WO2018137674A1 - 数据的传输方法和装置、存储介质 - Google Patents

数据的传输方法和装置、存储介质 Download PDF

Info

Publication number
WO2018137674A1
WO2018137674A1 PCT/CN2018/074068 CN2018074068W WO2018137674A1 WO 2018137674 A1 WO2018137674 A1 WO 2018137674A1 CN 2018074068 W CN2018074068 W CN 2018074068W WO 2018137674 A1 WO2018137674 A1 WO 2018137674A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
data
signal
carrier
optical network
Prior art date
Application number
PCT/CN2018/074068
Other languages
English (en)
French (fr)
Inventor
陈雷
黄新刚
贺江艳
李玉峰
李明生
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18744848.5A priority Critical patent/EP3576331B1/en
Publication of WO2018137674A1 publication Critical patent/WO2018137674A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/005Optical Code Multiplex
    • H04J14/007Orthogonal Optical Code Multiplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0298Wavelength-division multiplex systems with sub-carrier multiplexing [SCM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0084Quality of service aspects

Definitions

  • the present application relates to the field of communications, and in particular, to a data transmission method and apparatus, and a storage medium.
  • NB-IOT Narrow Band Internet of Things
  • M2M massive machine to machine
  • PON Passive Optical Network
  • PON network with mobile flexible mobile access network to form a PON and mobile converged access network, which can meet the high mobile network.
  • Bandwidth, low cost, high mobility, and high quality of service (QoS) management requirements can also reduce the cost of network construction. Therefore, wired access PON networks are used to transmit low-latency data such as Internet of Things. Conducive to cost reduction.
  • the downlink of the traditional PON network is based on the broadcast mode, and the uplink is based on the Time Division Multiple Address (TDMA) and the Dynamic Bandwidth Allocation (DBA) mechanism.
  • TDMA Time Division Multiple Address
  • DBA Dynamic Bandwidth Allocation
  • the specified service priority is scheduled, and the optical line unit (OLT) allocates independent time slot bandwidth to each user.
  • the data uploaded by the optical network unit (ONU) can only be specified.
  • the slots are transmitted, and the time slots are separated by guard slot intervals.
  • the PON network can be used to transmit mobile services and broadband services (hereinafter, the mobile service or the broadband service is collectively referred to as a primary service), and the primary service may be a service provided for an outdoor base station, a home network, an outdoor base station, or the like.
  • the uplink and downlink transmission between the OLT and the ONU adopts the operation mechanism in the traditional PON network.
  • the data sent by the OLT downlink adopts a broadcast (ie, downlink broadcast) mode, and each ONU identifies the downlink data corresponding thereto according to the unique identifier character.
  • the uplink uses time division multiple access multiplexing to access TDMA.
  • the OLT uses Splitter (1:32/64/128 means that 32 or 64 or 128 ONUs can be scheduled) to schedule all ONUs, and implement dynamic bandwidth allocation in the uplink channel.
  • Time is forwarded according to the rules and time, and does not interfere with each other.
  • the time window in which the service is started only one ONU laser emits light at the same time, and the main service is uploaded, and the lasers of other ONUs in the system are turned off and not illuminated.
  • ONUp, ONUm, ONUn (p, m, n are random values) are allocated corresponding slot bandwidths, and each slot has a slot interval as protection. .
  • the ONU Since the ONU is illuminating according to the QOS scheduling, different ONUs upload data and wait for the high-priority service to complete the transmission before uploading. The waiting during the uploading process will increase the delay. Therefore, the transmission delay using the DBA mechanism is relatively large. .
  • a PON network using a dynamic bandwidth allocation mechanism can only transmit service data that does not require high latency, but if ultra-low latency data is transmitted, such as low latency IoT data, the requirements cannot be met.
  • the actual test shows that the transmission delay of PON system based on dynamic bandwidth allocation is usually several ms or even tens of ms, while the delay of low delay data is between 0.5ms and 1ms, so the transmission is low by using existing PON network technology. Delay data is not feasible. Unable to meet the needs of low latency business.
  • a fixed bandwidth allocation mechanism may be adopted to allocate fixed time slots to different service signals, and at the same time, reduce the time slot interval between services and the allocated time slot bandwidth length to reduce the transmission delay. It satisfies some low-latency data transmission requirements, but because this method requires fixed service bandwidth, the flexibility of service transmission may be reduced; and when the service bandwidth is smaller than the fixed bandwidth allocated by the system, idle time slots may occur. The limited bandwidth resources are wasted, so the broadband utilization of this method is poor. It is also possible to reduce the delay by optimizing the DBA algorithm, and improve the priority of the low-latency service signal to implement fast forwarding.
  • the method of reducing the delay affects the originally high-priority service, and the delay reduction value also has a limit.
  • Another method is to add a pair of uplink and downlink wavelengths in an existing PON system, and use a separate wavelength channel to transmit low-latency services. This method is the simplest and most feasible, and the service wavelength is not the same, so the main service is not affected. Transmission, but in order to transmit low-latency services, the system needs to add an additional set of transmitting and receiving devices, especially the need to add independent optical path transmitting and receiving devices, which requires large-scale improvements to existing networks, and even need to be directly replaced with new ones. The system has led to an increase in additional costs.
  • the embodiments of the present application provide a data transmission method and apparatus, and a storage medium, to at least solve the technical problem of high cost of transmitting data of different delays in a passive optical network.
  • a data transmission method includes: acquiring first type data and second type data to be sent, where a transmission delay allowed by the first type of data is less than The transmission delay allowed by the second type of data; transmitting the first type of data that needs to be transmitted instantaneously on the first carrier frequency band of the transmission channel between the target optical network unit and the optical line unit, wherein the transmission channel allows simultaneous transmission of the first type Data and second type of data, the lowest frequency in the second frequency band for transmitting the second type of data on the transmission channel is higher than the highest frequency in the first carrier frequency band.
  • the first type of data that needs to be transmitted in real time on the first carrier frequency band of the transmission channel between the target optical network unit and the optical line unit includes: determining that the first carrier frequency band is the target optical network.
  • the first sub-band allocated by the unit; the first type of data is transmitted on the first sub-band allocated for the target optical network unit.
  • the transmitting the first type of data on the first sub-band allocated for the target optical network unit includes: using a carrier corresponding to the frequency in the first sub-band, for transmitting the first type of data.
  • the first type of signal is subjected to carrier modulation; the first type of signal modulated by the carrier is converted into an optical signal, and the optical signal is transmitted on the transmission channel.
  • performing carrier modulation on a first type of signal used for transmitting the first type of data by using a carrier corresponding to a frequency in the first sub-band includes: determining a first sub-allocation to the target optical network unit The center frequency in the frequency band; the carrier of the first type of signal is modulated by a carrier corresponding to the center frequency.
  • converting the carrier-modulated first type signal into an optical signal includes: compressing a signal amplitude of the carrier-modulated first type signal according to a preset compression ratio; The first type of signal is converted to an optical signal that is transmitted on the transmission channel.
  • each optical network unit in the passive optical network where the target optical network unit is located is allocated a sub-band, wherein the bandwidth of any two sub-bands is the same.
  • a frequency gap is set between two adjacent sub-bands.
  • the first type of data that needs to be transmitted in real time on the first carrier frequency band of the transmission channel between the target optical network unit and the optical line unit includes: for transmitting the first type of data.
  • a type of signal is used for spreading; the carrier of the first type of the spread spectrum is modulated by a carrier corresponding to the first frequency in the first carrier frequency band, wherein the first frequency is in the passive optical network where the target optical network unit is located.
  • the frequency used by all optical network units for carrier modulation; the first type of signal modulated by the carrier is converted into an optical signal, and the optical signal is transmitted on the transmission channel.
  • performing frequency spreading on the first type of signal used for transmitting the first type of data includes: acquiring a first pseudo random sequence allocated for the target optical network unit; using the first pseudo random sequence to the first Class signals are spread.
  • converting the carrier-modulated first type signal into an optical signal includes: compressing a signal amplitude of the carrier-modulated first type signal according to a preset compression ratio; The first type of signal is converted to an optical signal that is transmitted on the transmission channel.
  • each optical network unit of the passive optical network is allocated a pseudo-random sequence of the same length, wherein the length of the pseudo-random sequence is related to the number of optical network units in the passive optical network.
  • the first type of data that needs to be transmitted in real time on the first carrier frequency band of the transmission channel between the target optical network unit and the optical line unit includes: for transmitting the first type of data.
  • a type of signal is used for spreading; the carrier of the first type of the spread spectrum is modulated by a carrier corresponding to the second frequency in the first carrier frequency band, wherein the second frequency is in the optical network unit group where the target optical network unit is located
  • the frequency used by all optical network units for carrier modulation; the first type of signal modulated by the carrier is converted into an optical signal, and the optical signal is transmitted on the transmission channel.
  • the method before the first type of signal used for transmitting the first type of data is spread, the method further includes: determining an optical network unit group where the target optical network unit is located, where the target optical network unit The passive optical network is located in a plurality of optical network unit groups, and each optical network unit group includes a plurality of optical network units.
  • performing frequency spreading on the first type of signal used for transmitting the first type of data includes: acquiring a plurality of pseudo random sequences allocated for the optical network unit group where the target optical network unit is located; acquiring multiple a second pseudo-random sequence corresponding to the target optical network unit in the pseudo-random sequence; and spreading the first type of signal by using the second pseudo-random sequence.
  • the length of the pseudo random sequence is related to the number of optical network units in the optical network unit group.
  • performing carrier modulation on the spread type first type signal by using a carrier corresponding to the second frequency on the first carrier frequency band includes: acquiring, in the first carrier frequency band, the light of the target optical network unit a second sub-band allocated by the network unit group; performing carrier modulation on the spread-first signal by using a carrier corresponding to the second frequency on the second sub-band.
  • the second frequency is a center frequency in the second sub-band.
  • converting the carrier-modulated first type signal into an optical signal includes: compressing a signal amplitude of the carrier-modulated first type signal according to a preset compression ratio; The first type of signal is converted to an optical signal that is transmitted on the transmission channel.
  • a data transmission apparatus comprising: a receiving unit configured to acquire first type data and second type data to be transmitted, wherein the first type of data allows The transmission delay is smaller than the transmission delay allowed by the second type of data; the transmission unit is configured to send the first type of data that needs to be transmitted immediately on the first carrier frequency band of the transmission channel between the target optical network unit and the optical line unit, The transmission channel allows the first type of data and the second type of data to be simultaneously transmitted, and the lowest frequency in the second frequency band for transmitting the second type of data on the transmission channel is higher than the highest frequency in the first carrier frequency band.
  • the transmission unit includes: a determining module configured to determine a first sub-band allocated to the target optical network unit in the first carrier frequency band; and a transmission module configured to be allocated to the target optical network unit The first type of data is sent on a sub-band.
  • the transmission module includes: a modulation submodule configured to perform carrier modulation on the first type of signal used for transmitting the first type of data by using a carrier corresponding to the frequency in the first subband;
  • the module is configured to convert the carrier-modulated first type of signal into an optical signal and transmit the optical signal on the transmission channel.
  • the transmission unit includes: a first spreading module configured to perform spreading on a first type of signal used for transmitting the first type of data; and a first modulation module configured to utilize the first carrier
  • the carrier corresponding to the first frequency in the frequency band performs carrier modulation on the spread type first signal, wherein the first frequency is a frequency used when all optical network units in the passive optical network where the target optical network unit is located perform carrier modulation;
  • the first conversion module is configured to convert the carrier-modulated first type signal into an optical signal and transmit the optical signal on the transmission channel.
  • the transmission unit includes: a second spreading module configured to perform spreading on the first type of signal used to transmit the first type of data; and a second modulation module configured to utilize the first carrier
  • the carrier corresponding to the second frequency in the frequency band performs carrier modulation on the spread type first signal, wherein the second frequency is a frequency used when all optical network units in the optical network unit group in which the target optical network unit is located perform carrier modulation;
  • the second conversion module is configured to convert the carrier-modulated first type signal into an optical signal and transmit the optical signal on the transmission channel.
  • a terminal comprising: a processor; a memory configured to store processor-executable instructions; and a transmission device configured to perform information transceiving communication according to control of the processor;
  • the processor is configured to: obtain the first type of data to be sent and the second type of data, wherein the transmission delay allowed by the first type of data is smaller than the transmission delay allowed by the second type of data; Transmitting a first type of data that requires immediate transmission on a first carrier frequency band of a transmission channel between the unit and the optical line unit, wherein the transmission channel allows simultaneous transmission of the first type of data and the second type of data, and the transmission channel is used for transmitting The lowest frequency in the second frequency band of the second type of data is higher than the highest frequency in the first carrier frequency band.
  • the processor is further configured to: determine a first sub-band allocated to the target optical network unit in the first carrier frequency band; and send on the first sub-band allocated for the target optical network unit The first type of data.
  • a storage medium which may be configured to store program code for performing the following steps: acquiring first type data and second type data to be transmitted, wherein The transmission delay allowed by the class data is smaller than the transmission delay allowed by the second type of data; the first type of data that needs to be transmitted instantaneously is transmitted on the first carrier frequency band of the transmission channel between the target optical network unit and the optical line unit,
  • the transmission channel allows the first type of data and the second type of data to be simultaneously transmitted, and the lowest frequency in the second frequency band for transmitting the second type of data on the transmission channel is higher than the highest frequency in the first carrier frequency band.
  • the first type of data to be sent and the second type of data are obtained, and the transmission delay allowed by the first type of data is smaller than the transmission delay allowed by the second type of data; in the target optical network unit and the light
  • the first type of data that needs to be transmitted in real time is transmitted on the first carrier frequency band of the transmission channel between the line units, and the transmission channel allows the first type of data and the second type of data to be simultaneously transmitted, and the second type of data is transmitted on the transmission channel.
  • the lowest frequency in the second frequency band is higher than the highest frequency in the first carrier frequency band, and can be sent in the existing manner for the second type of data, and is sent by the instant transmission method for the first type of data, and two types of data are allowed. Simultaneous transmission, thereby solving the technical problem of high cost of simultaneously transmitting data of different delays in the passive optical network, and realizing the technical effect of reducing the data transmission cost of different delays in the passive optical network.
  • FIG. 1 is a schematic diagram of transmitting primary service data using a PON network
  • FIG. 2 is a schematic diagram of a terminal for implementing a data transmission method according to an embodiment of the present application
  • FIG. 3 is a flowchart of a method of transmitting data according to an embodiment of the present application.
  • FIG. 4 is a block diagram of a PON network system according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an alternative frequency domain based overlay in accordance with an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an optional frequency domain based overlay according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an alternative frequency domain based overlay in accordance with an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an alternative frequency domain based overlay in accordance with an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an alternative frequency domain based overlay in accordance with an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an alternative frequency domain based overlay in accordance with an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an alternative frequency domain based overlay in accordance with an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an alternative code domain based overlay in accordance with an embodiment of the present application.
  • FIG. 13 is a schematic diagram of an alternative code domain based overlay in accordance with an embodiment of the present application.
