WO2018137477A1 - 一种电外科器械的电极 - Google Patents

一种电外科器械的电极 Download PDF

Info

Publication number
WO2018137477A1
WO2018137477A1 PCT/CN2018/070087 CN2018070087W WO2018137477A1 WO 2018137477 A1 WO2018137477 A1 WO 2018137477A1 CN 2018070087 W CN2018070087 W CN 2018070087W WO 2018137477 A1 WO2018137477 A1 WO 2018137477A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive coating
monopolar
coating
high frequency
Prior art date
Application number
PCT/CN2018/070087
Other languages
English (en)
French (fr)
Inventor
彭心宇
张宇
石秀凤
聂红林
Original Assignee
逸思(苏州)医疗科技有限公司
上海逸思医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 逸思(苏州)医疗科技有限公司, 上海逸思医疗科技有限公司 filed Critical 逸思(苏州)医疗科技有限公司
Priority to US16/480,603 priority Critical patent/US20190388140A1/en
Publication of WO2018137477A1 publication Critical patent/WO2018137477A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1402Probes for open surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L31/125Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L31/126Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix containing carbon fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00077Electrical conductivity high, i.e. electrically conducting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • A61B2018/0013Coatings on the energy applicator non-sticking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • A61B2018/00136Coatings on the energy applicator with polymer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00607Coagulation and cutting with the same instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/1253Generators therefor characterised by the output polarity monopolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/126Generators therefor characterised by the output polarity bipolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices

Definitions

  • the present application relates to the field of medical devices, and in particular to an electrode for an electrosurgical instrument.
  • the high-frequency electrosurgical unit is an electrosurgical instrument that replaces a mechanical scalpel for tissue cutting.
  • Commercial high-frequency electrosurgical products have been used in surgery since the 1920s (see “Progress in Electrosurgical Equipment”, Yu Wei, Yang Qian, China Medical Devices Journal, No. 4, 2012). It uses the high-frequency and high-voltage current generated by the effective electrode tip to heat the tissue when it contacts the body, thereby achieving separation and coagulation of the body tissue, thereby cutting and stopping bleeding.
  • high-frequency electrosurgical cutters have a fast cutting speed and good hemostasis. It can be used not only in surgery but also in endoscopic surgery such as laparoscopy.
  • Some designs use the host to dynamically detect the impedance, actively stop or reduce the energy output when the impedance reaches the threshold, or prompt the user to stop the energy output, thereby reducing the tissue caused by the excess thermal damage. Sticky. Although this design can reduce tissue adhesion, it requires a host with advanced feedback adjustment and is costly.
  • the present application provides an electrode for an electrosurgical instrument.
  • the present invention adds an electrically conductive non-stick coating to the electrodes of the existing high-frequency electrosurgical instrument, and is applied by using an electrosurgical instrument. In the case of surgery, it is possible to reduce the adhesion to the tissue while ensuring complete cutting or closing of the tissue, so that the operation is smoother.
  • a monopolar electrode for an electrosurgical instrument includes: a metal electrode, a first conductive coating on a surface of the metal electrode, and a conductive metal portion; wherein the first conductive coating The layer is for contact with body tissue that is electrically connected to the electrosurgical instrument.
  • the first conductive coating is a non-stick coating.
  • the application can directly adopt the monopolar electrode of the electrosurgical instrument of the prior art, and the non-stick conductive coating is added to the metal electrode, so that the electrode can be electrically conductive to complete the function of the electrosurgical instrument when the electrode contacts the human tissue, and the operation can be avoided. Tissue adhesion in the middle.
  • the monopolar electrode further includes a recessed groove between the first conductive coating and the metal portion, and the recessed groove is used for a locking buckle of the monopolar electrode.
  • the first conductive coating entirely covers the metal electrode or partially covers the metal electrode.
  • the first conductive coating is made by doping various conductive materials in a substrate of PTFE, for example, doping graphene and/or metal particles in a substrate of PTFE.
  • PTFE itself can be prevented from blocking, but it is not electrically conductive, and the conductivity of PTFE can be improved by doping various conductive materials.
  • the first conductive coating is made of a composite material formed of PTFE (polytetrafluoroethylene) doped graphene.
  • the composite material can have a high electrical conductivity and has the characteristics of wear resistance and non-stickiness of PTFE.
  • the material of the metal electrode is the same as the material of the metal portion.
  • the entire monopolar electrode is incorporated into the grip portion of a monopolar instrument of an electrosurgical system or as a component of a monopolar instrument.
  • the monopolar instrument is connected by a cable to a high frequency generator of the electrosurgical system, the high frequency generator generating a high frequency current that is conducted to the first conductive coating through the conductive metal portion, since the first conductive coating is also electrically conductive Therefore, the high frequency current is conducted to the human tissue in contact with the first conductive coating. After the current flows through the human body, it returns to the high frequency generator through the negative plate that is in contact with the human body.
  • a bipolar electrode for an electrosurgical instrument comprising: a negative electrode, a positive electrode, a second conductive coating on the surface of the positive electrode, and a connecting member.
  • the negative electrode and the positive electrode are used for contacting with human tissue, and the connecting member is electrically connectable to the electrosurgical instrument.
  • the second conductive coating is a non-stick coating.
  • the present application can directly use the bipolar metal electrode of the prior art electrosurgical instrument, and add a non-stick conductive coating on the metal positive electrode, so that the electrode can be electrically conductive to complete electrosurgery when contacting the human body tissue.
  • the function of the device can avoid tissue adhesion during surgery.
  • the second conductive coating entirely covers the positive electrode or partially covers the positive electrode.
  • the second conductive coating is selected by doping various conductive materials in a substrate of PTFE, for example, doping graphene and/or metal particles in a substrate of PTFE.
  • PTFE itself can be prevented from blocking, but it is not electrically conductive, and the conductivity of PTFE can be improved by doping various conductive materials. After the composite coating thus formed is covered on the metal electrode, the conductivity of the electrode can be ensured, and the adhesion of the electrode to the tissue can be reduced.
  • the second conductive coating is made of a composite material formed of PTFE (polytetrafluoroethylene) doped graphene.
  • the connecting member is a sleeve
  • the sleeve includes at least two wires
  • the negative electrode and the positive electrode are each electrically connected to a wire.
  • the bipolar electrode is connected by wires to a high frequency generator of the electrosurgical system, the high frequency generator generating a high frequency current that is transmitted to the bipolar electrode via a wire.
  • the second conductive coating completely covers the positive electrode 5, in which case the high frequency generator emits a high frequency current, flows through a wire into the positive electrode, and then passes through the second conductive coating. The layer is transferred to the body tissue, and the current flows through the body, and then returns to the high frequency generator through the negative electrode and the wire connected thereto.
  • the second conductive coating partially covers the positive electrode, in which case the portion of the electrode covered by the second conductive coating contacts the human tissue through the second conductive coating, on the electrode The portion not covered by the second conductive coating is in direct contact with human tissue.
  • the high-frequency generator emits a high-frequency current, which flows into the positive electrode through a wire, and then a part is transmitted to the human body through the second conductive coating, and the other part is directly transmitted to the human body. After the current flows through the human body, the negative electrode is connected thereto. The wire then goes back to the high frequency generator.
  • the composite material forming the first conductive coating layer and the second conductive coating layer described above may be prepared by various methods.
  • the PTFE emulsion and the graphene oxide are first doped by electrostatic adsorption in an aqueous solution, and then oxidized. After the graphene is reduced, the hybrid material is used for the coating.
  • the content of PTFE particles in the PTFE emulsion at the time of doping is 20% by weight, and the content of graphene oxide is 2% by weight.
  • the thicknesses of the first conductive coating 1 and the second conductive coating 6 may be specifically set as needed.
  • the thickness of the coating is less than 0.05 mm, and preferably, the thickness of the coating is controlled between 0.003 mm and 0.020 mm.
