WO2018138431A1 - Composant de conduction atténuant des surtensions très rapides pour poste électrique de très haute tension - Google Patents

Composant de conduction atténuant des surtensions très rapides pour poste électrique de très haute tension Download PDF

Info

Publication number
WO2018138431A1
WO2018138431A1 PCT/FR2018/050160 FR2018050160W WO2018138431A1 WO 2018138431 A1 WO2018138431 A1 WO 2018138431A1 FR 2018050160 W FR2018050160 W FR 2018050160W WO 2018138431 A1 WO2018138431 A1 WO 2018138431A1
Authority
WO
WIPO (PCT)
Prior art keywords
component according
conduction component
bar
hollow metal
metal bar
Prior art date
Application number
PCT/FR2018/050160
Other languages
English (en)
Inventor
Diana LEGUIZAMON
Original Assignee
Supergrid Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Supergrid Institute filed Critical Supergrid Institute
Publication of WO2018138431A1 publication Critical patent/WO2018138431A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/066Devices for maintaining distance between conductor and enclosure
    • H02G5/068Devices for maintaining distance between conductor and enclosure being part of the junction between two enclosures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/044Physical layout, materials not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/02Adaptations of transformers or inductances for specific applications or functions for non-linear operation
    • H01F38/023Adaptations of transformers or inductances for specific applications or functions for non-linear operation of inductances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/063Totally-enclosed installations, e.g. in metal casings filled with oil or gas

