downlink scheduling information may be included in the control information of data received from the radio base station 210, for example.
 レイヤ2処理部224は、レイヤ2に関する種々の処理を行なう。一例として、レイヤ2処理部224は、無線リソースの割り当てやHARQ再送制御等に関するMedium Access Control(MAC)層に関する処理を行なってよい。例えば、レイヤ2処理部224は、ベースバンド受信部223から入力される受信信号等を用いてACK/NACK等の決定を行なってよい。また、レイヤ2処理部224は、UE220のプロセッサ325(図12参照)との間で、受信した受信信号や送信する送信信号の受け渡しを行なってよい。なお、送信信号には、ユーザデータや種々の制御情報(例えばACK応答)が含まれてもよい。 The layer 2 processing unit 224 performs various processes related to layer 2. As an example, the layer 2 processing unit 224 may perform processing related to a Medium Access Control (MAC) layer related to radio resource allocation, HARQ retransmission control, and the like. For example, the layer 2 processing unit 224 may determine ACK / NACK or the like using the received signal or the like input from the baseband receiving unit 223. Further, the layer 2 processing unit 224 may exchange the received reception signal and the transmission signal to be transmitted with the processor 325 of the UE 220 (see FIG. 12). The transmission signal may include user data and various control information (for example, ACK response).
 ベースバンド送信部225は、レイヤ2処理部224から入力された送信信号に対してベースバンド送信処理を施し、ベースバンド送信処理により得られた上りベースバンド信号をRF送信部226に出力する。ベースバンド送信処理には、例示的に、上りスケジューリング情報を用いた符号化が含まれてよい。上りスケジューリング情報は、例えば、無線基地局210から受信したデータの制御情報に含まれてよい。 The baseband transmission unit 225 performs baseband transmission processing on the transmission signal input from the layer 2 processing unit 224 and outputs an uplink baseband signal obtained by the baseband transmission processing to the RF transmission unit 226. For example, the baseband transmission process may include encoding using uplink scheduling information. The uplink scheduling information may be included in the control information of data received from the radio base station 210, for example.
 RF送信部226は、上りベースバンド信号について所定の送信処理を施して上り変調信号を生成し、生成した上り変調信号をアンテナ221に出力する。送信処理には、例示的に、信号の変調、無線周波数への周波数変換(アップコンバート)、電力増幅等が含まれてもよい。 The RF transmission unit 226 performs predetermined transmission processing on the uplink baseband signal to generate an uplink modulated signal, and outputs the generated uplink modulated signal to the antenna 221. The transmission processing may include, for example, signal modulation, frequency conversion to radio frequency (up-conversion), power amplification, and the like.
 上述したRF受信部222及びベースバンド受信部223の少なくとも1つは、一実施形態に係るUE120の受信系の処理を行なう受信部228の一例である。受信部228は、無線基地局110との時分割複信(TDD)通信に用いる無線リソースにおいて、第1のデータを、第2のデータよりも時間的に先行するタイミングで多重した送信データを、無線基地局110から受信してよい。 At least one of the RF reception unit 222 and the baseband reception unit 223 described above is an example of the reception unit 228 that performs processing of the reception system of the UE 120 according to an embodiment. The receiving unit 228, in the radio resource used for time division duplex (TDD) communication with the radio base station 110, transmission data obtained by multiplexing the first data at a timing temporally preceding the second data, You may receive from the wireless base station 110. FIG.
 また、上述したベースバンド送信部225、RF送信部226、及びレイヤ2処理部224の少なくとも1つは、一実施形態に係るUE120の送信系の処理を行なう送信部229の一例である。送信部229は、上記無線リソースにおいて、第1のデータの受信成功又は受信失敗、あるいは、復号成功又は復号失敗を示す第1の応答情報を無線基地局110宛に送信してよい。 Further, at least one of the baseband transmission unit 225, the RF transmission unit 226, and the layer 2 processing unit 224 described above is an example of the transmission unit 229 that performs processing of the transmission system of the UE 120 according to an embodiment. The transmission unit 229 may transmit, to the radio base station 110, the first response information indicating the reception success or reception failure of the first data, or the decoding success or the decoding failure in the radio resource.
 次に、図12を参照して、UE320のハードウェア構成例について説明する。図12に示すように、UE320は、例示的に、アンテナ321、RF回路322、IC323、プロセッサ325、並びに、記憶領域324及び326を備えてよい。 Next, a hardware configuration example of the UE 320 will be described with reference to FIG. As shown in FIG. 12, the UE 320 may illustratively include an antenna 321, an RF circuit 322, an IC 323, a processor 325, and storage areas 324 and 326.
 アンテナ321は、図11に示すアンテナ221の一例であり、無線基地局310との間で無線信号の送受信を行なってよい。RF回路322は、図11に示すRF受信部222及びRF送信部226の一例である。なお、RF回路322は、RF受信部222とRF送信部226とで別々に設けられてもよい。 The antenna 321 is an example of the antenna 221 shown in FIG. 11 and may transmit and receive a radio signal to and from the radio base station 310. The RF circuit 322 is an example of the RF receiver 222 and the RF transmitter 226 shown in FIG. Note that the RF circuit 322 may be provided separately for the RF receiver 222 and the RF transmitter 226.
 IC323は、図11に示すベースバンド受信部223及びベースバンド送信部225の一例である。プロセッサ325は、図11に示すレイヤ2処理部224の一例である。 The IC 323 is an example of the baseband receiving unit 223 and the baseband transmitting unit 225 shown in FIG. The processor 325 is an example of the layer 2 processing unit 224 illustrated in FIG.
 IC323及びプロセッサ325は、それぞれ種々の制御や演算を行なってよい。IC323及びプロセッサ325としては、それぞれ、例えば、CPU、MPU、DSP、ASIC、又は、FPGA等の集積回路(IC)が挙げられる。 The IC 323 and the processor 325 may perform various controls and operations, respectively. Examples of the IC 323 and the processor 325 include an integrated circuit (IC) such as a CPU, MPU, DSP, ASIC, or FPGA, respectively.