  • the present application provides an electrically conductive non-stick coating on an existing monopolar or bipolar electrode, which is made by doping graphene and/or metal particles in a PTFE substrate, due to PTFE. It can prevent blocking by itself. By doping various conductive materials, the electrical conductivity of PTFE can be improved. After the composite coating thus formed is covered on the metal electrode, the working area and working energy of the electric knife are not reduced, and the electrode can be ensured. The electrical conductivity does not affect the coagulation effect of the electrosurgical knife, and can reduce the adhesion of the electrode to the tissue, and has a simple structure and is easy to manufacture.
  • the technical solution of the present application mainly solves the problem that the electrosurgical instrument is used in the process, because the current acts on the human body to cause the tissue protein to coagulate and adhere to the electrode of the device, thereby affecting the normal use of the device.
  • this innovation does not require the host to have advanced feedback adjustment function, and the ordinary high-frequency electrosurgical unit can also be used, which greatly reduces the cost.
  • the application ensures that the working area and working energy of the electrosurgical knife are not reduced, and the coagulation effect of the electrosurgical knife is not affected.
  • FIG. 1 is a perspective view of a coated monopolar electrode in accordance with one embodiment of the present invention.
  • FIG. 2 is a perspective view of a coated bipolar electrode in accordance with another embodiment of the present invention.
  • a perspective view of a coated monopolar electrode in accordance with one embodiment of the present invention is shown.
  • the monopolar electrode is used in an electrode surgical instrument, preferably in a high frequency electrode blade, which acts as a high frequency electrode blade to apply cutting or electrocoagulation energy to a patient tissue, in a high frequency electrode knife
  • a high frequency generator, a circuit board, and a power supply interface are generally provided.
  • the high frequency generator provides a high frequency current
  • the circuit board drives and controls the electrode tip to provide an adapted power to the electrode tip.
  • the energy suitable for electrical cutting or electrocoagulation is transferred to the sub-electrode tip.
  • the monopolar electrode of FIG. 1 includes a metal electrode, a first conductive coating 1 on the surface of the metal electrode, a conductive metal portion 3, and a recessed groove 2 between the first conductive coating 1 and the metal portion 3.
  • the first conductive coating 1 is for contact with human tissue
  • the metal portion 3 is electrically connected to the electrosurgical instrument, preferably to the head of the electrosurgical instrument and to the conductor in the instrument In full contact, the recessed slot 2 is used for a locking snap of a monopolar electrode.
  • the first conductive coating 1 is a non-stick coating.
  • the material of the metal electrode is the same as the material of the metal portion 3.
  • the entire monopolar electrode can be incorporated into the grip portion of a monopolar instrument of an electrosurgical system or as a component of a monopolar instrument.
  • the monopolar instrument is connected by a cable to a high frequency generator of the electrosurgical system, the high frequency generator generating a high frequency current that is conducted through the conductive metal portion 3 to the first conductive coating 1 due to the first conductive coating 1 It is also electrically conductive, so high frequency current is conducted to contact the first conductive coating 1 to human tissue. After the current flows through the human body, it returns to the high frequency generator through the negative electrode.
  • FIG. 2 a perspective view of a coated bipolar electrode in accordance with another embodiment of the present invention is shown.
  • the bipolar electrode is used in an electrode surgical instrument, preferably in a high frequency electrode knife, and the bipolar electrode is used as a cutter head of a high frequency electrode knife to apply cutting or electrocoagulation energy to human tissue, and a high frequency electrode knife
  • a high frequency generator, a circuit board, and a power supply interface are generally provided.
  • the high frequency generator provides a high frequency current
  • the circuit board drives and controls the electrode tip to provide an adapted power to the electrode tip.
  • the energy suitable for electrical cutting or electrocoagulation is transferred to the sub-electrode tip.
  • the bipolar electrode in FIG. 2 includes a negative electrode 4, a positive electrode 5, a second conductive coating 6 on the surface of the positive electrode 5, and a sleeve 7.
  • the sleeve 7 is electrically connected to the electrosurgical instrument, preferably, the cannula 7 is loaded into the head of the electrosurgical instrument and The conductors in the device are in full contact.
  • the second conductive coating 6 is a non-stick coating.
  • the second conductive coating 6 is provided only on the surface of the positive electrode 5.
  • the second conductive coating 6 may be disposed on the surface of the negative electrode 4, or on the surfaces of the positive electrode 5 and the negative electrode 4.
  • a second conductive coating 6 is provided.
  • the second conductive coating 6 may cover the positive electrode 5 as a whole or may partially cover 5.
  • the sleeve 7 contains at least two wires, and the negative electrode 4 and the positive electrode 5 are each electrically connected to a wire.
  • the second conductive coating 6 completely covers the positive electrode 5, in which case the high frequency generator emits a high frequency current, flows through a wire into the positive electrode 5, and then through the second The conductive coating 6 is transferred to the human body tissue, and the current flows through the human body, and then returns to the high frequency generator through the negative electrode 4 and the wire connected thereto.
  • the second conductive coating 6 partially covers the positive electrode 5, in which case the portion of the electrode 5 covered by the second conductive coating 6 is contacted by the second conductive coating 6.
  • the portion of the electrode 5 that is not covered by the second conductive coating 6 is in direct contact with human tissue.
  • the high-frequency generator emits a high-frequency current, which flows into the positive electrode 5 through a wire, and then a part is transmitted to the human body through the second conductive coating 6, and the other part is directly transmitted to the human body, and the current flows through the human body and passes through the negative electrode 4 And the wires connected to it go back to the high frequency generator.
  • PTFE-doped graphene is preferably used, and the composite material can have high electrical conductivity, and has the characteristics of wear resistance and non-stickiness of PTFE.
  • the composite material forming the first conductive coating 1 and the second conductive coating 6 can be prepared by various methods.
  • the PTFE emulsion and the graphene oxide are first doped by electrostatic adsorption in an aqueous solution, and then After the reduction of the graphene oxide, the hybrid material is used for the coating.
  • the content of PTFE particles in the PTFE emulsion at the time of doping is 20% by weight, and the content of graphene oxide is 2% by weight.
  • the thicknesses of the first conductive coating 1 and the second conductive coating 6 may be specifically set as needed.
  • the thickness of the coating is less than 0.05 mm, and preferably, the thickness of the coating is controlled between 0.003 mm and 0.020 mm.
  • the application mainly solves the problem that the electrosurgical instrument is used in the process, because the current acts on the human tissue to cause the tissue protein to coagulate and adhere to the electrode of the device, thereby affecting the normal use of the device.
  • this innovation does not require the host to have advanced feedback adjustment function, and the ordinary high-frequency electrosurgical unit can also be used, which greatly reduces the cost.
  • the application ensures that the working area and working energy of the electrosurgical knife are not reduced, and the coagulation effect of the electrosurgical knife is not affected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Plasma & Fusion (AREA)
  • Molecular Biology (AREA)
  • Otolaryngology (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Surgical Instruments (AREA)