Definitions

  • the present invention relates to a conduction component attenuating very fast overvoltages for substation of very high voltage and more specifically the very rapid overvoltages caused by the maneuvers of the disconnectors of the substation.
  • a very high voltage substation is used to connect, for example in the case of a power plant or a source station, the different starting cells to the lines or the transport cables from the step-up transformers. connected to the generators, these cells generally comprising a circuit breaker associated with one or more disconnectors.
  • a well known phenomenon in this type of station is the breakdown that occurs when opening the closing of these switching devices. This phenomenon is due to the successive ignition of the electric arc which extends between the contacts of a switching device of the disconnector type, when closing or opening thereof. These initiations cause the appearance of steep edges or voltage peaks that propagate on the busbar at very high frequencies, of the order of 1 to several tens of MHz, with an amplitude reaching 1 to 2 times the unity of voltage.
  • an electric conduction bar of the shielded type for high voltage substation consisting of a conductor arranged in a metal casing filled with a gas dielectric.
  • the conductor comprises at least one machined section in the form of a solenoid.
  • EP2747094 proposes the use of a surge arrester connected in parallel with a coil to form an attenuator circuit.
  • EP 2549604 describes a resonator of the RLC type where the inductance and the capacitance are formed by a resonant cavity arranged coaxially with respect to a central conductor.
  • a surge arrester type resistor for example metal oxide, is disposed between the central conductor and the floating portion of the resonator.
  • the object of the invention is to propose a suitable solution especially for very high voltages, that is to say higher than 500kV, especially around 800kV avoiding increasing the size of the disconnectors at said voltages.
  • the subject of the invention is a conduction component that attenuates very fast overvoltages for a very high voltage substation, comprising a hollow metal bar machined on a solenoid-shaped portion that has an inductance greater than 3 ⁇ , characterized in that it further comprises first and second radial electrodes with respect to the axis of the hollow metal bar, electrically connected to the hollow metal bar and defining an internal space and in that an element forming both capacitance and resistance is arranged in the internal space and connected to the two electrodes.
  • VFTO very fast transient overvoltages
  • the two radial electrodes have a general disc shape.
  • the element forming both capacitance and resistance is produced in the form of a solid central bar made of a material having a permittivity ⁇ greater than 50 and a conductivity less than 2 S / m.
  • the permittivity ⁇ of the solid central bar is in particular greater than 80, especially 95.
  • the conductivity of the solid central bar is in particular less than 1 S / m, in particular between 0.44 S / m and 0.6 S / m.
  • the solid center bar may be made of epoxy resin loaded with a conductive material.
  • the conductive material of the central bar is chosen for example from the following group of materials: aluminum, molybdenum, carbon black.
  • the conductive material of the central bar may be carbon black and the volume load is between 30% and 40%, especially between 31% and 33% by volume.
  • the resonant frequency of the parallel RLC circuit formed by the solenoid portion on the one hand and the capacitance element on the other hand is for example between 10 MHz and 100 MHz and its resistance is for example between 50 and 800 ⁇ .
  • the hollow metal bar has in particular along a length 1 a helically shaped slot separating turns.
  • FIG. 1 shows a simplified diagram of a portion of a gas-insulated metal-enclosed high-voltage substation comprising, for example, a high-voltage disconnector and a very high-voltage conduction section equipped with a conduction component attenuating very fast overvoltages according to the invention
  • FIG. 2A shows, in a cross-sectional view, an exemplary embodiment of a conduction component attenuating very fast overvoltages according to the invention
  • FIG. 2B is a view similar to that of FIG. 2A in which the component of FIG. conduction is installed in a ferrule
  • FIG. 3 shows according to an external view the conduction component attenuating very fast overvoltages of FIG. 2A
  • FIG. 4 shows on a graph the attenuation of a very fast transient in time once without the conduction component according to the invention and once with this conduction component
  • first element or second element as well as first parameter and second parameter, or first criterion and second criterion, and so on.
  • first element or second element as well as first parameter and second parameter, or first criterion and second criterion, and so on.
  • indexing does not imply a priority of one element, parameter or criterion with respect to another, and it is easy to interchange such denominations without departing from the scope of the present description.
  • FIG. 1 shows, in a cross-sectional view, a portion of a gas-insulated metallic envelope high-voltage substation.
  • Such a high voltage station is generally formed of various subassemblies among which there are devices constituting all electrical substation such as circuit breakers, disconnectors, measurement transformers etc, as well as connecting elements between the devices comprising straight elements formed of a metal shell, insulating supports and conductors in the form of bars.
  • Figure 1 More specifically, in Figure 1 are shown a high voltage disconnector 1 and several sections 2 of high voltage conduction in the form of straight sections and a module 3 of redirection.
  • This high voltage disconnector 1 comprises an enclosure 4 filled with an insulating gas, for example sulfur hexafluoride SF6.
  • an insulating gas for example sulfur hexafluoride SF6.
  • This breaking mechanism comprises in particular a stationary electrode 5 fixed on a base 7 and connected to an output conductor 9 intended to be connected to a load (for example an electricity transmission network) and surrounded by an insulating spacer 11.
  • the stationary electrode 5 Opposite the stationary electrode 5 is disposed a movable electrode 13 which is connected via a linkage to an operating mechanism 14 for moving the movable electrode 13 between a recessed position and a position in which the movable electrode 13 is in contact with the stationary electrode 5 for the transmission of a current.
