WO2018138794A1 - Optical-scanning-type microscope device and method for measuring distance between spots in optical-scanning-type microscope device - Google Patents

Optical-scanning-type microscope device and method for measuring distance between spots in optical-scanning-type microscope device Download PDF

Info

Publication number
WO2018138794A1
WO2018138794A1 PCT/JP2017/002482 JP2017002482W WO2018138794A1 WO 2018138794 A1 WO2018138794 A1 WO 2018138794A1 JP 2017002482 W JP2017002482 W JP 2017002482W WO 2018138794 A1 WO2018138794 A1 WO 2018138794A1
Authority
WO
WIPO (PCT)
Prior art keywords
illumination lights
angle
optical
microscope apparatus
scanning microscope
Prior art date
Application number
PCT/JP2017/002482
Other languages
French (fr)
Japanese (ja)
Inventor
厚志 土井
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/002482 priority Critical patent/WO2018138794A1/en
Publication of WO2018138794A1 publication Critical patent/WO2018138794A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes

Definitions

  • the present invention relates to an optical scanning microscope apparatus that scans two illumination lights condensed at different positions, and a spot-to-spot distance measuring method in the optical scanning microscope apparatus.
  • the present invention has been made in view of the above-described circumstances, and is an optical scanning microscope apparatus that scans two illumination lights condensed at different positions, and two illuminations even in the absence of a sample.
  • An object of the present invention is to provide an optical scanning microscope apparatus that can measure the distance between spots of light and a method for measuring the distance between spots in the optical scanning microscope apparatus.
  • a light source unit that outputs two illumination lights having a relative angle to each other
  • a scanning unit that scans the two illumination lights output from the light source unit, and the scan that is scanned by the scanning unit
  • An objective optical system that irradiates the sample with two illumination lights and collects them at different condensing positions; a detection optical system that detects signal light generated at the condensing position; and the pupil optical system at the substantially pupil position of the objective optical system.
  • An optical scanning microscope apparatus including an angle detection unit that detects a relative angle between two illumination lights.
  • an image of the sample can be generated by associating the detected intensity of the signal light with the irradiation position of the illumination light.
  • two illumination lights having a relative angle are incident on the pupil of the objective optical system at different angles, and are condensed at two condensing positions separated by a distance corresponding to the relative angle to form a spot. . Therefore, based on the relative angle between the two illumination lights detected by the angle detector at the approximate pupil position of the objective optical system, the distance between the spots can be measured even in the absence of the sample.
  • an angle adjustment unit that adjusts a relative angle between the two illumination lights at a substantially pupil position of the objective optical system may be provided.
  • the angle adjustment unit may automatically adjust the relative angle between the two illumination lights to a predetermined angle based on the relative angle detected by the angle detection unit. By doing in this way, based on the relative angle between the two illumination lights detected by the angle detector, the relative angle can be adjusted manually or automatically.
  • the angle detection unit is disposed at a position optically conjugate with a substantially pupil position of the objective optical system, and captures an interference fringe image by photographing the interference fringes of the two illumination lights.
  • a pattern of interference fringes corresponding to the relative angle between the two illumination lights is formed at the position of the camera conjugate with the pupil position of the objective optical system. Therefore, the relative angle between the two illumination lights can be detected based on the interference fringe pattern in the interference fringe image.
  • the two illumination lights are pulse lights
  • interference fringes are formed when the pulse timings of the two illumination lights are simultaneous, and no interference fringes are formed when the pulse timings of the two illumination lights are non-simultaneous. Therefore, the simultaneous and non-simultaneous detection of the pulse timings of the two illumination lights can be detected based on the presence or absence of interference fringes.
  • the angle detection unit may calculate the relative angle based on the interference fringe image. In this way, the relative angle between the two illumination lights can be quantitatively detected from the interference fringe image.
  • the angle detection unit may include a polarization changing element that changes a polarization state of the two illumination lights incident on the camera. Two illumination lights whose polarization directions are orthogonal to each other do not form interference fringes. Even when the polarization directions of the two illumination lights from the light source unit are orthogonal to each other, the polarization changing element is adjusted so that the polarization directions of the two illumination lights are not orthogonal to each other, thereby forming interference fringes between the spots. Distance measurements can be made.
  • the angle detection unit may include an angle changing element that changes a relative angle between the two illumination lights incident on the camera. By doing in this way, this interference fringe can be adjusted so that the interference fringe suitable for the detection of a relative angle is formed.
  • the two illumination lights are pulse lights
  • the contrast of light and darkness of the interference fringes changes according to the relative pulse timing of the two illumination lights, that is, the optical path length difference between the two illumination lights. Therefore, the optical path length difference between the two illumination lights can be calculated based on the contrast of the interference fringe image.
  • an optical path length difference adjustment unit that adjusts an optical path length difference between the two illumination lights based on the optical path length difference calculated by the optical path length difference calculation unit may be provided. By doing in this way, the relative pulse timing of the two illumination lights in a sample can be adjusted based on the optical path length difference calculated by the optical path length difference calculation part.
  • Another aspect of the present invention is an optical scanning microscope apparatus that scans the two illumination lights that irradiate the sample with two illumination lights having relative angles to each other from the objective optical system and collect the lights at different collection positions.
  • the distance between two illumination light spots can be measured even in the absence of a sample. There is an effect.
  • FIG. 1 is an overall configuration diagram of an optical scanning microscope apparatus according to a first embodiment of the present invention. It is a figure explaining two laser beams which inject into an objective lens and a camera. It is a block diagram of the excitation light production
  • the optical scanning microscope apparatus 100 irradiates a sample A with laser beams (illumination beams) L1 and L2, and excites a fluorescent substance having an excitation wavelength substantially equal to the wavelength of the laser beams L1 and L2. It is a laser scanning confocal microscope apparatus for excitation fluorescence observation.
  • the optical scanning microscope apparatus 100 outputs two laser beams L1 and L2 and adjusts the relative angle between the two laser beams L1 and L2 (light source unit). ) 1, the scanning unit 2 that scans the laser beams L 1 and L 2, and the fluorescence generated by irradiating the sample A with the laser beams L 1 and L 2 scanned by the scanning unit 2 and at the focusing positions of the laser beams L 1 and L 2
  • An objective lens (objective optical system) 3 that collects (signal light) and pupil projection that is arranged between the scanning unit 2 and the objective lens 3 and relays the laser beams L1 and L2 from the scanning unit 2 to the pupil position of the objective lens 3
  • a lens 4 and an imaging lens 5 a detection optical system 6 that detects fluorescence collected by the objective lens 3 and converts it into a detection signal
  • the scanning unit 2 is, for example, a proximity galvano scanner having two galvanometer mirrors arranged close to each other so as to be swingable about a non-parallel axis, and the laser beams L1 and L2 are used as the optical axes of the laser beams L1 and L2. Scan in two intersecting directions.
  • the pupil projection lens 4 and the imaging lens 5 are configured such that the scanning unit 2 is disposed at a position optically conjugate with the pupil position of the objective lens 3, and the laser beams L 1 and L 2 scanned by the scanning unit 2 are provided. Relay to the pupil position of the objective lens 3.
  • the first and second laser beams L1 and L2 having a relative angle ⁇ are incident on the objective lens 3 at different angles and are condensed at different condensing positions P1 and P2, respectively.
  • a spot is formed.
  • the distance between the two spots (between the condensing positions P1 and P2) is determined according to the relative angle ⁇ between the laser beams L1 and L2. Fluorescence generated in the two spots is collected by the objective lens 3 and travels in the opposite direction along the same optical path as the laser beams L1 and L2.
  • the detection optical system 6 is disposed between the excitation light generation unit 1 and the scanning unit 2 and transmits the laser beams L1 and L2, and reflects the fluorescence to split the fluorescence from the optical path of the laser beams L1 and L2.
  • the interference fringe measuring unit 7 includes a non-polarizing beam splitter 71 disposed between the imaging lens 5 and the objective lens 3, and a digital camera 72 disposed at a position optically conjugate with the pupil position of the objective lens 3. It has.
  • the non-polarizing beam splitter 71 branches a part (for example, 1%) of the laser beams L 1 and L 2 emitted from the imaging lens 5 toward the objective lens 3 toward the camera 72.
  • the relative angle between the first and second laser beams L1 and L2 at the pupil position of the objective lens 3 and the position of the camera 72 The relative angles between the first and second laser beams L1 and L2 are equal to each other. Therefore, interference fringes corresponding to the relative angle ⁇ between the first and second laser beams L1 and L2 at the pupil position are formed at the position of the camera 72.
  • the camera 72 captures the interference fringe to acquire the interference fringe image, and transmits the interference fringe image to the processing device 8.
  • the camera 72 may be arranged at another position optically conjugate with the pupil position of the objective lens 3.
  • the laser beam L1, L2 may be relayed from the camera 72 arranged at an arbitrary position to the scanning unit 2.
  • the processing device 8 generates a fluorescent image by associating the detection signal received from the photodetector 64 with the scanning position of the laser light L1 by the scanning unit 2. Further, the processing device 8 analyzes the interference fringe image received from the interference fringe measurement unit 7 and calculates the relative angle ⁇ between the first and second laser beams L1 and L2 at the pupil position of the objective lens 3. Since there is a certain relationship between the light-dark cycle of the interference fringes and the relative angle ⁇ between the laser beams L1 and L2, the relative angle ⁇ is calculated based on the light-dark cycle of the interference fringes in the interference fringe image. be able to.
  • the processing device 8 converts the relative angle ⁇ into a distance between two spots, and outputs a control signal for adjusting the relative angle ⁇ so that the obtained distance matches a predetermined distance. 1 to send.
  • the predetermined distance is, for example, a distance set by the user via an input unit (not shown).
  • the processing device 8 that executes such image generation, calculation, and control processing is realized by, for example, a computer.
  • the excitation light generation unit 1 uses a single laser light source 11 that emits continuous-wave laser light, and the beam diameter of the laser light emitted from the laser light source 11 as the pupil diameter of the objective lens 3.
  • a beam diameter adjusting optical system 12 that adjusts the size in combination, a first polarization beam splitter (PBS) 13 that divides the laser light from the laser light source 11 into two according to the polarization, the laser light source 11 and the first PBS 13.
  • a half-wave plate 14 that adjusts the polarization direction of the laser light incident on the first PBS 13 and the two laser lights L1 and L2 divided by the first PBS 13 are coaxially multiplexed.
  • a second polarization beam splitter (PBS) 15 and a relay lens 16 that relays the combined laser beams L1 and L2 from the second PBS 15 to the scanning unit 2 are provided.
  • a quarter wavelength plate 17 for converting the laser beams L1 and L2 into circularly polarized light may be provided.
  • the light quantity ratio between the two laser beams L1 and L2 divided by the first PBS 13 is determined according to the polarization direction of the laser beam incident on the first PBS 13.
  • the half-wave plate 14 adjusts the polarization direction of the laser light to 45 ° with respect to the two polarization axes of the first PBS 13 so that the light amounts of the two laser lights L1 and L2 are equal.
  • the first laser beam L1 passes through the second PBS 15, and the second laser beam L2 is reflected by the second PBS 15.
  • the first and second laser beams L1 and L2 are combined with each other.
  • Reference numeral 20 denotes a mirror that forms an optical path of the first and second laser beams L1 and L2.
  • the second PBS (angle adjustment unit) 15 is provided so as to be swingable around a swing axis in a direction perpendicular to the optical axes of the laser beams L1 and L2 (a direction perpendicular to the paper surface of FIG. 3).
  • the tilt angle around the oscillation axis of the second PBS 15 changes, the emission angle of the first laser light L1 from the second PBS 15 is negligibly small, but the second laser from the second PBS 15 The emission angle of the light L2 changes. Therefore, the relative angle between the first and second laser beams L1 and L2 can be adjusted by the tilt angle of the second PBS 15.
  • the second PBS 15 is provided with a motor 18 for changing the tilt angle of the second PBS 15 by swinging the second PBS 15 about the swing axis.
  • the motor 18 is driven in accordance with a control signal from the processing device 8 to change the tilt angle of the second PBS 15, so that the relative angle ⁇ between the first and second laser beams L1 and L2 is automatically adjusted. It has become.
  • the second PBS 15 is disposed at a position optically conjugate with the scanning unit 2 by the relay lens 16. That is, since the second PBS 15 is disposed at a position optically conjugate with the pupil position of the objective lens 3 via the scanning unit 2, the second PBS 15 is positioned at the pupil position of the objective lens 3 depending on the tilt angle of the second PBS 15.
  • the distance between the spots can be controlled by adjusting the relative angle between the first and second laser beams L1 and L2.
  • FIG. 3 shows a Mach-Zehnder type as an example of a split optical path of laser light, but other types of optical paths such as a Michelson type may be adopted.
  • a non-polarizing beam splitter may be used instead of the PBSs 13 and 15 for dividing and multiplexing the laser light.
  • a first laser beam L1 and a second laser beam L2 are emitted, respectively.
  • a configuration including two laser light sources 11A and 11B may be employed.
  • the user sets a distance between two spots as shown in FIG. 5 (step S1).
  • the processing device 8 sets the relative angle between the first and second laser beams L1 and L2 to an angle corresponding to the distance set by the user, and the set relative angle is set to the two laser beams L1 and L2.
  • the tilt angle of the second PBS 15 is set so as to be given (step S2).
  • step S3 output of laser light from the laser light source 11 is started (step S3).
  • the excitation light generation unit 1 the polarization direction of the laser light output from the laser light source 11 is adjusted by the half-wave plate 14, divided into two by the first PBS 13, and then multiplexed by the second PBS 15. Is done.
  • the relative angles set in step S2 are given to the two laser beams L1 and L2.
  • the two laser beams L1 and L2 given relative angles in the second PBS 15 are relayed to the scanning unit 2 by the relay lens 16, scanned by the scanning unit 2, and from the scanning unit 2 to the pupil position of the objective lens 3. Relayed by the pupil projection lens 4 and the imaging lens 5.
  • the two laser beams L1 and L2 are incident on the objective lens 3 in a state having a relative angle, and are respectively connected to two condensing positions P1 and P2 separated by a distance set in step S1 to form a spot.
  • the fluorescence generated at the two condensing positions P1 and P2 of the sample A is collected by the objective lens 3, and passes through the non-polarizing beam splitter 71, the imaging lens 5, the pupil projection lens 4, and the scanning unit 2, and then the dichroic mirror 61. , And is separated from the optical paths of the laser beams L1 and L2 by the dichroic mirror 61.
  • the fluorescence generated at the condensing position P1 of the first laser beam L1 optically conjugate with the pinhole 63 is condensed by the condensing lens 62 and passes through the pinhole 63. Passed and detected by the photodetector 64, a detection signal is transmitted to the processing device 8. In the processing device 8, a fluorescence image of the sample A is generated based on the detection signal. On the other hand, the fluorescence generated at the condensing position P2 of the second laser beam L2 that is optically unconjugated with the pinhole 63 cannot pass through the pinhole 63 and is blocked at the pinhole 63.
  • the relative angle ⁇ between the laser beams L1 and L2 is detected by the interference fringe measuring unit 7 and the processing device 8 using a part of the laser beams L1 and L2 before entering the objective lens 3. That is, a part of the laser beams L 1 and L 2 is branched toward the camera 72 by the non-polarizing beam splitter 71 before the objective lens 3.
  • the laser light L1 and the laser light L2 interfere with each other to form an interference fringe pattern according to the relative angle ⁇ . Is acquired by the camera 72 (step S4).
  • the relative angle ⁇ is calculated from the acquired interference fringe image (step S5), and when the relative angle ⁇ is deviated from the angle set in step S2, it matches the set angle.
  • the tilt angle of the second PBS 15 is automatically adjusted by the motor 18 (step S6). Thereby, the distance between the spots is automatically controlled so as to be maintained at the distance set in step S1.
  • the relative angle ⁇ between the laser beams L1 and L2 is determined by measuring the interference fringes of the laser beams L1 and L2 at a position optically conjugate with the pupil position of the objective lens 3.
  • the distance between two spots can be grasped from the measured relative angle ⁇ .
  • the tilt angle of the second PBS 15 so that the actually measured relative angle ⁇ matches the set angle, the distance between the spots can be accurately controlled to the distance set by the user.
  • the interference fringes of the laser beams L1 and L2 before being irradiated onto the sample A are used, there is an advantage that the distance between the two spots can be easily grasped regardless of the presence or absence of the sample A.
  • interference fringes appear when the two laser beams L1 and L2 are relatively tilted or shifted.
  • the PBS 15 is optically conjugated to the pupil position of the objective lens 3, even when the tilt angle of the PBS 15 is changed, the relative shift of the laser beams L1 and L2 at the pupil position of the objective lens 3 does not occur.
  • the relative angle between the lights L1 and L2 has a dominant influence on the interference fringes. Therefore, there is an advantage that the distance between the spots can be accurately measured based on the relative angle between the laser beams L1 and L2 obtained from the measurement of the interference fringes.
  • the measurement accuracy of the distance between spots using the interference fringes of the laser beams L1 and L2 will be described.
  • the contrast of light and darkness of the interference fringe having the ⁇ / 10 period can be detected.
  • the relative angle ⁇ corresponding to the interference fringes of ⁇ / 10 period is a geometric relationship between the optical path length difference between the first and second laser beams L1 and L2 incident on the pupil having a diameter of 12.6 mm and the relative angle ⁇ .
  • the second laser light L2 condensed at the condensing position P2 that is optically non-conjugated with the pinhole 63 is used, for example, for noise removal of the fluorescent image based on the fluorescence generated at the condensing position P1.
  • the first laser light L1 generates fluorescence not only in the condensing position P1, but also in the path to the condensing position P1 in the sample A. Therefore, the fluorescence detected through the pinhole 63 and detected by the photodetector 64 includes a part of the fluorescence generated at a position other than the condensing position P1 as noise light.
  • the second laser beam L2 also generates fluorescence not only in the condensing position P2 but also in the path to the condensing position P2 in the sample A.
  • the fluorescence generated at the condensing position P2 that is optically non-conjugated with the pinhole 63 is blocked without passing through the pinhole 63, but a part of the fluorescence generated at a position other than the condensing position P2 is:
  • the light passes through the pinhole 63 and is detected by the photodetector 64. Most of the fluorescence generation range detected at this time coincides with the noise light generation range of the first laser beam L1.
  • a noise image including only noise light information can be obtained based on the fluorescence detected by the photodetector 64 while irradiating the sample A with only the second laser light L2. And the noise contained in a fluorescence image can be removed using a noise image.
  • the half-wave plate 14 In order to irradiate the sample A with only the second laser light L2, for example, the half-wave plate 14 so that the light quantity ratio between the first laser light L1 and the second laser light L2 is 0: 100. What is necessary is just to adjust the rotation angle.
  • the interference fringe measuring unit 7 includes a variable magnification optical system 74, a polarization changing element 75, and an angle changing element between the non-polarizing beam splitter 71 and the camera 72, as shown in FIGS. 6A to 6C. 76 may be provided.
  • the variable magnification optical system 74, the polarization changing element 75, and the angle changing element 76 may be used in appropriate combination.
  • the interference fringe measuring unit 7 in FIG. 6A includes a variable magnification optical system 74 for optically enlarging or reducing the interference fringes formed at the position of the camera 72.
  • the interference fringe measuring unit 7 in FIG. 6B includes a polarization changing element 75 that changes the polarization state of the first and second laser beams L1 and L2.
  • a polarization changing element 75 that changes the polarization state of the first and second laser beams L1 and L2.
  • the polarization direction of the first laser light L1 and the polarization direction of the second laser light L2 are orthogonal to each other, no interference fringes are generated between the first laser light L1 and the second laser light L2.
  • interference fringes are observed by adjusting the polarization direction of the first laser light L1 and the polarization direction of the second laser light L2 to be non-orthogonal by the polarization changing element 75. be able to.
  • the interference fringe measuring unit 7 in FIG. 6C includes an angle changing element 76 that changes the relative angle between the first and second laser beams L1 and L2 between the non-polarizing beam splitter 71 and the polarization changing element 75, for example, Lotion.
  • a polarizing prism is provided.
  • the Rochon polarizing prism causes one of two laser beams incident on the Rochon polarizing prism and whose polarization directions are orthogonal to each other to go straight and emits the other obliquely. Therefore, an offset angle is added to the relative angle ⁇ between the first and second laser beams L1 and L2 that have passed through the Rochon polarizing prism.
  • the angle changing element 76 may be configured to be able to select whether to use or to change the offset angle.
  • the light-dark cycle and contrast of the interference fringes change according to the optical path length difference between the laser beams L1 and L2. Therefore, by adjusting the optical path length difference by giving an offset to the relative angle between the two laser beams L1 and L2 by the Lotion polarization prism so that an interference fringe suitable for detection of the relative angle ⁇ is formed.
  • the detection accuracy of ⁇ can be improved. Further, even when the laser beams L1 and L2 are overlapped (the relative angle given by the second PBS 15 is zero), it is possible to detect the spot position by generating interference fringes. In this modification, the relative angle ⁇ is calculated with the offset angle taken into account.
  • FIG. 7 shows an example of a change in interference fringes accompanying a change in the relative angle ⁇ between the laser beams L1 and L2 in the modification including the angle changing element 76 in FIG. 6C.
  • the relative angle ⁇ When the relative angle ⁇ is changed by the second PBS 15, the light / dark cycle of the interference fringes (see “X direction tilt (+)” and “X direction tilt ( ⁇ )” in FIG. 7) becomes smaller or larger. The number of fringes in the interference fringe image increases or decreases. Due to misalignment of the optical elements on the optical paths of the laser beams L1 and L2, the laser beams L1 and L2 are in a direction (Y direction) perpendicular to the tilt direction of the second laser beam L2 by the second PBS 15. When tilted, interference fringes rotated clockwise or counterclockwise (see “Y direction tilt (+)” and “Y direction tilt ( ⁇ )” in FIG. 7) are obtained. Therefore, the relative angle ⁇ between the first and second laser beams L1 and L2 and the tilt angle in the Y direction can be specified based on the bright / dark cycle and rotation angle of the interference fringes.
  • FIG. 8B shows the FFT result of the interference fringes shown in FIG. 8A.
  • spots Q1 and Q2 appear in the Fourier space at positions corresponding to the spatial frequency of the interference fringes in addition to the DC component.
  • the distance d between the spots Q1 and Q2 corresponds to the relative angle ⁇
  • the inclination angle ⁇ of the line segment connecting the spots Q1 and Q2 corresponds to the tilt direction of the second laser light L2. Therefore, the relative angle ⁇ and the tilt direction can be easily detected by FFT analysis of the interference fringe image.
  • the processing device 8 automatically adjusts the tilt angle of the second PBS 15 based on the relative angle ⁇ calculated from the interference fringe image, but instead of or in addition to this,
  • the user may be configured to adjust the tilt angle of the second PBS 15. For example, the user may adjust the tilt angle of the second PBS 15 while observing the interference fringe image displayed on the display.
  • FIGS. 9 to 11B an optical scanning microscope apparatus 200 according to a second embodiment of the present invention will be described with reference to FIGS. 9 to 11B.
  • a configuration different from that of the first embodiment will be described, and the same reference numerals are given to configurations common to the first embodiment, and description thereof will be omitted.
  • the optical scanning microscope apparatus 200 is a laser scanning microscope apparatus for two-photon excitation fluorescence observation that excites a fluorescent material having an excitation wavelength that is approximately 1 ⁇ 2 times the wavelength of the laser beams L1 and L2. .
  • the pulse laser beams L1 and L2 are used as the excitation light, it is necessary to control the timing between the two pulse laser beams L1 and L2, and therefore, adjustment of the optical path length difference between the laser beams L1 and L2 is required. Is required.
  • the optical scanning microscope apparatus 200 is mainly different from the first embodiment in that it further includes a mechanism for adjusting the optical path length difference between the laser beams L1 and L2.
  • the optical scanning microscope apparatus 200 includes an excitation light generation unit 10, a scanning unit 2, an objective lens 3, a pupil projection lens 4, an imaging lens 5, and a detection optical system 60.
  • the interference fringe measuring unit 7 and the processing device 8 are provided.
  • the detection optical system 60 includes a dichroic mirror 61, a condenser lens 62, and a photodetector 64, and does not include a pinhole.
  • the excitation light generation unit 10 includes a laser light source 111 that emits pulsed laser light, a beam diameter adjusting optical system 12, a first PBS 13, a half-wave plate 14, 2 PBS 15, relay lens 16, and optical path length adjusting optical system (optical path length difference adjusting unit) 19 provided in the optical path of the second laser beam L 2 between the first PBS 13 and the second PBS 15. I have.
  • a quarter wavelength plate 17 may be provided between the second PBS 15 and the relay lens 16.
  • the optical path length adjusting optical system 19 changes the optical path length of the second laser light L2 by moving the pair of mirrors 19a and 19b in the direction of arrow B by a motor (not shown). Thereby, the first and second laser beams L1 and L2 are combined so that the timings of the pulses of the first and second laser beams L1 and L2 after being combined by the second PBS 15 are the same or non-simultaneous. The optical path length difference is adjusted.
  • the processing device 8 drives the motor of the optical path length adjusting optical system 19 so that the pulse timings of the laser beams L1 and L2 at the pupil position are the same or non-simultaneous based on the contrast intensity of the dark and light in the interference fringe image.
  • the optical path length difference between the laser beams L1 and L2 is adjusted.
  • the intensity of the contrast of the light and darkness of the interference fringes is gradually increased in a period corresponding to the pulse width of the laser lights L1 and L2.
  • the contrast intensity of the interference fringe image correlates with the optical path length difference between the laser beams L1 and L2.
  • the processing device (optical path length calculation unit) 8 calculates the optical path length difference between the laser beams L1 and L2 from the interference fringe image. Also good.
  • the profile of the contrast intensity of the interference fringe image acquired while the optical path length is gradually changed by the optical path length adjusting optical system 19 includes the pulse width of the laser beams L1 and L2 and the time difference between the pulses of the laser beams L1 and L2. Information is included.
  • the processing device 8 may measure the pulse width of the laser beams L1 and L2 using the profile, or may measure the overlap width of the pulses between the laser beams L1 and L2.
  • the simultaneous and non-simultaneous timing of the pulse timing of the laser beams L1 and L2 can be grasped.
  • the interference fringes of the laser beams L1 and L2 before irradiating the sample A are used, the simultaneous and non-simultaneous timing of the pulse timings of the two laser beams L1 and L2 is grasped regardless of the presence or absence of the sample A.
  • the operation and other effects of this embodiment are the same as those of the first embodiment, description thereof will be omitted.
  • the processing device 8 causes the optical path length adjustment optical system 19 to automatically adjust the optical path length difference based on the interference fringe image.
  • the optical path length adjustment optical system 19 may be moved so that the optical path length difference can be adjusted.
  • the user may operate the optical path length adjustment optical system 19 while observing the interference fringe image displayed on the display.
  • the optical scanning microscope apparatuses 100 and 200 for fluorescence observation have been described.
  • light other than excitation light is used as illumination light, and light other than fluorescence is detected as signal light. Also good.