Abstract

一种用于电外科手术器械的单极电极和双极电极,以及一种形成导电不粘涂层(1、6)的复合材料的制备方法。单极电极和双极电极包括导电不粘涂层(1、6),导电不粘涂层(1、6)选用在PTFE的基材中掺杂石墨烯和/或金属颗粒制成。由于PTFE本身可以防粘连,通过掺杂各种导电材料可以提高PTFE的电导率,将由此形成的复合材料涂层覆盖到金属电极上后,保证了电刀工作区域和工作能量并未减少,可以保证电极的导电性,不影响电刀的凝血效果既,又可以减少电极对组织的粘连,并且结构简单,容易制造。

Description

一种电外科器械的电极 技术领域
本申请涉及医疗器械领域,具体涉及一种用于电外科手术器械的电极。
背景技术
高频电刀(电外科系统)是一种取代机械手术刀进行组织切割的电外科器械。从20世纪20年代就已经有商品化的高频电刀产品用于外科手术(参见《电外科手术设备的进展》,尤颢、杨谦,《中国医疗器械杂志》2012年第4期)。它通过有效电极尖端产生的高频高压电流与肌体接触时对组织进行加热,实现对肌体组织的分离和凝固,从而起到切割和止血的目的。相比起机械手术刀,高频电刀的切割速度快、止血效果好。不仅可在手术中直接使用,也可在腹腔镜等内镜手术中配合使用。
然而,高频电刀在工作时温度高,对组织的热损伤通常较大,在临床中往往会引起焦痂。若焦痂粘连到器械上,不仅影响器械的继续使用,有时还会导致器械牵拉扯动时将已经止血的组织破坏,引起更多的出血。
为避免组织粘连,目前已有一些相关设计,有的设计是通过主机动态检测阻抗,在阻抗达到阈值时主动停止或减少能量输出或提示用户停止能量输出,进而降低多余的热损伤所引起的组织粘连。这种设计尽管能降低组织粘连,但需要主机具有高级反馈调节功能,成本很高。
现有技术中,还有的设计是将器械刀头和组织接触的电极上设计一些防粘的 纹理形状(参见:《微创手术器械高频电刀表面仿生脱附研究》,曹会娜,《吉林大学》,2015),或者做部分涂层(参见美国专利US5713895,名称为“Partially Coated Electrodes”),或将电极做成镂空形,或将电极镶嵌在非金属材料例如陶瓷上(参见Covidien AG的美国专利US7458972B2,名称为“Electrosurgical Electrode Having A Non-Conductive Porous Ceramic Coating”)。然而这些解决方案总体上的设计方向都是减少电极与组织的接触时间或接触面积。但在闭合大血管的应用时,需要保证足够的电极与大血管的接触面积和接触时间来确保大血管完全闭合。因此单纯从控制电极与组织的接触时间或接触面积的角度上来防粘连,在某些应用场合时未必总是会有益处。
在超声能量外科上,已经有在刀头增加PTFE涂层以防止组织粘连的做法(参见伊西康内外科公司的专利CN103260533A,名称为“外科器械”)。由于超声刀器械的刀头并不导电,增加不导电的PTFE涂层并不会影响其正常工作。但是,电刀器械的刀头部分是电极,本身需要导电来工作,因此简单的增加PTFE涂层是不能工作的。
发明内容
为了解决上述技术问题,本申请提供一种用于电外科手术器械的电极,本发明在现有高频电刀器械的电极上增加了可导电的不粘涂层,在应用电外科手术器械进行外科手术时,可以在保证完全切割或闭合组织的情况下,减少对组织的粘连,使手术操作更加流畅。
根据本申请的一个方面,提供一种用于电外科手术器械的单极电极,包括:金属电极、位于金属电极表面的第一导电涂层、导电的金属部分;其中,所述第 一导电涂层用于和人体组织接触,所述金属部分与所述电外科手术器械电连接。所述第一导电涂层为不粘涂层。
本申请可直接采用现有技术中的电外科器械的单极电极,在其中金属电极上增加不粘导电涂层,使电极接触人体组织时既能导电完成电外科器械的功能,又能避免手术中的组织粘连。
进一步,所述单极电极还包括位于所述第一导电涂层及所述金属部分之间的凹陷槽,所述凹陷槽用于单极电极的锁止卡扣。
进一步,所述第一导电涂层整体覆盖金属电极或部分覆盖金属电极。
进一步,所述第一导电涂层选用在PTFE的基材中掺杂各种导电材料制成,例如在PTFE的基材中掺杂石墨烯和/或金属颗粒。PTFE本身可以防粘连,但是不导电,通过掺杂各种导电材料可以提高PTFE的电导率。将由此形成的复合材料涂层覆盖到金属电极上后,既可以保证电极的导电性,又可以减少电极对组织的粘连。