 記憶領域324及び326は、それぞれ、IC323及びプロセッサ325に用いられ、制御情報やユーザデータ等の種々のデータ及びプログラム等の情報を格納するハードウェアの一例である。記憶領域324及び326としては、それぞれ、例えば、揮発性メモリ及び不揮発性メモリの少なくとも一方が用いられてよい。揮発性メモリとしては、例えばRAMが挙げられる。不揮発性メモリとしては、例えばROM、フラッシュメモリ、又は、EEPROM等が挙げられる。 Storage areas 324 and 326 are examples of hardware used for the IC 323 and the processor 325, respectively, for storing various data such as control information and user data, and information such as programs. As the storage areas 324 and 326, for example, at least one of a volatile memory and a nonvolatile memory may be used, respectively. Examples of the volatile memory include a RAM. Examples of the non-volatile memory include ROM, flash memory, EEPROM, and the like.
 例えば、IC323及びプロセッサ325は、それぞれ、記憶領域324及び326に格納されたプログラムを実行することにより、図11に示すUE220の機能を実現できる。 For example, the IC 323 and the processor 325 can implement the functions of the UE 220 shown in FIG. 11 by executing the programs stored in the storage areas 324 and 326, respectively.
 〔1-4〕動作例
 次に、図13~図16を参照して、上述の如く構成された無線通信システム100の動作例について、図9及び図11に示す無線基地局210及びUE220の機能構成例を用いて説明する。
[1-4] Operation Example Next, with reference to FIG. 13 to FIG. 16, an operation example of the radio communication system 100 configured as described above will be described. This will be described using a configuration example.
 〔1-4-1〕スケジューリング処理
 図13に例示するように、無線基地局210のスケジューリング部214は、ベースバンド送信部216からユーザ(例えばUE220)ごとの送信バッファサイズを取得する。そして、スケジューリング部214は、送信バッファサイズが“0”よりも大きいUE220、換言すれば、送信すべきデータのあるUE220をスケジューリング対象として抽出する(ステップP11)。なお、送信バッファには、例えば回線終端部215により、ユーザごとに当該ユーザを宛先としたデータ等が格納されてよい。
[1-4-1] Scheduling Process As illustrated in FIG. 13, the scheduling unit 214 of the radio base station 210 acquires a transmission buffer size for each user (for example, UE 220) from the baseband transmission unit 216. Then, scheduling section 214 extracts UE 220 having a transmission buffer size larger than “0”, in other words, UE 220 having data to be transmitted as a scheduling target (step P11). In the transmission buffer, for example, the line termination unit 215 may store, for each user, data or the like destined for the user.
 スケジューリング部214は、抽出したUE220の中から該当タイミングで送信するUE220を選択する(ステップP12)。UE220の選択の手法としては、例えば、ラウンドロビンによる選択や、Proportional Fairness(PF)に基づく選択等が挙げられる。 The scheduling unit 214 selects the UE 220 to be transmitted from the extracted UE 220 at the corresponding timing (Step P12). Examples of the selection method of the UE 220 include selection based on round robin and selection based on Proportional Fairness (PF).
 スケジューリング部214は、選択したUE220について低遅延データのバッファサイズに基づき、低遅延データの送信ブロックサイズ、変調方式、符号化率等に関するスケジューリングパラメータを決定する(ステップP13)。 The scheduling unit 214 determines scheduling parameters related to the transmission block size of low delay data, modulation scheme, coding rate, and the like based on the buffer size of low delay data for the selected UE 220 (step P13).
 また、スケジューリング部214は、選択したUE220について遅延許容データのバッファサイズに基づき、遅延許容データの送信ブロックサイズ、変調方式、符号化率等に関するスケジューリングパラメータを決定する(ステップP14)。 Further, the scheduling unit 214 determines scheduling parameters related to the transmission block size of the delay allowable data, the modulation scheme, the coding rate, and the like based on the buffer size of the delay allowable data for the selected UE 220 (Step P14).
 そして、スケジューリング部214は、低遅延データ及び遅延許容データのそれぞれのデータのスケジューリングパラメータを含むスケジューリング情報をベースバンド送信部216に通知し(ステップP15)、スケジューリング処理が終了する。 Then, the scheduling unit 214 notifies the baseband transmission unit 216 of scheduling information including the scheduling parameters for each of the low delay data and the delay allowable data (step P15), and the scheduling process ends.
 なお、ステップP15でベースバンド送信部216に通知されるスケジューリング情報には、低遅延データ及び遅延許容データの少なくとも一方についてのACK応答タイミングが含まれてもよい。ACK応答タイミングは、例えば、ステップP13及びP14において決定されてもよい。ACK応答タイミングは、例えば、UE220の種別や能力等に応じて決定されてよい。 Note that the scheduling information notified to the baseband transmission unit 216 in step P15 may include an ACK response timing for at least one of low delay data and delay allowable data. The ACK response timing may be determined, for example, in steps P13 and P14. The ACK response timing may be determined according to, for example, the type and capability of the UE 220.
 〔1-4-2〕ベースバンド処理
 図14に例示するように、無線基地局210のベースバンド送信部216及びRF送信部217は、スケジューリング部214からスケジューリング情報を受信すると、当該スケジューリング情報に基づいて下り送信データを生成する。
[1-4-2] Baseband Processing As illustrated in FIG. 14, when the baseband transmission unit 216 and the RF transmission unit 217 of the radio base station 210 receive the scheduling information from the scheduling unit 214, the baseband transmission unit 216 and the RF transmission unit 217, based on the scheduling information, To generate downlink transmission data.
 例えば、ベースバンド送信部216は、スケジューリング情報で通知された周波数リソースについて、リファレンス信号を生成する。そして、ベースバンド送信部216は、リファレンス信号がマッピングされることが予め定められた時間周波数リソースにマッピングを行なう(ステップP21)。 For example, the baseband transmission unit 216 generates a reference signal for the frequency resource notified by the scheduling information. Then, the baseband transmission unit 216 performs mapping on a time-frequency resource in which the reference signal is mapped in advance (Step P21).
 また、ベースバンド送信部216は、RF送信部217とともに、スケジューリング情報を用いて、低遅延データ及び遅延許容データの双方の送信情報を含む下り制御情報について符号化及び変調処理を行なう。そして、ベースバンド送信部216は、変調した下り制御情報について、スケジューリング情報で通知された周波数リソースに対して、下り制御情報がマッピングされることが予め定められた時間周波数リソースにマッピングを行なう(ステップP22)。 Also, the baseband transmission unit 216 performs coding and modulation processing on downlink control information including transmission information of both low delay data and delay allowable data using scheduling information together with the RF transmission unit 217. Then, the baseband transmission unit 216 maps the modulated downlink control information to the time frequency resource in which the downlink control information is predetermined to be mapped to the frequency resource notified by the scheduling information (step) P22).