  • FIG. 14 is a schematic diagram of an alternative code domain based overlay in accordance with an embodiment of the present application.
  • 15 is a schematic diagram of an alternative code domain based overlay in accordance with an embodiment of the present application.
  • 16 is a schematic diagram of an alternative code domain based overlay in accordance with an embodiment of the present application.
  • 17 is a schematic diagram of an alternative code domain based overlay in accordance with an embodiment of the present application.
  • FIG. 18 is a schematic diagram of an alternative code domain based overlay in accordance with an embodiment of the present application.
  • FIG. 19 is a schematic diagram of an optional frequency domain and code domain overlay according to an embodiment of the present application.
  • 20 is a schematic diagram of an optional frequency domain and code domain overlay according to an embodiment of the present application.
  • 21 is a schematic diagram of an optional frequency domain and code domain overlay according to an embodiment of the present application.
  • 22 is a schematic diagram of an optional frequency domain and code domain overlay according to an embodiment of the present application.
  • FIG. 23 is a schematic diagram of an optional frequency domain and code domain overlay according to an embodiment of the present application.
  • 24 is a schematic diagram of an optional frequency domain and code domain overlay according to an embodiment of the present application.
  • 25 is a flowchart of a method of transmitting data according to an embodiment of the present application.
  • FIG. 26 is a schematic diagram of a data transmission apparatus according to an embodiment of the present application.
  • the method embodiment provided in Embodiment 1 of the present application can be executed in a mobile terminal, a computer terminal or the like.
  • the computer terminal may include one or more (only one shown) processor 201, which may include, but is not limited to, a microprocessor (MCU) or A processing device such as a programmable logic device (FPGA), a memory 203 for storing data, and a transmission device 205 for communication functions.
  • processor 201 may include, but is not limited to, a microprocessor (MCU) or A processing device such as a programmable logic device (FPGA), a memory 203 for storing data, and a transmission device 205 for communication functions.
  • FPGA programmable logic device
  • FIG. 2 is merely illustrative and does not limit the structure of the above electronic device.
  • the memory 203 can be used to store software programs and modules of the application software, such as program instructions/modules corresponding to the control method of the device in the embodiment of the present application, and the processor 201 executes each by executing a software program and a module stored in the memory 203.
  • a functional application and data processing, that is, the above method is implemented.
  • the memory can include high speed random access memory and can also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • the memory can further include memory remotely located relative to the processor, which can be connected to the computer terminal over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device is for receiving or transmitting data via a network.
  • the above-described network specific examples may include a wireless network provided by a communication provider of a computer terminal.
  • the transmission device includes a Network Interface Controller (NIC) that can be connected to other network devices through the base station to communicate with the Internet.
  • the transmission device can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • the processor it can be used to: obtain the first type of data to be sent and the second type of data, wherein the transmission delay allowed by the first type of data is smaller than the transmission allowed by the second type of data
  • the first type of data that needs to be transmitted in real time is transmitted on the first carrier frequency band of the transmission channel between the target optical network unit and the optical line unit, wherein the transmission channel allows simultaneous transmission of the first type of data and the second type of data, and the transmission The lowest frequency in the second frequency band on the channel for transmitting the second type of data is higher than the highest frequency in the first carrier frequency band.
  • FIG. 3 is a flowchart of a method for transmitting data according to an embodiment of the present application. As shown in FIG. 3, the method includes the following steps:
  • Step S301 Acquire a first type of data to be sent and a second type of data, where a transmission delay allowed by the first type of data is smaller than a transmission delay allowed by the second type of data.
  • Step S302 transmitting first type data that needs to be transmitted instantaneously on a first carrier frequency band of a transmission channel between the target optical network unit and the optical line unit, wherein the transmission channel allows the first type of data and the second type of data to be simultaneously transmitted.
  • the lowest frequency in the second frequency band for transmitting the second type of data on the transmission channel is higher than the highest frequency in the first carrier frequency band.
  • the target optical network unit and the optical line unit Transmitting a first type of data that requires immediate transmission on a first carrier frequency band of the transmission channel, the transmission channel allows simultaneous transmission of the first type of data and the second type of data, and the second frequency band for transmitting the second type of data on the transmission channel
  • the lowest frequency in the first carrier frequency band is higher than the highest frequency in the first carrier frequency band, and can be sent in the existing manner for the second type of data, and is sent by the instant transmission method for the first type of data, and allows two types of data to be simultaneously transmitted. Therefore, the technical problem of high cost of transmitting data with different delays in the passive optical network is solved, and the technical effect of reducing the data transmission cost of different delays in the passive optical network is realized.
  • the execution body of the foregoing steps may be an optical network unit, an optical line unit, or the like, but is not limited thereto.
  • an optical network unit is taken as an example for description.
  • the first type of data mentioned above is data of low latency service (ie, low latency data); the second type of data mentioned above is data of mobile service or broadband service (ie, primary service data).
  • the system shares the original uplink/downlink wavelength channel, and the transmission mechanism of the mobile service or the broadband service (ie, the primary service) is unchanged, and the downlink still adopts the broadcast mode, and the uplink adopts the TDMA-based method.
  • the DBA mechanism while the low-latency service does not participate in the primary service DBA bandwidth scheduling allocation, and does not change the priority of the primary service.
  • the system divides the spectrum resources.
  • the traditional main service belongs to the high-speed service and corresponds to the high frequency band of the transmission channel, so the low frequency band of the transmission channel can be utilized.
  • the maximum frequency of the low-frequency carrier frequency band is lower than the lowest frequency of the high-speed service, and the minimum frequency of the low-frequency carrier frequency band is greater than 30KHz. Specifically, it can be implemented by the following three schemes:
  • the solution is suitable for transmitting low-latency data on the ONU side, and each ONU is allocated an independent equal-length low-frequency carrier frequency band, and each low-frequency carrier frequency band has a central frequency.
  • the low-latency data sent by each ONU is based on different low-frequency carriers, so that low-latency data can be superimposed in the frequency domain without interference in the time domain.
  • step S302 transmitting, in the first carrier frequency band of the transmission channel between the target optical network unit and the optical line unit, the first type of data that needs to be transmitted in real time includes: determining the allocation of the target optical network unit in the first carrier frequency band. The first sub-band; the first type of data is transmitted on the first sub-band allocated for the target optical network unit.
  • Transmitting the first type of data on the first sub-band allocated for the target optical network unit may be implemented by: using a carrier corresponding to the frequency in the first sub-band, performing the first type of signal for transmitting the first type of data.
  • Carrier modulation converting the first type of signal modulated by the carrier into an optical signal, and transmitting the optical signal on the transmission channel.
  • performing carrier modulation on the first type of signal used for transmitting the first type of data by using a carrier corresponding to the frequency in the first sub-band includes: determining a center frequency in the first sub-band allocated to the target optical network unit; The first type of signal is carrier modulated using a carrier corresponding to the center frequency.
  • the carrier-modulated low-latency data can be amplitude-controlled, and then converted into an optical signal by the ONU, and converted into an optical signal by the carrier-modulated first-type signal, and the optical signal is transmitted on the transmission channel.
  • the signal amplitude of the carrier-modulated first type signal may be compressed according to a preset compression ratio; the compressed first type signal is converted into an optical signal transmitted on the transmission channel, and the light transmitted by each ONU The signal is finally superimposed on the main optical path with the main service optical signal.
  • the amplitude of the superimposed optical signal will not exceed the upper limit of the OLT's reception of the primary service.
  • each optical network unit in the passive optical network where the target optical network unit is located is allocated a sub-band, wherein the bandwidth of any two sub-bands is the same, and two adjacent sub-bands A frequency gap is set between the bands.
  • the independent equal-length carrier frequency band allocated by each ONU is equally distributed according to the length of the total bandwidth of the low frequency band, and the allocated quantity is equal to the number of ONUs in the network system.
  • equal length frequency gaps need to be inserted between every two adjacent independent carrier frequency bands.
  • the PON system mainly includes an IP RAM router; an optical line unit OLT; an ODN network, including a backbone fiber, a branch fiber, and an optical splitter (Spliter); an optical network unit ONU, including ONUp, ONUm, ONUn, where p, m, n As a hypothetical random value; outdoor base station and home network.
  • the PON system can transmit three types of service data.
  • the primary service is based on TDMA-based time-sharing, so the primary service allocates independent ONUs to access the PON network; each ONU can transmit low-latency services. As shown in FIG.
  • ONUp and ONUn will be used to transmit mobile services; ONUm will be used to transmit broadband services. All ONUs can transmit low-latency services without occupying the time slot and segment overhead of the main service signal.
  • the low-latency service is used as the low-amplitude signal of the path to follow the main service signal for common transmission. All low-latency services do not need to be scheduled by the DBA, superimposed on each other in time, and can be simultaneously transmitted and received.
  • the PON network system when one of the ONUs is in the main service transmission window, other ONUs can also normally emit light at the same time, but other illuminating ONUs only transmit low-latency services at this time. Since multiple ONUs emit light at the same time, after all the optical signals are superimposed, the optical power value of the main optical path increases and exceeds the upper limit of the reception of the OLT receiver, resulting in saturation of the OLT receiver.
  • the PON system in this patent performs amplitude attenuation control on all transmitted low-latency signals, and then superimposes these signals with the main service signals to ensure the superposed signal amplitude. The upper limit of the OLT's reception of the primary service will not be exceeded.
  • the primary service and all low-latency services will be simultaneously transmitted by the OLT.
  • the process of transmission in order to prevent the uplink ONU receiving terminal from being saturated due to excessive electrical signals after superposition, it is necessary to perform amplitude attenuation control on all transmitted low delay signals. Ensure that the amplitude of the superimposed signal does not exceed the upper limit of the ONU's reception of the primary service.
  • FIG. 5 is a schematic diagram of an alternative frequency domain based overlay in accordance with an embodiment of the present application.
  • both the uplink and the downlink will adopt a frequency domain superposition mechanism.
  • low-latency data of different ONUs are modulated to different carrier frequencies, and each ONU allocates different carrier frequencies, for example, ONUp corresponds to carrier frequency fp, ONUn corresponds to carrier frequency fn, and ONUm corresponds to carrier frequency fm.
  • the low-latency data modulated by each carrier also needs to control the signal amplitude to ensure that all low-latency superposition does not affect the signal reception of the mobile service or the broadband service. For example, all the lights can be limited.
  • the amplitude after the superposition of the electrical signals is controlled between 5% and 20% of the average amplitude of the main service optical/electrical signals.
  • the received carrier frequency is frequency-selected to distinguish the low-latency signals of the different ONUs with carriers. Since the data transmitted by the frequency domain superposition mechanism is superimposed on each other in time, all low delay data can be transmitted at the same time. In addition, the transmission delay of the method is not affected by the system service scheduling, and only the transmission delay of the physical hardware, so the delay is very low.
  • a time domain diagram of PON transmission based on frequency domain superposition is shown.
  • the mobile services transmitted by ONUp and ONUn and the broadband services transmitted by ONUm are separated on the time domain axis, and the low delay data transmitted by ONUP and ONUn are superimposed on the time axis.
  • the low latency data transmitted by each ONU is not limited by the time scheduling, and may overlap with the main service on the time axis.
  • FIG. 7 a frequency domain diagram of PON transmission based on frequency domain superposition is shown.
  • the low delay data transmitted by ONUp and ONUn is separated in the frequency domain, corresponding to different frequencies fp and fn, respectively.
  • the mobile services transmitted by ONUp and ONUn and the broadband services transmitted by ONUm overlap in the frequency domain.
  • the principle of PON technology based on frequency domain superposition is shown. Amplitude control is performed on all low latency data and superimposed on top of the main service data.
  • the DBA authorizes one of the ONUs to open the main service window time slot, all ONUs can emit light, but only low delay data can be transmitted, and the amplitude of these optical signals can be controlled to a certain extent, which can be limited.
  • the optical signal amplitude of all low-latency data is superimposed and the amplitude of the optical signal is controlled between 5% and 20% of the average amplitude of the main service optical signal.
  • the low-frequency signal is filtered out by the high-pass filter, and only the mobile service or the broadband service can be obtained; the high-frequency signal is filtered by the low-pass filter, and only the low-latency signal modulated by different carriers can be obtained, and the intermediate frequency is obtained.
  • the filter is frequency-selected to obtain a carrier modulated signal having a frequency of fp/fn (or fm).
  • the carrier modulated signals are demodulated to obtain low delay data transmitted by ONUp and ONUm, respectively.
  • the principle of the technical solution of the OLT transmission front end based on frequency domain superposition is shown.
  • the low-latency data transmitted downstream to each ONU will be modulated by different carrier frequencies.
  • modulation methods such as amplitude keying, frequency shift keying, and phase shift keying.
  • amplitude keying After all the low-delay electrical signals after modulation are superimposed, a certain amplitude attenuation is uniformly performed.
  • the amplitude of the superposed electric signals is controlled to be between 5% and 20% of the average amplitude of the main service electrical signals.
  • the service electrical signal amplitude is 800mV and the system requires a control amplitude of 10%
  • an electrical attenuator can be used, and all the electrical signals are superimposed and then converted by the driver and the electro-optical, and then converted into an optical signal and sent to the downlink main fiber.
  • Figure 10 shows the principle of the ONU transmission front-end technology scheme based on frequency domain superposition.
  • the DBA authorizes one of the ONUs to open the main service window slot.
  • All ONUs can emit light, but only low delay data can be sent.
  • Each ONU uses the assigned carrier frequency for carrier modulation of low delay data, and then amplifies the amplitude of the modulated signal. The signal after amplitude attenuation is driven. Converted to a small current, a small current drives the photoelectric conversion unit to convert it into a low-power optical signal. Finally, all the optical signals are sent to the uplink main optical path, and the main service light is combined.
  • the optical signal can be limited to 5% to 20% of the average power of the main service optical signal after the optical signals of all the low-latency data are superimposed, so the optical power amplitude control is required for each ONU.
  • the average output power of each ONU is 10 lg (1 mW ⁇ 32) ⁇ -15 dBm.
  • Figure 11 shows the principle of the OLT/ONU receiving front-end technology scheme based on frequency domain superposition.
  • the low-frequency signal is separated by two filters.
  • the high-pass filter can filter the low-frequency signal to obtain the mobile service or broadband service signal, which is a high-frequency digital signal, and only needs a simple 0/1 level decision to recover the original mobile or broadband data signal.
  • Low delay data with carrier modulation is obtained through a low pass filter.
  • the analog signal is converted to a digital signal by analog-to-digital conversion.
  • the frequency band is selected by the digital band pass filter to separate the low delay digital signals with carrier frequencies fp and fn.
  • the separated digital signal is demodulated to remove the carrier, and finally the original low-latency data signal can be recovered after the 0/1 level decision.
  • the other multiple ONUs of the PON network can simultaneously transmit the low delay data, and the low delay data transmitted by each ONU is respectively modulated to the corresponding ONU.
  • the low frequency carrier of the center frequency On the low frequency carrier of the center frequency.
  • the solution is directed to the ONU side. While an ONU of the PON network transmits the main service signal, other ONUs of the PON network can simultaneously transmit low-latency data; the low-latency data transmitted by each ONU needs to undergo different The pseudo-random sequence is spread and then modulated onto the same low frequency carrier. Low delay data can be superimposed on the code domain and does not interfere with each other in the time domain.
  • transmitting the first type of data that needs to be transmitted on the first carrier frequency band of the transmission channel between the target optical network unit and the optical line unit includes: a first class for transmitting the first type of data
  • the signal is spread; the carrier of the first type of the spread spectrum is modulated by a carrier corresponding to the first frequency in the first carrier frequency band, wherein the first frequency is all light in the passive optical network where the target optical network unit is located