在一个实施方式中,所述第一导电涂层采用PTFE(聚四氟乙烯)掺杂石墨烯形成的复合材料制成。这种复合材料可以有较高的电导率,同时具备PTFE的耐磨,不粘等特性。
在一个实施方式中,所述金属电极的材料与所述金属部分的材料相同。
在一个具体的实施方式中,整个单极电极装入电外科系统的单极器械的握持部分中,或者作为单极器械的一部件。单极器械通过线缆连接电外科系统的高频发生器,所述高频发生器产生高频电流,经过导电的金属部分,传导至第一导电涂层,由于第一导电涂层也是导电的,因此高频电流传导至与第一导电涂层接触的人体组织。电流流经人体后,通过与人体接触的负极板返回到所述高频发生器。
根据本申请的另一个方面,提供一种用于电外科手术器械的双极电极,包括:负极、正极、位于正极表面上的第二导电涂层、连接部件。其中,所述负极、正极用于和人体组织接触,所述连接部件可与所述电外科手术器械电连接。所述第二导电涂层为不粘涂层。
与上述单极电极一样,本申请可直接采用现有技术中的电外科器械的双极金属电极,在金属正电极上增加不粘导电涂层,使电极接触人体组织时既能导电完成电外科器械的功能,又能避免手术中的组织粘连。
进一步,所述第二导电涂层整体覆盖正极或部分覆盖正极。
进一步,所述第二导电涂层选用在PTFE的基材中掺杂各种导电材料制成,例如在PTFE的基材中掺杂石墨烯和/或金属颗粒。PTFE本身可以防粘连,但是不导电,通过掺杂各种导电材料可以提高PTFE的电导率。将由此形成的复合材料涂层覆盖到金属电极上后,既可以保证电极的导电性,又可以减少电极对组织的粘连。
在一个实施方式中,所述第二导电涂层采用PTFE(聚四氟乙烯)掺杂石墨烯形成的复合材料制成。
在一个具体的实施方式中,所述连接部件为套管,所述套管内包含至少2根导线,所述负极和所述正极各自和一根导线导通。所述双极电极通过导线连接所述电外科系统的高频发生器,所述高频发生器产生高频电流,经过导线传递至所述双极电极。
在一个具体的实施方式中,所述第二导电涂层完全覆盖正极5,在这种情况下,高频发生器发出高频电流,通过一根导线流进到正极,然后通过第二导电涂层传递至人体组织,电流流经人体后,通过负极以及与其连接的导线再回到高频 发生器。
在另一个具体的实施方式中,所述第二导电涂层部分覆盖正极,在这种情况下,电极上被第二导电涂层覆盖的部分通过第二导电涂层接触到人体组织,电极上未被第二导电涂层覆盖的部分直接接触到人体组织。高频发生器发出高频电流,通过一根导线流进到正极,然后一部分通过第二导电涂层传递至人体组织,另一部分直接传递至人体组织,电流流经人体后,通过负极以及与其连接的导线再回到高频发生器。
形成上述第一导电涂层和第二导电涂层的复合材料可以用多种方法制备,在一个具体实施方式中,首先将PTFE乳液和氧化石墨烯在水溶液中通过静电吸附掺杂,然后将氧化石墨烯还原后,将杂化材料用于涂层。
优选地,掺杂时PTFE乳液中PTFE粒子的含量在20wt%,氧化石墨烯的含量在2wt%。
所述第一导电涂层1和第二导电涂层6的厚度可根据需要具体设置。在一个具体的实施方式中,涂层的厚度小于0.05mm,优选的,涂层的厚度控制在0.003mm到0.020mm之间。
本申请通过在现有的单极电极或双极电极上设置导电不粘涂层,所述导电不粘涂层选用在PTFE的基材中掺杂石墨烯和/或金属颗粒制成,由于PTFE本身可以防粘连,通过掺杂各种导电材料可以提高PTFE的电导率,将由此形成的复合材料涂层覆盖到金属电极上后,保证了电刀工作区域和工作能量并未减少,可以保证电极的导电性,不影响电刀的凝血效果既,又可以减少电极对组织的粘连,并且结构简单,容易制造。
本申请的技术方案主要解决了电外科器械在使用过程中,因为电流作用于人 体组织使组织蛋白凝固粘连在器械电极上,进而影响器械正常使用的问题。相比于现有的通过主机控制组织粘连的技术,本创新不需要主机具有高级反馈调节功能,普通的高频电刀主机也可以使用,极大地降低了成本。另外,相比于现有的通过器械电极处结构设计的技术,本申请保证了电刀工作区域和工作能量并未减少,不影响电刀的凝血效果。
附图说明
图1为根据本发明一个实施方式的含涂层的单极电极的立体视图;
图2为根据本发明另一个实施方式的含涂层的双极电极的立体视图。
示意图中零件部件的标号说明:
1、涂层部分、2、凹陷槽、3、金属部分、4、负极、5、正极、6、正极的涂层部分、7、套管
具体实施方式
下面将对发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