 なお、無線基地局210は、例えば、下り制御情報を用いてUE220にACK応答タイミングを通知してもよい。ACK応答タイミングを通知する場合、ベースバンド送信部216は、スケジューリング部214から通知されたACK応答タイミングの情報を下り制御情報に多重してよい。 Note that the radio base station 210 may notify the UE 220 of the ACK response timing using downlink control information, for example. When notifying the ACK response timing, the baseband transmission unit 216 may multiplex the ACK response timing information notified from the scheduling unit 214 with the downlink control information.
 さらに、ベースバンド送信部216は、RF送信部217とともに、スケジューリング情報を用いて、低遅延データの符号化及び変調処理を行なう。そして、ベースバンド送信部216は、変調した低遅延データについて、スケジューリング情報で通知された低遅延データ送信用の時間周波数リソースにマッピングを行なう(ステップP23)。 Further, the baseband transmission unit 216 performs encoding and modulation processing of low-delay data using scheduling information together with the RF transmission unit 217. Then, the baseband transmission unit 216 maps the modulated low delay data to the time frequency resource for low delay data transmission notified by the scheduling information (step P23).
 また、ベースバンド送信部216は、RF送信部217とともに、スケジューリング情報に基づき、遅延許容データの符号化及び変調処理を行なう。そして、ベースバンド送信部216は、変調した遅延許容データについて、スケジューリング情報で通知された遅延許容データ送信用の時間周波数リソースにマッピングを行ない(ステップP24)、ベースバンド処理が終了する。 Also, the baseband transmission unit 216 performs encoding and modulation processing of allowable delay data based on the scheduling information together with the RF transmission unit 217. Then, the baseband transmission unit 216 maps the modulated delay allowable data to the time frequency resource for delay allowable data transmission notified by the scheduling information (step P24), and the baseband processing ends.
 なお、ステップP21~P24により生成された下り送信データは、RF送信部217により残りの送信処理が施され、アンテナ211を介してUE220に送信される。 Note that the downlink transmission data generated in steps P 21 to P 24 is subjected to the remaining transmission processing by the RF transmission unit 217 and transmitted to the UE 220 via the antenna 211.
 〔1-4-3〕受信処理
 図15に例示するように、UE220のRF受信部222及びベースバンド受信部223は、無線基地局210からのリファレンス信号を受信し(ステップP31)、受信したリファレンス信号に基づいてチャネル推定を実施する(ステップP32)。
[1-4-3] Reception Processing As illustrated in FIG. 15, the RF reception unit 222 and the baseband reception unit 223 of the UE 220 receive the reference signal from the radio base station 210 (step P31), and receive the received reference. Channel estimation is performed based on the signal (step P32).
 そして、RF受信部222及びベースバンド受信部223は、チャネル推定結果を用いて、下り制御信号の復調及び復号を行ない(ステップP33)、低遅延データの復調及び復号を行なう(ステップP34)。 Then, the RF receiver 222 and the baseband receiver 223 use the channel estimation result to demodulate and decode the downlink control signal (step P33), and demodulate and decode the low delay data (step P34).
 ベースバンド受信部223は、低遅延データの復調及び復号結果を用いて、ACK又はNACKを決定し、決定したACK又はNACKを示す情報をフィードバック情報としてベースバンド送信部225に通知する(ステップP35)。 The baseband receiving unit 223 determines ACK or NACK using the demodulation and decoding results of the low delay data, and notifies the baseband transmitting unit 225 of information indicating the determined ACK or NACK as feedback information (step P35). .
 RF受信部222及びベースバンド受信部223は、チャネル推定結果を用いて、遅延許容データの復調及び復号を行ない(ステップP36)、受信処理が終了する。 The RF reception unit 222 and the baseband reception unit 223 use the channel estimation result to demodulate and decode the delay tolerance data (step P36), and the reception process ends.
 なお、復号された低遅延データ及び遅延許容データは、それぞれレイヤ2処理部224に出力されてよい。 Note that the decoded low-delay data and delay-allowed data may be output to the layer 2 processing unit 224, respectively.
 〔1-4-4〕送信処理
 図16に例示するように、UE220は、無線基地局210から受信した下り制御情報に多重されているACK応答タイミングに基づきACK/NACK応答の送信を実施してよい。
[1-4-4] Transmission Process As illustrated in FIG. 16, the UE 220 transmits an ACK / NACK response based on the ACK response timing multiplexed in the downlink control information received from the radio base station 210. Good.
 例えば、UE220のレイヤ2処理部224及びベースバンド送信部225は、ACK及びNACKの双方のフィードバック送信データを生成する(ステップP41)。 For example, the layer 2 processing unit 224 and the baseband transmission unit 225 of the UE 220 generate feedback transmission data for both ACK and NACK (step P41).
 そして、ベースバンド送信部225は、ベースバンド受信部223からのフィードバック情報の通知を待つ(ステップP42)。フィードバック情報は、例えば、図15のステップP35においてベースバンド受信部223から通知されてよい。 Then, the baseband transmission unit 225 waits for feedback information notification from the baseband reception unit 223 (step P42). The feedback information may be notified from the baseband receiving unit 223 in step P35 of FIG. 15, for example.
 ベースバンド送信部225は、通知されたフィードバック情報がACKか否かを判定する(ステップP43)。フィードバック情報がACKの場合(ステップP43でYes)、ベースバンド送信部225は、RF送信部226とともに、ステップP41で生成したACKのフィードバック送信データをマッピングして無線基地局210に送信する(ステップP44)。 The baseband transmission unit 225 determines whether or not the notified feedback information is ACK (step P43). When the feedback information is ACK (Yes in Step P43), the baseband transmission unit 225 maps the ACK feedback transmission data generated in Step P41 together with the RF transmission unit 226 and transmits it to the radio base station 210 (Step P44). ).