  • the frequency used by the network unit for carrier modulation converting the first type of signal modulated by the carrier into an optical signal, and transmitting the optical signal on the transmission channel.
  • performing frequency spreading on the first type of signal used for transmitting the first type of data includes: acquiring a first pseudo random sequence allocated for the target optical network unit; and performing spreading on the first type of signal by using the first pseudo random sequence, All the low-latency signals after spreading can be modulated on the same low-frequency carrier; the low-frequency carrier frequency can be arbitrarily selected in the low-frequency band.
  • the carrier-modulated low-frequency signal needs to be amplitude-controlled, and then converted into an optical signal by the ONU.
  • the carrier-modulated first-type signal is converted into an optical signal, and the optical signal is transmitted on the transmission channel.
  • the signal amplitude of the first type of signal after carrier modulation is compressed according to a preset compression ratio; the compressed first type signal is converted into an optical signal transmitted on the transmission channel, and the optical signal sent by each ONU
  • the main service optical signal is superimposed on the main optical path, and the amplitude of the superimposed optical signal will not exceed the upper limit of the OLT receiving the main service.
  • each optical network unit of the passive optical network is assigned a pseudo-random sequence of the same length, wherein the length of the pseudo-random sequence is related to the number of optical network units in the passive optical network.
  • the pseudo-random sequence code length is determined by the exponent of the 2nd power corresponding to the number of ONUs.
  • the code domain superposition mechanism may also be adopted for the uplink and downlink.
  • different low-latency data needs to be encoded first, and then spread-modulated by orthogonal sequence codes.
  • Each ONU corresponds to a different orthogonal sequence code, and different orthogonal sequence codes can identify different ONUs, for example, ONUp.
  • the sequence code PNp, ONUn corresponds to the sequence code PNn. All low-latency data after spread spectrum modulation is then modulated by carrier, and the carrier frequency can be selected at a suitable frequency f in the low frequency band.
  • ONUp and ONUn can transmit low delay data at the same time.
  • the transmission delay of this method is not affected by the system service scheduling, and only the transmission delay of the physical hardware, so the delay is very low.
  • the time domain and code domain of PON transmission based on code domain superposition are shown.
  • the mobile services transmitted by ONUp and ONUn and the broadband services transmitted by ONUm are separated in the time domain and the code domain.
  • the low latency data transmitted by ONUP and ONUn overlaps in the time domain and the code domain.
  • the low latency data transmitted by each ONU is not limited by the time scheduling, and may overlap with the main service on the time axis.
  • the frequency domain and code domain of PON transmission based on code domain superposition are shown.
  • the low-latency data transmitted by the ONU and the primary service are separated in the frequency domain, and the low-latency data is in the low frequency band, corresponding to the carrier frequency f, and the primary service is in the high frequency band.
  • the mobile services transmitted by ONUp and ONUn and the broadband services transmitted by ONUm overlap in the frequency domain.
  • the low latency data transmitted by ONUp and ONUn overlaps in the code domain.
  • ONUp transmits low-latency data of different sequence codes PNp and PNn when transmitting mobile services, and finally performs carrier modulation through carrier f. All data is superimposed on the top of mobile service data by amplitude attenuation control. .
  • the low-frequency signal is filtered by the high-pass filter to obtain a mobile service; the high-frequency signal is filtered by the low-pass filter to obtain low-frequency carrier-mode low-delay data, and then the carrier frequency is filtered by demodulation.
  • Low delay data superimposed after spreading can be obtained separately.
  • the superimposed data is despread by using different sequence codes to obtain low delay data of different ONUs.
  • the principle of the OLT transmission front end technical scheme of code domain superposition is shown.
  • the ONUp/ONUm low-latency data is first encoded and then spread by the sequence code PNp/PNm.
  • the spread spectrum data will be carrier modulated by the same carrier frequency f and superimposed on the mobile service or broadband service electrical signal after amplitude attenuation.
  • the principle of all ONU amplitude control is the same as that of the FDAM OLT transmitter. After all the electrical signals are superimposed, they are converted by the driver and the electro-optical, and then converted into optical signals and sent to the downlink main fiber.
  • the principle of the ONU transmission front-end technology scheme based on code domain superposition is shown.
  • the low delay data transmitted by each ONUp/ONUm/ONUn is first encoded, and then spread by the sequence code PNp/PNm/PNn.
  • the spread spectrum data will be carrier modulated by the same carrier frequency f, and then the modulated electrical signal is amplitude-attenuated, driven and photoelectrically converted into an optical signal.
  • All low-delay optical signals uploaded by the ONU will be combined with the mobile service or broadband service optical signals on the main optical path.
  • the principle of all ONU low-latency optical power control is the same as that of the FDAM ONU transmitter.
  • the principle of the OLT/ONU receiving front-end technology scheme based on code domain superposition is shown.
  • the low-frequency signal is separated by two filters.
  • the high-pass filter can filter out the low-frequency signal and obtain the mobile service or broadband service signal, only the simple 0/1 level decision can be used to recover the original mobile or broadband data signal.
  • Low delay data with carrier modulation can be obtained through a low pass filter.
  • the digital signal is converted into a digital signal, the digital signal is subjected to carrier demodulation and spread, and the low delay data superimposed by the carrier is despread by the corresponding sequence code, and then decoded, the low delay data of different ONUs can be obtained.
  • the above scheme uses the code domain superposition technique, which does not require frequency bandwidth allocation, and the transmission rate is limited by the bandwidth. However, it is necessary to use a longer sequence code to spread the effective data. The more the number of ONUs, the longer the bit length of the sequence code required, and the longer the code after spreading, the more effective data is transmitted in the same time. less.
  • the ONUs in the PON network system are classified into groups, and according to the number of ONUs, the total amount is divided into M ⁇ N combinations, and there are a total of M groups, and each group has N ONUs.
  • M different groups use M different, independent low frequency carrier frequency bands; each two adjacent independent carrier frequency bands need to insert equal length frequency gaps, and N ONUs in the same group use the same low frequency carrier frequency band;
  • the low frequency carrier frequency band corresponds to a center frequency, and each carrier frequency band is equally proportioned according to the length of the total bandwidth of the low frequency band.
  • N ONUs in the same group need to use N different pseudo random sequences for spreading.
  • step S302 when the first type of data that needs to be transmitted is transmitted on the first carrier frequency band of the transmission channel between the target optical network unit and the optical line unit, the low delay data transmitted by each ONU needs to pass through first.
  • Performing frequency modulation on different pseudo-random sequences in the corresponding group, and then performing carrier modulation on the low-frequency carrier frequency of the corresponding group which may be implemented by: spreading the first type of signal used for transmitting the first type of data; Transmitting, by the carrier corresponding to the second frequency on the first carrier frequency band, carrier-modulated, the second frequency is a carrier modulation of all the optical network units in the optical network unit group where the target optical network unit is located The frequency used; the first type of signal modulated by the carrier is converted into an optical signal, and the optical signal is transmitted on the transmission channel.
  • the optical network unit group where the target optical network unit is located may be determined, where the passive optical network where the target optical network unit is located includes multiple lights.
  • performing spreading on the first type of signal used for transmitting the first type of data includes acquiring a plurality of pseudo-random sequences allocated to the optical network unit group in which the target optical network unit is located; acquiring a plurality of pseudo-random sequences and a second pseudo-random sequence corresponding to the target optical network unit; and spreading the first type of signal by using the second pseudo-random sequence.
  • the length of the pseudo-random sequence described above is related to the number of optical network units within the optical network unit group.
  • the pseudo-random sequence code length is determined by an exponent of N corresponding to the power of the second power.
  • performing carrier modulation on the spread type first type signal by using a carrier corresponding to the second frequency on the first carrier frequency band includes: acquiring, by using the first carrier frequency band, the optical network unit group in which the target optical network unit is located a second sub-band; performing carrier modulation on the spread-first signal by using a carrier corresponding to the second frequency on the second sub-band.
  • the second frequency described above may be a center frequency within the second sub-band.
  • all the low-latency signals after the spread can be modulated onto the low-frequency carrier of the corresponding group, and the first type of signals after the carrier modulation is converted into an optical signal, and when the optical signal is transmitted on the transmission channel,
  • the low frequency signal that can be modulated by the carrier needs to be amplitude controlled, and then converted into an optical signal by the ONU, as follows: the signal amplitude of the first type of signal after carrier modulation is compressed according to a preset compression ratio; The first type of signal is converted into an optical signal transmitted on the transmission channel, and the optical signal sent by each ONU is finally superimposed on the main optical path with the main service optical signal, and the amplitude of the superposed optical signal will not exceed the OLT receiving the main service.
  • the operation principle of the PON based on frequency domain superposition and code domain superposition is shown.
  • low-latency data transmission in the uplink/downlink channel may also adopt a combination of frequency domain superposition and code domain superposition.
  • the ONUs are divided into a plurality of groups, each group consisting of 16 ONUs (combination can be arbitrarily selected), ONUm1 to ONUm16, ONUp1 to ONUp16, and ONUn1 to ONUn16.
  • the three different groups of ONUs use the frequencies fm1, fp1, and fn1 as carrier frequencies, respectively.
  • the 16 ONUs in the same group use 16 different sequence codes PN1 to PN16 for spreading. Different groups of ONUs can reuse these 16 serial codes. Different ONUs can be distinguished by a combination of carrier frequency and sequence code. As with the principle of code domain superposition, it is first necessary to encode the low delay data of different ONUs first, then perform spread spectrum modulation through the sequence code, and finally perform carrier modulation through the corresponding carrier frequency. For example, ONUm1 spreads through the PN1 sequence code and performs carrier modulation with fm1. The ONUm16 is spread by the PN16 sequence code and is modulated by fm1.
  • the data transmitted in combination with the frequency domain superposition and the code domain superposition mechanism can also be superimposed in the time domain and the code domain, different ONUs can transmit low delay data at the same time.
  • the transmission delay of this method is not affected by the system service scheduling, and only the transmission delay of the physical hardware, so the delay is very low.
  • the PON transmission frequency domain and code domain based on frequency domain superposition and code domain superposition are shown.
  • the low latency data and the primary service transmitted by the ONU are in the low frequency band and the high frequency band in the frequency domain, respectively.
  • the ONU low-latency data of the same group corresponds to the same frequency, and the different ONU low-latency data in the same group is superimposed on the code domain.
  • Different groups of ONUs correspond to different frequencies. For example, ONUm1 and ONUm16 low delay data are in frequency fm1 in the frequency domain, and ONUn1 and ONUn16 correspond to carrier frequency fn1.
  • the ONUm1/ONUn1 and ONUm16/ONUn16 low latency data are overlapped in the code domain.
  • the principle of PON technology based on frequency domain superposition and code domain superposition is shown. Amplitude control is performed on all low latency data and superimposed on top of the main service data.
  • the DBA authorizes one of the ONUs to open the main service window time slot, all ONUs can emit light, but only low delay data can be transmitted, and the amplitude of these optical signals is controlled to a certain extent, and The optical signal amplitude of all low-latency data is superimposed and the amplitude of the optical signal is controlled between 5% and 20% of the average amplitude of the main service optical signal.
  • the OLT transmits the mobile service
  • different sequence codes PN1 to PN16 spread different low-latency data of the same group
  • ONUp1 to ONUp16 use carrier fp1 for carrier modulation
  • ONUn1 to ONUn16 use carrier fn1 for carrier modulation, all data. It is superimposed on top of the mobile service data by amplitude attenuation control.
  • the low-frequency signal is filtered by the high-pass filter to obtain a mobile service; the high-frequency signal is filtered by the low-pass filter to obtain low-frequency carrier-mode low-latency data, and the intermediate frequency filter of different center frequencies can be used. Choose a different carrier frequency.
  • the frequency selected by the intermediate frequency filter is fp1
  • the low delay signal only retains the carrier signal of fp1 after passing through the filter.
  • the signal is demodulated to remove the carrier, and low delay data superimposed at the frequency point can be obtained.
  • the data signal is despread by using the corresponding sequence code, and the data that cannot be despread is discarded, and finally the low delay data corresponding to ONUp1 can be obtained.
  • the principle of the OLT transmission front-end technology scheme based on frequency domain superposition and code domain superposition is shown.
  • the ONUp1/ONUm1 low delay data is first encoded, and then spread by the sequence code PN1.
  • the spread spectrum data will be carrier modulated by different carrier frequencies fp1 and fm1, and superimposed on the mobile service or broadband service electrical signal after amplitude attenuation.
  • the principle of amplitude control for all ONU low-latency electrical signals is the same as that of the FDAM/code domain superimposed OLT transmitter. After all the electrical signals are superimposed, they are converted by the driver and the electro-optical, and then converted into optical signals and sent to the downlink main fiber.
  • each ONUp1/ONUp16/ONUm1/ONUm16 first encodes the transmitted low delay data, and then spreads the frequency through the sequence code PN1/PN16.
  • the spread spectrum data is respectively carrier modulated by different carrier frequencies fp1 and fm1, and then the modulated electrical signal is amplitude-attenuated, and is driven and photoelectrically converted into an optical signal.
  • All low-delay optical signals uploaded by the ONU will be combined with the mobile service or broadband service optical signals on the main optical path.
  • the principle of all ONU low-latency optical power control is the same as that of the FDAM ONU transmitter.
  • the principle of the OLT/ONU receiving front-end technology scheme based on frequency domain superposition and code domain superposition is shown.
  • the low-frequency signal is separated by two filters.
  • the high-pass filter can filter out the low-frequency signal and obtain the mobile service or broadband service signal, only the simple 0/1 level decision can be used to recover the original mobile or broadband data signal.
  • Low delay data with carrier can be obtained through a low pass filter.
  • the digital signal is frequency-selected by a different bandpass filter. For example, a modulated signal with carrier frequencies fp1 and fm1 can be selected by a bandpass filter.
  • the two signals are demodulated and the carrier is removed, and low delay data superimposed at each frequency point can be obtained.
  • the frequency selected by the intermediate frequency filter is fp1
  • the low delay signal only retains the carrier signal of fp1 after passing through the filter.
  • the signal is demodulated to remove the carrier, and low delay data superimposed at the frequency point can be obtained.
  • the data signal is despread by using the corresponding sequence code, and the data that cannot be despread is discarded, and finally the low delay data corresponding to ONUp1 can be obtained.
  • the above scheme combines two technologies of frequency domain superposition and code domain superposition. By combining the two technologies, only a low frequency band and a short sequence code can be allocated, so that the transmission rate of the ONU is not affected by the number of ONUs. Impact.
  • the PON system adopts the original upper and lower wavelengths, and the low-latency service and the main service are separated by high and low frequency spectrum.
  • all low-latency data will be based on multiple signals in the frequency domain.
  • the code domain superposition method realizes the simultaneous transmission of all low-latency data in the PON network topology, which can greatly reduce the data transmission delay.
  • the PON system it is only necessary to add a set of transmitting and receiving electrical devices in the original system, and the optical path device is not changed, and the cost increase is small.
  • This patent proposes that the PON system has the advantages of low cost, high bandwidth utilization, flexible service transmission, and ability to transmit ultra-low latency services.
  • the execution body of the step S302 to the step S304 may be a light path unit or the like.
  • the optical line unit is taken as an example for description.
  • FIG. 25 is a flowchart of a method for transmitting data according to an embodiment of the present application. As shown in FIG. 25, the method includes the following steps:
  • Step S2501 receiving, on the optical line unit, the first type of data and the second type of data that are requested to be sent to the target optical network unit, where the transmission delay allowed by the first type of data is smaller than the transmission delay allowed by the second type of data.
  • Step S2502 Send a first type of data that needs to be transmitted instantaneously on a first carrier frequency band of a transmission channel with a target optical network unit, wherein the transmission channel allows simultaneous transmission of the first type of data and the second type of data on the transmission channel.
  • the lowest frequency in the second frequency band for transmitting the second type of data is higher than the highest frequency in the first carrier frequency band.
  • the second type of data can be sent in the existing manner, and the first type of data is sent in an instant manner, and two types of data are allowed to be simultaneously transmitted, thereby solving the problem in the passive optical network.
  • the technical problem of high cost of simultaneous data delay achieves the technical effect of reducing the data transmission cost of different delays in the passive optical network.