参见附图1,示出了根据本发明一个实施方式的含涂层的单极电极的立体视图。所述单极电极用于电极手术器械中,优选用于高频电极刀中,所述单极电极作为高频电极刀的刀头将切割或电凝能量施加给患者组织,高频电极刀中一般还设有高频发生器、电路板及电源接口,所述高频发生器提供高频电流,所述电路板对电极刀头进行驱动和控制,为电极刀头提供适配的电力,从而将适合电切割 或电凝的能量传送子电极刀头。
图1中的单极电极包括:金属电极、位于金属电极表面的第一导电涂层1、导电的金属部分3及位于第一导电涂层1及金属部分3之间的凹陷槽2。其中,所述第一导电涂层1用于和人体组织接触,所述金属部分3与所述电外科手术器械电连接,优选地,装入电外科手术器械的头部并和器械中的导体充分接触,所述凹陷槽2用于单极电极的锁止卡扣。所述第一导电涂层1为不粘涂层。
在一个实施方式中,所述金属电极的材料与所述金属部分3的材料相同。
在实际应用中,整个单极电极可以装入电外科系统的单极器械的握持部分中,或者作为单极器械的一部件。单极器械通过线缆连接电外科系统的高频发生器,所述高频发生器产生高频电流,经过导电的金属部分3,传导至第一导电涂层1,由于第一导电涂层1也是导电的,因此高频电流传导至与第一导电涂层1接触到人体组织。电流流经人体后,再通过负极返回到高频发生器。
参见图2,示出了根据本发明另一个实施方式的含涂层的双极电极的立体视图。所述双极电极用于电极手术器械中,优选用于高频电极刀中,所述双极电极作为高频电极刀的刀头将切割或电凝能量施加给人体组织,高频电极刀中一般还设有高频发生器、电路板及电源接口,所述高频发生器提供高频电流,所述电路板对电极刀头进行驱动和控制,为电极刀头提供适配的电力,从而将适合电切割或电凝的能量传送子电极刀头。
图2中的双极电极包括:负极4、正极5、位于正极5表面上的第二导电涂层6、套管7。其中,所述负极4、正极5用于和人体组织接触,所述套管7与所述电外科手术器械电连接,优选地,所述套管7装入电外科手术器械的头部并和器械中的导体充分接触。所述第二导电涂层6为不粘涂层。在该实施方式中, 仅在正极5表面上设置第二导电涂层6,在其他实施方式中,可在负极4表面上设置第二导电涂层6,或者在正极5及负极4表面上均设置第二导电涂层6。
第二导电涂层6可以整体覆盖正极5,也可以部分覆盖5。
在一个具体的实施方式中,套管7内包含至少2根导线,负极4和正极5各自和一根导线导通。
在一个具体的实施方式中,所述第二导电涂层6完全覆盖正极5,在这种情况下,高频发生器发出高频电流,通过一根导线流进到正极5,然后通过第二导电涂层6传递至人体组织,电流流经人体后,通过负极4以及与其连接的导线再回到高频发生器。
在另一个具体的实施方式中,所述第二导电涂层6部分覆盖正极5,在这种情况下,电极5上被第二导电涂层6覆盖的部分通过第二导电涂层6接触到人体组织,电极5上未被第二导电涂层6覆盖的部分直接接触到人体组织。高频发生器发出高频电流,通过一根导线流进到正极5,然后一部分通过第二导电涂层6传递至人体组织,另一部分直接传递至人体组织,电流流经人体后,通过负极4以及与其连接的导线再回到高频发生器。
对于第一导电涂层1和第二导电涂层6,优选地采用PTFE掺杂石墨烯,这种复合材料可以有较高的电导率,同时具备PTFE的耐磨,不粘等特性。
形成第一导电涂层1和第二导电涂层6的复合材料可以用多种方法制备,在一个具体实施方式中,首先将PTFE乳液和氧化石墨烯在水溶液中通过静电吸附掺杂,然后将氧化石墨烯还原后,将杂化材料用于涂层。
优选地,掺杂时PTFE乳液中PTFE粒子的含量在20wt%,氧化石墨烯的含量在2wt%。
所述第一导电涂层1和第二导电涂层6的厚度可根据需要具体设置。在一个具体的实施方式中,涂层的厚度小于0.05mm,优选的,涂层的厚度控制在0.003mm到0.020mm之间。
本申请主要解决了电外科器械在使用过程中,因为电流作用于人体组织使组织蛋白凝固粘连在器械电极上,进而影响器械正常使用的问题。相比于现有的通过主机控制组织粘连的技术,本创新不需要主机具有高级反馈调节功能,普通的高频电刀主机也可以使用,极大地降低了成本。另外,相比于现有的通过器械电极处结构设计的技术,本申请保证了电刀工作区域和工作能量并未减少,不影响电刀的凝血效果。
以上所揭露的仅为本申请几种较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖范围。