 一方、フィードバック情報がNACKの場合(ステップP43でNo)、ベースバンド送信部225は、RF送信部226とともに、ステップP41で生成したNACKのフィードバック送信データをマッピングして無線基地局210に送信する(ステップP45)。 On the other hand, when the feedback information is NACK (No in Step P43), the baseband transmission unit 225 maps the NACK feedback transmission data generated in Step P41 together with the RF transmission unit 226, and transmits the mapped data to the radio base station 210 ( Step P45).
 以上により、UE220による送信処理が終了する。 Thus, the transmission process by the UE 220 is completed.
 なお、図16に例示する送信処理のACK応答タイミングは、UE220毎に予め定められてもよい。例えば、上位レイヤによるUE220に対するパラメータ設定によってUE220に対してACK応答タイミングが設定されてもよい。また、例えば、報知情報によって設定されてもよい。これらのACK応答タイミングは、少なくとも低遅延データ用と遅延許容データ用とでそれぞれ個別に設定されてもよい。このように、UE220は、これらの予め設定されたACK応答タイミングを用いてACK応答を実施してもよい。 Note that the ACK response timing of the transmission process illustrated in FIG. 16 may be determined for each UE 220 in advance. For example, the ACK response timing may be set for the UE 220 by the parameter setting for the UE 220 by the higher layer. Further, for example, the notification information may be set. These ACK response timings may be individually set for at least low delay data and delay tolerance data. Thus, UE220 may implement an ACK response using these preset ACK response timings.
 〔1-5〕変形例
 一実施形態に係る手法は以下の(I)~(IX)のいずれか、又は、これらの2以上の組み合わせに従って変形してもよい。
[1-5] Modification Examples The method according to the embodiment may be modified according to any one of the following (I) to (IX) or a combination of two or more thereof.
 (I)一実施形態において、無線基地局110は、UE120に対して、低遅延データを遅延許容データよりも時間的に先行するタイミングで多重した下り送信データを送信するものとしたが、これに限定されるものではない。 (I) In one embodiment, the radio base station 110 transmits, to the UE 120, downlink transmission data in which low-delay data is multiplexed at a timing that precedes the delay allowable data in time. It is not limited.
 一例として、UE120は、無線基地局110から低遅延データを受信した後、ACK応答の処理時間を確保するためにULデータを送信してもよい。すなわち、遅延許容データを送信する下り無線リソースについて、下りのデータを無線基地局110が送信する代わりに、UE120が無線基地局110に対して上りのデータを送信してもよい。 As an example, after receiving low-delay data from the radio base station 110, the UE 120 may transmit UL data in order to ensure the processing time of the ACK response. That is, for the downlink radio resource for transmitting delay tolerance data, the UE 120 may transmit uplink data to the radio base station 110 instead of the downlink data being transmitted by the radio base station 110.
 図17は、UE120が低遅延データを受信した後にULデータを送信する例を示す図である。図17に示すように、UE120は、ULデータ送信処理として、ULデータの送信を指示する制御信号を受信し、制御信号に基づきデータの符号化及び変調等の処理を行ない、変調したULデータを無線基地局110宛に送信してよい。また、UE120は、ACK応答処理として、DLデータを復調及び復号し、復調及び復号結果に基づき無線基地局110宛にACKを送信してよい。 FIG. 17 is a diagram illustrating an example in which the UE 120 transmits UL data after receiving low-delay data. As shown in FIG. 17, the UE 120 receives a control signal instructing transmission of UL data as UL data transmission processing, performs processing such as data encoding and modulation based on the control signal, and transmits the modulated UL data. It may be transmitted to the radio base station 110. Further, as the ACK response process, the UE 120 may demodulate and decode DL data, and transmit ACK to the radio base station 110 based on the demodulation and decoding results.
 このように、UE120は、送信系(例えば図11のベースバンド送信部225及びRF送信部226等)がULデータ送信を行なうことにより、受信系(例えば図11のRF受信部222及びベースバンド受信部223)でのDLデータの受信時間を確保できる。 As described above, the UE 120 receives the UL data transmission by the transmission system (for example, the baseband transmission unit 225 and the RF transmission unit 226 in FIG. 11), thereby receiving the reception system (for example, the RF reception unit 222 and the baseband reception in FIG. 11). The reception time of DL data in the unit 223) can be secured.
 他の観点では、UE120によるULデータの符号化処理時間を稼ぐために、無線基地局110は、無線リソースにおいて、無線基地局110による制御信号の送信とUE120によるULデータの送信との間にDLデータ送信を含んでいると捉えることもできる。 In another aspect, in order to increase the encoding processing time of the UL data by the UE 120, the radio base station 110 performs DL between the transmission of the control signal by the radio base station 110 and the transmission of the UL data by the UE 120 in the radio resource. It can also be understood as including data transmission.
 図17について、具体的に説明すると、無線基地局110は、下り信号として、リファレンス信号、制御信号、及び下り低遅延データチャネルを送信した後、UE120からの上りデータチャネル、及びACK応答を受信してよい。制御信号は、UE120において下り低遅延データチャネルを復調及び復号するための第1の情報と、UE120において上りデータチャネルを送信するための第2の情報と、を含んでよい。なお、第1及び第2の情報は、それぞれ、スケジューリング情報であってよい。 Referring to FIG. 17 in detail, the radio base station 110 receives the uplink data channel and the ACK response from the UE 120 after transmitting the reference signal, the control signal, and the downlink low delay data channel as the downlink signal. It's okay. The control signal may include first information for demodulating and decoding the downlink low delay data channel in the UE 120 and second information for transmitting the uplink data channel in the UE 120. Note that the first information and the second information may each be scheduling information.
 UE120は無線基地局110から送信されたリファレンス信号、制御信号、及び下り低遅延データチャネルを受信し、リファレンス信号を利用して制御信号の復調及び復号を行なって制御信号に多重されているスケジューリング情報を取得してよい。 The UE 120 receives the reference signal, the control signal, and the downlink low delay data channel transmitted from the radio base station 110, demodulates and decodes the control signal using the reference signal, and is multiplexed on the control signal. You may get.