  • the first type of data mentioned above is data of low latency service (ie, low latency data); the second type of data mentioned above is data of mobile service or broadband service (ie, primary service data).
  • the system shares the original uplink/downlink wavelength channel, and the transmission mechanism of the mobile service or the broadband service (ie, the primary service) is unchanged, and the downlink still adopts the broadcast mode, and the uplink adopts the TDMA-based method.
  • the DBA mechanism while the low-latency service does not participate in the primary service DBA bandwidth scheduling allocation, and does not change the priority of the primary service.
  • the system divides the spectrum resources.
  • the traditional main service belongs to the high-speed service and corresponds to the high frequency band of the transmission channel, so the low frequency band of the transmission channel can be utilized.
  • the maximum frequency of the low-frequency carrier frequency band is lower than the lowest frequency of the high-speed service, and the minimum frequency of the low-frequency carrier frequency band is greater than 30KHz. Specifically, it can be implemented by the following three schemes:
  • transmitting the first type of data that needs to be transmitted on the first carrier frequency band of the transmission channel with the target optical network unit includes: determining the first allocation of the target optical network unit in the first carrier frequency band a sub-band; transmitting the first type of data on a first sub-band allocated for the target optical network unit.
  • transmitting the first type of data on the first sub-band allocated for the target optical network unit includes: using the carrier corresponding to the frequency in the first sub-band, performing the first type of signal used to transmit the first type of data.
  • Carrier modulation converting the first type of signal modulated by the carrier into an optical signal, and transmitting the optical signal on the transmission channel.
  • performing carrier modulation on the first type of signal used for transmitting the first type of data by using a carrier corresponding to the frequency in the first sub-band includes: determining a center frequency in the first sub-band allocated for the target optical network unit The carrier of the first type of signal is modulated by a carrier corresponding to the center frequency.
  • the carrier-modulated first type signal is converted into an optical signal, and when the optical signal is transmitted on the transmission channel, the signal amplitude of the carrier-modulated first type signal may be compressed according to a preset compression ratio. Converting the compressed first type of signal into an optical signal transmitted on the transmission channel.
  • each optical network unit in the passive optical network where the target optical network unit is located is allocated a sub-band, wherein the bandwidth of any two sub-bands is the same, and two adjacent sub-bands A frequency gap is set between the bands.
  • the OLT of the PON network separately modulates the low-latency data transmitted to the plurality of ONUs on the low-frequency carrier of the corresponding center frequency; all the low-latency data signals subjected to the carrier modulation need to be amplitude-controlled, and The service electrical signal is superimposed; the amplitude of the superposed electrical signal shall not exceed the upper limit of the ONU's reception of the primary service. Thereby real-time transmission of low-latency data is realized.
  • transmitting the first type of data that needs to be transmitted on the first carrier frequency band of the transmission channel with the target optical network unit includes: performing the first type of signal for transmitting the first type of data. Spreading; using a carrier corresponding to the first frequency on the first carrier frequency band to perform carrier modulation on the spread first signal, wherein the first frequency is all optical network units in the passive optical network where the target optical network unit is located The frequency used for carrier modulation; the first type of signal modulated by the carrier is converted into an optical signal, and the optical signal is transmitted on the transmission channel.
  • performing frequency spreading on the first type of signal used for transmitting the first type of data includes: acquiring a first pseudo random sequence allocated for the target optical network unit; and spreading the first type of signal by using the first pseudo random sequence .
  • the signal amplitude of the carrier-modulated first type signal may be performed according to a preset compression ratio. Compression; converting the compressed first type of signal to an optical signal transmitted on the transmission channel.
  • each optical network unit of the passive optical network is assigned a pseudo-random sequence of the same length, wherein the length of the pseudo-random sequence is related to the number of optical network units in the passive optical network.
  • the OLT of the PON network uses the corresponding pseudo-random sequence code to perform spread spectrum modulation on the low-latency data transmitted to the multiple ONUs respectively; the pseudo-random sequence code length is represented by the exponent of the second power corresponding to the number of ONUs. determine. Then, all the low-latency signals after spreading are modulated on a same low-frequency carrier; the low-frequency carrier frequency can be arbitrarily selected in the low-frequency frequency band, and all the low-delay electrical signals are superimposed with the main service electrical signals; The amplitude of the electrical signal shall not exceed the upper limit of the ONU's reception of the primary service.
  • transmitting the first type of data that needs to be transmitted on the first carrier frequency band of the transmission channel with the target optical network unit includes: performing the first type of signal for transmitting the first type of data. Spreading; using a carrier corresponding to the second frequency on the first carrier frequency band to perform carrier modulation on the spread first signal, wherein the second frequency is all optical network units in the optical network unit group where the target optical network unit is located The frequency used for carrier modulation; the first type of signal modulated by the carrier is converted into an optical signal, and the optical signal is transmitted on the transmission channel.
  • determining an optical network unit group where the target optical network unit is located, where the passive optical network where the target optical network unit is located includes multiple Each optical network unit group includes a plurality of optical network units.
  • performing frequency spreading on the first type of signal used for transmitting the first type of data includes: acquiring a plurality of pseudo random sequences allocated for the optical network unit group where the target optical network unit is located; acquiring multiple pseudo random sequences a second pseudo-random sequence corresponding to the target optical network unit; and spreading the first type of signal by using the second pseudo-random sequence.
  • the length of the pseudo-random sequence is related to the number of optical network units within the group of optical network elements.
  • performing carrier modulation on the spread type first type signal by using a carrier corresponding to the second frequency on the first carrier frequency band includes: acquiring, by using the first carrier frequency band, the optical network unit group in which the target optical network unit is located a second sub-band; performing carrier modulation on the spread-first signal by using a carrier corresponding to the second frequency on the second sub-band.
  • the second frequency is a center frequency in the second sub-band.
  • the carrier-modulated first type signal when converted into an optical signal, and the optical signal is transmitted on the transmission channel, the signal amplitude of the carrier-modulated first type signal is compressed according to a preset compression ratio. Converting the compressed first type of signal into an optical signal transmitted on the transmission channel.
  • the OLT of the PON network uses the pseudo-random sequence code in the corresponding group to perform spread spectrum modulation on the low-latency data transmitted to the plurality of ONUs respectively; the pseudo-random sequence code length is the N-th order index corresponding to N. to make sure. Then, all the low-latency signals after spreading are modulated on the low-frequency carrier of the corresponding group of the ONU; all the low-delay electrical signals are superimposed with the main service electrical signals; the amplitude of the superposed electrical signals cannot exceed the ONU for receiving the main service. The upper limit.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present application which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present application.
  • a data transmission device is also provided in the embodiment of the present application.
  • the device is used to implement the above embodiments and preferred embodiments, and the description thereof has been omitted.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 26 is a schematic diagram of a data transmission apparatus according to an embodiment of the present application. As shown in FIG. 26, the apparatus may include a receiving unit 261 and a transmitting unit 262.
  • the receiving unit 261 is configured to acquire the first type of data to be sent and the second type of data, where the transmission delay allowed by the first type of data is smaller than the transmission delay allowed by the second type of data;
  • the transmitting unit 262 is configured to send, in a first carrier frequency band of the transmission channel between the target optical network unit and the optical line unit, the first type of data that needs to be transmitted in an instant, wherein the transmission channel allows the first type of data to be simultaneously transmitted and the second Class data, the lowest frequency in the second frequency band used to transmit the second type of data on the transmission channel is higher than the highest frequency in the first carrier frequency band.
  • the receiving unit acquires the first type of data to be sent and the second type of data, where the transmission delay allowed by the first type of data is smaller than the transmission delay allowed by the second type of data; the transmission unit is in the target optical network unit. Transmitting a first type of data requiring immediate transmission on a first carrier frequency band of a transmission channel with an optical line unit, wherein the transmission channel allows simultaneous transmission of the first type of data and the second type of data, and the transmission channel is used for transmitting the second type of data The lowest frequency in the second frequency band of the class data is higher than the highest frequency in the first carrier frequency band.
  • the second type of data it can be sent in the existing manner, and the first type of data is sent by means of instant transmission, and two types of data are allowed to be simultaneously transmitted, thereby solving the data of different delays in the passive optical network.
  • the technical problem of higher cost has realized the technical effect of reducing the data transmission cost of different delays in the passive optical network.
  • the transmission unit includes: a determining module configured to determine a first sub-band allocated to the target optical network unit in the first carrier frequency band; and a transmission module configured to allocate the first sub-band to the target optical network unit Send the first type of data on.
  • the transmission module includes: a modulation submodule configured to perform carrier modulation on the first type of signal used for transmitting the first type of data by using a carrier corresponding to the frequency in the first subband; and the transmission submodule is configured to The first type of signal after carrier modulation is converted into an optical signal, and the optical signal is transmitted on the transmission channel.
  • a modulation submodule configured to perform carrier modulation on the first type of signal used for transmitting the first type of data by using a carrier corresponding to the frequency in the first subband
  • the transmission submodule is configured to The first type of signal after carrier modulation is converted into an optical signal, and the optical signal is transmitted on the transmission channel.
  • the transmission submodule is further configured to convert the signal amplitude of the carrier-modulated first type signal to the optical signal before converting the carrier-modulated first type signal to the optical signal and transmitting the optical signal on the transmission channel.
  • the compression ratio is preset to compress, and then the compressed first type signal is converted into an optical signal transmitted on the transmission channel.
  • each optical network unit in the passive optical network where the target optical network unit is located is allocated a sub-band, wherein the bandwidth of any two sub-bands is the same, and two adjacent sub-bands A frequency gap is set between the bands.
  • the transmitting unit includes: a first spreading module configured to perform spreading on the first type of signal used to transmit the first type of data; and a first modulation module configured to utilize the first frequency on the first carrier frequency band Corresponding carriers perform carrier modulation on the first type of signals after the spread, wherein the first frequency is a frequency used for carrier modulation of all optical network units in the passive optical network where the target optical network unit is located; the first conversion module, It is configured to convert the carrier-modulated first type signal into an optical signal and transmit the optical signal on the transmission channel.
  • the first spreading module is further configured to acquire a first pseudo random sequence allocated for the target optical network unit; and spread the first type of signal by using the first pseudo random sequence.
  • the signal amplitude of the carrier-modulated first type signal may be compressed according to a preset compression ratio, and then The compressed first type of signal is converted to an optical signal transmitted on the transmission channel.
  • each optical network unit of the passive optical network is assigned a pseudo-random sequence of the same length, wherein the length of the pseudo-random sequence is related to the number of optical network units in the passive optical network.
  • the transmitting unit includes: a second spreading module configured to perform spreading on the first type of signal used to transmit the first type of data; and a second modulation module configured to utilize the second frequency in the first carrier frequency band Corresponding carriers perform carrier modulation on the spread type first type signal, wherein the second frequency is a frequency used when all optical network units in the optical network unit group in which the target optical network unit is located perform carrier modulation; and a second conversion module, It is configured to convert the carrier-modulated first type signal into an optical signal and transmit the optical signal on the transmission channel.
  • the second spreading module is further configured to: before the spreading of the first type of signal used for transmitting the first type of data, determining an optical network unit group where the target optical network unit is located, where the target optical network unit is located.
  • the passive optical network includes a plurality of optical network unit groups, and each optical network unit group includes a plurality of optical network units.
  • the second spreading module when the second spreading module performs spreading on the first type of signal used to transmit the first type of data, first acquiring a plurality of pseudo-random sequences allocated to the optical network unit group where the target optical network unit is located; a second pseudo-random sequence corresponding to the target optical network unit in the pseudo-random sequence; and spreading the first type of signal by using the second pseudo-random sequence.
  • the length of the pseudo-random sequence described above is related to the number of optical network units within the optical network unit group.
  • the second modulation module is further configured to: acquire a second sub-band allocated to the optical network unit group where the target optical network unit is located in the first carrier frequency band; and use the carrier pair corresponding to the second frequency on the second sub-band to spread the frequency
  • the first type of signal is carrier modulated.
  • the second frequency is the center frequency in the second sub-band.
  • the second conversion module converts the first type of signal after the carrier modulation into an optical signal, and compresses the signal amplitude of the carrier-modulated first type signal according to a preset compression ratio before transmitting the optical signal on the transmission channel.
  • the compressed first type of signal is then converted to an optical signal transmitted on the transmission channel.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present application also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • S11 Acquire a first type of data to be sent and a second type of data, where a transmission delay allowed by the first type of data is smaller than a transmission delay allowed by the second type of data;
  • S12 Send, in a first carrier frequency band of a transmission channel between the target optical network unit and the optical line unit, a first type of data that needs to be transmitted in an instant, where the transmission channel allows the first type of data and the second type of data to be transmitted simultaneously.
  • the lowest frequency in the second frequency band on the channel for transmitting the second type of data is higher than the highest frequency in the first carrier frequency band.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs, according to the stored program code in the storage medium, acquiring the first type of data to be sent and the second type of data, where the transmission delay allowed by the first type of data is less than The transmission delay allowed by the second type of data; transmitting the first type of data that needs to be transmitted instantaneously on the first carrier frequency band of the transmission channel between the target optical network unit and the optical line unit, wherein the transmission channel allows simultaneous transmission of the first type The class data and the second type of data, the lowest frequency in the second frequency band for transmitting the second type of data on the transmission channel is higher than the highest frequency in the first carrier frequency band.
  • modules or steps of the present application can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the application is not limited to any particular combination of hardware and software.
  • the first type of data to be sent and the second type of data are obtained, and the transmission delay allowed by the first type of data is smaller than the transmission delay allowed by the second type of data; in the target optical network unit and the optical line Transmitting, on the first carrier frequency band of the transmission channel between the units, the first type of data that needs to be transmitted in real time, the transmission channel is allowed to simultaneously transmit the first type of data and the second type of data, and the second channel for transmitting the second type of data on the transmission channel
  • the lowest frequency in the frequency band is higher than the highest frequency in the first carrier frequency band, and can be sent in the existing manner for the second type of data, and sent in the instant transmission mode for the first type of data, and allows two types of data to be simultaneously.
  • the invention solves the technical problem of high cost of simultaneously transmitting data of different delays in the passive optical network, and realizes the technical effect of reducing the data transmission cost of different delays in the passive optical network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供了一种数据的传输方法和装置、存储介质。其中,该方法包括:获取待发送的第一类数据和第二类数据,其中,第一类数据所允许的传输时延小于第二类数据所允许的传输时延;在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据,传输通道允许同时传输第一类数据和第二类数据,传输通道上用于发送第二类数据的第二频段中的最低频率高于第一载波频段中的最高频率。