  • the moving electrode 13 is guided in a screen 15 and electrically connected to an input conductor 17 intended to be connected to a source of energy (for example an electric energy generator) and surrounded by an insulating spacer 19.
  • the high voltage conduction sections 2 also comprise a metal casing 4A filled with an insulating gas, for example sulfur hexafluoride SF6 and a conduction bar 20 carried by insulating spacers 19.
  • the conduction bar 20 is replaced, at least partially, by a conduction component 21 attenuating very fast overvoltages. to mitigate transients due to an electric arc which is formed between the mobile electrode 13 on the one hand and the stationary electrode 5 on the other hand during a maneuver of the disconnector 1 by displacement of the movable electrode 13.
  • the conduction component 21 may be installed in other places, the high voltage station outside the enclosure 3 of the disconnector 1, instead of a bar or a portion of bar. This facilitates handling and for very high voltages not to have to increase the size of the mechanism installed inside the enclosure 3 and thus increase the amount of insulating gas inside the disconnector 1.
  • the conduction component 21 attenuating very fast overvoltages comprises a hollow metal bar 25 which is machined on a portion 27 of length 1 in the form of a solenoid.
  • the conduction component 21 further comprises a first 29 and a second 31 electrodes radial with respect to the axis 33 of the hollow metal bar 25 and in particular each having a general disc shape.
  • These radial electrodes 29 and 31 are electrically connected to the hollow metal bar 25, in particular by being in contact with their periphery, and define an internal space 35 inside the hollow metal bar 25.
  • the conduction component 21 can be considered as a parallel RLC circuit formed by the portion 27 in the form of solenoid on the one hand and the element 37 forming both capacitance and resistance.
  • the hollow metal bar 25 is for example made of aluminum.
  • FIG. 3 shows, according to an external view, the conduction component 21 of FIG. 2.
  • the hollow metal bar 25 has, along the length 1, a helicoidal slot 38 separating turns 51 for filtering the HF currents and having a impedance that will be greater than its resistive value from a frequency of 1MHz.
  • the solenoid portion 27 of the hollow metal bar 25 will therefore behave almost as a pure inductance.
  • the portion 27 in the form of solenoid has an inductance greater than 3 ⁇ .
  • the inductance L s of the hollow metal bar 25 is calculated from the following expression:
  • K is the Nagaoka constant between 0 and 1 to take into account the edge effects at the ends of the coil, K is a function of the angle of aperture ⁇ of the solenoid or the ratio between the length and the diameter, this constant can be found in the form of a table or a graph for example in "Scientific Papers of the Bureau of Standards NI 69. Formulas and tables for the calculation of mutual and self-inductance. Department of United States of America. Washington, 1948. "
  • the section of the coil D and the length 1 are imposed by the standard dimensions of the bars of the metal-clad substations which depend on the range of the disconnector 1. With these known parameters, it is possible to calculate the number of turns needed to reach the desired value. .
  • This resonance frequency f is given by the following formula: f ⁇ 1
  • the element 37 forms both a resistance and a capacitance and is made in the form of a solid central bar 39 made of a material having a permittivity greater than ⁇ > 50, in particular ⁇ > 80 and in particular ⁇ > 95 and a conductivity lower than 2 S / m, in particular less than 1 S / m, especially between 0.44 S / m and 0.6 S / m. .
  • the solid central bar 39 is for example made of epoxy resin loaded with a conductive material which is in particular chosen from the following group of materials: aluminum, molybdenum, carbon black.
  • the volume load is between 30% and 40%, especially between 31% and 33% by volume, which corresponds to a peak of the constant dielectric.
  • the capacitance of the central bar 39 which preferably has, for mounting reasons, the same length 1 as the length of the solenoid-shaped portion 27, is calculated from the formula corresponding to two parallel disks separated by a permittivity material. relative ⁇ .
  • the central bar 39 may have a length different from the portion 27 in the form of a solenoid, which is longer or shorter.
  • the resistance R of the central bar 39 is calculated with the following formula:
  • p is the resistivity of the material which will also be the variable to be changed according to the values of R and d which are also imposed by the standard dimensions of the bars of the metal-clad substations. These depend on the rated voltage and current of the device.
  • the permittivity and resistivity of the material must therefore be adapted to the dimensions imposed in each type of device.
  • the permittivity is therefore in particular between 50 and 95 and the resistivity between 1.07 and 0.57 ⁇ respectively. These values are very different from those commonly used in metal enclosures: Between 3 and 5 for the permittivity and between 10E13 and 10E18 ⁇ for the resistivity.
  • the resonant frequency of the parallel RLC circuit formed by the portion 27 in the form of a solenoid on the one hand and the element 37 forming capacitance on the other hand is between 10 MHz and 100 MHz and its resistance is between 50 and 800 ⁇ .
  • FIG. 4 shows on a graph the attenuation of a very fast transient in time once without the conduction component 21 (curve 50) according to the invention and once with this conduction component 21 (curve 52).
  • the attenuation is greater than 50% which effectively protects the other equipment, for example transformers, to which the disconnector 1 is electrically connected. It is further noted that the conduction component 21 effectively attenuates the amplitude of the transient and there is also effective dissipation in a period of less than lenght, including about 0.7us.
  • the conduction component can be installed in a section 2 of high voltage conduction, this instead completely or partially of a conduction bar, which facilitates any possible intervention and allows not to increase the size of the disconnectors of a high voltage substation.