Abstract

This optical-scanning-type microscope device (100) is provided with a light source unit (1) for outputting two illumination lights (L1, L2) having a relative angle to each other, a scanning unit (2) for scanning the two illumination lights (L1, L2), an objective optical system (3) for radiating the scanned two illumination lights (L1, L2) to a sample (A) and condensing the illumination lights (L1, L2) at mutually different condensing positions, a detection optical system (6) for detecting a signal light generated in the condensing position, and an angle detection unit (7) for detecting the relative angle between the two illumination lights (L1, L2) in an approximate pupil position of the objective optical system (3).

Description

光走査型顕微鏡装置および光走査型顕微鏡装置におけるスポット間距離測定方法Optical scanning microscope apparatus and spot distance measuring method in optical scanning microscope apparatus
 本発明は、互いに異なる位置に集光する2つの照明光を走査する光走査型顕微鏡装置および該光走査型顕微鏡装置におけるスポット間距離測定方法に関するものである。 The present invention relates to an optical scanning microscope apparatus that scans two illumination lights condensed at different positions, and a spot-to-spot distance measuring method in the optical scanning microscope apparatus.
 従来、2つの照明光を試料の互いに異なる位置に集光させて2つのスポットを形成し、2つのスポットを走査する光走査型顕微鏡が提案されている(例えば、特許文献1参照。)。 Conventionally, there has been proposed an optical scanning microscope in which two spots are formed by condensing two illumination lights at different positions of a sample and scanning the two spots (see, for example, Patent Document 1).
国際公開第2015/163261号International Publication No. 2015/161631
 特許文献1の光走査型顕微鏡において、2つのスポット間の距離の正確な制御が重要であるが、2つのスポット間の距離を把握することが難しい。特に、試料が存在しない状態では、2つのスポット間の距離の把握がさらに困難である。 In the optical scanning microscope of Patent Document 1, accurate control of the distance between two spots is important, but it is difficult to grasp the distance between the two spots. In particular, in the absence of a sample, it is more difficult to grasp the distance between two spots.
 本発明は、上述した事情に鑑みてなされたものであって、互いに異なる位置に集光する2つの照明光を走査する光走査型顕微鏡装置であって、試料が存在しない状態においても2つの照明光のスポット間の距離を測定することができる光走査型顕微鏡装置および光走査型顕微鏡装置におけるスポット間距離測定方法を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and is an optical scanning microscope apparatus that scans two illumination lights condensed at different positions, and two illuminations even in the absence of a sample. An object of the present invention is to provide an optical scanning microscope apparatus that can measure the distance between spots of light and a method for measuring the distance between spots in the optical scanning microscope apparatus.
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の一態様は、互いに相対角度を有する2つの照明光を出力する光源部と、該光源部から出力された前記2つの照明光を走査する走査部と、該走査部によって走査される前記2つの照明光を試料に照射し互いに異なる集光位置に集光させる対物光学系と、前記集光位置において発生した信号光を検出する検出光学系と、前記対物光学系の略瞳位置における前記2つの照明光間の相対角度を検出する角度検出部とを備える光走査型顕微鏡装置である。
In order to achieve the above object, the present invention provides the following means.
According to an aspect of the present invention, a light source unit that outputs two illumination lights having a relative angle to each other, a scanning unit that scans the two illumination lights output from the light source unit, and the scan that is scanned by the scanning unit An objective optical system that irradiates the sample with two illumination lights and collects them at different condensing positions; a detection optical system that detects signal light generated at the condensing position; and the pupil optical system at the substantially pupil position of the objective optical system. An optical scanning microscope apparatus including an angle detection unit that detects a relative angle between two illumination lights.
 本態様によれば、光源部から発せられた2つの照明光が、走査部によって走査されながら対物光学系から試料に照射されると、照明光の各照射位置において信号光が発生し、該信号光が検出光学系によって検出される。したがって、検出された信号光の強度と照明光の照射位置とを対応づけることによって試料の画像を生成することができる。 According to this aspect, when two illumination lights emitted from the light source unit are irradiated onto the sample from the objective optical system while being scanned by the scanning unit, signal light is generated at each irradiation position of the illumination light, and the signal Light is detected by a detection optical system. Therefore, an image of the sample can be generated by associating the detected intensity of the signal light with the irradiation position of the illumination light.
 この場合に、相対角度を有する2つの照明光は、互いに異なる角度で対物光学系の瞳に入射し、相対角度に応じた距離だけ離れた2つの集光位置に集光してスポットを形成する。したがって、対物光学系の略瞳位置で角度検出部によって検出される2つの照明光間の相対角度に基づいて、試料が存在しない状態においてもスポット間の距離を測定することができる。 In this case, two illumination lights having a relative angle are incident on the pupil of the objective optical system at different angles, and are condensed at two condensing positions separated by a distance corresponding to the relative angle to form a spot. . Therefore, based on the relative angle between the two illumination lights detected by the angle detector at the approximate pupil position of the objective optical system, the distance between the spots can be measured even in the absence of the sample.
 上記態様においては、前記対物光学系の略瞳位置における前記2つの照明光間の相対角度を調整する角度調整部を備えていてもよい。前記角度調整部が、前記角度検出部によって検出された相対角度に基づき、前記2つの照明光間の相対角度を所定の角度に自動調整してもよい。
 このようにすることで、角度検出部によって検出された2つの照明光間の相対角度に基づき、当該相対角度を手動または自動で調整することができる。
In the above aspect, an angle adjustment unit that adjusts a relative angle between the two illumination lights at a substantially pupil position of the objective optical system may be provided. The angle adjustment unit may automatically adjust the relative angle between the two illumination lights to a predetermined angle based on the relative angle detected by the angle detection unit.
By doing in this way, based on the relative angle between the two illumination lights detected by the angle detector, the relative angle can be adjusted manually or automatically.
 上記態様においては、前記角度検出部が、前記対物光学系の略瞳位置と光学的に共役な位置に配置され、前記2つの照明光の干渉縞を撮影して干渉縞画像を取得するカメラを備えていてもよい。
 対物光学系の瞳位置と共役なカメラの位置には、2つの照明光間の相対角度に応じたパターンの干渉縞が形成される。したがって、干渉縞画像内の干渉縞のパターンに基づいて2つの照明光間の相対角度を検出することができる。また、2つの照明光がパルス光である場合、2つの照明光のパルスタイミングが同時であるときには干渉縞が形成され、2つの照明光のパルスタイミングが非同時であるときには干渉縞が形成されない。したがって、干渉縞の有無に基づいて、2つの照明光のパルスタイミングの同時および非同時を検出することができる。
In the above aspect, the angle detection unit is disposed at a position optically conjugate with a substantially pupil position of the objective optical system, and captures an interference fringe image by photographing the interference fringes of the two illumination lights. You may have.
A pattern of interference fringes corresponding to the relative angle between the two illumination lights is formed at the position of the camera conjugate with the pupil position of the objective optical system. Therefore, the relative angle between the two illumination lights can be detected based on the interference fringe pattern in the interference fringe image. When the two illumination lights are pulse lights, interference fringes are formed when the pulse timings of the two illumination lights are simultaneous, and no interference fringes are formed when the pulse timings of the two illumination lights are non-simultaneous. Therefore, the simultaneous and non-simultaneous detection of the pulse timings of the two illumination lights can be detected based on the presence or absence of interference fringes.
 上記態様においては、前記角度検出部が、前記干渉縞画像に基づいて前記相対角度を算出してもよい。
 このようにすることで、2つの照明光間の相対角度を干渉縞画像から定量的に検出することができる。
In the above aspect, the angle detection unit may calculate the relative angle based on the interference fringe image.
In this way, the relative angle between the two illumination lights can be quantitatively detected from the interference fringe image.
 上記態様においては、前記角度検出部が、前記カメラに入射する前記2つの照明光の偏光状態を変化させる偏光変更素子を備えていてもよい。
 偏光方向が互いに直交する2つの照明光は干渉縞を形成しない。光源部からの2つの照明光の偏光方向が互いに直交する場合にも、偏光変更素子によって2つの照明光の偏光方向を互いに直交しないように調整することで、干渉縞を形成させてスポット間の距離の測定を行うことができる。
In the above aspect, the angle detection unit may include a polarization changing element that changes a polarization state of the two illumination lights incident on the camera.
Two illumination lights whose polarization directions are orthogonal to each other do not form interference fringes. Even when the polarization directions of the two illumination lights from the light source unit are orthogonal to each other, the polarization changing element is adjusted so that the polarization directions of the two illumination lights are not orthogonal to each other, thereby forming interference fringes between the spots. Distance measurements can be made.
 上記態様においては、前記角度検出部が、前記カメラに入射する前記2つの照明光間の相対角度を変化させる角度変更素子を備えていてもよい。
 このようにすることで、相対角度の検出に適した干渉縞が形成されるように該干渉縞を調整することができる。
In the above aspect, the angle detection unit may include an angle changing element that changes a relative angle between the two illumination lights incident on the camera.
By doing in this way, this interference fringe can be adjusted so that the interference fringe suitable for the detection of a relative angle is formed.
 上記態様においては、前記干渉縞画像のコントラストに基づいて前記2つの照明光の光路長差を算出する光路長差算出部を備えていてもよい。
 2つの照明光がパルス光である場合、干渉縞の明暗のコントラストは、2つの照明光の相対的なパルスタイミング、すなわち2つの照明光の光路長差に応じて変化する。したがって、干渉縞画像のコントラストに基づき、2つの照明光の光路長差を算出することができる。
In the said aspect, you may provide the optical path length difference calculation part which calculates the optical path length difference of said two illumination light based on the contrast of the said interference fringe image.
When the two illumination lights are pulse lights, the contrast of light and darkness of the interference fringes changes according to the relative pulse timing of the two illumination lights, that is, the optical path length difference between the two illumination lights. Therefore, the optical path length difference between the two illumination lights can be calculated based on the contrast of the interference fringe image.
 上記態様においては、前記光路長差算出部によって算出された光路長差に基づいて、前記2つの照明光間の光路長差を調整する光路長差調整部を備えていてもよい。
 このようにすることで、光路長差算出部によって算出された光路長差に基づき、試料における2つの照明光の相対的なパルスタイミングを調整することができる。
In the above aspect, an optical path length difference adjustment unit that adjusts an optical path length difference between the two illumination lights based on the optical path length difference calculated by the optical path length difference calculation unit may be provided.
By doing in this way, the relative pulse timing of the two illumination lights in a sample can be adjusted based on the optical path length difference calculated by the optical path length difference calculation part.
 本発明の他の態様は、互いに相対角度を有する2つの照明光を対物光学系から試料に照射し互いに異なる集光位置に集光する前記2つの照明光を走査する光走査型顕微鏡装置において、前記集光位置に形成される前記2つの照明光のスポット間の距離を測定するスポット間距離測定方法であって、前記対物光学系の略瞳位置における前記2つの照明光間の相対角度を検出する工程を含む光走査型顕微鏡装置におけるスポット間距離測定方法である。 Another aspect of the present invention is an optical scanning microscope apparatus that scans the two illumination lights that irradiate the sample with two illumination lights having relative angles to each other from the objective optical system and collect the lights at different collection positions. A spot-to-spot distance measuring method for measuring a distance between the two illumination light spots formed at the condensing position, wherein a relative angle between the two illumination lights at a substantially pupil position of the objective optical system is detected. It is the distance measurement method between spots in the optical scanning microscope apparatus including the process to do.
 本発明によれば、互いに異なる位置に集光する2つの照明光を走査する光走査型顕微鏡装置において、試料が存在しない状態においても2つの照明光のスポット間の距離を測定することができるという効果を奏する。 According to the present invention, in an optical scanning microscope apparatus that scans two illumination lights condensed at different positions, the distance between two illumination light spots can be measured even in the absence of a sample. There is an effect.