Description

数据的传输方法和装置、存储介质
相关申请的交叉引用
本申请基于申请号为201710062797.1、申请日为2017年01月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信领域,具体而言,涉及一种数据的传输方法和装置、存储介质。
背景技术
随着互联网的发展,车联网、智慧医疗、智能家居等物联网应用得到了大量的运用,移动通信不仅仅限于人与人的通信,更向人与物以及物与物的通信迈进,那么万物互联将成为必然趋势。目前,基于蜂窝的窄带物联网(Narrow Band Internet of Things,NB-IOT)已经成为万物互联网络的重要分支。作为LTE的演进技术,4.5G无线网络除了具有高达1Gbps的峰值速率,还意味着基于蜂窝物联网的更多连接数,支持海量机器对机器(Machine to Machine,M2M)连接以及超低时延。无源光网络(Passive Optical Network,PON)为具有高带宽、低成本的优势,将PON网络与移动性灵活的移动接入网络融合,构成PON与移动融合接入网络,既能满足移动网络高带宽、低成本、高移动性、高服务质量(Quality of Service,QoS)管理等需求,也能降低蜂窝网络建网成本,因此采用有线接入PON网络来传输物联网这种低时延数据有利于降成本。
传统的PON网络的下行是基于广播的方式,而上行是基于时分多址接 入(Time Division Multiple Address,TDMA)和动态带宽分配(Dynamic Bandwidth Allocation,DBA)机制,不同用户上传的业务需要根据系统规定的业务优先级进行调度安排,光线路单元(Optical Line Terminal,OLT)给每个用户都会分配独立的时隙带宽,光网络单元(Optical Network Unit,ONU)上传的数据只能在规定的时隙上发送,时隙之间通过保护时隙间隔分开。
如图1所示,可利用PON网络传输移动业务和宽带业务(下文统一将移动业务或宽带业务称为主业务),主业务可以是为室外基站、家庭网络、室外基站等提供的业务,在传输两种不同业务时,OLT和ONU之间的上下行传输采用传统的PON网络中的运行机制。OLT下行发送的数据采用广播(即下行广播)方式,每个ONU根据唯一标识字符来识别与之对应的下行数据。上行采用时分多址复用接入TDMA。OLT根据QOS业务优先级要求,利用Spliter(1:32/64/128表示可以对32或64或128个ONU进行调度)对所有的ONU进行调度,在上行通道中实行动态带宽分配,主业务在时间上按规定分时转发,互不干扰。在业务开启的时间窗口中,同一时间只有一个ONU的激光器正常发光,并上传主业务,而系统中其它ONU的激光器则关闭不发光。在图1中,在上行传输的时间轴上,根据调度需求,ONUp、ONUm、ONUn(p、m、n是随机值)都分配了对应的时隙带宽,每个带宽中间有时隙间隔作为保护。由于ONU是根据QOS调度来发光,不同的ONU上传数据需要等待优先级高的业务完成传输后才能再上传,上传过程中的等待会增加时延,所以采用DBA机制的传输时延相对会比较大。
采用动态带宽分配机制的PON网络只能传输对时延要求不高的业务数据,但如果传输超低时延的数据,例如低时延物联网数据,就无法满足要求。实际测试表明,基于动态带宽分配的PON系统传输时延通常在几ms甚至几十ms,而低时延数据的时延要在0.5ms到1ms之间,因此采用现有 的PON网络技术传输低时延数据是不可行的。无法满足低时延业务的需求。
为了降低PON网络的传输时延,可采用固定带宽分配的机制,给不同业务信号分配固定的时隙,同时降低业务之间的时隙间隔和分配的时隙带宽长度,以降低传输时延,满足一些低时延数据传输的要求,但是由于这种方法要求业务带宽固定不变,可能导致业务传输的灵活性降低;且当业务带宽小于系统分配的固定带宽时,则会出现空闲时隙,浪费了有限的带宽资源,所以这种方法宽带利用率较差。还可以通过优化DBA算法降低时延,将低时延业务信号优先级提高,实现快速转发,但是这种降低时延的方法会影响本来优先级高的业务,且其时延降低值也有极限的。还有的方法是在已有的PON系统中增加一对上下行波长,用独立的波长通道来传输低时延业务,这种方法最简单可行,由于业务波长不一样,所以不会影响主业务传输,但为了传输低时延业务,系统要增加额外的一套发射和接收装置,特别是需要增加独立的光路发射和接收器件,需要对现有网络进行大规模改进,甚至需要直接替换成新的系统,导致了额外成本的增加。
针对无源光网络中传输不同时延的数据的成本较高的技术问题,目前尚未提出有效的解决方案。
发明内容
本申请实施例提供了一种数据的传输方法和装置、存储介质,以至少解决无源光网络中传输不同时延的数据的成本较高的技术问题。
根据本申请实施例的一个方面,提供了一种数据的传输方法,该方法包括:获取待发送的第一类数据和第二类数据,其中,第一类数据所允许的传输时延小于第二类数据所允许的传输时延;在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据,其中,传输通道允许同时传输第一类数据和第二类数据,传输通道上用于发送第二类数据的第二频段中的最低频率高于第一载波频段中的最高 频率。
本申请实施例一实施方式中,在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据包括:确定第一载波频段中为目标光网络单元分配的第一子频段;在为目标光网络单元分配的第一子频段上发送第一类数据。
本申请实施例一实施方式中,在为目标光网络单元分配的第一子频段上发送第一类数据包括:利用与第一子频段内频率对应的载波,对用于传输第一类数据的第一类信号进行载波调制;将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号。
本申请实施例一实施方式中,利用与第一子频段内频率对应的载波,对用于传输第一类数据的第一类信号进行载波调制包括:确定为目标光网络单元分配的第一子频段内的中心频率;利用与中心频率对应的载波对第一类信号进行载波调制。
本申请实施例一实施方式中,将经过载波调制后的第一类信号转换为光信号包括:对经过载波调制后的第一类信号的信号幅度按照预设压缩比例进行压缩;将经过压缩后的第一类信号转换为在传输通道上发送的光信号。
本申请实施例一实施方式中,在第一载波频段中,为目标光网络单元所在的无源光网络中的每个光网络单元分配有一个子频段,其中,任意两个子频段的带宽相同,相邻的两个子频段间设置有频率间隙。
本申请实施例一实施方式中,在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据包括:对用于传输第一类数据的第一类信号进行扩频;利用与第一载波频段上第一频率对应的载波对扩频后的第一类信号进行载波调制,其中,第一频率为目标光网络单元所在的无源光网络中所有光网络单元进行载波调制时使用的频 率;将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号。
本申请实施例一实施方式中,对用于传输第一类数据的第一类信号进行扩频包括:获取为目标光网络单元分配的第一伪随机序列;利用第一伪随机序列对第一类信号进行扩频。
本申请实施例一实施方式中,将经过载波调制后的第一类信号转换为光信号包括:对经过载波调制后的第一类信号的信号幅度按照预设压缩比例进行压缩;将经过压缩后的第一类信号转换为在传输通道上发送的光信号。
本申请实施例一实施方式中,为无源光网络的每个光网络单元分配有一个相同长度的伪随机序列,其中,伪随机序列的长度与无源光网络中光网络单元数量相关。
本申请实施例一实施方式中,在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据包括:对用于传输第一类数据的第一类信号进行扩频;利用与第一载波频段上第二频率对应的载波对扩频后的第一类信号进行载波调制,其中,第二频率为目标光网络单元所在的光网络单元组中所有光网络单元进行载波调制时使用的频率;将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号。
本申请实施例一实施方式中,在对用于传输第一类数据的第一类信号进行扩频之前,方法还包括:确定目标光网络单元所在的光网络单元组,其中,目标光网络单元所在的无源光网络中包括多个光网络单元组,每个光网络单元组包括多个光网络单元。
本申请实施例一实施方式中,对用于传输第一类数据的第一类信号进行扩频包括:获取为目标光网络单元所在的光网络单元组分配的多个伪随 机序列;获取多个伪随机序列中与目标光网络单元对应的第二伪随机序列;利用第二伪随机序列对第一类信号进行扩频。
本申请实施例一实施方式中,伪随机序列的长度与光网络单元组内光网络单元的数量相关。
本申请实施例一实施方式中,利用与第一载波频段上第二频率对应的载波对扩频后的第一类信号进行载波调制包括:获取第一载波频段上为目标光网络单元所在的光网络单元组分配的第二子频段;利用与第二子频段上第二频率对应的载波对扩频后的第一类信号进行载波调制。
本申请实施例一实施方式中,第二频率为第二子频段内的中心频率。
本申请实施例一实施方式中,将经过载波调制后的第一类信号转换为光信号包括:对经过载波调制后的第一类信号的信号幅度按照预设压缩比例进行压缩;将经过压缩后的第一类信号转换为在传输通道上发送的光信号。
根据本申请实施例的一个方面,提供了一种数据的传输装置,该装置包括:接收单元,配置为获取待发送的第一类数据和第二类数据,其中,第一类数据所允许的传输时延小于第二类数据所允许的传输时延;传输单元,配置为在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据,其中,传输通道允许同时传输第一类数据和第二类数据,传输通道上用于发送第二类数据的第二频段中的最低频率高于第一载波频段中的最高频率。
本申请实施例一实施方式中,传输单元包括:确定模块,配置为确定第一载波频段中为目标光网络单元分配的第一子频段;传输模块,配置为在为目标光网络单元分配的第一子频段上发送第一类数据。
本申请实施例一实施方式中,传输模块包括:调制子模块,配置为利用与第一子频段内频率对应的载波,对用于传输第一类数据的第一类信号 进行载波调制;传输子模块,配置为将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号。
本申请实施例一实施方式中,传输单元包括:第一扩频模块,配置为对用于传输第一类数据的第一类信号进行扩频;第一调制模块,配置为利用与第一载波频段上第一频率对应的载波对扩频后的第一类信号进行载波调制,其中,第一频率为目标光网络单元所在的无源光网络中所有光网络单元进行载波调制时使用的频率;第一转换模块,配置为将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号。
本申请实施例一实施方式中,传输单元包括:第二扩频模块,配置为对用于传输第一类数据的第一类信号进行扩频;第二调制模块,配置为利用与第一载波频段上第二频率对应的载波对扩频后的第一类信号进行载波调制,其中,第二频率为目标光网络单元所在的光网络单元组中所有光网络单元进行载波调制时使用的频率;第二转换模块,配置为将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号。
根据本申请实施例的另一个方面,还提供了一种终端,包括:处理器;配置为存储处理器可执行指令的存储器;配置为根据处理器的控制进行信息收发通信的传输装置;其中,处理器配置为执行以下操作:获取待发送的第一类数据和第二类数据,其中,第一类数据所允许的传输时延小于第二类数据所允许的传输时延;在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据,其中,传输通道允许同时传输第一类数据和第二类数据,传输通道上用于发送第二类数据的第二频段中的最低频率高于第一载波频段中的最高频率。
本申请实施例一实施方式中,处理器还配置为执行以下操作:确定第一载波频段中为目标光网络单元分配的第一子频段;在为目标光网络单元分配的第一子频段上发送第一类数据。
根据本申请的另一个实施例,提供了一种存储介质,存储介质可以被设置为存储用于执行以下步骤的程序代码:获取待发送的第一类数据和第二类数据,其中,第一类数据所允许的传输时延小于第二类数据所允许的传输时延;在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据,其中,传输通道允许同时传输第一类数据和第二类数据,传输通道上用于发送第二类数据的第二频段中的最低频率高于第一载波频段中的最高频率。
在本申请实施例中,获取待发送的第一类数据和第二类数据,第一类数据所允许的传输时延小于第二类数据所允许的传输时延;在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据,传输通道允许同时传输第一类数据和第二类数据,传输通道上用于发送第二类数据的第二频段中的最低频率高于第一载波频段中的最高频率,对于第二类数据而言可以按照已有的方式发送,而对于第一类数据采用即时发送的方式发送,且允许两类数据同时发送,从而解决了无源光网络中同时传输不同时延的数据的成本较高的技术问题,实现了降低无源光网络中不同时延的数据传输成本的技术效果。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是利用PON网络传输主业务数据的示意图;
图2是用于实现本申请实施例的数据的传输方法的终端的示意图;
图3是根据本申请实施例的数据的传输方法的流程图;
图4是根据本申请实施例的PON网络系统的架构图;
图5是根据本申请实施例的可选的基于频域叠加的示意图;
图6是根据本申请实施例的可选的基于频域叠加的示意图;
图7是根据本申请实施例的可选的基于频域叠加的示意图;
图8是根据本申请实施例的可选的基于频域叠加的示意图;
图9是根据本申请实施例的可选的基于频域叠加的示意图;
图10是根据本申请实施例的可选的基于频域叠加的示意图;
图11是根据本申请实施例的可选的基于频域叠加的示意图;
图12是根据本申请实施例的可选的基于码域叠加的示意图;
图13是根据本申请实施例的可选的基于码域叠加的示意图;
图14是根据本申请实施例的可选的基于码域叠加的示意图;
图15是根据本申请实施例的可选的基于码域叠加的示意图;
图16是根据本申请实施例的可选的基于码域叠加的示意图;
图17是根据本申请实施例的可选的基于码域叠加的示意图;
图18是根据本申请实施例的可选的基于码域叠加的示意图;
图19是根据本申请实施例的可选的基于频域和码域叠加的示意图;
图20是根据本申请实施例的可选的基于频域和码域叠加的示意图;
图21是根据本申请实施例的可选的基于频域和码域叠加的示意图;
图22是根据本申请实施例的可选的基于频域和码域叠加的示意图;
图23是根据本申请实施例的可选的基于频域和码域叠加的示意图;
图24是根据本申请实施例的可选的基于频域和码域叠加的示意图;
图25是根据本申请实施例的数据的传输方法的流程图;
图26是根据本申请实施例的数据的传输装置的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第 一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,如图2所示,计算机终端可以包括一个或多个(图中仅示出一个)处理器201,处理器201可以包括但不限于微处理器(MCU)或可编程逻辑器件(FPGA)等的处理装置、用于存储数据的存储器203、以及用于通信功能的传输装置205。本领域普通技术人员可以理解,图2所示的结构仅为示意,其并不对上述电子装置的结构造成限定。
存储器203可用于存储应用软件的软件程序以及模块,如本申请实施例中的设备的控制方法对应的程序指令/模块,处理器201通过运行存储在存储器203内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器可进一步包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至计算机终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置用于经由一个网络接收或者发送数据。上述的网络具体实例可包括计算机终端的通信供应商提供的无线网络。在一个实例中,传输装置包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
例如,对于处理器而言,可用于执行以下操作:获取待发送的第一类 数据和第二类数据,其中,第一类数据所允许的传输时延小于第二类数据所允许的传输时延;在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据,其中,传输通道允许同时传输第一类数据和第二类数据,传输通道上用于发送第二类数据的第二频段中的最低频率高于第一载波频段中的最高频率。
根据本申请实施例,提供了一种数据的传输方法的方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图3是根据本申请实施例的数据的传输方法的流程图,如图3所示,该方法包括如下步骤:
步骤S301,获取待发送的第一类数据和第二类数据,其中,第一类数据所允许的传输时延小于第二类数据所允许的传输时延。
步骤S302,在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据,其中,传输通道允许同时传输第一类数据和第二类数据,传输通道上用于发送第二类数据的第二频段中的最低频率高于第一载波频段中的最高频率。
通过上述实施例,获取待发送的第一类数据和第二类数据,第一类数据所允许的传输时延小于第二类数据所允许的传输时延;在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据,传输通道允许同时传输第一类数据和第二类数据,传输通道上用于发送第二类数据的第二频段中的最低频率高于第一载波频段中的最高频率,对于第二类数据而言可以按照已有的方式发送,而对于第一类数据采用即时发送的方式发送,且允许两类数据同时发送,从而解决了无源光网络中传输不同时延的数据的成本较高的技术问题,实现了降低无源光网 络中不同时延的数据传输成本的技术效果。
可选地,上述步骤的执行主体可以为光网络单元、光线路单元等,但不限于此。在本实施例中以光网络单元为例进行说明。
上述的第一类数据为低时延业务的数据(即低延时数据);上述的第二类数据为移动业务或宽带业务的数据(即主业务数据)。