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

L'invention concerne un composant de conduction (21) atténuant des surtensions très rapides pour poste électrique de très haute tension, comprenant une barre métallique creuse(25)usinée sur une portion(27) en forme de solénoïde. La portion(27)en forme de solénoïde présente une inductance supérieure à 3µH. Le composant comprend en outre une première (29) et une deuxième (31) électrodes radiales par rapport à l'axe (33) de la barre métallique creuse (25), reliées électriquement à la barre métallique creuse (25) et définissant un espace interne (35) et en ce qu'un élément (37) formant à la fois capacitance et résistance est disposé dans l'espace interne (35) et relié aux deux électrodes (29, 31).

Description

Composant de conduction atténuant des surtensions très rapides pour poste électrique de très haute tension
La présente invention concerne un composant de conduction atténuant des surtensions très rapides pour poste électrique de très haute tension et plus spécifiquement les surtensions très rapides provoquées par les manœuvres des sectionneurs du poste électrique.
Un poste électrique très haute tension sert à relier, par exemple dans le cas d'une centrale de production d'électricité ou d'une station source, les différentes cellules de départ vers les lignes ou les câbles de transport depuis les transformateurs élévateurs de tension connectés aux générateurs, ces cellules comprenant en général un disjoncteur associé à un ou plusieurs sectionneurs.
Un phénomène bien connu dans ce type de poste est celui du claquage qui se produit lors de l'ouverture de la fermeture de ces appareils de commutation. Ce phénomène est dû aux amorçages successifs de l'arc électrique qui s'étire entre les contacts d'un appareil de commutation du type sectionneur, lors de la fermeture ou de l'ouverture de celui-ci. Ces amorçages provoquent l'apparition de fronts raides ou pics de tension qui se propagent sur le jeu de barres à très hautes fréquences, de l'ordre de 1 à plusieurs dizaines de MHz, avec une amplitude atteignant 1 à 2 fois l'unité de tension.
Ces fronts raides à très hautes fréquences sont dommageables pour les isolations des transformateurs reliés au jeu de barres.
Différentes solutions ont été proposées dont l'idée de base est de créer des obstacles sur le chemin de propagation de ces fronts raides aptes à les bloquer, ou à les amortir, ou encore à les dériver, de façon à protéger les isolations des transformateurs.
Ainsi le document EP 1001504 propose une barre de conduction électrique de type blindé pour poste électrique haute tension, constituée d'un conducteur disposé dans une enveloppe métallique remplie d'un gaz diélectrique. Le conducteur comprend au moins un tronçon usiné en forme de solénoïde.
Le document EP2747094 propose l'utilisation d'un parafoudre connecté en parallèle avec une bobine pour former un circuit atténuateur.
Le document EP 2549604 décrit un résonateur du type RLC où l'inductance et la capacitance sont formées par une cavité résonnante disposée coaxialement par rapport à un conducteur central. Une résistance du type parafoudre, par exemple en oxyde de métal, est disposée entre le conducteur central et la partie flottante du résonateur.
Un autre état de la technique en relation avec la présente invention est divulgué dans le document US 5 532 897.
Ces solutions sont dimensionnées pour des tensions d'environ 245kV, mais s'avèrent complètement inadaptées pour les très hautes tensions par exemple d'environ 800kV, car généralement trop lent en temps de réponse.
De plus, ces solutions, souvent encombrantes, sont généralement installées dans un sectionneur à isolation gazeuse [« Gas Insulated Switchgear » (GIS) en anglais] qui est rempli d'un gaz isolant comme par exemple du SF6 et nécessitent une manutention régulière. Par conséquent, elles augmentent la taille du sectionneur et de ce fait la quantité de gaz isolant nécessaire pour remplir le compartiment du sectionneur.
Le but de l'invention est de proposer une solution adaptée en particulier pour les très hautes tensions, c'est-à-dire supérieures à 500kV, notamment autour de 800kV évitant l'augmentation de la taille des sectionneurs auxdites tensions.
Selon un autre objectif indépendant, on vise un composant de conduction qui puisse être installé en dehors du compartiment du sectionneur pour notamment faciliter la manutention en cas de besoin et ainsi éviter l'arrêt du sectionneur. En effet, une installation à l'extérieur du compartiment du sectionneur permet de maintenir l'encombrement des sectionneurs au niveau actuellement pratiqué. Plus particulièrement, l'invention a pour objet un composant de conduction atténuant des surtensions très rapides pour poste électrique de très haute tension, comprenant une barre métallique creuse usinée sur une portion en forme de solénoïde qui présente une inductance supérieure à 3μΗ, caractérisé en ce qu'il comprend en outre une première et une deuxième électrodes radiales par rapport à l'axe de la barre métallique creuse, reliées électriquement à la barre métallique creuse et définissant un espace interne et en ce qu'un élément formant à la fois capacitance et résistance est disposé dans l'espace interne et relié aux deux électrodes.
Grâce à ces caractéristiques, on parvient à atténuer des surtensions à transitions très rapides (VFTO pour « Very Fast Transition Overvoltages » en anglais) même pour des tensions supérieures à 500kV.
Le composant conducteur selon l'invention peut comporter une ou plusieurs des caractéristiques suivantes prises seules ou en combinaison :
Selon un aspect, les deux électrodes radiales présentent une forme générale de disque.
Selon un autre aspect, l'élément formant à la fois capacitance et résistance est réalisé sous forme d'une barre centrale pleine réalisée en un matériau ayant une permittivité ε supérieure à 50 et une conductivité inférieure à 2 S/m.
La permittivité ε de la barre centrale pleine est notamment supérieure à 80, notamment à 95.
La conductivité de la barre centrale pleine est en particulier inférieure à 1 S/m, notamment comprise entre 0,44 S/m et 0,6 S/m.
La barre centrale pleine peut être réalisée en résine époxy chargé d'un matériau conducteur. Le matériau conducteur de la barre centrale est choisi par exemple parmi le groupe de matériau suivant : aluminium, molybdène, noir de carbone.