本発明の第1の実施形態に係る光走査型顕微鏡装置の全体構成図である。1 is an overall configuration diagram of an optical scanning microscope apparatus according to a first embodiment of the present invention. 対物レンズおよびカメラに入射する2つのレーザ光を説明する図である。It is a figure explaining two laser beams which inject into an objective lens and a camera. 図1の光走査型顕微鏡装置における励起光生成部の構成図である。It is a block diagram of the excitation light production | generation part in the optical scanning microscope apparatus of FIG. 図1の光走査型顕微鏡装置における励起光生成部の変形例の構成図である。It is a block diagram of the modification of the excitation light production | generation part in the optical scanning microscope apparatus of FIG. 図1の光走査型顕微鏡装置によるスポット間距離測定方法を示すフローチャートである。It is a flowchart which shows the distance measurement method between spots by the optical scanning microscope apparatus of FIG. 図1の光走査型顕微鏡装置における干渉縞計測部の変形例の構成図である。It is a block diagram of the modification of the interference fringe measurement part in the optical scanning microscope apparatus of FIG. 図1の光走査型顕微鏡装置における干渉縞計測部の他の変形例の構成図である。It is a block diagram of the other modification of the interference fringe measurement part in the optical scanning microscope apparatus of FIG. 図1の光走査型顕微鏡装置における干渉縞計測部の他の変形例の構成図である。It is a block diagram of the other modification of the interference fringe measurement part in the optical scanning microscope apparatus of FIG. 2つのレーザ光間の相対角度の変化に伴う干渉縞のパターンの変化を説明する図である。It is a figure explaining the change of the pattern of an interference fringe accompanying the change of the relative angle between two laser beams. カメラによって取得された干渉縞画像の一例を示す図である。It is a figure which shows an example of the interference fringe image acquired with the camera. 図8Aの干渉縞画像のFFT結果を示す図である。It is a figure which shows the FFT result of the interference fringe image of FIG. 8A. 本発明の第2の実施形態に係る光走査型顕微鏡装置の全体構成図である。It is a whole block diagram of the optical scanning microscope apparatus which concerns on the 2nd Embodiment of this invention. 図9の光走査型顕微鏡装置における励起光生成部の構成図である。It is a block diagram of the excitation light production | generation part in the optical scanning microscope apparatus of FIG. 第1および第2のレーザ光のパルスタイミングが同時であるときに、カメラの位置に形成される干渉縞の一例を示す図である。It is a figure which shows an example of the interference fringe formed in the position of a camera, when the pulse timing of the 1st and 2nd laser beam is simultaneous. 第1および第2のレーザ光のパルスタイミングが非同時であるときに、カメラの位置に形成される第1および第2のレーザ光の像の一例を示す図である。It is a figure which shows an example of the image of the 1st and 2nd laser beam formed in the position of a camera when the pulse timing of a 1st and 2nd laser beam is non-simultaneously.
(第1の実施形態)
 本発明の第1の実施形態に係る光走査型顕微鏡装置100について図1から図8Bを参照して説明する。
 本実施形態に係る光走査型顕微鏡装置100は、レーザ光(照明光)L1,L2を試料Aに照射し該レーザ光L1,L2の波長と略等しい励起波長を有する蛍光物質を励起する1光子励起蛍光観察用のレーザ走査型共焦点顕微鏡装置である。
(First embodiment)
An optical scanning microscope apparatus 100 according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 8B.
The optical scanning microscope apparatus 100 according to this embodiment irradiates a sample A with laser beams (illumination beams) L1 and L2, and excites a fluorescent substance having an excitation wavelength substantially equal to the wavelength of the laser beams L1 and L2. It is a laser scanning confocal microscope apparatus for excitation fluorescence observation.
 光走査型顕微鏡装置100は、図1に示されるように、2つのレーザ光L1,L2を出力するとともに該2つのレーザ光L1,L2間の相対角度を調整可能な励起光生成部(光源部)1と、レーザ光L1,L2を走査する走査部2と、該走査部2によって走査されたレーザ光L1,L2を試料Aに照射するとともにレーザ光L1,L2の集光位置で生じた蛍光(信号光)を集める対物レンズ(対物光学系)3と、走査部2と対物レンズ3との間に配置され走査部2から対物レンズ3の瞳位置へレーザ光L1,L2をリレーする瞳投影レンズ4および結像レンズ5と、対物レンズ3によって集められた蛍光を検出して検出信号に変換する検出光学系6と、対物レンズ3の瞳位置と光学的に共役な位置におけるレーザ光L1,L2の干渉縞を計測する干渉縞計測部(角度検出部)7と、検出信号に基づいて試料Aの蛍光画像を作成するとともに干渉縞に基づいてレーザ光L1,L2間の相対角度を算出する処理装置(角度検出部)8とを備えている。 As shown in FIG. 1, the optical scanning microscope apparatus 100 outputs two laser beams L1 and L2 and adjusts the relative angle between the two laser beams L1 and L2 (light source unit). ) 1, the scanning unit 2 that scans the laser beams L 1 and L 2, and the fluorescence generated by irradiating the sample A with the laser beams L 1 and L 2 scanned by the scanning unit 2 and at the focusing positions of the laser beams L 1 and L 2 An objective lens (objective optical system) 3 that collects (signal light) and pupil projection that is arranged between the scanning unit 2 and the objective lens 3 and relays the laser beams L1 and L2 from the scanning unit 2 to the pupil position of the objective lens 3 A lens 4 and an imaging lens 5; a detection optical system 6 that detects fluorescence collected by the objective lens 3 and converts it into a detection signal; and laser light L1, at a position optically conjugate with the pupil position of the objective lens 3. Measure L2 interference fringes Interference fringe measurement unit (angle detection unit) 7 and a processing device (angle detection unit) that creates a fluorescence image of the sample A based on the detection signal and calculates the relative angle between the laser beams L1 and L2 based on the interference fringe ) 8.
 励起光生成部1の構成については、後で詳述する。
 走査部2は、例えば、非平行な軸線回りに揺動可能に近接配置された2枚のガルバノミラーを有する近接ガルバノスキャナであり、レーザ光L1,L2を該レーザ光L1,L2の光軸に交差する2軸方向に走査する。
 瞳投影レンズ4および結像レンズ5は、走査部2が対物レンズ3の瞳位置と光学的に共役な位置に配置されるように構成され、走査部2によって走査されたレーザ光L1,L2を対物レンズ3の瞳位置へリレーする。
The configuration of the excitation light generator 1 will be described in detail later.
The scanning unit 2 is, for example, a proximity galvano scanner having two galvanometer mirrors arranged close to each other so as to be swingable about a non-parallel axis, and the laser beams L1 and L2 are used as the optical axes of the laser beams L1 and L2. Scan in two intersecting directions.
The pupil projection lens 4 and the imaging lens 5 are configured such that the scanning unit 2 is disposed at a position optically conjugate with the pupil position of the objective lens 3, and the laser beams L 1 and L 2 scanned by the scanning unit 2 are provided. Relay to the pupil position of the objective lens 3.
 相対角度θを有する第1および第2のレーザ光L1,L2は、図2に示されるように、互いに異なる角度で対物レンズ3に入射し、互いに異なる集光位置P1,P2に集光されてスポットを形成する。2つのスポット間(集光位置P1,P2間)の距離は、レーザ光L1,L2間の相対角度θに応じて決まる。2つのスポットで発生した蛍光は、対物レンズ3によって集められ、レーザ光L1,L2と同一の光路を逆方向に進む。 As shown in FIG. 2, the first and second laser beams L1 and L2 having a relative angle θ are incident on the objective lens 3 at different angles and are condensed at different condensing positions P1 and P2, respectively. A spot is formed. The distance between the two spots (between the condensing positions P1 and P2) is determined according to the relative angle θ between the laser beams L1 and L2. Fluorescence generated in the two spots is collected by the objective lens 3 and travels in the opposite direction along the same optical path as the laser beams L1 and L2.
 検出光学系6は、励起光生成部1と走査部2との間に配置され、レーザ光L1,L2を透過させ、蛍光を反射することによって蛍光をレーザ光L1,L2の光路から分岐するダイクロイックミラー61と、該ダイクロイックミラー61によって分岐された蛍光を集光させる集光レンズ62と、第1のレーザ光L1の集光位置P1と光学的に共役な位置に配置されたピンホール63と、該ピンホール63を通過した蛍光を検出し蛍光の強度に相当する検出信号を処理装置8に送信する光検出器64とを備えている。 The detection optical system 6 is disposed between the excitation light generation unit 1 and the scanning unit 2 and transmits the laser beams L1 and L2, and reflects the fluorescence to split the fluorescence from the optical path of the laser beams L1 and L2. A mirror 61, a condensing lens 62 for condensing the fluorescence branched by the dichroic mirror 61, a pinhole 63 disposed at a position optically conjugate with the condensing position P1 of the first laser light L1, And a photodetector 64 that detects the fluorescence that has passed through the pinhole 63 and transmits a detection signal corresponding to the intensity of the fluorescence to the processing device 8.
 干渉縞計測部7は、結像レンズ5と対物レンズ3との間に配置された無偏光ビームスプリッタ71と、対物レンズ3の瞳位置と光学的に共役な位置に配置されたデジタルカメラ72とを備えている。
 無偏光ビームスプリッタ71は、結像レンズ5から対物レンズ3に向けて射出されたレーザ光L1,L2の一部(例えば、1%)を、カメラ72に向けて分岐する。
The interference fringe measuring unit 7 includes a non-polarizing beam splitter 71 disposed between the imaging lens 5 and the objective lens 3, and a digital camera 72 disposed at a position optically conjugate with the pupil position of the objective lens 3. It has.
The non-polarizing beam splitter 71 branches a part (for example, 1%) of the laser beams L 1 and L 2 emitted from the imaging lens 5 toward the objective lens 3 toward the camera 72.
 対物レンズ3の瞳とカメラ72は、互いに光学的に共役な位置関係にあるので、対物レンズ3の瞳位置における第1および第2のレーザ光L1,L2間の相対角度と、カメラ72の位置における第1および第2のレーザ光L1,L2間の相対角度とは、互いに等しくなる。したがって、カメラ72の位置には、瞳位置における第1および第2のレーザ光L1,L2間の相対角度θに応じた干渉縞が形成される。カメラ72は、干渉縞を撮影して干渉縞画像を取得し、干渉縞画像を処理装置8に送信する。 Since the pupil of the objective lens 3 and the camera 72 are optically conjugate to each other, the relative angle between the first and second laser beams L1 and L2 at the pupil position of the objective lens 3 and the position of the camera 72 The relative angles between the first and second laser beams L1 and L2 are equal to each other. Therefore, interference fringes corresponding to the relative angle θ between the first and second laser beams L1 and L2 at the pupil position are formed at the position of the camera 72. The camera 72 captures the interference fringe to acquire the interference fringe image, and transmits the interference fringe image to the processing device 8.
 カメラ72は、対物レンズ3の瞳位置と光学的に共役な他の位置に配置されていてもよい。例えば、任意の位置に配置されたカメラ72から走査部2にレーザ光L1,L2をリレーするように構成されていてもよい。 The camera 72 may be arranged at another position optically conjugate with the pupil position of the objective lens 3. For example, the laser beam L1, L2 may be relayed from the camera 72 arranged at an arbitrary position to the scanning unit 2.
 処理装置8は、光検出器64から受信した検出信号と走査部2によるレーザ光L1の走査位置とを対応づけることによって、蛍光画像を生成する。
 また、処理装置8は、干渉縞計測部7から受信した干渉縞画像を解析して、対物レンズ3の瞳位置における第1および第2のレーザ光L1,L2間の相対角度θを算出する。干渉縞の明暗の周期とレーザ光L1,L2間の相対角度θとの間には一定の関係が存在するので、干渉縞画像内の干渉縞の明暗の周期に基づいて相対角度θを算出することができる。次に、処理装置8は、相対角度θを2つのスポット間の距離に換算し、得られた距離が所定の距離と一致するように相対角度θを調整するための制御信号を励起光生成部1に送信する。所定の距離は、例えば、図示しない入力手段を介してユーザによって設定された距離である。
 このような画像生成、演算および制御の処理を実行する処理装置8は、例えば、コンピュータによって実現される。
The processing device 8 generates a fluorescent image by associating the detection signal received from the photodetector 64 with the scanning position of the laser light L1 by the scanning unit 2.
Further, the processing device 8 analyzes the interference fringe image received from the interference fringe measurement unit 7 and calculates the relative angle θ between the first and second laser beams L1 and L2 at the pupil position of the objective lens 3. Since there is a certain relationship between the light-dark cycle of the interference fringes and the relative angle θ between the laser beams L1 and L2, the relative angle θ is calculated based on the light-dark cycle of the interference fringes in the interference fringe image. be able to. Next, the processing device 8 converts the relative angle θ into a distance between two spots, and outputs a control signal for adjusting the relative angle θ so that the obtained distance matches a predetermined distance. 1 to send. The predetermined distance is, for example, a distance set by the user via an input unit (not shown).
The processing device 8 that executes such image generation, calculation, and control processing is realized by, for example, a computer.
 次に、励起光生成部1について説明する。
 励起光生成部1は、図3に示されるように、連続波のレーザ光を発する単一のレーザ光源11と、レーザ光源11から射出されたレーザ光のビーム径を対物レンズ3の瞳径に合わせてサイズ調整するビーム径調整光学系12と、レーザ光源11からのレーザ光を偏光に応じて2つに分割する第1の偏光ビームスプリッタ(PBS)13と、レーザ光源11と第1のPBS13との間に配置され第1のPBS13に入射するレーザ光の偏光方向を調整する1/2波長板14と、第1のPBS13によって分割された2つのレーザ光L1,L2を同軸に合波する第2の偏光ビームスプリッタ(PBS)15と、合波されたレーザ光L1,L2を第2のPBS15から走査部2へリレーするリレーレンズ16とを備えている。第2のPBS15とリレーレンズ16との間には、レーザ光L1,L2を円偏光に変換する1/4波長板17が設けられていてもよい。