在本申请提供的PON网络系统中,该系统共享原有的上/下行波长通道,移动业务或宽带业务(即主业务)的传输机制不变,下行仍然采用广播的方式,上行采用基于TDMA的DBA机制,而低时延业务不参与主业务DBA带宽调度分配,不改变主业务的优先级。
该PON系统中不同的业务都使用相同的波长,为了区分业务信号,该系统对频谱资源进行了分割,传统的主业务属于高速业务,对应传输通道的高频段,所以可以利用传输通道的低频段来传输低时延业务。低频载波频段带宽最大频率要低于高速业务的最低频率,低频载波频段最小频率要大于30KHz。具体可以通过如下三种方案实现:
方案一
该方案针对ONU侧,适于传输低时延数据,每个ONU分配有一个独立等长的低频载波频段,每个低频载波频段具有一个中心频率。每个ONU发送的低时延数据基于不同的低频载波,可以实现低时延数据在频域上叠加,在时域上互不干扰。
在步骤S302的方案中,在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据包括:确定第一载波频段中为目标光网络单元分配的第一子频段;在为目标光网络单元分配的第一子频段上发送第一类数据。
在为目标光网络单元分配的第一子频段上发送第一类数据可通过如下方式实现:利用与第一子频段内频率对应的载波,对用于传输第一类数据 的第一类信号进行载波调制;将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号。
具体地,利用与第一子频段内频率对应的载波,对用于传输第一类数据的第一类信号进行载波调制包括:确定为目标光网络单元分配的第一子频段内的中心频率;利用与中心频率对应的载波对第一类信号进行载波调制。
可选地,经过载波调制后的低时延数据可进行幅度控制,再由ONU转换成光信号,在将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号时,可对经过载波调制后的第一类信号的信号幅度按照预设压缩比例进行压缩;将经过压缩后的第一类信号转换为在传输通道上发送的光信号,每个ONU发送的光信号最终和主业务光信号在主光路叠加。这样,叠加后的光信号幅值将不会超过OLT对主业务接收的上限值。
可选地,在第一载波频段中,为目标光网络单元所在的无源光网络中的每个光网络单元分配有一个子频段,其中,任意两个子频段的带宽相同,相邻的两个子频段间设置有频率间隙。每个ONU分配的独立等长的载波频段根据低频段总带宽的长度进行等比例分配,分配的数量等于网络系统中的ONU数量。此外,每两个相邻的独立载波频段间需要插入等长的频率间隙。
图4是根据本申请实施例的PON网络系统的架构图。该PON系统主要包括IP RAM路由器;光线路单元OLT;ODN网络,包括主干光纤、分支光纤以及光分路器(Spliter);光网络单元ONU,包括ONUp、ONUm、ONUn,其中p,m,n为假设的随机值;室外基站以及家庭网络。该PON系统可以传输三种业务数据。在PON系统中,主业务是基于TDMA的分时转发,因此主业务会分配独立的ONU接入PON网络中;每个ONU都能传输低时延业务。如图4中所示,作为本申请的一个实施例,ONUp和ONUn 将用来传输移动业务;ONUm将用来传输宽带业务。所有的ONU都能传输低时延业务,不会占用主业务信号的时隙和段开销。低时延业务则作为随路的低幅值信号跟随主业务信号进行共同传输,所有低时延业务不需要受DBA调度,在时间上相互叠加,可以同时发送和接收。
本申请提供的PON网络系统,在上行传输中,当其中某一个ONU处在主业务发送窗口时,同一时间其它的ONU也可以正常发光,但其它发光的ONU此时只传输低时延业务。由于多路ONU同时发光,所有光信号叠加后,主光路的光功率值会增加,并超出OLT接收机的接收上限值,导致OLT接收机饱和。为了防止其它发光的ONU影响主业务的传输,本专利中的PON系统会对所有发送的低时延信号进行幅度衰减控制,然后才将这些信号和主业务信号进行叠加,确保叠加后的信号幅度不会超过OLT对主业务的接收上限值。
在下行传输中,主业务和所有的低时延业务将同时由OLT进行发送。在发送的过程中,同样为了防止叠加后电信号过大造成下行ONU接收端饱和,需要对所有发送的低时延信号进行幅度衰减控制。确保叠加后的信号幅度不会超过ONU对主业务的接收上限值。
图5是根据本申请实施例的可选的基于频域叠加的示意图。在本申请中,当ONU和OLT之间传输低时延数据业务时,上行和下行都将采用频域叠加机制。在上下行传输中,不同ONU的低时延数据调制到不同的载波频率上,每一个ONU分配不同的载波频率,例如ONUp对应载波频率fp,ONUn对应载波频率fn,ONUm对应载波频率fm。在OLT/ONU发射端,经过各载波调制的低时延数据还需要控制信号幅值,以保证所有的低时延叠加后不会影响移动业务或宽带业务的信号接收,例如,可以限定所有光/电信号叠加后的幅值控制在主业务光/电信号平均幅度的5%到20%之间。在OLT/ONU接收端,对接收的载波频率进行选频,可区分不同ONU的带 载波的低时延信号。由于频域叠加机制传输的数据在时间上相互叠加,因此所有的低时延数据可在同一时间传输。此外,该方法的传输时延不受系统业务调度的影响,只有物理硬件的传输时延,因此时延很低。
如图6所示,示出了基于频域叠加的PON传输的时域图。ONUp和ONUn传输的移动业务和ONUm传输的宽带业务在时域轴上是分开的,ONUP和ONUn传输的低时延数据在时间轴上是叠加的。同一时间,各ONU传输的低时延数据不受时间调度限制,与主业务在时间轴上可以重叠。
如图7所示,示出了基于频域叠加的PON传输的频域图。ONUp和ONUn传输的低时延数据在频域上是分开的,分别对应不同的频率fp和fn。ONUp和ONUn传输的移动业务和ONUm传输的宽带业务在频域上则是重叠的。
如图8所示,示出了基于频域叠加的PON技术原理。对所有的低时延数据进行幅度控制,并叠加在主业务数据的顶端。在上行通道,当DBA授权其中一个ONU开启主业务窗口时隙时,所有的ONU都可以发光,但只能发送低时延数据,而且这些光信号的幅度会被控制在一定的幅度,可以限定所有低时延数据的光信号叠加后光信号幅值控制在主业务光信号平均幅度的5%到20%之间。图中ONUp在发送移动业务时,不同频率fp和fn的低时延信号都叠加在该移动业务数据的顶端。在OLT/ONU接收端,通过高通滤波器滤除低频信号,只能得到移动业务或者宽带业务;通过低通滤波器滤除高频信号,只能得到不同载波调制的低时延信号,通过中频滤波器进行选频,可分别获得频率为fp/fn(或fm)的载波调制信号。对各载波调制信号进行解调,分别获得ONUp和ONUm发送的低时延数据。
如图9所示,示出了基于频域叠加的OLT发射前端的技术方案原理。在OLT发射端,下行传输给各ONU的低时延数据将通过不同的载波频率进行调制,调制的方式有很多,例如幅度键控、频移键控、相移键控等各 种调制方式。调制后的所有低时延电信号叠加后,会统一进行一定幅度衰减,如限定所有电信号叠加后的幅值控制在主业务电信号平均幅度的5%到20%之间。例如,假设业务电信号幅度为800mV,系统要求控制幅度在10%,那么要求所有的ONU电信号叠加后的幅度Vp-pm总和为800*10%=80mV。对信号的幅度衰减可以使用电衰减器,所有的电信号叠加后经过驱动器和电光转换转,换成光信号发送到下行主路光纤中。
图10示出了基于频域叠加的ONU发射前端技术方案原理。
在上行ONU发射端,同一时间,当DBA授权其中一个ONU开启主业务窗口时隙时。所有的ONU都可以发光,但只能发送低时延数据,每个ONU对低时延数据采用分配的载频进行载波调制,再对调制后的信号进行幅度衰减,幅度衰减后的信号通过驱动转换成小电流,小电流驱动光电转换单元将其转成低功率光信号。最后所有的光信号发送到上行主光路中,和主业务光合波。可限定所有低时延数据的光信号叠加后光信号平均功率控制在主业务光信号平均功率的5%到20%之间,所以要对每个ONU都需要进行光功率幅度控制。可以对每个ONU的光信号平均功率值以ONU数量进行等比例分配。例如假设业务光平均光功率为10dBm,系统要求控制幅度在10%,下行网络有32个ONU发光,那么要求所有的ONU平均光功率总和为10dBm-10lg10=0dBm。每个ONU出光平均功率为10lg(1mW÷32)≈-15dBm。
图11示出了基于频域叠加的OLT/ONU接收前端技术方案原理。OLT/ONU接收的光信号经过光电转换及放大后,通过两路滤波器实现低高频信号分离。经过高通滤波器可以滤除低频信号,获得移动业务或宽带业务信号,该信号为高频数字信号,只需要进行简单的0/1电平判决即可恢复出原始的移动或宽带数据信号。经过低通滤波器可得带载波调制的低时延数据。通过模数转换,将模拟信号转换成数字信号。经过数字带通滤波器 进行选频,分离出载波频率为fp和fn的低时延数字信号。再对分离出来的数字信号进行解调去除载波,最后经过0/1电平判决就能恢复原始的低时延数据信号。
通过上述方案,在PON网络的某个ONU传输主业务信号的同时,PON网络的其他多个ONU也能同时传输低时延数据,每个ONU传输的低时延数据分别调制到该ONU对应的中心频率的低频载波上。
方案二
该方案针对在ONU侧,在PON网络的某个ONU传输主业务信号的同时,PON网络的其他多个ONU也能同时传输低时延数据;每个ONU传输的低时延数据需要经过不同的伪随机序列进行扩频,然后调制到同一个的低频载波上。可以实现低时延数据在码域上叠加,在时域上互不干扰。
在步骤S302的方案中,在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据包括:对用于传输第一类数据的第一类信号进行扩频;利用与第一载波频段上第一频率对应的载波对扩频后的第一类信号进行载波调制,其中,第一频率为目标光网络单元所在的无源光网络中所有光网络单元进行载波调制时使用的频率;将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号。
具体地,对用于传输第一类数据的第一类信号进行扩频包括:获取为目标光网络单元分配的第一伪随机序列;利用第一伪随机序列对第一类信号进行扩频,即可将扩频后的所有低时延信号调制在一个相同的低频载波上;该低频载波频率可以在的低频频段中任意选择。
可选地,经过载波调制后的低频信号需要进行幅度控制,再由ONU转换成光信号,具体可以在将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号时,对经过载波调制后的第一类信号的信号幅度按照预设压缩比例进行压缩;将经过压缩后的第一类信号转换为在传输 通道上发送的光信号,每个ONU发送的光信号最终和主业务光信号在主光路叠加,叠加后的光信号幅值将不会超过OLT对主业务接收的上限值。
可选地,为无源光网络的每个光网络单元分配有一个相同长度的伪随机序列,其中,伪随机序列的长度与无源光网络中光网络单元数量相关。伪随机序列码长度由ONU的数量对应的2次方的指数来确定。
如图12所示,示出了基于码域叠加的PON的工作原理。在本申请的PON系统中,当ONU和OLT之间传输低时延数据业务时,上行和下行还可以采用码域叠加机制。首先需要将不同低时延数据先编码,然后通过正交序列码进行扩频调制,每一个ONU对应各自不同的正交序列码,不同的正交序列码可标识不同ONU的信息,例如ONUp对应序列码PNp,ONUn对应序列码PNn。所有经过扩频调制后的低时延数据再通过载波调制,载波频率可以在低频段任选一个合适频率f。由于码域叠加机制传输的数据在时域和码域上相互叠加,因此ONUp和ONUn可在同一时间传输低时延数据。该方法的传输时延不受系统业务调度的影响,只有物理硬件的传输时延,因此时延很低。
如图13所示,示出了基于码域叠加的PON传输的时域和码域。ONUp和ONUn传输的移动业务和ONUm传输的宽带业务在时域和码域上是分开的。ONUP和ONUn传输的低时延数据在时域和码域上是重叠的。同一时间,各ONU传输的低时延数据不受时间调度限制,与主业务在时间轴上可以重叠。
如图14所示,示出了基于码域叠加的PON传输的频域和码域。ONU传输的低时延数据和主业务在频域上是分开的,低时延数据在低频段,对应载波频率f,主业务在高频段。ONUp和ONUn传输的移动业务和ONUm传输的宽带业务在频域上则是重叠的。ONUp和ONUn传输的低时延数据在码域上是重叠的。
如图15所示,示出了基于码域叠加的PON技术原理。对所有的低时延数据进行幅度控制,并叠加在主业务数据的顶端。在上行通道,当DBA授权其中一个ONU开启主业务窗口时隙时,所有的ONU都可以发光,但只能发送低时延数据,而且这些光信号的幅度会被控制在一定的幅度,并规定所有低时延数据的光信号叠加后光信号幅值控制在主业务光信号平均幅度的5%到20%之间。图15中ONUp在发送移动业务时,不同序列码PNp和PNn的扩频不同的低时延数据,最后一起通过载波f进行载波调制,所有的数据通过幅度衰减控制后叠加在移动业务数据的顶端。在接收端,通过高通滤波器滤除低频信号,可获得移动业务;通过低通滤波器滤除高频信号,获得低频的带载波调制的低时延数据,再通过解调滤除载波频率,可分别获得扩频后叠加的低时延数据。对叠加的数据采用不同的序列码进行解扩,得到不同ONU的低时延数据。
如图16所示,示出了码域叠加的OLT发射前端技术方案原理。在OLT发射端,ONUp/ONUm低时延数据先进行编码,然后通过序列码PNp/PNm进行扩频。扩频后的数据将通过相同的载波频率f进行载波调制,在经过幅度衰减叠加到移动业务或者宽带业务电信号上。所有ONU幅度控制的原理和FDAM OLT发射端的原理一样。所有的电信号叠加后经过驱动器和电光转换转,换成光信号发送到下行主路光纤中。
如图17所示,示出了基于码域叠加的ONU发射前端技术方案原理。在上行通道中,各ONUp/ONUm/ONUn发送的低时延数据先进行编码,然后通过序列码PNp/PNm/PNn进行扩频。扩频后的数据将通过相同的载波频率f进行载波调制,然后调制后的电信号经过幅度衰减,经过驱动和光电转换成光信号。所有的ONU上传的低时延光信号都会在主光路上和移动业务或宽带业务光信号进行合波。所有ONU低时延光功率控制的原理和FDAM ONU发射端的原理一样。
如图18所示,示出了基于码域叠加的OLT/ONU接收前端技术方案原理。接收的光信号经过光电转换及放大后,通过两路滤波器实现低高频信号分离。经过高通滤波器可以滤除低频信号,获得移动业务或宽带业务信号,只需要进行简单的0/1电平判决即可恢复出原始的移动或宽带数据信号。经过低通滤波器可以获得带载波调制的低时延数据。通过模数转换成数字信号,将数字信号进行载波解调扩频后叠加的低时延数据,采用对应的序列码对其解扩,再经过解码就可以得到不同ONU的低时延数据。
上述方案使用码域叠加技术,不需要进行频率带宽分配,传输速率受带宽的约束小。但需要用较长的序列码来扩频有效数据,ONU数量越多,所需要的序列码bit位就越长,扩频后的编码就越长,相同的时间内传输的有效数据量就越少。
方案三
将PON网络系统中的ONU进行分组分类,根据ONU数量,将总量分成M×N组合,总共有M组,每组有N个ONU。M个不同组分别使用M个不同的、独立的低频载波频段;每两个相邻的独立载波频段间需要插入等长的频率间隙,同组内N个ONU都使用相同的低频载波频段;每个低频载波频段对应一个中心频率,每个载波频段根据低频段总带宽的长度进行M等比例分配,同组内N个ONU需要使用N个不同的伪随机序列进行扩频。
在步骤S302的方案中,在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据时,每个ONU传输的低时延数据需要先经过对应组内不同的伪随机序列进行扩频,然后在用对应组的低频载波频率进行载波调制,具体可以通过如下方式实现:对用于传输第一类数据的第一类信号进行扩频;利用与第一载波频段上第二频率对应的载波对扩频后的第一类信号进行载波调制,其中,第二频率为目标 光网络单元所在的光网络单元组中所有光网络单元进行载波调制时使用的频率;将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号。
在对用于传输第一类数据的第一类信号进行扩频之前,可以先确定目标光网络单元所在的光网络单元组,其中,目标光网络单元所在的无源光网络中包括多个光网络单元组,每个光网络单元组包括多个光网络单元。
这样,在对用于传输第一类数据的第一类信号进行扩频包括,可以获取为目标光网络单元所在的光网络单元组分配的多个伪随机序列;获取多个伪随机序列中与目标光网络单元对应的第二伪随机序列;利用第二伪随机序列对第一类信号进行扩频。
上述的伪随机序列的长度与光网络单元组内光网络单元的数量相关。该伪随机序列码长度由N对应的2次方的指数来确定。
可选地,利用与第一载波频段上第二频率对应的载波对扩频后的第一类信号进行载波调制包括:获取第一载波频段上为目标光网络单元所在的光网络单元组分配的第二子频段;利用与第二子频段上第二频率对应的载波对扩频后的第一类信号进行载波调制。
上述的第二频率可以为第二子频段内的中心频率。
可选地,可将扩频后的所有低时延信号调制到对应组的低频载波上,在将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号时,可经过载波调制后的低频信号需要进行幅度控制,再由ONU转换成光信号,具体如下:对经过载波调制后的第一类信号的信号幅度按照预设压缩比例进行压缩;将经过压缩后的第一类信号转换为在传输通道上发送的光信号,每个ONU发送的光信号最终和主业务光信号在主光路叠加,叠加后的光信号幅值将不会超过OLT对主业务接收的上限值。
在上述实施例中,在ONU侧,在PON网络的某个ONU传输主业务信 号的同时,PON网络的其他多个ONU也能同时传输低时延数据。
如图19所示,示出了基于频域叠加和码域叠加的PON的工作原理。在本申请的PON系统中,在上/下行通道中低时延数据传输也可采用频域叠加和码域叠加结合的方式。如图19中,假设将ONU分成若干组,每一个组由16个ONU组成(组合可以任意选择),ONUm1~ONUm16、ONUp1~ONUp16、ONUn1~ONUn16。三个不同组的ONU分别采用频率fm1、fp1、fn1作为载波频率。同一组内的16个ONU采用16个不同的序列码PN1~PN16进行扩频。不同组的ONU可以重复使用这16个序列码。通过载波频率和序列码的组合可以区分出不同ONU。与码域叠加原理一样,首先需要将不同ONU的低时延数据先编码,然后通过序列码进行扩频调制,最后通过对应的载波频率进行载波调制。例如ONUm1通过PN1序列码扩频,用fm1进行载波调制。ONUm16通过PN16序列码扩频,用fm1进行载波调制。由于结合频域叠加和码域叠加机制传输的数据在时域和码域上也可以叠加,因此不同的ONU可在同一时间传输低时延数据。该方法的传输时延不受系统业务调度的影响,只有物理硬件的传输时延,因此时延很低。