Claims (21)

  1. 一种用于电外科手术器械的单极电极,包括:金属电极、位于金属电极表面的第一导电涂层、导电的金属部分;其中,所述第一导电涂层用于和人体组织接触,所述金属部分与所述电外科手术器械电连接;其特征在于:所述第一导电涂层为不粘涂层。
  2. 根据权利要求1所述的单极电极,还包括位于所述第一导电涂层及所述金属部分之间的凹陷槽,所述凹陷槽用于单极电极的锁止卡扣。
  3. 根据权利要求1所述的单极电极,所述第一导电涂层整体覆盖所述金属电极或部分覆盖所述金属电极。
  4. 根据权利要求1中任一项的单极电极,所述单极电极装入所述电外科系统的单极器械的握持部分中或者所述单极电极作为单极器械的一部分。
  5. 根据权利要求4所述的单极电极,所述单极器械通过线缆连接所述电外科系统的高频发生器,所述高频发生器产生高频电流,经过导电的金属部分,传导至所述第一导电涂层,再传导至与第一导电涂层接触的人体组织,所述电流流经人体后,通过同人体接触的负极板返回到所述高频发生器。
  6. 根据权利要求1-5任一项所述的单极电极,所述第一导电涂层选用在PTFE的基材中掺杂石墨烯制成。
  7. 根据权利要求1-5任一项所述的单极电极,所述第一导电涂层选用在PTFE的基材中掺杂金属颗粒制成。
  8. 根据权利要求6所述的单极电极,所述涂层的厚度小于0.05mm。
  9. 根据权利要求8所述的单极电极,所述涂层的厚度控制在0.003mm到0.020mm之间。
  10. 一种用于电外科手术器械的双极电极,包括:负极、正极、位于正极和/或负极表面上的第二导电涂层、连接部件;其中,所述负极、正极用于和人体组织接触,所述连接部件与所述电外科手术器械电连接;其特征在于:所述第二导电涂层为不粘涂层。
  11. 根据权利要求10所述的双极电极,所述连接部件为套管,所述套管内包含至少2根导线,所述负极和所述正极各自和一根导线导通,所述双极电极通过 所述导线连接所述电外科系统的高频发生器,所述高频发生器产生高频电流,经过导线传递至所述双极电极。
  12. 根据权利要求10所述的双极电极,所述第二导电涂层整体覆盖所述正极。
  13. 根据权利要求10所述的双极电极,所述第二导电涂层部分覆盖所述正极。
  14. 根据权利要求12所述的双极电极,所述高频发生器发出高频电流,通过一根导线流进到正极,然后通过第二导电涂层传递至人体组织,电流流经人体后,通过所述负极以及与其连接的导线再回到高频发生器。
  15. 根据权利要求13所述的双极电极,所述正极上被第二导电涂层覆盖的部分通过第二导电涂层接触到人体组织,所述正极上未被第二导电涂层覆盖的部分直接接触到人体组织,所述高频发生器发出高频电流,通过一根导线流进到正极,一部分通过所述第二导电涂层传递至人体组织,另一部分直接传递至人体组织,电流流经人体后,通过所述负极以及与其连接的导线再回到高频发生器。
  16. 根据权利要求10-15中任一项所述的双极电极,所述第二导电涂层选用在PTFE的基材中掺杂石墨烯制成。
  17. 根据权利要求10-15中任一项所述的双极电极,所述第二导电涂层选用在PTFE的基材中掺杂金属颗粒制成。
  18. 根据权利要求16所述的单极电极,所述涂层的厚度小于0.05mm。
  19. 根据权利要求18所述的单极电极,所述涂层的厚度控制在0.003mm到0.020mm之间。
  20. 一种复合材料的制备方法,所述复合材料用于形成如权利要求1-9任一项所述的第一导电涂层或如权利要求10-19任一项所述的第二导电涂层,所述制备方法包括以下步骤:
    (1)将PTFE乳液和氧化石墨烯在水溶液中通过静电吸附掺杂;
    (2)将氧化石墨烯还原后,将杂化材料用于涂层。
  21. 如权利要求10所述的复合材料的制备方法,在所述第(1)步骤中,在掺杂时PTFE乳液中PTFE粒子的含量在20wt%,氧化石墨烯的含量在2wt%。
PCT/CN2018/070087 2017-01-24 2018-01-03 一种电外科器械的电极 WO2018137477A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/480,603 US20190388140A1 (en) 2017-01-24 2018-01-03 Electrode for electrosurgical instruments

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710060077.1A CN106725841A (zh) 2017-01-24 2017-01-24 一种电外科器械的电极
CN201710060077.1 2017-01-24

Publications (1)

Publication Number Publication Date
WO2018137477A1 true WO2018137477A1 (zh) 2018-08-02

Family

ID=58942065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/070087 WO2018137477A1 (zh) 2017-01-24 2018-01-03 一种电外科器械的电极

Country Status (3)

Country Link
US (1) US20190388140A1 (zh)
CN (1) CN106725841A (zh)
WO (1) WO2018137477A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106725841A (zh) * 2017-01-24 2017-05-31 上海逸思医疗科技有限公司 一种电外科器械的电极
US10709497B2 (en) * 2017-09-22 2020-07-14 Covidien Lp Electrosurgical tissue sealing device with non-stick coating
DE102018000935B4 (de) * 2017-11-28 2022-12-22 Carl Freudenberg Kg Dichtungsanordnung
CN110893126B (zh) * 2019-12-18 2020-10-27 徐隋意 一种实验动物用脑科模型的双极电凝镊及其制备方法
CN113180817A (zh) * 2021-06-01 2021-07-30 大连理工大学 一种基于无烟电极的电外科器械
CN113180819A (zh) * 2021-06-01 2021-07-30 大连理工大学 一种无粘黏的电外科器械电极

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197962A (en) * 1991-06-05 1993-03-30 Megadyne Medical Products, Inc. Composite electrosurgical medical instrument
US6007488A (en) * 1997-05-12 1999-12-28 Rtc, Inc. Medical probe including an electrically conductive membrane suitable for medical uses
CN204158488U (zh) * 2014-08-19 2015-02-18 郑建都 一种不粘电刀
CN204814162U (zh) * 2014-12-30 2015-12-02 沈建平 针灸针型射频电针
CN105924862A (zh) * 2016-06-07 2016-09-07 扬州大学 一种复合型聚四氟乙烯导电材料的制备方法
CN106280617A (zh) * 2016-08-30 2017-01-04 李兆源 一种复合不粘涂料材料
CN106725841A (zh) * 2017-01-24 2017-05-31 上海逸思医疗科技有限公司 一种电外科器械的电极