Next, the excitation light generation unit 1 will be described.
As shown in FIG. 3, the excitation light generation unit 1 uses a single laser light source 11 that emits continuous-wave laser light, and the beam diameter of the laser light emitted from the laser light source 11 as the pupil diameter of the objective lens 3. A beam diameter adjusting optical system 12 that adjusts the size in combination, a first polarization beam splitter (PBS) 13 that divides the laser light from the laser light source 11 into two according to the polarization, the laser light source 11 and the first PBS 13. And a half-wave plate 14 that adjusts the polarization direction of the laser light incident on the first PBS 13 and the two laser lights L1 and L2 divided by the first PBS 13 are coaxially multiplexed. A second polarization beam splitter (PBS) 15 and a relay lens 16 that relays the combined laser beams L1 and L2 from the second PBS 15 to the scanning unit 2 are provided. Between the second PBS 15 and the relay lens 16, a quarter wavelength plate 17 for converting the laser beams L1 and L2 into circularly polarized light may be provided.
 第1のPBS13によって分割される2つのレーザ光L1,L2の光量比は、第1のPBS13に入射するレーザ光の偏光方向に応じて決まる。1/2波長板14は、例えば、2つのレーザ光L1,L2の光量が等しくなるように、第1のPBS13の2つの偏光軸に対してレーザ光の偏光方向を45°に調整する。 The light quantity ratio between the two laser beams L1 and L2 divided by the first PBS 13 is determined according to the polarization direction of the laser beam incident on the first PBS 13. For example, the half-wave plate 14 adjusts the polarization direction of the laser light to 45 ° with respect to the two polarization axes of the first PBS 13 so that the light amounts of the two laser lights L1 and L2 are equal.
 第1のPBS13によって分割された2つのレーザ光L1,L2の内、第1のレーザ光L1が第2のPBS15を透過し、第2のレーザ光L2が第2のPBS15によって反射されることによって、第1および第2のレーザ光L1,L2は互いに合波されるようになっている。符号20は、第1および第2のレーザ光L1,L2の光路を形成するミラーである。 Of the two laser beams L1 and L2 divided by the first PBS 13, the first laser beam L1 passes through the second PBS 15, and the second laser beam L2 is reflected by the second PBS 15. The first and second laser beams L1 and L2 are combined with each other. Reference numeral 20 denotes a mirror that forms an optical path of the first and second laser beams L1 and L2.
 第2のPBS(角度調整部)15は、レーザ光L1,L2の光軸に直交する方向(図3の紙面に垂直な方向)の揺動軸回りに揺動可能に設けられている。第2のPBS15の揺動軸回りのチルト角が変化したときに、第2のPBS15からの第1のレーザ光L1の射出角度は無視できるほど小さいが、第2のPBS15からの第2のレーザ光L2の射出角度は変化する。したがって、第2のPBS15のチルト角によって、第1および第2のレーザ光L1,L2間の相対角度を調整することができる。 The second PBS (angle adjustment unit) 15 is provided so as to be swingable around a swing axis in a direction perpendicular to the optical axes of the laser beams L1 and L2 (a direction perpendicular to the paper surface of FIG. 3). When the tilt angle around the oscillation axis of the second PBS 15 changes, the emission angle of the first laser light L1 from the second PBS 15 is negligibly small, but the second laser from the second PBS 15 The emission angle of the light L2 changes. Therefore, the relative angle between the first and second laser beams L1 and L2 can be adjusted by the tilt angle of the second PBS 15.
 第2のPBS15には、該第2のPBS15を揺動軸回りに揺動させて該第2のPBS15のチルト角を変更するためのモータ18が設けられている。処理装置8からの制御信号に従ってモータ18が駆動して第2のPBS15のチルト角を変更することによって、第1および第2のレーザ光L1,L2間の相対角度θが自動調整されるようになっている。 The second PBS 15 is provided with a motor 18 for changing the tilt angle of the second PBS 15 by swinging the second PBS 15 about the swing axis. The motor 18 is driven in accordance with a control signal from the processing device 8 to change the tilt angle of the second PBS 15, so that the relative angle θ between the first and second laser beams L1 and L2 is automatically adjusted. It has become.
 第2のPBS15は、リレーレンズ16によって走査部2と光学的に共役な位置に配置されている。すなわち、第2のPBS15は、走査部2を介して対物レンズ3の瞳位置と光学的に共役な位置に配置されているので、第2のPBS15のチルト角によって、対物レンズ3の瞳位置における第1および第2のレーザ光L1,L2間の相対角度を調整してスポット間の距離を制御することができる。 The second PBS 15 is disposed at a position optically conjugate with the scanning unit 2 by the relay lens 16. That is, since the second PBS 15 is disposed at a position optically conjugate with the pupil position of the objective lens 3 via the scanning unit 2, the second PBS 15 is positioned at the pupil position of the objective lens 3 depending on the tilt angle of the second PBS 15. The distance between the spots can be controlled by adjusting the relative angle between the first and second laser beams L1 and L2.
 なお、図3に示される励起光生成部1の光路構成は一例であり、互いに相対角度を有する2つのレーザ光L1,L2を出力することが可能な限りにおいて、任意の光路構成を採用することができる。例えば、図3には、レーザ光の分割光路の一例としてマッハツェンダー型が示されているが、マイケルソン型等の他の方式の光路を採用してもよい。また、レーザ光の分割および合波には、PBS13,15に代えて、無偏光ビームスプリッタを用いてもよい。また、単一のレーザ光を分割して2つのレーザ光L1,L2を生成する構成に代えて、図4に示されるように、第1のレーザ光L1および第2のレーザ光L2をそれぞれ発する2つのレーザ光源11A,11Bを備える構成を採用してもよい。 Note that the optical path configuration of the excitation light generation unit 1 shown in FIG. 3 is an example, and an arbitrary optical path configuration is adopted as long as two laser beams L1 and L2 having a relative angle with each other can be output. Can do. For example, FIG. 3 shows a Mach-Zehnder type as an example of a split optical path of laser light, but other types of optical paths such as a Michelson type may be adopted. Further, a non-polarizing beam splitter may be used instead of the PBSs 13 and 15 for dividing and multiplexing the laser light. Further, instead of a configuration in which a single laser beam is divided to generate two laser beams L1 and L2, as shown in FIG. 4, a first laser beam L1 and a second laser beam L2 are emitted, respectively. A configuration including two laser light sources 11A and 11B may be employed.
 次に、このように構成された光走査型顕微鏡装置100の作用について説明する。
 本実施形態に係る光走査型顕微鏡装置100を用いて試料Aの蛍光観察を行うには、図5に示されるように、ユーザが2つのスポット間の距離を設定する(ステップS1)。処理装置8は、第1および第2のレーザ光L1,L2間の相対角度を、ユーザによって設定された距離に相当する角度に設定し、設定された相対角度が2つのレーザ光L1,L2に付与されるように第2のPBS15のチルト角を設定する(ステップS2)。
Next, the operation of the optical scanning microscope apparatus 100 configured as described above will be described.
In order to perform fluorescence observation of the sample A using the optical scanning microscope apparatus 100 according to the present embodiment, the user sets a distance between two spots as shown in FIG. 5 (step S1). The processing device 8 sets the relative angle between the first and second laser beams L1 and L2 to an angle corresponding to the distance set by the user, and the set relative angle is set to the two laser beams L1 and L2. The tilt angle of the second PBS 15 is set so as to be given (step S2).
 次に、レーザ光源11からレーザ光の出力を開始する(ステップS3)。励起光生成部1において、レーザ光源11から出力されたレーザ光は、1/2波長板14によって偏光方向が調整され、第1のPBS13によって2つに分割された後に第2のPBS15によって合波される。合波に際して、2つのレーザ光L1,L2には、ステップS2で設定された相対角度が付与される。 Next, output of laser light from the laser light source 11 is started (step S3). In the excitation light generation unit 1, the polarization direction of the laser light output from the laser light source 11 is adjusted by the half-wave plate 14, divided into two by the first PBS 13, and then multiplexed by the second PBS 15. Is done. At the time of multiplexing, the relative angles set in step S2 are given to the two laser beams L1 and L2.
 第2のPBS15において相対角度が付与された2つのレーザ光L1,L2は、リレーレンズ16によって走査部2へリレーされ、該走査部2によって走査され、走査部2から対物レンズ3の瞳位置へ瞳投影レンズ4および結像レンズ5によってリレーされる。2つのレーザ光L1,L2は、相対角度を有する状態で対物レンズ3に入射し、ステップS1で設定された距離だけ離れた2つの集光位置P1,P2にそれぞれ結ばれてスポットを形成する。 The two laser beams L1 and L2 given relative angles in the second PBS 15 are relayed to the scanning unit 2 by the relay lens 16, scanned by the scanning unit 2, and from the scanning unit 2 to the pupil position of the objective lens 3. Relayed by the pupil projection lens 4 and the imaging lens 5. The two laser beams L1 and L2 are incident on the objective lens 3 in a state having a relative angle, and are respectively connected to two condensing positions P1 and P2 separated by a distance set in step S1 to form a spot.
 試料Aの2つの集光位置P1,P2で発生した蛍光は、対物レンズ3によって集められ、無偏光ビームスプリッタ71、結像レンズ5、瞳投影レンズ4および走査部2を経由してダイクロイックミラー61まで戻り、該ダイクロイックミラー61によってレーザ光L1,L2の光路から分離される。 The fluorescence generated at the two condensing positions P1 and P2 of the sample A is collected by the objective lens 3, and passes through the non-polarizing beam splitter 71, the imaging lens 5, the pupil projection lens 4, and the scanning unit 2, and then the dichroic mirror 61. , And is separated from the optical paths of the laser beams L1 and L2 by the dichroic mirror 61.
 そして、例えば特許文献1に適用する場合、ピンホール63と光学的に共役な第1のレーザ光L1の集光位置P1で発生した蛍光は、集光レンズ62によって集光されてピンホール63を通過し、光検出器64によって検出され、検出信号が処理装置8に送信される。処理装置8において、検出信号に基づいて試料Aの蛍光画像が生成される。一方、ピンホール63と光学的に非共役な第2のレーザ光L2の集光位置P2で発生した蛍光は、ピンホール63を通過することができず該ピンホール63おいて遮断される。 For example, when applied to Patent Document 1, the fluorescence generated at the condensing position P1 of the first laser beam L1 optically conjugate with the pinhole 63 is condensed by the condensing lens 62 and passes through the pinhole 63. Passed and detected by the photodetector 64, a detection signal is transmitted to the processing device 8. In the processing device 8, a fluorescence image of the sample A is generated based on the detection signal. On the other hand, the fluorescence generated at the condensing position P2 of the second laser beam L2 that is optically unconjugated with the pinhole 63 cannot pass through the pinhole 63 and is blocked at the pinhole 63.
 ここで、対物レンズ3に入射する前のレーザ光L1,L2の一部を用いて、該レーザ光L1,L2間の相対角度θが干渉縞計測部7および処理装置8によって検出される。すなわち、レーザ光L1,L2の一部が対物レンズ3よりも前で無偏光ビームスプリッタ71によってカメラ72に向けて分岐される。対物レンズ3の瞳位置と光学的に共役なカメラ72の位置では、レーザ光L1とレーザ光L2とが互いに干渉することによって、相対角度θに応じたパターンの干渉縞が形成され、干渉縞画像がカメラ72によって取得される(ステップS4)。そして、処理装置8において、取得された干渉縞画像から相対角度θが算出され(ステップS5)、相対角度θがステップS2で設定された角度からずれているときには、設定された角度と一致するようにモータ18によって第2のPBS15のチルト角が自動調整される(ステップS6)。これにより、スポット間の距離が、ステップS1で設定された距離に維持されるように自動制御される。 Here, the relative angle θ between the laser beams L1 and L2 is detected by the interference fringe measuring unit 7 and the processing device 8 using a part of the laser beams L1 and L2 before entering the objective lens 3. That is, a part of the laser beams L 1 and L 2 is branched toward the camera 72 by the non-polarizing beam splitter 71 before the objective lens 3. At the position of the camera 72 that is optically conjugate with the pupil position of the objective lens 3, the laser light L1 and the laser light L2 interfere with each other to form an interference fringe pattern according to the relative angle θ. Is acquired by the camera 72 (step S4). Then, in the processing device 8, the relative angle θ is calculated from the acquired interference fringe image (step S5), and when the relative angle θ is deviated from the angle set in step S2, it matches the set angle. The tilt angle of the second PBS 15 is automatically adjusted by the motor 18 (step S6). Thereby, the distance between the spots is automatically controlled so as to be maintained at the distance set in step S1.
 このように、本実施形態によれば、対物レンズ3の瞳位置と光学的に共役な位置においてレーザ光L1,L2の干渉縞を計測することによって、レーザ光L1,L2間の相対角度θを実測し、実測された相対角度θから2つのスポット間の距離を把握することができるという利点がある。また、実測された相対角度θが設定された角度と一致するように第2のPBS15のチルト角をフィードバック制御することで、スポット間の距離をユーザが設定した距離に正確に制御することができるという利点がある。また、試料Aに照射される前のレーザ光L1,L2の干渉縞を利用するので、試料Aの有無に関わらず2つのスポット間の距離を容易に把握することができるという利点がある。 Thus, according to the present embodiment, the relative angle θ between the laser beams L1 and L2 is determined by measuring the interference fringes of the laser beams L1 and L2 at a position optically conjugate with the pupil position of the objective lens 3. There is an advantage that the distance between two spots can be grasped from the measured relative angle θ. Further, by feedback controlling the tilt angle of the second PBS 15 so that the actually measured relative angle θ matches the set angle, the distance between the spots can be accurately controlled to the distance set by the user. There is an advantage. Further, since the interference fringes of the laser beams L1 and L2 before being irradiated onto the sample A are used, there is an advantage that the distance between the two spots can be easily grasped regardless of the presence or absence of the sample A.