如图20所示,示出了基于频域叠加和码域叠加的PON传输频域和码域。ONU传输的低时延数据和主业务在频域上分别在低频段和高频段。同一组的ONU低时延数据对应同一个频率,同组内不同的ONU低时延数据在码域上则是叠加的。不同组的ONU对应不同的频率。例如:ONUm1和ONUm16低时延数据在频域中都在频率fm1上,ONUn1和ONUn16对应载波频率fn1。ONUm1/ONUn1和ONUm16/ONUn16低时延数据在码域中则是重叠的。
如图21所示,示出了基于频域叠加和码域叠加的PON技术原理。对所有的低时延数据进行幅度控制,并叠加在主业务数据的顶端。在上行通 道,当DBA授权其中一个ONU开启主业务窗口时隙时,所有的ONU都可以发光,但只能发送低时延数据,而且这些光信号的幅度会被控制在一定的幅度,并规定所有低时延数据的光信号叠加后光信号幅值控制在主业务光信号平均幅度的5%到20%之间。图21中OLT在发送移动业务时,不同序列码PN1~PN16扩频同组不同的低时延数据,ONUp1~ONUp16采用载波fp1进行载波调制,ONUn1~ONUn16采用载波fn1进行载波调制,所有的数据通过幅度衰减控制后叠加在移动业务数据的顶端。在接收端,通过高通滤波器滤除低频信号,可获得移动业务;通过低通滤波器滤除高频信号,获得低频的带载波调制的低时延数据,通过不同中心频率的中频滤波器可以选择不同的载波频率。例如中频滤波器选择的频率为fp1,低时延信号经过该滤波器后只保留fp1的载波信号。该信号通过解调去掉载波,可获在该频率点上叠加的低时延数据。再对该数据信号采用对应的序列码进行解扩,无法解扩的数据丢弃,最终就可得到对应ONUp1的低时延数据。
如图22所示,示出了基于频域叠加和码域叠加的OLT发射前端技术方案原理。在OLT发射端,ONUp1/ONUm1低时延数据先进行编码,然后通过序列码PN1进行扩频。扩频后的数据将通过不同的载波频率fp1和fm1进行载波调制,在经过幅度衰减叠加到移动业务或者宽带业务电信号上。所有ONU低时延电信号幅度控制的原理和FDAM/码域叠加OLT发射端的原理一样。所有的电信号叠加后经过驱动器和电光转换转,换成光信号发送到下行主路光纤中。
如图23所示,示出了基于频域叠加和码域叠加的ONU发射前端技术方案原理。在上行通道中,各ONUp1/ONUp16/ONUm1/ONUm16对发送的低时延数据先进行编码,然后通过序列码PN1/PN16进行扩频。扩频后的数据分别通过不同的载波频率fp1和fm1进行载波调制,然后调制后的电信号经过幅度衰减,经过驱动和光电转换成光信号。所有的ONU上传的低 时延光信号都会在主光路上和移动业务或宽带业务光信号进行合波。所有ONU低时延光功率控制的原理和FDAM ONU发射端的原理一样。
如图24所示,示出了基于频域叠加和码域叠加的OLT/ONU接收前端技术方案原理。接收的光信号经过光电转换及放大后,通过两路滤波器实现低高频信号分离。经过高通滤波器可以滤除低频信号,获得移动业务或宽带业务信号,只需要进行简单的0/1电平判决即可恢复出原始的移动或宽带数据信号。经过低通滤波器可以获得带载波的低时延数据。通过模数转换成数字信号,将数字信号通过不同的带通滤波器进行载波选频。例如:通过可以带通滤波器可以选出载频分别为fp1和fm1的调制信号。两路信号各自通过解调后去掉载波,可获在各频率点上叠加的低时延数据。例如中频滤波器选择的频率为fp1,低时延信号经过该滤波器后只保留fp1的载波信号。该信号通过解调去掉载波,可获在该频率点上叠加的低时延数据。再对该数据信号采用对应的序列码进行解扩,无法解扩的数据丢弃,最终就可得到对应ONUp1的低时延数据。
上述方案结合了频域叠加和码域叠加两种技术,通过两种技术组合的形式,只需分配较少的低频频段和较短的序列码就可以实现,使ONU的传输速率不受ONU数量的影响。
在本申请的实施例中,在PON系统采用原有的上下波长,低时延业务与主业务则通过高低频谱进行隔离的传输方式,此外,所有低时延数据将基于多路信号在频域或者码域叠加的方法,在PON网络拓扑结构中实现了所有低时延数据的同时传输,可极大地降低数据的传输时延。实现该系统只需在原来的系统中增加一套发射和接收电装置,不改变光路器件,成本增加很小。本专利提出PON系统具有低成本、高带宽利用率、业务传输灵活、能传输超低时延业务的优点。
在本申请的实施例中,步骤S302至步骤S304的执行主体可以为光线 路单元等,在本实施例中以光线路单元为例进行说明。
图25是根据本申请实施例的数据的传输方法的流程图,如图25所示,该方法包括如下步骤:
步骤S2501,在光线路单元上接收请求发送至目标光网络单元的第一类数据和第二类数据,其中,第一类数据所允许的传输时延小于第二类数据所允许的传输时延;
步骤S2502,在与目标光网络单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据,其中,传输通道允许同时传输第一类数据和第二类数据,传输通道上用于发送第二类数据的第二频段中的最低频率高于第一载波频段中的最高频率。
通过上述步骤,对于第二类数据而言可以按照已有的方式发送,而对于第一类数据采用即时发送的方式发送,且允许两类数据同时发送,从而解决了无源光网络中传输不同时延的数据的成本较高的技术问题,实现了降低无源光网络中不同时延的数据传输成本的技术效果。
上述的第一类数据为低时延业务的数据(即低延时数据);上述的第二类数据为移动业务或宽带业务的数据(即主业务数据)。
在本申请提供的PON网络系统中,该系统共享原有的上/下行波长通道,移动业务或宽带业务(即主业务)的传输机制不变,下行仍然采用广播的方式,上行采用基于TDMA的DBA机制,而低时延业务不参与主业务DBA带宽调度分配,不改变主业务的优先级。
该PON系统中不同的业务都使用相同的波长,为了区分业务信号,该系统对频谱资源进行了分割,传统的主业务属于高速业务,对应传输通道的高频段,所以可以利用传输通道的低频段来传输低时延业务。低频载波频段带宽最大频率要低于高速业务的最低频率,低频载波频段最小频率要大于30KHz。具体可以通过如下三种方案实现:
方案一
在步骤S2502的技术方案中,在与目标光网络单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据包括:确定第一载波频段中为目标光网络单元分配的第一子频段;在为目标光网络单元分配的第一子频段上发送第一类数据。
可选地,在为目标光网络单元分配的第一子频段上发送第一类数据包括:利用与第一子频段内频率对应的载波,对用于传输第一类数据的第一类信号进行载波调制;将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号。
可选地,利用与第一子频段内频率对应的载波,对用于传输第一类数据的第一类信号进行载波调制包括:确定为目标光网络单元分配的第一子频段内的中心频率;利用与中心频率对应的载波对第一类信号进行载波调制。
可选地,将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号时,可对经过载波调制后的第一类信号的信号幅度按照预设压缩比例进行压缩;将经过压缩后的第一类信号转换为在传输通道上发送的光信号。
可选地,在第一载波频段中,为目标光网络单元所在的无源光网络中的每个光网络单元分配有一个子频段,其中,任意两个子频段的带宽相同,相邻的两个子频段间设置有频率间隙。
在上述实施例中,PON网络的OLT将传输给多个ONU的低时延数据分别调制对应的中心频率的低频载波上;经过载波调制的所有低时延数据信号需要进行幅度控制,并与主业务电信号叠加;叠加后的电信号幅值将不能超过ONU对主业务接收的上限值。从而实现了低延时数据的即时传输。
方案二
在步骤S2502的技术方案中,在与目标光网络单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据包括:对用于传输第一类数据的第一类信号进行扩频;利用与第一载波频段上第一频率对应的载波对扩频后的第一类信号进行载波调制,其中,第一频率为目标光网络单元所在的无源光网络中所有光网络单元进行载波调制时使用的频率;将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号。
可选地,对用于传输第一类数据的第一类信号进行扩频包括:获取为目标光网络单元分配的第一伪随机序列;利用第一伪随机序列对第一类信号进行扩频。
可选地,在将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号时,可对经过载波调制后的第一类信号的信号幅度按照预设压缩比例进行压缩;将经过压缩后的第一类信号转换为在传输通道上发送的光信号。
可选地,为无源光网络的每个光网络单元分配有一个相同长度的伪随机序列,其中,伪随机序列的长度与无源光网络中光网络单元数量相关。
在该实施例中,PON网络的OLT将传输给多个ONU的低时延数据分别采用对应的伪随机序列码进行扩频调制;伪随机序列码长度由ONU数量对应的2次方的指数来确定。然后将扩频后的所有低时延信号调制在一个相同的低频载波上;该低频载波频率可以在的低频频段中任意选择,将所有低时延电信号与主业务电信号叠加;叠加后的电信号幅值将不能超过ONU对主业务接收的上限值。
方案三
在步骤S2502的技术方案中,在与目标光网络单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据包括:对用于传输第一类 数据的第一类信号进行扩频;利用与第一载波频段上第二频率对应的载波对扩频后的第一类信号进行载波调制,其中,第二频率为目标光网络单元所在的光网络单元组中所有光网络单元进行载波调制时使用的频率;将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号。
可选地,在对用于传输第一类数据的第一类信号进行扩频之前,确定目标光网络单元所在的光网络单元组,其中,目标光网络单元所在的无源光网络中包括多个光网络单元组,每个光网络单元组包括多个光网络单元。
可选地,对用于传输第一类数据的第一类信号进行扩频包括:获取为目标光网络单元所在的光网络单元组分配的多个伪随机序列;获取多个伪随机序列中与目标光网络单元对应的第二伪随机序列;利用第二伪随机序列对第一类信号进行扩频。
可选地,伪随机序列的长度与光网络单元组内光网络单元的数量相关。
可选地,利用与第一载波频段上第二频率对应的载波对扩频后的第一类信号进行载波调制包括:获取第一载波频段上为目标光网络单元所在的光网络单元组分配的第二子频段;利用与第二子频段上第二频率对应的载波对扩频后的第一类信号进行载波调制。
可选地,第二频率为第二子频段内的中心频率。
可选地,在将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号时,对经过载波调制后的第一类信号的信号幅度按照预设压缩比例进行压缩;将经过压缩后的第一类信号转换为在传输通道上发送的光信号。
在该实施例中,PON网络的OLT将传输给多个ONU的低时延数据分别采用对应组内的伪随机序列码进行扩频调制;伪随机序列码长度由N对应的2次方的指数来确定。然后将扩频后的所有低时延信号调制该ONU对应组的低频载波上;将所有低时延电信号与主业务电信号叠加;叠加后的 电信号幅值将不能超过ONU对主业务接收的上限值。
需要说明的是,OLT侧方法的三种方案与前述的ONU侧的三种方案相对应,在此不再赘述。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
实施例2
本申请实施例中还提供了一种数据的传输装置。该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图26是根据本申请实施例的数据的传输装置的示意图。如图26所示,该装置可以包括:接收单元261和传输单元262。
接收单元261,配置为获取待发送的第一类数据和第二类数据,其中,第一类数据所允许的传输时延小于第二类数据所允许的传输时延;
传输单元262,配置为在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据,其中,传输通道允许同时传输第一类数据和第二类数据,传输通道上用于发送第二类数据的第二频段中的最低频率高于第一载波频段中的最高频率。
通过上述实施例,接收单元获取待发送的第一类数据和第二类数据,第一类数据所允许的传输时延小于第二类数据所允许的传输时延;传输单元在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据,其中,传输通道允许同时传输第一类数据和第二类数据,传输通道上用于发送第二类数据的第二频段中的最低频率高于第一载波频段中的最高频率。对于第二类数据而言可以按照已有的方式发送,而对于第一类数据采用即时发送的方式发送,且允许两类数据同时发送,从而解决了无源光网络中传输不同时延的数据的成本较高的技术问题,实现了降低无源光网络中不同时延的数据传输成本的技术效果。
在上述实施例中,传输单元包括:确定模块,配置为确定第一载波频段中为目标光网络单元分配的第一子频段;传输模块,配置为在为目标光网络单元分配的第一子频段上发送第一类数据。
可选地,传输模块包括:调制子模块,配置为利用与第一子频段内频率对应的载波,对用于传输第一类数据的第一类信号进行载波调制;传输子模块,配置为将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号。
可选地,传输子模块还配置为在将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号之前,对经过载波调制后的第一类信号的信号幅度按照预设压缩比例进行压缩,然后将经过压缩后的第一类信号转换为在传输通道上发送的光信号。
可选地,在第一载波频段中,为目标光网络单元所在的无源光网络中的每个光网络单元分配有一个子频段,其中,任意两个子频段的带宽相同,相邻的两个子频段间设置有频率间隙。
可选地,传输单元包括:第一扩频模块,配置为对用于传输第一类数据的第一类信号进行扩频;第一调制模块,配置为利用与第一载波频段上 第一频率对应的载波对扩频后的第一类信号进行载波调制,其中,第一频率为目标光网络单元所在的无源光网络中所有光网络单元进行载波调制时使用的频率;第一转换模块,配置为将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号。
可选地,第一扩频模块还配置为获取为目标光网络单元分配的第一伪随机序列;利用第一伪随机序列对第一类信号进行扩频。在将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号之前可先对经过载波调制后的第一类信号的信号幅度按照预设压缩比例进行压缩,然后将经过压缩后的第一类信号转换为在传输通道上发送的光信号。
可选地,为无源光网络的每个光网络单元分配有一个相同长度的伪随机序列,其中,伪随机序列的长度与无源光网络中光网络单元数量相关。
可选地,传输单元包括:第二扩频模块,配置为对用于传输第一类数据的第一类信号进行扩频;第二调制模块,配置为利用与第一载波频段上第二频率对应的载波对扩频后的第一类信号进行载波调制,其中,第二频率为目标光网络单元所在的光网络单元组中所有光网络单元进行载波调制时使用的频率;第二转换模块,配置为将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号。
可选地,第二扩频模块还配置为在对用于传输第一类数据的第一类信号进行扩频之前,确定目标光网络单元所在的光网络单元组,其中,目标光网络单元所在的无源光网络中包括多个光网络单元组,每个光网络单元组包括多个光网络单元。
可选地,第二扩频模块对用于传输第一类数据的第一类信号进行扩频时,先获取为目标光网络单元所在的光网络单元组分配的多个伪随机序列;获取多个伪随机序列中与目标光网络单元对应的第二伪随机序列;利用第二伪随机序列对第一类信号进行扩频。
上述的伪随机序列的长度与光网络单元组内光网络单元的数量相关。
上述的第二调制模块还配置为获取第一载波频段上为目标光网络单元所在的光网络单元组分配的第二子频段;利用与第二子频段上第二频率对应的载波对扩频后的第一类信号进行载波调制。第二频率为第二子频段内的中心频率。
第二转换模块在将经过载波调制后的第一类信号转换为光信号,并在传输通道上发送光信号之前,对经过载波调制后的第一类信号的信号幅度按照预设压缩比例进行压缩;然后将经过压缩后的第一类信号转换为在传输通道上发送的光信号。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本申请的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S11,获取待发送的第一类数据和第二类数据,其中,第一类数据所允许的传输时延小于第二类数据所允许的传输时延;
S12,在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据,其中,传输通道允许同时传输第一类数据和第二类数据,传输通道上用于发送第二类数据的第二频段中的最低频率高于第一载波频段中的最高频率。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:获取待发送的第一类数据和第二类数据,其中,第一类数据所允许的传输时延小于第二类数据所允许的传输时延;在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的第一类数据,其中,传输通道允许同时传输第一类数据和第二类数据,传输通道上用于发送第二类数据的第二频段中的最低频率高于第一载波频段中的最高频率。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
采用本申请实施例,获取待发送的第一类数据和第二类数据,第一类数据所允许的传输时延小于第二类数据所允许的传输时延;在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的 第一类数据,传输通道允许同时传输第一类数据和第二类数据,传输通道上用于发送第二类数据的第二频段中的最低频率高于第一载波频段中的最高频率,对于第二类数据而言可以按照已有的方式发送,而对于第一类数据采用即时发送的方式发送,且允许两类数据同时发送,从而解决了无源光网络中同时传输不同时延的数据的成本较高的技术问题,实现了降低无源光网络中不同时延的数据传输成本的技术效果。