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693052A (en) * 1995-09-01 1997-12-02 Megadyne Medical Products, Inc. Coated bipolar electrocautery
US5925043A (en) * 1997-04-30 1999-07-20 Medquest Products, Inc. Electrosurgical electrode with a conductive, non-stick coating
US6589239B2 (en) * 2000-02-01 2003-07-08 Ashok C. Khandkar Electrosurgical knife
US6409725B1 (en) * 2000-02-01 2002-06-25 Triad Surgical Technologies, Inc. Electrosurgical knife
US6540745B1 (en) * 2001-05-01 2003-04-01 Aeromet Technologies, Inc. Coated medical devices
US20040115477A1 (en) * 2002-12-12 2004-06-17 Bruce Nesbitt Coating reinforcing underlayment and method of manufacturing same
EP2008598A1 (en) * 2007-06-29 2008-12-31 Edward A. Loeser Composite fiber electrosurgical instrument
DE102010060336B4 (de) * 2010-11-04 2015-03-26 Erbe Elektromedizin Gmbh Elektrodeneinrichtung eines elektrochirurgischen Instruments
US20120239068A1 (en) * 2010-12-10 2012-09-20 Morris James R Surgical instrument
US8887373B2 (en) * 2012-02-24 2014-11-18 Covidien Lp Vessel sealing instrument with reduced thermal spread and method of manufacture therefor
US20140030590A1 (en) * 2012-07-25 2014-01-30 Mingchao Wang Solvent-free process based graphene electrode for energy storage devices
US9757190B2 (en) * 2012-08-17 2017-09-12 Medtronic Ablation Frontiers Llc Methods of manufacturing monophasic action potential mapping catheters
CN103214897B (zh) * 2013-03-19 2015-01-07 宁波墨西新材料有限公司 一种石墨烯不粘涂料
CN106413611A (zh) * 2014-04-17 2017-02-15 波士顿科学国际有限公司 用于治疗性热处理的医疗装置
US20160035456A1 (en) * 2014-07-30 2016-02-04 Vorbeck Materials Corp. Electrically conductive polymer compositions
CN204072325U (zh) * 2014-08-29 2015-01-07 慈溪舜业医疗器材有限公司 一种涂覆层电极
US10537667B2 (en) * 2015-01-28 2020-01-21 Ethicon Llc High temperature material for use in medical devices
US10028765B2 (en) * 2015-10-30 2018-07-24 Ethicon Llc Ultrasonic surgical instrument clamp arm with proximal nodal pad
US9941380B2 (en) * 2015-11-30 2018-04-10 Taiwan Semiconductor Manufacturing Co., Ltd. Graphene transistor and related methods
CN105348950A (zh) * 2015-11-30 2016-02-24 无锡大塘复合材料有限公司 一种石墨烯不粘涂料及其应用
CN207679526U (zh) * 2017-01-24 2018-08-03 上海逸思医疗科技有限公司 一种电外科器械的电极
CA3069424A1 (en) * 2017-06-08 2018-12-13 Neuronoff, Inc. Electrode cured and manufactured in the body, and related methods and devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197962A (en) * 1991-06-05 1993-03-30 Megadyne Medical Products, Inc. Composite electrosurgical medical instrument
US6007488A (en) * 1997-05-12 1999-12-28 Rtc, Inc. Medical probe including an electrically conductive membrane suitable for medical uses
CN204158488U (zh) * 2014-08-19 2015-02-18 郑建都 一种不粘电刀
CN204814162U (zh) * 2014-12-30 2015-12-02 沈建平 针灸针型射频电针
CN105924862A (zh) * 2016-06-07 2016-09-07 扬州大学 一种复合型聚四氟乙烯导电材料的制备方法
CN106280617A (zh) * 2016-08-30 2017-01-04 李兆源 一种复合不粘涂料材料
CN106725841A (zh) * 2017-01-24 2017-05-31 上海逸思医疗科技有限公司 一种电外科器械的电极

Also Published As

Publication number Publication date
US20190388140A1 (en) 2019-12-26
CN106725841A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018137477A1 (zh) 一种电外科器械的电极
US10058376B2 (en) Method of manufacturing a jaw member of an electrosurgical end effector assembly
US11033253B2 (en) Electrosurgical scissors
US11298179B2 (en) Non-stick coated electrosurgical instruments and method for manufacturing the same
US11969204B2 (en) Non-stick coated electrosurgical instruments and method for manufacturing the same
US7896875B2 (en) Battery powered electrosurgical system
US8535312B2 (en) Apparatus, system and method for performing an electrosurgical procedure
US6004317A (en) Electrosurgical instrument
EP0517244B1 (en) Hemostatic bi-polar electrosurgical cutting apparatus
USH1745H (en) Electrosurgical clamping device with insulation limited bipolar electrode
US10888368B2 (en) Electrosurgical dissector with thermal management
JP2016516482A (ja) 組合せ電気手術デバイス
JP6180671B2 (ja) 医療機器、コート材
CN207679526U (zh) 一种电外科器械的电极
Brill Electrosurgery: principles and practice to reduce risk and maximize efficacy
CN106175921A (zh) 具有钳口结构的电外科手术器械
CN219250398U (zh) 一种等离子手术刀
US11490953B2 (en) Electrosurgical instrument and passively cooled jaw members thereof
US20230200880A1 (en) Pericardiotomy devices and related methods
US20220241004A1 (en) Electrosurgical Electrodes, Electrosurgical Tools, and Methods of Making Electrosurgical Electrodes
US20210177488A1 (en) System and method of manufacturing non-stick coated electrodes
CN115052543A (zh) 电外科用电极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744796

Country of ref document: EP

Kind code of ref document: A1