 また、対物レンズ3の瞳位置において、干渉縞は、2つのレーザ光L1,L2が相対的にチルトまたはシフトしたときに現れる。ただし、PBS15は対物レンズ3の瞳位置に光学的に共役であるため、PBS15のチルト角が変化した場合も対物レンズ3の瞳位置におけるレーザ光L1,L2の相対的なシフトは生じず、レーザ光L1,L2間の相対角度が干渉縞に支配的に影響する。したがって、干渉縞の計測から得られるレーザ光L1,L2間の相対角度に基づいて、スポット間の距離を精度良く測定することができるという利点がある。 In the pupil position of the objective lens 3, interference fringes appear when the two laser beams L1 and L2 are relatively tilted or shifted. However, since the PBS 15 is optically conjugated to the pupil position of the objective lens 3, even when the tilt angle of the PBS 15 is changed, the relative shift of the laser beams L1 and L2 at the pupil position of the objective lens 3 does not occur. The relative angle between the lights L1 and L2 has a dominant influence on the interference fringes. Therefore, there is an advantage that the distance between the spots can be accurately measured based on the relative angle between the laser beams L1 and L2 obtained from the measurement of the interference fringes.
 ここで、レーザ光L1,L2の干渉縞を利用したスポット間の距離の測定精度について説明する。
 開口数1.05、倍率30倍、瞳径12.6mmの対物レンズ3と、波長λ=488nmのレーザ光L1,L2とを使用すると仮定する。カメラ72によって取得される干渉縞画像の解析において、λ/10周期の干渉縞の明暗のコントラストは検知可能である。λ/10周期の干渉縞に相当する相対角度θは、直径12.6mmの瞳に入射する第1および第2のレーザ光L1,L2間の光路長差と相対角度θとの幾何学的関係から以下のように算出される。
 θ=arctan((488[nm]/10)/12.6[mm])
  =2.2×10-4[deg]
 相対角度θ=2.2×10-4を2つのスポット間の距離に換算すると、約23nmとなる。すなわち、干渉縞画像を用いてレーザ光L1,L2の波長λよりも十分に小さいスポット間の距離の変化を検知することができ、スポット間の距離を高い精度で測定することができることが分かる。
Here, the measurement accuracy of the distance between spots using the interference fringes of the laser beams L1 and L2 will be described.
Assume that the objective lens 3 having a numerical aperture of 1.05, a magnification of 30 times, and a pupil diameter of 12.6 mm and laser beams L1 and L2 having a wavelength λ = 488 nm are used. In the analysis of the interference fringe image acquired by the camera 72, the contrast of light and darkness of the interference fringe having the λ / 10 period can be detected. The relative angle θ corresponding to the interference fringes of λ / 10 period is a geometric relationship between the optical path length difference between the first and second laser beams L1 and L2 incident on the pupil having a diameter of 12.6 mm and the relative angle θ. Is calculated as follows.
θ = arctan ((488 [nm] / 10) /12.6 [mm])
= 2.2 × 10 −4 [deg]
When the relative angle θ = 2.2 × 10 −4 is converted into the distance between the two spots, it is about 23 nm. That is, it can be seen that a change in the distance between the spots sufficiently smaller than the wavelength λ of the laser beams L1 and L2 can be detected using the interference fringe image, and the distance between the spots can be measured with high accuracy.
 なお、ピンホール63と光学的に非共役な集光位置P2に集光する第2のレーザ光L2は、例えば、集光位置P1において発生した蛍光に基づく蛍光画像のノイズ除去に利用される。
 具体的には、第1のレーザ光L1は、集光位置P1のみならず、試料A内の集光位置P1までの経路でも蛍光を発生させる。そのため、ピンホール63を通過して光検出器64によって検出される蛍光には、集光位置P1以外の位置で発生した蛍光の一部がノイズ光として含まれる。
Note that the second laser light L2 condensed at the condensing position P2 that is optically non-conjugated with the pinhole 63 is used, for example, for noise removal of the fluorescent image based on the fluorescence generated at the condensing position P1.
Specifically, the first laser light L1 generates fluorescence not only in the condensing position P1, but also in the path to the condensing position P1 in the sample A. Therefore, the fluorescence detected through the pinhole 63 and detected by the photodetector 64 includes a part of the fluorescence generated at a position other than the condensing position P1 as noise light.
 一方、第2のレーザ光L2も、集光位置P2のみならず、試料A内の集光位置P2までの経路でも蛍光を発生させる。ピンホール63とは光学的に非共役な集光位置P2で発生した蛍光は、ピンホール63を通過できずに遮断されるが、集光位置P2以外の位置で発生した蛍光の一部は、ピンホール63を通過して光検出器64によって検出される。このときに検出される蛍光の発生範囲の大部分は、第1のレーザ光L1によるノイズ光の発生範囲と一致する。 On the other hand, the second laser beam L2 also generates fluorescence not only in the condensing position P2 but also in the path to the condensing position P2 in the sample A. The fluorescence generated at the condensing position P2 that is optically non-conjugated with the pinhole 63 is blocked without passing through the pinhole 63, but a part of the fluorescence generated at a position other than the condensing position P2 is: The light passes through the pinhole 63 and is detected by the photodetector 64. Most of the fluorescence generation range detected at this time coincides with the noise light generation range of the first laser beam L1.
 したがって、第2のレーザ光L2のみを試料Aに照射しながら光検出器64によって検出された蛍光に基づいて、ノイズ光の情報のみを含むノイズ画像を得ることができる。そして、ノイズ画像を用いて蛍光画像に含まれるノイズを除去することができる。第2のレーザ光L2のみを試料Aに照射するためには、例えば、第1のレーザ光L1と第2のレーザ光L2との光量比が0:100となるように1/2波長板14の回転角度を調整すればよい。 Therefore, a noise image including only noise light information can be obtained based on the fluorescence detected by the photodetector 64 while irradiating the sample A with only the second laser light L2. And the noise contained in a fluorescence image can be removed using a noise image. In order to irradiate the sample A with only the second laser light L2, for example, the half-wave plate 14 so that the light quantity ratio between the first laser light L1 and the second laser light L2 is 0: 100. What is necessary is just to adjust the rotation angle.
 本実施形態において、干渉縞計測部7は、図6Aから図6Cに示されるように、無偏光ビームスプリッタ71とカメラ72との間に、変倍光学系74、偏光変更素子75および角度変更素子76を備えていてもよい。変倍光学系74、偏光変更素子75および角度変更素子76は、適宜組み合せて使用してもよい。
 図6Aの干渉縞計測部7は、カメラ72の位置に形成される干渉縞を光学的に拡大または縮小するための変倍光学系74を備えている。
In the present embodiment, the interference fringe measuring unit 7 includes a variable magnification optical system 74, a polarization changing element 75, and an angle changing element between the non-polarizing beam splitter 71 and the camera 72, as shown in FIGS. 6A to 6C. 76 may be provided. The variable magnification optical system 74, the polarization changing element 75, and the angle changing element 76 may be used in appropriate combination.
The interference fringe measuring unit 7 in FIG. 6A includes a variable magnification optical system 74 for optically enlarging or reducing the interference fringes formed at the position of the camera 72.
 図6Bの干渉縞計測部7は、第1および第2のレーザ光L1,L2の偏光状態を変更する偏光変更素子75を備えている。第1のレーザ光L1の偏光方向と第2のレーザ光L2の偏光方向とが互いに直交しているとき、第1のレーザ光L1と第2のレーザ光L2の干渉縞は生じない。このような場合には、偏光変更素子75によって、第1のレーザ光L1の偏光方向と第2のレーザ光L2の偏光方向とが非直交となるように調整することで、干渉縞を観測することができる。 The interference fringe measuring unit 7 in FIG. 6B includes a polarization changing element 75 that changes the polarization state of the first and second laser beams L1 and L2. When the polarization direction of the first laser light L1 and the polarization direction of the second laser light L2 are orthogonal to each other, no interference fringes are generated between the first laser light L1 and the second laser light L2. In such a case, interference fringes are observed by adjusting the polarization direction of the first laser light L1 and the polarization direction of the second laser light L2 to be non-orthogonal by the polarization changing element 75. be able to.
 図6Cの干渉縞計測部7は、無偏光ビームスプリッタ71と偏光変更素子75との間に、第1および第2のレーザ光L1,L2間の相対角度を変更する角度変更素子76、例えばロション偏光プリズムを備えている。ロション偏光プリズムは、該ロション偏光プリズムに入射した、偏光方向が互いに直交する2つのレーザ光のうち、一方を直進させ、他方を斜めに射出する。したがって、ロション偏光プリズムを透過した第1および第2のレーザ光L1,L2間の相対角度θには、オフセット角度が加えられる。角度変更素子76は、使用するか否かを選択したり、オフセット角度を変更したりすることができるように構成されていてもよい。 The interference fringe measuring unit 7 in FIG. 6C includes an angle changing element 76 that changes the relative angle between the first and second laser beams L1 and L2 between the non-polarizing beam splitter 71 and the polarization changing element 75, for example, Lotion. A polarizing prism is provided. The Rochon polarizing prism causes one of two laser beams incident on the Rochon polarizing prism and whose polarization directions are orthogonal to each other to go straight and emits the other obliquely. Therefore, an offset angle is added to the relative angle θ between the first and second laser beams L1 and L2 that have passed through the Rochon polarizing prism. The angle changing element 76 may be configured to be able to select whether to use or to change the offset angle.
 干渉縞の明暗の周期およびコントラストは、レーザ光L1,L2間の光路長差に応じて変化する。したがって、相対角度θの検出に適した干渉縞が形成されるように、ロション偏光プリズムによって2つのレーザ光L1,L2間の相対角度にオフセットを与えて光路長差を調整することで、相対角度θの検出精度を向上することができる。また、レーザ光L1,L2が重なっている(第2のPBS15によって付与される相対角度がゼロである)ときにも、干渉縞を生じさせてスポット位置の検出を行うことができる。本変形例において、オフセット角度を加味して相対角度θが算出される。 The light-dark cycle and contrast of the interference fringes change according to the optical path length difference between the laser beams L1 and L2. Therefore, by adjusting the optical path length difference by giving an offset to the relative angle between the two laser beams L1 and L2 by the Lotion polarization prism so that an interference fringe suitable for detection of the relative angle θ is formed. The detection accuracy of θ can be improved. Further, even when the laser beams L1 and L2 are overlapped (the relative angle given by the second PBS 15 is zero), it is possible to detect the spot position by generating interference fringes. In this modification, the relative angle θ is calculated with the offset angle taken into account.
 図7は、図6Cの角度変更素子76を備える変形例において、レーザ光L1,L2間の相対角度θの変化に伴う干渉縞の変化の一例を示している。
 第2のPBS15によってレーザ光L1,L2に付与される相対角度θがゼロであるときであっても、カメラ72に入射するレーザ光L1,L2には角度変更素子76によってオフセット角度が与えられているので、干渉縞(図7の「チルト無し」参照。)が生じる。
FIG. 7 shows an example of a change in interference fringes accompanying a change in the relative angle θ between the laser beams L1 and L2 in the modification including the angle changing element 76 in FIG. 6C.
Even when the relative angle θ applied to the laser beams L1 and L2 by the second PBS 15 is zero, an offset angle is given to the laser beams L1 and L2 incident on the camera 72 by the angle changing element 76. As a result, interference fringes (see “no tilt” in FIG. 7) occur.
 第2のPBS15によって相対角度θを変化させたときに、干渉縞(図7の「X方向チルト(+)」および「X方向チルト(-)」参照。)の明暗の周期が小さくまたは大きくなり、干渉縞画像内の縞の数が増減する。レーザ光L1,L2の光路上の光学素子のアライメントのずれ等が要因でレーザ光L1,L2が、第2のPBS15による第2のレーザ光L2のチルト方向とは垂直な方向(Y方向)に傾斜しているときには、時計方向または反時計方向に回転した干渉縞(図7の「Y方向チルト(+)」および「Y方向チルト(-)」参照。)が得られる。したがって、干渉縞の明暗の周期および回転角に基づいて、第1および第2のレーザ光L1,L2間の相対角度θおよびY方向のチルト角を特定することができる。 When the relative angle θ is changed by the second PBS 15, the light / dark cycle of the interference fringes (see “X direction tilt (+)” and “X direction tilt (−)” in FIG. 7) becomes smaller or larger. The number of fringes in the interference fringe image increases or decreases. Due to misalignment of the optical elements on the optical paths of the laser beams L1 and L2, the laser beams L1 and L2 are in a direction (Y direction) perpendicular to the tilt direction of the second laser beam L2 by the second PBS 15. When tilted, interference fringes rotated clockwise or counterclockwise (see “Y direction tilt (+)” and “Y direction tilt (−)” in FIG. 7) are obtained. Therefore, the relative angle θ between the first and second laser beams L1 and L2 and the tilt angle in the Y direction can be specified based on the bright / dark cycle and rotation angle of the interference fringes.