 次に、UE120は、リファレンス信号とスケジューリング情報とを利用して下り低遅延データチャネルの復調及び復号を試み、復号結果の成否に従ってACK又はNACKの応答を決定してよい。ここで、スケジューリング情報に上りデータ送信の指示が含まれている場合、UE120は、下り低遅延データチャネルの直後のタイミングで上りデータチャネルの送信が可能となるように、上りデータの符号化及び変調処理を行なってよい。そして、UE120は、変調した上りデータチャネルを無線基地局110宛に送信してよい。 Next, the UE 120 may attempt to demodulate and decode the downlink low-delay data channel using the reference signal and the scheduling information, and determine an ACK or NACK response according to the success or failure of the decoding result. Here, when the uplink information transmission instruction is included in the scheduling information, the UE 120 encodes and modulates the uplink data so that the uplink data channel can be transmitted at a timing immediately after the downlink low delay data channel. Processing may be performed. Then, the UE 120 may transmit the modulated uplink data channel to the radio base station 110.
 このように、図17の例において、無線基地局110からUE120への送信データは、第1のデータの受信に用いる第1の情報と第2のデータの送信に用いる第2の情報とを含む制御情報と、第1のデータとを多重したデータであってよい。 As described above, in the example of FIG. 17, the transmission data from the radio base station 110 to the UE 120 includes the first information used for receiving the first data and the second information used for transmitting the second data. It may be data in which the control information and the first data are multiplexed.
 また、無線基地局110は、UE120により制御情報に含まれる第2の情報を用いて生成された第2のデータであって、送信データの第1のデータの多重タイミングよりも後においてUE120から送信された第2のデータを受信してよい。さらに、無線基地局110は、UE120により制御情報に含まれる第1の情報を用いて判定された応答情報であって、第2のデータの送信タイミングよりも後においてUE120から送信された応答情報を受信してよい。 Also, the radio base station 110 is second data generated by the UE 120 using the second information included in the control information, and is transmitted from the UE 120 after the multiplexing timing of the first data of the transmission data. Second data may be received. Furthermore, the radio base station 110 is response information determined by the UE 120 using the first information included in the control information, and the response information transmitted from the UE 120 after the transmission timing of the second data. You may receive it.
 (II)無線基地局110は、第1のデータに対して端末個別のシーケンス、例えばUE120個別のシーケンスによりスクランブルを行ない、第2のデータに対してセル共通のシーケンスによりスクランブルを行なってもよい。第2のデータは、例えば、セル内の他の無線端末によってもデスクランブルされてよい。 (II) The radio base station 110 may scramble the first data by a terminal-specific sequence, for example, a UE120-specific sequence, and scramble the second data by a cell-common sequence. The second data may be descrambled by other wireless terminals in the cell, for example.
 (III)無線基地局110は、第1のデータを端末個別のリファレンス信号、例えばUE120個別のリファレンス信号を用いて符号化し、第2のデータをセル共通のリファレンス信号を用いて符号化してもよい。UE120は、第1のデータを端末個別のリファレンス信号、例えばUE120個別のリファレンス信号を用いて復調し、第2のデータをセル共通のリファレンス信号を用いて復調してもよい。なお、セル共通のリファレンス信号は、無線基地局110からのBCH等の報知情報又は共通情報に含まれてもよい。 (III) The radio base station 110 may encode the first data using a terminal-specific reference signal, for example, a UE120-specific reference signal, and encode the second data using a cell-common reference signal. . The UE 120 may demodulate the first data using a terminal-specific reference signal, for example, a UE 120-specific reference signal, and demodulate the second data using a cell-common reference signal. In addition, the reference signal common to cells may be included in broadcast information such as BCH from the radio base station 110 or common information.
 (IV)第1のデータに付加されるCyclic Redundancy Check(CRC)等の誤り検出符号と、第2のデータに付加される誤り検出符号とは、異なるデータ長を有してもよい。例えば、第1のデータに付加される誤り検出符号を、第2のデータに付加される誤り検出符号よりも短くすることで、第1のデータに対する誤り検出及び誤り訂正等の処理時間を短くできる。これにより、UE120が第1のデータを受信してからACK応答を送信するまでの時間を短縮できる。 (IV) The error detection code such as Cyclic Redundancy Check (CRC) added to the first data and the error detection code added to the second data may have different data lengths. For example, by shortening the error detection code added to the first data than the error detection code added to the second data, the processing time for error detection and error correction for the first data can be shortened. . Thereby, time until UE120 transmits ACK response after receiving 1st data can be shortened.
 (V)無線基地局110は、第1のデータに対する符号化方式、及び、第2のデータに対する符号化方式について、互いに異なる符号化方式を適用してもよい。 (V) The radio base station 110 may apply different encoding methods to the encoding method for the first data and the encoding method for the second data.
 (VI)無線基地局110は、第1のデータに対してはDynamic Schedulingを行ない、第2のデータに対してはSemi-Persistent Scheduling(SPS)又はPersistent Schedulingを行なってもよい。 (VI) The radio base station 110 may perform dynamic scheduling on the first data and perform semi-persistent scheduling (SPS) or persistent scheduling on the second data.
 (VII)一実施形態において、無線基地局110からUE120宛の下り送信データにおけるデータ領域には、1つ(例えば第1)又は2つ(例えば第1及び第2)のデータが含まれるものとしたが、3つ以上のデータが含まれてもよい。データ領域に多重されるデータ数n(nは1以上の整数)、及び、n個のデータの選択は、例えば、無線基地局110により、n個のデータのうちの第1のデータに対するACK/NACKの決定に要する時間と、残りのデータの受信時間と、から決定されてもよい。 (VII) In one embodiment, the data area in the downlink transmission data addressed to the UE 120 from the radio base station 110 includes one (for example, first) or two (for example, first and second) data. However, three or more data may be included. The number n of data multiplexed in the data area (n is an integer of 1 or more) and the selection of n data are performed by, for example, the ACK / It may be determined from the time required to determine NACK and the reception time of the remaining data.
 一例として、無線基地局110は、第1のデータに対するACK/NACKの決定に要する時間よりも短い受信時間且つ最大の受信時間となるように、第1のデータとともに多重するデータ及びデータ数を決定してよい。なお、図6を用いて説明した制御情報には、第1のデータとともに多重されるデータ毎に個別の制御情報が設定されてもよい。 As an example, the radio base station 110 determines the data and the number of data to be multiplexed together with the first data so that the reception time is shorter and the maximum reception time than the time required for ACK / NACK determination for the first data. You can do it. In the control information described with reference to FIG. 6, individual control information may be set for each data multiplexed together with the first data.