Le matériau conducteur de la barre centrale peut être du noir de carbone et la charge en volume est comprise entre 30% et 40%, notamment entre 31% et 33% en volume.
La fréquence de résonance du circuit RLC parallèle formé par la portion en forme de solénoïde d'une part et l'élément formant capacitance d'autre part est par exemple comprise entre 10MHz et 100MHz et sa résistance est par exemple comprise entre 50 et 800Ω.
La barre métallique creuse présente notamment sur une longueur 1 une fente de forme hélicoïdale séparant des spires.
D'autres avantages et caractéristiques apparaîtront à la lecture de la description de l'invention, ainsi que des figures suivantes parmi lesquelles :
- la figure 1 montre un schéma simplifié d'une partie d'un poste haute tension sous enveloppe métallique à isolation gazeuse comportant par exemple un sectionneur haute tension ainsi qu'une section de conduction très haute tension équipée d'un composant de conduction atténuant des surtensions très rapides selon l'invention,
- la figure 2A montre selon une vue en coupe transversale un exemple de réalisation d'un composant de conduction atténuant des surtensions très rapides selon l'invention, - la figure 2B est une vue similaire à celle de la figure 2A dans laquelle le composant de conduction est installé dans une virole, - la figure 3 montre selon une vue externe le composant de conduction atténuant des surtensions très rapides de la figure 2A,
- la figure 4 montre sur un graphe l'atténuation d'un transitoire très rapide dans le temps une fois sans le composant de conduction selon l'invention et une fois avec ce composant de conduction,
Sur les figures, les éléments identiques sont identifiés par les mêmes références. Les réalisations suivantes sont des exemples. Bien que la description se réfère à un ou plusieurs modes de réalisation, ceci ne signifie pas nécessairement que chaque référence concerne le même mode de réalisation, ou que les caractéristiques s'appliquent seulement à un seul mode de réalisation. De simples caractéristiques de différents modes de réalisation peuvent également être combinées pour fournir d'autres réalisations.
Dans la description on peut indexer certains éléments ou paramètres, comme par exemple premier élément ou second élément ainsi que premier paramètre et second paramètre ou encore premier critère et second critère etc. Dans ce cas, il s'agit d'un simple indexage pour différencier et dénommer des éléments ou paramètres ou critères proches mais non identiques. Cette indexation n'implique pas une priorité d'un élément, paramètre ou critère par rapport à un autre et on peut aisément interchanger de telles dénominations sans sortir du cadre de la présente description.
La figure 1 montre selon une vue en coupe transversale une partie d'un poste haute tension sous enveloppe métallique à isolation gazeuse.
Un tel poste haute tension est généralement formé de divers sous- ensembles parmi lesquels on compte des appareils constitutifs de tout poste électrique comme par exemple des disjoncteurs, des sectionneurs, des transformateurs de mesures etc, ainsi que des éléments de liaison entre les appareils comportant des éléments droits formés d'une virole métallique, des supports isolateurs et des conducteurs sous forme de barres.
Plus précisément, sur la figure 1 sont représentés un sectionneur haute tension 1 ainsi que plusieurs sections 2 de conduction haute tension sous forme de tronçons droits et un module 3 de redirection.
Ce sectionneur haute tension 1 comprend une enceinte 4 remplie d'un gaz isolant, par exemple de l'hexafluorure de soufre SF6.
A l'intérieur de l'enceinte 4 est installé un mécanisme de coupure proprement dit. Ce mécanisme de coupure comprend notamment une électrode stationnaire 5 fixé sur une embase 7 et reliée à un conducteur de sortie 9 destiné à être relié à une charge (par exemple un réseau de transport d'électricité) et entouré d'une entretoise isolante 11.
En face de l'électrode stationnaire 5 est disposée une électrode mobile 13 qui est reliée via une timonerie à un mécanisme de manœuvre 14 permettant de déplacer l'électrode mobile 13 entre une position en retrait et une position dans laquelle l'électrode mobile 13 est en contact avec l'électrode stationnaire 5 pour la transmission d'un courant. L'électrode mobile 13 est guidée dans un écran 15 et reliée électriquement à un conducteur d'entrée 17 destiné à être relié à une source d'énergie (par exemple un générateur d'énergie électrique) et entouré d'une entretoise isolante 19. Les sections 2 de conduction haute tension comportent également une enveloppe métallique 4A remplie d'un gaz isolant, par exemple de l'hexafluorure de soufre SF6 ainsi qu'une barre de conduction 20 portée par des entretoises isolantes 19.
Comme on le voit sur la figure 1 et sur la figure 2B en vue agrandie, dans une des sections 2 de conduction haute tension, la barre de conduction 20 est remplacée, au moins partiellement, par un composant de conduction 21 atténuant des surtensions très rapides pour atténuer les transitoires dues à un arc électrique qui se forme entre l'électrode mobile 13 d'une part et l'électrode stationnaire 5 d'autre part lors d'une manœuvre du sectionneur 1 par déplacement de l'électrode mobile 13.
Le composant de conduction 21 peut être installé à d'autres endroits, du poste haute tension en dehors de l'enceinte 3 du sectionneur 1, à la place d'une barre ou d'une portion de barre. Ceci permet de faciliter la manutention et pour de très hautes tensions de ne pas devoir augmenter l'encombrement du mécanisme installé à l'intérieur de l'enceinte 3 et ainsi augmenter la quantité de gaz isolant à l'intérieur du sectionneur 1. En référence aux figures 2A et 2B, le composant de conduction 21 atténuant des surtensions très rapides comprend une barre métallique creuse 25 qui est usinée sur une portion 27 de longueur 1 sous forme de solénoïde.
Le composant de conduction 21 comprend en outre une première 29 et une deuxième 31 électrodes radiales par rapport à l'axe 33 de la barre métallique creuse 25 et présentant notamment chacune une forme générale de disque.
Ces électrodes radiales 29 et 31 sont reliées électriquement à la barre métallique creuse 25, notamment en étant en contact avec leur pourtour, et définissent un espace interne 35 à l'intérieur de la barre métallique creuse 25.