 本実施形態においては、処理装置8による干渉縞画像の解析に、高速フーリエ変換(FFT)を用いてもよい。図8Bは、図8Aに示される干渉縞のFFT結果を示している。図8Bに示されるように、フーリエ空間には、DC成分に加えて、干渉縞の空間周波数に対応する位置にスポットQ1,Q2が現れる。スポットQ1,Q2間の距離dが相対角度θに相当し、スポットQ1,Q2を結ぶ線分の傾斜角δが第2のレーザ光L2のチルト方向に相当する。したがって、干渉縞画像のFFT解析によって、相対角度θおよびチルト方向を容易に検出することができる。 In the present embodiment, fast Fourier transform (FFT) may be used for the analysis of the interference fringe image by the processing device 8. FIG. 8B shows the FFT result of the interference fringes shown in FIG. 8A. As shown in FIG. 8B, spots Q1 and Q2 appear in the Fourier space at positions corresponding to the spatial frequency of the interference fringes in addition to the DC component. The distance d between the spots Q1 and Q2 corresponds to the relative angle θ, and the inclination angle δ of the line segment connecting the spots Q1 and Q2 corresponds to the tilt direction of the second laser light L2. Therefore, the relative angle θ and the tilt direction can be easily detected by FFT analysis of the interference fringe image.
 本実施形態においては、干渉縞画像から算出される相対角度θに基づいて第2のPBS15のチルト角を処理装置8が自動調整することとしたが、これに代えて、またはこれに加えて、ユーザが第2のPBS15のチルト角を調整することができるように構成されていてもよい。ユーザは、例えば、ディスプレイに表示された干渉縞画像を観察しながら、第2のPBS15のチルト角を調整してもよい。 In the present embodiment, the processing device 8 automatically adjusts the tilt angle of the second PBS 15 based on the relative angle θ calculated from the interference fringe image, but instead of or in addition to this, The user may be configured to adjust the tilt angle of the second PBS 15. For example, the user may adjust the tilt angle of the second PBS 15 while observing the interference fringe image displayed on the display.
(第2の実施形態)
 次に、本発明の第2の実施形態に係る光走査型顕微鏡装置200について図9から図11Bを参照して説明する。なお、本実施形態においては、第1の実施形態と異なる構成について説明し、第1の実施形態と共通する構成については、同一の符号を付して説明を省略する。
(Second Embodiment)
Next, an optical scanning microscope apparatus 200 according to a second embodiment of the present invention will be described with reference to FIGS. 9 to 11B. In the present embodiment, a configuration different from that of the first embodiment will be described, and the same reference numerals are given to configurations common to the first embodiment, and description thereof will be omitted.
 本実施形態に係る光走査型顕微鏡装置200は、レーザ光L1,L2の波長の略1/2倍の励起波長を有する蛍光物質を励起する2光子励起蛍光観察用のレーザ走査型顕微鏡装置である。2光子励起においては励起光としてパルスレーザ光L1,L2が用いられるので、2つのパルスレーザ光L1,L2間のタイミングの制御が必要となり、そのためにレーザ光L1,L2間の光路長差の調整が必要となる。光走査型顕微鏡装置200は、レーザ光L1,L2間の光路長差を調整する機構をさらに備える点で、第1の実施形態と主に異なっている。 The optical scanning microscope apparatus 200 according to the present embodiment is a laser scanning microscope apparatus for two-photon excitation fluorescence observation that excites a fluorescent material having an excitation wavelength that is approximately ½ times the wavelength of the laser beams L1 and L2. . In the two-photon excitation, since the pulse laser beams L1 and L2 are used as the excitation light, it is necessary to control the timing between the two pulse laser beams L1 and L2, and therefore, adjustment of the optical path length difference between the laser beams L1 and L2 is required. Is required. The optical scanning microscope apparatus 200 is mainly different from the first embodiment in that it further includes a mechanism for adjusting the optical path length difference between the laser beams L1 and L2.
 光走査型顕微鏡装置200は、図9に示されるように、励起光生成部10と、走査部2と、対物レンズ3と、瞳投影レンズ4と、結像レンズ5と、検出光学系60と、干渉縞計測部7と、処理装置8とを備えている。
 検出光学系60は、ダイクロイックミラー61と、集光レンズ62と、光検出器64とを備え、ピンホールを備えていない。
As shown in FIG. 9, the optical scanning microscope apparatus 200 includes an excitation light generation unit 10, a scanning unit 2, an objective lens 3, a pupil projection lens 4, an imaging lens 5, and a detection optical system 60. The interference fringe measuring unit 7 and the processing device 8 are provided.
The detection optical system 60 includes a dichroic mirror 61, a condenser lens 62, and a photodetector 64, and does not include a pinhole.
 励起光生成部10は、図10に示されるように、パルス状のレーザ光を発するレーザ光源111と、ビーム径調整光学系12と、第1のPBS13と、1/2波長板14と、第2のPBS15と、リレーレンズ16と、第1のPBS13と第2のPBS15との間の第2のレーザ光L2の光路に設けられた光路長調整光学系(光路長差調整部)19とを備えている。第2のPBS15とリレーレンズ16との間に、1/4波長板17が設けられていてもよい。 As shown in FIG. 10, the excitation light generation unit 10 includes a laser light source 111 that emits pulsed laser light, a beam diameter adjusting optical system 12, a first PBS 13, a half- wave plate 14, 2 PBS 15, relay lens 16, and optical path length adjusting optical system (optical path length difference adjusting unit) 19 provided in the optical path of the second laser beam L 2 between the first PBS 13 and the second PBS 15. I have. A quarter wavelength plate 17 may be provided between the second PBS 15 and the relay lens 16.
 光路長調整光学系19は、一対のミラー19a,19bを図示しないモータによって矢印Bの方向に移動させることで第2のレーザ光L2の光路長を変化させる。これにより、第2のPBS15による合波後の第1および第2のレーザ光L1,L2のパルスのタイミングが同時または非同時となるように、第1および第2のレーザ光L1,L2間の光路長差が調整されるようになっている。 The optical path length adjusting optical system 19 changes the optical path length of the second laser light L2 by moving the pair of mirrors 19a and 19b in the direction of arrow B by a motor (not shown). Thereby, the first and second laser beams L1 and L2 are combined so that the timings of the pulses of the first and second laser beams L1 and L2 after being combined by the second PBS 15 are the same or non-simultaneous. The optical path length difference is adjusted.
 レーザ光L1,L2間の光路長差がゼロであり、対物レンズ3の瞳位置における2つのレーザ光L1,L2のパルスタイミングが同時であるときには、図11Aに示されるように、カメラ72の位置に干渉縞が形成されるので、干渉縞画像内の明暗のコントラストが高くなる。一方、レーザ光L1,L2間に光路長差が存在し、対物レンズ3の瞳位置における2つのレーザ光L1,L2のパルスタイミングが非同時であるときには、図11Bに示されるように、カメラ72の位置に干渉縞が形成されないので、干渉縞画像内の明暗のコントラストが低くなる。 When the optical path length difference between the laser beams L1 and L2 is zero and the pulse timings of the two laser beams L1 and L2 at the pupil position of the objective lens 3 are the same, as shown in FIG. Since the interference fringes are formed, the contrast of light and dark in the interference fringe image becomes high. On the other hand, when there is an optical path length difference between the laser beams L1 and L2 and the pulse timings of the two laser beams L1 and L2 at the pupil position of the objective lens 3 are not simultaneous, as shown in FIG. Since no interference fringe is formed at the position of, the contrast of light and dark in the interference fringe image is lowered.
 処理装置8は、干渉縞画像内の明暗のコントラストの強度に基づき、瞳位置におけるレーザ光L1,L2のパルスタイミングが同時または非同時になるように、光路長調整光学系19のモータを駆動してレーザ光L1,L2間の光路長差を調整する。 The processing device 8 drives the motor of the optical path length adjusting optical system 19 so that the pulse timings of the laser beams L1 and L2 at the pupil position are the same or non-simultaneous based on the contrast intensity of the dark and light in the interference fringe image. The optical path length difference between the laser beams L1 and L2 is adjusted.
 また、光路長調整光学系19によって第2のレーザ光L2の光路長を漸次変化させたときに、干渉縞の明暗のコントラストの強度は、レーザ光L1,L2のパルス幅に相当する周期で漸次変化し、第1のレーザ光L1と第2のレーザ光L2とが時間的に完全に一致したときにコントラストが最大となり、第1のレーザ光L1と第2のレーザ光L2とが時間的に完全に分離したときにコントラストが最小となる。すなわち、干渉縞画像の明暗のコントラストの強度は、レーザ光L1,L2間の光路長差と相関する。このような干渉縞画像のコントラストと光路長差との相関関係に基づいて、処理装置(光路長差算出部)8は、干渉縞画像からレーザ光L1,L2間の光路長差を算出してもよい。 Further, when the optical path length of the second laser light L2 is gradually changed by the optical path length adjusting optical system 19, the intensity of the contrast of the light and darkness of the interference fringes is gradually increased in a period corresponding to the pulse width of the laser lights L1 and L2. When the first laser beam L1 and the second laser beam L2 completely coincide with each other in time, the contrast becomes maximum, and the first laser beam L1 and the second laser beam L2 vary with time. The contrast is minimized when completely separated. That is, the contrast intensity of the interference fringe image correlates with the optical path length difference between the laser beams L1 and L2. Based on the correlation between the contrast of the interference fringe image and the optical path length difference, the processing device (optical path length calculation unit) 8 calculates the optical path length difference between the laser beams L1 and L2 from the interference fringe image. Also good.
 また、光路長調整光学系19によって光路長を漸次変化させながら取得された干渉縞画像のコントラストの強度のプロファイルには、レーザ光L1,L2のパルス幅およびレーザ光L1,L2間のパルスの時間差の情報が含まれる。処理装置8は、プロファイルを用いてレーザ光L1,L2のパルス幅を測定してもよく、レーザ光L1,L2同士のパルスの重なり幅を測定してもよい。 The profile of the contrast intensity of the interference fringe image acquired while the optical path length is gradually changed by the optical path length adjusting optical system 19 includes the pulse width of the laser beams L1 and L2 and the time difference between the pulses of the laser beams L1 and L2. Information is included. The processing device 8 may measure the pulse width of the laser beams L1 and L2 using the profile, or may measure the overlap width of the pulses between the laser beams L1 and L2.
 本実施形態によれば、対物レンズ3の瞳位置と光学的に共役な位置においてレーザ光L1,L2の干渉縞を計測することによって、レーザ光L1,L2のパルスタイミングの同時および非同時を把握することができるという利点がある。また、試料Aに照射される前のレーザ光L1,L2の干渉縞を利用するので、試料Aの有無に関わらず、2つのレーザ光L1,L2のパルスタイミングの同時および非同時を把握することができるという利点がある。
 本実施形態の作用およびその他の効果は、第1の実施形態と同様であるので、説明を省略する。
According to the present embodiment, by measuring the interference fringes of the laser beams L1 and L2 at a position optically conjugate with the pupil position of the objective lens 3, the simultaneous and non-simultaneous timing of the pulse timing of the laser beams L1 and L2 can be grasped. There is an advantage that you can. In addition, since the interference fringes of the laser beams L1 and L2 before irradiating the sample A are used, the simultaneous and non-simultaneous timing of the pulse timings of the two laser beams L1 and L2 is grasped regardless of the presence or absence of the sample A There is an advantage that can be.
Since the operation and other effects of this embodiment are the same as those of the first embodiment, description thereof will be omitted.
 本実施形態においては、処理装置8が干渉縞画像に基づいて光路長調整光学系19に光路長差の自動調整を行わせることとしたが、これに代えて、またはこれに加えて、ユーザが光路長調整光学系19を移動させて光路長差を調整することができるように構成されていてもよい。ユーザは、例えば、ディスプレイに表示された干渉縞画像を観察しながら、光路長調整光学系19を操作してもよい。 In the present embodiment, the processing device 8 causes the optical path length adjustment optical system 19 to automatically adjust the optical path length difference based on the interference fringe image. Instead of this, or in addition to this, the user The optical path length adjustment optical system 19 may be moved so that the optical path length difference can be adjusted. For example, the user may operate the optical path length adjustment optical system 19 while observing the interference fringe image displayed on the display.
 第1および第2の実施形態においては、蛍光観察用の光走査型顕微鏡装置100,200について説明したが、照明光として励起光以外の光を用い、信号光として蛍光以外の光を検出してもよい。 In the first and second embodiments, the optical scanning microscope apparatuses 100 and 200 for fluorescence observation have been described. However, light other than excitation light is used as illumination light, and light other than fluorescence is detected as signal light. Also good.
1,10 励起光生成部(光源部)
2 走査部
3 対物レンズ(対物光学系)
6,60 検出光学系
7 干渉縞計測部(角度検出部)
8 処理装置(角度検出部、光路長差算出部)
15 第2の偏光ビームスプリッタ(角度調整部)
19 光路長調整光学系(光路長差調整部)
72 カメラ
75 偏光変更素子
76 角度変更素子
100,200 光走査型顕微鏡装置
1,10 Excitation light generation unit (light source unit)
2 Scanning unit 3 Objective lens (objective optical system)
6,60 Detection optical system 7 Interference fringe measurement unit (angle detection unit)
8 Processing device (angle detector, optical path length difference calculator)
15 Second polarization beam splitter (angle adjustment unit)
19 Optical path length adjustment optical system (Optical path length difference adjustment unit)
72 Camera 75 Polarization changing element 76 Angle changing element 100, 200 Optical scanning microscope apparatus