 (VIII)データ領域に多重されるデータ数nが2以上の場合、無線基地局110は、データ領域における第2のデータ及びそれ以降のデータの開始位置を、例えば、サブフレーム内に含まれるそれぞれのデータのOFDMシンボルの番号で表現してよい。このような開始位置は、例えば、図6を用いて説明した制御情報に設定されてよい。 (VIII) When the number n of data multiplexed in the data area is 2 or more, the radio base station 110 includes the start position of the second data and subsequent data in the data area, for example, included in each subframe. May be expressed by the OFDM symbol number of the data. Such a start position may be set, for example, in the control information described with reference to FIG.
 (IX)無線基地局110は、第1のデータに対するHARQ ACKフィードバックの送信タイミング、及び、第2のデータに対するHARQ ACKフィードバックの送信タイミングを、例えば、以下のように指定してもよい。
  Timing=0はHARQ ACKフィードバック不要
  Timing=1は同一サブフレーム内でHARQ ACKフィードバックを送信する
  Timing=2は次のサブフレーム内でHARQ ACKフィードバックを送信する
(IX) The radio base station 110 may specify the transmission timing of HARQ ACK feedback for the first data and the transmission timing of HARQ ACK feedback for the second data as follows, for example.
Timing = 0 does not require HARQ ACK feedback Timing = 1 transmits HARQ ACK feedback in the same subframe Timing = 2 transmits HARQ ACK feedback in the next subframe
 〔2〕その他
 上述した実施形態及び変形例は、各実施形態の趣旨を逸脱しない範囲で種々変形して実施することができる。各実施形態の各構成及び各処理は、必要に応じて取捨選択することができ、あるいは適宜組み合わせてもよい。
[2] Others The embodiments and modifications described above can be implemented with various modifications without departing from the spirit of each embodiment. Each configuration and each process of each embodiment can be selected as necessary, or may be appropriately combined.
 100  無線通信システム
 110、210、310  基地局
 120、220、320  無線端末
 130  上位装置
 140  上位ネットワーク
 211、221、311、321  アンテナ
 212、222  RF受信部
 213、223  ベースバンド受信部
 214  スケジューリング部
 215  回線終端部
 216、225  ベースバンド送信部
 217、226  RF送信部
 218、229  送信部
 219、228  受信部
 224  レイヤ2処理部
 312、322  RF回路
 313、323  IC
 314、316、324、326  記憶領域
 315、325  プロセッサ
 317  ネットワークIF
100 Wireless communication system 110, 210, 310 Base station 120, 220, 320 Wireless terminal 130 Host device 140 Host network 211, 221, 311, 321 Antenna 212, 222 RF receiver 213, 223 Baseband receiver 214 Scheduling unit 215 Line Terminator 216, 225 Baseband transmitter 217, 226 RF transmitter 218, 229 Transmitter 219, 228 Receiver 224 Layer 2 processor 312, 322 RF circuit 313, 323 IC
314, 316, 324, 326 Storage area 315, 325 Processor 317 Network IF

Claims (17)

  1.  無線端末との時分割複信(TDD)通信に用いる無線リソースにおいて、第1のデータを、前記第1のデータよりも遅延許容度の高い第2のデータよりも時間的に先行するタイミングで多重した送信データを生成して、前記送信データを前記無線端末宛に送信する送信部と、
     前記送信データを受信した前記無線端末から、前記無線リソースにおいて、前記第1のデータの受信成功又は受信失敗、あるいは、復号成功又は復号失敗を示す第1の応答情報を受信する受信部と、を備える、基地局。
    In a radio resource used for time division duplex (TDD) communication with a radio terminal, the first data is multiplexed at a timing that precedes the second data having a higher delay tolerance than the first data. A transmission unit that generates the transmitted data and transmits the transmission data to the wireless terminal;
    A receiving unit that receives, from the wireless terminal that has received the transmission data, first response information indicating successful reception or reception failure of the first data or successful decoding or decoding failure in the wireless resource; A base station.
  2.  前記送信データは、前記第1のデータと前記第2のデータとを時分割多重したデータであり、
     前記受信部は、前記送信データの前記第2のデータの時分割多重タイミングよりも後において前記無線端末から送信された、前記第1の応答情報を受信する、請求項1に記載の基地局。
    The transmission data is data obtained by time-division multiplexing the first data and the second data,
    The base station according to claim 1, wherein the reception unit receives the first response information transmitted from the wireless terminal after time division multiplexing timing of the second data of the transmission data.
  3.  前記送信データは、前記第1のデータと前記第2のデータとを空間多重したデータであり、
     前記受信部は、前記送信データの前記第2のデータの空間多重タイミングよりも時間的に先行するタイミングにおいて前記無線端末から送信された、前記第1の応答情報を受信する、請求項1に記載の基地局。
    The transmission data is data obtained by spatially multiplexing the first data and the second data,
    The reception unit receives the first response information transmitted from the wireless terminal at a timing temporally preceding the spatial multiplexing timing of the second data of the transmission data. Base station.
  4.  前記第2のデータは、前記基地局から前記無線端末を含む複数の無線端末の各々に対して送信される報知情報である、請求項1~3のいずれか1項に記載の基地局。 The base station according to any one of claims 1 to 3, wherein the second data is broadcast information transmitted from the base station to each of a plurality of wireless terminals including the wireless terminal.
  5.  前記第2のデータは、シグナリングアクセスベアラ(SRB)において伝送されるデータである、請求項1~3のいずれか1項に記載の基地局。 The base station according to any one of claims 1 to 3, wherein the second data is data transmitted in a signaling access bearer (SRB).
  6.  前記送信データは、前記第1の応答情報についての第1の送信タイミングを示す第1の制御情報、及び、前記第2のデータの受信成功又は受信失敗、あるいは、復号成功又は復号失敗を示す第2の応答情報についての第2の送信タイミングを示す第2の制御情報、の少なくとも一方を含む、請求項1~5のいずれか1項に記載の基地局。 The transmission data includes first control information indicating a first transmission timing for the first response information, and a second reception success or reception failure of the second data, or a decoding success or a decoding failure. 6. The base station according to claim 1, comprising at least one of second control information indicating second transmission timing for the two response information.