Un élément 37 formant à la fois une capacitance et une résistance est disposé dans l'espace interne 35 et relié électriquement aux deux électrodes radiales 29 et 31, ce qui permet un gain de place important. Comme montré schématiquement sur la figure 2A, le composant de conduction 21 peut être considéré comme un circuit RLC parallèle formé par la portion 27 en forme de solenoïde d'une part et l'élément 37 formant à la fois capacitance et résistance.
La barre métallique creuse 25 est par exemple réalisée en aluminium.
La figure 3 montre selon une vue externe le composant de conduction 21 de la figure 2. On voit que la barre métallique creuse 25 présente sur la longueur 1 une fente de forme hélicoïdale 38 séparant des spires 51 pour filtrer les courants HF et qui présente une impédance qui sera supérieure à sa valeur résistive à partir d'une fréquence de 1MHz. Pour de hautes fréquences, ou très hautes fréquence, la portion 27 en forme de solénoïde de la barre métallique creuse 25 se comportera donc quasiment comme une inductance pure.
La portion 27 en forme de solénoïde présente une inductance supérieure à 3μΗ.
L'inductance Ls de la barre métallique creuse 25 est calculée à partir de l'expression suivante:
Ls = K 4πΝ2Α/1 [Unités électromagnétiques]
Où :
- N est le nombre de spires,
- A est la section transversale de la bobine
- 1 la longueur de la portion 27 en forme de solénoïde
- K est la constante de Nagaoka comprise entre 0 et 1 pour prendre en compte les effets de bord aux extrémités de la bobine, K est une fonction de l'angle d'aperture Θ du solénoïde ou du rapport entre la longueur et le diamètre, cette constante peut-être trouvé sous forme de tableau ou de graphe par exemple dans « Scientific Papers of the bureau of standards N I 69. Formulas and tables for the calculation of mutual and self-inductance. Department of commerce United States of America. Washington 1948. »
La section de la bobine D et la longueur 1 sont imposés par les dimensions standard des barres des postes sous enveloppe métallique qui dépendent de la gamme du sectionneur 1. Avec ces paramètres connus, on peut calculer le nombre de spires nécessaire pour atteindre la valeur souhaitée.
La largeur et la distance entre les spires doivent être choisies afin de minimiser la capacitance propre de la portion 27 en forme de solénoïde afin de repousser sa fréquence de résonance au-dessus de 100MHz. Cette fréquence de résonance f est donnée par la formule suivante : f ~ 1
Ainsi, la capacitance propre de la bobine Cs doit respecter
1
Ls ¾ (2 f0)2L
La relation entre la capacitance et la géométrie est donné par la relation suivante :
(N - l)acosh (|) où D est le diamètre de la bobine, N le nombre de spires, ¾ la permittivité du vide, p la distance entre axes des spires et h leur largeur.
Selon le mode de réalisation de la figure 2, l'élément 37 forme à la fois une résistance et une capacitance et est réalisé sous forme d'une barre centrale 39 pleine réalisée en un matériau ayant une permittivité supérieure ε > 50, en particulier ε>80 et notamment ε> 95 et une conductivité inférieure à 2 S/m, en particulier inférieure à 1 S/m, notamment comprise entre 0,44 S/m et 0,6 S/m.
La barre centrale pleine 39 est par exemple réalisée en résine époxy chargé d'un matériau conducteur qui est notamment choisi parmi le groupe de matériaux suivant : aluminium, molybdène, noir de carbone.
Dans le cas où le matériau conducteur de la barre centrale 39 est du noir de carbone, la charge en volume est comprise entre 30% et 40%, notamment entre 31% et 33% en volume, ce qui correspond à un pic de la constante diélectrique.
La capacitance de la barre centrale 39 qui a de préférence pour des raisons de montage la même longueur 1 que la longueur de la portion 27 en forme de solénoïde, est calculée à partir de la formule correspondant à deux disques parallèles séparés par un matériau de permittivité relative ε.
= ££07ir2
' ~~ d
Avec r, le rayon des disques internes à la structure et d = 1 la distance entre eux.
Selon une variante la barre centrale 39 peut avoir une longueur différente de la portion 27 en forme de solénoïde, plus longue ou plus courte.
La résistance R de la barre centrale 39 est calculée avec la formule suivante :
Figure imgf000012_0001
Ou p est la résistivité du matériau qui sera également la variable à faire changer en fonction des valeurs de R et de d qui sont aussi imposées par les dimensions standard des barres des postes sous enveloppe métallique. Celles-ci dépendent de la tension et courant nominal de l'appareil.
La permittivité et résistivité du matériau doivent donc être adaptées aux dimensions imposées dans chaque type d'appareil. Pour les postes entre 245kV et 800kV, la permittivité se trouve donc en particulier entre 50 et 95 et la résistivité entre 1.07 et 0.57 Ωοι respectivement. Ce sont des valeurs très différentes de celles couramment pratiqué dans les postes sous enveloppe métallique : Entre 3 et 5 pour la permittivité et entre 10E13 et 10E18 Ωοι pour la résistivité.
Ainsi, la fréquence de résonance du circuit RLC parallèle formé par la portion 27 en forme de solénoïde d'une part et l'élément 37 formant capacitance d'autre part est comprise entre 10MHz et 100MHz et sa résistance est comprise entre 50 et 800Ω. La figure 4 montre sur un graphe l'atténuation d'une transitoire très rapide dans le temps une fois sans le composant de conduction 21 (courbe 50) selon l'invention et une fois avec ce composant de conduction 21 (courbe 52).
On constate que l'atténuation est supérieure à 50% ce qui permet de protéger efficacement les autres équipements, par exemple des transformateurs, auquel le sectionneur 1 est raccordé électriquement. On constate de plus que le composant de conduction 21 permet d'atténuer efficacement l'amplitude de la transitoire et on constate aussi une dissipation efficace dans un laps de temps inférieur à lus, notamment environ 0,7us.
On comprend donc que le composant de conduction permet d'être installé dans une section 2 de conduction haute tension, ceci à la place complètement ou partiellement d'une barre de conduction, ce qui facilite toute intervention éventuelle et permet de ne pas augmenter l'encombrement des sectionneurs d'un poste haute tension.