Claims (23)

  1. 一种数据的传输方法,包括:
    获取待发送的第一类数据和第二类数据,其中,所述第一类数据所允许的传输时延小于所述第二类数据所允许的传输时延;
    在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的所述第一类数据,其中,所述传输通道允许同时传输所述第一类数据和所述第二类数据,所述传输通道上用于发送所述第二类数据的第二频段中的最低频率高于所述第一载波频段中的最高频率。
  2. 根据权利要求1所述的方法,其中,在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的所述第一类数据包括:
    确定所述第一载波频段中为所述目标光网络单元分配的第一子频段;
    在为所述目标光网络单元分配的所述第一子频段上发送所述第一类数据。
  3. 根据权利要求2所述的方法,其中,在为所述目标光网络单元分配的所述第一子频段上发送所述第一类数据包括:
    利用与所述第一子频段内频率对应的载波,对用于传输所述第一类数据的第一类信号进行载波调制;
    将经过载波调制后的所述第一类信号转换为光信号,并在所述传输通道上发送所述光信号。
  4. 根据权利要求3所述的方法,其中,利用与所述第一子频段内频率对应的载波,对用于传输所述第一类数据的第一类信号进行载波调制包括:
    确定为所述目标光网络单元分配的所述第一子频段内的中心频率;
    利用与所述中心频率对应的载波对所述第一类信号进行载波调制。
  5. 根据权利要求3所述的方法,其中,将经过载波调制后的所述第一类信号转换为光信号包括:
    对经过载波调制后的所述第一类信号的信号幅度按照预设压缩比例进行压缩;
    将经过压缩后的所述第一类信号转换为在所述传输通道上发送的光信号。
  6. 根据权利要求1至5中任意一项所述的方法,其中,在所述第一载波频段中,为所述目标光网络单元所在的无源光网络中的每个光网络单元分配有一个子频段,其中,任意两个所述子频段的带宽相同,相邻的两个所述子频段间设置有频率间隙。
  7. 根据权利要求1所述的方法,其中,在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的所述第一类数据包括:
    对用于传输所述第一类数据的第一类信号进行扩频;
    利用与所述第一载波频段上第一频率对应的载波对扩频后的所述第一类信号进行载波调制,其中,所述第一频率为所述目标光网络单元所在的无源光网络中所有光网络单元进行载波调制时使用的频率;
    将经过载波调制后的所述第一类信号转换为光信号,并在所述传输通道上发送所述光信号。
  8. 根据权利要求7所述的方法,其中,对用于传输所述第一类数据的第一类信号进行扩频包括:
    获取为所述目标光网络单元分配的第一伪随机序列;
    利用所述第一伪随机序列对所述第一类信号进行扩频。
  9. 根据权利要求7所述的方法,其中,将经过载波调制后的所述第一类信号转换为光信号包括:
    对经过载波调制后的所述第一类信号的信号幅度按照预设压缩比例进行压缩;
    将经过压缩后的所述第一类信号转换为在所述传输通道上发送的光信号。
  10. 根据权利要求7至9中任意一项所述的方法,其中,为所述无源光网络的每个光网络单元分配有一个相同长度的伪随机序列,其中,所述伪随机序列的长度与所述无源光网络中光网络单元数量相关。
  11. 根据权利要求1所述的方法,其中,在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的所述第一类数据包括:
    对用于传输所述第一类数据的第一类信号进行扩频;
    利用与所述第一载波频段上第二频率对应的载波对扩频后的所述第一类信号进行载波调制,其中,所述第二频率为所述目标光网络单元所在的光网络单元组中所有光网络单元进行载波调制时使用的频率;
    将经过载波调制后的所述第一类信号转换为光信号,并在所述传输通道上发送所述光信号。
  12. 根据权利要求11所述的方法,其中,在对用于传输所述第一类数据的第一类信号进行扩频之前,所述方法还包括:
    确定所述目标光网络单元所在的光网络单元组,其中,所述目标光网络单元所在的无源光网络中包括多个光网络单元组,每个光网络单元组包括多个光网络单元。
  13. 根据权利要求12所述的方法,其中,对用于传输所述第一类数据的第一类信号进行扩频包括:
    获取为所述目标光网络单元所在的光网络单元组分配的多个伪随机序列;
    获取所述多个伪随机序列中与所述目标光网络单元对应的第二伪随机序列;
    利用所述第二伪随机序列对所述第一类信号进行扩频。
  14. 根据权利要求13所述的方法,其中,所述伪随机序列的长度与所述光网络单元组内光网络单元的数量相关。
  15. 根据权利要求12所述的方法,其中,利用与所述第一载波频段上第二频率对应的载波对扩频后的所述第一类信号进行载波调制包括:
    获取所述第一载波频段上为所述目标光网络单元所在的光网络单元组分配的第二子频段;
    利用与所述第二子频段上所述第二频率对应的载波对扩频后的所述第一类信号进行载波调制。
  16. 根据权利要求15所述的方法,其中,所述第二频率为所述第二子频段内的中心频率。
  17. 根据权利要求11所述的方法,其中,将经过载波调制后的所述第一类信号转换为光信号包括:
    对经过载波调制后的所述第一类信号的信号幅度按照预设压缩比例进行压缩;
    将经过压缩后的所述第一类信号转换为在所述传输通道上发送的光信号。
  18. 一种数据的传输装置,包括:
    接收单元,用于获取待发送的第一类数据和第二类数据,其中,所述第一类数据所允许的传输时延小于所述第二类数据所允许的传输时延;
    传输单元,用于在目标光网络单元与光线路单元之间的传输通道的第一载波频段上发送需要即时传输的所述第一类数据,其中,所述传输通道允许同时传输所述第一类数据和所述第二类数据,所述传输通道上用于发送所述第二类数据的第二频段中的最低频率高于所述第一载波频段中的最高频率。
  19. 根据权利要求18所述的装置,其中,所述传输单元包括:
    确定模块,用于确定所述第一载波频段中为所述目标光网络单元分配的第一子频段;
    传输模块,用于在为所述目标光网络单元分配的所述第一子频段上发送所述第一类数据。
  20. 根据权利要求19所述的装置,其中,所述传输模块包括:
    调制子模块,用于利用与所述第一子频段内频率对应的载波,对用于传输所述第一类数据的第一类信号进行载波调制;
    传输子模块,用于将经过载波调制后的所述第一类信号转换为光信号,并在所述传输通道上发送所述光信号。
  21. 根据权利要求18所述的装置,其中,所述传输单元包括:
    第一扩频模块,用于对用于传输所述第一类数据的第一类信号进行扩频;
    第一调制模块,用于利用与所述第一载波频段上第一频率对应的载波对扩频后的所述第一类信号进行载波调制,其中,所述第一频率为所述目标光网络单元所在的无源光网络中所有光网络单元进行载波调制时使用的频率;
    第一转换模块,用于将经过载波调制后的所述第一类信号转换为光信号,并在所述传输通道上发送所述光信号。
  22. 根据权利要求21所述的装置,其中,所述传输单元包括:
    第二扩频模块,用于对用于传输所述第一类数据的第一类信号进行扩频;
    第二调制模块,用于利用与所述第一载波频段上第二频率对应的载波对扩频后的所述第一类信号进行载波调制,其中,所述第二频率为所述目标光网络单元所在的光网络单元组中所有光网络单元进行载波调制时使用的频率;
    第二转换模块,用于将经过载波调制后的所述第一类信号转换为光信号,并在所述传输通道上发送所述光信号。
  23. 一种存储介质,其中存储有计算机程序,该计算机程序用于执行上述权利要求1-17任一项所述数据的传输方法。
PCT/CN2018/074068 2017-01-24 2018-01-24 数据的传输方法和装置、存储介质 WO2018137674A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18744848.5A EP3576331B1 (en) 2017-01-24 2018-01-24 Data transmission method and device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710062797.1 2017-01-24
CN201710062797.1A CN108347326B (zh) 2017-01-24 2017-01-24 数据的传输方法和装置

Publications (1)

Publication Number Publication Date
WO2018137674A1 true WO2018137674A1 (zh) 2018-08-02

Family

ID=62962305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074068 WO2018137674A1 (zh) 2017-01-24 2018-01-24 数据的传输方法和装置、存储介质

Country Status (3)

Country Link
EP (1) EP3576331B1 (zh)
CN (1) CN108347326B (zh)
WO (1) WO2018137674A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709537A1 (en) * 2019-03-14 2020-09-16 Nokia Solutions and Networks Oy Device and method for controlling upstream transmission of bursts in a passive optical network
CN115173958A (zh) * 2022-06-30 2022-10-11 桂林电子科技大学 基于光ofdm实现水下多媒体数据传输不等错误保护的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242877B (zh) * 2019-07-16 2023-06-06 华为技术有限公司 数据传输方法、装置及系统
CN111464979A (zh) * 2019-10-30 2020-07-28 孙凯旋 基于车联网的电驱动车控制方法、云端服务器及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101018311A (zh) * 2007-02-09 2007-08-15 浪潮电子信息产业股份有限公司 Epon系统承载数字高清电视节目的处理方法
CN101237293A (zh) * 2008-03-03 2008-08-06 中兴通讯股份有限公司 波分时分混合复用无源光网络系统
CN101729873A (zh) * 2009-12-11 2010-06-09 浪潮电子信息产业股份有限公司 一种实现多媒体业务融合接入的网络平台
CN103209026A (zh) * 2013-02-28 2013-07-17 西南交通大学 一种全双工多业务融合光载无线传输系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6915040B2 (en) * 1997-12-15 2005-07-05 University Of Southern California Devices and applications based on tunable wave-guiding bragg gratings with nonlinear group delays
EP1102513A1 (en) * 1999-11-19 2001-05-23 BRITISH TELECOMMUNICATIONS public limited company Optical communications system using two signalling phases
CN102137311B (zh) * 2010-12-16 2015-08-19 华为技术有限公司 在无源光网络中传输数据的方法、系统以及光网络单元
CN103581770A (zh) * 2012-07-26 2014-02-12 中国电信股份有限公司 基于单载波频分复用的无源光网络信号处理方法与系统
KR20140093099A (ko) * 2013-01-17 2014-07-25 한국전자통신연구원 광망 종단장치 및 광회선단말을 포함하는 직교 주파수 분할 다중접속 수동형 광가입자망
US9432142B2 (en) * 2013-08-30 2016-08-30 Broadcom Corporation Pre-emption in passive optical networks
CN105471776B (zh) * 2015-11-26 2019-04-16 京信通信系统(中国)有限公司 一种信号传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101018311A (zh) * 2007-02-09 2007-08-15 浪潮电子信息产业股份有限公司 Epon系统承载数字高清电视节目的处理方法
CN101237293A (zh) * 2008-03-03 2008-08-06 中兴通讯股份有限公司 波分时分混合复用无源光网络系统
CN101729873A (zh) * 2009-12-11 2010-06-09 浪潮电子信息产业股份有限公司 一种实现多媒体业务融合接入的网络平台
CN103209026A (zh) * 2013-02-28 2013-07-17 西南交通大学 一种全双工多业务融合光载无线传输系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3576331A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709537A1 (en) * 2019-03-14 2020-09-16 Nokia Solutions and Networks Oy Device and method for controlling upstream transmission of bursts in a passive optical network
US11039230B2 (en) 2019-03-14 2021-06-15 Nokia Solutions And Networks Oy Device and method for controlling upstream transmission of bursts in a passive optical network
CN115173958A (zh) * 2022-06-30 2022-10-11 桂林电子科技大学 基于光ofdm实现水下多媒体数据传输不等错误保护的方法
CN115173958B (zh) * 2022-06-30 2024-03-22 桂林电子科技大学 基于光ofdm实现水下多媒体数据传输不等错误保护的方法

Also Published As

Publication number Publication date
EP3576331A4 (en) 2020-12-09
EP3576331B1 (en) 2024-01-31
CN108347326A (zh) 2018-07-31
EP3576331A1 (en) 2019-12-04
CN108347326B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2018137674A1 (zh) 数据的传输方法和装置、存储介质
KR101780876B1 (ko) 가시광 통신 방법, 장치 및 시스템
US10063339B2 (en) Sleep control method and dynamic wavelength allocation control method
US20170250777A1 (en) Band control system, band control apparatus and communication apparatus
CN1741433A (zh) 使用波分方法的光接入网络及无源光网络
US20160285553A1 (en) Apparatuses and methods for transmitting and receiving control signal in analog radio-over-fiber (rof)-based mobile fronthaul
CN106535255A (zh) 一种基于c‑ran的资源调度与控制方法及装置
WO2019184819A1 (zh) 一种无源光网络系统的信号传输方法及相关设备
JP2017050775A (ja) Ponシステムおよび通信方法
CN113543151A (zh) 4g/5g信号无线覆盖方法
Chen et al. Design and demonstration of a TDD-based central-coordinated resource-reserved multiple access (CRMA) scheme for bidirectional VLC networking
JP5725226B1 (ja) 動的波長割当制御方法及び局側装置
US11510241B2 (en) Network-assisted clear channel assessment bandwidth adaptation mechanism
CN101808255A (zh) 一种EPON和WiMAX、WiFi融合接入局端OLT设备及接入方法
US20160261935A1 (en) Central base station apparatus capable of dynamically allocating multiple wavelengths
Du et al. A resource sharing C-RAN architecture with wavelength selective switching and parallel uplink signal detection
US20170054502A1 (en) Analog distributed antenna system and its operating method
KR101873116B1 (ko) 광통신 시스템에서 상향전송신호의 성능을 향상하기 위한 장치 및 방법
CN101778480B (zh) 一种频域资源调度中的预处理方法、装置及系统
KR102201238B1 (ko) 직교 주파수 분할 다중접속 수동형 광 네트워크, 및 그 네트워크의 상향 대역폭 자원할당방법
JP4842230B2 (ja) アクセスシステムおよびチャネル割当方法
JP2016158132A (ja) ネットワークシステム、局側装置、及び、通信方法
JP6787456B1 (ja) 局側装置、光通信システム、及び、通信リソース割り当て方法
JP6958172B2 (ja) 局側装置、光アクセスネットワーク、及び、帯域割当方法
CN111446982B (zh) 用于选择扩频码的方法、局端设备和计算机可读介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018744848

Country of ref document: EP

Effective date: 20190826