  7.  前記送信部は、前記第1の応答情報についての第1の送信タイミングを示す情報、及び、前記第2のデータの受信成功又は受信失敗、あるいは、復号成功又は復号失敗を示す第2の応答情報についての第2の送信タイミングを示す情報、の少なくとも一方を、前記送信データの送信よりも前に前記無線端末に通知する、請求項1~5のいずれか1項に記載の基地局。 The transmission unit includes information indicating a first transmission timing for the first response information, and second response information indicating reception success or reception failure of the second data, or decoding success or decoding failure. The base station according to any one of claims 1 to 5, wherein at least one of the information indicating the second transmission timing is notified to the wireless terminal prior to transmission of the transmission data.
  8.  前記第2の送信タイミングを示す情報は、前記第2の応答情報の送信が不要である旨を含む、請求項6又は請求項7に記載の基地局。 The base station according to claim 6 or 7, wherein the information indicating the second transmission timing includes that the transmission of the second response information is unnecessary.
  9.  前記送信部は、前記第1のデータに対して前記無線端末個別のシーケンスによりスクランブルを行ない、前記第2のデータに対して前記基地局が提供するセル内で共通のシーケンスによりスクランブルを行なう、請求項1~8のいずれか1項に記載の基地局。 The transmitting unit scrambles the first data according to a sequence specific to the wireless terminal, and scrambles the second data according to a common sequence within a cell provided by the base station. Item 9. The base station according to any one of Items 1 to 8.
  10.  前記送信部は、前記第1のデータを前記無線端末個別のリファレンス信号を用いて符号化し、前記第2のデータを前記基地局が提供するセル内で共通のリファレンス信号を用いて符号化する、請求項1~9のいずれか1項に記載の基地局。 The transmission unit encodes the first data using a reference signal specific to the wireless terminal, and encodes the second data using a common reference signal in a cell provided by the base station. The base station according to any one of claims 1 to 9.
  11.  前記第1のデータに付加される誤り検出符号と、前記第2のデータに付加される誤り検出符号とが、異なるデータ長を有する、請求項1~10のいずれか1項に記載の基地局。 The base station according to any one of claims 1 to 10, wherein an error detection code added to the first data and an error detection code added to the second data have different data lengths. .
  12.  前記送信部は、前記第1のデータに対する符号化方式、及び、前記第2のデータに対する符号化方式について、互いに異なる符号化方式を用いる、請求項1~11のいずれか1項に記載の基地局。 The base station according to any one of claims 1 to 11, wherein the transmission unit uses different encoding methods for the encoding method for the first data and the encoding method for the second data. Bureau.
  13.  前記送信部は、前記第1のデータに対してはダイナミックスケジューリングを行ない、前記第2のデータに対してはセミパーシステントスケジューリング又はパーシステントスケジューリングを行なう、請求項1~12のいずれか1項に記載の基地局。 The transmission unit according to any one of claims 1 to 12, wherein the transmission unit performs dynamic scheduling for the first data and performs semi-persistent scheduling or persistent scheduling for the second data. The listed base station.
  14.  前記送信データは、前記第1のデータの受信に用いる第1の情報と前記第2のデータの送信に用いる第2の情報とを含む制御情報と、前記第1のデータとを多重したデータであり、
     前記受信部は、
      前記無線端末により前記制御情報に含まれる前記第2の情報を用いて生成された前記第2のデータであって、前記送信データの前記第1のデータの多重タイミングよりも後において前記無線端末から送信された前記第2のデータを受信し、
      前記無線端末により前記制御情報に含まれる前記第1の情報を用いて判定された前記応答情報であって、前記第2のデータの送信タイミングよりも後において前記無線端末から送信された前記応答情報を受信する、請求項1に記載の基地局。
    The transmission data is data obtained by multiplexing the first data and control information including first information used for receiving the first data and second information used for transmitting the second data. Yes,
    The receiver is
    The second data generated by the wireless terminal using the second information included in the control information, from the wireless terminal after the multiplexing timing of the first data of the transmission data Receiving the transmitted second data;
    The response information determined by the wireless terminal using the first information included in the control information, the response information transmitted from the wireless terminal after the transmission timing of the second data The base station according to claim 1, wherein the base station is received.
  15.  基地局との時分割複信(TDD)通信に用いる無線リソースにおいて、第1のデータを、前記第1のデータよりも遅延許容度の高い第2のデータよりも時間的に先行するタイミングで多重した送信データを、前記基地局から受信する受信部と、
     前記無線リソースにおいて、前記第1のデータの受信成功又は受信失敗、あるいは、復号成功又は復号失敗を示す第1の応答情報を前記基地局宛に送信する送信部と、を備える、無線端末。
    In a radio resource used for time division duplex (TDD) communication with a base station, the first data is multiplexed at a timing that precedes the second data having a higher delay tolerance than the first data. A receiving unit for receiving the transmitted data from the base station;
    A wireless terminal, comprising: a transmission unit configured to transmit first response information indicating success or failure of reception of the first data, or success or failure of decoding of the first data to the base station.
  16.  基地局と、
     無線端末と、を備え、
     前記基地局は、前記無線端末との時分割複信(TDD)通信に用いる無線リソースにおいて、第1のデータを、前記第1のデータよりも遅延許容度の高い第2のデータよりも時間的に先行するタイミングで多重した送信データを生成して、前記送信データを前記無線端末宛に送信し、
     前記無線端末は、前記無線リソースにおいて、前記第1のデータの受信成功又は受信失敗、あるいは、復号成功又は復号失敗を示す第1の応答情報を前記基地局宛に送信する、無線通信システム。
    A base station,
    A wireless terminal,
    In the radio resource used for time division duplex (TDD) communication with the radio terminal, the base station transmits the first data in terms of time more than the second data having a higher delay tolerance than the first data. To generate transmission data multiplexed at a timing preceding the transmission data, and transmit the transmission data to the wireless terminal,
    The wireless communication system, wherein the wireless terminal transmits, to the base station, first response information indicating successful reception or reception failure of the first data or successful decoding or failed decoding in the wireless resource.