Claims

REVENDICATIONS
1. Composant de conduction (21) atténuant des surtensions très rapides pour poste électrique de très haute tension, comprenant une barre métallique creuse (25) usinée sur une portion (27) en forme de solénoïde qui présente une inductance supérieure à
3μΗ, caractérisé en ce qu'il comprend en outre une première (29) et une deuxième (31) électrodes radiales par rapport à l'axe (33) de la barre métallique creuse (25), reliées électriquement à la barre métallique creuse (25) et définissant un espace interne (35) et en ce qu'un élément (37) formant à la fois capacitance et résistance est disposé dans l'espace interne (35) et relié aux deux électrodes (29, 31).
2. Composant selon la revendication 1, caractérisé en ce que les deux électrodes radiales (29, 31) présentent une forme générale de disque.
3. Composant selon la revendication 1 ou 2 caractérisé en ce que l'élément (37) formant à la fois capacitance et résistance est réalisé sous forme d'une barre centrale (39) pleine réalisée en un matériau ayant une permittivité ε supérieure à 50 et une conductivité inférieure à 2 S/m.
4. Composant de conduction selon la revendication 3, caractérisé en ce que la permittivité ε de la barre centrale pleine (39) est supérieure à 80, notamment à 95.
5. Composant de conduction selon la revendication 3 ou 4, caractérisé en ce que la conductivité de la barre centrale (39) pleine est inférieure à 1 S/m, notamment comprise entre 0,44 S/m et 0,6 S/m.
6. Composant de conduction selon l'une quelconque des revendications 3 à 5, caractérisé en ce que la barre centrale pleine (39) est réalisé en résine époxy chargé d'un matériau conducteur.
7. Composant de conduction selon la revendication 6, caractérisé en ce que le matériau conducteur de la barre centrale (39) est choisi parmi le groupe de matériau suivant : aluminium, molybdène, noir de carbone.
8. Composant de conduction selon la revendication 7, caractérisé en ce que le matériau conducteur de la barre centrale (39) est du noir de carbone et en ce que la charge en volume est comprise entre 30% et 40%, notamment entre 31% et 33% en volume.
9. Composant de conduction selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la fréquence de résonance du circuit RLC parallèle formé par la portion (27) en forme de solénoïde d'une part et l'élément (37) formant capacitance d'autre part est comprise entre 10MHz et 100MHz et en ce que sa résistance est comprise entre 50 et 800Ω.
10. Composant de conduction selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la barre métallique creuse (25) présente sur une longueur 1 une fente de forme hélicoïdale (38) séparant des spires (51).
PCT/FR2018/050160 2017-01-26 2018-01-24 Composant de conduction atténuant des surtensions très rapides pour poste électrique de très haute tension WO2018138431A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1750659A FR3062249B1 (fr) 2017-01-26 2017-01-26 Composant de conduction attenuant des surtensions tres rapides pour poste electrique de tres haute tension
FR1750659 2017-01-26