Claims (10)

  1.  互いに相対角度を有する2つの照明光を出力する光源部と、
     該光源部から出力された前記2つの照明光を走査する走査部と、
     該走査部によって走査される前記2つの照明光を試料に照射し互いに異なる集光位置に集光させる対物光学系と、
     前記集光位置において発生した信号光を検出する検出光学系と、
     前記対物光学系の略瞳位置における前記2つの照明光間の相対角度を検出する角度検出部とを備える光走査型顕微鏡装置。
    A light source unit that outputs two illumination lights having relative angles to each other;
    A scanning unit that scans the two illumination lights output from the light source unit;
    An objective optical system for irradiating the sample with the two illumination lights scanned by the scanning unit and condensing them at different condensing positions;
    A detection optical system for detecting the signal light generated at the condensing position;
    An optical scanning microscope apparatus comprising: an angle detection unit configured to detect a relative angle between the two illumination lights at a substantially pupil position of the objective optical system.
  2.  前記対物光学系の略瞳位置における前記2つの照明光間の相対角度を調整する角度調整部を備える請求項1に記載の光走査型顕微鏡装置。 The optical scanning microscope apparatus according to claim 1, further comprising an angle adjustment unit that adjusts a relative angle between the two illumination lights at a substantially pupil position of the objective optical system.
  3.  前記角度調整部が、前記角度検出部によって検出された相対角度に基づき、前記2つの照明光間の相対角度を所定の角度に自動調整する請求項2に記載の光走査型顕微鏡装置。 3. The optical scanning microscope apparatus according to claim 2, wherein the angle adjustment unit automatically adjusts the relative angle between the two illumination lights to a predetermined angle based on the relative angle detected by the angle detection unit.
  4.  前記角度検出部が、前記対物光学系の略瞳位置と光学的に共役な位置に配置され、前記2つの照明光の干渉縞を撮影して干渉縞画像を取得するカメラを備える請求項1から請求項3のいずれかに記載の光走査型顕微鏡装置。 The angle detector is provided at a position optically conjugate with a substantially pupil position of the objective optical system, and includes a camera that captures an interference fringe image of the two illumination lights and acquires an interference fringe image. The optical scanning microscope apparatus according to claim 3.
  5.  前記角度検出部が、前記干渉縞画像に基づいて前記相対角度を算出する請求項4に記載の光走査型顕微鏡装置。 The optical scanning microscope apparatus according to claim 4, wherein the angle detection unit calculates the relative angle based on the interference fringe image.
  6.  前記角度検出部が、前記カメラに入射する前記2つの照明光の偏光状態を変化させる偏光変更素子を備える請求項4または請求項5に記載の光走査型顕微鏡装置。 The optical scanning microscope apparatus according to claim 4 or 5, wherein the angle detection unit includes a polarization changing element that changes a polarization state of the two illumination lights incident on the camera.
  7.  前記角度検出部が、前記カメラに入射する前記2つの照明光間の相対角度を変化させる角度変更素子を備える請求項4から請求項6のいずれかに記載の光走査型顕微鏡装置。 The optical scanning microscope apparatus according to any one of claims 4 to 6, wherein the angle detection unit includes an angle changing element that changes a relative angle between the two illumination lights incident on the camera.
  8.  前記干渉縞画像のコントラストに基づいて前記2つの照明光の光路長差を算出する光路長差算出部を備える請求項4から請求項7のいずれかに記載の光走査型顕微鏡装置。 The optical scanning microscope apparatus according to any one of claims 4 to 7, further comprising an optical path length difference calculation unit that calculates an optical path length difference between the two illumination lights based on a contrast of the interference fringe image.
  9.  前記光路長差算出部によって算出された光路長差に基づいて、前記2つの照明光間の光路長差を調整する光路長差調整部を備える請求項8に記載の光走査型顕微鏡装置。 The optical scanning microscope apparatus according to claim 8, further comprising: an optical path length difference adjusting unit that adjusts an optical path length difference between the two illumination lights based on the optical path length difference calculated by the optical path length difference calculating unit.
  10.  互いに相対角度を有する2つの照明光を対物光学系から試料に照射し互いに異なる集光位置に集光する前記2つの照明光を走査する光走査型顕微鏡装置において、前記集光位置に形成される前記2つの照明光のスポット間の距離を測定するスポット間距離測定方法であって、
     前記対物光学系の略瞳位置における前記2つの照明光間の相対角度を検出する工程を含む光走査型顕微鏡装置におけるスポット間距離測定方法。
    In the optical scanning microscope apparatus that scans the two illumination lights that irradiate the sample with two illumination lights having relative angles to each other from the objective optical system and collect the two illumination lights at different collection positions. A method for measuring a distance between spots, which measures a distance between spots of the two illumination lights,
    A spot-to-spot distance measuring method in an optical scanning microscope apparatus including a step of detecting a relative angle between the two illumination lights at a substantially pupil position of the objective optical system.
PCT/JP2017/002482 2017-01-25 2017-01-25 Optical-scanning-type microscope device and method for measuring distance between spots in optical-scanning-type microscope device WO2018138794A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/002482 WO2018138794A1 (en) 2017-01-25 2017-01-25 Optical-scanning-type microscope device and method for measuring distance between spots in optical-scanning-type microscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/002482 WO2018138794A1 (en) 2017-01-25 2017-01-25 Optical-scanning-type microscope device and method for measuring distance between spots in optical-scanning-type microscope device