  17.  基地局と、無線端末と、を備えた無線通信システムにおける無線通信方法であって、
     前記基地局は、前記無線端末との時分割複信(TDD)通信に用いる無線リソースにおいて、第1のデータを、前記第1のデータよりも遅延許容度の高い第2のデータよりも時間的に先行するタイミングで多重した送信データを生成して、前記送信データを前記無線端末宛に送信し、
     前記無線端末は、前記無線リソースにおいて、前記第1のデータの受信成功又は受信失敗、あるいは、復号成功又は復号失敗を示す第1の応答情報を前記基地局宛に送信する、無線通信方法。
    A wireless communication method in a wireless communication system comprising a base station and a wireless terminal,
    In the radio resource used for time division duplex (TDD) communication with the radio terminal, the base station transmits the first data in terms of time more than the second data having a higher delay tolerance than the first data. To generate transmission data multiplexed at a timing preceding the transmission data, and transmit the transmission data to the wireless terminal,
    The wireless communication method, wherein the wireless terminal transmits, to the base station, first response information indicating success or failure of reception of the first data, or success or failure of decoding of the first data in the wireless resource.
PCT/JP2017/003143 2017-01-30 2017-01-30 Base station, wireless terminal, wireless communication system, and wireless communication method WO2018138905A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018564069A JP7031609B2 (en) 2017-01-30 2017-01-30 Base stations, wireless terminals, wireless communication systems, and wireless communication methods
PCT/JP2017/003143 WO2018138905A1 (en) 2017-01-30 2017-01-30 Base station, wireless terminal, wireless communication system, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003143 WO2018138905A1 (en) 2017-01-30 2017-01-30 Base station, wireless terminal, wireless communication system, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2018138905A1 true WO2018138905A1 (en) 2018-08-02

Family

ID=62978481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003143 WO2018138905A1 (en) 2017-01-30 2017-01-30 Base station, wireless terminal, wireless communication system, and wireless communication method

Country Status (2)

Country Link
JP (1) JP7031609B2 (en)
WO (1) WO2018138905A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574957A (en) * 2019-01-24 2021-10-29 索尼集团公司 Wireless communication apparatus and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3770399B2 (en) * 2001-07-06 2006-04-26 シャープ株式会社 Communication management method, communication management program, recording medium recording communication management program, communication system, communication apparatus, and central management apparatus
JP2009130791A (en) * 2007-11-27 2009-06-11 Nippon Telegr & Teleph Corp <Ntt> Radio slot assigning method, radio transmission system, and base station device
JP2014187655A (en) * 2013-03-25 2014-10-02 Kddi Corp Communication device performing band allocation and band allocation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188106A (en) 2010-03-05 2011-09-22 Sony Corp Wireless communication device, wireless communication system, wireless communication method, and program
JP5252034B2 (en) 2011-06-24 2013-07-31 富士通株式会社 Relay station, radio base station, and communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3770399B2 (en) * 2001-07-06 2006-04-26 シャープ株式会社 Communication management method, communication management program, recording medium recording communication management program, communication system, communication apparatus, and central management apparatus
JP2009130791A (en) * 2007-11-27 2009-06-11 Nippon Telegr & Teleph Corp <Ntt> Radio slot assigning method, radio transmission system, and base station device
JP2014187655A (en) * 2013-03-25 2014-10-02 Kddi Corp Communication device performing band allocation and band allocation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL COMMUNICATIONS: "Scheduling and support for service multiplexing", 3GPP TSG-RAN WG1#86B R1-1610090, 1 October 2016 (2016-10-01), XP051159901, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_86b/Docs/R1-1610090.zip> *
NOKIA ET AL.: "On HARQ and scheduling timing for New Radio", 3GPP TSG-RAN WG1#86 R1-167263, 12 August 2016 (2016-08-12), XP051142020, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR11269/Docs/R1-167263.zip> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574957A (en) * 2019-01-24 2021-10-29 索尼集团公司 Wireless communication apparatus and method

Also Published As

Publication number Publication date
JPWO2018138905A1 (en) 2019-11-21
JP7031609B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
KR102231273B1 (en) Method and apparatus for determining a slot format by a user equipment in wireless communication system
KR102190418B1 (en) Method and apparatus for performing transmission of physical uplink control channel
JP6262801B2 (en) Method and apparatus for transmitting acknowledgment / negative acknowledgment information in a wireless communication system
KR101979264B1 (en) Downlink and uplink channel with low latency
CN108028740B (en) Method and apparatus for transceiving messages from V2X terminal in wireless communication system
KR101485927B1 (en) Uplink coordinated multipoint communications in a wireless network
CN107736074B (en) Method and apparatus for transceiving device-to-device communication terminal signals in wireless communication system
CN107210988B (en) Method and apparatus for generating signal by device-to-device communication terminal in wireless communication system
KR101476821B1 (en) Multi―user control channel assignment
JP6680797B2 (en) Method and apparatus for transmitting and receiving multiple D2D signals in a wireless communication system
JP5883403B2 (en) User terminal, radio base station, and radio communication method
JP6899427B2 (en) Resource selection and data transmission methods and devices by terminal measurement in wireless communication systems
JP2018519744A (en) Techniques for managing resource pools in wireless communications
JP2018515001A (en) Determining UE-to-UE relay list and floor arbitrator
JP5881914B2 (en) Coordinated transmission rate and channel scheduling for wireless multicast and broadcast
WO2014046715A1 (en) Inter-device communication in wireless communication systems
CN113364562B (en) Method and apparatus for transceiving signal of D2D communication terminal in wireless communication system
CN112640541A (en) Adjustment of power spectral density associated with reference signal sequences in a wireless communication network
WO2015141715A1 (en) Terminal device, base station device, integrated circuit, and communication method
CN110140372B (en) Base station, terminal device, method, program, and recording medium
US10868641B2 (en) Hybrid automatic repeat request using an adaptive multiple access scheme
JP6030882B2 (en) Radio communication system, radio base station apparatus, and retransmission control method
JP7031609B2 (en) Base stations, wireless terminals, wireless communication systems, and wireless communication methods
KR20210004838A (en) Method and apparatus for sidelink communication
CN117136564A (en) Communication system and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894382

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018564069

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894382

Country of ref document: EP

Kind code of ref document: A1