Publications (1)

Publication Number Publication Date
WO2018138431A1 true WO2018138431A1 (fr) 2018-08-02

Family

ID=58645208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/050160 WO2018138431A1 (fr) 2017-01-26 2018-01-24 Composant de conduction atténuant des surtensions très rapides pour poste électrique de très haute tension

Country Status (2)

Country Link
FR (1) FR3062249B1 (fr)
WO (1) WO2018138431A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258492A (zh) * 2021-07-07 2021-08-13 华中科技大学 特快速暂态过电压抑制结构及气体绝缘变电站一体化设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532897A (en) 1994-05-27 1996-07-02 Lightning Eliminators & Consultants, Inc. High-voltage surge eliminator
EP1001504A1 (fr) 1998-11-16 2000-05-17 Alstom Holdings Barre de conduction électrique de type blindé pour poste électrique haute tension
EP2549604A1 (fr) 2011-07-19 2013-01-23 ABB Technology AG Agencement de conducteur pour réduire l'impact de transitions très rapides
EP2747094A1 (fr) 2012-12-21 2014-06-25 ABB Technology AG Atténuateur de surtension transitoire très rapide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532897A (en) 1994-05-27 1996-07-02 Lightning Eliminators & Consultants, Inc. High-voltage surge eliminator
EP1001504A1 (fr) 1998-11-16 2000-05-17 Alstom Holdings Barre de conduction électrique de type blindé pour poste électrique haute tension
EP2549604A1 (fr) 2011-07-19 2013-01-23 ABB Technology AG Agencement de conducteur pour réduire l'impact de transitions très rapides
EP2747094A1 (fr) 2012-12-21 2014-06-25 ABB Technology AG Atténuateur de surtension transitoire très rapide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258492A (zh) * 2021-07-07 2021-08-13 华中科技大学 特快速暂态过电压抑制结构及气体绝缘变电站一体化设备

Also Published As

Publication number Publication date
FR3062249B1 (fr) 2019-04-19
FR3062249A1 (fr) 2018-07-27

Similar Documents

Publication Publication Date Title
RU2657009C1 (ru) Баковый выключатель с импульсным разрядником, соединенным через изоляционные втулки каждого полюса
CA2053951C (fr) Disjoncteur a sf6 a condensateur incorpore
KR20130010876A (ko) 매우 빠른 과도의 충격을 줄이기 위한 컨덕터 구성물
WO2018138431A1 (fr) Composant de conduction atténuant des surtensions très rapides pour poste électrique de très haute tension
FR2674984A1 (fr) Disjoncteur a sf6 a varistance et a condensateur incorpores.
EP0270389B1 (fr) Interrupteur rotatif multipolaire à isolement gazeux
EP0915546B1 (fr) Ligne électrique à isolation gazeuse et à condensateur de puissance incorporée
CA2290120A1 (fr) Barre de conduction electrique de type blinde pour poste electrique haute tension
FR2462712A1 (fr) Dispositif de mesure de tensions alternatives elevees dans des installations de distribution haute tension
EP2287990A1 (fr) Dispositif de protection contre la surtension haute fréquence
FR2681724A1 (fr) Disjoncteur haute tension a grande tension d'arc.
Boggs et al. Attenuating voltage surges in power cable by modifying the semiconductive shields
EP0017545A1 (fr) Sectionneur triphasé pour cellule de distribution moyenne tension
CN110942945A (zh) 一种配置高标准对接地关合能力隔离器的负荷开关
FR2730108A1 (fr) Dispositif de commutation d'un circuit de haute tension a transformateur d'impulsion
US4819120A (en) Impedance arrangement for limiting transients
FR3065834B1 (fr) Cable electrique pour cablage de parafoudre
Hackl et al. Switching overvoltages caused by shunt reactor switching and mitigation methods
JPS6158415A (ja) 管路母線
JPH0520969B2 (fr)
CN108597704A (zh) 电缆护层保护器
JPH01308114A (ja) ガス絶縁電気機器
FR2777126A1 (fr) Module de blindage cruciforme pour une installation de commutation a blindage triphasee
JPH03155320A (ja) 絶縁物支持体
JPS59194319A (ja) ガス絶縁開閉装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18702784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18702784

Country of ref document: EP

Kind code of ref document: A1