Publications (1)

Publication Number Publication Date
WO2018138794A1 true WO2018138794A1 (en) 2018-08-02

Family

ID=62977943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002482 WO2018138794A1 (en) 2017-01-25 2017-01-25 Optical-scanning-type microscope device and method for measuring distance between spots in optical-scanning-type microscope device

Country Status (1)

Country Link
WO (1) WO2018138794A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128573A (en) * 2009-12-21 2011-06-30 Olympus Corp Hologram image projector
JP2013225118A (en) * 2012-03-23 2013-10-31 Olympus Corp Laser microscope
WO2016117415A1 (en) * 2015-01-20 2016-07-28 浜松ホトニクス株式会社 Image acquisition device and image acquisition method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128573A (en) * 2009-12-21 2011-06-30 Olympus Corp Hologram image projector
JP2013225118A (en) * 2012-03-23 2013-10-31 Olympus Corp Laser microscope
WO2016117415A1 (en) * 2015-01-20 2016-07-28 浜松ホトニクス株式会社 Image acquisition device and image acquisition method

Similar Documents

Publication Publication Date Title
JP6227337B2 (en) Optical measuring device
US20200240765A1 (en) Systems and Methods for Optimizing Focus for Imaging-Based Overlay Metrology
JP6186215B2 (en) Optical measuring device and optical tomographic observation method
JP5965167B2 (en) White light interference measurement device
CN110702614B (en) Ellipsometer device and detection method thereof
JP2010071989A (en) Method and instrument for detecting movement of measuring probe
IL234127A (en) Lighting method and microscopic observation device
JP7175982B2 (en) Optical measurement device and sample observation method
KR20180125621A (en) Overlay metrology using the near infra-red spectral range
JP2015072152A (en) Optical measurement system
JP2011128573A (en) Hologram image projector
US10401291B2 (en) Standing wave interferometric microscope
US20190072375A1 (en) Optical image measuring apparatus
JP6720051B2 (en) Optical image measuring device and optical image measuring method
JP4880519B2 (en) Interference measurement device
US8508748B1 (en) Inspection system with fiber coupled OCT focusing
WO2018138794A1 (en) Optical-scanning-type microscope device and method for measuring distance between spots in optical-scanning-type microscope device
US20220051390A1 (en) Defect inspection apparatus and defect inspection method
JP5642411B2 (en) Wavefront measuring method, wavefront measuring apparatus and microscope
JP2006064610A (en) Coaxial-type spatial light interference tomographic image measuring instrument
JPH10176906A (en) Measuring device
JP2009069075A (en) Oblique incidence interferometer and method for calibrating the same
JP2005037213A (en) Detecting apparatus and imaging apparatus using the same
JP4936541B2 (en) Atomic force microscope
JPH10170334A (en) Vibration measuring instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP